WO2016017710A1 - Variable vane pump - Google Patents

Variable vane pump Download PDF

Info

Publication number
WO2016017710A1
WO2016017710A1 PCT/JP2015/071533 JP2015071533W WO2016017710A1 WO 2016017710 A1 WO2016017710 A1 WO 2016017710A1 JP 2015071533 W JP2015071533 W JP 2015071533W WO 2016017710 A1 WO2016017710 A1 WO 2016017710A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam ring
compression chamber
vane pump
variable vane
pressing member
Prior art date
Application number
PCT/JP2015/071533
Other languages
French (fr)
Japanese (ja)
Inventor
卓一 羽廣
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580039690.4A priority Critical patent/CN106574616B/en
Priority to KR1020177004063A priority patent/KR101739721B1/en
Publication of WO2016017710A1 publication Critical patent/WO2016017710A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to a variable vane pump.
  • an annular cam ring, a rotor arranged inside the cam ring, and a plurality of slits formed on the outer peripheral surface of the rotor are arranged so as to be able to advance and retreat, and contact the inner peripheral surface of the cam ring. It has a plurality of vanes forming a plurality of compression chambers, an end surface member disposed on the end surfaces of the cam ring and the rotor, and a pressing member that presses the cam ring.
  • the end surface member is formed with a suction hole for supplying a working fluid (for example, oil) to the compression chamber and a discharge hole for discharging the working fluid in the compression chamber.
  • variable vane pump when the cam ring is pressed by the pressing member, the cam ring is eccentric to the rotor opposite to the pressing member. Then, when the operation is started and the rotor rotates, the vane arranged in the slit advances and retreats according to the position, the compression chamber expands on the suction side, the working fluid is supplied to the compression chamber, and the compression fluid is compressed on the discharge side. The chamber shrinks and the working fluid in the compression chamber is discharged.
  • variable vane pump for example, during pressure holding, the pressure in the compression chamber may rise, the pressure in the compression chamber may exceed the pressing force of the pressing member, and the cam ring may move to the pressing member side.
  • the center position of the cam ring and the center position of the rotor coincide, the size of the compression chamber does not change even when the rotor rotates, so that the working fluid in the compression chamber is hardly discharged from the discharge hole, and the compression chamber There is a problem that the working fluid stays in the chamber and the compression chamber becomes high temperature.
  • an object of the present invention is to provide a variable vane pump that can prevent the compression chamber from becoming hot when the cam ring moves from the position eccentric to the opposite side of the pressing member to the pressing member side. is there.
  • a variable vane pump is an annular cam ring, a rotor that is disposed inside the cam ring and has a plurality of slits that are spaced apart from each other in the circumferential direction, and can be advanced and retracted by the plurality of slits, respectively.
  • a plurality of vanes that are in contact with an inner peripheral surface of the cam ring to form a plurality of compression chambers, a pressing member that is disposed radially outside the cam ring and presses the cam ring, and the cam ring is the rotor
  • the compression chamber and the outer space from a state in which the compression chamber and the outer space on the radially outer side of the cam ring do not communicate with each other when moved from the position eccentric to the opposite side to the pressing member to the pressing member side.
  • a communication portion configured to change to a state in which the communication is established.
  • variable vane pump according to a second aspect of the present invention is the variable vane pump according to the first aspect of the present invention, further comprising an end surface member disposed on an end surface of the cam ring and the rotor, wherein the communication portion is the pressure of the end surface member.
  • the cam ring is disposed on the member side, and the cam ring is closed from the state where the cam ring is blocked when the cam ring moves to the pressing member side from a position eccentric to the opposite side of the rotor with respect to the rotor.
  • the compression chamber and the outer space are communicated with each other by changing to a state in which they cannot be separated.
  • the compression chamber and the outer space communicate with each other by utilizing the fact that the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side. It is possible to easily communicate with the space.
  • variable vane pump according to a third aspect of the invention is the variable vane pump according to the second aspect of the invention, wherein the communicating part is a groove formed on an end face on the cam ring side of both end faces of the end face member. .
  • the communicating part is a groove formed on the end face on the cam ring side of both end faces of the end face member, it is easy to provide the communicating part.
  • variable vane pump according to a fourth invention is the variable vane pump according to the second or third invention, wherein the end surface member has a suction hole for supplying a working fluid to the compression chamber, An opening that can communicate with the compression chamber is disposed away from the suction hole in the circumferential direction.
  • variable vane pump since the opening of the communication part is arranged away from the suction hole in the circumferential direction, the working fluid supplied from the suction hole to the compression chamber is short-circuited and immediately discharged from the communication part. Can be prevented.
  • variable vane pump according to a fifth invention is characterized in that, in the variable vane pump according to the fourth invention, the distance between the opening and the suction hole is longer than the circumferential length of all the compression chambers. To do.
  • variable vane pump according to a sixth invention is the variable vane pump according to the fifth invention, wherein the variable vane pump has a notch extending from the suction hole toward the opening, and the opening and the notch The distance between the two is longer than the circumferential length of all the compression chambers.
  • variable vane pump according to a seventh invention is the variable vane pump according to any one of the fourth to sixth inventions, wherein the end surface member is disposed away from the suction hole in the circumferential direction, and the working fluid in the compression chamber is It has a discharge hole for discharging, and the opening is arranged between the suction hole and the discharge hole in the circumferential direction.
  • the opening of the communication portion is between the suction hole and the discharge hole in the circumferential direction, the opening is less than in the case where the opening is at the same position as the suction hole or the discharge hole in the circumferential direction. Easy to install.
  • variable vane pump according to an eighth invention is the variable vane pump according to any one of the first to seventh inventions, wherein a casing in which the cam ring is arranged is arranged on the pressing member side and in the outer space. It has a discharge hole for discharging the working fluid to the outside.
  • the compression is performed. Since the chamber and the outer space communicate with each other, the working fluid in the compression chamber is easily discharged to the outer space as compared with the case where the compression chamber and the outer space do not communicate with each other. Therefore, a large amount of working fluid having a low temperature is supplied from the suction hole to the compression chamber, and the temperature in the compression chamber decreases. Therefore, it is possible to prevent the compression chamber from becoming hot when the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side.
  • the compression chamber and the outer space communicate with each other by utilizing the fact that the cam ring moves from the position eccentric to the opposite side of the pressing member to the pressing member side.
  • the outside space can be easily communicated.
  • the communicating portion is a groove formed on the end surface on the cam ring side of the both end surfaces of the end surface member, it is easy to provide the communicating portion.
  • the opening of the communication part is arranged away from the suction hole in the circumferential direction, the working fluid supplied from the suction hole to the compression chamber is immediately discharged from the communication part as a shortcut. Can be prevented.
  • the opening and the suction hole may be simultaneously opened in one compression chamber. Absent. Therefore, it is possible to more reliably prevent the working fluid supplied from the suction hole to the compression chamber from being discharged from the communication portion immediately after a shortcut.
  • the working fluid supplied from the cutout to the compression chamber is immediately short cut. Can be prevented from being discharged from the communication part.
  • the opening of the communication portion is between the suction hole and the discharge hole in the circumferential direction, the opening is compared with the case where the opening is at the same position as the suction hole or the discharge hole in the circumferential direction. It is easy to provide.
  • the working fluid discharged from the communicating portion to the outer space radially outside the cam ring is discharged from the discharge hole, the working fluid discharged from the communicating portion to the outer space radially outside the cam ring is discharged. There is no need to provide a new discharge hole.
  • FIG. (A) is a figure which shows the case where a cam ring exists in the position eccentric to the opposite side to a press member with respect to a rotor
  • (b) is a figure which shows the case where the center position of a cam ring and the center position of a rotor correspond. It is. It is the A section enlarged view shown in Drawing 3 (b). It is a top view of the 1st side board (end surface member).
  • variable vane pump According to the present invention, an embodiment of a variable vane pump according to the present invention will be described with reference to the drawings.
  • variable vane pump 1 is used, for example, as a hydraulic pressure supply source for hydraulic equipment, and the outside is covered with a casing 2 as shown in FIGS. 1 and 2. Inside the casing 2, a rotating shaft 3 is rotatably supported by a bearing 2A and a bearing 2B. A cylindrical rotor 5 is attached to the rotary shaft 3 via a key 4 so as to be rotatable integrally with the rotary shaft 3. A plurality of slits 6 (13 in this variable vane pump 1) arranged in an annular shape are provided on the outer peripheral surface of the rotor 5.
  • the plurality of slits 6 penetrates the rotor 5 in the axial direction and is provided along the radial direction, and are arranged at substantially equal intervals in the circumferential direction.
  • An annular (annular) cam ring 7 is disposed on the outer side in the radial direction of the rotor 5.
  • a plurality of vanes 8 (13 in this variable vane pump 1) disposed so as to be able to advance and retract in the radial direction in each slit 6 are disposed.
  • the plurality of vanes 8 are in contact with the inner peripheral surface of the cam ring 7 by centrifugal force generated by the rotation of the rotor 5 to form a plurality of compression chambers 9.
  • 13 compression chambers 9 are formed by two adjacent vanes 8, the rotor 5, the cam ring 7, and two side plates (first side plate 21 and second side plate 22) described later.
  • the rotor 5, the cam ring 7, the vane 8, and the like are arranged in a space having a circular shape in cross section formed by the inner peripheral surface 12 of the casing 2. Moreover, the rotating shaft 3, the rotor 5, and the vane 8 rotate in the arrow direction of FIG.
  • a pressing member 10 that contacts the outer peripheral surface of the cam ring 7 and presses the cam ring 7 from the radially outer side of the cam ring 7 is disposed on the outer side of the cam ring 7 in the radial direction.
  • the pressing member 10 is disposed in a pressing member accommodating portion 13 that extends radially outward from the inner peripheral surface 12 of the casing 2.
  • the pressing member accommodating portion 13 is formed with a discharge hole 14 for discharging the working fluid (for example, oil) in the outer space 11 to the outside.
  • the pressing member 10 includes an elastic member 15 (a spring member in the variable vane pump 1) and a piston 16.
  • a bolt member 17 is disposed on the opposite side of the pressing member 10 from the cam ring 7.
  • the bolt member 17 is displaced along the radial direction of the rotor 5, whereby the elastic force of the elastic member 15 acting on the cam ring 7 is changed by the piston 16, and the operation is discharged from the compression chamber 9.
  • the fluid discharge pressure is adjusted.
  • the cam ring 7 is arranged at a position eccentric to the rotor 5 on the side opposite to the pressing member 10.
  • the center position of the cam ring 7 is on the opposite side of the pressing member 10 with respect to the center position of the rotor 5. At this time, the outer peripheral surface of the cam ring 7 opposite to the pressing member 10 is in contact with the inner peripheral surface 12 of the casing 2.
  • a cylindrical first side plate 21 (end surface member) and a cylindrical second side plate 22 are disposed on both end surfaces of the cam ring 7 and the rotor 5. Through holes are formed in the center of the first side plate 21 and the second side plate 22, and the rotary shaft 3 is inserted through these through holes.
  • the first side plate 21 (end surface member) includes a suction hole 23 for supplying a working fluid (for example, oil) to the compression chamber 9 and a discharge hole for discharging the working fluid in the compression chamber 9. 24 and a communication portion 31 for discharging the working fluid in the compression chamber 9 to the outer space 11 on the radially outer side of the cam ring 7.
  • the suction hole 23 is connected to a suction port (not shown), and the discharge hole 24 is connected to a discharge port (not shown).
  • the suction hole 23 is arranged on the left side in plan view with respect to a line L1 (see FIG. 5) obtained by extending the center line of the pressing member 10, and extends along the circumferential direction so as to communicate with the plurality of compression chambers 9. is doing. Therefore, the circumferential length of the suction hole 23 is longer than the circumferential length of each compression chamber 9.
  • the circumferential length of the compression chamber 9 refers to the circumferential length of the compression chamber 9 on the outermost radial direction.
  • the upstream end 25 in the rotational direction of the rotor 5 is a supply start point at which the supply of the working fluid to the compression chamber 9 is started, and the downstream end 26 in the rotational direction of the rotor 5.
  • the end face on the cam ring 7 side is, for example, V-shaped and extends from the upstream end 25 in the rotation direction of the suction hole 23 toward the second opening 33, which will be described later.
  • a mold notch 27 (notch) is formed. By this notch 27, the working fluid is gradually supplied into the compression chamber 9 from the upstream side of the upstream end 25 in the rotational direction of the suction hole 23, so that the compression is performed at the upstream end 25 in the rotational direction of the suction hole 23. It is possible to prevent the pressure in the chamber 9 from rising rapidly.
  • the notch 27 may pass through the first side plate 21.
  • the discharge hole 24 is disposed away from the suction hole 23 in the circumferential direction. Specifically, the discharge hole 24 is opposite to the suction hole 23 (plan view) with respect to a line L1 (see FIG. 5) obtained by extending the center line of the pressing member 10. On the right).
  • the discharge holes 24 extend along the circumferential direction so as to communicate with the plurality of compression chambers 9. Therefore, the circumferential length of the discharge hole 24 is longer than the circumferential length of each compression chamber 9.
  • the upstream end 28 in the rotation direction of the rotor 5 is a discharge start point at which the discharge of the working fluid from the compression chamber 9 is started, and the downstream end in the rotation direction of the rotor 5.
  • Reference numeral 29 denotes a discharge end point at which the discharge of the working fluid from the compression chamber 9 ends.
  • the distance in the circumferential direction between the upstream end portion 28 in the rotational direction is longer than the circumferential length of the compression chamber 9 in the circumferential direction.
  • the communication portion 31 starts from the state where the compression chamber 9 and the outer space 11 do not communicate with each other.
  • the outer space 11 are configured to change into a communication state.
  • the compression chamber 9 and the outer space 11 are actually in communication with each other by a slight gap between the cam ring 7 and the two side plates (the first side plate 21 and the second side plate 22).
  • the compression chamber 9 and the outer space 11 are not communicated with each other. .
  • the communication portion 31 is a groove extending along the radial direction, and is formed on the end surface on the cam ring 7 side of both end surfaces of the first side plate 21 (end surface member) and on the pressing member 10 side of the first side plate 21. ing.
  • the pressing member 10 side refers to the pressing member 10 side from a line L ⁇ b> 2 that is orthogonal to the line L ⁇ b> 1 that extends the center line of the pressing member 10 and passes through the center of the rotor 5 in a plan view. Point to.
  • the communication portion 31 is a groove whose longitudinal length is longer than the width of the cam ring 7, and has a first opening 32 opened in the outer space 11 and an opening in the compression chamber 9. And a second opening 33 that can be used.
  • This 2nd opening part 33 is equivalent to the opening part which can be connected to a compression chamber among communication parts in this invention.
  • the first opening 32 is located when the cam ring 7 is eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, and as shown in FIG. 3B. In any state when the center position of the cam ring 7 and the center position of the rotor 5 coincide, the outer space 11 is always open.
  • variable vane pump 1 when the cam ring 7 is in a position eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, that is, when the center position of the cam ring 7 coincides with the center position of the rotor 5 from the full flow state. That is, when the state changes to the dead head state, the compression chamber 9 and the outer space 11 do not communicate with each other, and the compression chamber 9 and the outer space 11 communicate with each other.
  • the working fluid in the compression chamber 9 is more likely to leak into the outer space 11 as compared with a conventional variable vane pump without the above.
  • the second opening 33 (opening) of the communication portion 31 has an upstream end 25 in the rotation direction of the suction hole 23 and a downstream side in the rotation direction of the discharge hole 24 in the circumferential direction. It is arranged between the end portions 29. Accordingly, the second opening 33 of the communication portion 31 is disposed away from the suction hole 23 in the circumferential direction. Further, the distance between the second opening 33 in the circumferential direction and the upstream end 25 in the rotation direction of the suction hole 23 is longer than the circumferential length of each compression chamber 9, and the distance in the circumferential direction is The distance between the two openings 33 and the tip of the notch 27 is also longer than the circumferential length of each compression chamber 9.
  • the communication part 31 since the 1st opening part 32 of the communication part 31 exists in the vicinity of the press member 10, ie, between the both ends 13a and 13b of the press member accommodating part 13 about the circumferential direction, the communication part 31 is provided.
  • the oil discharged as a jet from the first opening 32 is less likely to hit the inner peripheral surface 12 of the casing 2. Therefore, the oil discharged as a jet from the first opening 32 of the communication portion 31 is prevented from hitting the inner peripheral surface 12 of the casing 2 and applying a load to the casing 2.
  • the first opening 32 of the communication portion 31 is located between the both ends 13a and 13b of the pressing member accommodating portion 13 in the vicinity of the discharge hole 14 and in the circumferential direction, the first opening 32 is discharged from the first opening 32 of the communication portion 31. Oil is easily discharged from the discharge hole 14 to the outside.
  • variable vane pump 1 As shown in FIG. 3A, when the cam ring 7 is in a position eccentric to the opposite side to the pressing member 10 with respect to the rotor 5, the operation is started and the rotor 5 rotates.
  • the vane 8 disposed in the slit 6 advances and retreats depending on the position, and the compression chamber 9 gradually expands on the suction side where the suction hole 23 is disposed, and the working fluid is supplied from the suction hole 23 to the compression chamber 9.
  • the compression chamber 9 is gradually reduced on the discharge side where the discharge hole 24 is disposed, and the working fluid in the compression chamber 9 is discharged from the discharge hole 24 (full flow state).
  • the first opening 32 of the communication portion 31 opens to the outer space 11 but the second opening 33 (opening) of the communication portion 31 does not open to the compression chamber 9.
  • working fluid for example, oil
  • the working fluid in the compression chamber 9 flows from the communication part 31 to the outer space. 11 is easy to be discharged. As a result, since the new working fluid is supplied to the compression chamber 9 from the suction hole 23 by the amount of the working fluid discharged from the communication portion 31 to the outer space 11, the compression chamber 9 is prevented from being heated to a high temperature.
  • variable vane pump in which the processing accuracy of the metal member is not so high, even if the center position of the cam ring coincides with the center position of the rotor and the working fluid in the compression chamber is not discharged from the discharge hole, Since the working fluid in the compression chamber leaks into the outer space from the gap between the members, the working fluid having a low temperature is supplied to the compression chamber. Therefore, it is easier to prevent the compression chamber from becoming hot when the communication portion 31 of the present invention is present, but even when the communication portion 31 of the present invention is not present, the compression chamber is less likely to become hot.
  • variable vane pump with high processing accuracy of the metal member has a sufficiently small gap between the cam ring and the end surface member, so when the center position of the cam ring matches the center position of the rotor, The working fluid hardly leaks from the flow path between the cam ring and the end face member. Therefore, the working fluid stays in the compression chamber, and the compression chamber becomes high temperature. Therefore, by applying the communication portion 31 of the present invention, it is possible to obtain a high effect as compared with a variable vane pump in which the processing accuracy of the metal member is not so high.
  • variable vane pump 1 has the following characteristics.
  • variable vane pump 1 of the present embodiment the cam ring 7 moves to the pressing member 10 side from the position eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, and the working fluid in the compression chamber 9 is almost discharged from the discharge hole 24. Since the compression chamber 9 and the outer space 11 communicate with each other when no discharge occurs, the working fluid in the compression chamber 9 flows into the outer space 11 as compared with the case where the compression chamber 9 and the outer space 11 do not communicate with each other. Easily discharged. Therefore, a large amount of low-temperature working fluid is supplied to the compression chamber 9 from the suction hole 23, and the temperature in the compression chamber 9 decreases. Therefore, it is possible to prevent the compression chamber 9 from becoming hot when the cam ring 7 moves to the pressing member 10 side from a position eccentric to the rotor 5 on the opposite side to the pressing member 10.
  • variable vane pump 1 of the present embodiment the compression chamber 9 and the outer space 11 are utilized by using the fact that the cam ring 7 moves to the pressing member 10 side from the position eccentric to the opposite side to the pressing member 10 with respect to the rotor 5. Therefore, the flow path connecting the compression chamber 9 and the outer space 11 can be enlarged with an easy configuration.
  • variable vane pump 1 of this embodiment since the communication part 31 is a groove
  • variable vane pump 1 of the present embodiment the second opening 33 (opening) of the communication portion 31 is disposed away from the suction hole 23 in the circumferential direction, and thus is supplied from the suction hole 23 to the compression chamber 9. Therefore, it is possible to prevent the working fluid from being discharged from the communication part 31 immediately after a shortcut.
  • variable vane pump 1 of the present embodiment the distance between the second opening 33 (opening) of the communication part 31 and the suction hole 23 is longer than the circumferential length of all the compression chambers 9.
  • the second opening 33 and the suction hole 23 of the part 31 do not open simultaneously into one compression chamber 9. Accordingly, it is possible to more reliably prevent the working fluid supplied from the suction hole 23 to the compression chamber 9 from being discharged from the communication portion 31 immediately after a shortcut.
  • variable vane pump 1 of the present embodiment the distance between the second opening 33 (opening) and the notch 27 (notch) of the communication portion 31 is longer than the circumferential length of all the compression chambers 9. Therefore, it is possible to prevent the working fluid supplied from the notch 27 to the compression chamber 9 from being discharged from the communication portion 31 immediately after a shortcut.
  • variable vane pump 1 of the present embodiment since the second opening 33 (opening) of the communication part 31 is between the suction hole 23 and the discharge hole 24 in the circumferential direction, the second opening 33 is circumferential. Compared to the case where the suction hole 23 or the discharge hole 24 is located in the same direction, the second opening 33 is easily provided.
  • the casing 2 in which the cam ring 7 is disposed has a discharge hole 14 that is disposed on the pressing member 10 side and discharges the working fluid in the outer space 11 to the outside. There is no need to newly provide a discharge hole for discharging the working fluid discharged from the communication portion 31 to the outside of the cam ring 7.
  • the communicating portion may be formed on the cam ring.
  • the communication portion is a through hole that communicates the inner peripheral surface and the outer peripheral surface of the cam ring, or a through groove that is disposed on the end surface of the cam ring and communicates the inner peripheral surface and the outer peripheral surface of the cam ring, In FIG. 3A, the opening on the inner peripheral surface of the cam ring is closed by the rotor, and in the dead head state (see FIG. 3B), the opening on the inner peripheral surface of the cam ring is opened. It may be.
  • the second opening 33 (opening portion) of the communication portion 31 rotates the suction hole 23 in the circumferential direction.
  • a communication part may be anywhere. . Therefore, if the communication portion does not communicate with the discharge hole, the communication portion may be in the same position as the discharge hole in the circumferential direction, and if the communication portion does not communicate with the suction hole, the communication portion is in the circumferential direction. It may be in the same position as the suction hole.
  • the circumferential lengths of the plurality of compression chambers 9 are all the same by forming the plurality of slits 6 at substantially equal intervals in the circumferential direction.
  • the lengths in the circumferential direction of the plurality of compression chambers 9 may be different because 6 is not formed at substantially equal intervals in the circumferential direction.
  • the communication portion 31 is a groove.
  • the communication portion may be a hole formed in the end surface member.
  • the discharge hole 14 was formed in the press member accommodating part 13 of the casing 2, as long as the discharge hole is a press member side, it may be formed anywhere in the casing.
  • the suction hole 23, the discharge hole 24, and the communication portion 31 are formed in the first side plate 21 (end surface member)
  • the suction hole, the discharge hole, and the communication portion are cam rings. And it may be arranged on either of the end face members arranged on both end faces of the rotor. Therefore, for example, the suction hole, the discharge hole, and the communication portion may be disposed on the first side plate and the second side plate, respectively.
  • the suction hole and the discharge hole are disposed on the first side plate, and the communication portion is provided on the second side plate. It may be arranged.

