WO2017056850A1 - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
WO2017056850A1
WO2017056850A1 PCT/JP2016/075860 JP2016075860W WO2017056850A1 WO 2017056850 A1 WO2017056850 A1 WO 2017056850A1 JP 2016075860 W JP2016075860 W JP 2016075860W WO 2017056850 A1 WO2017056850 A1 WO 2017056850A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
vanes
pump
rotor
vane pump
Prior art date
Application number
PCT/JP2016/075860
Other languages
French (fr)
Japanese (ja)
Inventor
義之 牧
藤田 朋之
智行 中川
杉原 雅道
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to EP16851026.1A priority Critical patent/EP3358187A1/en
Priority to US15/763,833 priority patent/US20180306182A1/en
Priority to MX2018003766A priority patent/MX2018003766A/en
Priority to CN201680054620.0A priority patent/CN108026921A/en
Publication of WO2017056850A1 publication Critical patent/WO2017056850A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0881Construction of vanes or vane holders the vanes consisting of two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0808Carbon, e.g. graphite

Definitions

  • the present invention relates to a vane pump.
  • JP 1999-230057A includes a rotor housed in a housing and driven to rotate, a vane that slides in the slit of the rotor, a cam ring that is outside the vane and forms a pump chamber with the rotor, the vane, and the like. , A vane pump is disclosed.
  • the vane pump under low temperature condition Since the hydraulic oil under low temperature condition has high viscosity and high viscosity resistance, in the vane pump under low temperature condition, the sliding of the vane is hindered by the viscous resistance of the hydraulic oil. For this reason, at the time of starting the vane pump under a low temperature condition, the pump chamber is not easily divided by the vane. Thus, the startability of the vane pump is reduced under low temperature conditions.
  • the present invention aims to improve the startability of the vane pump.
  • the vane pump is configured to be slidable in each of the plurality of slits, the rotor connected to the drive shaft, the plurality of slits formed radially around the outer periphery of the rotor.
  • the plurality of vanes includes a plurality of first vanes formed by subjecting the base material to DLC coating and a second vane formed by exposing the base material, and at least two of the plurality of slits A first vane is inserted into each adjacent slit.
  • FIG. 1 is a front view of a vane pump according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the vane pump according to the first embodiment of the present invention.
  • FIG. 3 is a front view of the vane pump according to the second embodiment of the present invention.
  • FIG. 4 is a front view of the vane pump according to the third embodiment of the present invention.
  • the vane pump 100 is used as a fluid pressure supply source for a fluid pressure device mounted on a vehicle, for example, a power steering device or a continuously variable transmission.
  • a fixed displacement vane pump 100 using hydraulic oil as a working fluid will be described.
  • the vane pump 100 may be a variable displacement vane pump.
  • the vane pump 100 is configured such that the power of an engine (not shown) is transmitted to the end of the drive shaft 1 and the rotor 2 connected to the drive shaft 1 rotates.
  • the rotor 2 rotates clockwise in FIG.
  • the vane pump 100 includes a plurality of vanes 3 provided so as to be capable of reciprocating in the radial direction with respect to the rotor 2, and the rotor 2 accommodates the rotor 2 and rotates the rotor 2.
  • a cam ring 4 having a cam surface 4a which is an inner peripheral surface on which the tip slides, a pump body 10 having an accommodating recess 10a for accommodating the cam ring 4, and a pump cover 11 fastened to the pump body 10 and sealing the accommodating recess 10a. And comprising.
  • the drive shaft 1 is rotatably supported by the pump body 10.
  • the rotor 2 is formed with slits 7 opening in the outer peripheral surface in a radial pattern at predetermined intervals.
  • the vane 3 is inserted into the slit 7 so as to be able to reciprocate.
  • a back pressure chamber 8 into which discharge pressure is guided is defined by the base end portion of the vane 3.
  • Adjacent back pressure chambers 8 communicate with each other by a back pressure groove 8 a (see FIG. 2) formed in the pump cover 11.
  • vanes 3 are provided in the vane pump 100.
  • the vane 3 is pressed in the direction of coming out of the slit 7 by the pressure of the hydraulic oil guided to the back pressure chamber 8, and the tip portion comes into contact with the cam surface 4 a of the cam ring 4.
  • a plurality of pump chambers 6 are defined within the cam ring 4 by the outer peripheral surface of the rotor 2, the cam surface 4 a of the cam ring, and the adjacent vanes 3.
  • the configuration of the vane 3 will be described in detail later.
  • the cam ring 4 is an annular member whose inner peripheral cam surface 4a has a substantially oval shape.
  • the cam ring 4 includes a suction region 4b that expands the volume of the pump chamber 6 defined by the vanes 3 that slide on the cam surface 4a as the rotor 2 rotates, and a discharge region 4c that contracts the volume of the pump chamber 6. Have. Thus, each pump chamber 6 expands and contracts as the rotor 2 rotates.
  • the cam ring 4 has two suction areas 4b and two discharge areas 4c.
  • the pump cover 11 is disposed in contact with one side of the rotor 2 and the cam ring 4 (upper side in FIG. 2), and the side plate 5 is in contact with the other side (lower side in FIG. 2). Arranged in contact.
  • the pump cover 11 and the side plate 5 are disposed with both side surfaces of the rotor 2 and the cam ring 4 sandwiched therebetween, and seal the pump chamber 6.
  • the side plate 5 is formed with two arc-shaped discharge ports 20 that open corresponding to the discharge region 4 c of the cam ring 4.
  • a high-pressure chamber 21 into which hydraulic oil discharged from the pump chamber 6 in the discharge region 4c is guided is formed.
  • the hydraulic oil discharged from the pump chamber 6 is guided to the high pressure chamber 21 through the discharge port 20 of the side plate 5.
  • the hydraulic oil guided to the high pressure chamber 21 is supplied to an external hydraulic device through a discharge passage (not shown) formed in the pump body 10 and communicating with the high pressure chamber 21.
  • each back pressure port 22 communicates with the back pressure chamber 8.
  • the hydraulic oil in the high pressure chamber 21 is guided to the back pressure chamber 8 through the back pressure port 22.
  • the vane pump 100 As the rotor 2 rotates, the vane pump 100 sucks hydraulic oil from the tank through the suction port and the suction passage into each pump chamber 6 in the suction region 4b of the cam ring 4 and from each pump chamber 6 in the discharge region 4c of the cam ring 4. The hydraulic oil is discharged to the outside through the discharge port 20 and the discharge passage. In this way, the vane pump 100 supplies and discharges hydraulic oil by the expansion and contraction of each pump chamber 6 accompanying the rotation of the rotor 2.
  • the plurality of vanes 3 includes a first vane 3a formed by applying a DLC (DiamondmLike Carbon) coating to a base material, and a second vane 3b formed by exposing the base material.
  • the exposure of the base material means that the DLC coating is not applied over the entire vane 3 and the surface of the vane 3 remains the surface of the base material.
  • the plurality of vanes 3 have two first vanes 3a that are respectively inserted into the slits 7 adjacent to each other. Since the 1st vane 3a to which DLC coating was given is excellent in slidability, it is hard to be influenced by the viscous resistance of hydraulic fluid. For this reason, the first vane 3a easily protrudes from the slit 7 by the rotation of the rotor 2 even under a low temperature condition where the viscosity of the hydraulic oil is large and the viscosity resistance is large. Thereby, one pump chamber (hereinafter referred to as “initial pump chamber 6a”) is partitioned by the adjacent first vanes 3a, and the startability of the vane pump 100 under a low temperature condition is improved.
