WO2016017533A1 - 識別装置および識別方法 - Google Patents

識別装置および識別方法 Download PDF

Info

Publication number
WO2016017533A1
WO2016017533A1 PCT/JP2015/071023 JP2015071023W WO2016017533A1 WO 2016017533 A1 WO2016017533 A1 WO 2016017533A1 JP 2015071023 W JP2015071023 W JP 2015071023W WO 2016017533 A1 WO2016017533 A1 WO 2016017533A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature amount
image
optical thickness
thickness distribution
unit
Prior art date
Application number
PCT/JP2015/071023
Other languages
English (en)
French (fr)
Inventor
裕介 尾▲崎▼
秀直 岩井
弘之 今野
寛利 菊池
豊彦 山内
Original Assignee
国立大学法人浜松医科大学
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人浜松医科大学, 浜松ホトニクス株式会社 filed Critical 国立大学法人浜松医科大学
Priority to JP2016538314A priority Critical patent/JP6692049B2/ja
Priority to US15/329,456 priority patent/US10180387B2/en
Priority to EP15827812.7A priority patent/EP3176563B1/en
Publication of WO2016017533A1 publication Critical patent/WO2016017533A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1429Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0227Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging using imaging, e.g. a projected image of suspension; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1433
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • G01N2015/016
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N2015/025Methods for single or grouped particles
    • G01N2015/1014
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • One aspect of the present invention relates to an identification device and an identification method for identifying an object using an image of an optical thickness distribution of the object.
  • the identification of an object can generally be performed based on its size, shape or color. However, if they have a three-dimensional shape, such as leukocytes and cancer cells, and there is no significant difference in size and shape, both are colorless and transparent, The object cannot be identified.
  • a phase contrast microscope and a differential interference microscope are used for visualizing colorless and transparent cells, but lack quantitativeness with respect to optical thickness. In addition, these microscopes can obtain only two-dimensional information even though the cells have a three-dimensional structure because the depth of focus is less than the thickness of the cells depending on the objective lens used. The object cannot be identified.
  • CTC circulating tumor cells
  • Patent Document 1 acquires a cell image by an optical system that obtains a bright field image, extracts feature parameters (size, color information, circularity, etc.) of the image, and based on the feature parameters. To identify cells.
  • pattern recognition processing is performed using a neural network when identifying cells.
  • Patent Document 1 identifies a target object by performing pattern recognition processing on an image of the target object acquired by an optical system that obtains a bright field image.
  • a target object phase object
  • a target object that has a three-dimensional shape like a cancer cell and does not have a large difference in any of the size, shape, and color cannot be identified.
  • An object is to provide an apparatus and a method capable of identifying an object.
  • An identification apparatus includes (1) a feature amount extraction unit that extracts an image feature amount of an optical thickness distribution of an object, and (2) an object whose type is known (hereinafter referred to as “known object”).
  • An identification unit that determines the type of an unknown object based on the feature amount extracted by the feature amount extraction unit for an image of an optical thickness distribution of an object whose type is unknown (hereinafter referred to as “unknown object”) And using the learning result stored in the storage unit when extracting the feature amount of the image of the optical thickness distribution of the unknown object or determining the type of the unknown object, Quantity extraction part is optical thickness distribution The information about the spatial variation of optical thickness at the location of the image is extracted as a feature quantity of the image.
  • a feature amount extraction unit extracts a feature amount of an image of an optical thickness distribution of an object whose type is unknown (hereinafter referred to as “unknown object”). And (2) machine learning based on the feature quantity extracted by the feature quantity extraction unit with respect to the image of the optical thickness distribution of the object whose type is known (hereinafter referred to as “known object”).
  • An identification step of determining the type of the unknown object based on the feature amount extracted in the first feature amount extraction step using the learning result stored in the storage unit, and the optical thickness of the unknown object When extracting the feature amount of the distribution image or determining the type of the unknown object, the learning result stored in the storage unit is used, and the feature amount extraction unit uses the learning result stored in the image of the optical thickness distribution. In the position It takes the information about the spatial variation of the optical thickness are extracted as feature amounts of the image.
  • a target object that has a three-dimensional shape and has no large feature in size and shape and is colorless and transparent can be identified.
  • FIG. 1 is a diagram illustrating a configuration of the identification device 1 according to the present embodiment.
  • FIG. 2 is a flowchart for explaining the identification method of the present embodiment.
  • FIG. 3 is a diagram schematically showing the structure of cells (a) and (b).
  • FIG. 4 is a diagram showing an example of a quantitative phase image of (a) and (b) cancer cells.
  • FIGS. 5A and 5B are diagrams showing examples of quantitative phase images of white blood cells.
  • FIG. 6 is a diagram for explaining fx (x, y), fy (x, y), m (x, y), and ⁇ (x, y) in the quantitative phase image.
  • FIG. 1 is a diagram illustrating a configuration of the identification device 1 according to the present embodiment.
  • FIG. 2 is a flowchart for explaining the identification method of the present embodiment.
  • FIG. 3 is a diagram schematically showing the structure of cells (a) and (b).
  • FIG. 4 is a diagram showing an example of
  • FIG. 7 is a diagram illustrating an example of a histogram of the gradient direction ⁇ (x, y) obtained by weighting with the gradient strength m (x, y).
  • FIG. 8 is a diagram showing an ROC curve when machine learning is performed using white blood cells to which a hemolytic agent has not been added.
  • FIG. 9 is a diagram showing an ROC curve when machine learning is performed using leukocytes to which a hemolytic agent is added.
  • FIG. 10 is a flowchart for explaining another example of the identification method of the present embodiment.
  • FIG. 11 is a diagram schematically showing (a) the structure of white blood cells and (b) information on the inclination of the optical thickness.
  • FIG. 12 is a diagram schematically showing (a) cancer cell structure and (b) optical thickness inclination information.
  • FIG. 13 is an ROC curve showing the relationship between the false positive rate and the true positive rate of leukocytes when discriminating between leukocytes and cancer cells.
  • FIG. 1 is a diagram showing the configuration of the identification device 1 of the present embodiment.
  • the identification device 1 includes a quantitative phase image acquisition unit 11, a feature amount extraction unit 12, a learning unit 13, a storage unit 14, and an identification unit 15.
  • Quantitative phase image acquisition unit 11 acquires a quantitative phase image of an object (cell).
  • a quantitative phase image is an image of an optical thickness distribution of a cell.
  • the optical thickness is the product of the physical length along the light traveling direction and the refractive index. Therefore, if the physical length of the cell is spatially uniform, the optical thickness distribution of the cell is equivalent to the refractive index distribution. If the refractive index of the cell is spatially uniform, the optical thickness distribution of the cell is equivalent to the physical length distribution.
  • the quantitative phase image may be a one-dimensional image, a two-dimensional image, or a three-dimensional image.
  • the three-dimensional quantitative phase image is a special case of a one-dimensional or two-dimensional quantitative phase image, and represents a spatial distribution of the three-dimensional refractive index of cells. That is, it represents information obtained by separating the refractive index that characterizes the optical thickness and the physical length.
  • the feature quantity extraction unit 12 extracts the feature quantity of the quantitative phase image of the cell acquired by the quantitative phase image acquisition unit 11.
  • the feature amount extraction unit 12 represents each cell by a quantitative phase image composed of fixed m ⁇ n pixels, and performs a smoothing process as necessary, and then extracts the feature amount of the image.
  • the feature amount may be, for example, the maximum value of the optical thickness, or may be information related to the magnitude of the change in the optical thickness with respect to the position (inclination of the optical thickness).
  • the feature amount extraction unit 12 extracts the feature amount of the quantitative phase image acquired by the quantitative phase image acquisition unit 11 using the learning result stored in the storage unit 14 to be described later.
  • the learning unit 13 performs machine learning on the quantitative phase image of a cell whose type is known (known cell) based on the feature amount extracted by the feature amount extraction unit 12.