Abstract

Conventional variable vane pumps retain working fluid inside a compression chamber when a cam ring has moved to a pressing member side from an eccentric position at the reverse side of the rotor from the pressing member and exhibit the problem of high temperatures in the compression chamber. This variable vane pump has a communication part 31. When a cam ring 7 has moved to a pressing member 10 side from an eccentric position at the reverse side of a rotor 5 from the pressing member 10, i.e. when the variable vane pump has changed from a full flow state to a dead head state, the communication part 31 changes from a state in which a compression chamber 9 and an outer space 11 that is radially outward of the cam ring 7 are not in communication to a state in which the compression chamber 9 and the outer space 11 are in communication.

Description

可変ベーンポンプVariable vane pump
 本発明は、可変ベーンポンプに関する。 The present invention relates to a variable vane pump.
 従来の可変ベーンポンプとしては、環状のカムリングと、カムリングの内側に配置されたロータと、ロータの外周面に形成された複数のスリットにそれぞれ進退可能に配置され、カムリングの内周面に当接して複数の圧縮室を形成する複数のベーンと、カムリング及びロータの端面に配置される端面部材と、カムリングを押圧する押圧部材とを有している。端面部材には、圧縮室に作動流体(例えば油)を供給する吸入孔と、圧縮室内の作動流体を吐出させる吐出孔とが形成されている。この可変ベーンポンプでは、カムリングが押圧部材に押圧されることによって、カムリングがロータに対して押圧部材と反対側に偏心している。そして、運転が開始されてロータが回転すると、スリットに配置されたベーンがその位置に応じて進退して、吸入側において圧縮室が拡大して圧縮室に作動流体が供給され、吐出側において圧縮室が縮小して圧縮室内の作動流体が吐出される。 As a conventional variable vane pump, an annular cam ring, a rotor arranged inside the cam ring, and a plurality of slits formed on the outer peripheral surface of the rotor are arranged so as to be able to advance and retreat, and contact the inner peripheral surface of the cam ring. It has a plurality of vanes forming a plurality of compression chambers, an end surface member disposed on the end surfaces of the cam ring and the rotor, and a pressing member that presses the cam ring. The end surface member is formed with a suction hole for supplying a working fluid (for example, oil) to the compression chamber and a discharge hole for discharging the working fluid in the compression chamber. In this variable vane pump, when the cam ring is pressed by the pressing member, the cam ring is eccentric to the rotor opposite to the pressing member. Then, when the operation is started and the rotor rotates, the vane arranged in the slit advances and retreats according to the position, the compression chamber expands on the suction side, the working fluid is supplied to the compression chamber, and the compression fluid is compressed on the discharge side. The chamber shrinks and the working fluid in the compression chamber is discharged.
特開2007-315349号公報JP 2007-315349 A
 上記のような可変ベーンポンプでは、例えば保圧時などに、圧縮室内の圧力が上昇して圧縮室内の圧力が押圧部材の押圧力を上回り、カムリングが押圧部材側に移動する場合がある。そして、カムリングの中心位置とロータの中心位置とが一致すると、ロータが回転しても圧縮室の大きさが変化しなくなるため、圧縮室内の作動流体が吐出孔からほとんど吐出されなくなって、圧縮室内に作動流体が滞留し、圧縮室が高温となる問題がある。 In the variable vane pump as described above, for example, during pressure holding, the pressure in the compression chamber may rise, the pressure in the compression chamber may exceed the pressing force of the pressing member, and the cam ring may move to the pressing member side. When the center position of the cam ring and the center position of the rotor coincide, the size of the compression chamber does not change even when the rotor rotates, so that the working fluid in the compression chamber is hardly discharged from the discharge hole, and the compression chamber There is a problem that the working fluid stays in the chamber and the compression chamber becomes high temperature.
 そこで、本発明の目的は、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動したときに、圧縮室が高温となるのを防止できる可変ベーンポンプを提供することである。 Therefore, an object of the present invention is to provide a variable vane pump that can prevent the compression chamber from becoming hot when the cam ring moves from the position eccentric to the opposite side of the pressing member to the pressing member side. is there.
 第1の発明にかかる可変ベーンポンプは、環状のカムリングと、前記カムリングの内側に配置され、周方向に離れて配置された複数のスリットを外周面に有するロータと、前記複数のスリットにそれぞれ進退可能に配置され、前記カムリングの内周面に当接して複数の圧縮室を形成する複数のベーンと、前記カムリングの径方向外側に配置され、前記カムリングを押圧する押圧部材と、前記カムリングが前記ロータに対して前記押圧部材と反対側に偏心した位置から前記押圧部材側に移動したときに、前記圧縮室と前記カムリングの径方向外側の外側空間とが連通しない状態から前記圧縮室と当該外側空間とが連通した状態に変化するように構成される連通部とを備えることを特徴とする。 A variable vane pump according to a first aspect of the present invention is an annular cam ring, a rotor that is disposed inside the cam ring and has a plurality of slits that are spaced apart from each other in the circumferential direction, and can be advanced and retracted by the plurality of slits, respectively. A plurality of vanes that are in contact with an inner peripheral surface of the cam ring to form a plurality of compression chambers, a pressing member that is disposed radially outside the cam ring and presses the cam ring, and the cam ring is the rotor The compression chamber and the outer space from a state in which the compression chamber and the outer space on the radially outer side of the cam ring do not communicate with each other when moved from the position eccentric to the opposite side to the pressing member to the pressing member side. And a communication portion configured to change to a state in which the communication is established.
 この可変ベーンポンプでは、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動して、圧縮室内の作動流体が吐出孔からほとんど吐出されない状態になったときに、圧縮室と外側空間とが連通するので、圧縮室と外側空間とが連通しない場合に比べて、圧縮室内の作動流体が外側空間に排出されやすい。そのため、温度の低い作動流体が吸入孔から圧縮室に多く供給されるようになり、圧縮室内の温度が低下する。したがって、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動したときに、圧縮室が高温となるのを防止できる。 In this variable vane pump, when the cam ring moves from the position eccentric to the side opposite to the pressing member to the pressing member side and the working fluid in the compression chamber is hardly discharged from the discharge hole, the compression chamber And the outer space communicate with each other, the working fluid in the compression chamber is easily discharged to the outer space as compared with the case where the compression chamber and the outer space do not communicate with each other. Therefore, a large amount of working fluid having a low temperature is supplied from the suction hole to the compression chamber, and the temperature in the compression chamber decreases. Therefore, it is possible to prevent the compression chamber from becoming hot when the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side.
 第2の発明にかかる可変ベーンポンプは、第1の発明にかかる可変ベーンポンプにおいて、前記カムリング及び前記ロータの端面に配置される端面部材を有しており、前記連通部は、前記端面部材の前記押圧部材側に配置されるとともに、前記カムリングが前記ロータに対して前記押圧部材と反対側に偏心した位置から前記押圧部材側に移動したときに、前記カムリングに塞がれた状態から前記カムリングに塞がれない状態に変化することにより前記圧縮室と前記外側空間とを連通させることを特徴とする。 The variable vane pump according to a second aspect of the present invention is the variable vane pump according to the first aspect of the present invention, further comprising an end surface member disposed on an end surface of the cam ring and the rotor, wherein the communication portion is the pressure of the end surface member. The cam ring is disposed on the member side, and the cam ring is closed from the state where the cam ring is blocked when the cam ring moves to the pressing member side from a position eccentric to the opposite side of the rotor with respect to the rotor. The compression chamber and the outer space are communicated with each other by changing to a state in which they cannot be separated.
 この可変ベーンポンプでは、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動するのを利用して、圧縮室と外側空間とを連通させているので、圧縮室と外側空間とを容易に連通させることができる。 In this variable vane pump, the compression chamber and the outer space communicate with each other by utilizing the fact that the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side. It is possible to easily communicate with the space.
 第3の発明にかかる可変ベーンポンプは、第2の発明にかかる可変ベーンポンプにおいて、前記連通部が、前記端面部材の両端面のうち前記カムリング側の端面に形成された溝であることを特徴とする。 A variable vane pump according to a third aspect of the invention is the variable vane pump according to the second aspect of the invention, wherein the communicating part is a groove formed on an end face on the cam ring side of both end faces of the end face member. .
 この可変ベーンポンプでは、連通部が、端面部材の両端面のうちカムリング側の端面に形成された溝であるので、連通部を設けやすい。 In this variable vane pump, since the communicating part is a groove formed on the end face on the cam ring side of both end faces of the end face member, it is easy to provide the communicating part.
 第4の発明にかかる可変ベーンポンプは、第2または第3の発明にかかる可変ベーンポンプにおいて、前記端面部材が、前記圧縮室に作動流体を供給する吸入孔を有しており、前記連通部のうち前記圧縮室に連通し得る開口部が、周方向について前記吸入孔と離れて配置されることを特徴とする。 A variable vane pump according to a fourth invention is the variable vane pump according to the second or third invention, wherein the end surface member has a suction hole for supplying a working fluid to the compression chamber, An opening that can communicate with the compression chamber is disposed away from the suction hole in the circumferential direction.
 この可変ベーンポンプでは、連通部の開口部が、周方向について吸入孔と離れて配置されるので、吸入孔から圧縮室に供給された作動流体がショートカットしてすぐに連通部から排出されるのを防止できる。 In this variable vane pump, since the opening of the communication part is arranged away from the suction hole in the circumferential direction, the working fluid supplied from the suction hole to the compression chamber is short-circuited and immediately discharged from the communication part. Can be prevented.
 第5の発明にかかる可変ベーンポンプは、第4の発明にかかる可変ベーンポンプにおいて、前記開口部と前記吸入孔との間の距離が、全ての前記圧縮室の周方向長さよりも長いことを特徴とする。 A variable vane pump according to a fifth invention is characterized in that, in the variable vane pump according to the fourth invention, the distance between the opening and the suction hole is longer than the circumferential length of all the compression chambers. To do.
 この可変ベーンポンプでは、連通部の開口部と吸入孔との間の距離が、全ての圧縮室の周方向長さよりも長いので、開口部と吸入孔が1つの圧縮室に同時に開口することがない。したがって、吸入孔から圧縮室に供給された作動流体がショートカットしてすぐに連通部から排出されるのをより確実に防止できる。 In this variable vane pump, since the distance between the opening of the communicating portion and the suction hole is longer than the circumferential length of all the compression chambers, the opening and the suction hole do not open simultaneously into one compression chamber. . Therefore, it is possible to more reliably prevent the working fluid supplied from the suction hole to the compression chamber from being discharged from the communication portion immediately after a shortcut.
 第6の発明にかかる可変ベーンポンプは、第5の発明にかかる可変ベーンポンプにおいて、前記吸入孔から前記開口部側に向かって延在した切欠きを有しており、前記開口部と前記切欠きとの間の距離が、全ての前記圧縮室の周方向長さよりも長いことを特徴とする。 A variable vane pump according to a sixth invention is the variable vane pump according to the fifth invention, wherein the variable vane pump has a notch extending from the suction hole toward the opening, and the opening and the notch The distance between the two is longer than the circumferential length of all the compression chambers.
 この可変ベーンポンプでは、連通部の開口部と切欠きとの間の距離が、全ての圧縮室の周方向長さよりも長いので、切欠きから圧縮室に供給された作動流体がショートカットしてすぐに連通部から排出されるのを防止できる。 In this variable vane pump, since the distance between the opening of the communication portion and the notch is longer than the circumferential length of all the compression chambers, the working fluid supplied to the compression chamber from the notches is short-circuited immediately. It can prevent being discharged from the communication part.
