WO2019207817A1 - Safety cabinet - Google Patents

Safety cabinet Download PDF

Info

Publication number
WO2019207817A1
WO2019207817A1 PCT/JP2018/038280 JP2018038280W WO2019207817A1 WO 2019207817 A1 WO2019207817 A1 WO 2019207817A1 JP 2018038280 W JP2018038280 W JP 2018038280W WO 2019207817 A1 WO2019207817 A1 WO 2019207817A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety cabinet
excitation light
work space
cabinet according
light source
Prior art date
Application number
PCT/JP2018/038280
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 相馬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2019207817A1 publication Critical patent/WO2019207817A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a safety cabinet used for research such as regenerative medicine and pathogens.
  • a safety cabinet is used when handling cells in regenerative medicine where cells are cultured.
  • Patent Document 1 provides a blow-out HEPA filter at the top of the work space, a front shutter that can be opened and closed at the front of the work space, a rear suction portion at the rear wall, and a lower front.
  • a front suction part uniformly supplying air from the HEPA filter for blowing to the work space, and sucking air from the front suction part and the rear suction part of the work table that forms the bottom surface of the work space.
  • the object of the present invention is to provide a safety cabinet that can easily determine that the work space has been contaminated and can easily confirm that the work space has been decontaminated.
  • a safety cabinet having a front plate and a work opening on a front surface of a work space, and supplying clean air from above to the work space, wherein the work space is irradiated with an excitation light source and excitation light from the excitation light source. Imaging means for observing the generated fluorescence.
  • the present invention it can be easily determined that the work space of the safety cabinet has been contaminated, and it can be easily confirmed that it has been decontaminated.
  • FIG. It is an example of the external appearance front view which shows the safety cabinet of Example 1.
  • FIG. It is an example of side sectional drawing which shows the safety cabinet of Example 1.
  • FIG. It is a figure which shows the flow of the air at the time of operation
  • movement of the safety cabinet of FIG. It is a figure which shows the working space of the safety cabinet of Example 1.
  • FIG. It is a figure which shows the relationship between the excitation light of Example 1, and fluorescence.
  • FIG. It is a figure which shows the arrangement
  • FIG. It is a figure which shows the safety cabinet of Example 3.
  • FIG. 1 shows a schematic front view of the safety cabinet.
  • FIG. 2 is a schematic side view of the safety cabinet when the A-A ′ cross section of FIG. 1 is viewed from the right side.
  • An opening is provided in the central area of the casing 101 of the safety cabinet 100, and a work space 104 is provided in the back thereof.
  • a front plate 102 is provided on the front side of the work space 104 so as to block the upper portion of the opening, and a work opening 103 is provided on the lower side thereof. The operator puts his hand into the work space 104 from the work opening 103. Do the work.
  • the front plate 102 is formed of a transparent material such as glass, and an operator can visually observe the work through the front plate.
  • a substantially flat work stage 105 is provided on the bottom surface of the work space 104, and the worker performs work on the work stage.
  • An intake port 107 leading to the lower side is provided on the front side of the work stage 105 and in the vicinity of the work opening 103.
  • the air inlet 107 is formed by a slit extending in the left-right direction of the housing along the work opening 103.
  • a back channel 108 that leads from the air inlet 107 to the upper part of the housing is provided.
  • a blow-out side FFU (fan filter unit) 109 is provided above the work space 104.
  • the blowout side FFU 109 includes a fan rotated by a motor and a filter for removing fine particles, for example, a HEPA filter 109A, and blows clean air from which fine particles have been removed to the work space 104.
  • An exhaust-side FFU (fan filter unit) 110 is provided on the upper portion of the casing 101, and a part of air is removed through a filter, for example, a HEPA filter 110A, and discharged to the outside of the apparatus.
  • Fig. 3 shows the air flow with arrows when the safety cabinet is operating.
  • the air 90 sucked from the air inlet 107 on the front side of the work stage 105 passes through the lower part of the casing, the rear passage 108, and the upper part of the casing as indicated by reference numeral 91, and then enters the work space 104 from the blowout side FFU 109. Be blown.
  • the work space 104 is maintained in a clean state by blowing clean air from which fine particles have been removed by the HEPA filter 109A of the blow-out side FFU 109 into the work space 104. At this time, the air in the work space may leak to the outside only by the air flow to the work space 104 indicated by reference numeral 92.
  • the discharge side FFU 110 is provided, and part of the air is discharged to the outside through the HEPA filter 110A.
  • the pressure in the work space decreases, and an air flow 94 is generated from the outside to be introduced into the inside through the work opening 103 below the front plate 102. If this air flow 94 flows into the work space as it is, the cleanliness of the work space is lowered.
  • the air volume of the air flow 92 blown out from the blowout side FFU 109 to the work space and the air volume of the air flow 93 discharged outside from the discharge side FFU 110 all of the air 94 flowing in from the work opening 103 is obtained.
  • the air 92 that sucks most of the air 92 sent to the work space from the air inlet 107 prevents the air 94 from flowing into the work space 104 from flowing into the work space 104 by the air flow 92 blown out to the work space 104.
  • Wall air barrier
  • FIG. 4 shows a characteristic configuration of this embodiment.
  • an excitation light source 20 and imaging means for detecting fluorescence generated from mold, bacteria, etc. for example, a camera 21 are provided.
  • the excitation light source 20 may be an ultraviolet lamp, LED, laser, or the like.
  • reference numeral 22 denotes a band-pass filter that limits the wavelength of light incident on the camera.
  • the excitation light source 20 emits light having a wavelength of 420 nm or less, for example, ultraviolet light.