  • initial pump chamber 6a one pump chamber
  • the initial pump chamber 6 a is partitioned by the two adjacent first vanes 3 a, a part of the hydraulic oil discharged from the initial pump chamber 6 a is passed through the high pressure chamber 21 and the back pressure port 22 to the back pressure chamber. 8 leads.
  • the second vane 3 b not subjected to DLC coating is also pressed in the direction of exiting from the slit 7 by the pressure of the back pressure chamber 8 and protrudes from the slit 7 to partition the pump chamber 6.
  • the first vane 3a is excellent in slidability, a high cost is required for manufacturing because the DLC coating is applied to the base material. For this reason, if all of the plurality of vanes 3 are formed as the first vane 3a in order to improve the startability of the vane pump 100, the manufacturing cost of the vane pump 100 increases.
  • the other ten vanes 3 except for the two first vanes 3a are all formed as the second vane 3b.
  • the initial pump chamber 6a is partitioned by the first vane 3a at the time of starting, and the hydraulic oil discharged from the initial pump chamber 6a is guided to each back pressure chamber 8. Protrusion of the second vane 3b from the slit 7 is prompted. Thereby, the startability of the vane pump 100 is sufficiently improved. Therefore, by forming only two adjacent ones of the 12 vanes 3 as the first vanes 3a, the startability of the vane pump 100 under a low temperature condition is improved and an increase in the manufacturing cost of the vane pump 100 is suppressed. be able to.
  • the first vane 3a is improved in wear resistance by being DLC coated. Therefore, durability of the vane pump 100 is also improved.
  • the vane pump 100 has two suction areas 4b and two discharge areas 4c.
  • the vane pump 100 may have one or three or more suction regions 4b and one or three or more discharge regions 4c.
  • the first vane 3a since the sliding resistance of the first vane 3a to which the DLC coating is applied is small, the first vane 3a easily protrudes from the slit 7 due to the centrifugal force accompanying the rotation of the rotor 2 even under a low temperature condition. For this reason, when the vane pump 100 is started, the initial pump chamber 6a is easily formed by the adjacent first vanes 3a. Therefore, the startability of the vane pump 100 can be improved.
  • the initial pump chamber 6a is partitioned by the two adjacent first vanes 3a, so that the hydraulic oil is guided to the back pressure chamber 8 through the high pressure chamber 21 and the back pressure port 22, and the second vane. 3 b also protrudes from the slit 7 to define the pump chamber 6.
  • the initial pump chamber 6a by dividing the initial pump chamber 6a by the two first vanes 3a, it is possible to promote the protrusion of the second vane 3b from the slit 7, and further improve the startability under a low temperature condition. be able to.
  • the initial pump chamber 6a is partitioned by the first vane 3a at the time of start-up, and the hydraulic oil is guided to each back pressure chamber 8, and the slit 7 Protrusion of the second vane 3b from is promoted. Therefore, by forming only two adjacent ones of the 12 vanes 3 as the first vanes 3a, the startability of the vane pump 100 under a low temperature condition is improved and an increase in the manufacturing cost of the vane pump 100 is suppressed. be able to.
  • first vanes 3a two adjacent first vanes 3a are provided, and all the vanes 3 except for the first vanes 3a are formed as second vanes 3b.
  • the vane pump 200 is different from the first embodiment in that three first vanes 3a are provided.
  • the vane pump 200 has three first vanes 3a and nine second vanes 3b.
  • the three first vanes 3a are arranged side by side, and partition the two initial pump chambers 6a between them.
  • the vane pump 200 like the vane pump 100, since the sliding resistance of the first vane 3a to which the DLC coating is applied is small, the first vane 3a is caused by the centrifugal force accompanying the rotation of the rotor 2 even under a low temperature condition. It tends to protrude from the slit 7. For this reason, when the vane pump 200 is started, the initial pump chamber 6a is easily formed by the three consecutive first vanes 3a. Therefore, the startability of the vane pump 200 can be improved.
  • the initial pump chamber 6 a is partitioned by two adjacent first vanes 3 a, so that hydraulic oil is supplied to the back pressure chamber 8 through the high pressure chamber 21 and the back pressure port 22.
  • the second vane 3b also protrudes from the slit 7 to partition the pump chamber.
  • the first vane 3a easily protrudes from the slit 7 even at the start, and the protruding first vane 3a is pushed into the slit 7 when entering the discharge region 4c.
  • the hydraulic oil in the back pressure chamber 8 defined by the first vane 3a is guided to the back pressure chamber 8 in the adjacent suction region 4b through the back pressure groove 8a.
  • the protrusion of the vane 3 in the suction area 4b can be further promoted.
  • the vane pump 200 since the two initial pump chambers 6a are partitioned, it is possible to increase the flow rate of the hydraulic oil guided to the back pressure chamber 8 at the time of starting. Therefore, the 2nd vane 3b can be more reliably protruded from the slit 7, and the startability of the vane pump 200 can be improved more.
  • two initial pump chambers 6a are partitioned by three first vanes 3a arranged in succession.
  • the vane pump 300 is different from the second embodiment in that the two initial pump chambers 6a are partitioned by the four first vanes 3a.
  • the vane 3 has four first vanes 3a and eight second vanes 3b.
  • the four first vanes 3a are arranged such that a pair of adjacent first vanes 3a face each other across the center of the rotor 2. That is, one initial pump chamber 6a is defined by two adjacent first vanes 3a, and two initial pump chambers 6a facing each other across the center of the rotor 2 are defined by four first vanes 3a. .
  • the vane pump 300 particularly when the central axis of the rotor 2 is provided so as to be inclined from the vertical direction, a part of the vanes 3 is moved downward in the vertical direction due to the influence of gravity and is in contact with the cam surface 4a. (The state in which the vane 3 protrudes from the slit 7) may be maintained even when the operation is stopped.
  • two initial pump chambers 6a facing each other across the center of the rotor 2 are partitioned, so that the vane pump 300 protrudes from the slit 7 when stopped compared to the vane pumps 100 and 200 according to the first and second embodiments.
  • the first vane 3a is likely to be arranged at a position (particularly in the vertical direction below) that results in the above state. Therefore, in the vane pump 300, the initial pump chamber 6a is easily partitioned from the stop time, and the startability can be further improved.
  • the vane pumps 100, 200, and 300 are slidably inserted into the rotor 2 connected to the drive shaft 1, the plurality of slits 7 that are radially formed in the outer periphery of the rotor 2, and the plurality of slits 7.
  • a plurality of vanes 3 having a plurality of first vanes 3a formed by applying a DLC coating to the base material, and second vanes 3b formed by exposing the base material.
  • the first vane 3 a is inserted into at least two adjacent slits 7 among the plurality of slits 7.
  • the vane pumps 100, 200, and 300 further include a back pressure chamber 8 that is partitioned in the slit 7 by the base end portion of the vane 3 and into which hydraulic oil discharged from the pump chamber 6 is guided.
  • the plurality of vanes 3 have two first vanes 3a.
  • the vane pump 200 has three first vanes 3a, and the three first vanes 3a are arranged side by side.
  • the vane pump 300 includes four first vanes 3 a, and the four first vanes 3 a are arranged such that a pair of adjacent first vanes 3 a sandwich the center of the rotor 2.