 第7の発明にかかる可変ベーンポンプは、第4-第6のいずれかの発明にかかる可変ベーンポンプにおいて、前記端面部材が、周方向について前記吸入孔と離れて配置され、前記圧縮室内の作動流体を吐出させる吐出孔を有しており、前記開口部が、周方向について前記吸入孔と前記吐出孔との間に配置されることを特徴とする。 A variable vane pump according to a seventh invention is the variable vane pump according to any one of the fourth to sixth inventions, wherein the end surface member is disposed away from the suction hole in the circumferential direction, and the working fluid in the compression chamber is It has a discharge hole for discharging, and the opening is arranged between the suction hole and the discharge hole in the circumferential direction.
 この可変ベーンポンプでは、連通部の開口部が周方向について吸入孔と吐出孔との間にあるので、開口部が周方向について吸入孔または吐出孔と同じ位置にある場合に比べて、開口部を設けやすい。 In this variable vane pump, since the opening of the communication portion is between the suction hole and the discharge hole in the circumferential direction, the opening is less than in the case where the opening is at the same position as the suction hole or the discharge hole in the circumferential direction. Easy to install.
 第8の発明にかかる可変ベーンポンプは、第1-第7のいずれかの発明にかかる可変ベーンポンプにおいて、前記カムリングが内部に配置されるケーシングが、前記押圧部材側に配置され且つ前記外側空間内の作動流体を外部に排出する排出孔を有することを特徴とする。 A variable vane pump according to an eighth invention is the variable vane pump according to any one of the first to seventh inventions, wherein a casing in which the cam ring is arranged is arranged on the pressing member side and in the outer space. It has a discharge hole for discharging the working fluid to the outside.
 この可変ベーンポンプでは、連通部からカムリングの径方向外側の外側空間に排出された作動流体が排出孔から排出されるので、連通部からカムリングの径方向外側の外側空間に排出された作動流体を排出する排出孔を新たに設ける必要がない。 In this variable vane pump, since the working fluid discharged from the communicating portion to the outer space outside the cam ring in the radial direction is discharged from the discharge hole, the working fluid discharged from the communicating portion to the outer space radially outside the cam ring is discharged. There is no need to provide a new discharge hole.
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。 As described in the above description, according to the present invention, the following effects can be obtained.
 第1の発明では、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動して、圧縮室内の作動流体が吐出孔からほとんど吐出されない状態になったときに、圧縮室と外側空間とが連通するので、圧縮室と外側空間とが連通しない場合に比べて、圧縮室内の作動流体が外側空間に排出されやすい。そのため、温度の低い作動流体が吸入孔から圧縮室に多く供給されるようになり、圧縮室内の温度が低下する。したがって、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動したときに、圧縮室が高温となるのを防止できる。 In the first invention, when the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side and the working fluid in the compression chamber is hardly discharged from the discharge hole, the compression is performed. Since the chamber and the outer space communicate with each other, the working fluid in the compression chamber is easily discharged to the outer space as compared with the case where the compression chamber and the outer space do not communicate with each other. Therefore, a large amount of working fluid having a low temperature is supplied from the suction hole to the compression chamber, and the temperature in the compression chamber decreases. Therefore, it is possible to prevent the compression chamber from becoming hot when the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side.
 第2の発明では、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動するのを利用して、圧縮室と外側空間とを連通させているので、圧縮室と外側空間とを容易に連通させることができる。 In the second invention, the compression chamber and the outer space communicate with each other by utilizing the fact that the cam ring moves from the position eccentric to the opposite side of the pressing member to the pressing member side. The outside space can be easily communicated.
 第3の発明では、連通部が、端面部材の両端面のうちカムリング側の端面に形成された溝であるので、連通部を設けやすい。 In the third invention, since the communicating portion is a groove formed on the end surface on the cam ring side of the both end surfaces of the end surface member, it is easy to provide the communicating portion.
 第4の発明では、連通部の開口部が、周方向について吸入孔と離れて配置されるので、吸入孔から圧縮室に供給された作動流体がショートカットしてすぐに連通部から排出されるのを防止できる。 In the fourth aspect of the invention, since the opening of the communication part is arranged away from the suction hole in the circumferential direction, the working fluid supplied from the suction hole to the compression chamber is immediately discharged from the communication part as a shortcut. Can be prevented.
 第5の発明では、連通部の開口部と吸入孔との間の距離が、全ての圧縮室の周方向長さよりも長いので、開口部と吸入孔が1つの圧縮室に同時に開口することがない。したがって、吸入孔から圧縮室に供給された作動流体がショートカットしてすぐに連通部から排出されるのをより確実に防止できる。 In the fifth aspect of the invention, since the distance between the opening of the communicating portion and the suction hole is longer than the circumferential length of all the compression chambers, the opening and the suction hole may be simultaneously opened in one compression chamber. Absent. Therefore, it is possible to more reliably prevent the working fluid supplied from the suction hole to the compression chamber from being discharged from the communication portion immediately after a shortcut.
 第6の発明では、連通部の開口部と切欠きとの間の距離が、全ての圧縮室の周方向長さよりも長いので、切欠きから圧縮室に供給された作動流体がショートカットしてすぐに連通部から排出されるのを防止できる。 In the sixth invention, since the distance between the opening of the communication portion and the cutout is longer than the circumferential length of all the compression chambers, the working fluid supplied from the cutout to the compression chamber is immediately short cut. Can be prevented from being discharged from the communication part.
 第7の発明では、連通部の開口部が周方向について吸入孔と吐出孔との間にあるので、開口部が周方向について吸入孔または吐出孔と同じ位置にある場合に比べて、開口部を設けやすい。 In the seventh aspect of the invention, since the opening of the communication portion is between the suction hole and the discharge hole in the circumferential direction, the opening is compared with the case where the opening is at the same position as the suction hole or the discharge hole in the circumferential direction. It is easy to provide.
 第8の発明では、連通部からカムリングの径方向外側の外側空間に排出された作動流体が排出孔から排出されるので、連通部からカムリングの径方向外側の外側空間に排出された作動流体を排出する排出孔を新たに設ける必要がない。 In the eighth aspect of the invention, since the working fluid discharged from the communicating portion to the outer space radially outside the cam ring is discharged from the discharge hole, the working fluid discharged from the communicating portion to the outer space radially outside the cam ring is discharged. There is no need to provide a new discharge hole.
本発明の実施形態にかかる可変ベーンポンプの縦断面図である。It is a longitudinal cross-sectional view of the variable vane pump concerning embodiment of this invention. 図1に示すII-II線に沿った要部断面図である。It is principal part sectional drawing along the II-II line | wire shown in FIG. (a)は、カムリングがロータに対して押圧部材と反対側に偏心した位置にある場合を示す図であり、(b)は、カムリングの中心位置とロータの中心位置が一致した場合を示す図である。(A) is a figure which shows the case where a cam ring exists in the position eccentric to the opposite side to a press member with respect to a rotor, (b) is a figure which shows the case where the center position of a cam ring and the center position of a rotor correspond. It is. 図3(b)に示すA部拡大図である。It is the A section enlarged view shown in Drawing 3 (b). 第1側板(端面部材)の平面図である。It is a top view of the 1st side board (end surface member).
 以下、図面を参照しつつ本発明にかかる可変ベーンポンプの実施の形態について説明する。 Hereinafter, an embodiment of a variable vane pump according to the present invention will be described with reference to the drawings.
[可変ベーンポンプの構成]
 可変ベーンポンプ1は、例えば油圧機器への油圧供給源として用いられるものであり、図1及び図2に示すように、外側がケーシング2で覆われている。ケーシング2の内部には、軸受2A及び軸受2Bにより回転軸3が回転自在に軸支されている。回転軸3には、キー4を介して円筒状のロータ5が回転軸3と一体的に回転可能に取り付けられている。ロータ5の外周面には、環状に配列された複数のスリット6(この可変ベーンポンプ1では13個)が設けられている。複数のスリット6は、ロータ5を軸方向に貫通し且つ放射方向に沿って設けられており、周方向において略等間隔に配置されている。また、ロータ5の径方向外側には、環状(円環状)のカムリング7が配置されている。
[Configuration of variable vane pump]
The variable vane pump 1 is used, for example, as a hydraulic pressure supply source for hydraulic equipment, and the outside is covered with a casing 2 as shown in FIGS. 1 and 2. Inside the casing 2, a rotating shaft 3 is rotatably supported by a bearing 2A and a bearing 2B. A cylindrical rotor 5 is attached to the rotary shaft 3 via a key 4 so as to be rotatable integrally with the rotary shaft 3. A plurality of slits 6 (13 in this variable vane pump 1) arranged in an annular shape are provided on the outer peripheral surface of the rotor 5. The plurality of slits 6 penetrates the rotor 5 in the axial direction and is provided along the radial direction, and are arranged at substantially equal intervals in the circumferential direction. An annular (annular) cam ring 7 is disposed on the outer side in the radial direction of the rotor 5.
 複数のスリット6には、各スリット6内を径方向に進退可能に配置される複数のベーン8(この可変ベーンポンプ1では13個)が配置されている。複数のベーン8は、ロータ5の回転によって発生する遠心力によってカムリング7の内周面に当接して、複数の圧縮室9を形成している。この可変ベーンポンプ1では、隣接する2つのベーン8、ロータ5、カムリング7、及び後述する2つの側板(第1側板21及び第2側板22)により13個の圧縮室9が形成されている。なお、ロータ5、カムリング7、ベーン8等は、ケーシング2の内周面12により形成される断面視円形状の空間に配置されている。また、回転軸3、ロータ5、及びベーン8は、図1の矢印方向に回転する。 In the plurality of slits 6, a plurality of vanes 8 (13 in this variable vane pump 1) disposed so as to be able to advance and retract in the radial direction in each slit 6 are disposed. The plurality of vanes 8 are in contact with the inner peripheral surface of the cam ring 7 by centrifugal force generated by the rotation of the rotor 5 to form a plurality of compression chambers 9. In this variable vane pump 1, 13 compression chambers 9 are formed by two adjacent vanes 8, the rotor 5, the cam ring 7, and two side plates (first side plate 21 and second side plate 22) described later. Note that the rotor 5, the cam ring 7, the vane 8, and the like are arranged in a space having a circular shape in cross section formed by the inner peripheral surface 12 of the casing 2. Moreover, the rotating shaft 3, the rotor 5, and the vane 8 rotate in the arrow direction of FIG.
 カムリング7の径方向外側には、カムリング7の外周面に当接して、カムリング7の径方向外側からカムリング7を押圧する押圧部材10が配置されている。この押圧部材10は、ケーシング2の内周面12から径方向外側に向かって延在した押圧部材収容部13に配置されている。この押圧部材収容部13には、外側空間11内の作動流体(例えば油)を外部に排出する排出孔14が形成されている。 A pressing member 10 that contacts the outer peripheral surface of the cam ring 7 and presses the cam ring 7 from the radially outer side of the cam ring 7 is disposed on the outer side of the cam ring 7 in the radial direction. The pressing member 10 is disposed in a pressing member accommodating portion 13 that extends radially outward from the inner peripheral surface 12 of the casing 2. The pressing member accommodating portion 13 is formed with a discharge hole 14 for discharging the working fluid (for example, oil) in the outer space 11 to the outside.