  • Machine learning is, for example, statistical machine learning, supervised learning (Supervised Learning), unsupervised learning (Unsupervised Learning), semi-supervised learning (Semi-supervised Learning), reinforcement learning ( Reinforcement Learning, transduction, multi-task learning, or deep learning.
  • supervised learning the data of known cells is training data (training data), the data of unknown cells is test data (test ⁇ data), multiple training data are given to the computer in advance, and the correct output for the input test data is output.
  • the storage unit 14 stores a result of machine learning (for example, a function obtained by machine learning) by the learning unit 13.
  • the identification unit 15 uses the learning result stored in the storage unit 14 to determine the unknown cell based on the feature quantity extracted by the feature quantity extraction unit 12 for the quantitative phase image of the cell whose type is unknown (unknown cell). The type of is determined.
  • a quantitative phase microscope is used as the quantitative phase image acquisition unit 11.
  • the feature amount extraction unit 12, the learning unit 13, the storage unit 14, and the identification unit 15 for example, a computer including a processor and a memory is used.
  • the computer executes functions as the feature amount extraction unit 12, the learning unit 13, and the identification unit 15 by the processor.
  • the computer executes the function of the storage unit 14 using a memory or an external storage device. Therefore, the computer includes a feature amount extraction unit 12, a learning unit 13, a storage unit 14, and an identification unit 15.
  • HOG Histograms of Oriented Gradients
  • LBP Lical Binary Pattern
  • GLAC Gram Local Auto-Correlation
  • HLAC Higher-order Local Auto-Correlation
  • Haar-like and the like are used as the feature amount extraction algorithm.
  • machine learning algorithms for example, AdaBoost (Adaptive Boosting), Mahalanobis K-means, simple Bayes classifier, decision tree, boosting, random tree, expectation maximization (Expectation Maximization), K neighborhood, neural A network, a multilayer perceptron (MPL), a support vector machine (Support vector machine), a deep learning (Deep Learning), etc. are used.
  • FIG. 2 is a flowchart for explaining the identification method of the present embodiment.
  • the identification method of the present embodiment includes a first image acquisition step S11, a first feature amount extraction step S12, an identification step S13, a second image acquisition step S21, a second feature amount extraction step S22, and a learning step S23.
  • the quantitative phase image acquisition unit 11 acquires quantitative phase images of many known cells.
  • the feature amount of the quantitative phase image of these known cells is extracted by the feature amount extraction unit 12.
  • the learning step S23 the learning unit 13 performs machine learning based on the feature amount extracted in the second feature amount extraction step S22, and stores the learning result in the storage unit 14.
  • the identification step S13 when identifying white blood cells, it is preferable that a large number of known cells acquire quantitative phase images of cells other than white blood cells and white blood cells by the quantitative phase image acquisition unit 11.
  • the identification step S13 when identifying cancer cells, it is preferable that a large number of known cells acquire quantitative phase images of cancer cells and cells other than cancer cells by the quantitative phase image acquisition unit 11. It is.
  • leukocytes may be collected from cancer patients or collected from healthy individuals.
  • the leukocytes may be those to which a hemolytic agent has been added.
  • the cancer cell may be a collected blood circulating tumor cell or a cultured cancer cell.
  • the quantitative phase image of the unknown cell is acquired by the quantitative phase image acquisition unit 11.
  • the feature quantity extraction unit 12 extracts the feature quantity of the quantitative phase image of the unknown cell.
  • the identification unit 15 determines the type of the unknown cell based on the feature amount extracted in the first feature amount extraction step S12 using the learning result stored in the storage unit 14.
  • FIG. 3 is a diagram schematically showing the structure of a cell.
  • FIG. 3 shows an xyz rectangular coordinate system for convenience of explanation.
  • the cell 30 is placed on a preparation 40 disposed in parallel to the xy plane.
  • Fig.3 (a) shows sectional drawing of the cell 30 parallel to xz plane.
  • FIG. 3B shows a plan view of the cell 30 viewed in the direction of the optical axis parallel to the z-axis.
  • the cell 30 has a structure in which a cytoplasm 32 covers a cell nucleus 31 present in the central region, and the cytoplasm 32 is covered with a cell membrane 33.
  • a general cell has a structure including a cell nucleus, a cytoplasm, and a cell membrane.
  • the shape and refractive index of these cell nuclei, cytoplasm, and cell membrane vary depending on the cell type such as leukocytes and cancer cells.
  • the size and shape of cell nuclei change when normal cells change into cancer cells.
  • general cancer cells are described instead of blood cancer cells.
  • the phase delay of the light is in the xy plane depending on the refractive index and shape of each cell nucleus, cytoplasm, and cell membrane. It depends on each position above.
  • the quantitative phase image acquired by the quantitative phase image acquisition unit 11 represents this phase lag distribution, and represents the optical thickness distribution of the cells.
  • Each pixel value of the quantitative phase image corresponds to the optical thickness at the xy position corresponding to the pixel.
  • the quantitative phase image is in accordance with the refractive index and shape of each of the cell nucleus, cytoplasm, and cell membrane. Therefore, the cell type can be determined based on the quantitative phase image of the cell.
  • FIG. 4 is a diagram showing an example of a quantitative phase image of cancer cells (HepG2).
  • FIG. 5 is a diagram showing an example of a quantitative phase image of white blood cells.
  • FIG. 4A and FIG. 5A show quantitative phase images.
  • 4 (b) and 5 (b) show the distribution of the optical thickness of the cells along the broken line shown in (a) of the corresponding figure.
  • the quantitative phase images of cancer cells and leukocytes they differ in terms of the maximum value of the optical thickness, and also differ in terms of the slope of the optical thickness. Therefore, these may be extracted by the feature amount extraction unit 12 as feature amounts of the quantitative phase image.
  • the optical thickness inclination information is extracted by the characteristic amount extraction unit 12 as the characteristic amount of the quantitative phase image, and the white blood cells and the cancer cells are identified by performing image recognition based on the inclination information.
  • the tilt information represents information such as a graph tilt when the horizontal axis is the position and the vertical axis is the optical thickness, and a vector on the xy plane. .
  • This inclination information does not represent the inclination of the cell surface, but reflects the internal structure of the cell such as the shape of the cell nucleus and the refractive index constituting the cell.
  • the feature quantity extraction unit 12 uses HOG as a feature quantity extraction algorithm to extract tilt information as a feature quantity of a quantitative phase image of a cell, for example, the following feature quantity extraction processing is performed.
  • the pixel value I (x, y) of the pixel at the position (x, y) in the quantitative phase image corresponds to the optical thickness.
  • the magnitude (gradient strength) of the vector (fx (x, y), fy (x, y)) on the xy plane is represented by m (x, y) obtained by the following equation (3).
  • the gradient (gradient direction) of the vector (fx (x, y), fy (x, y)) on the xy plane is represented by ⁇ (x, y) obtained by the following equation (4).
  • FIG. 6 is a diagram for explaining fx (x, y), fy (x, y), m (x, y), and ⁇ (x, y) in the quantitative phase image.
  • FIG. 6 shows a region of cells in the quantitative phase image as a substantially circular shape, and fx (x, y), fy (x, y), m (x, y) and ⁇ (x, y) at a certain point in the region. This explains the relationship between y).
  • FIG. 7 is a diagram illustrating an example of a histogram of the gradient direction ⁇ (x, y) obtained by weighting with the gradient strength m (x, y).
  • the shape of this histogram varies depending on the cell type. Therefore, cancer cells and white blood cells can be identified based on the shape of this histogram.
  • the feature quantity extraction unit 12 can extract the feature quantity of the unknown cell in the first feature quantity extraction step S12 using the result of the machine learning with the known cell. Extracting features for all pixels in the quantitative phase image of unknown cells takes time, so based on the results of machine learning of known cells, the region (position or pixel) for extracting feature values from all the pixels in the quantitative phase image ) Can be set to one or more to significantly reduce the time required for cell determination. Note that the set region may be a range including at least one pixel constituting the quantitative phase image.
  • white blood cells are identified from a cell population in which cancer cells and white blood cells are mixed by extracting the above-described feature amounts.
  • 240 white blood cells collected from a healthy person are used as known cells (positive cells), and 71 cultured cancer cells are used as known cells (negative cells).
  • a second feature amount extraction step S22 and a learning step S23 were performed.