  • the contaminant 24 generates fluorescence specific to mold and fluorescence specific to bacteria. The generated fluorescence is imaged by the camera 21, and the presence or absence of contamination and the state of contamination removal are confirmed.
  • FIG. 5 shows the relationship between excitation light and generated fluorescence.
  • the excitation light 30 is irradiated with ultraviolet light having a wavelength of 420 nm or less.
  • Reference numeral 32 indicates fluorescence generated from microorganisms
  • reference numeral 34 indicates fluorescence generated from bacteria.
  • molds and bacteria generate different types of fluorescence depending on the wavelength of the irradiated light source.
  • the bandpass filter 22 may be switched to change the wavelength of the transmitted light.
  • a suitable decontamination method can be selected, for example, by considering the antibacterial acid, anti-alkali, anti-alcohol and the like for the identified microorganism.
  • the unillustrated illumination provided in the work space may be turned off or dimmed, or a transparent front plate or work opening may be shielded.
  • the fluorescence detection sensitivity can be improved.
  • the excitation light from the excitation light source 20 is irradiated in the operating state of the safety cabinet, that is, in the state where the air barrier is formed.
  • FIG. 6 shows the situation where the cells are irradiated with excitation light.
  • the cell 40 includes a nucleus 42, a protoplasm 43 surrounding the nucleus, and a cell membrane 44 surrounding the protoplasm.
  • the fluorescence A by the nucleus, the fluorescence B by the protoplasm, and the fluorescence C by the cell membrane are generated.
  • a, b, and c represent sensitizing reagents for nuclei, protoplasm, and cell membrane, respectively.
  • a sensitizing reagent that enhances fluorescence from a specific microorganism may be sprayed.
  • the sensitizing reagent can be selected for each contaminant, for example, for each microorganism and bacterium, or for each cell site, for example, for each nucleus, protoplasm, or cell membrane. Spraying of the sensitizing reagent can be performed by providing a sensitizing reagent spraying means in the work space 104.
  • FIG. 7 shows an example of a block diagram of an electrical system for detecting contamination.
  • the fluorescence image captured by the camera 21 is input to the image processing unit 51.
  • the image processing unit 51 detects the intensity of fluorescence at each position of the image.
  • the fluorescence intensity may be detected for each wavelength.
  • the image input from the camera or the detection result of the fluorescence intensity can be stored in the storage unit 52 and read out from the storage unit 52 as necessary.
  • the determination unit 53 compares the detection result of the fluorescence intensity with a preset threshold value, and determines that it is a contaminant if it is greater than or equal to the threshold value. By comparing the fluorescence intensity detection result for each wavelength with a preset threshold value, the type of contaminant can also be determined.
  • the display unit 54 displays the presence or absence of contaminants. Contaminants may be displayed on the map indicating the work space by storing the detection result by combining the detected fluorescence wavelength and the position information read from the image. Further, a subsequent response instruction, for example, an instruction to re-execute the cleaning process may be displayed together with the display of the contaminant.
  • the display is not limited to image display, but may be instructed by voice. In the case where a display is provided in the safety cabinet, it is only necessary to display the determination result of the contaminant and the subsequent response instruction.
  • the occurrence of mold and bacteria, and the growth state can be monitored by observing the work space with a camera at predetermined time intervals. Then, the contamination status data can be accumulated by connecting the camera to the server via the communication line. In addition, by connecting to the Internet, remote monitoring can be performed from a location away from the safety cabinet.
  • the present embodiment it can be easily determined that the work space of the safety cabinet has been contaminated, and it can be easily confirmed that it has been reliably decontaminated.
  • FIG. 8 shows an example of the safety cabinet of the second embodiment.
  • the second embodiment is provided with a plurality of cameras in order to observe substantially the entire work space 104.
  • an excitation light source 20 is arranged at the center of the ceiling of the work space. Then, two cameras 21 including band pass filters 22 are arranged on both sides of the excitation light source 20. By using a plurality of cameras, a wide range of contaminants 24 can be observed. More cameras may be arranged according to the light receiving range of the camera. A plurality of excitation light sources 20 may be provided.
  • FIG. 9 shows an example of the safety cabinet of the third embodiment.
  • an excitation light source and a camera are mounted on a movable mechanism such as a robot arm in order to observe almost the entire work space 104.
  • a robot arm an arm that can be moved by incorporating a motor
  • a camera 21 including an excitation light source 20 and a bandpass filter is attached to the tip of the robot arm 25.
  • a wide range of contaminants 24 can be observed by moving the robot arm by the control unit and changing the positions and orientations of the excitation light source 20 and the camera 21.
  • the excitation light source and the imaging means are attached to the movable mechanism such as the robot arm, it is possible to observe a wide range of contaminants in the work space, and to confirm the contamination and decontamination of the work space. Can be done. Moreover, irradiation with excitation light and observation of generated fluorescence can be performed at a position close to the work stage, and the detection sensitivity of contaminants can be improved.
  • Excitation light source 21
  • Camera 22
  • Band pass filter 24
  • Contaminant 26
  • Robot arm 30
  • Excitation light 32
  • Fluorescence due to microorganisms 34
  • Fluorescence due to bacteria 40
  • Cell 42
  • Nucleus 43
  • Protoplasm 44
  • Cell membrane 51
  • Image processing unit 52
  • Determination unit 54
  • Display unit 100
  • Safety Cabinet 101 Housing 102
  • Front plate 103
  • Work opening 104 Work space
  • Intake port 108
  • Rear flow path 109
  • Outlet side FFU (fan filter unit)
  • Outlet side HEPA filter 110A discharge side HEPA filter