 図1に示すように、押圧部材10は、弾性部材15(この可変ベーンポンプ1では、バネ部材)とピストン16により構成されている。また、押圧部材10におけるカムリング7と反対側には、ボルト部材17が配置されている。この可変ベーンポンプ1では、ボルト部材17をロータ5の径方向に沿って変位させることで、ピストン16によりカムリング7に作用する弾性部材15の弾性力が変化し、圧縮室9内から吐出される作動流体の吐出圧力が調整される。図1に示すように、この可変ベーンポンプ1では、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置に配置される。すなわち、カムリング7の中心位置は、ロータ5の中心位置に対して押圧部材10の反対側にある。このとき、カムリング7のうち押圧部材10と反対側の外周面は、ケーシング2の内周面12に当接している。 As shown in FIG. 1, the pressing member 10 includes an elastic member 15 (a spring member in the variable vane pump 1) and a piston 16. A bolt member 17 is disposed on the opposite side of the pressing member 10 from the cam ring 7. In this variable vane pump 1, the bolt member 17 is displaced along the radial direction of the rotor 5, whereby the elastic force of the elastic member 15 acting on the cam ring 7 is changed by the piston 16, and the operation is discharged from the compression chamber 9. The fluid discharge pressure is adjusted. As shown in FIG. 1, in the variable vane pump 1, the cam ring 7 is arranged at a position eccentric to the rotor 5 on the side opposite to the pressing member 10. That is, the center position of the cam ring 7 is on the opposite side of the pressing member 10 with respect to the center position of the rotor 5. At this time, the outer peripheral surface of the cam ring 7 opposite to the pressing member 10 is in contact with the inner peripheral surface 12 of the casing 2.
 図2に示すように、カムリング7及びロータ5の両端面には、円筒状の第1側板21(端面部材)及び円筒状の第2側板22が配置されている。第1側板21及び第2側板22の中央には、貫通孔が形成されており、これらの貫通孔には、回転軸3が挿通されている。 2, a cylindrical first side plate 21 (end surface member) and a cylindrical second side plate 22 are disposed on both end surfaces of the cam ring 7 and the rotor 5. Through holes are formed in the center of the first side plate 21 and the second side plate 22, and the rotary shaft 3 is inserted through these through holes.
 図3-図5に示すように、第1側板21(端面部材)は、圧縮室9に作動流体(例えば油)を供給する吸入孔23と、圧縮室9内の作動流体を吐出させる吐出孔24と、圧縮室9内の作動流体をカムリング7の径方向外側の外側空間11に排出する連通部31とを有している。吸入孔23は、図示しない吸入ポートに接続され、吐出孔24は、図示しない吐出ポートに接続されている。 As shown in FIGS. 3 to 5, the first side plate 21 (end surface member) includes a suction hole 23 for supplying a working fluid (for example, oil) to the compression chamber 9 and a discharge hole for discharging the working fluid in the compression chamber 9. 24 and a communication portion 31 for discharging the working fluid in the compression chamber 9 to the outer space 11 on the radially outer side of the cam ring 7. The suction hole 23 is connected to a suction port (not shown), and the discharge hole 24 is connected to a discharge port (not shown).
 吸入孔23は、押圧部材10の中心線を延長した線L1(図5参照)に対して平面視左側に配置されており、複数の圧縮室9に連通するように周方向に沿って延在している。したがって、吸入孔23の周方向長さは、各圧縮室9の周方向長さよりも長い。ここで、圧縮室9の周方向長さとは、圧縮室9の最も径方向外側の周方向長さを言う。吸入孔23の両端部のうち、ロータ5の回転方向上流側端部25が、圧縮室9への作動流体の供給が開始される供給開始点であり、ロータ5の回転方向下流側端部26が、圧縮室9への作動流体の供給が終了する供給終了点である。第1側板21の両端面のうちカムリング7側の端面には、吸入孔23の回転方向上流側端部25から連通部31の後述する第2開口部33側に向かって延在した例えばV字型の切欠き27(ノッチ)が形成されている。この切欠き27によって、吸入孔23の回転方向上流側端部25より上流側から圧縮室9内に徐々に作動流体が供給されるので、吸入孔23の回転方向上流側端部25において、圧縮室9の圧力が急激に上昇することが防止される。なお、切欠き27は、第1側板21を貫通していてもよい。 The suction hole 23 is arranged on the left side in plan view with respect to a line L1 (see FIG. 5) obtained by extending the center line of the pressing member 10, and extends along the circumferential direction so as to communicate with the plurality of compression chambers 9. is doing. Therefore, the circumferential length of the suction hole 23 is longer than the circumferential length of each compression chamber 9. Here, the circumferential length of the compression chamber 9 refers to the circumferential length of the compression chamber 9 on the outermost radial direction. Of the both ends of the suction hole 23, the upstream end 25 in the rotational direction of the rotor 5 is a supply start point at which the supply of the working fluid to the compression chamber 9 is started, and the downstream end 26 in the rotational direction of the rotor 5. Is the supply end point at which the supply of the working fluid to the compression chamber 9 ends. Of the both end faces of the first side plate 21, the end face on the cam ring 7 side is, for example, V-shaped and extends from the upstream end 25 in the rotation direction of the suction hole 23 toward the second opening 33, which will be described later. A mold notch 27 (notch) is formed. By this notch 27, the working fluid is gradually supplied into the compression chamber 9 from the upstream side of the upstream end 25 in the rotational direction of the suction hole 23, so that the compression is performed at the upstream end 25 in the rotational direction of the suction hole 23. It is possible to prevent the pressure in the chamber 9 from rising rapidly. The notch 27 may pass through the first side plate 21.
 吐出孔24は、周方向について吸入孔23と離れて配置されており、詳しくは、押圧部材10の中心線を延長した線L1(図5参照)に対して吸入孔23と反対側(平面視右側)に配置されている。この吐出孔24は、複数の圧縮室9に連通するように周方向に沿って延在している。したがって、吐出孔24の周方向長さは、各圧縮室9の周方向長さよりも長い。吐出孔24の両端部のうち、ロータ5の回転方向上流側端部28が、圧縮室9内からの作動流体の吐出が開始される吐出開始点であり、ロータ5の回転方向下流側端部29が、圧縮室9内からの作動流体の吐出が終了する吐出終了点である。なお、吸入孔23の回転方向上流側端部25と吐出孔24の回転方向下流側端部29との間の周方向距離、および吸入孔23の回転方向下流側端部26と吐出孔24の回転方向上流側端部28との間の周方向距離は、周方向について圧縮室9の周方向長さよりも離れている。 The discharge hole 24 is disposed away from the suction hole 23 in the circumferential direction. Specifically, the discharge hole 24 is opposite to the suction hole 23 (plan view) with respect to a line L1 (see FIG. 5) obtained by extending the center line of the pressing member 10. On the right). The discharge holes 24 extend along the circumferential direction so as to communicate with the plurality of compression chambers 9. Therefore, the circumferential length of the discharge hole 24 is longer than the circumferential length of each compression chamber 9. Of the both ends of the discharge hole 24, the upstream end 28 in the rotation direction of the rotor 5 is a discharge start point at which the discharge of the working fluid from the compression chamber 9 is started, and the downstream end in the rotation direction of the rotor 5. Reference numeral 29 denotes a discharge end point at which the discharge of the working fluid from the compression chamber 9 ends. In addition, the circumferential distance between the rotation direction upstream end 25 of the suction hole 23 and the rotation direction downstream end 29 of the discharge hole 24, and the rotation direction downstream end 26 of the suction hole 23 and the discharge hole 24. The distance in the circumferential direction between the upstream end portion 28 in the rotational direction is longer than the circumferential length of the compression chamber 9 in the circumferential direction.
 連通部31は、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置から押圧部材10側に移動したときに、圧縮室9と外側空間11とが連通しない状態から圧縮室9と外側空間11とが連通した状態に変化するように構成される。ここで、圧縮室9と外側空間11とは、実際には、カムリング7と2つの側板(第1側板21及び第2側板22)との間の僅かな隙間によって、常に連通しているが、本発明では、カムリング7と2つの側板(第1側板21及び第2側板22)との間に僅かな隙間があっても、それは圧縮室9と外側空間11とを連通したものではないとみなす。 When the cam ring 7 moves to the pressing member 10 side from the position opposite to the pressing member 10 with respect to the rotor 5, the communication portion 31 starts from the state where the compression chamber 9 and the outer space 11 do not communicate with each other. And the outer space 11 are configured to change into a communication state. Here, the compression chamber 9 and the outer space 11 are actually in communication with each other by a slight gap between the cam ring 7 and the two side plates (the first side plate 21 and the second side plate 22). In the present invention, even if there is a slight gap between the cam ring 7 and the two side plates (the first side plate 21 and the second side plate 22), it is considered that the compression chamber 9 and the outer space 11 are not communicated with each other. .
 この連通部31は、径方向に沿って延在した溝であり、第1側板21(端面部材)の両端面のうちカムリング7側の端面、且つ第1側板21の押圧部材10側に形成されている。なお、押圧部材10側とは、図5に示すように、平面視において、押圧部材10の中心線を延長した線L1と直交し且つロータ5の中心を通る線L2よりも押圧部材10側を指す。 The communication portion 31 is a groove extending along the radial direction, and is formed on the end surface on the cam ring 7 side of both end surfaces of the first side plate 21 (end surface member) and on the pressing member 10 side of the first side plate 21. ing. As shown in FIG. 5, the pressing member 10 side refers to the pressing member 10 side from a line L <b> 2 that is orthogonal to the line L <b> 1 that extends the center line of the pressing member 10 and passes through the center of the rotor 5 in a plan view. Point to.
 図3-図5に示すように、この連通部31は、長手方向長さがカムリング7の幅よりも長い溝であり、外側空間11に開口した第1開口部32と、圧縮室9に開口し得る第2開口部33とを有している。この第2開口部33が、本発明において、連通部のうち圧縮室に連通し得る開口部に相当する。第1開口部32は、図3(a)に示すように、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置にあるとき、及び、図3(b)に示すように、カムリング7の中心位置とロータ5の中心位置とが一致するときのいずれの状態においても、常に外側空間11に開口している。 As shown in FIG. 3 to FIG. 5, the communication portion 31 is a groove whose longitudinal length is longer than the width of the cam ring 7, and has a first opening 32 opened in the outer space 11 and an opening in the compression chamber 9. And a second opening 33 that can be used. This 2nd opening part 33 is equivalent to the opening part which can be connected to a compression chamber among communication parts in this invention. As shown in FIG. 3A, the first opening 32 is located when the cam ring 7 is eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, and as shown in FIG. 3B. In any state when the center position of the cam ring 7 and the center position of the rotor 5 coincide, the outer space 11 is always open.
 一方、第2開口部33は、図3(a)に示すように、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置にあるときは、平面視において、その全域がカムリング7と重なっている。そのため、第2開口部33がカムリング7に塞がれており、第2開口部33は、圧縮室9に開口しない。一方、第2開口部33が、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置(図3(a)参照)から、カムリング7の中心位置とロータ5の中心位置とが一致する位置(図3(b)参照)までのどこかの地点(実際には、カムリング7の中心位置とロータ5の中心位置とが一致する位置の僅かに手前)までカムリング7が移動すると、第2開口部33がカムリング7に塞がれない状態となって、第2開口部33が、圧縮室9に開口する。その結果、圧縮室9と外側空間11とが連通する。そして、カムリング7の中心位置とロータ5の中心位置とが一致する位置まで、カムリング7が移動した状態においても、圧縮室9と外側空間11とが連通した状態が継続される。 On the other hand, as shown in FIG. 3A, when the cam ring 7 is in a position eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, the entire area of the second opening 33 is a cam ring in a plan view. 7 overlaps. Therefore, the second opening 33 is closed by the cam ring 7, and the second opening 33 does not open into the compression chamber 9. On the other hand, the center position of the cam ring 7 and the center position of the rotor 5 are determined from the position where the second opening 33 is eccentric to the opposite side of the pressing member 10 with respect to the rotor 5 (see FIG. 3A). When the cam ring 7 moves to some point (in fact, slightly before the position where the center position of the cam ring 7 and the center position of the rotor 5 match) until the matching position (see FIG. 3B), The second opening 33 is not blocked by the cam ring 7, and the second opening 33 opens into the compression chamber 9. As a result, the compression chamber 9 and the outer space 11 communicate with each other. Even when the cam ring 7 moves to a position where the center position of the cam ring 7 and the center position of the rotor 5 coincide with each other, the state in which the compression chamber 9 and the outer space 11 communicate with each other is continued.