  • the breakdown of the 71 cultured cancer cells is 18 for the cell line name HCT116, 21 for the cell line name DLD1, 7 for the cell line name HepG2, and 25 for the cell line name Panc1. It was.
  • leukocytes those with a hemolytic agent added and those without a hemolytic agent were used.
  • the quantitative phase image of each cell which was originally about 150 ⁇ 150 pixels, is converted into an 8-bit black-and-white image and reduced to an image with a size of 24 ⁇ 24 pixels, 48 ⁇ 48 pixels, or 72 ⁇ 72 pixels, Feature extraction and machine learning were performed using the reduced image.
  • the algorithms used were HOG and AdaBoost included in OpenCV (Version 2.4.8). Machine learning at each stage was stopped at a misdiagnosis rate of 0.4.
  • FIG. 8 is a diagram showing an ROC curve when machine learning is performed using white blood cells to which a hemolytic agent has not been added.
  • “WBC1” in FIG. 8 indicates that machine learning was performed using white blood cells to which no hemolytic agent was added.
  • the ROC curve of “WBC1 24 ⁇ 24” is a curve obtained when the white blood cell image size is reduced to 24 ⁇ 24 pixels.
  • An ROC curve of “WBC1 48 ⁇ 48” is a curve obtained when the white blood cell image size is reduced to 48 ⁇ 48 pixels.
  • FIG. 9 is a diagram showing an ROC curve when machine learning is performed using leukocytes to which a hemolytic agent is added.
  • “WBC2” in FIG. 9 indicates that machine learning was performed using leukocytes to which a hemolytic agent was added.
  • the ROC curve of “WBC2 24 ⁇ 24” is a curve obtained when the white blood cell image size is reduced to 24 ⁇ 24 pixels.
  • the ROC curve of “WBC2 48 ⁇ 48” is a curve obtained when the white blood cell image size is reduced to 48 ⁇ 48 pixels.
  • An ROC curve of “WBC2 72 ⁇ 72” is a curve obtained when the white blood cell image size is reduced to 72 ⁇ 72 pixels.
  • a ROC (Receiver Operating Characteristic) curve represents the performance of identification by the identification unit 15 using the result of machine learning by the learning unit 13.
  • the horizontal axis represents the false positive rate (False Positive Fraction) representing the probability that an object that is not actually a white blood cell is erroneously determined to be a white blood cell.
  • the vertical axis represents the true positive rate (True Positive Fraction) that represents the probability that an object that is actually a white blood cell is correctly determined to be a white blood cell.
  • AUC Absolute under the curve
  • AUC represents the area of the area below the ROC curve.
  • a large AUC that is, AUC close to the value 1) means that the ROC curve is close to the upper left, and indicates that the identification accuracy is high.
  • the larger the number of pixels in the cell image the larger the AUC.
  • AUC is larger when machine learning is performed using leukocytes to which a hemolytic agent is added. Similar ROC curves were obtained when cancer cells used for machine learning were combined with strains different from the above. Therefore, in order to distinguish cancer cells and leukocytes with high accuracy, it is preferable that the number of pixels in the cell image is large (for example, 48 ⁇ 48 or more), and machine learning is performed using leukocytes to which a hemolytic agent is added. Is preferably performed.
  • FIG. 11 is a diagram schematically showing (a) the structure of white blood cells, and (b) inclination information of the optical thickness.
  • an arrow 51 indicates the direction of the optical thickness in the white blood cell 50.
  • an arrow 52 indicates inclination information in the optical thickness distribution.
  • FIG. 12 is a diagram schematically showing (a) cancer cell structure and (b) optical thickness inclination information.
  • an arrow 56 indicates the direction of the optical thickness in the cancer cell 55.
  • an arrow 57 indicates tilt information in the optical thickness distribution.
  • FIG. 13 is an ROC curve showing the relationship between the false positive rate and the true positive rate of leukocytes when discriminating leukocytes and cancer cells using the gradient information extracted as the feature quantity of the quantitative phase image.
  • HOG is used as the feature amount extraction algorithm.
  • AUC shows a very high value of about 0.98, and it can be seen that cancer cells and leukocytes can be determined with high accuracy.
  • the identification device and the identification method according to one aspect of the present invention are not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • a feature amount extraction unit that extracts a feature amount of an optical thickness distribution image of an object
  • the storage unit stores a learning result obtained by performing machine learning based on the feature amount extracted by the feature amount extraction unit for the image of the thickness distribution, and (3) the type is determined using the learning result stored in the storage unit.
  • An identification unit for determining the type of the unknown object based on the feature quantity extracted by the feature quantity extraction unit for the image of the optical thickness distribution of the unknown object (unknown object) When extracting the feature amount of the image of the optical thickness distribution or determining the type of the unknown object, the learning result stored in the storage unit is used.
  • the identification device having the above configuration further includes (4) a learning unit that performs machine learning on the image of the optical thickness distribution of the known object based on the feature amount extracted by the feature amount extraction unit, and (5) the storage unit It is preferable to store a learning result of machine learning by the learning unit.
  • the identification method having the above configuration includes (3) a second feature amount extraction step in which a feature amount of an image of an optical thickness distribution of a known object is extracted by a feature amount extraction unit, and (4) extraction in the second feature amount extraction step. It is preferable to further include a learning step of performing machine learning based on the feature amount thus determined and storing the learning result in the storage unit.
  • the feature amount extraction unit may set at least one region from which the feature amount is extracted in the image of the optical thickness distribution of the unknown object using the learning result stored in the storage unit. good. Specifically, in the identification device, at least one region in which the feature amount extraction unit extracts the feature amount in the optical thickness distribution image of the unknown object using the learning result stored in the storage unit. It is good also as a structure to set. In the identification method, the first feature amount extraction step sets at least one region from which the feature amount is extracted in the image of the optical thickness distribution of the unknown object using the learning result stored in the storage unit. It is good also as composition to do.
  • information regarding the spatial change amount of the optical thickness at the position in the image of the optical thickness distribution may be extracted as the feature amount of the image.
  • the identification device may be configured such that the feature amount extraction unit extracts information on the spatial change amount of the optical thickness at a position in the image of the optical thickness distribution as the feature amount of the image.
  • the identification method may be configured such that the feature amount extraction unit extracts information regarding the spatial change amount of the optical thickness at a position in the image of the optical thickness distribution as the feature amount of the image.
  • the information regarding the spatial variation of the optical thickness at the position in the image of the optical thickness distribution is the vector gradient strength and / or the gradient direction at the position (pixel) in the image of the optical thickness distribution. It is good also as composition which is.
  • the object may include white blood cells and cancer cells. Moreover, it is good also as a structure which extracts the feature-value of the image of the optical thickness distribution of the target object which added the hemolytic agent by the feature-value extraction part.
  • an identification device includes a feature amount extraction unit that extracts a feature amount of an image of an optical thickness distribution of an object, and an identification unit that determines the type of the object based on the extracted feature amount
  • the feature quantity extraction unit extracts information on the spatial variation of the optical thickness at a position in the image of the optical thickness distribution as the feature quantity of the image.
  • An identification method includes an extraction step of extracting an image feature amount of an optical thickness distribution image of an object, and an identification step of determining the type of the object based on the extracted feature amount.
  • an extraction step of extracting an image feature amount of an optical thickness distribution image of an object
  • an identification step of determining the type of the object based on the extracted feature amount.
  • information relating to a spatial change amount of the optical thickness at a position in the image of the optical thickness distribution is extracted as a feature amount of the image.
  • the type of the object can be determined with high accuracy.
  • One aspect of the present invention is used as an identification device and an identification method that can identify an object even if the object has a three-dimensional shape and has no large feature in size and shape and is colorless and transparent. Is possible.