Abstract

Provided is a safety cabinet capable of easily detecting contamination and easily confirming decontamination of a work space. The safety cabinet has a front surface panel and a work opening at the front surface of the work space. The safety cabinet feeds purified air into the work space from above. The work space is provided with an excitation light source and an imaging means for observing the fluorescent light generated by the radiation of excitation light from the excitation light source.

Description

安全キャビネットSafety cabinet
 本発明は、再生医療や病原体等の研究などに使用する安全キャビネットに関する。 The present invention relates to a safety cabinet used for research such as regenerative medicine and pathogens.
 細胞の培養を行う再生医療などで細胞等を取り扱う場合には、安全キャビネットが使用される。 A safety cabinet is used when handling cells in regenerative medicine where cells are cultured.
 安全キャビネットの一例として、特許文献1には、作業空間の上部に吹き出し用HEPAフィルタを設けるとともに、作業空間の前部に開閉可能な前面シャッターを、後部壁に後側吸込み部を、下方前方に前側吸込み部を設け、吹き出し用HEPAフィルタから一様に作業空間に空気を供給し、作業空間の底面を形成する作業台の前側吸込み部と後側吸込み部から空気を吸い込むことにより、一様に空気が上から下に下降し清浄にする安全キャビネット、が開示されている。 As an example of a safety cabinet, Patent Document 1 provides a blow-out HEPA filter at the top of the work space, a front shutter that can be opened and closed at the front of the work space, a rear suction portion at the rear wall, and a lower front. By providing a front suction part, uniformly supplying air from the HEPA filter for blowing to the work space, and sucking air from the front suction part and the rear suction part of the work table that forms the bottom surface of the work space, A safety cabinet is disclosed in which air descends from above and cleans.
特開2017-78527号公報JP 2017-78527 A
 特許文献1に開示された安全キャビネットを用いれば、作業空間内で細胞等を取り扱うことで、細胞等が汚染されることを防止し、かつ、細胞等が作業空間内から作業者側に漏洩することを防止することが可能である。安全キャビネットを用いる作業では、作業終了時或いは作業開始時に作業空間内を清掃、消毒(除染)する。しかし、空中浮揚のカビ、細菌などの混入があり、それらによるコンタミネーション(汚染)が少なくない。安全キャビネット内が清浄状態にあるのか、隅などにカビや細菌が付着していないのかを知って清掃することにより、再現性のある培養を行うことができる。 If the safety cabinet disclosed in Patent Document 1 is used, cells and the like are prevented from being contaminated by handling the cells and the like in the work space, and the cells and the like leak from the work space to the worker side. It is possible to prevent this. In work using a safety cabinet, the work space is cleaned and disinfected (decontaminated) at the end of work or at the start of work. However, there is a mixture of airborne mold, bacteria, etc., and there are many contaminations caused by them. By recognizing whether the inside of the safety cabinet is in a clean state or not having mold or bacteria attached to corners, it is possible to perform reproducible culture.
 本発明は、作業空間が汚染されたことを容易に判断でき、また除染されたことを容易に確認できる安全キャビネットを提供することを目的とする。 The object of the present invention is to provide a safety cabinet that can easily determine that the work space has been contaminated and can easily confirm that the work space has been decontaminated.
 上記課題を解決するための、本発明の「安全キャビネット」の一例を挙げるならば、
作業空間の前面に前面板と作業開口を有し、前記作業空間に上方から清浄空気を供給する安全キャビネットであって、前記作業空間に、励起光源と、前記励起光源からの励起光の照射により発生した蛍光を観察する撮像手段と、を備えるものである。
If an example of the “safety cabinet” of the present invention for solving the above problems is given,
A safety cabinet having a front plate and a work opening on a front surface of a work space, and supplying clean air from above to the work space, wherein the work space is irradiated with an excitation light source and excitation light from the excitation light source. Imaging means for observing the generated fluorescence.
 本発明によれば、安全キャビネットの作業空間が汚染されたことを容易に判断でき、また除染されたことを容易に確認することができる。 According to the present invention, it can be easily determined that the work space of the safety cabinet has been contaminated, and it can be easily confirmed that it has been decontaminated.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施例1の安全キャビネットを示す外観正面図の例である。It is an example of the external appearance front view which shows the safety cabinet of Example 1. FIG. 実施例1の安全キャビネットを示す側面断面図の例である。It is an example of side sectional drawing which shows the safety cabinet of Example 1. FIG. 図2の安全キャビネットの動作時の空気の流れを示す図である。It is a figure which shows the flow of the air at the time of operation | movement of the safety cabinet of FIG. 実施例1の安全キャビネットの作業空間を示す図である。It is a figure which shows the working space of the safety cabinet of Example 1. FIG. 実施例1の励起光と蛍光の関係を示す図である。It is a figure which shows the relationship between the excitation light of Example 1, and fluorescence. 細胞に励起光を当てた状況を示す図である。It is a figure which shows the condition which applied the excitation light to the cell. 実施例1の安全キャビネットの電気系を示すブロック図である。It is a block diagram which shows the electric system of the safety cabinet of Example 1. FIG. 実施例2の励起光源とカメラの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between the excitation light source and camera of Example 2. FIG. 実施例3の安全キャビネットを示す図である。It is a figure which shows the safety cabinet of Example 3. FIG.
 以下、本発明の実施例を、図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings for explaining the embodiments, the same components are denoted by the same names and symbols, and the repeated explanation thereof is omitted.
 図1に、安全キャビネットの概略正面図を示す。また、図2に、図1のA-A’断面を右方より見た安全キャビネットの概略側面図を示す。 Fig. 1 shows a schematic front view of the safety cabinet. FIG. 2 is a schematic side view of the safety cabinet when the A-A ′ cross section of FIG. 1 is viewed from the right side.