 ここで、図3(a)に示すように、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置にあるときは、圧縮室9内の圧力が所定未満であって、吸入孔23から圧縮室9に作動流体が供給され且つ圧縮室9内の作動流体が吐出孔24から吐出される状態である。この可変ベーンポンプ1では、この状態をフルフローの状態と称する。一方、保圧時など、圧縮室9内の圧力が所定以上となって、圧縮室9内の圧力が弾性部材15の弾性力を上回る場合には、図3(b)に示すように、カムリング7の中心位置とロータ5の中心位置とが一致して、圧縮室9内の作動流体が吐出孔24からほとんど吐出されない状態となる。この可変ベーンポンプ1では、この状態をデッドヘッドの状態と称する。 Here, as shown in FIG. 3A, when the cam ring 7 is in a position eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, the pressure in the compression chamber 9 is less than a predetermined value, The working fluid is supplied from the hole 23 to the compression chamber 9 and the working fluid in the compression chamber 9 is discharged from the discharge hole 24. In the variable vane pump 1, this state is referred to as a full flow state. On the other hand, when the pressure in the compression chamber 9 becomes equal to or higher than a predetermined value, such as during holding, and the pressure in the compression chamber 9 exceeds the elastic force of the elastic member 15, as shown in FIG. 7 and the center position of the rotor 5 coincide with each other, so that the working fluid in the compression chamber 9 is hardly discharged from the discharge hole 24. In the variable vane pump 1, this state is referred to as a dead head state.
 この可変ベーンポンプ1では、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置にあるとき、すなわちフルフローの状態から、カムリング7の中心位置とロータ5の中心位置とが一致するとき、すなわちデッドヘッドの状態に変わると、圧縮室9と外側空間11とが連通しない状態から圧縮室9と外側空間11とが連通する状態に変化するので、デッドヘッドの状態のときに、連通部のない従来の可変ベーンポンプに比べて、圧縮室9内の作動流体が外側空間11に漏れやすくなっている。 In this variable vane pump 1, when the cam ring 7 is in a position eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, that is, when the center position of the cam ring 7 coincides with the center position of the rotor 5 from the full flow state. That is, when the state changes to the dead head state, the compression chamber 9 and the outer space 11 do not communicate with each other, and the compression chamber 9 and the outer space 11 communicate with each other. The working fluid in the compression chamber 9 is more likely to leak into the outer space 11 as compared with a conventional variable vane pump without the above.
 なお、図3及び図4に示すように、連通部31の第2開口部33(開口部)は、周方向について吸入孔23の回転方向上流側端部25と吐出孔24の回転方向下流側端部29との間に配置されている。したがって、連通部31の第2開口部33は、周方向について吸入孔23と離れて配置されている。また、周方向における第2開口部33と吸入孔23の回転方向上流側端部25との間の距離は、各圧縮室9の周方向長さよりも長くされており、また、周方向における第2開口部33と切欠き27の先端との間の距離も、各圧縮室9の周方向長さよりも長くされている。 As shown in FIGS. 3 and 4, the second opening 33 (opening) of the communication portion 31 has an upstream end 25 in the rotation direction of the suction hole 23 and a downstream side in the rotation direction of the discharge hole 24 in the circumferential direction. It is arranged between the end portions 29. Accordingly, the second opening 33 of the communication portion 31 is disposed away from the suction hole 23 in the circumferential direction. Further, the distance between the second opening 33 in the circumferential direction and the upstream end 25 in the rotation direction of the suction hole 23 is longer than the circumferential length of each compression chamber 9, and the distance in the circumferential direction is The distance between the two openings 33 and the tip of the notch 27 is also longer than the circumferential length of each compression chamber 9.
 また、図1に示すように、連通部31の第1開口部32は、押圧部材10の近傍、すなわち、周方向について押圧部材収容部13の両端13a、13bの間にあるので、連通部31の第1開口部32から噴流となって吐出される油が、ケーシング2の内周面12に当たりにくい。したがって、連通部31の第1開口部32から噴流となって吐出される油が、ケーシング2の内周面12に当たってケーシング2に負荷がかかるのが防止される。また、連通部31の第1開口部32は、排出孔14の近傍、周方向について押圧部材収容部13の両端13a、13bの間にあるので、連通部31の第1開口部32から吐出された油が、排出孔14から外部に排出されやすい。 Moreover, as shown in FIG. 1, since the 1st opening part 32 of the communication part 31 exists in the vicinity of the press member 10, ie, between the both ends 13a and 13b of the press member accommodating part 13 about the circumferential direction, the communication part 31 is provided. The oil discharged as a jet from the first opening 32 is less likely to hit the inner peripheral surface 12 of the casing 2. Therefore, the oil discharged as a jet from the first opening 32 of the communication portion 31 is prevented from hitting the inner peripheral surface 12 of the casing 2 and applying a load to the casing 2. Further, since the first opening 32 of the communication portion 31 is located between the both ends 13a and 13b of the pressing member accommodating portion 13 in the vicinity of the discharge hole 14 and in the circumferential direction, the first opening 32 is discharged from the first opening 32 of the communication portion 31. Oil is easily discharged from the discharge hole 14 to the outside.
[可変ベーンポンプの動作]
 次に、図3を参照しつつ可変ベーンポンプ1の動作について説明する。この可変ベーンポンプ1では、図3(a)に示すように、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置にある場合において、運転が開始されてロータ5が回転すると、スリット6に配置されたベーン8がその位置に応じて進退して、吸入孔23が配置される吸入側において圧縮室9が徐々に拡大して吸入孔23から圧縮室9に作動流体が供給され、吐出孔24が配置される吐出側において圧縮室9が徐々に縮小して圧縮室9内の作動流体が吐出孔24から吐出される(フルフローの状態)。この場合において、連通部31の第1開口部32は、外側空間11に開口しているが、連通部31の第2開口部33(開口部)は、圧縮室9に開口していないので、連通部31から外側空間11に排出される作動流体(例えば油)はほとんどない。したがって、圧縮室9内の作動流体が無駄になってしまうことがない。
[Operation of variable vane pump]
Next, the operation of the variable vane pump 1 will be described with reference to FIG. In the variable vane pump 1, as shown in FIG. 3A, when the cam ring 7 is in a position eccentric to the opposite side to the pressing member 10 with respect to the rotor 5, the operation is started and the rotor 5 rotates. The vane 8 disposed in the slit 6 advances and retreats depending on the position, and the compression chamber 9 gradually expands on the suction side where the suction hole 23 is disposed, and the working fluid is supplied from the suction hole 23 to the compression chamber 9. The compression chamber 9 is gradually reduced on the discharge side where the discharge hole 24 is disposed, and the working fluid in the compression chamber 9 is discharged from the discharge hole 24 (full flow state). In this case, the first opening 32 of the communication portion 31 opens to the outer space 11, but the second opening 33 (opening) of the communication portion 31 does not open to the compression chamber 9. There is almost no working fluid (for example, oil) discharged from the communicating portion 31 to the outer space 11. Therefore, the working fluid in the compression chamber 9 is not wasted.
 一方、例えば保圧時など、圧縮室9内の圧力が所定以上となって、圧縮室9内の圧力が弾性部材15の弾性力を上回ると、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置から押圧部材10側に移動する。そして、カムリング7の中心位置とロータ5の中心位置とが一致すると、ロータ5が回転しても圧縮室9の大きさが変化しなくなり、圧縮室9内の作動流体が吐出されない状態となる(デッドヘッドの状態)。この場合において、連通部31の第1開口部32および第2開口部33は、それぞれ外側空間11および圧縮室9に開口しているので、圧縮室9内の作動流体が連通部31から外側空間11に排出されやすい。その結果、連通部31から外側空間11に排出された作動流体の分、新しい作動流体が吸入孔23から圧縮室9に供給されるので、圧縮室9が高温となるのが防止される。 On the other hand, when the pressure in the compression chamber 9 becomes equal to or higher than a predetermined value, for example, when the pressure is maintained, and the pressure in the compression chamber 9 exceeds the elastic force of the elastic member 15, the cam ring 7 contacts the rotor 5 with the pressing member 10. It moves from the position eccentric to the opposite side to the pressing member 10 side. When the center position of the cam ring 7 and the center position of the rotor 5 coincide with each other, the size of the compression chamber 9 does not change even when the rotor 5 rotates, and the working fluid in the compression chamber 9 is not discharged ( Dead head condition). In this case, since the first opening 32 and the second opening 33 of the communication part 31 open to the outer space 11 and the compression chamber 9, respectively, the working fluid in the compression chamber 9 flows from the communication part 31 to the outer space. 11 is easy to be discharged. As a result, since the new working fluid is supplied to the compression chamber 9 from the suction hole 23 by the amount of the working fluid discharged from the communication portion 31 to the outer space 11, the compression chamber 9 is prevented from being heated to a high temperature.
 なお、金属部材の加工精度がそれほど高くない可変ベーンポンプでは、カムリングの中心位置とロータの中心位置とが一致して、圧縮室内の作動流体が吐出孔から吐出されない場合であっても、カムリングと端面部材との間の隙間から、圧縮室内の作動流体が外側空間に漏れるため、温度の低い作動流体が圧縮室に供給される。そのため、本発明の連通部31がある場合の方が、圧縮室内が高温となるのをより防止しやすいが、本発明の連通部31がない場合であっても、圧縮室内が高温となりにくい。 In a variable vane pump in which the processing accuracy of the metal member is not so high, even if the center position of the cam ring coincides with the center position of the rotor and the working fluid in the compression chamber is not discharged from the discharge hole, Since the working fluid in the compression chamber leaks into the outer space from the gap between the members, the working fluid having a low temperature is supplied to the compression chamber. Therefore, it is easier to prevent the compression chamber from becoming hot when the communication portion 31 of the present invention is present, but even when the communication portion 31 of the present invention is not present, the compression chamber is less likely to become hot.
 しかし、近年の加工精度の向上により、金属部材の加工精度が高い可変ベーンポンプでは、カムリングと端面部材の間の隙間が十分小さいため、カムリングの中心位置とロータの中心位置とが一致したときに、カムリングと端面部材の間の流路から作動流体がほとんど漏れない。そのため、圧縮室内に作動流体が滞留し、圧縮室が高温となる。したがって、本発明の連通部31を適用することにより、金属部材の加工精度がそれほど高くない可変ベーンポンプに比べて、高い効果を得ることができる。 However, due to the recent improvement in processing accuracy, the variable vane pump with high processing accuracy of the metal member has a sufficiently small gap between the cam ring and the end surface member, so when the center position of the cam ring matches the center position of the rotor, The working fluid hardly leaks from the flow path between the cam ring and the end face member. Therefore, the working fluid stays in the compression chamber, and the compression chamber becomes high temperature. Therefore, by applying the communication portion 31 of the present invention, it is possible to obtain a high effect as compared with a variable vane pump in which the processing accuracy of the metal member is not so high.
<本実施形態にかかる可変ベーンポンプの特徴>
 本実施形態にかかる可変ベーンポンプ1には、以下の特徴がある。
<Characteristics of variable vane pump according to this embodiment>
The variable vane pump 1 according to the present embodiment has the following characteristics.
 本実施形態の可変ベーンポンプ1では、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置から押圧部材10側に移動して、圧縮室9内の作動流体が吐出孔24からほとんど吐出されない状態になったときに、圧縮室9と外側空間11とが連通するので、圧縮室9と外側空間11とが連通しない場合に比べて、圧縮室9内の作動流体が外側空間11に排出されやすい。そのため、温度の低い作動流体が吸入孔23から圧縮室9に多く供給されるようになり、圧縮室9内の温度が低下する。したがって、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置から押圧部材10側に移動したときに、圧縮室9が高温となるのを防止できる。 In the variable vane pump 1 of the present embodiment, the cam ring 7 moves to the pressing member 10 side from the position eccentric to the opposite side of the pressing member 10 with respect to the rotor 5, and the working fluid in the compression chamber 9 is almost discharged from the discharge hole 24. Since the compression chamber 9 and the outer space 11 communicate with each other when no discharge occurs, the working fluid in the compression chamber 9 flows into the outer space 11 as compared with the case where the compression chamber 9 and the outer space 11 do not communicate with each other. Easily discharged. Therefore, a large amount of low-temperature working fluid is supplied to the compression chamber 9 from the suction hole 23, and the temperature in the compression chamber 9 decreases. Therefore, it is possible to prevent the compression chamber 9 from becoming hot when the cam ring 7 moves to the pressing member 10 side from a position eccentric to the rotor 5 on the opposite side to the pressing member 10.
 また、本実施形態の可変ベーンポンプ1では、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置から押圧部材10側に移動するのを利用して、圧縮室9と外側空間11とを連通させているので、圧縮室9と外側空間11とを連通する流路を容易な構成で大きくできる。 Further, in the variable vane pump 1 of the present embodiment, the compression chamber 9 and the outer space 11 are utilized by using the fact that the cam ring 7 moves to the pressing member 10 side from the position eccentric to the opposite side to the pressing member 10 with respect to the rotor 5. Therefore, the flow path connecting the compression chamber 9 and the outer space 11 can be enlarged with an easy configuration.
 また、本実施形態の可変ベーンポンプ1では、連通部31が、第1側板21(端面部材)の両端面のうちカムリング7側の端面に形成された溝であるので、連通部31をより設けやすい。 Moreover, in the variable vane pump 1 of this embodiment, since the communication part 31 is a groove | channel formed in the end surface by the side of the cam ring 7 among the both end surfaces of the 1st side board 21 (end surface member), it is easy to provide the communication part 31. .
 また、本実施形態の可変ベーンポンプ1では、連通部31の第2開口部33(開口部)が、周方向について吸入孔23と離れて配置されるので、吸入孔23から圧縮室9に供給された作動流体がショートカットしてすぐに連通部31から排出されるのを防止できる。 Further, in the variable vane pump 1 of the present embodiment, the second opening 33 (opening) of the communication portion 31 is disposed away from the suction hole 23 in the circumferential direction, and thus is supplied from the suction hole 23 to the compression chamber 9. Therefore, it is possible to prevent the working fluid from being discharged from the communication part 31 immediately after a shortcut.
 また、本実施形態の可変ベーンポンプ1では、連通部31の第2開口部33(開口部)と吸入孔23との間の距離が、全ての圧縮室9の周方向長さよりも長いので、連通部31の第2開口部33と吸入孔23が1つの圧縮室9に同時に開口することがない。したがって、吸入孔23から圧縮室9に供給された作動流体がショートカットしてすぐに連通部31から排出されるのをより確実に防止できる。 Further, in the variable vane pump 1 of the present embodiment, the distance between the second opening 33 (opening) of the communication part 31 and the suction hole 23 is longer than the circumferential length of all the compression chambers 9. The second opening 33 and the suction hole 23 of the part 31 do not open simultaneously into one compression chamber 9. Accordingly, it is possible to more reliably prevent the working fluid supplied from the suction hole 23 to the compression chamber 9 from being discharged from the communication portion 31 immediately after a shortcut.
 また、本実施形態の可変ベーンポンプ1では、連通部31の第2開口部33(開口部)と切欠き27(ノッチ)との間の距離が、全ての圧縮室9の周方向長さよりも長いので、切欠き27から圧縮室9に供給された作動流体がショートカットしてすぐに連通部31から排出されるのを防止できる。 In the variable vane pump 1 of the present embodiment, the distance between the second opening 33 (opening) and the notch 27 (notch) of the communication portion 31 is longer than the circumferential length of all the compression chambers 9. Therefore, it is possible to prevent the working fluid supplied from the notch 27 to the compression chamber 9 from being discharged from the communication portion 31 immediately after a shortcut.
 また、本実施形態の可変ベーンポンプ1では、連通部31の第2開口部33(開口部)が、周方向について吸入孔23と吐出孔24との間にあるので、第2開口部33が周方向について吸入孔23または吐出孔24と同じ位置にある場合に比べて、第2開口部33を設けやすい。 Further, in the variable vane pump 1 of the present embodiment, since the second opening 33 (opening) of the communication part 31 is between the suction hole 23 and the discharge hole 24 in the circumferential direction, the second opening 33 is circumferential. Compared to the case where the suction hole 23 or the discharge hole 24 is located in the same direction, the second opening 33 is easily provided.
 また、本実施形態の可変ベーンポンプ1では、カムリング7が内部に配置されるケーシング2が、押圧部材10側に配置され且つ外側空間11内の作動流体を外部に排出する排出孔14を有するので、連通部31からカムリング7の外側に排出された作動流体を排出する排出孔を新たに設ける必要がない。 In the variable vane pump 1 of the present embodiment, the casing 2 in which the cam ring 7 is disposed has a discharge hole 14 that is disposed on the pressing member 10 side and discharges the working fluid in the outer space 11 to the outside. There is no need to newly provide a discharge hole for discharging the working fluid discharged from the communication portion 31 to the outside of the cam ring 7.
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.
 上述の実施形態では、第1側板21(端面部材)に形成された連通部31によって、圧縮室9と外側空間11とを連通させた場合について説明したが、カムリング7がロータ5に対して押圧部材10と反対側に偏心した位置から押圧部材10側に移動したときに、圧縮室9と外側空間11とが連通するのであれば、連通部は、カムリングに形成されてもよい。例えば、連通部が、カムリングの内周面と外周面を連通する貫通孔、または、カムリングの端面に配置され且つカムリングの内周面と外周面を連通する貫通溝であって、フルフローの状態(図3(a)参照)においては、カムリングの内周面の開口がロータによって塞がれ、デッドヘッドの状態(図3(b)参照)においては、カムリングの内周面の開口が開かれるものであってもよい。 In the above-described embodiment, the case where the compression chamber 9 and the outer space 11 are communicated with each other by the communication portion 31 formed on the first side plate 21 (end surface member) has been described, but the cam ring 7 is pressed against the rotor 5. As long as the compression chamber 9 and the outer space 11 communicate with each other when moving from the position eccentric to the side opposite to the member 10 to the pressing member 10 side, the communicating portion may be formed on the cam ring. For example, the communication portion is a through hole that communicates the inner peripheral surface and the outer peripheral surface of the cam ring, or a through groove that is disposed on the end surface of the cam ring and communicates the inner peripheral surface and the outer peripheral surface of the cam ring, In FIG. 3A, the opening on the inner peripheral surface of the cam ring is closed by the rotor, and in the dead head state (see FIG. 3B), the opening on the inner peripheral surface of the cam ring is opened. It may be.
 また、上述の実施形態では、連通部31が第1側板21(端面部材)に配置される場合において、連通部31の第2開口部33(開口部)が、周方向について吸入孔23の回転方向上流側端部25と、吐出孔24の回転方向下流側端部29との間に配置される場合について説明したが、連通部が押圧部材側にあれば、連通部はどこにあってもよい。したがって、連通部が吐出孔と連通しないのであれば、連通部が周方向について吐出孔と同じ位置にあってもよいし、連通部が吸入孔と連通しないのであれば、連通部が周方向について吸入孔と同じ位置にあってもよい。 In the above-described embodiment, when the communication portion 31 is disposed on the first side plate 21 (end surface member), the second opening 33 (opening portion) of the communication portion 31 rotates the suction hole 23 in the circumferential direction. Although the case where it arrange | positions between the direction upstream edge part 25 and the rotation direction downstream edge part 29 of the discharge hole 24 was demonstrated, as long as a communication part exists in the press member side, a communication part may be anywhere. . Therefore, if the communication portion does not communicate with the discharge hole, the communication portion may be in the same position as the discharge hole in the circumferential direction, and if the communication portion does not communicate with the suction hole, the communication portion is in the circumferential direction. It may be in the same position as the suction hole.
 また、上述の実施形態では、複数のスリット6が周方向に略等間隔に形成されることによって、複数の圧縮室9の周方向長さが全て同じである場合について説明したが、複数のスリット6が周方向に略等間隔に形成されないことによって、複数の圧縮室9の周方向長さが異なってもよい。その場合において、連通部の開口部と吸入孔との間の距離が、全ての圧縮室の周方向長さよりも長いことが好ましく、また、連通部の開口部と切欠きとの間の距離が、全ての圧縮室の周方向長さよりも長いことが好ましい。 Moreover, in the above-described embodiment, the case where the circumferential lengths of the plurality of compression chambers 9 are all the same by forming the plurality of slits 6 at substantially equal intervals in the circumferential direction has been described. The lengths in the circumferential direction of the plurality of compression chambers 9 may be different because 6 is not formed at substantially equal intervals in the circumferential direction. In that case, it is preferable that the distance between the opening of the communication portion and the suction hole is longer than the circumferential length of all the compression chambers, and the distance between the opening of the communication portion and the notch is It is preferable that the length is longer than the circumferential length of all the compression chambers.
 また、上述の実施形態では、ベーン8及び圧縮室9が13個形成される場合について説明したが、ベーン及び圧縮室は複数であればいくつであってもよい。 In the above-described embodiment, the case where 13 vanes 8 and 13 compression chambers are formed has been described, but any number of vanes and compression chambers may be used.
 また、上述の実施形態では、吸入孔23から連通部31の第2開口部33(開口部)側に向かって延在した切欠き27(ノッチ)を有する場合について説明したが、切欠きはなくてもよい。 Moreover, although the above-mentioned embodiment demonstrated the case where it had the notch 27 (notch) extended toward the 2nd opening part 33 (opening part) side of the communication part 31 from the suction hole 23, there is no notch. May be.
 また、上述の実施形態では、連通部31が溝である場合について説明したが、連通部は端面部材に形成された孔であってもよい。 In the above-described embodiment, the communication portion 31 is a groove. However, the communication portion may be a hole formed in the end surface member.
 また、上述の実施形態では、排出孔14がケーシング2の押圧部材収容部13に形成される場合について説明したが、排出孔は、押圧部材側であればケーシングのどこに形成されてもよい。 Moreover, although the above-mentioned embodiment demonstrated the case where the discharge hole 14 was formed in the press member accommodating part 13 of the casing 2, as long as the discharge hole is a press member side, it may be formed anywhere in the casing.
 また、上述の実施形態では、吸入孔23、吐出孔24及び連通部31が、第1側板21(端面部材)に形成される場合について説明したが、吸入孔、吐出孔及び連通部は、カムリング及びロータの両端面に配置される端面部材のどちらに配置されてもよい。したがって、例えば吸入孔、吐出孔及び連通部が、それぞれ第1側板及び第2側板に配置されてもよいし、例えば吸入孔及び吐出孔が第1側板に配置され、連通部が第2側板に配置されてもよい。 In the above-described embodiment, the case where the suction hole 23, the discharge hole 24, and the communication portion 31 are formed in the first side plate 21 (end surface member) has been described. However, the suction hole, the discharge hole, and the communication portion are cam rings. And it may be arranged on either of the end face members arranged on both end faces of the rotor. Therefore, for example, the suction hole, the discharge hole, and the communication portion may be disposed on the first side plate and the second side plate, respectively. For example, the suction hole and the discharge hole are disposed on the first side plate, and the communication portion is provided on the second side plate. It may be arranged.
 本発明を利用すれば、カムリングがロータに対して押圧部材と反対側に偏心した位置から押圧部材側に移動したときに、圧縮室が高温となるのを防止できる。 If the present invention is used, it is possible to prevent the compression chamber from becoming hot when the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member side.
1 可変ベーンポンプ
2 ケーシング
5 ロータ
6 スリット
7 カムリング
8 ベーン
9 圧縮室
10 押圧部材
11 外側空間
14 排出孔
21 第1側板(端面部材)
23 吸入孔
24 吐出孔
27 切欠き
31 連通部
33 第2開口部(開口部)
DESCRIPTION OF SYMBOLS 1 Variable vane pump 2 Casing 5 Rotor 6 Slit 7 Cam ring 8 Vane 9 Compression chamber 10 Pressing member 11 Outer space 14 Discharge hole 21 1st side plate (end surface member)
23 Suction hole 24 Discharge hole 27 Notch 31 Communication part 33 2nd opening part (opening part)