  • the first vane 3a is located below the rotor 2 in the vertical direction even when the vane pump 300 is stopped. It becomes easy to partition the initial pump chamber 6a. Therefore, the startability of the vane pump 300 can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A vane pump (100) is provided with: a rotor (2) connected to a drive shaft (1); a plurality of radially formed slits (7) open to the outer periphery of the rotor (2); a plurality of vanes (3) respectively inserted in a slidable manner into the plurality of slits (7); a cam ring (4) having a cam surface (4a) on which the front ends of the vanes (3) slide as the rotor (2) rotates; and pump chambers (6) each defined by the rotor (2), the cam ring (4), and a pair of adjacent vanes (3). The plurality of vanes (3) comprise: a plurality of first vanes (3a) formed by applying a DLC coating to a base material; and second vanes (3b) formed such that the base material thereof is exposed. Two first vanes (3a) are inserted in the slits (7) so as to be adjacent to each other.

Description

ベーンポンプVane pump
 本発明は、ベーンポンプに関するものである。 The present invention relates to a vane pump.
 JP1999-230057Aには、ハウジング内に収納されて回転駆動されるロータと、ロータのスリット内で摺動運動をするベーンと、ベーンの外側にあってロータ、ベーン等とポンプ室を形成するカムリングと、を備えるベーンポンプが開示されている。 JP 1999-230057A includes a rotor housed in a housing and driven to rotate, a vane that slides in the slit of the rotor, a cam ring that is outside the vane and forms a pump chamber with the rotor, the vane, and the like. , A vane pump is disclosed.
 低温状況下の作動油は粘度が高く粘性抵抗が大きいため、低温状況下にあるベーンポンプでは、作動油の粘性抵抗によってベーンの摺動が妨げられる。このため、低温状況下のベーンポンプの始動時では、ベーンによってポンプ室が区画されにくい。このように、低温状況下では、ベーンポンプの始動性が低下する。 Since the hydraulic oil under low temperature condition has high viscosity and high viscosity resistance, in the vane pump under low temperature condition, the sliding of the vane is hindered by the viscous resistance of the hydraulic oil. For this reason, at the time of starting the vane pump under a low temperature condition, the pump chamber is not easily divided by the vane. Thus, the startability of the vane pump is reduced under low temperature conditions.
 本発明は、ベーンポンプの始動性を向上させることを目的とする。 The present invention aims to improve the startability of the vane pump.
 本発明のある態様によれば、ベーンポンプであって、駆動軸に連結されたロータと、ロータの外周に開口して放射状に形成される複数のスリットと、複数のスリットのそれぞれに摺動可能に挿入される複数のベーンと、ロータの回転に伴ってベーンの先端が摺動する内周面を有するカムリングと、ロータとカムリングと一対の隣り合うベーンとによって区画されるポンプ室と、を備え、複数のベーンは、母材にDLCコーティングが施されて形成される複数の第1ベーンと、母材が露出して形成される第2ベーンと、を有し、複数のスリットのうち少なくとも2つの隣り合うスリットには、それぞれ第1ベーンが挿入される。 According to an aspect of the present invention, the vane pump is configured to be slidable in each of the plurality of slits, the rotor connected to the drive shaft, the plurality of slits formed radially around the outer periphery of the rotor. A plurality of vanes to be inserted, a cam ring having an inner peripheral surface on which a tip of the vane slides as the rotor rotates, and a pump chamber defined by the rotor, the cam ring, and a pair of adjacent vanes, The plurality of vanes includes a plurality of first vanes formed by subjecting the base material to DLC coating and a second vane formed by exposing the base material, and at least two of the plurality of slits A first vane is inserted into each adjacent slit.
図1は、本発明の第1実施形態に係るベーンポンプの正面図である。FIG. 1 is a front view of a vane pump according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係るベーンポンプの断面図である。FIG. 2 is a cross-sectional view of the vane pump according to the first embodiment of the present invention. 図3は、本発明の第2実施形態に係るベーンポンプの正面図である。FIG. 3 is a front view of the vane pump according to the second embodiment of the present invention. 図4は、本発明の第3実施形態に係るベーンポンプの正面図である。FIG. 4 is a front view of the vane pump according to the third embodiment of the present invention.
 (第1実施形態)
 まず、図1及び図2を参照して、本発明の第1実施形態に係るベーンポンプ100の全体構成について説明する。
(First embodiment)
First, with reference to FIG.1 and FIG.2, the whole structure of the vane pump 100 which concerns on 1st Embodiment of this invention is demonstrated.
 ベーンポンプ100は、車両に搭載される流体圧機器、例えば、パワーステアリング装置や無段変速機等の流体圧供給源として用いられる。本実施形態では、作動油を作動流体とする固定容量型のベーンポンプ100について説明する。なお、ベーンポンプ100は、可変容量型のベーンポンプであってもよい。 The vane pump 100 is used as a fluid pressure supply source for a fluid pressure device mounted on a vehicle, for example, a power steering device or a continuously variable transmission. In the present embodiment, a fixed displacement vane pump 100 using hydraulic oil as a working fluid will be described. The vane pump 100 may be a variable displacement vane pump.
 ベーンポンプ100は、駆動軸1の端部にエンジン(図示省略)の動力が伝達され、駆動軸1に連結されたロータ2が回転するものである。ロータ2は、図1において時計回りに回転する。 The vane pump 100 is configured such that the power of an engine (not shown) is transmitted to the end of the drive shaft 1 and the rotor 2 connected to the drive shaft 1 rotates. The rotor 2 rotates clockwise in FIG.
 図1及び図2に示すように、ベーンポンプ100は、ロータ2に対して径方向に往復動可能に設けられる複数のベーン3と、ロータ2を収容すると共にロータ2の回転に伴ってベーン3の先端が摺動する内周面であるカム面4aを有するカムリング4と、カムリング4を収容する収容凹部10aを有するポンプボディ10と、ポンプボディ10に締結され収容凹部10aを封止するポンプカバー11と、を備える。駆動軸1は、図2に示すように、ポンプボディ10に回転自在に支持される。 As shown in FIG. 1 and FIG. 2, the vane pump 100 includes a plurality of vanes 3 provided so as to be capable of reciprocating in the radial direction with respect to the rotor 2, and the rotor 2 accommodates the rotor 2 and rotates the rotor 2. A cam ring 4 having a cam surface 4a which is an inner peripheral surface on which the tip slides, a pump body 10 having an accommodating recess 10a for accommodating the cam ring 4, and a pump cover 11 fastened to the pump body 10 and sealing the accommodating recess 10a. And comprising. As shown in FIG. 2, the drive shaft 1 is rotatably supported by the pump body 10.
 図1に示すように、ロータ2には、外周面に開口するスリット7が所定間隔をおいて放射状に形成される。スリット7には、ベーン3が往復動可能に挿入される。スリット7内には、吐出圧が導かれる背圧室8がベーン3の基端部によって区画される。また、隣り合う背圧室8は、ポンプカバー11に形成される背圧溝8a(図2参照)によって互いに連通される。 As shown in FIG. 1, the rotor 2 is formed with slits 7 opening in the outer peripheral surface in a radial pattern at predetermined intervals. The vane 3 is inserted into the slit 7 so as to be able to reciprocate. In the slit 7, a back pressure chamber 8 into which discharge pressure is guided is defined by the base end portion of the vane 3. Adjacent back pressure chambers 8 communicate with each other by a back pressure groove 8 a (see FIG. 2) formed in the pump cover 11.