Abstract

 識別装置1は、定量位相画像取得部11、特徴量抽出部12、学習部13、記憶部14および識別部15を備える。特徴量抽出部12は、定量位相画像取得部11により取得された細胞の定量位相画像の特徴量を抽出する。学習部13は、種別が既知である既知細胞の定量位相画像について特徴量抽出部12により抽出された特徴量に基づいて機械学習を行う。記憶部14は、学習部13による機械学習の結果を記憶する。識別部15は、記憶部14により記憶されている学習結果を用いて、種別が未知である未知細胞の定量位相画像について特徴量抽出部12により抽出された特徴量に基づいて未知細胞の種別を判定する。これにより、3次元的形状を有し、大きさ及び形状について大きな特徴がなく無色透明である対象物であっても該対象物を識別することができる装置および方法が実現される。

Description

識別装置および識別方法
 本発明の一側面は、対象物の光学的厚み分布の画像を用いて対象物を識別する識別装置および識別方法に関するものである。
 対象物の識別は、一般に、その大きさ、形状または色に基づいて行われ得る。しかし、例えば白血球およびがん細胞のように、3次元的形状を有し、それらの大きさ及び形状について大きな違いがなく何れも無色透明である場合には、明視野顕微鏡により得られた画像では対象物を識別することができない。また、位相差顕微鏡や微分干渉顕微鏡は、無色透明な細胞を可視化するために用いられるが、光学的厚みに対する定量性が欠落している。また、これらの顕微鏡は、使用する対物レンズによっては、その焦点深度が細胞の厚み以下であるので、細胞が3次元的な構造をもつにも関わらず、2次元的な情報しか得られず、前記対象物を識別することができない。
 原発腫瘍組織または転移腫瘍組織から遊離し血液中に浸潤した細胞は、血中循環腫瘍細胞(Circulating Tumor Cells)と呼ばれる。このCTCは固形がん患者の抹消血液中に極微量に存在し転移に関わるとされ、近年研究が盛んに行われている。一方で、抹消血液中の有核細胞はその殆どが白血球であるため、白血球とがん細胞とを識別することが重要となる。
 血中循環腫瘍細胞の臨床応用では、乳がん患者において全血7.5mL中に血中循環腫瘍細胞が5個未満であれば1年後の死亡率が19%であり、血中循環腫瘍細胞が5個以上であれば1年後の死亡率が53%であった、と報告されている。このように、血中循環腫瘍細胞を識別し検査することは、予後の予測に役立つ等、臨床応用価値が高いと考えられる。
 特許文献1に開示された発明は、明視野像を得る光学系により細胞の画像を取得し、その画像の特徴パラメータ(大きさ、色情報、円形度など)を抽出し、その特徴パラメータに基づいて細胞を識別するものである。また、この発明は、細胞の識別に際して、ニューラルネットワークを用いてパターン認識処理を行う。
特許第5470625号公報
 特許文献1に開示された発明は、明視野像を得る光学系により取得した対象物の画像に対してパターン認識処理を行うことにより該対象物を識別するものであることから、例えば白血球およびがん細胞のように3次元的形状を有し、それらの大きさ、形状および色の何れについても大きな差異がない対象物(位相物体)を識別することができない。
 本発明の一側面は、上記問題点を解消する為になされたものであり、3次元的形状を有し、大きさ及び形状について大きな特徴がなく無色透明である対象物であっても該対象物を識別することができる装置および方法を提供することを目的とする。
 本発明の一側面による識別装置は、(1)対象物の光学的厚み分布の画像の特徴量を抽出する特徴量抽出部と、(2)種別が既知である対象物(以下「既知対象物」という)の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて機械学習を行った結果を記憶する記憶部と、(3)記憶部により記憶されている学習結果を用いて、種別が未知である対象物(以下「未知対象物」という)の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて未知対象物の種別を判定する識別部と、を備え、未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、記憶部により記憶されている学習結果を用いるとともに、特徴量抽出部が、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する。
 本発明の一側面による識別方法は、(1)種別が未知である対象物(以下「未知対象物」という)の光学的厚み分布の画像の特徴量を特徴量抽出部により抽出する第1特徴量抽出ステップと、(2)種別が既知である対象物(以下「既知対象物」という)の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて機械学習を行って記憶部により記憶された当該学習結果を用いて、第1特徴量抽出ステップにおいて抽出された特徴量に基づいて未知対象物の種別を判定する識別ステップと、を備え、未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、記憶部により記憶されている学習結果を用いるとともに、特徴量抽出部により、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する。
 本発明の一側面によれば、3次元的形状を有し、大きさ及び形状について大きな特徴がなく無色透明である対象物であっても該対象物を識別することができる。
図1は、本実施形態の識別装置1の構成を示す図である。 図2は、本実施形態の識別方法を説明するフローチャートである。 図3は、(a)、(b)細胞の構造を模式的に示す図である。 図4は、(a)、(b)がん細胞の定量位相画像の一例を示す図である。 図5は、(a)、(b)白血球の定量位相画像の一例を示す図である。 図6は、定量位相画像におけるfx(x,y),fy(x,y),m(x,y)およびθ(x,y)を説明する図である。 図7は、勾配強度m(x,y)で重み付けをして求められた勾配方向θ(x,y)のヒストグラムの一例を示す図である。 図8は、溶血剤を添加しなかった白血球を用いて機械学習を行った場合のROC曲線を示す図である。 図9は、溶血剤を添加した白血球を用いて機械学習を行った場合のROC曲線を示す図である。 図10は、本実施形態の識別方法の他の例を説明するフローチャートである。 図11は、(a)白血球の構造、及び(b)光学的厚みの傾き情報について模式的に示す図である。 図12は、(a)がん細胞の構造、及び(b)光学的厚みの傾き情報について模式的に示す図である。 図13は、白血球とがん細胞とを判別する際、白血球の偽陽性率と真陽性率との関係を示すROC曲線である。
 以下、添付図面を参照して、本発明の一側面による識別装置及び識別方法を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。以下では、対象物として細胞(主に白血球およびがん細胞)について説明するが、他の対象物についても同様である。
 図1は、本実施形態の識別装置1の構成を示す図である。識別装置1は、定量位相画像取得部11、特徴量抽出部12、学習部13、記憶部14および識別部15を備える。
 定量位相画像取得部11は、対象物(細胞)の定量位相画像を取得する。定量位相画像は、細胞の光学的厚み分布の画像である。光学的厚みは、光の進行方向に沿った物理的長さと屈折率との積である。したがって、細胞の物理的長さが空間的に一様であれば、細胞の光学的厚み分布は屈折率分布と等価である。細胞の屈折率が空間的に一様であれば、細胞の光学的厚み分布は物理的長さ分布と等価である。定量位相画像は、1次元画像であってもよいし、2次元画像、3次元画像であってもよい。なお、3次元の定量位相画像は、1次元、2次元の定量位相画像の特別な場合であり、細胞の3次元的な屈折率の空間的分布を表す。すなわち、光学的厚みを特徴づける屈折率と物理的長さとを分離した情報を表す。
 特徴量抽出部12は、定量位相画像取得部11により取得された細胞の定量位相画像の特徴量を抽出する。特徴量抽出部12は、一定のm×n画素からなる定量位相画像により個々の細胞を表し、必要に応じて平滑化処理をした後、該画像の特徴量を抽出する。特徴量は、例えば、光学的厚みの最大値であってもよいし、位置に対する光学的厚みの変化の大きさ(光学的厚みの傾き)に関する情報であってもよい。また、特徴量抽出部12は、後述する記憶部14により記憶されている学習結果を用いて、定量位相画像取得部11により取得された定量位相画像の特徴量を抽出する。
 学習部13は、種別が既知である細胞(既知細胞)の定量位相画像について特徴量抽出部12により抽出された特徴量に基づいて機械学習を行う。なお、機械学習(Machine Learning)とは、例えば、統計的機械学習であり、教師あり学習(Supervised Learning)、教師なし学習(Unsupervised Learning)、半教師あり学習(Semi-supervised Learning)、強化学習(Reinforcement Learning)、トランスダクション(Transduction)、マルチタスク学習(Multi-task learning)、あるいは深層学習(Deep Learning)などである。例えば、教師あり学習では、既知細胞のデータを訓練データ(training data)、未知細胞のデータをテストデータ(test data)とし、コンピュータに予め訓練データを複数与え、入力されたテストデータに対する正しい出力をするような関数を作る。記憶部14は、その学習部13による機械学習の結果(例えば、機械学習により得られた関数)を記憶する。識別部15は、記憶部14により記憶されている学習結果を用いて、種別が未知である細胞(未知細胞)の定量位相画像について特徴量抽出部12により抽出された特徴量に基づいて未知細胞の種別を判定する。