Claims (8)

  1.  環状のカムリングと、
     前記カムリングの内側に配置され、周方向に離れて配置された複数のスリットを外周面に有するロータと、
     前記複数のスリットにそれぞれ進退可能に配置され、前記カムリングの内周面に当接して複数の圧縮室を形成する複数のベーンと、
     前記カムリングの径方向外側に配置され、前記カムリングを押圧する押圧部材と、
     前記カムリングが前記ロータに対して前記押圧部材と反対側に偏心した位置から前記押圧部材側に移動したときに、前記圧縮室と前記カムリングの径方向外側の外側空間とが連通しない状態から前記圧縮室と当該外側空間とが連通した状態に変化するように構成される連通部とを備えることを特徴とする可変ベーンポンプ。
    An annular cam ring;
    A rotor having a plurality of slits arranged on the inner surface of the cam ring and spaced apart in the circumferential direction on the outer peripheral surface;
    A plurality of vanes arranged in the plurality of slits so as to be capable of advancing and retreating, and abutting the inner peripheral surface of the cam ring to form a plurality of compression chambers;
    A pressing member that is disposed radially outside the cam ring and presses the cam ring;
    When the cam ring moves from the position eccentric to the opposite side to the pressing member to the pressing member, the compression chamber and the outer space on the radially outer side of the cam ring do not communicate with each other. A variable vane pump comprising: a communication portion configured to change to a state in which the chamber and the outer space communicate with each other.
  2.  前記カムリング及び前記ロータの端面に配置される端面部材を有しており、
     前記連通部は、
     前記端面部材の前記押圧部材側に配置されるとともに、前記カムリングが前記ロータに対して前記押圧部材と反対側に偏心した位置から前記押圧部材側に移動したときに、前記カムリングに塞がれた状態から前記カムリングに塞がれない状態に変化することにより前記圧縮室と前記外側空間とを連通させることを特徴とする請求項1に記載の可変ベーンポンプ。
    Having an end face member disposed on an end face of the cam ring and the rotor;
    The communication part is
    The cam ring is closed when the cam ring moves to the pressing member side from a position eccentric to the opposite side of the pressing member with respect to the rotor while being arranged on the pressing member side of the end surface member. The variable vane pump according to claim 1, wherein the compression chamber and the outer space are communicated with each other by changing from a state to a state where the cam ring is not blocked.
  3.  前記連通部が、前記端面部材の両端面のうち前記カムリング側の端面に形成された溝であることを特徴とする請求項2に記載の可変ベーンポンプ。 3. The variable vane pump according to claim 2, wherein the communicating portion is a groove formed in an end face on the cam ring side of both end faces of the end face member.
  4.  前記端面部材が、前記圧縮室に作動流体を供給する吸入孔を有しており、
     前記連通部のうち前記圧縮室に連通し得る開口部が、周方向について前記吸入孔と離れて配置されることを特徴とする請求項2または3に記載の可変ベーンポンプ。
    The end face member has a suction hole for supplying a working fluid to the compression chamber;
    4. The variable vane pump according to claim 2, wherein an opening that can communicate with the compression chamber in the communication portion is disposed away from the suction hole in a circumferential direction. 5.
  5.  前記開口部と前記吸入孔との間の距離が、全ての前記圧縮室の周方向長さよりも長いことを特徴とする請求項4に記載の可変ベーンポンプ。 The variable vane pump according to claim 4, wherein a distance between the opening and the suction hole is longer than a circumferential length of all the compression chambers.
  6.  前記端面部材が、前記吸入孔から前記開口部側に向かって延在した切欠きを有しており、
     前記開口部と前記切欠きとの間の距離が、全ての前記圧縮室の周方向長さよりも長いことを特徴とする請求項5に記載の可変ベーンポンプ。
    The end face member has a notch extending from the suction hole toward the opening,
    The variable vane pump according to claim 5, wherein a distance between the opening and the notch is longer than a circumferential length of all the compression chambers.
  7.  前記端面部材が、周方向について前記吸入孔と離れて配置され、前記圧縮室内の作動流体を吐出させる吐出孔を有しており、
     前記開口部が、周方向について前記吸入孔と前記吐出孔との間に配置されることを特徴とする請求項4-6のいずれかに記載の可変ベーンポンプ。
    The end face member is disposed apart from the suction hole in the circumferential direction, and has a discharge hole for discharging the working fluid in the compression chamber;
    The variable vane pump according to claim 4, wherein the opening is disposed between the suction hole and the discharge hole in the circumferential direction.
  8.  前記カムリングが内部に配置されるケーシングが、前記押圧部材側に配置され且つ前記外側空間内の作動流体を外部に排出する排出孔を有することを特徴とする請求項1-7のいずれかに記載の可変ベーンポンプ。 The casing in which the cam ring is disposed has a discharge hole that is disposed on the pressing member side and discharges the working fluid in the outer space to the outside. Variable vane pump.
PCT/JP2015/071533 2014-07-31 2015-07-29 Variable vane pump WO2016017710A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580039690.4A CN106574616B (en) 2014-07-31 2015-07-29 Variable vane pump
KR1020177004063A KR101739721B1 (en) 2014-07-31 2015-07-29 Variable vane pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156373 2014-07-31
JP2014156373A JP5983687B2 (en) 2014-07-31 2014-07-31 Variable vane pump