 ベーンポンプ100では、12枚のベーン3が設けられる。ベーン3は、背圧室8に導かれる作動油の圧力によって、スリット7から抜け出る方向に押圧され、先端部がカムリング4のカム面4aに当接する。これにより、カムリング4の内部には、ロータ2の外周面、カムリングのカム面4a、及び隣り合うベーン3によって複数のポンプ室6が区画される。ベーン3の構成については、後に詳細に説明する。 In the vane pump 100, 12 vanes 3 are provided. The vane 3 is pressed in the direction of coming out of the slit 7 by the pressure of the hydraulic oil guided to the back pressure chamber 8, and the tip portion comes into contact with the cam surface 4 a of the cam ring 4. As a result, a plurality of pump chambers 6 are defined within the cam ring 4 by the outer peripheral surface of the rotor 2, the cam surface 4 a of the cam ring, and the adjacent vanes 3. The configuration of the vane 3 will be described in detail later.
 カムリング4は、内周のカム面4aが略長円形状をした環状の部材である。カムリング4は、ロータ2の回転に伴ってカム面4aを摺動する各ベーン3によって区画されるポンプ室6の容積を拡張する吸込領域4bと、ポンプ室6の容積を収縮する吐出領域4cと、を有する。このように、各ポンプ室6は、ロータ2の回転に伴って拡縮する。本実施形態では、カムリング4は、2つの吸込領域4b及び2つの吐出領域4cを有する。 The cam ring 4 is an annular member whose inner peripheral cam surface 4a has a substantially oval shape. The cam ring 4 includes a suction region 4b that expands the volume of the pump chamber 6 defined by the vanes 3 that slide on the cam surface 4a as the rotor 2 rotates, and a discharge region 4c that contracts the volume of the pump chamber 6. Have. Thus, each pump chamber 6 expands and contracts as the rotor 2 rotates. In the present embodiment, the cam ring 4 has two suction areas 4b and two discharge areas 4c.
 図2に示すように、ロータ2及びカムリング4の一側面(図2では上側面)にはポンプカバー11が当接して配置され、他側面(図2では下側面)にはサイドプレート5が当接して配置される。ポンプカバー11とサイドプレート5は、ロータ2及びカムリング4の両側面を挟んだ状態で配置され、ポンプ室6を密閉する。 As shown in FIG. 2, the pump cover 11 is disposed in contact with one side of the rotor 2 and the cam ring 4 (upper side in FIG. 2), and the side plate 5 is in contact with the other side (lower side in FIG. 2). Arranged in contact. The pump cover 11 and the side plate 5 are disposed with both side surfaces of the rotor 2 and the cam ring 4 sandwiched therebetween, and seal the pump chamber 6.
 ロータ2が摺動するポンプカバー11の端面11aには、カムリング4の2つの吸込領域4b(図1参照)に対応して開口し、ポンプ室6に作動油を導く円弧状の2つの吸込ポート(図示省略)が形成される。また、ポンプカバー11には、タンク(図示省略)と吸込ポートとを連通し、吸込ポートを通じてタンクの作動油をポンプ室6へと導く吸込通路(図示省略)が形成される。 Two end ports 11a of the pump cover 11 on which the rotor 2 slides open corresponding to the two suction regions 4b (see FIG. 1) of the cam ring 4, and have two arc-shaped suction ports that guide the hydraulic oil to the pump chamber 6. (Not shown) is formed. Further, the pump cover 11 is formed with a suction passage (not shown) that communicates a tank (not shown) with a suction port and guides the hydraulic fluid of the tank to the pump chamber 6 through the suction port.
 サイドプレート5には、カムリング4の吐出領域4cに対応して開口する円弧状の2つの吐出ポート20が貫通して形成される。 The side plate 5 is formed with two arc-shaped discharge ports 20 that open corresponding to the discharge region 4 c of the cam ring 4.
 ポンプボディ10には、吐出領域4cにあるポンプ室6から吐出される作動油が導かれる高圧室21が形成される。ポンプ室6から吐出される作動油は、サイドプレート5の吐出ポート20を通じて高圧室21に導かれる。高圧室21に導かれた作動油は、ポンプボディ10に形成され高圧室21に連通する吐出通路(図示省略)を通じて外部の油圧機器へと供給される。 In the pump body 10, a high-pressure chamber 21 into which hydraulic oil discharged from the pump chamber 6 in the discharge region 4c is guided is formed. The hydraulic oil discharged from the pump chamber 6 is guided to the high pressure chamber 21 through the discharge port 20 of the side plate 5. The hydraulic oil guided to the high pressure chamber 21 is supplied to an external hydraulic device through a discharge passage (not shown) formed in the pump body 10 and communicating with the high pressure chamber 21.
 サイドプレート5には、高圧室21に連通する円弧状の2つの背圧ポート22が形成される。各背圧ポート22は、背圧室8に連通する。これにより、高圧室21の作動油が背圧ポート22を通じて背圧室8に導かれる。 In the side plate 5, two arc-shaped back pressure ports 22 communicating with the high pressure chamber 21 are formed. Each back pressure port 22 communicates with the back pressure chamber 8. As a result, the hydraulic oil in the high pressure chamber 21 is guided to the back pressure chamber 8 through the back pressure port 22.
 ベーンポンプ100は、ロータ2の回転に伴って、カムリング4の吸込領域4bにおける各ポンプ室6に吸込ポート及び吸込通路を通じてタンクから作動油を吸込むと共に、カムリング4の吐出領域4cにおける各ポンプ室6から吐出ポート20及び吐出通路を通じて作動油を外部へ吐出する。このように、ベーンポンプ100は、ロータ2の回転に伴う各ポンプ室6の拡縮によって作動油を給排する。 As the rotor 2 rotates, the vane pump 100 sucks hydraulic oil from the tank through the suction port and the suction passage into each pump chamber 6 in the suction region 4b of the cam ring 4 and from each pump chamber 6 in the discharge region 4c of the cam ring 4. The hydraulic oil is discharged to the outside through the discharge port 20 and the discharge passage. In this way, the vane pump 100 supplies and discharges hydraulic oil by the expansion and contraction of each pump chamber 6 accompanying the rotation of the rotor 2.
 次に、ベーン3の構成について具体的に説明する。 Next, the configuration of the vane 3 will be specifically described.
 複数のベーン3は、図1に示すように、母材にDLC(Diamond Like Carbon)コーティングが施されて形成される第1ベーン3aと、母材が露出して形成される第2ベーン3bと、を有する。なお、母材が露出するとは、ベーン3の全体にわたってDLCコーティングが施されず、ベーン3の表面が母材の表面のままであることをいう。 As shown in FIG. 1, the plurality of vanes 3 includes a first vane 3a formed by applying a DLC (DiamondmLike Carbon) coating to a base material, and a second vane 3b formed by exposing the base material. Have. The exposure of the base material means that the DLC coating is not applied over the entire vane 3 and the surface of the vane 3 remains the surface of the base material.