 定量位相画像取得部11として例えば定量位相顕微鏡が用いられる。特徴量抽出部12、学習部13、記憶部14および識別部15として、例えばプロセッサ及びメモリを含むコンピュータが用いられる。この場合、コンピュータは、プロセッサにより、特徴量抽出部12、学習部13、識別部15としての機能を実行する。また、コンピュータは、メモリや外部記憶装置により、記憶部14の機能を実行する。従って、コンピュータは、特徴量抽出部12、学習部13、記憶部14および識別部15を有する。特徴量抽出アルゴリズムとして、例えばHOG(Histograms of Oriented Gradients),LBP(Local Binary Pattern),GLAC(Gradient Local Auto-Correlation),HLAC(Higher-order Local Auto-Correlation),Haar-like等が用いられる。また、機械学習アルゴリズムとして、例えば、AdaBoost(Adaptive Boosting)、マハラノビス(Mahalanobis)K-means、単純Bayes分類器、決定木、ブースティング、ランダムツリー、期待値最大化(Expectation Maximization)、K近傍、ニューラルネットワーク、多層パーセプトロン(MPL)、サポートベクターマシン(Support vector machine)、深層学習 (Deep Learning)等が用いられる。
 次に、本実施形態の識別装置1の動作について説明するとともに、本実施形態の識別方法について説明する。図2は、本実施形態の識別方法を説明するフローチャートである。本実施形態の識別方法は、第1画像取得ステップS11、第1特徴量抽出ステップS12、識別ステップS13、第2画像取得ステップS21、第2特徴量抽出ステップS22および学習ステップS23を有する。
 第2画像取得ステップS21では、多数の既知細胞の定量位相画像を定量位相画像取得部11により取得する。続く第2特徴量抽出ステップS22では、これらの既知細胞の定量位相画像の特徴量を特徴量抽出部12により抽出する。そして、学習ステップS23では、学習部13において、第2特徴量抽出ステップS22で抽出された特徴量に基づいて機械学習を行い、その学習結果を記憶部14に記憶させる。なお、識別ステップS13において、白血球を識別する場合には、多数の既知細胞は、白血球と白血球以外の細胞の定量位相画像を定量位相画像取得部11により取得するのが好適である。また、識別ステップS13において、がん細胞を識別する場合には、多数の既知細胞は、がん細胞とがん細胞以外の細胞の定量位相画像を定量位相画像取得部11により取得するのが好適である。
 ここで、白血球は、がん患者から採取したものであってもよいし、健常者から採取したものであってもよい。白血球は、溶血剤を添加されたものであってもよい。がん細胞は、採取した血中循環腫瘍細胞であってもよいし、培養したがん細胞であってもよい。
 第1画像取得ステップS11では、未知細胞の定量位相画像を定量位相画像取得部11により取得する。続く第1特徴量抽出ステップS12では、この未知細胞の定量位相画像の特徴量を特徴量抽出部12により抽出する。そして、識別ステップS13では、識別部15において、記憶部14により記憶されている学習結果を用いて、第1特徴量抽出ステップS12で抽出された特徴量に基づいて未知細胞の種別を判定する。
 次に、細胞の構造について説明するとともに、細胞の定量位相画像および特徴量について説明する。図3は、細胞の構造を模式的に示す図である。図3には説明の便宜の為にxyz直交座標系が示されている。細胞30は、xy平面に平行に配置されているプレパラート40上に載置されている。図3(a)は、xz平面に平行な細胞30の断面図を示す。図3(b)は、z軸に平行な光軸の方向に細胞30を見た平面図を示す。細胞30は、中央領域に存在する細胞核31を細胞質32が覆っており、その細胞質32を細胞膜33が包んだ構造を有している。
 図3に示されるように、一般的な細胞は、細胞核,細胞質および細胞膜を含む構造を有する。これら細胞核,細胞質および細胞膜の形状や屈折率は、白血球やがん細胞といった細胞の種類によって異なる。また、一般に、正常な細胞ががん細胞へと変化する際、細胞核の大きさや形状が変化していくことが知られている。ただし、血中がん細胞の明確な形状はわかっていないので、以下の説明では、血中がん細胞ではなく、一般的ながん細胞について説明する。
 定量位相画像取得部11を用いたときに光軸方向(z方向)に光が細胞内を通過する際、細胞核,細胞質および細胞膜それぞれの屈折率や形状に応じて、光の位相遅れがxy平面上の各位置によって異なる。定量位相画像取得部11により取得される定量位相画像は、この位相遅れ分布を表すものであり、細胞の光学的な厚み分布を表すものである。定量位相画像の各画素値は、その画素に対応するxy位置での光学的な厚みに相当する。このように、定量位相画像は、細胞核,細胞質および細胞膜それぞれの屈折率や形状に応じたものとなる。したがって、細胞の定量位相画像に基づいて、その細胞の種別を判定することができる。
 図4は、がん細胞(HepG2)の定量位相画像の一例を示す図である。図5は、白血球の定量位相画像の一例を示す図である。図4(a)及び図5(a)は、定量位相画像を示す。図4(b)及び図5(b)は、対応する図の(a)中に示される破線に沿った細胞の光学的厚みの分布を示す。がん細胞および白血球それぞれの定量位相画像を対比して判るように、両者は、光学的厚みの最大値の点で相違しており、また、光学的厚みの傾きの点でも相違している。そこで、これらを定量位相画像の特徴量として特徴量抽出部12により抽出すればよい。
 次に、光学的厚みの傾きについて更に説明する。本実施形態では、定量位相画像の特徴量として光学的厚みの傾き情報を特徴量抽出部12により抽出して、この傾き情報に基づく画像認識を行うことで、白血球とがん細胞とを識別するのが好適である。傾き情報とは、図4(b)および図5(b)に示されるように横軸を位置として縦軸を光学的厚みとしたときのグラフの傾きや、xy平面におけるベクトルなどの情報を表す。この傾き情報は、細胞表面の傾斜を表すものではなく、細胞を構成する細胞核などの形状や屈折率などの細胞内部の構造を反映したものである。
 特徴量抽出部12において特徴量抽出アルゴリズムとしてHOGを用いて細胞の定量位相画像の特徴量として傾き情報を抽出する場合、例えば以下のような特徴量抽出の処理を行う。定量位相画像において位置(x,y)にある画素の画素値I(x,y)は光学的な厚みに相当する。定量位相画像において位置(x,y)にある画素について、x方向に近接する2つの画素の画素値I(x+1,y),I(x-1,y)の差fx(x,y)を下記(1)式により求めるとともに、y方向に近接する2つの画素の画素値I(x,y+1),I(x,y-1)の差fy(x,y)を下記(2)式により求める。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 xy平面におけるベクトル(fx(x,y),fy(x,y))の大きさ(勾配強度)を、下記(3)式により求められるm(x,y)で表す。また、xy平面におけるベクトル(fx(x,y),fy(x,y))の傾き(勾配方向)を、下記(4)式により求められるθ(x,y)で表す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図6は、定量位相画像におけるfx(x,y),fy(x,y),m(x,y)およびθ(x,y)を説明する図である。図6は、定量位相画像における細胞の領域を略円形で表し、その領域内の或る点におけるfx(x,y),fy(x,y),m(x,y)およびθ(x,y)の間の関係を説明するものである。
 定量位相画像において全画素について勾配強度m(x,y)および勾配方向θ(x,y)を求め、勾配方向θ(x,y)のヒストグラムを求める。このとき、勾配強度m(x,y)で重み付けをする。図7は、勾配強度m(x,y)で重み付けをして求められた勾配方向θ(x,y)のヒストグラムの一例を示す図である。細胞の種類によって、このヒストグラムの形状は異なる。したがって、このヒストグラムの形状に基づいて、がん細胞と白血球とを識別することが可能となる。
 なお、図10に示されるように、既知細胞での機械学習の結果を用いて、第1特徴量抽出ステップS12において、特徴量抽出部12による未知細胞の特徴量の抽出が可能である。未知細胞の定量位相画像の全画素について特徴量を抽出すると時間がかかるので、既知細胞の機械学習の結果に基づいて、定量位相画像の全画素の中から特徴量を抽出する領域(位置や画素)を1つ以上設定することで、細胞の判定にかかる時間を大幅に低減することができる。なお、設定される領域は、定量位相画像を構成する画素を少なくとも1つ含む範囲であればよい。
 次に、上記のような特徴量を抽出することでがん細胞と白血球とが混在した細胞集団から白血球の識別を行った実施例について説明する。この実施例では、健常者から採取した240個の白血球を既知細胞(ポジティブ細胞)として用いるとともに、71個の培養がん細胞を既知細胞(ネガティブ細胞)として用いて、第2画像取得ステップS21、第2特徴量抽出ステップS22および学習ステップS23を行った。71個の培養がん細胞の内訳は、細胞株名HCT116が18個であり、細胞株名DLD1が21個であり、細胞株名HepG2が7個であり、細胞株名Panc1が25個であった。白血球としては、溶血剤を添加したものと、溶血剤を添加しなかったものとを用いた。