Publications (1)

Publication Number Publication Date
WO2016017710A1 true WO2016017710A1 (en) 2016-02-04

Family

ID=55217607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071533 WO2016017710A1 (en) 2014-07-31 2015-07-29 Variable vane pump

Country Status (4)

Country Link
JP (1) JP5983687B2 (en)
KR (1) KR101739721B1 (en)
CN (1) CN106574616B (en)
WO (1) WO2016017710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051905A1 (en) * 2016-09-16 2018-03-22 Kyb株式会社 Variable-capacity vane pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220138747A (en) 2021-04-06 2022-10-13 주식회사 하이드텍 Variable capacity vane pump for hydraulic unit of machine tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032580U (en) * 1983-08-09 1985-03-05 日産自動車株式会社 Variable displacement vane pump
JPH0544657A (en) * 1991-08-20 1993-02-23 Sanwa Seiki Co Ltd Control of displacement volume of vane pump
JP2000120560A (en) * 1998-10-13 2000-04-25 Kayaba Ind Co Ltd Vane pump
JP2007321599A (en) * 2006-05-30 2007-12-13 Showa Corp Variable displacement pump
JP2013024224A (en) * 2011-07-26 2013-02-04 Hitachi Automotive Systems Ltd Variable displacement pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861638B2 (en) * 2001-08-31 2006-12-20 ユニシア ジェーケーシー ステアリングシステム株式会社 Variable displacement pump
JP2007315349A (en) 2006-05-29 2007-12-06 Nachi Fujikoshi Corp Variable vane pump with monitoring switch mechanism
JP4969419B2 (en) * 2007-11-14 2012-07-04 日立オートモティブシステムズ株式会社 Variable displacement vane pump
EP2613106B1 (en) 2010-08-30 2015-09-23 Mitsubishi Electric Corporation Heat pump device, heat pump system and three-phase inverter control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032580U (en) * 1983-08-09 1985-03-05 日産自動車株式会社 Variable displacement vane pump
JPH0544657A (en) * 1991-08-20 1993-02-23 Sanwa Seiki Co Ltd Control of displacement volume of vane pump
JP2000120560A (en) * 1998-10-13 2000-04-25 Kayaba Ind Co Ltd Vane pump
JP2007321599A (en) * 2006-05-30 2007-12-13 Showa Corp Variable displacement pump
JP2013024224A (en) * 2011-07-26 2013-02-04 Hitachi Automotive Systems Ltd Variable displacement pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051905A1 (en) * 2016-09-16 2018-03-22 Kyb株式会社 Variable-capacity vane pump

Also Published As

Publication number Publication date
CN106574616A (en) 2017-04-19
JP2016033349A (en) 2016-03-10
CN106574616B (en) 2018-11-16
KR20170020934A (en) 2017-02-24
JP5983687B2 (en) 2016-09-06
KR101739721B1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
US9062674B2 (en) Vane pump including outer side plate defining high and low pressure notch grooves of differing lengths adjacent the high and low discharge ports for improved noise performance
JP5938054B2 (en) Compressor
WO2016017710A1 (en) Variable vane pump
US9879670B2 (en) Variable displacement vane pump
US20160003241A1 (en) Vane pump
EP2963297B1 (en) Vane pump
JP6071121B2 (en) Variable displacement vane pump
US20180306184A1 (en) Vane pump
CN104279158A (en) Impeller pump
JP5865631B2 (en) Vane pump
JP6625607B2 (en) Rotary piston and cylinder device
JP6156158B2 (en) Vane type compressor
WO2017056850A1 (en) Vane pump
JP5597530B2 (en) Vane pump
JP2018035774A (en) Vane pump
JP7153534B2 (en) vane pump
EP3056662B1 (en) Vane cell machine
JP6631137B2 (en) hydraulic unit
JP2020033948A (en) Vane type compressor
JP2016223394A (en) Vane pump
JP2009138672A (en) Vane pump
JP2005273545A (en) Vane pump
JP2010229863A (en) Variable displacement pump
JP2014163294A (en) Vane pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177004063

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15828056

Country of ref document: EP

Kind code of ref document: A1