 複数のベーン3は、互いに隣り合うスリット7にそれぞれ挿入される2枚の第1ベーン3aを有する。DLCコーティングが施された第1ベーン3aは、摺動性に優れるため、作動油の粘性抵抗の影響を受けにくい。このため、第1ベーン3aは、作動油の粘性が大きく粘性抵抗が大きい低温状況下においても、ロータ2の回転により容易にスリット7から突出する。これにより、隣り合う第1ベーン3aによって1つのポンプ室(以下、「初期ポンプ室6a」と称する。)が区画され、低温状況下におけるベーンポンプ100の始動性が向上する。 The plurality of vanes 3 have two first vanes 3a that are respectively inserted into the slits 7 adjacent to each other. Since the 1st vane 3a to which DLC coating was given is excellent in slidability, it is hard to be influenced by the viscous resistance of hydraulic fluid. For this reason, the first vane 3a easily protrudes from the slit 7 by the rotation of the rotor 2 even under a low temperature condition where the viscosity of the hydraulic oil is large and the viscosity resistance is large. Thereby, one pump chamber (hereinafter referred to as “initial pump chamber 6a”) is partitioned by the adjacent first vanes 3a, and the startability of the vane pump 100 under a low temperature condition is improved.
 また、隣り合う2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、初期ポンプ室6aから吐出される作動油の一部が、高圧室21及び背圧ポート22を通じて背圧室8に導かれる。これにより、DLCコーティングが施されない第2ベーン3bも背圧室8の圧力によってスリット7から抜け出る方向に押圧され、スリット7から突出してポンプ室6を区画する。このように、2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、スリット7からの他のベーン3(第2ベーン3b)の突出を促すことができ、低温状況下での始動性をさらに向上させることができる。 Further, since the initial pump chamber 6 a is partitioned by the two adjacent first vanes 3 a, a part of the hydraulic oil discharged from the initial pump chamber 6 a is passed through the high pressure chamber 21 and the back pressure port 22 to the back pressure chamber. 8 leads. As a result, the second vane 3 b not subjected to DLC coating is also pressed in the direction of exiting from the slit 7 by the pressure of the back pressure chamber 8 and protrudes from the slit 7 to partition the pump chamber 6. Thus, by dividing the initial pump chamber 6a by the two first vanes 3a, it is possible to prompt the other vanes 3 (second vanes 3b) to protrude from the slits 7 under low temperature conditions. The startability can be further improved.
 ここで、第1ベーン3aは、摺動性に優れる一方で、母材にDLCコーティングを施すため、製造に高いコストを要する。このため、ベーンポンプ100の始動性を向上させるために複数のベーン3の全てを第1ベーン3aとして形成すると、ベーンポンプ100の製造コストが増加する。 Here, while the first vane 3a is excellent in slidability, a high cost is required for manufacturing because the DLC coating is applied to the base material. For this reason, if all of the plurality of vanes 3 are formed as the first vane 3a in order to improve the startability of the vane pump 100, the manufacturing cost of the vane pump 100 increases.
 これに対し、ベーンポンプ100では、2枚の第1ベーン3aを除いたその他の10枚のベーン3は、全て第2ベーン3bとして形成される。隣り合う2枚の第1ベーン3aのみであっても、始動時には第1ベーン3aによって初期ポンプ室6aが区画され、初期ポンプ室6aから吐出される作動油が各背圧室8に導かれて、スリット7からの第2ベーン3bの突出が促される。これにより、ベーンポンプ100の始動性は、充分に向上する。したがって、12枚のベーン3のうち隣り合う2枚のみを第1ベーン3aとして形成することにより、低温状況下でのベーンポンプ100の始動性を向上させると共に、ベーンポンプ100の製造コストの増加を抑制することができる。 On the other hand, in the vane pump 100, the other ten vanes 3 except for the two first vanes 3a are all formed as the second vane 3b. Even when there are only two adjacent first vanes 3a, the initial pump chamber 6a is partitioned by the first vane 3a at the time of starting, and the hydraulic oil discharged from the initial pump chamber 6a is guided to each back pressure chamber 8. Protrusion of the second vane 3b from the slit 7 is prompted. Thereby, the startability of the vane pump 100 is sufficiently improved. Therefore, by forming only two adjacent ones of the 12 vanes 3 as the first vanes 3a, the startability of the vane pump 100 under a low temperature condition is improved and an increase in the manufacturing cost of the vane pump 100 is suppressed. be able to.
 また、第1ベーン3aは、DLCコーティングされることにより、耐摩耗性も向上する。よって、ベーンポンプ100の耐久性も向上する。 Also, the first vane 3a is improved in wear resistance by being DLC coated. Therefore, durability of the vane pump 100 is also improved.
 次に、上記第1実施形態の変形例について説明する。 Next, a modification of the first embodiment will be described.
 上記第1実施形態では、ベーンポンプ100は、2つの吸込領域4bと2つの吐出領域4cとを有する。これに代えて、ベーンポンプ100は、1つまたは3つ以上の吸込領域4b及び1つまたは3つ以上の吐出領域4cを有していてもよい。 In the first embodiment, the vane pump 100 has two suction areas 4b and two discharge areas 4c. Instead of this, the vane pump 100 may have one or three or more suction regions 4b and one or three or more discharge regions 4c.
 以上の第1実施形態によれば、以下に示す効果を奏する。 According to the above 1st Embodiment, there exists the effect shown below.
 ベーンポンプ100では、DLCコーティングが施される第1ベーン3aの摺動抵抗が小さいため、低温状況下であっても、ロータ2の回転に伴う遠心力によって第1ベーン3aがスリット7から突出しやすい。このため、ベーンポンプ100の始動時に、隣り合う第1ベーン3aによって初期ポンプ室6aが容易に形成される。したがって、ベーンポンプ100の始動性を向上させることができる。 In the vane pump 100, since the sliding resistance of the first vane 3a to which the DLC coating is applied is small, the first vane 3a easily protrudes from the slit 7 due to the centrifugal force accompanying the rotation of the rotor 2 even under a low temperature condition. For this reason, when the vane pump 100 is started, the initial pump chamber 6a is easily formed by the adjacent first vanes 3a. Therefore, the startability of the vane pump 100 can be improved.
 また、ベーンポンプ100では、隣り合う2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、高圧室21及び背圧ポート22を通じて背圧室8に作動油が導かれ、第2ベーン3bもスリット7から突出してポンプ室6を区画する。このように、2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、スリット7からの第2ベーン3bの突出を促すことができ、低温状況下での始動性をさらに向上させることができる。 In the vane pump 100, the initial pump chamber 6a is partitioned by the two adjacent first vanes 3a, so that the hydraulic oil is guided to the back pressure chamber 8 through the high pressure chamber 21 and the back pressure port 22, and the second vane. 3 b also protrudes from the slit 7 to define the pump chamber 6. Thus, by dividing the initial pump chamber 6a by the two first vanes 3a, it is possible to promote the protrusion of the second vane 3b from the slit 7, and further improve the startability under a low temperature condition. be able to.
 また、ベーンポンプ100では、第1ベーン3aが隣り合う2枚のみであっても、始動時には第1ベーン3aによって初期ポンプ室6aが区画されて作動油が各背圧室8に導かれ、スリット7からの第2ベーン3bの突出が促される。したがって、12枚のベーン3のうち隣り合う2枚のみを第1ベーン3aとして形成することにより、低温状況下でのベーンポンプ100の始動性を向上させると共に、ベーンポンプ100の製造コストの増加を抑制することができる。 Further, in the vane pump 100, even when there are only two adjacent first vanes 3a, the initial pump chamber 6a is partitioned by the first vane 3a at the time of start-up, and the hydraulic oil is guided to each back pressure chamber 8, and the slit 7 Protrusion of the second vane 3b from is promoted. Therefore, by forming only two adjacent ones of the 12 vanes 3 as the first vanes 3a, the startability of the vane pump 100 under a low temperature condition is improved and an increase in the manufacturing cost of the vane pump 100 is suppressed. be able to.