 元々150×150画素程度であった各細胞の定量位相画像を、8ビットの白黒画像に変換するとともに、24×24画素,48×48画素または72×72画素のサイズの画像に縮小して、その縮小後の画像を用いて特徴量抽出及び機械学習を行った。用いたアルゴリズムは、OpenCV(Version 2.4.8)に含まれるHOGおよびAdaBoostであった。誤診率0.4で各ステージにおける機械学習を停止した。
 図8は、溶血剤を添加しなかった白血球を用いて機械学習を行った場合のROC曲線を示す図である。図8中の「WBC1」は、溶血剤を添加しなかった白血球を用いて機械学習を行ったことを示す。図8中の3つのROC曲線のうち、「WBC1 24x24」のROC曲線は、白血球画像サイズを24x24画素に縮小した場合に得られた曲線である。また、「WBC1 48x48」のROC曲線は、白血球画像サイズを48x48画素に縮小した場合に得られた曲線である。
 図9は、溶血剤を添加した白血球を用いて機械学習を行った場合のROC曲線を示す図である。図9中の「WBC2」は、溶血剤を添加した白血球を用いて機械学習を行ったことを示す。図9中の3つのROC曲線のうち、「WBC2 24x24」のROC曲線は、白血球画像サイズを24x24画素に縮小した場合に得られた曲線である。また、「WBC2 48x48」のROC曲線は、白血球画像サイズを48x48画素に縮小した場合に得られた曲線である。また、「WBC2 72x72」のROC曲線は、白血球画像サイズを72x72画素に縮小した場合に得られた曲線である。
 ROC(Receiver Operating Characteristic)曲線は、学習部13による機械学習の結果を用いた識別部15による識別の性能を表す。横軸は、実際には白血球でない対象物を間違って白血球であると判定する確率を表す偽陽性率(False Positive Fraction)である。縦軸は、実際に白血球である対象物を正しく白血球であると判定する確率を表す真陽性率(True Positive Fraction)である。ROC曲線が左上に存在するほど識別精度は高い。AUC(Area under the curve)は、ROC曲線より下の領域の面積を表す。AUCが大きいこと(すなわち、AUCが値1に近いこと)は、ROC曲線が左上に近いことを意味しており、識別精度が高いことを表す。
 図8および図9から判るように、細胞画像の画素数が多いほど、AUCが大きい。また、溶血剤を添加した白血球を用いて機械学習を行った方が、AUCが大きい。機械学習に用いるがん細胞を上記とは異なる株の組み合わせとした場合にも、同様のROC曲線が得られた。したがって、がん細胞と白血球とを高精度に識別するには、細胞画像の画素数が多い(例えば48×48以上である)のが好ましく、また、溶血剤を添加した白血球を用いて機械学習を行うのが好ましい。
 このような機械学習を行って、その学習結果を記憶部14に記憶しておく。これ以降の未知細胞の識別や特徴量の抽出を行うに際しては、記憶部14に記憶されている学習結果を用いて識別や特徴量の抽出を行なえばよいので、学習部13を用いる必要はなく、第2画像取得ステップS21、第2特徴量抽出ステップS22および学習ステップS23を行う必要はない。
 また、特徴量抽出部12によって、細胞の定量位相画像(光学的厚み分布の画像)の特徴量として傾き情報を抽出し、白血球及びがん細胞の判別を行った例について示す。ここで、図11は、(a)白血球の構造、及び(b)光学的厚みの傾き情報について模式的に示す図である。図11(a)において、矢印51は、白血球50における光学的厚みの方向を示している。また、図11(b)において、矢印52は、光学的厚み分布での傾き情報を示している。また、図12は、(a)がん細胞の構造、及び(b)光学的厚みの傾き情報について模式的に示す図である。図12(a)において、矢印56は、がん細胞55における光学的厚みの方向を示している。また、図12(b)において、矢印57は、光学的厚み分布での傾き情報を示している。
 図13は、定量位相画像の特徴量として抽出された傾き情報を用いて、白血球とがん細胞とを判別する際、白血球の偽陽性率と真陽性率との関係を示すROC曲線である。ここでは、特徴量抽出アルゴリズムとして、HOGを用いている。図13からわかるように、この例では、AUCが約0.98と非常に高い値を示し、がん細胞と白血球を高精度で判定できていることがわかる。
 本発明の一側面による識別装置、及び識別方法は、上記した実施形態及び構成例に限られるものではなく、様々な変形が可能である。
 上記実施形態による識別装置では、(1)対象物の光学的厚み分布の画像の特徴量を抽出する特徴量抽出部と、(2)種別が既知である対象物(既知対象物)の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて機械学習を行った学習結果を記憶する記憶部と、(3)記憶部により記憶されている学習結果を用いて、種別が未知である対象物(未知対象物)の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて未知対象物の種別を判定する識別部と、を備え、未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、記憶部により記憶されている学習結果を用いる構成としている。
 上記構成の識別装置は、(4)既知対象物の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて機械学習を行う学習部を更に備え、(5)記憶部が、学習部による機械学習の学習結果を記憶するのが好適である。
 上記実施形態による識別方法では、(1)種別が未知である対象物(未知対象物)の光学的厚み分布の画像の特徴量を特徴量抽出部により抽出する第1特徴量抽出ステップと、(2)種別が既知である対象物(既知対象物)の光学的厚み分布の画像について特徴量抽出部により抽出された特徴量に基づいて機械学習を行って記憶部により記憶された当該学習結果を用いて、第1特徴量抽出ステップにおいて抽出された特徴量に基づいて未知対象物の種別を判定する識別ステップと、を備え、未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、記憶部により記憶されている学習結果を用いる構成としている。
 上記構成の識別方法は、(3)既知対象物の光学的厚み分布の画像の特徴量を特徴量抽出部により抽出する第2特徴量抽出ステップと、(4)第2特徴量抽出ステップにおいて抽出された特徴量に基づいて機械学習を行い、その学習結果を記憶部に記憶させる学習ステップと、を更に備えるのが好適である。
 上記構成では、特徴量抽出部により、記憶部により記憶された学習結果を用いて、未知対象物の光学的厚み分布の画像内において特徴量を抽出する領域を少なくとも1つを設定する構成としても良い。具体的には、識別装置は、特徴量抽出部が、記憶部により記憶されている学習結果を用いて、未知対象物の光学的厚み分布の画像内において特徴量を抽出する領域を少なくとも1つ設定する構成としても良い。また、識別方法は、第1特徴量抽出ステップが、記憶部により記憶された学習結果を用いて、未知対象物の光学的厚み分布の画像内において特徴量を抽出する領域を少なくとも1つを設定する構成としても良い。
 また、上記構成では、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する構成としても良い。具体的には、識別装置は、特徴量抽出部が、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する構成としても良い。また、識別方法は、特徴量抽出部により、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する構成としても良い。
 特に、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報は、光学的厚み分布の画像内の位置(画素)におけるベクトルの勾配強度および勾配方向の双方または何れか一方である構成としても良い。
 また、対象物として白血球およびがん細胞を含む構成としても良い。また、特徴量抽出部により、溶血剤を添加した対象物の光学的厚み分布の画像の特徴量を抽出する構成としても良い。
 また、本発明の一側面による識別装置は、対象物の光学的厚み分布の画像の特徴量を抽出する特徴量抽出部と、抽出された特徴量に基づいて対象物の種別を判定する識別部とを備え、特徴量抽出部が、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する。
 また、本発明の一側面による識別方法は、対象物の光学的厚み分布の画像の特徴量を抽出する抽出ステップと、抽出された特徴量に基づいて対象物の種別を判定する識別ステップとを備え、抽出ステップでは、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する。
 図13からわかるように、対象物の光学的厚み分布の画像に対して、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出することにより、高精度で対象物の種別を判定することができる。
 本発明の一側面は、3次元的形状を有し、大きさ及び形状について大きな特徴がなく無色透明である対象物であっても該対象物を識別することができる識別装置および識別方法として利用可能である。
 1…識別装置、11…定量位相画像取得部、12…特徴量抽出部、13…学習部、14…記憶部、15…識別部。