 安全キャビネット100の筐体101の中央域に開口が設けられ、その奥に作業空間104が設けられている。作業空間104の前面側には、開口の上部を塞ぐように前面板102が設けられ、その下側には作業開口103が設けられ、作業者は作業開口103から作業空間104に手を入れて、作業を行う。前面板102は、ガラス等の透明な材料で形成されており、作業者は前面板を通して作業を目視することができる。 An opening is provided in the central area of the casing 101 of the safety cabinet 100, and a work space 104 is provided in the back thereof. A front plate 102 is provided on the front side of the work space 104 so as to block the upper portion of the opening, and a work opening 103 is provided on the lower side thereof. The operator puts his hand into the work space 104 from the work opening 103. Do the work. The front plate 102 is formed of a transparent material such as glass, and an operator can visually observe the work through the front plate.
 作業空間104の底面には略平坦な作業ステージ105が設けられ、作業者は作業ステージ上で作業を行う。作業ステージ105の前方側であって、作業開口103の近くには、下方に通じる吸気口107が設けられている。吸気口107は、例えば作業開口103に沿って筐体の左右方向に延びるスリットで形成されている。作業空間104の背面側には、吸気口107から筐体の上部に通じる背面流路108が設けられている。 A substantially flat work stage 105 is provided on the bottom surface of the work space 104, and the worker performs work on the work stage. An intake port 107 leading to the lower side is provided on the front side of the work stage 105 and in the vicinity of the work opening 103. For example, the air inlet 107 is formed by a slit extending in the left-right direction of the housing along the work opening 103. On the back side of the work space 104, a back channel 108 that leads from the air inlet 107 to the upper part of the housing is provided.
 作業空間104の上側には吹き出し側FFU(ファンフィルタユニット)109が設けられている。吹き出し側FFU109はモータで回転するファンと、微粒子を除去するフィルタ、例えばHEPAフィルタ109Aで構成されており、微粒子を除去した清浄な空気を作業空間104に吹き出す。筐体101の上部には、排気側FFU(ファンフィルタユニット)110が設けられており、空気の一部をフィルタ、例えばHEPAフィルタ110Aを通して、微粒子を除去して装置の外部へ排出する。 A blow-out side FFU (fan filter unit) 109 is provided above the work space 104. The blowout side FFU 109 includes a fan rotated by a motor and a filter for removing fine particles, for example, a HEPA filter 109A, and blows clean air from which fine particles have been removed to the work space 104. An exhaust-side FFU (fan filter unit) 110 is provided on the upper portion of the casing 101, and a part of air is removed through a filter, for example, a HEPA filter 110A, and discharged to the outside of the apparatus.
 図3に、安全キャビネット動作時の空気の流れを矢印で示す。作業ステージ105の前面側の吸気口107から吸引された空気90は、符号91で示すように筐体の下部、背面流路108、筐体の上部を通って、吹き出し側FFU109から作業空間104へ送風される。作業空間104には、吹き出し側FFU109のHEPAフィルタ109Aで微粒子が除去された清浄な空気が送風されることにより、作業空間104は清浄な状態に維持される。このとき、符号92で示す作業空間104への空気の流れのみでは、作業空間内の空気が外部へ漏出する恐れがある。そのため、排出側FFU110を設け、HEPAフィルタ110Aを通して空気の一部を外部へ放出する。これにより、作業空間内の圧力が低下し、外部から前面板102の下方の作業開口103を通して内部へ導入されようとする空気の流れ94を生じる。この空気の流れ94がそのまま作業空間へ流入すると作業空間の清浄度が低下してしまう。しかし、吹き出し側FFU109から作業空間へ吹き出す空気の流れ92の風量と、排出側FFU110から外部へ排出する空気の流れ93の風量を適切に制御することにより、作業開口103から流入する空気94の全てと、作業空間へ送られた空気92の大半を吸気口107から吸い込むことで、作業空間104へ吹き出す空気の流れ92により、作業開口103からの空気94の作業空間104への流入を阻止する大気の壁(エアバリア)が形成される。これにより、外部からの空気が作業空間104を汚染することがなく、かつ、内部の清浄化前の空気が外部へ漏出することがないという均衡状態を実現することができる。 Fig. 3 shows the air flow with arrows when the safety cabinet is operating. The air 90 sucked from the air inlet 107 on the front side of the work stage 105 passes through the lower part of the casing, the rear passage 108, and the upper part of the casing as indicated by reference numeral 91, and then enters the work space 104 from the blowout side FFU 109. Be blown. The work space 104 is maintained in a clean state by blowing clean air from which fine particles have been removed by the HEPA filter 109A of the blow-out side FFU 109 into the work space 104. At this time, the air in the work space may leak to the outside only by the air flow to the work space 104 indicated by reference numeral 92. Therefore, the discharge side FFU 110 is provided, and part of the air is discharged to the outside through the HEPA filter 110A. As a result, the pressure in the work space decreases, and an air flow 94 is generated from the outside to be introduced into the inside through the work opening 103 below the front plate 102. If this air flow 94 flows into the work space as it is, the cleanliness of the work space is lowered. However, by appropriately controlling the air volume of the air flow 92 blown out from the blowout side FFU 109 to the work space and the air volume of the air flow 93 discharged outside from the discharge side FFU 110, all of the air 94 flowing in from the work opening 103 is obtained. Then, the air 92 that sucks most of the air 92 sent to the work space from the air inlet 107 prevents the air 94 from flowing into the work space 104 from flowing into the work space 104 by the air flow 92 blown out to the work space 104. Wall (air barrier) is formed. Thereby, the equilibrium state that the air from the outside does not contaminate the work space 104 and the air before the internal cleaning does not leak to the outside can be realized.
 これにより、作業者が作業開口103を通して作業空間104に手を入れて作業を行っても、清浄度の維持と汚染防止を実現することができる。 Thereby, even if an operator puts his / her hand in the work space 104 through the work opening 103 and performs work, it is possible to maintain cleanliness and prevent contamination.
 安全キャビネットを用いる作業では、作業終了時或いは作業開始時に作業空間内を清掃、消毒(除染)する。しかし、空中浮揚のカビ、細菌などの汚染物の混入があり、それらによる汚染が少なくない。安全キャビネット内が清浄状態にあるのか、隅などにカビや細菌などが付着していないのかを知って清掃することにより、再現性のある培養を行うことができる。 In work using a safety cabinet, the work space is cleaned and disinfected (decontaminated) at the end of work or at the start of work. However, there is a mixture of contaminants such as airborne mold and bacteria, and there is a lot of contamination by them. By recognizing whether the inside of the safety cabinet is in a clean state or not having mold or bacteria attached to corners, it is possible to perform reproducible culture.