 (第2実施形態)
 次に、図3を参照して本発明の第2実施形態に係るベーンポンプ200について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、上記第1実施形態のベーンポンプ100と同一の構成には同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a vane pump 200 according to a second embodiment of the present invention will be described with reference to FIG. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code | symbol is attached | subjected to the structure same as the vane pump 100 of the said 1st Embodiment, and description is abbreviate | omitted.
 上記第1実施形態では、隣り合う2枚の第1ベーン3aが設けられ、第1ベーン3aを除いたベーン3は全て第2ベーン3bとして形成される。これに代えて、ベーンポンプ200では、3枚の第1ベーン3aが設けられる点において上記第1実施形態とは相違する。 In the first embodiment, two adjacent first vanes 3a are provided, and all the vanes 3 except for the first vanes 3a are formed as second vanes 3b. Instead of this, the vane pump 200 is different from the first embodiment in that three first vanes 3a are provided.
 図3に示すように、ベーンポンプ200は、3枚の第1ベーン3aと、9枚の第2ベーン3bとを有する。 As shown in FIG. 3, the vane pump 200 has three first vanes 3a and nine second vanes 3b.
 3枚の第1ベーン3aは、連続して並んで配置され、それぞれの間で2つの初期ポンプ室6aを区画する。 The three first vanes 3a are arranged side by side, and partition the two initial pump chambers 6a between them.
 上記第2実施形態によれば、以下に示す効果を奏する。 According to the second embodiment, the following effects are obtained.
 ベーンポンプ200では、ベーンポンプ100と同様に、DLCコーティングが施される第1ベーン3aの摺動抵抗が小さいため、低温状況下であっても、ロータ2の回転に伴う遠心力によって第1ベーン3aがスリット7から突出しやすい。このため、ベーンポンプ200の始動時に、連続する3枚の第1ベーン3aによって初期ポンプ室6aが容易に形成される。したがって、ベーンポンプ200の始動性を向上させることができる。 In the vane pump 200, like the vane pump 100, since the sliding resistance of the first vane 3a to which the DLC coating is applied is small, the first vane 3a is caused by the centrifugal force accompanying the rotation of the rotor 2 even under a low temperature condition. It tends to protrude from the slit 7. For this reason, when the vane pump 200 is started, the initial pump chamber 6a is easily formed by the three consecutive first vanes 3a. Therefore, the startability of the vane pump 200 can be improved.
 また、ベーンポンプ200では、ベーンポンプ100と同様に、隣り合う2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、高圧室21及び背圧ポート22を通じて背圧室8に作動油が導かれて、第2ベーン3bもスリット7から突出してポンプ室を区画する。このように、3枚の第1ベーン3aによって2つの初期ポンプ室6aが区画されることにより、スリット7からの第2ベーン3bの突出を促すことができ、低温状況下での始動性をさらに向上させることができる。 Further, in the vane pump 200, like the vane pump 100, the initial pump chamber 6 a is partitioned by two adjacent first vanes 3 a, so that hydraulic oil is supplied to the back pressure chamber 8 through the high pressure chamber 21 and the back pressure port 22. As a result, the second vane 3b also protrudes from the slit 7 to partition the pump chamber. Thus, by dividing the two initial pump chambers 6a by the three first vanes 3a, it is possible to promote the protrusion of the second vane 3b from the slit 7, thereby further improving the startability under a low temperature condition. Can be improved.
 また、ベーンポンプ200では、始動時であっても第1ベーン3aがスリット7から突出しやすく、突出した第1ベーン3aは吐出領域4cに進入するとスリット7内に押し込まれる。スリット7に押し込まれる第1ベーン3aにより、この第1ベーン3aによって区画される背圧室8の作動油が背圧溝8aを通じて隣接する吸込領域4b内の背圧室8に導かれる。これにより、吸込領域4b内のベーン3の突出をさらに促すことができる。 Further, in the vane pump 200, the first vane 3a easily protrudes from the slit 7 even at the start, and the protruding first vane 3a is pushed into the slit 7 when entering the discharge region 4c. By the first vane 3a pushed into the slit 7, the hydraulic oil in the back pressure chamber 8 defined by the first vane 3a is guided to the back pressure chamber 8 in the adjacent suction region 4b through the back pressure groove 8a. Thereby, the protrusion of the vane 3 in the suction area 4b can be further promoted.
 また、ベーンポンプ200では、2つの初期ポンプ室6aが区画されるため、始動時において背圧室8に導かれる作動油の流量を多くすることができる。よって、第2ベーン3bをより確実にスリット7から突出させることができ、ベーンポンプ200の始動性をより向上させることができる。 Further, in the vane pump 200, since the two initial pump chambers 6a are partitioned, it is possible to increase the flow rate of the hydraulic oil guided to the back pressure chamber 8 at the time of starting. Therefore, the 2nd vane 3b can be more reliably protruded from the slit 7, and the startability of the vane pump 200 can be improved more.
 (第3実施形態)
 次に、図4を参照して本発明の第3実施形態に係るベーンポンプ300について説明する。以下では、上記第2実施形態と異なる点を中心に説明し、上記第2実施形態のベーンポンプ200と同一の構成には同一の符号を付して説明を省略する。
(Third embodiment)
Next, a vane pump 300 according to a third embodiment of the present invention will be described with reference to FIG. Below, it demonstrates centering on a different point from the said 2nd Embodiment, the same code | symbol is attached | subjected to the structure same as the vane pump 200 of the said 2nd Embodiment, and description is abbreviate | omitted.
 上記第2実施形態では、連続して並ぶ3枚の第1ベーン3aによって2つの初期ポンプ室6aが区画される。これに代えて、ベーンポンプ300では、4枚の第1ベーン3aによって2つの初期ポンプ室6aが区画される点において上記第2実施形態とは相違する。 In the second embodiment, two initial pump chambers 6a are partitioned by three first vanes 3a arranged in succession. Instead, the vane pump 300 is different from the second embodiment in that the two initial pump chambers 6a are partitioned by the four first vanes 3a.
 図4に示すように、ベーンポンプ300では、ベーン3は、4枚の第1ベーン3aと、8枚の第2ベーン3bとを有する。 As shown in FIG. 4, in the vane pump 300, the vane 3 has four first vanes 3a and eight second vanes 3b.
 ベーンポンプ300では、4枚の第1ベーン3aは、一対の隣り合う第1ベーン3aがロータ2の中心を挟んで互いに対向して配置される。つまり、2枚の隣り合う第1ベーン3aによって1つの初期ポンプ室6aが区画され、ロータ2の中心を挟んで互いに対向する2つの初期ポンプ室6aが4枚の第1ベーン3aによって区画される。 In the vane pump 300, the four first vanes 3a are arranged such that a pair of adjacent first vanes 3a face each other across the center of the rotor 2. That is, one initial pump chamber 6a is defined by two adjacent first vanes 3a, and two initial pump chambers 6a facing each other across the center of the rotor 2 are defined by four first vanes 3a. .