Claims (10)

  1.  対象物の光学的厚み分布の画像の特徴量を抽出する特徴量抽出部と、
     種別が既知である既知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて機械学習を行った学習結果を記憶する記憶部と、
     前記記憶部により記憶されている学習結果を用いて、種別が未知である未知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて未知対象物の種別を判定する識別部と、
     を備え、
     未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、前記記憶部により記憶されている学習結果を用いるとともに、
     前記特徴量抽出部が、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する、
     識別装置。
  2.  既知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて機械学習を行う学習部を更に備え、
     前記記憶部が、前記学習部による機械学習の学習結果を記憶する、
     請求項1に記載の識別装置。
  3.  前記特徴量抽出部は、前記記憶部により記憶されている学習結果を用いて、前記未知対象物の光学的厚み分布の画像内において前記特徴量を抽出する領域を少なくとも1つ設定する、請求項1または2に記載の識別装置。
  4.  前記光学的厚みの空間的変化量に関する情報は、前記光学的厚み分布の画像内の位置におけるベクトルの勾配強度および勾配方向の双方または何れか一方である、請求項1~3の何れか一項に記載の識別装置。
  5.  種別が未知である未知対象物の光学的厚み分布の画像の特徴量を特徴量抽出部により抽出する第1特徴量抽出ステップと、
     種別が既知である既知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて機械学習を行って記憶部により記憶された当該学習結果を用いて、前記第1特徴量抽出ステップにおいて抽出された特徴量に基づいて未知対象物の種別を判定する識別ステップと、
     を備え、
     未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、前記記憶部により記憶されている学習結果を用いるとともに、
     前記特徴量抽出部により、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する、
     識別方法。
  6.  既知対象物の光学的厚み分布の画像の特徴量を前記特徴量抽出部により抽出する第2特徴量抽出ステップと、
     前記第2特徴量抽出ステップにおいて抽出された特徴量に基づいて機械学習を行い、その学習結果を前記記憶部に記憶させる学習ステップと、
     を更に備える、請求項5に記載の識別方法。
  7.  前記第1特徴量抽出ステップは、前記記憶部により記憶された学習結果を用いて、前記未知対象物の光学的厚み分布の画像内において前記特徴量を抽出する領域を少なくとも1つを設定する、請求項5または6に記載の識別方法。
  8.  前記光学的厚みの空間的変化量に関する情報は、前記光学的厚み分布の画像内の位置におけるベクトルの勾配強度および勾配方向の双方または何れか一方である、請求項5~7の何れか一項に記載の識別方法。
  9.  前記対象物として白血球およびがん細胞を含む、請求項5~8の何れか一項に記載の識別方法。
  10.  前記特徴量抽出部により、溶血剤を添加した対象物の光学的厚み分布の画像の特徴量を抽出する、請求項9に記載の識別方法。
PCT/JP2015/071023 2014-07-29 2015-07-23 識別装置および識別方法 WO2016017533A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016538314A JP6692049B2 (ja) 2014-07-29 2015-07-23 識別装置および識別方法
US15/329,456 US10180387B2 (en) 2014-07-29 2015-07-23 Identification device and identification method
EP15827812.7A EP3176563B1 (en) 2014-07-29 2015-07-23 Identification device and identification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014153651 2014-07-29
JP2014-153651 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017533A1 true WO2016017533A1 (ja) 2016-02-04

Family

ID=55217434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071023 WO2016017533A1 (ja) 2014-07-29 2015-07-23 識別装置および識別方法

Country Status (4)