 図4に、本実施例の特徴構成を示す。安全キャビネットの作業空間104内に励起光源20と、カビ、細菌等から発生する蛍光を検出する撮像手段、例えばカメラ21を設ける。励起光源20は、紫外線ランプ、LED、レーザなどでよい。図において、符号22はカメラに入射する光の波長を制限するバンドパスフィルタである。励起光源20から、波長420nm以下の光、例えば紫外光を照射する。汚染物24からは、カビ固有の蛍光、細菌固有の蛍光を発生する。発生した蛍光をカメラ21で撮像して、汚染の有無や汚染除去の状況を確認する。 FIG. 4 shows a characteristic configuration of this embodiment. In the work space 104 of the safety cabinet, an excitation light source 20 and imaging means for detecting fluorescence generated from mold, bacteria, etc., for example, a camera 21 are provided. The excitation light source 20 may be an ultraviolet lamp, LED, laser, or the like. In the figure, reference numeral 22 denotes a band-pass filter that limits the wavelength of light incident on the camera. The excitation light source 20 emits light having a wavelength of 420 nm or less, for example, ultraviolet light. The contaminant 24 generates fluorescence specific to mold and fluorescence specific to bacteria. The generated fluorescence is imaged by the camera 21, and the presence or absence of contamination and the state of contamination removal are confirmed.
 図5に、励起光と発生する蛍光の関係を示す。例えば、励起光30として波長420nm以下の紫外光を照射する。符号32は微生物から発生する蛍光を、符号34は細菌から発生する蛍光を示す。図に示すように、カビや細菌は照射された光源の波長によって、種類別の蛍光を発生する。これにより、波長毎の蛍光の強度を検出することにより、汚染物が何であるかを判別することができる。波長毎の蛍光の強度を検出するには、バンドパスフィルタ22を切り換えて透過する光の波長を変更すればよい。そして、汚染物が特定されると、それに適した除染方法、例えば特定された微生物が抗酸、抗アルカリ、抗アルコール等を考慮して適切な除染方法を選択することができる。 FIG. 5 shows the relationship between excitation light and generated fluorescence. For example, the excitation light 30 is irradiated with ultraviolet light having a wavelength of 420 nm or less. Reference numeral 32 indicates fluorescence generated from microorganisms, and reference numeral 34 indicates fluorescence generated from bacteria. As shown in the figure, molds and bacteria generate different types of fluorescence depending on the wavelength of the irradiated light source. Thereby, it is possible to determine what the contaminant is by detecting the intensity of fluorescence for each wavelength. In order to detect the fluorescence intensity for each wavelength, the bandpass filter 22 may be switched to change the wavelength of the transmitted light. When the contaminants are identified, a suitable decontamination method can be selected, for example, by considering the antibacterial acid, anti-alkali, anti-alcohol and the like for the identified microorganism.
 励起光の照射および蛍光の撮像時には、作業空間やその周囲を暗くするのが望ましい。例えば作業空間内に設けた図示しない照明を消したり減光したり、透明な前面板や作業開口を遮蔽すればよい。作業空間やその周囲を暗くすることにより、蛍光の検出感度を向上することができる。 It is desirable to darken the work space and its surroundings during excitation light irradiation and fluorescence imaging. For example, the unillustrated illumination provided in the work space may be turned off or dimmed, or a transparent front plate or work opening may be shielded. By darkening the work space and its surroundings, the fluorescence detection sensitivity can be improved.
 また、励起光源20からの励起光の照射は、安全キャビネットの動作状態、すなわちエアバリアが形成された状態で行うのが望ましい。安全キャビネットを動作状態とすることにより、高エネルギーの励起光によりオゾン等が発生した場合、安全キャビネットからの外部漏出を抑止することができる。 Further, it is desirable that the excitation light from the excitation light source 20 is irradiated in the operating state of the safety cabinet, that is, in the state where the air barrier is formed. By setting the safety cabinet in an operating state, external leakage from the safety cabinet can be suppressed when ozone or the like is generated by high-energy excitation light.
 図6に、細胞に励起光を照射した状況を示す。細胞40は、核42、核を取り巻く原形質43、原形質を取り巻く細胞膜44から構成されている。励起光30を照射することにより、核による蛍光Aを、原形質による蛍光Bを、細胞膜による蛍光Cをそれぞれ発生する。 FIG. 6 shows the situation where the cells are irradiated with excitation light. The cell 40 includes a nucleus 42, a protoplasm 43 surrounding the nucleus, and a cell membrane 44 surrounding the protoplasm. By irradiating the excitation light 30, the fluorescence A by the nucleus, the fluorescence B by the protoplasm, and the fluorescence C by the cell membrane are generated.
 図において、a,b,cはそれぞれ核、原形質、細胞膜の増感試薬を示す。また、励起光により発生する蛍光強度が弱い場合は、特定微生物からの蛍光を増強させる増感試薬を噴霧してもよい。増感試薬は汚染物毎、例えば微生物と細菌毎に、或いは、細胞の部位、例えば核、原形質、細胞膜毎に選択することができる。増感試薬の噴霧は、作業空間104に増感試薬噴霧手段を設けることにより、行うことができる。 In the figure, a, b, and c represent sensitizing reagents for nuclei, protoplasm, and cell membrane, respectively. In addition, when the fluorescence intensity generated by the excitation light is weak, a sensitizing reagent that enhances fluorescence from a specific microorganism may be sprayed. The sensitizing reagent can be selected for each contaminant, for example, for each microorganism and bacterium, or for each cell site, for example, for each nucleus, protoplasm, or cell membrane. Spraying of the sensitizing reagent can be performed by providing a sensitizing reagent spraying means in the work space 104.
 図7に、汚染検出の電気系のブロック構成図の一例を示す。カメラ21で撮像した蛍光の画像は画像処理部51へ入力される。画像処理部51では、画像の各位置での蛍光の強度を検出する。蛍光の強度の検出は、波長毎に行っても良い。カメラから入力した画像、或いは、蛍光の強度の検出結果は、記憶部52に記憶し、また、必要に応じて記憶部52から読み出すことができる。判定部53では、蛍光の強度の検出結果と予め設定した閾値とを比較し、閾値以上である場合は汚染物と判定する。波長毎の蛍光の強度の検出結果と予め設定した閾値とを比較することにより、汚染物の種類も判定することができる。表示部54では、汚染物の有無を表示する。検出した蛍光の波長と画像から読み取る位置情報とを組み合わせて検出結果を記憶することで、作業空間を示すマップ上に、汚染物を表示するようにしても良い。また、汚染物の表示とともに、その後の対応指示、例えば清掃処理の再実施の指示を表示するようにしても良い。表示は、画像表示に限らず、音声で指示するようにしても良い。安全キャビネットにディスプレイを設ける場合は、そこに汚染物の判定結果とその後の対応指示を表示すれば良い。 FIG. 7 shows an example of a block diagram of an electrical system for detecting contamination. The fluorescence image captured by the camera 21 is input to the image processing unit 51. The image processing unit 51 detects the intensity of fluorescence at each position of the image. The fluorescence intensity may be detected for each wavelength. The image input from the camera or the detection result of the fluorescence intensity can be stored in the storage unit 52 and read out from the storage unit 52 as necessary. The determination unit 53 compares the detection result of the fluorescence intensity with a preset threshold value, and determines that it is a contaminant if it is greater than or equal to the threshold value. By comparing the fluorescence intensity detection result for each wavelength with a preset threshold value, the type of contaminant can also be determined. The display unit 54 displays the presence or absence of contaminants. Contaminants may be displayed on the map indicating the work space by storing the detection result by combining the detected fluorescence wavelength and the position information read from the image. Further, a subsequent response instruction, for example, an instruction to re-execute the cleaning process may be displayed together with the display of the contaminant. The display is not limited to image display, but may be instructed by voice. In the case where a display is provided in the safety cabinet, it is only necessary to display the determination result of the contaminant and the subsequent response instruction.
 安全キャビネットの清掃、除染後、所定時間間隔毎にカメラで作業空間を観察することで、カビや細菌等の発生、増殖状態を監視することができる。そして、カメラを、通信回線を介してサーバに接続することにより、汚染状況のデータを蓄積することができる。また、インターネットに接続することで、安全キャビネットから離れた場所から遠隔監視を行うことができる。 After cleaning and decontamination of the safety cabinet, the occurrence of mold and bacteria, and the growth state can be monitored by observing the work space with a camera at predetermined time intervals. Then, the contamination status data can be accumulated by connecting the camera to the server via the communication line. In addition, by connecting to the Internet, remote monitoring can be performed from a location away from the safety cabinet.
 本実施例によれば、安全キャビネットの作業空間が汚染されたことを容易に判断でき、また確実に除染されたことを容易に確認することができる。 According to the present embodiment, it can be easily determined that the work space of the safety cabinet has been contaminated, and it can be easily confirmed that it has been reliably decontaminated.
 図8に、実施例2の安全キャビネットの一例を示す。実施例2は、作業空間104の略全体を観察するために、複数のカメラを設けたものである。 FIG. 8 shows an example of the safety cabinet of the second embodiment. The second embodiment is provided with a plurality of cameras in order to observe substantially the entire work space 104.
 図に示すように、作業空間の天井の中央部に励起光源20を配置する。そして、励起光源20の両側にバンドパスフィルタ22を備える2つのカメラ21を配置する。カメラを複数とすることにより、広範囲の汚染物24を観察することができる。カメラの受光範囲に応じて、更に多くのカメラを配置しても良い。また、励起光源20も複数としても良い。 As shown in the figure, an excitation light source 20 is arranged at the center of the ceiling of the work space. Then, two cameras 21 including band pass filters 22 are arranged on both sides of the excitation light source 20. By using a plurality of cameras, a wide range of contaminants 24 can be observed. More cameras may be arranged according to the light receiving range of the camera. A plurality of excitation light sources 20 may be provided.
 本実施例によれば、励起光源或いは撮像手段を複数配置したので、作業空間内の汚染物を広範囲に観察することができ、作業空間の汚染や除染の確認を確実に行うことができる。 According to this embodiment, since a plurality of excitation light sources or imaging means are arranged, it is possible to observe a wide range of contaminants in the work space, and it is possible to confirm the contamination and decontamination of the work space.
 図9に、実施例3の安全キャビネットの一例を示す。実施例3は、作業空間104の略全体を観察するために、励起光源とカメラをロボットアーム等の可動機構に搭載したものである。 FIG. 9 shows an example of the safety cabinet of the third embodiment. In the third embodiment, an excitation light source and a camera are mounted on a movable mechanism such as a robot arm in order to observe almost the entire work space 104.
 図に示すように、作業空間の壁面や天井にロボットアーム(モータ内蔵により移動可能としたアーム)25を取り付け、ロボットアーム25の先端に励起光源20およびバンドパスフィルタを備えるカメラ21を取り付ける。そして、制御部によりロボットアームを移動させて励起光源20およびカメラ21の位置および向きを変えることにより、広範囲の汚染物24を観察することができる。 As shown in the figure, a robot arm (an arm that can be moved by incorporating a motor) 25 is attached to the wall or ceiling of the work space, and a camera 21 including an excitation light source 20 and a bandpass filter is attached to the tip of the robot arm 25. A wide range of contaminants 24 can be observed by moving the robot arm by the control unit and changing the positions and orientations of the excitation light source 20 and the camera 21.
 本実施例によれば、ロボットアーム等の可動機構に励起光源および撮像手段を取り付けたので、作業空間内の汚染物を広範囲に観察することができ、作業空間の汚染や除染の確認を確実に行うことができる。また、作業ステージに近い位置で励起光の照射および発生する蛍光の観察を行うことができ、汚染物の検出感度を向上することができる。 According to the present embodiment, since the excitation light source and the imaging means are attached to the movable mechanism such as the robot arm, it is possible to observe a wide range of contaminants in the work space, and to confirm the contamination and decontamination of the work space. Can be done. Moreover, irradiation with excitation light and observation of generated fluorescence can be performed at a position close to the work stage, and the detection sensitivity of contaminants can be improved.
20 励起光源
21 カメラ
22 バンドパスフィルタ
24 汚染物
25 ロボットアーム
30 励起光
32 微生物による蛍光
34 細菌による蛍光
40 細胞
42 核
43 原形質
44 細胞膜
51 画像処理部
52 記憶部
53 判定部
54 表示部
100 安全キャビネット
101 筐体
102 前面板
103 作業開口
104 作業空間
105 作業ステージ
107 吸気口
108 背面流路
109 吹き出し側FFU(ファンフィルタユニット)
109A 吹き出し側HEPAフィルタ
110 排出側FFU(ファンフィルタユニット)
110A 排出側HEPAフィルタ
20 Excitation light source 21 Camera 22 Band pass filter 24 Contaminant 25 Robot arm 30 Excitation light 32 Fluorescence due to microorganisms 34 Fluorescence due to bacteria 40 Cell 42 Nucleus 43 Protoplasm 44 Cell membrane 51 Image processing unit 52 Storage unit 53 Determination unit 54 Display unit 100 Safety Cabinet 101 Housing 102 Front plate 103 Work opening 104 Work space 105 Work stage 107 Intake port 108 Rear flow path 109 Outlet side FFU (fan filter unit)
109A Outlet side HEPA filter 110 Outlet side FFU (fan filter unit)
110A discharge side HEPA filter

Claims (17)

  1.  作業空間の前面に前面板と作業開口を有し、前記作業空間に上方から清浄空気を供給する安全キャビネットであって、
     前記作業空間に、
    励起光源と、
    前記励起光源からの励起光の照射により発生した蛍光を観察する撮像手段と、
    を備える安全キャビネット。
    A safety cabinet having a front plate and a work opening on the front surface of the work space, and supplying clean air from above to the work space,
    In the work space,
    An excitation light source;
    An imaging means for observing fluorescence generated by irradiation of excitation light from the excitation light source;
    With safety cabinet.
  2.  請求項1に記載の安全キャビネットにおいて、
     前記励起光源は、波長420nm以下の波長の光を発生することを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    The safety cabinet, wherein the excitation light source generates light having a wavelength of 420 nm or less.
  3.  請求項1に記載の安全キャビネットにおいて、
     前記撮像手段は、バンドパスフィルタを備えるカメラであることを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    The safety cabinet characterized in that the imaging means is a camera provided with a band-pass filter.
  4.  請求項3に記載の安全キャビネットにおいて、
     透過波長の異なる複数のバンドパスフィルタを備え、波長毎に蛍光を検出可能であることを特徴とする安全キャビネット。
    The safety cabinet according to claim 3,
    A safety cabinet comprising a plurality of band pass filters having different transmission wavelengths and capable of detecting fluorescence for each wavelength.
  5.  請求項1に記載の安全キャビネットにおいて、
     撮像した画像の各位置での蛍光の強度を検出する画像処理部と、
    蛍光の強度の検出結果と予め設定した閾値とを比較して汚染物を判定する判定部を備えることを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    An image processing unit for detecting the intensity of fluorescence at each position of the captured image;
    A safety cabinet comprising a determination unit that compares a detection result of fluorescence intensity with a preset threshold value to determine contaminants.
  6.  請求項5に記載の安全キャビネットにおいて、
     汚染物の判定結果を表示する表示部を備えることを特徴とする安全キャビネット。
    The safety cabinet according to claim 5,
    A safety cabinet comprising a display unit for displaying a determination result of contaminants.
  7.  請求項6に記載の安全キャビネットにおいて、
     前記表示部は、作業空間を示すマップ上に汚染物を表示することを特徴とする安全キャビネット。
    The safety cabinet according to claim 6,
    The said display part displays a contaminant on the map which shows work space, The safety cabinet characterized by the above-mentioned.
  8.  請求項6に記載の安全キャビネットにおいて、
     前記表示部は、汚染物の判定結果とその後の対応指示を表示することを特徴とする安全キャビネット。
    The safety cabinet according to claim 6,
    The said display part displays the determination result of a contaminant, and the subsequent response instruction | indication, The safety cabinet characterized by the above-mentioned.
  9.  請求項1に記載の安全キャビネットにおいて、
     前記撮像手段は、通信回線を介してサーバに接続されていることを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    A safety cabinet, wherein the imaging means is connected to a server via a communication line.
  10.  請求項9に記載の安全キャビネットにおいて、
     前記撮像手段は、インターネットに接続されていることを特徴とする安全キャビネット。
    The safety cabinet according to claim 9,
    The safety cabinet according to claim 1, wherein the imaging means is connected to the Internet.
  11.  請求項1に記載の安全キャビネットにおいて、
     増感試薬噴霧手段を備えることを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    A safety cabinet comprising sensitizing reagent spraying means.
  12.  請求項1に記載の安全キャビネットにおいて、
     複数の前記励起光源および/または複数の前記撮像手段を備えることを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    A safety cabinet comprising a plurality of the excitation light sources and / or a plurality of the imaging means.
  13.  請求項1に記載の安全キャビネットにおいて、
     前記励起光源および前記撮像手段は、可動機構に取り付けられていることを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    The safety cabinet, wherein the excitation light source and the imaging means are attached to a movable mechanism.
  14.  請求項13に記載の安全キャビネットにおいて、
     前記可動機構は、前記励起光源および前記撮像手段の向きおよび位置を変更可能であることを特徴とする安全キャビネット。
    The safety cabinet according to claim 13,
    The said movable mechanism can change the direction and position of the said excitation light source and the said imaging means, The safety cabinet characterized by the above-mentioned.
  15.  請求項14に記載の安全キャビネットにおいて、
     前記可動機構は、ロボットアームであることを特徴とする安全キャビネット。
    The safety cabinet of claim 14,
    The safety cabinet, wherein the movable mechanism is a robot arm.
  16.  請求項1に記載の安全キャビネットにおいて、
     安全キャビネットの動作状態において、前記励起光源は励起光を照射し、前記撮像手段は蛍光を観察することを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    In the operating state of a safety cabinet, the said excitation light source irradiates excitation light, and the said imaging means observes fluorescence, The safety cabinet characterized by the above-mentioned.
  17.  請求項1に記載の安全キャビネットにおいて、
     前記作業空間を暗くした状態において、前記励起光源は励起光を照射し、前記撮像手段は蛍光を観察することを特徴とする安全キャビネット。
    The safety cabinet according to claim 1,
    The safety cabinet, wherein the excitation light source irradiates excitation light and the imaging means observes fluorescence in a state where the work space is darkened.
PCT/JP2018/038280 2018-04-25 2018-10-15 Safety cabinet WO2019207817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018083952A JP2019187309A (en) 2018-04-25 2018-04-25 Safety cabinet
JP2018-083952 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019207817A1 true WO2019207817A1 (en) 2019-10-31

Family

ID=68295194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038280 WO2019207817A1 (en) 2018-04-25 2018-10-15 Safety cabinet

Country Status (2)

Country Link
JP (1) JP2019187309A (en)
WO (1) WO2019207817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295661A (en) * 2021-04-28 2021-08-24 江汉大学 Cleaning detection system and control method and using method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025387A (en) * 1999-05-12 2001-01-30 Astec:Kk Clean bench
JP2016165249A (en) * 2015-03-10 2016-09-15 株式会社日立産機システム Clean air device
JP2018011544A (en) * 2016-07-20 2018-01-25 パナソニックIpマネジメント株式会社 Microorganism detection method and microorganism detection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025387A (en) * 1999-05-12 2001-01-30 Astec:Kk Clean bench
JP2016165249A (en) * 2015-03-10 2016-09-15 株式会社日立産機システム Clean air device
JP2018011544A (en) * 2016-07-20 2018-01-25 パナソニックIpマネジメント株式会社 Microorganism detection method and microorganism detection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASEGAWA, NORIO ET AL.: "Instantaneous bioaerosol detection technology and its application", AZBIL TECHNICAL REVIEW, 1 December 2009 (2009-12-01), pages 2 - 7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295661A (en) * 2021-04-28 2021-08-24 江汉大学 Cleaning detection system and control method and using method thereof

Also Published As

Publication number Publication date
JP2019187309A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US10350588B2 (en) Clean air apparatus
JP2001025387A (en) Clean bench
WO2019207866A1 (en) Safety cabinet
JP6338521B2 (en) Isolator
JP6323859B1 (en) Yin positive pressure work hood
JP2008032457A (en) Substrate inspecting device and lamp unit used therein
US20200121818A1 (en) Sterilization Gas Cleaning Closed System Device
JP4761497B2 (en) isolator
WO2019207817A1 (en) Safety cabinet
WO2022003791A1 (en) Safety cabinet
KR20210036443A (en) clean bench with capable of counting particulate matter
WO2019207877A1 (en) Safety cabinet
JP6925299B2 (en) Safety cabinet
KR101629321B1 (en) clean bench
WO2019207840A1 (en) Safety cabinet
WO2019207895A1 (en) Safety cabinet
JP2009119391A (en) Safety cabinet
WO2019207841A1 (en) Safety cabinet, and vibration damping mechanism for fan filter unit
JP2003214675A (en) Internal negative pressure clean working table
US20190219506A1 (en) Inspection units with ultraviolet radiation sources operating at different wavelengths
JP2019145228A (en) Illumination system
US20060148397A1 (en) Contaminant containing apparatus and method
WO2023076731A1 (en) Mobile pcr systems, mobile reverse pcr hoods and related methods
JP2019071797A (en) Safety cabinet and clean bench

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916009

Country of ref document: EP

Kind code of ref document: A1