 上記第3実施形態によれば、上記第2実施形態と同様の効果に加え、以下に示す効果を奏する。 According to the third embodiment, in addition to the same effects as those of the second embodiment, the following effects can be obtained.
 ベーンポンプ300では、特にロータ2の中心軸が鉛直方向から傾斜するように設けられる場合などには、重力の影響で一部のベーン3が鉛直方向下方に移動してカム面4aに当接した状態(ベーン3がスリット7から突出した状態)が作動の停止時にも維持されることがある。ベーンポンプ300では、ロータ2の中心を挟んで互いに対向する2つの初期ポンプ室6aが区画されるため、第1,第2実施形態に係るベーンポンプ100,200と比較して、停止時にスリット7から突出した状態となる位置(特に鉛直方向の下方)に第1ベーン3aが配置されやすくなる。したがって、ベーンポンプ300では、停止時から初期ポンプ室6aが区画されやすく、始動性をさらに向上させることができる。 In the vane pump 300, particularly when the central axis of the rotor 2 is provided so as to be inclined from the vertical direction, a part of the vanes 3 is moved downward in the vertical direction due to the influence of gravity and is in contact with the cam surface 4a. (The state in which the vane 3 protrudes from the slit 7) may be maintained even when the operation is stopped. In the vane pump 300, two initial pump chambers 6a facing each other across the center of the rotor 2 are partitioned, so that the vane pump 300 protrudes from the slit 7 when stopped compared to the vane pumps 100 and 200 according to the first and second embodiments. The first vane 3a is likely to be arranged at a position (particularly in the vertical direction below) that results in the above state. Therefore, in the vane pump 300, the initial pump chamber 6a is easily partitioned from the stop time, and the startability can be further improved.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effect of the embodiment of the present invention will be described together.
 ベーンポンプ100,200,300は、駆動軸1に連結されたロータ2と、ロータ2の外周に開口して放射状に形成される複数のスリット7と、複数のスリット7のそれぞれに摺動可能に挿入される複数のベーン3と、ロータ2の回転に伴ってベーン3の先端が摺動するカム面4aを有するカムリング4と、ロータ2とカムリング4と一対の隣り合うベーン3とによって区画されるポンプ室6と、を備え、複数のベーン3は、母材にDLCコーティングが施されて形成される複数の第1ベーン3aと、母材が露出して形成される第2ベーン3bと、を有し、複数のスリット7のうち少なくとも2つの隣り合うスリット7には、それぞれ第1ベーン3aが挿入される。 The vane pumps 100, 200, and 300 are slidably inserted into the rotor 2 connected to the drive shaft 1, the plurality of slits 7 that are radially formed in the outer periphery of the rotor 2, and the plurality of slits 7. Pumps defined by a plurality of vanes 3, a cam ring 4 having a cam surface 4 a on which a tip of the vane 3 slides as the rotor 2 rotates, and a pair of adjacent vanes 3. And a plurality of vanes 3 having a plurality of first vanes 3a formed by applying a DLC coating to the base material, and second vanes 3b formed by exposing the base material. The first vane 3 a is inserted into at least two adjacent slits 7 among the plurality of slits 7.
 この構成では、DLCコーティングが施される第1ベーン3aの摺動抵抗が小さいため、低温状況下であっても、ロータ2の回転に伴う遠心力によって第1ベーン3aがスリット7から突出しやすい。このため、ベーンポンプ100,200,300の始動時に、隣り合う第1ベーン3aによって初期ポンプ室6aが容易に形成される。したがって、ベーンポンプ100,200,300の始動性が向上する。 In this configuration, since the sliding resistance of the first vane 3a to which the DLC coating is applied is small, the first vane 3a easily protrudes from the slit 7 due to the centrifugal force accompanying the rotation of the rotor 2 even under a low temperature condition. For this reason, when the vane pumps 100, 200, and 300 are started, the initial pump chamber 6a is easily formed by the adjacent first vanes 3a. Therefore, the startability of the vane pumps 100, 200, 300 is improved.
 また、ベーンポンプ100,200,300は、ベーン3の基端部によってスリット7内に区画されポンプ室6から吐出される作動油が導かれる背圧室8をさらに備える。 The vane pumps 100, 200, and 300 further include a back pressure chamber 8 that is partitioned in the slit 7 by the base end portion of the vane 3 and into which hydraulic oil discharged from the pump chamber 6 is guided.
 この構成では、隣り合う2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、背圧室8に作動油が導かれ、背圧室8の作動油の圧力によって第2ベーン3bもスリット7から突出してポンプ室6を区画する。このように、2枚の第1ベーン3aによって初期ポンプ室6aが区画されることにより、スリット7からの第2ベーン3bの突出を促すことができ、低温状況下での始動性をさらに向上させることができる。 In this configuration, when the initial pump chamber 6a is partitioned by the two adjacent first vanes 3a, the working oil is guided to the back pressure chamber 8, and the pressure of the working oil in the back pressure chamber 8 causes the second vane 3b. Projecting from the slit 7 to define the pump chamber 6. Thus, by dividing the initial pump chamber 6a by the two first vanes 3a, it is possible to promote the protrusion of the second vane 3b from the slit 7, and further improve the startability under a low temperature condition. be able to.
 また、ベーンポンプ100は、複数のベーン3が、第1ベーン3aを2枚有する。 Also, in the vane pump 100, the plurality of vanes 3 have two first vanes 3a.
 この構成では、第1ベーン3aが隣り合う2枚のみであっても、始動時には第1ベーン3aによって初期ポンプ室6aが区画されて作動油が各背圧室8に導かれ、スリット7からの第2ベーン3bの突出が促される。したがって、複数のベーン3のうち隣り合う2枚のみを第1ベーン3aとして形成することにより、低温状況下でのベーンポンプ100の始動性を向上させると共に、ベーンポンプ100の製造コストの増加を抑制することができる。 In this configuration, even if there are only two adjacent first vanes 3a, the initial pump chamber 6a is partitioned by the first vane 3a at the time of start-up, and the hydraulic oil is guided to each back pressure chamber 8, and from the slit 7 Protrusion of the second vane 3b is prompted. Accordingly, by forming only two adjacent ones of the plurality of vanes 3 as the first vanes 3a, the startability of the vane pump 100 under a low temperature condition is improved, and an increase in the manufacturing cost of the vane pump 100 is suppressed. Can do.
 また、ベーンポンプ200は、第1ベーン3aを3枚有し、3枚の第1ベーン3aは、連続して並んで配置される。 Also, the vane pump 200 has three first vanes 3a, and the three first vanes 3a are arranged side by side.
 この構成では、2つの初期ポンプ室6aが区画されるため、始動時において背圧室8に導かれる作動油の流量を多くすることができる。よって、第2ベーン3bをより確実にスリット7から突出させることができ、ベーンポンプ200,300の始動性をより向上させることができる。 In this configuration, since the two initial pump chambers 6a are partitioned, the flow rate of the hydraulic oil guided to the back pressure chamber 8 at the time of starting can be increased. Therefore, the 2nd vane 3b can be more reliably protruded from the slit 7, and the startability of the vane pumps 200 and 300 can be improved more.
 また、ベーンポンプ300は、第1ベーン3aを4枚有し、4枚の第1ベーン3aは、一対の隣り合う第1ベーン3aがロータ2の中心を挟んで互いに対向して配置される。 Further, the vane pump 300 includes four first vanes 3 a, and the four first vanes 3 a are arranged such that a pair of adjacent first vanes 3 a sandwich the center of the rotor 2.
 この構成では、一対の隣り合う第1ベーン3aがロータ2の中心を挟んで互いに対向して配置されるため、ベーンポンプ300の停止時にも第1ベーン3aがロータ2の鉛直方向下方に位置して初期ポンプ室6aが区画されやすくなる。したがって、ベーンポンプ300の始動性をさらに向上させることができる。 In this configuration, since the pair of adjacent first vanes 3a are arranged to face each other across the center of the rotor 2, the first vane 3a is located below the rotor 2 in the vertical direction even when the vane pump 300 is stopped. It becomes easy to partition the initial pump chamber 6a. Therefore, the startability of the vane pump 300 can be further improved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2015年9月29日に日本国特許庁に出願された特願2015-191667に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-191667 filed with the Japan Patent Office on September 29, 2015, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  ベーンポンプであって、
     駆動軸に連結されたロータと、
     前記ロータの外周に開口して放射状に形成される複数のスリットと、
     前記複数のスリットのそれぞれに摺動可能に挿入される複数のベーンと、
     前記ロータの回転に伴って前記ベーンの先端が摺動する内周面を有するカムリングと、
     前記ロータと前記カムリングと一対の隣り合う前記ベーンとによって区画されるポンプ室と、を備え、
     前記複数のベーンは、
     母材にDLCコーティングが施されて形成される複数の第1ベーンと、
     前記母材が露出して形成される第2ベーンと、を有し、
     前記複数のスリットのうち少なくとも2つの隣り合う前記スリットには、それぞれ前記第1ベーンが挿入されるベーンポンプ。
    A vane pump,
    A rotor coupled to the drive shaft;
    A plurality of slits formed radially in the outer periphery of the rotor;
    A plurality of vanes slidably inserted into each of the plurality of slits;
    A cam ring having an inner peripheral surface on which the tip of the vane slides as the rotor rotates;
    A pump chamber defined by the rotor, the cam ring, and a pair of adjacent vanes;
    The plurality of vanes is
    A plurality of first vanes formed by applying a DLC coating to the base material;
    A second vane formed by exposing the base material,
    A vane pump in which the first vane is inserted into at least two adjacent slits of the plurality of slits.
  2.  請求項1に記載のベーンポンプであって、
     前記ベーンの基端部によって前記スリット内に区画され前記ポンプ室から吐出される作動流体が導かれる背圧室をさらに備えるベーンポンプ。
    The vane pump according to claim 1,
    A vane pump further comprising a back pressure chamber which is partitioned in the slit by a base end portion of the vane and into which a working fluid discharged from the pump chamber is guided.
  3.  請求項1に記載のベーンポンプであって、
     前記複数のベーンは、2枚の前記第1ベーンを有するベーンポンプ。
    The vane pump according to claim 1,
    The plurality of vanes are vane pumps having two first vanes.
  4.  請求項1に記載のベーンポンプであって、
     前記複数のベーンは、3枚の前記第1ベーンを有し、
     前記3枚の第1ベーンは、連続して並んで配置されるベーンポンプ。
    The vane pump according to claim 1,
    The plurality of vanes includes three first vanes,
    The three first vanes are vane pumps arranged side by side in succession.
  5.  請求項1に記載のベーンポンプであって、
     前記複数のベーンは、4枚の前記第1ベーンを有し、
     前記4枚の第1ベーンは、一対の隣り合う前記第1ベーンが前記ロータの中心を挟んで互いに対向するように配置されるベーンポンプ。
    The vane pump according to claim 1,
    The plurality of vanes includes four first vanes,
    The four first vanes are vane pumps arranged such that a pair of adjacent first vanes face each other across the center of the rotor.
PCT/JP2016/075860 2015-09-29 2016-09-02 Vane pump WO2017056850A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16851026.1A EP3358187A1 (en) 2015-09-29 2016-09-02 Vane pump
US15/763,833 US20180306182A1 (en) 2015-09-29 2016-09-02 Vane pump
MX2018003766A MX2018003766A (en) 2015-09-29 2016-09-02 Vane pump.
CN201680054620.0A CN108026921A (en) 2015-09-29 2016-09-02 Vane pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191667A JP6480841B2 (en) 2015-09-29 2015-09-29 Vane pump
JP2015-191667 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056850A1 true WO2017056850A1 (en) 2017-04-06

Family

ID=58423246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075860 WO2017056850A1 (en) 2015-09-29 2016-09-02 Vane pump

Country Status (6)

Country Link
US (1) US20180306182A1 (en)
EP (1) EP3358187A1 (en)
JP (1) JP6480841B2 (en)
CN (1) CN108026921A (en)
MX (1) MX2018003766A (en)
WO (1) WO2017056850A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076338A (en) * 2018-11-06 2020-05-21 株式会社ミクニ Vane pump and rotor assembly
KR102553909B1 (en) * 2021-09-13 2023-07-07 현대트랜시스 주식회사 Transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269387A (en) * 1991-02-25 1992-09-25 Toyoda Mach Works Ltd Vane pump
JP2014181635A (en) * 2013-03-19 2014-09-29 Jtekt Corp Vane structure and vane device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672054A (en) * 1995-12-07 1997-09-30 Carrier Corporation Rotary compressor with reduced lubrication sensitivity
JP4616140B2 (en) * 2005-09-30 2011-01-19 三菱電機株式会社 Hermetic compressor and water heater
JP2007284760A (en) * 2006-04-18 2007-11-01 Toyota Motor Corp Sliding member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269387A (en) * 1991-02-25 1992-09-25 Toyoda Mach Works Ltd Vane pump
JP2014181635A (en) * 2013-03-19 2014-09-29 Jtekt Corp Vane structure and vane device

Also Published As

Publication number Publication date
EP3358187A1 (en) 2018-08-08
MX2018003766A (en) 2018-07-06
JP2017066937A (en) 2017-04-06
US20180306182A1 (en) 2018-10-25
CN108026921A (en) 2018-05-11
JP6480841B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP2011012575A (en) Vane pump
WO2014129311A1 (en) Variable capacity vane pump
WO2017056850A1 (en) Vane pump
US9644626B2 (en) Vane pump
JP6071121B2 (en) Variable displacement vane pump
JP5887243B2 (en) Variable displacement vane pump
WO2017077773A1 (en) Vane pump
JP2014070544A (en) Variable displacement vane pump
WO2014132977A1 (en) Vane pump
JP6770370B2 (en) Vane pump
JP6670119B2 (en) Vane pump
WO2018043433A1 (en) Vane pump
JP2020041466A (en) Vane pump
KR101739721B1 (en) Variable vane pump
JP6031311B2 (en) Variable displacement vane pump
WO2018105415A1 (en) Variable displacement vane pump
JP7421601B2 (en) vane pump
WO2017047363A1 (en) Vane pump
WO2019216173A1 (en) Vane pump
JP2010255551A (en) Variable displacement vane pump
JP2018035777A (en) Vane pump
JP2016223394A (en) Vane pump
WO2019098140A1 (en) Vane pump
JP2020041465A (en) Vane pump
JP2010255552A (en) Variable displacement vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003766

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15763833

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851026

Country of ref document: EP