Country Link
US (1) US10180387B2 (ja)
EP (1) EP3176563B1 (ja)
JP (1) JP6692049B2 (ja)
WO (1) WO2016017533A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207524A1 (ja) * 2017-05-07 2018-11-15 国立大学法人大阪大学 識別方法、分類分析方法、識別装置、分類分析装置および記憶媒体
EP3454042A1 (en) 2017-09-06 2019-03-13 Hamamatsu Photonics K.K. Cell observation system and cell observation method
WO2019097587A1 (ja) * 2017-11-14 2019-05-23 株式会社ニコン 定量位相画像生成方法、定量位相画像生成装置およびプログラム
JP2019103412A (ja) * 2017-12-11 2019-06-27 憲隆 福永 胚選抜システム
CN110178012A (zh) * 2016-12-16 2019-08-27 国立大学法人大阪大学 分类分析方法、分类分析装置及分类分析用记录介质
JP2019141090A (ja) * 2019-05-07 2019-08-29 憲隆 福永 胚選抜システム
US20200193140A1 (en) * 2017-08-24 2020-06-18 Nano Global Detection of Biological Cells or Biological Substances
CN111784669A (zh) * 2020-06-30 2020-10-16 长沙理工大学 一种胶囊内镜图像多病灶检测方法
WO2022024564A1 (ja) 2020-07-30 2022-02-03 浜松ホトニクス株式会社 判別装置、判別方法、判別プログラム及び記録媒体
EP3965070A1 (en) 2020-08-28 2022-03-09 Hamamatsu Photonics K.K. Learning model generation method, identification method, learning model generation system, identification system, learning model generation program, identification program, and recording medium
WO2022195754A1 (ja) * 2021-03-17 2022-09-22 株式会社エビデント データ処理方法、データ処理装置、三次元観察装置、学習方法、学習装置及び記録媒体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410416B1 (en) * 2016-01-28 2021-08-04 Ricoh Company, Ltd. Image processing device, imaging device, mobile entity apparatus control system, image processing method, and program
CN110392732B (zh) * 2017-03-02 2023-07-28 株式会社岛津制作所 细胞分析方法和细胞分析装置
EP3714459A4 (en) * 2017-11-20 2021-12-22 Nano Global Corp. DATA COLLECTION AND ANALYSIS BASED ON THE DETECTION OF BIOLOGICAL CELLS OR BIOLOGICAL SUBSTANCES
CN111105416B (zh) * 2019-12-31 2022-09-09 北京理工大学重庆创新中心 一种骨髓细胞增生程度自动分级方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210542A (ja) * 2008-03-06 2009-09-17 Hamamatsu Photonics Kk 観察装置
JP2010203949A (ja) * 2009-03-04 2010-09-16 Nec Corp 画像診断支援装置、画像診断支援方法、画像診断支援プログラム、及びその記憶媒体
JP2014039535A (ja) * 2012-07-24 2014-03-06 Univ Of Electro-Communications 細胞識別装置及び細胞識別方法、並びに、細胞識別方法のプログラム及びそのプログラムを記録した記録媒体
JP2014508922A (ja) * 2011-01-25 2014-04-10 マサチューセッツ インスティテュート オブ テクノロジー シングルショットの全視野反射位相顕微鏡法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8131053B2 (en) * 1999-01-25 2012-03-06 Amnis Corporation Detection of circulating tumor cells using imaging flow cytometry
US20060258018A1 (en) * 2003-09-23 2006-11-16 Curl Claire L Method and apparatus for determining the area or confluency of a sample
US9322834B2 (en) * 2007-05-30 2016-04-26 Sysmex Corporation Sample analyzer, blood analyzer and displaying method
EP2290350B1 (en) 2008-06-04 2018-11-21 Hitachi High-Technologies Corporation Particle image analysis method and device
WO2010056859A1 (en) * 2008-11-14 2010-05-20 Beckman Coulter, Inc. Monolithic optical flow cells and method of manufacture
US8599383B2 (en) * 2009-05-06 2013-12-03 The Regents Of The University Of California Optical cytometry
WO2011132586A1 (ja) * 2010-04-23 2011-10-27 浜松ホトニクス株式会社 細胞観察装置および細胞観察方法
US11105686B2 (en) * 2010-05-10 2021-08-31 University of Pittshurgh-Of the Commonwealth System of Higher Education Spatial-domain low-coherence quantitative phase microscopy
EP2637015A4 (en) * 2010-11-01 2016-09-07 Kanagawa Kagaku Gijutsu Akad CELL ANALYZER
US9522396B2 (en) * 2010-12-29 2016-12-20 S.D. Sight Diagnostics Ltd. Apparatus and method for automatic detection of pathogens
CN103842769B (zh) * 2011-08-02 2017-12-15 加利福尼亚大学董事会 通过活细胞干涉测量法的快速、大量平行单细胞药物响应测量
US20140193892A1 (en) 2012-07-25 2014-07-10 Theranos, Inc. Image analysis and measurement of biological samples
JP5464244B2 (ja) * 2012-08-24 2014-04-09 富士ゼロックス株式会社 画像処理装置、プログラム及び画像処理システム
EP2972214B1 (en) * 2013-03-15 2018-10-31 Iris International, Inc. Sheath fluid systems and methods for particle analysis in blood samples
EP2997363A4 (en) * 2013-05-13 2016-11-30 Chiranjit Deka APPARATUS AND METHODS FOR CELL ANALYSIS
WO2015065909A1 (en) * 2013-10-30 2015-05-07 The General Hospital Corporation System and method for inertial focusing cytometer with integrated optics for particle characterization
WO2015085216A1 (en) * 2013-12-06 2015-06-11 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Spatial-domain low-coherence quantitative phase microscopy
JP6116502B2 (ja) * 2014-02-28 2017-04-19 シスメックス株式会社 検体分析装置および検体分析方法
US10036698B2 (en) * 2015-06-19 2018-07-31 Captl Llc Time-sequential cytometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210542A (ja) * 2008-03-06 2009-09-17 Hamamatsu Photonics Kk 観察装置
JP2010203949A (ja) * 2009-03-04 2010-09-16 Nec Corp 画像診断支援装置、画像診断支援方法、画像診断支援プログラム、及びその記憶媒体
JP2014508922A (ja) * 2011-01-25 2014-04-10 マサチューセッツ インスティテュート オブ テクノロジー シングルショットの全視野反射位相顕微鏡法
JP2014039535A (ja) * 2012-07-24 2014-03-06 Univ Of Electro-Communications 細胞識別装置及び細胞識別方法、並びに、細胞識別方法のプログラム及びそのプログラムを記録した記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176563A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178012A (zh) * 2016-12-16 2019-08-27 国立大学法人大阪大学 分类分析方法、分类分析装置及分类分析用记录介质
WO2018207524A1 (ja) * 2017-05-07 2018-11-15 国立大学法人大阪大学 識別方法、分類分析方法、識別装置、分類分析装置および記憶媒体
JPWO2018207524A1 (ja) * 2017-05-07 2020-05-28 国立大学法人大阪大学 識別方法、分類分析方法、識別装置、分類分析装置および記憶媒体
US20200193140A1 (en) * 2017-08-24 2020-06-18 Nano Global Detection of Biological Cells or Biological Substances
EP3454042A1 (en) 2017-09-06 2019-03-13 Hamamatsu Photonics K.K. Cell observation system and cell observation method
US11285483B2 (en) 2017-09-06 2022-03-29 Hamamatsu Photonics K.K. Cell observation system and cell observation method
WO2019097587A1 (ja) * 2017-11-14 2019-05-23 株式会社ニコン 定量位相画像生成方法、定量位相画像生成装置およびプログラム
JP2019103412A (ja) * 2017-12-11 2019-06-27 憲隆 福永 胚選抜システム
JP7000379B2 (ja) 2019-05-07 2022-01-19 憲隆 福永 胚選抜システム
JP2019141090A (ja) * 2019-05-07 2019-08-29 憲隆 福永 胚選抜システム
CN111784669A (zh) * 2020-06-30 2020-10-16 长沙理工大学 一种胶囊内镜图像多病灶检测方法
CN111784669B (zh) * 2020-06-30 2024-04-02 长沙理工大学 一种胶囊内镜图像多病灶检测方法
WO2022024564A1 (ja) 2020-07-30 2022-02-03 浜松ホトニクス株式会社 判別装置、判別方法、判別プログラム及び記録媒体
EP3965070A1 (en) 2020-08-28 2022-03-09 Hamamatsu Photonics K.K. Learning model generation method, identification method, learning model generation system, identification system, learning model generation program, identification program, and recording medium
WO2022195754A1 (ja) * 2021-03-17 2022-09-22 株式会社エビデント データ処理方法、データ処理装置、三次元観察装置、学習方法、学習装置及び記録媒体

Also Published As

Publication number Publication date
US20170212033A1 (en) 2017-07-27
EP3176563A1 (en) 2017-06-07
US10180387B2 (en) 2019-01-15
EP3176563A4 (en) 2018-04-25
JPWO2016017533A1 (ja) 2017-05-25
EP3176563B1 (en) 2021-06-30
JP6692049B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
JP6692049B2 (ja) 識別装置および識別方法
Veta et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images
JP6710135B2 (ja) 細胞画像の自動分析方法及びシステム
CN110889312B (zh) 活体检测方法和装置、电子设备、计算机可读存储介质
Sanchez-Morillo et al. Classification of breast cancer histopathological images using KAZE features
Vargas et al. Particle quality assessment and sorting for automatic and semiautomatic particle-picking techniques
Sadek et al. Automatic discrimination of color retinal images using the bag of words approach
Aswathy et al. An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features
Nanni et al. A comparison of methods for extracting information from the co-occurrence matrix for subcellular classification
Cicconet et al. Mirror symmetry histograms for capturing geometric properties in images
Elsalamony Detection of anaemia disease in human red blood cells using cell signature, neural networks and SVM
US20240054639A1 (en) Quantification of conditions on biomedical images across staining modalities using a multi-task deep learning framework
Kong et al. Texture based image recognition in microscopy images of diffuse gliomas with multi-class gentle boosting mechanism
Iqbal et al. A heteromorphous deep CNN framework for medical image segmentation using local binary pattern
Peikari et al. Clustering analysis for semi-supervised learning improves classification performance of digital pathology
Majid et al. Enhanced transfer learning strategies for effective kidney tumor classification with CT imaging
Rathore et al. A novel approach for ensemble clustering of colon biopsy images
Di Ruberto et al. On different colour spaces for medical colour image classification
Hirata et al. Plankton image classification based on multiple segmentations
KR20230063147A (ko) 다단계 특징 분석을 사용한 전립선 조직의 효율적인 경량 cnn과 앙상블 머신 러닝 분류 방법 및 시스템
Yancey Deep Feature Fusion for Mitosis Counting
Boonsiri et al. 3D gray level co-occurrence matrix based classification of favor benign and borderline types in follicular neoplasm images
Naik et al. Hybrid Feature Set based Mitotic Detection in Breast Histopathology Images
da Silva Combining machine learning and deep learning approaches to detect cervical cancer in cytology images
Foran et al. A cagrid-enabled, learning based image segmentation method for histopathology specimens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538314

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015827812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15329456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE