WO2016017289A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2016017289A1
WO2016017289A1 PCT/JP2015/066651 JP2015066651W WO2016017289A1 WO 2016017289 A1 WO2016017289 A1 WO 2016017289A1 JP 2015066651 W JP2015066651 W JP 2015066651W WO 2016017289 A1 WO2016017289 A1 WO 2016017289A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction container
reaction
sample
unit
automatic analyzer
Prior art date
Application number
PCT/JP2015/066651
Other languages
English (en)
French (fr)
Inventor
達也 坂井
牧野 彰久
稔 佐野
千枝 薮谷
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US15/326,820 priority Critical patent/US10267817B2/en
Priority to JP2016538200A priority patent/JP6320535B2/ja
Priority to EP15828276.4A priority patent/EP3176585B1/en
Priority to CN201580032871.4A priority patent/CN106662593B/zh
Publication of WO2016017289A1 publication Critical patent/WO2016017289A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N35/0095Scheduling introducing urgent samples with priority, e.g. Short Turn Around Time Samples [STATS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0406Individual bottles or tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood

Definitions

  • the present invention relates to an automatic analyzer for analyzing the amount of components contained in a sample such as blood or urine.
  • Specimen tests in the field of clinical tests include immune serum tests, biochemical tests, blood coagulation tests and the like. Conventionally, each of these examinations has been performed separately by a dedicated device, and it may take time to install a sample, perform an analysis request operation in each device, check an output result, and manage the result.
  • an automatic analyzer capable of consistently performing a plurality of inspections with different measurement methods.
  • a method of performing a plurality of inspections with a common inspection mechanism is proposed in order to reduce the size and increase the efficiency of the apparatus.
  • the immune serum test or biochemical test is performed in the same test area as the blood coagulation test.
  • Patent Document 2 discloses an automatic analyzer that can perform a biochemical test and a blood coagulation test.
  • Patent Document 1 discloses a technique for performing a coagulation test by moving a plurality of reaction containers for blood coagulation tests at a constant speed.
  • the mechanism system becomes complicated.
  • there is a mechanism system to drive there exists a subject that an apparatus will enlarge.
  • Patent Document 2 discloses an automatic analyzer having a plurality of photometric ports. Since there is no drive mechanism system for blood coagulation measurement, the problem in Patent Document 1 can be solved. However, in the coagulation time measurement, the measurement time for each sample is different, and depending on the sample, it may take a lot of measurement time. In addition, when there are many measurement samples for coagulation time measurement, the samples may stagnate and the coagulation measurement may not be performed. As a result, a sample waiting to be dispensed is left on the sample disk, and the dispensing efficiency is lowered. In the technique of Patent Document 2, the stagnation of the specimen in the sample disk is not taken into consideration.
  • An object of the present invention is to provide an automatic analyzer that performs a blood coagulation test, and that can suppress a decrease in sample dispensing efficiency while reducing the size of the apparatus or reducing the cost of the apparatus.
  • a representative invention is that a sample dispensing mechanism for dispensing a specimen is placed in a reaction container for mixing a specimen and a reagent and reacting the mixed liquid, and the reaction container is placed in the reaction container.
  • a blood coagulation time measurement unit for measuring the coagulation time of the mixed solution
  • a reaction container storage unit for storing a plurality of the reaction containers to be supplied to the blood coagulation measurement unit, and holding the reaction container
  • the control unit transfers the reaction container into which the sample has been dispensed by the reaction container transfer mechanism. It is the automatic analyzer which controls by transferring to a reaction container storage part and mounting.
  • a sample dispensing mechanism for dispensing a specimen is placed in a reaction container for mixing a specimen and a reagent and reacting the mixed liquid mixture, and the reaction container is placed.
  • a blood coagulation time measurement unit for measuring the coagulation time of the mixed solution in the reaction container;
  • a reaction container storage unit for storing a plurality of the reaction containers to be supplied to the blood coagulation measurement unit;
  • the control unit is configured to supply the sample dispensed by the reaction vessel transfer mechanism.
  • reaction container transfer mechanism It is an automatic analyzer for controlling to place the reaction container containing the sample before measurement placed in the reaction container storage part on the blood coagulation time measurement part.
  • an automatic analyzer that performs a blood coagulation test and can reduce the size of the apparatus and reduce the cost of the apparatus.
  • the stagnation of the sample can be suppressed, and the decrease in the sample dispensing efficiency can be suppressed.
  • FIG. 7 is a diagram summarizing an example of an operation sequence of the reaction container transfer mechanism 32 when blood coagulation analysis is started by an operator and when the coagulation time detection unit 41 is empty in an embodiment of the present invention. . It is the figure which showed the outline of operation
  • finished is shown. It is the figure which showed the outline of operation
  • FIG. 10 is a diagram showing an outline of the operation of the reaction container transfer mechanism 32 in the operation sequence shown in FIG. 9 in the embodiment of the present invention.
  • FIG. 10 is a diagram showing an outline of the operation of the reaction container transfer mechanism 32 in the operation sequence shown in FIG. 9 in the embodiment of the present invention.
  • FIG. 10 is a diagram showing an outline of the operation of the reaction container transfer mechanism 32 in the operation sequence shown in FIG. 9 in the embodiment of the present invention.
  • FIG. 10 is a diagram showing an outline of the operation of the reaction container transfer mechanism 32 in the operation sequence shown in FIG. 9 in the embodiment of the present invention.
  • FIG. 1 is a system block diagram showing an overall view of an automatic analyzer capable of performing blood coagulation measurement as a base of one embodiment of the present invention.
  • the automatic analyzer 1 is mainly composed of a sample dispensing mechanism 10, a sample disk 11, a coagulation reagent dispensing mechanism 20, a reagent disk 21, a reaction container storage unit 30, a reaction container transfer mechanism 32, a coagulation time. It consists of a measuring unit 40 and a computer (control unit) 52.
  • the sample disk 11 can be intermittently rotated clockwise and counterclockwise, and a plurality of sample containers 12 for storing biological samples such as blood are placed thereon.
  • a sample dispensing mechanism 10 is disposed in the vicinity of the sample disk 11.
  • the sample dispensing mechanism 10 can rotate clockwise and counterclockwise between the sample disk 11 and the coagulated specimen dispensing unit 43.
  • the sample dispensing mechanism 10 sucks a sample (hereinafter also referred to as a specimen) in the sample container 12 using a probe attached to the tip of the sample dispensing mechanism 10, and the reaction container 31 on the coagulated specimen dispensing unit 43. Dispense the sample.
  • the coagulation reagent dispensing mechanism 20 sucks the reagent in the reagent container 22 and discharges the reagent to the reaction container 31.
  • a reagent temperature raising mechanism 23 is built in the coagulation reagent dispensing mechanism 20, and the reagent sucked by the coagulation reagent dispensing mechanism 20 is heated to an appropriate temperature (predetermined temperature) by the reagent temperature raising mechanism 23.
  • the reaction container 31 is a container for mixing a specimen and a reagent and reacting the mixed liquid.
  • the reaction vessel transfer mechanism 32 is provided with an arm that can hold the reaction vessel 31.
  • the reaction container transfer mechanism 32 can move between the reaction container storage unit 30, the coagulation sample dispensing unit 43, and the coagulation time measurement unit 40, and transfers and places the reaction container 31 at a predetermined place. It is possible.
  • a large number of depressions in which the reaction vessel 31 can be placed are provided on the reaction vessel storage unit 30, and the reaction vessel 31 can be inserted into the depressions.
  • a depression in which the reaction container 31 can be placed is provided on the coagulation specimen dispensing unit 43, and the reaction container 31 can be inserted into this depression.
  • the reaction vessel 31 On the coagulation time measurement unit 40, there is a coagulation time detection unit 41 provided with a recess where the reaction vessel 31 can be placed.
  • the reaction vessel 31 can be inserted into the coagulation time detection unit 41.
  • the light source 42 irradiates light to the reaction container 31 placed on the coagulation time detection unit 41.
  • the light emitted from the light source 42 is scattered in the reaction container 31, and the scattered light is received by a photodiode provided in the coagulation time detection unit 41.
  • the analog signal of the measured scattered light is input to the A / D converter 56. Based on the digital signal input to the A / D converter, the coagulation time is measured. That is, the reaction vessel 31 is placed on the blood time measurement unit 40, and the coagulation time of the mixed solution in the reaction vessel can be measured.
  • the computer (control unit) 52 is connected to the sample dispensing control unit 57, the coagulation reagent dispensing control unit 58, the reaction container transfer mechanism control unit 59, and the A / D converter 56 via the interface 50.
  • a computer (control unit) 52 sends commands to the control units to control each operation.
  • the A / D converted photometric value is taken into the computer (control unit) 52. That is, the computer (control unit) 52 can control the reaction container transfer mechanism, the sample dispensing mechanism, and the like via each control unit of each mechanism.
  • the interface 50 is connected to a printer 53 for printing, a memory 55 as a storage device, a keyboard 51 for inputting operation commands and the like, and a display device 54 for displaying a screen such as a CRT display or a liquid crystal display.
  • the memory 55 is composed of, for example, a hard disk memory or an external memory.
  • the memory 55 stores information such as analysis parameters, analysis item requests, calibration results, and analysis results.
  • the reaction container transfer mechanism 32 transfers the reaction container 31 on the reaction container storage unit 30 to the coagulation sample dispensing unit 43 and places it.
  • the sample dispensing mechanism 10 sucks the specimen used for analysis from the sample container 11 on the sample disk 12 and discharges the specimen to the reaction container 31 on the coagulated specimen dispensing unit 43.
  • the reaction container 31 into which the sample has been dispensed is transferred and placed on the blood coagulation time detection unit 41 by the reaction container transfer mechanism 32. Thereafter, when the reagent is discharged into the reaction container 31 on the blood coagulation time detector 41 by the coagulation reagent dispensing mechanism 20, the mixed solution of the sample and the reagent reacts to start the blood coagulation reaction.
  • the light is irradiated from the light source 42 into the reaction vessel.
  • the coagulation time measurement unit receives this scattered light, and the A / D converted measurement value is taken into the computer (control unit) 52 through the interface 50.
  • the measurement result is output from the printer 53 or the display device 54.
  • the reaction container transfer mechanism 32 After completion of the coagulation reaction, the reaction container transfer mechanism 32 holds the reaction container 31 for which photometry has been completed, and discards the reaction container 31 at a predetermined position.
  • FIG. 2 is a schematic diagram of an automatic analyzer including a blood coagulation measurement unit and an absorbance measurement unit capable of biochemical measurement according to an embodiment of the present invention.
  • the sample dispensing mechanism 10 is shared by the blood coagulation test and the biochemical test.
  • a reaction disk 60 provided with a plurality of reaction cells (second reaction containers) 62 and reagent dispensing mechanisms 61 (61 (a), 61) used for biochemical measurement. (B)) is added.
  • a plurality (six in the example of this apparatus) of coagulation time detectors 41 are provided on the coagulation time measurement unit 40.
  • the reagent for blood coagulation test can be aspirated from the reagent disk (21 (a), 21 (b)) to the coagulation reagent dispensing mechanism 20 via the reaction disk 60.
  • the reagent can be efficiently heated before being discharged into the container 31. This is because the reaction disk 60 is kept at about 37 degrees in a constant temperature bath.
  • reaction container storage unit 30 is provided with two reaction container storage units 30.
  • a large number of depressions into which the reaction container 31 can be inserted are provided on the reaction container storage unit 30, and an empty reaction container 31 used for blood coagulation measurement is installed in advance.
  • the reaction container storage unit 30 has a detachable structure. Therefore, the operator can remove the reaction container storage unit 30 and install another new reaction container storage unit 30.
  • FIG. 3 shows an operation sequence of the reaction container transfer mechanism 32 when an analysis request for a blood coagulation item is registered by an operator and analysis is started. Detailed operations of the reaction container transfer mechanism 32 will be described with reference to FIG.
  • the reaction container transfer mechanism 32 is stopped at the upper left of the reaction container storage unit 30 as the initial position of the reaction container transfer mechanism (FIG. 3a).
  • the reaction container transfer mechanism 32 grips an empty reaction container 31 installed on the reaction container storage unit 30 (FIGS. 3b and 4a), and transfers it to the coagulation sample dispensing unit 43 for loading. (FIGS. 3c and 4b).
  • the reaction vessel transfer mechanism moves to the initial position (FIG. 3d).
  • the sample is dispensed into the reaction container 31 on the coagulated specimen dispensing unit 43 by the sample dispensing mechanism 10 (FIG. 4c).
  • reaction container transfer mechanism 32 holds the sample-containing reaction container 31 on the coagulation sample dispensing unit 43 (FIGS. 3e and 4d), and transfers and places the sample on the coagulation time detection unit 41 (FIGS. 3f and 4e). . Then, the reaction container transfer mechanism 32 moves to the initial position (FIG. 3g), the coagulation reagent dispensing mechanism 20 discharges the reagent to the reaction container 31 on the coagulation time detection unit 41, and the coagulation reaction is started.
  • the reaction container transfer mechanism 32 operates when the blood coagulation time detection unit 41 is not used for the analysis. And the operation is repeated.
  • reaction vessel transfer mechanism 32 The operation of the reaction vessel transfer mechanism 32 is controlled by the reaction vessel transfer mechanism control unit 59 from the computer (control unit) 52 via the interface 50.
  • the reaction container transfer mechanism 32 sequentially holds, for example, the empty reaction containers 31 on the reaction container storage unit 30 from the upper left of the reaction container storage unit 30 line by line in accordance with the order of analysis requests.
  • FIG. 5 shows an operation sequence of the reaction container transfer mechanism 32 when the blood coagulation time detection unit 41 is entirely used for measurement. Detailed operations of the reaction container transfer mechanism 32 will be described with reference to FIG. Whether or not the blood coagulation time detection unit 41 is all used for measurement is determined by a computer (control unit) 52, and based on the determination result, the computer (control unit) 52 operates as shown in FIG. 3 and FIG. The sequence can be switched.
  • the computer places the reaction container into which the specimen has been dispensed by the reaction container transfer mechanism on the blood coagulation time measurement unit until the blood coagulation time measurement unit is completely filled with the reaction container. Subsequently, when the blood coagulation time measurement unit is completely filled with the reaction container, the computer (control unit) transfers the reaction container containing the sample before measurement to the reaction container storage unit by the reaction container transfer mechanism. . Following this, the computer (control unit) is configured such that when the reaction container becomes empty in the blood coagulation time measurement unit, the reaction container containing the sample before measurement placed in the reaction container storage unit by the reaction container transfer mechanism. Is placed on the blood coagulation time measurement unit. Note that description of the same control as in FIG. 3 is omitted.
  • the reaction container transfer mechanism 32 holds an empty reaction container 31 installed on the reaction container storage unit 30 (FIGS. 5b and 6a), and transfers and places it on the coagulation sample dispensing unit 43 (FIG. 5c and FIG. 5). 6b). Then, the sample is dispensed into the reaction container 31 on the coagulated specimen dispensing unit 43 by the sample dispensing mechanism 10 (FIG. 6c). Thereafter, the reaction container transfer mechanism 32 grips the sample-containing reaction container 35 on the coagulated sample dispensing part 43 (FIGS. 5e and 6d), and is the same as the place where the empty reaction container 31 is installed on the reaction container storage part 30. The sample-containing reaction container 35 is transferred and placed at the position (FIGS. 5f and 6e).
  • the reaction container transfer mechanism 32 When the blood vessel coagulation items are sequentially requested by the operator during the analysis, the reaction container transfer mechanism 32 performs the operation sequence shown in FIGS. 5 and 6 when all the blood coagulation time detectors 41 are used for measurement. And the operation is repeated.
  • the same position is not necessarily limited to the same position where the empty reaction container 31 was installed, but it is desirable that the same position is the same where the same empty reaction container 31 was installed.
  • the reaction vessels 31 are used in order in a regular manner, if they are transferred and placed at the same position, the sample containers waiting for analysis are also arranged in order in order. The number of specimen containers can be easily grasped.
  • the reaction container 35 before the measurement is temporarily installed on the reaction container storage unit 30 by the operation of the reaction container transfer mechanism 32. The following effects can be obtained.
  • an apparatus having a reaction disk for measuring absorbance has been described, but the above effects are obtained even when there is no reaction disk.
  • the following effects are obtained when a reaction disk for measuring absorbance is provided and the sample for coagulation time measurement and absorbance measurement is performed by the same sample dispensing mechanism.
  • the measurement can be continuously performed without stopping the dispensing operation of the sample dispensing mechanism 10.
  • the absorbance measurement can be continuously performed without being limited to the coagulation time measurement, and the inspection can be efficiently performed. That is, even when both coagulation measurement and absorbance measurement are requested for the same specimen, the result of the absorbance measurement can be obtained quickly without being limited to the coagulation time measurement. This is because even when the same sample is continuously dispensed, it is not necessary to wait for the absorbance measurement until the coagulation time detection unit becomes empty. In addition, it is possible to prevent a stagnation due to waiting for the dispensing of the sample, so that the waiting time until the sample container is replaced can be reduced.
  • the sample dispensing mechanism 10 cleans the inside of the probe attached to the tip of the sample dispensing mechanism 10 with purified water after the dispensing of the same sample is completed in order to prevent contamination between the samples after sample dispensing. ing.
  • a sample amount larger than the sample amount used for analysis is aspirated as a dummy amount in order to prevent thinning of the sample due to purified water used for washing. Even for the same sample, it may be possible to separate the sample dispensing for measuring the coagulation time and the sample dispensing for measuring the absorbance, but if another sample is aspirated between these dispensings, 2 A dummy amount for each batch is required.
  • the sample-containing reaction container 35 before the measurement can be temporarily installed on the reaction container storage unit 30, it is not limited to the measurement of the coagulation time, and the sample is sequentially sampled as requested by the operator.
  • the dispensing mechanism 10 can continuously perform sample dispensing for coagulation time measurement and absorbance measurement without discharging the aspirated dummy amount. It is possible to reduce the amount of dummy aspirated excessively during sample dispensing. As a result, sample consumption can be reduced.
  • FIG. 7 shows an operation sequence of the reaction container transfer mechanism 32 when the analysis of the reaction container 31 on the coagulation time detection unit 41 is completed. Detailed operations of the reaction container transfer mechanism 32 will be described with reference to FIG.
  • the reaction container transfer mechanism 32 holds the sample-containing reaction container 36 on the coagulation detector 41 (FIGS. 7b and 8a). Then, the reaction container transfer mechanism 32 transfers and places the sample-containing reaction container 36 after the analysis on the reaction container storage unit 30 (FIGS. 7c and 8b). By the operation of the reaction container transfer mechanism 32, the sample-containing reaction container 36 after the analysis is discarded on the reaction container storage unit 30.
  • the position on the reaction container storage unit 30 where the sample-containing reaction container 36 after the analysis is discarded is the same position as the position where the reaction container 31 was installed before the sample was dispensed.
  • reaction container storage unit 30 is used as a disposal place of the sample-containing reaction container 36 after the analysis is completed, so that the reaction container transfer mechanism 32 is operated to add the sample container-containing reaction container 36 after the analysis is completed. This eliminates the need for the mechanism and the storage section, and enables the apparatus to be miniaturized.
  • the reaction container transfer mechanism 32 grips the pre-analysis sample-containing reaction container 35 placed on the reaction container storage unit 30. (FIGS. 7d and 8c). Then, the sample-containing reaction container 35 is transferred to and placed on the coagulation time detection unit 41 that has been vacated (FIGS. 7e and 8d), and the coagulation reaction measurement is performed. The reaction container transfer mechanism 32 transfers and places the sample-containing reaction container 35 before analysis to the coagulation time detection unit 41 in the order of analysis request items.
  • the reaction container transfer mechanism 32 repeatedly executes the operation sequence and the operation of FIGS. 7 and 8 as long as there is a sample that has been analyzed in the blood coagulation time detector 41. However, when there is no sample-containing reaction container before analysis on the reaction container storage unit 30, the sequence of FIGS. 7D and 7E is omitted.
  • FIG. 9 shows an operation sequence of the reaction container transfer mechanism 32 when the analysis of the reaction container 31 on the coagulation time detection unit 41 is completed and the reaction container 37 containing an emergency sample exists on the reaction container storage unit 30.
  • the computer transfers the reaction container containing the urgent sample before measurement to the reaction container storage unit by the reaction container transfer mechanism. .
  • the computer reacts the reaction vessel containing the emergency sample placed in the reaction vessel storage unit with the reaction vessel transfer mechanism. Control is performed to transfer and place the blood coagulation time measurement unit preferentially over the reaction container containing the sample before measurement already placed in the container storage unit.
  • the transfer and placement of the reaction container transfer mechanism 32 from the sample dispensing to the reaction container storage unit is performed in the same manner as in FIGS. 5 and 6 (a) to 6 (e).
  • the reaction container transfer mechanism 32 holds the sample-containing reaction container 36 on the coagulation detector 41 (FIGS. 9b and 10a), and places the sample-containing reaction container 36 on the reaction container storage unit 30 after the analysis. Transport and discard ( Figures 9c, 10b). Thereafter, the reaction container transfer mechanism 32 placed on the reaction container storage unit 30 is preferentially gripped regardless of the order of the analysis request (FIGS. 9d and 10c). Then, the urgent specimen-containing reaction container 37 is transferred to and placed on the clotting time detection unit 41 that has become empty (FIGS. 9e and 10d), and the clotting reaction measurement is performed.
  • the emergency sample-containing reaction container 37 is transferred from the coagulation sample dispensing unit to the coagulation time detection unit by the operation sequence and operation of FIGS. 3 and 4. It is transferred and placed without going through.
  • the reaction container transfer mechanism 32 repeatedly executes the operation sequence and the operation shown in FIGS. 9 and 10 as long as the reaction container containing reaction container 37 exists in the reaction container storage unit 30. However, when there is no reaction container for which analysis has been completed, the sequence of FIGS. 9B and 9C is omitted.
  • the reaction container containing the urgent sample before measurement is placed on the coagulation time detection unit without being placed on the reaction container storage unit. Measurements are made against it.
  • the reaction container containing the emergency sample before measurement is placed in the reaction container storage unit, and the operation sequence of FIG. 9 is performed.
  • the reaction container transport mechanism 32 transports and places the reaction container 31
  • Information such as the discarded position on the reaction container storage unit 30, the measurement result, and an alarm is stored in the memory 55 via the interface 50.
  • the operator can display information on the reaction vessel 31 on the reaction vessel storage unit 30 recorded in the memory 55 on the display device 54.
  • the display of the reaction container storage units 1 and 2 in FIG. 11 corresponds to the physical arrangement of the reaction container storage unit 30.
  • the statuses of “no reaction vessel”, “unused reaction vessel”, “reaction vessel with general sample”, “reaction vessel with emergency sample”, and “reaction vessel with completed analysis” can be visually identified.
  • the position corresponding to each reaction container is identified and displayed.
  • the operator selects a reaction vessel 31 on an arbitrary reaction vessel storage unit 30 displayed on the display device 54 by using a computer (control unit) 52, so that, for example, the reaction vessel 31 is dispensed.
  • Sample information (for example, sample number, measurement item, measurement state of the reaction container, and measurement results and alarm information if analysis is completed) can be confirmed. For example, even if an abnormality occurs during or after the analysis, alarm information is added so that the display device 54 can confirm the disposal location of the sample in which the abnormality is found in the measurement result. it can.
  • the specimen information may be a part of the listed information.
  • the operator can visually confirm the state of the abnormal specimen after the reaction is completed. It can also be used to investigate the cause of whether the abnormality in the measurement result is due to the inclusion of bubbles or foreign matter.
  • the reaction container transfer mechanism 32 causes the selected reaction container storage unit 30 to be selected.
  • the sample-containing reaction container 36 after the completion of the analysis can be gripped and transferred to and placed on the reaction container confirmation unit 33 (see FIG. 2).
  • the reaction container confirmation unit 33 is disposed at a position that is easy for the operator to visually confirm.
  • the reaction container transfer mechanism 32 can move the reaction container 36 containing the sample after completion of the analysis to a position where it can be easily visually confirmed. Therefore, the operator can easily confirm the state of the sample in the reaction container 31 after the completion of the analysis. can do.
  • FIG. 12 is a schematic diagram of an automatic analyzer including a blood coagulation measurement unit and an absorbance measurement unit capable of biochemical measurement according to an embodiment of the present invention.
  • a reaction container discarding section 34 for discarding and storing the reaction container 35 containing the sample after completion of the analysis may be provided separately from the reaction container storing section 30 with respect to the automatic analyzer of FIG. .
  • the reaction container discarding section 34 has a detachable structure, and an operator can attach and remove the reaction container discarding section 34. In this case, a space for the reaction container discarding section 34 is required, but the reaction container containing the sample before measurement can be temporarily installed in the reaction container storage section 30, thereby reducing the size of the apparatus or reducing the apparatus cost. Can be realized.
  • the computer (control unit) 52 explained that the reaction container transfer mechanism controls the reaction container in which the sample is dispensed to the reaction container storage unit and places it thereon.
  • the reaction container to be transported and placed is a reaction container containing a sample before measurement, it is possible to reduce the size of the dedicated area for standby, to suppress the decrease in the dispensing efficiency, or the like.
  • this reaction vessel is a reaction vessel for which measurement has been completed, it is possible to reduce the size of the area dedicated for disposal. Therefore, in any case, it is possible to provide an automatic analyzer that can reduce the size of the apparatus and reduce the apparatus cost.
  • the reaction container to be moved and placed is a reaction container containing a sample before measurement
  • the reaction container containing an emergency sample is placed in the reaction container storage unit
  • the computer (control unit) 52 It is desirable to perform control such that the reaction container containing the emergency sample placed in the reaction container storage unit is preferentially transferred to the blood coagulation time measurement unit and placed by the transfer mechanism. Thereby, in addition to the above-mentioned effect, priority measurement of an emergency sample can be performed.
  • control unit 52 indicates the position of the reaction container storage unit that has been transferred to and placed on the reaction container storage unit and the sample information in the mounted reaction container by the reaction container transfer machine. It is desirable to perform control stored in the memory. Thereby, the operator can pull out the information in the reaction container placed in the storage unit. Furthermore, by having a display device that displays the position recorded in the memory and the sample information, the operator can check the sample information corresponding to the position.
  • the computer (control part) 52 is reaction container storage part which the operator displayed on the display apparatus. It is desirable to control the selected reaction container by transferring the selected reaction container from the reaction container storage part to the reaction container confirmation part by the reaction container transfer mechanism. Thereby, the operator can easily confirm the state of the sample in the reaction container 31 after the analysis is completed.
  • the computer (control unit) 52 includes a reaction container disposal unit that discards the reaction container, and when the measurement of the mixed solution in the reaction container placed on the blood coagulation time measurement unit is completed, Thus, it is also possible to perform control such that the reaction container that has been measured is transferred to the reaction container discarding section and discarded. The operator can attach and remove the reaction container discarding section independently of the reaction container storage section. Even in this case, the computer (control unit) 52 uses the reaction container transfer mechanism to transfer and place the pre-measurement sample-containing reaction container placed in the reaction container storage part to the blood coagulation time measurement part. It is desirable to control. Even in this case, the emergency sample can be preferentially measured.
  • a reaction disk including a second reaction vessel for biochemical measurement is provided, a sample dispensing mechanism dispenses a specimen into the second reaction vessel, and a computer (control unit) 52 includes a sample dispensing mechanism.
  • the sample dispensing mechanism sucks the sample amount, which is obtained by adding the dummy amount not used for analysis to the sample amount used for analysis, and sucked dummy amount It is desirable to perform control so that the same specimen is discharged into the reaction container and the second reaction container without discharging the liquid. As a result, the sample consumption can be reduced.
  • coagulation time detection units have been described as an example. However, this number may be any number in consideration of the processing capability of the apparatus. However, if the number is too large, it is not possible to reduce the size of the device configuration or control the device cost, so it is desirable that the number is 10 or less as a guide.
  • both the reaction container for which the measurement has been completed and the reaction container with the sample before the measurement are handled, but only one of them may be transferred and placed in the reaction container storage unit by the reaction container transfer mechanism.
  • the example of the automatic analyzer equipped with the reaction disk used in biochemical measurement has been described.
  • this reaction disk is not an essential component.
  • the absorbance measurement in the biochemical measurement can be continuously performed without being limited to the measurement of the coagulation time, and the inspection can be performed efficiently.
  • the sample disk 11 has been described as an example.
  • the present invention can also be applied to a rack-type automatic analyzer that performs analysis by mounting a sample container containing a sample on a rack.
  • the detection unit using scattered light has been described.
  • a known detection unit for detecting transmitted light or consistency is applied to the blood coagulation time measurement unit. May be.
  • Coagulation sample dispensing unit 50 ... Interface, 51 ... Keyboard, 52 ... Computer (control unit) , 53 ... Printer, 54 ... Display device, 55 ... Memory, 56 ... A / D converter, 57 ... Sample dispensing control unit, 58 ... Reagent dispensing control unit, 59 ... Reaction container transfer mechanism control unit, 60 ... Response disc, 61 ... reagent dispensing mechanism, 62 ... reaction cell (second reaction vessel)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Robotics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 血液凝固検査を行う自動分析装置であって、装置構成の小型化や装置コストの抑制をし得る自動分析装置を提供する。 検体と試薬を混合し、混合された混合液を反応させるための反応容器と、検体を反応容器へ分注するサンプル分注機構と、反応容器が載置され、反応容器内の混合液の凝固時間を測定する血液凝固時間測定部と、血液凝固測定部に供給する反応容器を複数収納する反応容器収納部と、反応容器を把持し、血液凝固測定部に移送する反応容器移送機構と、反応容器移送機構を制御する制御部と、を備える自動分析装置において、制御部は、反応容器移送機構によって、検体が分注された反応容器を反応容器収納部へ移送し載置する、制御を行う。

Description

自動分析装置
 本発明は、血液や尿などのサンプル中に含まれる成分量を分析する自動分析装置に関する。
 臨床検査分野における検体検査では、免疫血清検査、生化学検査、血液凝固検査等がある。これらの各検査は従来、専用の装置で別々に実施されており、検体の設置、各装置での分析依頼操作、出力結果の確認、結果の管理等に時間を要す場合があった。
 また、血液凝固検査には、凝固因子の活性化からフィブリンが析出するまでの時間を光学的に、または粘稠度を調べることで物理的に捉える方法と、血液凝固に関わるマーカーを透過光量の変化として捉える方法がある。そのため、それぞれ異なる検出器が必要となる。ここで、前者を凝固時間測定、後者を吸光度測定とする。
 検査の迅速性や装置管理の省略化の観点から、測定方式の異なる複数の検査を一貫して行うことができる自動分析装置が提供されている。特許文献1に記載されている生化学自動分析装置では、装置の小型化や効率化を図るため、複数の検査を共通の検査機構で行う方法が提示されている。免疫血清検査または生化学検査を血液凝固検査と同一の検査領域で行うというものである。また、特許文献2には、生化学検査と血液凝固検査を行うことができる自動分析装置が開示されている。
特開2001-13151号公報 国際公開2013/187210号公報
 特許文献1には、血液凝固検査のための複数の反応容器を一定の速さで移動させて凝固検査を行う技術が開示されている。しかしながら、反応容器を移動させるための搬送路を駆動させる必要があるため機構系が複雑になる。また、駆動させる機構系があるため装置が大型化してしまうという課題がある。
 一方、特許文献2には、複数の測光ポートを備えた自動分析装置が開示されている。血液凝固測定のための駆動機構系がないため特許文献1での課題は解決できる。しかし、凝固時間測定では、検体ごとの測定時間は異なり、検体によっては測定時間が多くかかってしまうことがある。また、凝固時間測定の測定検体が多い場合には検体が停滞してしまい凝固測定を行うことができない場合がある。そのため、サンプルディスクに分注待ち検体が残されることとなり、分注効率が低下してしまう。特許文献2の技術では、検体のサンプルディスク内の停滞について考慮されていない。
 これらの課題を解決するために、多くの測定検体を実現するために多くの測光ポートを設置すると、装置の大型化を招いてしまう。また、多くの光源が必要となるため、装置コストが大きくなってしまう。
 そこで本発明は、血液凝固検査を行う自動分析装置であって、装置構成の小型化又は装置コストの抑制をしつつ、検体分注効率の低下を抑制し得る自動分析装置を提供することを目的とする。
 本願に係る発明の代表的なものは以下のとおりである。
 代表的な発明は、検体と試薬を混合し、混合された混合液を反応させるための反応容器に、検体を分注するサンプル分注機構と、前記反応容器が載置され、前記反応容器内の混合液の凝固時間を測定する血液凝固時間測定部と、前記血液凝固測定部に供給する前記反応容器を複数収納する反応容器収納部と、前記反応容器を把持し、前記血液凝固測定部に移送する反応容器移送機構と、前記反応容器移送機構を制御する制御部と、を備える自動分析装置において、前記制御部は、前記反応容器移送機構によって、検体が分注された前記反応容器を前記反応容器収納部へ移送し載置する、制御を行う自動分析装置である。
 また、別の代表的な発明は、検体と試薬を混合し、混合された混合液を反応させるための反応容器に、検体を分注するサンプル分注機構と、前記反応容器が載置され、前記反応容器内の混合液の凝固時間を測定する血液凝固時間測定部と、前記血液凝固測定部に供給する前記反応容器を複数収納する反応容器収納部と、前記反応容器を把持し、前記血液凝固測定部に移送する反応容器移送機構と、前記反応容器移送機構を制御する制御部と、を備える自動分析装置において、前記制御部は、前記反応容器移送機構によって、検体が分注された前記反応容器を前記血液凝固時間測定部が前記反応容器で全て埋まるまで前記血液凝固時間測定部に載置し、前記血液凝固時間測定部が前記反応容器で全て埋まった場合に、前記反応容器移送機構によって、測定前の検体入り前記反応容器を前記反応容器収納部へ移送し載置し、前記血液凝固時間測定部に前記反応容器の空きが出た場合に、前記反応容器移送機構によって、前記反応容器収納部に載置された測定前の検体入り前記反応容器を前記血液凝固時間測定部に載置する、制御を行う自動分析装置である。
 本発明によれば、血液凝固検査を行う自動分析装置であって、装置構成の小型化や装置コストの抑制をし得る自動分析装置を提供することができる。また、一度に限られた数の反応容器の分析ができない場合であっても検体の停滞を抑制し、検体分注効率の低下を抑制することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態である血液凝固測定を行うことが可能な自動分析装置の全体図を示すシステムブロック図である。 本発明の一実施形態である血液凝固測定および生化学測定を行うことが可能な自動分析装置の概略図である。 本発明の一実施の形態における、操作者により血液凝固の分析が開始された場合、及び凝固時間検出部41に空きがある場合の反応容器移送機構32の動作シーケンスの一例をまとめた図である。 本発明の一実施の形態における、図3に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図3に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図3に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図3に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図3に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、血液凝固時間検出部41が全て測定に使用されている際の、反応容器移送機構32の動作シーケンスの一例をまとめた図である。 本発明の一実施の形態における、図5に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図5に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図5に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図5に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図5に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、凝固時間検出部41上の反応容器31の分析が終了した際の、反応容器移送機構32の動作シーケンスを示す。 本発明の一実施の形態における、図7に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図7に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図7に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図7に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、反応容器収納部30上に緊急検体入り反応容器37が存在する際の、反応容器移送機構32の動作シーケンスを示す 本発明の一実施の形態における、図9に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図9に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図9に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、図9に示した動作シーケンスの、反応容器移送機構32の動作の概略を示した図である。 本発明の一実施の形態における、反応容器収納部30上の反応容器31の状態を、表示装置54に表示した画面の一例を示した図である。 本発明の一実施形態である血液凝固測定および生化学測定を行うことが可能な自動分析装置の概略図の一例を示した図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を用いるようにし、その繰り返しの説明は可能な限り省略するようにしている。
 図1 は、本発明の一実施例のベースとなる血液凝固測定を行うことが可能な自動分析装置の全体図を示すシステムブロック図である。図1 に示すように、自動分析装置 1 は、主にサンプル分注機構10、サンプルディスク11、凝固試薬分注機構20、試薬ディスク21、反応容器収納部30、反応容器移送機構 32、凝固時間測定部 40、およびコンピューター(制御部)52から構成されている。
 サンプルディスク11は、時計周り及び反時計回りに間欠回転が可能となっており、血液等の生体サンプルを収納する複数のサンプル容器12が載置されている。サンプルディスク11の近傍にはサンプル分注機構10が配置されている。このサンプル分注機構10はサンプルディスク11と凝固検体分注部43の間を時計回り及び反時計回りに回転することができる。サンプル分注機構10はサンプル容器12内のサンプル(以下、検体とも言う)を、サンプル分注機構10の先端に取り付けられたプローブを用いて吸引し、凝固検体分注部43上の反応容器31へサンプルを吐出する。
 試薬ディスク21上には、自動分析装置1の分析項目に対応した複数の試薬容器22が載置されている。凝固試薬分注機構20は試薬容器22内の試薬を吸引し、その試薬を反応容器31へ吐出する。凝固試薬分注機構20の内部には試薬昇温機構23が内蔵されており、凝固試薬分注機構20で吸引した試薬は試薬昇温機構23により適温(所定の温度)へ昇温される。反応容器31は、検体と試薬を混合し、混合された混合液を反応させるための容器である。
 反応容器移送機構32には、反応容器31を把持することができるアームが取り付けられている。また、反応容器移送機構32は反応容器収納部30、凝固検体分注部43、及び凝固時間測定部40の間を移動することができ、所定の場所に反応容器31を移送し、載置することが可能である。
 反応容器収納部30上には、反応容器31を載置できる多数の窪みが設けられており、この窪みには反応容器31を挿入することができる。
 凝固検体分注部43上には反応容器31を載置できる窪みが設けられており、この窪みには反応容器31を挿入することができる。
 凝固時間測定部40上には、反応容器31を載置できる窪みが設けられてある凝固時間検出部41がある。この凝固時間検出部41には反応容器31を挿入することができる。また、光源42は、凝固時間検出部41に載置された反応容器31へ光を照射する。光源42から照射された光は反応容器31内で散乱され、この散乱光を凝固時間検出部41に設けられているフォトダイオードにて受光を行う。測定された散乱光のアナログ信号はA/D変換機56に入力される。A/D変換機に入力されたデジタル信号に基づき、凝固時間が測定される。すなわち、血液時間測定部40には、反応容器31が載置され、反応容器内の混合液の凝固時間を測定することができる。
 次に、図1の自動分析装置1における制御系および信号処理系について簡単に説明する。コンピューター(制御部)52は、インターフェース50を介して、検体分注制御部57、凝固試薬分注制御部58、反応容器移送機構制御部59、A/D変換機56に接続されている。コンピューター(制御部)52は前記各制御部に対して指令を送り、各動作を制御している。またA/D変換された測光値は、コンピューター(制御部)52に取り込まれる。すなわち、コンピューター(制御部)52は、各機構の各制御部を介して、反応容器移送機構やサンプル分注機構などを制御することができる。
 インターフェース50には印字するためのプリンタ53、記憶装置であるメモリ55、操作指令等を入力するためのキーボード51、CRTディスプレイまたは液晶ディスプレイなど画面表示するための表示装置54が接続されている。メモリ55は例えばハードディスクメモリまたは外部メモリで構成される。メモリ55には分析パラメーター、分析項目依頼、キャリブレーション結果、分析結果等の情報が記憶される。
 続いて、血液凝固測定について説明する。操作者がコンピューター52より分析を依頼すると、反応容器移送機構32は反応容器収納部30上の反応容器31を凝固検体分注部43へ反応容器31を移送し、載置する。続いて、サンプル分注機構10はサンプルディスク12上のサンプル容器11より分析に使用する検体を吸引し、凝固検体分注部43上の反応容器31へ検体を吐出する。検体が分注された反応容器31は反応容器移送機構32により、血液凝固時間検出部41へと移送および載置される。その後、凝固試薬分注機構20により血液凝固時間検出部41上の反応容器31内に試薬が吐出されると、検体と試薬の混合液が反応し、血液凝固反応が開始する。
 反応容器内へは光源42より光が照射される。凝固時間測定部はこの散乱光を受光し、A/D変換された測定値はインターフェース50を通してコンピューター(制御部)52に取り込まれる。そして、測定結果はプリンタ53または表示装置54にて出力される。
 凝固反応終了後、反応容器移送機構32は、測光が終了した反応容器31を把持し、所定の位置で反応容器31を廃棄する。
 図2は、本発明の一実施の形態である血液凝固測定部と、生化学測定が可能な吸光度測定部を備えた自動分析装置の概略図である。サンプル分注機構10を血液凝固検査と生化学検査で共用する構成となっている。図1の自動分析装置に対して、生化学測定に利用される、複数の反応セル(第2の反応容器)62が備わった反応ディスク60、および試薬分注機構61(61(a)、61(b))が追加されている。また、凝固時間測定部40上には複数(本装置の例では6個)の凝固時間検出部41が備わっている。このような構成の場合、血液凝固検査用の試薬は試薬ディスク(21(a)、21(b))から、反応ディスク60を介して、凝固試薬分注機構20に吸引することができ、反応容器31に吐出する前に効率的に試薬の昇温を行うことができる。反応ディスク60は恒温槽で約37度に保温されているためである。
 図2に示した自動分析装置は、反応容器収納部30が2個設置されている。反応容器収納部30上には反応容器31を挿入できる多数の窪みが備わっており、血液凝固測定に使用される空の反応容器31が予め設置されている。また、反応容器収納部30は脱着可能な構造となっている。そのため、操作者は反応容器収納部30を取り外すことができ、別の新たな反応容器収納部30を設置することが可能である。
 ここで、本発明の一実施の形態における、血液凝固時間測定を行う際の反応容器移送機構32の動作シーケンスについて説明する。
 図3に、操作者によって、血液凝固項目の分析依頼が登録され、分析が開始された際の反応容器移送機構32の動作シーケンスを示す。詳細な反応容器移送機構32の各動作については図4を用いて説明する。
 反応容器移送機構32は、その動作が行われないとき、反応容器収納部30の左上に反応容器移送機構初期位置として停止している(図3a)。分析が開始されると、反応容器移送機構32は反応容器収納部30上に設置されている空の反応容器31を把持し(図3b、図4a)、凝固検体分注部43へ移送し載置する(図3c、図4b)。次に、反応容器移送機構は初期位置に移動する(図3d)。そして、サンプル分注機構10により凝固検体分注部43上の反応容器31内に検体が分注される(図4c)。その後、反応容器移送機構32は凝固検体分注部43上の検体入り反応容器31を把持し(図3e、図4d)、凝固時間検出部41へ移送し載置する(図3f、図4e)。そして、反応容器移送機構32は初期位置に移動し(図3g)、凝固試薬分注機構20は凝固時間検出部41上の反応容器31に試薬を吐出し、凝固反応が開始される。
 分析中に操作者によって血液凝固項目の分析依頼が順次行われたとき、反応容器移送機構32は、分析に使用されていない血液凝固時間検出部41がある場合、図3、図4の動作シーケンス及び動作を繰り返し実行する。
 尚、反応容器移送機構32は、コンピューター(制御部)52からインターフェース50を介して反応容器移送機構制御部59によりその動作は制御されている。反応容器移送機構32は、分析依頼の順に従って、反応容器収納部30上の空の反応容器31を、反応容器収納部30の左上から、例えば1行ずつ順次把持し分析に使用していく。
 図5に、血液凝固時間検出部41が全て測定に使用されている際の、反応容器移送機構32の動作シーケンスを示す。詳細な反応容器移送機構32の各動作については図6を用いて説明する。血液凝固時間検出部41が全て測定に使用されているか否かは、コンピューター(制御部)52により判定され、この判定結果に基づいて、コンピューター(制御部)52は、図3と図5の動作シーケンスを切り替えることができる。
 つまり、コンピュータ(制御部)は、反応容器移送機構によって、検体が分注された反応容器を血液凝固時間測定部が反応容器で全て埋まるまで血液凝固時間測定部に載置する。これに続き、コンピュータ(制御部)は、血液凝固時間測定部が反応容器で全て埋まった場合に、反応容器移送機構によって、測定前の検体入り反応容器を反応容器収納部へ移送し載置する。これに続き、コンピュータ(制御部)は、血液凝固時間測定部に反応容器の空きが出た場合に、反応容器移送機構によって、反応容器収納部に載置された測定前の検体入り前記反応容器を血液凝固時間測定部に載置する制御を行う。なお、図3と同じ制御については説明を省略する。
 反応容器移送機構32は反応容器収納部30上に設置されている空の反応容器31を把持し(図5b、図6a)、凝固検体分注部43に移送し載置する(図5c、図6b)。そして、サンプル分注機構10により凝固検体分注部43上の反応容器31内に検体が分注される(図6c)。その後、反応容器移送機構32は凝固検体分注部43上の検体入り反応容器35を把持し(図5e、図6d)、反応容器収納部30上の空の反応容器31が設置されていた場所と同様の位置に、検体入り反応容器35を移送し載置する(図5f、図6e)。
 分析中に操作者によって血液凝固項目の分析依頼が順次行われたとき、反応容器移送機構32は、血液凝固時間検出器41が全て測定に使用されている場合、図5、図6の動作シーケンス及び動作を繰り返し実行する。
 ここで同様の位置とは、必ずしも空の反応容器31が設置されていた同じ位置に限られるものではないが、同一の空の反応容器31が設置されていた同じ位置であることが望ましい。反応容器31が規則正しく順番に使用される場合に、同じ位置に移送し載置するのであれば、分析待ちの検体容器も規則正しく順番に並ぶので、操作者は、反応容器収納部30に幾つ分析待ちの検体容器の数を容易に把握することができる。
 このように、凝固時間検出部41が全て測定に使用されているとき、反応容器移送機構32の動作により、測定前の検体入り反応容器35を、反応容器収納部30上に一時的に設置することで次の効果が得られる。
 血液凝固時間測定部における凝固時間検出部41が全て測定に使用されている場合であっても、検体の分注待ちによる停滞を防ぐことができ、サンプル分注機構による検体分注を完了させることができる。従い、効率的な検体分注を行うことができ、ひいては、検体容器の交換までの待ち時間を少なくすることができる。
 また、既に装置に設置されている反応容器収納部に一時的に測定前の検体入り反応容器35を設置することで、多くの測定検体のために多くの凝固時間検出部が必要なくなるので、装置構成の小型化や装置コストの抑制をし得る。また、反応容器収納部とは別の位置に新たに一時待機用の領域を設ける必要がないため、装置構成の小型化や装置コストの抑制をし得る。
 実施形態では、吸光度を測定するための反応ディスクがある装置について説明したが、以上の効果は、反応ディスクがない場合であっても得られる効果である。以下の効果は、吸光度を測定するための反応ディスクを備え、凝固時間測定と吸光度測定用のサンプルを同一のサンプル分注機構にて行うときに得られる効果である。
 凝固時間検出部41が測定試料で全て使用されている場合であっても、サンプル分注機構10の分注動作を停止することなく連続して測定を行うことができる。これにより、凝固時間測定に制限されることなく、吸光度測定を連続して測定でき、検査を効率的に行うことが可能となる。すなわち、同一検体に対して凝固測定と吸光度測定の両方が依頼されている場合であっても、凝固時間測定に制限することなく、吸光度測定の結果を早く得ることができる。同一検体に対して連続して分注する場合であっても、凝固時間検出部が空くまで吸光度測定の分注を待つ必要がなくなるためである。また、検体の分注待ちによる停滞を防ぐことができるため、検体容器の交換までの待ち時間を少なくすることができる。
 また、サンプル分注機構10は、検体分注後の検体間の汚染を防ぐために、同一検体の分注終了後に、サンプル分注機構10の先端に取り付けられたプローブ内を精製水にて洗浄している。洗浄後、別の検体を吸引する際に、洗浄に用いた精製水による検体の水薄まりを防止するために、ダミー量として分析に使用する検体量よりも多い検体量を吸引している。同一検体であっても、凝固時間測定用の検体分注と吸光度測定用の検体分注とを分けることも考えられるが、これらの分注間に別の検体が吸引される場合には、2回分のダミー量が必要となる。一方、測定前の検体入り反応容器35を反応容器収納部30上に一時的に設置することができるため、凝固時間測定に制限されることなく、操作者が依頼した分析依頼通り、順次、サンプル分注機構10により凝固時間測定用と吸光度測定用の検体分注を、吸引したダミー量を吐出することなく、連続して行うことができる。検体分注の際に余分に吸引されるダミー量を低減することができる。結果、サンプル消費量を低下させることが可能となる。
 これまでは、分析前の反応容器移送機構32の動作シーケンスについて説明したが、次に分析終了後の反応容器移送機構32の動作シーケンスについて説明する。
 図7に、凝固時間検出部41上の反応容器31の分析が終了した際の反応容器移送機構32の動作シーケンスを示す。詳細な反応容器移送機構32の各動作については図8を用いて説明する。
 反応容器移送機構32は凝固検出部41上にある分析が終了した検体入り反応容器36を把持する(図7b、図8a)。そして、反応容器移送機構32は反応容器収納部30上に、分析終了後の検体入り反応容器36を移送し載置する(図7c、図8b)。この反応容器移送機構32の動作により、分析終了後の検体入り反応容器36を反応容器収納部30上に破棄する。尚、分析終了後の検体入り反応容器36を破棄する反応容器収納部30上の位置は、検体が分注される前に反応容器31が設置されていた位置と同一の位置である。
 このように、反応容器収納部30を、分析終了後の検体入り反応容器36の廃棄場所として反応容器移送機構32を動作させることで、分析終了後の検体入り反応容器36を廃棄するための追加の機構や収納部の必要がなく、装置の小型化を可能とする。
 続いて、分析前の検体入り反応容器35が反応容器収納部30上に存在する際、反応容器移送機構32は反応容器収納部30上に載置された分析前の検体入り反応容器35を把持する(図7d、図8c)。そして、空きができた凝固時間検出部41へ分析前の検体入り反応容器35を移送及び載置し(図7e、図8d)、凝固反応測定が行われる。尚、反応容器移送機構32は分析依頼項目の順に従って、分析前の検体入り反応容器35を凝固時間検出部41へと移送及び載置する。
 反応容器移送機構32は、血液凝固時間検出器41に分析が終了した検体がある限り、図7、図8の動作シーケンス及び動作を繰り返し実行する。但し、反応容器収容部30上に分析前の検体入り反応容器がない場合には、図7(d)及び(e)のシーケンスは省略される。
 次に緊急検体入り反応容器が存在する場合の反応容器移送機構32の動作シーケンスについて説明する。
 図9に、凝固時間検出部41上の反応容器31の分析が終了し、反応容器収納部30上に緊急検体入り反応容器37が存在する際の反応容器移送機構32の動作シーケンスを示す。詳細な反応容器移送機構32の各動作については図10を用いて説明する。
 つまり、コンピューター(制御部)は、血液凝固時間測定部が反応容器で全て埋まっている場合に、反応容器移送機構によって、測定前の緊急検体入り反応容器を反応容器収納部へ移送し載置する。これに続き、コンピューター(制御部)は、血液凝固時間測定部に反応容器の空きが出た場合に、反応容器移送機構によって、反応容器収納部に載置された緊急検体入り反応容器を、反応容器収納部に既に載置されている測定前の検体入り前記反応容器より優先的に前記血液凝固時間測定部へ移送し載置する制御を行う。尚、緊急検体における、検体分注から反応容器収納部までの反応容器移送機構32の移送及び載置は、図5及び図6(a)~図6(e)と同様に行われる。
 反応容器移送機構32は凝固検出部41上にある分析終了後の検体入り反応容器36を把持し(図9b、図10a)、反応容器収納部30上に分析終了後の検体入り反応容器36を移送し、破棄する(図9c、図10b)。その後、反応容器収納部30上に載置されている緊急検体入り反応容器37を、反応容器移送機構32は分析依頼の順に関わらず、優先的に把持する(図9d、図10c)。そして、空きができた凝固時間検出部41へ緊急検体入り反応容器37を移送及び載置し(図9e、図10d)、凝固反応測定が行われる。但し、凝固時間検出部41が空いている場合には、図3、図4の動作シーケンス及び動作によって、緊急検体入り反応容器37は凝固検体分注部から凝固時間検出部に、反応容器収納部を介さずに、移送及び載置される。
 反応容器移送機構32は、反応容器収納部30に緊急検体入り反応容器37がある限り、図9、図10の動作シーケンス及び動作を繰り返し実行する。但し、分析が終了した反応容器がない場合には、図9(b)及び(c)のシーケンスは省略される。
 但し、凝固時間検出部41上に空きがある場合には、測定前の緊急検体入り反応容器は反応容器収納部に載置されることなく、凝固時間検出部に載置され、当該反応容器に対して測定が行われる。一方、凝固時間検出部41が反応容器で全て埋まっている場合に、測定前の緊急検体入り反応容器は反応容器収納部に載置され、図9の動作シーケンスが行われる。
 次に、表示装置54の画面表示について説明する。
 反応容器移送機構32が反応容器31を移送及び載置する動作の中で、分析前の検体入り反応容器35を設置した反応容器収納部30上の位置、分析が終了した検体入り反応容器36を廃棄した反応容器収納部30上の位置、測定結果、そしてアラームなどの情報はインターフェース50を介してメモリ55に記憶される。
 図11に示したように、操作者は表示装置54上にて、メモリ55に記録した反応容器収納部30上の反応容器31の情報を表示することができる。図11の反応容器収納部1と2の表示は、反応容器収納部30の物理的な配置に対応している。また、例えば、「反応容器無し」、「未使用の反応容器」、「一般検体入り反応容器」、「緊急検体入り反応容器」、「分析が終了した反応容器」のステータスが目視で識別できるように各反応容器に対応する位置を識別表示している。さらに、操作者はコンピューター(制御部)52を用いて表示装置54に表示された任意の反応容器収納部30上にある反応容器31を選択することで、例えば、その反応容器31に分注された検体の検体情報(例えば、検体番号、測定項目、反応容器の測定状態、加えて分析が終了した後であれば、測定結果やアラームの情報など)を確認することができる。例えば、万が一、分析途中や分析終了後に異常が発生した場合でも、アラームの情報が付加されていることで、測定結果に異常が見られた検体の廃棄場所を表示装置54にて確認することができる。なお、検体情報は前記列挙された情報の一部であってもよい。
 これにより、操作者は目視で反応終了後の異常検体の状態を確認することができる。また、測定結果の異常が気泡や異物が混入したことによるものなのか原因を調べることにも利用できる。
 また、操作者がコンピューター(制御部)52を通して、表示装置54に表示された任意の分析終了後の検体入り反応容器36を選択すると、反応容器移送機構32は、選択された反応容器収納部30上の、分析終了後の検体入り反応容器36を把持し、反応容器確認部33に移送及び載置することができる(図2参照)。反応容器確認部33は、操作者が目視で確認し易い位置に配置されている。反応容器移送機構32で、目視で確認し易い位置へ分析終了後の検体入り反応容器36を移動することができるため、操作者は分析終了後の反応容器31内の検体の状態を容易に確認することができる。
 図12は、本発明の一実施の形態である血液凝固測定部と、生化学測定が可能な吸光度測定部を備えた自動分析装置の概略図である。図12に示すよう、図2の自動分析装置に対して、分析終了後の検体入り反応容器35を廃棄及び収納する、反応容器廃棄部34が反応容器収納部30とは別に備わっていてもよい。尚、反応容器廃棄部34は脱着可能な構造となっており、操作者は反応容器廃棄部34の取り付け及び取り外しを行うことが可能となっている。この場合には、反応容器廃棄部34分のスペースが必要になるが、測定前の検体入り反応容器を一時的に反応容器収納部30に設置できることにより、装置構成の小型化又は装置コストの抑制が実現できる。
 以上、実施形態について説明した。
 コンピューター(制御部)52は、反応容器移送機構によって、検体が分注された反応容器を反応容器収納部へ移送し載置する、制御を行うことを説明した。これにより、移送し載置される反応容器が測定前の検体入り反応容器であれば待機専用の領域分の小型化等や分注効率の低下抑制等が実現できる。また、この反応容器が、測定が終了した反応容器であれば廃棄専用の領域分の小型化等が実現できる。従い、いずれの場合であっても、装置構成の小型化や装置コストの抑制をし得る自動分析装置を提供することができる。
 また、移動し載置される反応容器が測定前の検体入り反応容器であって、反応容器収納部に緊急検体入り反応容器が載置されている場合、コンピューター(制御部)52は、反応容器移送機構によって、反応容器収納部に載置された緊急検体入り反応容器を優先的に血液凝固時間測定部へ移送し載置する、制御を行うことが望ましい。これにより、前述の効果に加え、緊急検体の優先的な測定ができる。
 また、コンピューター(制御部)52は、反応容器移送機講によって、反応容器収納部へ移送し載置した反応容器収納部の位置、及び、載置した反応容器内の検体情報を装置内部又は外部のメモリに記憶する、制御を行うことが望ましい。これにより、収納部に載置した反応容器内の情報を操作者は引き出すことができる。さらに、メモリに記録された位置、及び、検体情報を表示する表示装置を有することで、操作者は位置に対応した検体情報を確認することができる。
 また、さらに反応容器収納部に載置されていた反応容器を移送し載置する反応容器確認部を有し、コンピューター(制御部)52は、操作者が表示装置に表示された反応容器収納部の反応容器を選択することで、反応容器移送機構によって、選択された反応容器を反応容器収納部から反応容器確認部へ移送し載置する、制御を行うことが望ましい。これにより、操作者は分析終了後の反応容器31内の検体の状態を容易に確認することができる。
 また、反応容器を廃棄する反応容器廃棄部を備え、血液凝固時間測定部に載置された反応容器内の混合液の測定が終了した際、コンピューター(制御部)52は、反応容器移送機講によって、測定終了した反応容器を反応容器廃棄部へ移送し廃棄する、制御を行うこともできる。操作者は反応容器廃棄部の取り付け及び取り外しを反応容器収納部と独立して行うことができる。この場合であっても、コンピューター(制御部)52は、反応容器移送機構によって、反応容器収納部に載置された測定前の検体入り反応容器を血液凝固時間測定部へ移送し載置する、制御を行うことが望ましい。この場合でも、緊急検体の優先的な測定ができる。
 また、生化学測定用の第2の反応容器を備えた反応ディスクを備え、サンプル分注機構は、第2の反応容器へ検体を分注し、コンピューター(制御部)52は、サンプル分注機構で同一検体を反応容器と第2の反応容器に分注する際、サンプル分注機構によって、分析に使用する検体量に分析に使用しないダミー量を加えた検体量を吸引し、吸引したダミー量を吐出することなく、反応容器と第2の反応容器に同一検体を吐出する、制御を行うことが望ましい。これにより、サンプル消費量を低下させることが可能となる。
 なお、実施形態では6個の凝固時間検出部を例にして説明したが、この個数は装置の処理能力との兼ね合いでいくつでも良い。但し、あまり多くなると装置構成の小型化や装置コストの抑制ができなくなるため目安として10個以下であることが望ましい。
 また、実施形態では測定が終了した反応容器と測定前の検体入り反応容器の両方を扱ったが、一方のみを反応容器移送機構で反応容器収納部へ移送及び載置してもよい。
 また、実施形態では生化学測定で利用される反応ディスクを備えた自動分析装置の例で説明したが、この反応ディスクは必須の構成ではない。この反応ディスクがあれば、凝固時間測定に制限されることなく、生化学測定における吸光度測定を連続して測定でき、検査を効率的に行うことが可能となる。
 また、実施形態では、サンプルディスク11を例にして説明したが、検体を収納した検体容器をラックに搭載して分析を行うラックタイプの自動分析装置にも適用できる。
 また、凝固時間検出部41では散乱光を用いた検出部で説明したが、散乱光の検出に替えて、公知の透過光又は粘稠度を検出する検出部を血液凝固時間測定部に適用してもよい。
1…自動分析装置、10…サンプル分注機構、11…サンプルディスク、12…サンプル容器、20…凝固試薬分注機構、21…試薬ディスク、22…試薬容器、23…試薬昇温機構、30…反応容器収納部、31…反応容器、32…反応容器移送機構、33…反応容器確認部、34…反応容器廃棄部、35…分析前の検体入り反応容器、36…分析終了後の検体入り反応容器、37…緊急検体入り反応容器、40…凝固時間測定部、41…凝固時間検出部、42…光源、43…凝固検体分注部、50…インターフェース、51…キーボード、52…コンピューター(制御部)、53…プリンタ、54…表示装置、55…メモリ、56…A/D変換機、57…検体分注制御部、58…試薬分注制御部、59…反応容器移送機構制御部、60…反応ディスク、61…試薬分注機構、62…反応セル(第2の反応容器)

Claims (13)

  1.  検体と試薬を混合し、混合された混合液を反応させるための反応容器に、検体を分注するサンプル分注機構と、
     前記反応容器が載置され、前記反応容器内の混合液の凝固時間を測定する血液凝固時間測定部と、
     前記血液凝固測定部に供給する前記反応容器を複数収納する反応容器収納部と、
     前記反応容器を把持し、前記血液凝固測定部に移送する反応容器移送機構と、
     前記反応容器移送機構を制御する制御部と、を備える自動分析装置において、
     前記制御部は、
     前記反応容器移送機構によって、検体が分注された前記反応容器を前記反応容器収納部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     前記血液凝固時間測定部に載置された前記反応容器内の混合液の測定が終了した際、前記制御部は、前記反応容器移送機講によって、測定終了した前記反応容器を前記反応容器収納部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  3.  請求項1に記載の自動分析装置において、
     前記制御部は、前記反応容器移送機構によって、前記反応容器収納部に載置された測定前の検体入り前記反応容器を前記血液凝固時間測定部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  4.  請求項3に記載の自動分析装置において、
     前記制御部は、前記反応容器収納部に緊急検体入り前記反応容器が載置されている場合、前記反応容器移送機構によって、前記反応容器収納部に載置された緊急検体入り前記反応容器を優先的に前記血液凝固時間測定部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  5.  請求項1に記載の自動分析装置において、
     前記反応容器収納部は複数の前記反応容器を収納できる形状を持ち、
     前記制御部は、前記反応容器移送機講によって、前記反応容器収納部へ移送し載置した前記反応容器収納部の位置、及び、載置した反応容器内の検体情報を装置内部又は外部のメモリに記憶する、制御を行うことを特徴とする自動分析装置。
  6.  請求項5に記載の自動分析装置において、
     さらに、前記メモリに記録された前記位置、及び、前記検体情報を表示する表示装置を有することを特徴とする自動分析装置。
  7.  請求項6に記載の自動分析装置において、
     さらに、前記反応容器収納部に載置されていた前記反応容器を移送し載置する反応容器確認部を有し、
     前記制御部は、操作者が前記表示装置に表示された、前記反応容器収納部の前記反応容器を選択することで、前記反応容器移送機構によって、選択された前記反応容器を前記反応容器収納部から前記反応容器確認部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  8.  請求項1に記載の自動分析装置において、
     さらに、前記反応容器を廃棄する反応容器廃棄部を備え、
     前記血液凝固時間測定部に載置された前記反応容器内の混合液の測定が終了した際、前記制御部は、前記反応容器移送機講によって、測定終了した前記反応容器を前記反応容器廃棄部へ移送し廃棄する、制御を行うことを特徴とする自動分析装置。
  9.  請求項8に記載の自動分析装置において、
     前記制御部は、前記反応容器移送機構によって、前記反応容器収納部に載置された測定前の検体入り前記反応容器を前記血液凝固時間測定部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  10.  請求項9に記載の自動分析装置において、
     前記制御部は、前記反応容器収納部に緊急検体入り前記反応容器が載置されている場合、前記反応容器移送機構によって、前記反応容器収納部に載置された緊急検体入り前記反応容器を優先的に前記血液凝固時間測定部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
  11.  請求項1に記載の自動分析装置において、
     さらに、生化学測定用の第2の反応容器を備えた反応ディスクを備え、
     前記サンプル分注機構は、前記第2の反応容器へ検体を分注し、
     前記制御部は、
     前記サンプル分注機構で同一検体を前記反応容器と前記第2の反応容器に分注する際、前記サンプル分注機構によって、分析に使用する検体量に分析に使用しないダミー量を加えた検体量を吸引し、吸引した前記ダミー量を吐出することなく、前記反応容器と前記第2の反応容器に前記同一検体を吐出する、制御を行うことを特徴とする自動分析装置。
  12.  検体と試薬を混合し、混合された混合液を反応させるための反応容器に、検体を分注するサンプル分注機構と、
     前記反応容器が載置され、前記反応容器内の混合液の凝固時間を測定する血液凝固時間測定部と、
     前記血液凝固測定部に供給する前記反応容器を複数収納する反応容器収納部と、
     前記反応容器を把持し、前記血液凝固測定部に移送する反応容器移送機構と、
     前記反応容器移送機構を制御する制御部と、を備える自動分析装置において、
     前記制御部は、
     前記反応容器移送機構によって、検体が分注された前記反応容器を前記血液凝固時間測定部が前記反応容器で全て埋まるまで前記血液凝固時間測定部に載置し、
     前記血液凝固時間測定部が前記反応容器で全て埋まった場合に、前記反応容器移送機構によって、測定前の検体入り前記反応容器を前記反応容器収納部へ移送し載置し、
     前記血液凝固時間測定部に前記反応容器の空きが出た場合に、前記反応容器移送機構によって、前記反応容器収納部に載置された測定前の検体入り前記反応容器を前記血液凝固時間測定部に載置する、制御を行うことを特徴とする自動分析装置。
  13.  請求項12記載の自動分析装置において、
     前記制御部は、
     前記血液凝固時間測定部が前記反応容器で全て埋まっている場合に、前記反応容器移送機構によって、測定前の緊急検体入り前記反応容器を前記反応容器収納部へ移送し載置し、
     前記血液凝固時間測定部に前記反応容器の空きが出た場合に、前記反応容器移送機構によって、前記反応容器収納部に載置された緊急検体入り前記反応容器を、前記反応容器収納部に既に載置されている測定前の検体入り前記反応容器より優先的に前記血液凝固時間測定部へ移送し載置する、制御を行うことを特徴とする自動分析装置。
PCT/JP2015/066651 2014-07-29 2015-06-10 自動分析装置 WO2016017289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/326,820 US10267817B2 (en) 2014-07-29 2015-06-10 Automatic analysis apparatus
JP2016538200A JP6320535B2 (ja) 2014-07-29 2015-06-10 自動分析装置
EP15828276.4A EP3176585B1 (en) 2014-07-29 2015-06-10 Automatic analysis apparatus
CN201580032871.4A CN106662593B (zh) 2014-07-29 2015-06-10 自动分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153424 2014-07-29
JP2014153424 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017289A1 true WO2016017289A1 (ja) 2016-02-04

Family

ID=55217194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066651 WO2016017289A1 (ja) 2014-07-29 2015-06-10 自動分析装置

Country Status (5)

Country Link
US (1) US10267817B2 (ja)
EP (1) EP3176585B1 (ja)
JP (1) JP6320535B2 (ja)
CN (1) CN106662593B (ja)
WO (1) WO2016017289A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645765A (zh) * 2017-01-06 2017-05-10 刘丹 自动分析装置及样本分析方法
JP2017156105A (ja) * 2016-02-29 2017-09-07 シスメックス株式会社 血液凝固分析装置および血液凝固分析方法
CN107179414A (zh) * 2016-03-10 2017-09-19 西门子医学诊断产品有限责任公司 用于混合自动分析仪中液体的方法
JP2018017603A (ja) * 2016-07-28 2018-02-01 株式会社日立ハイテクノロジーズ 自動分析装置
JP2019120510A (ja) * 2017-12-28 2019-07-22 シスメックス株式会社 検体測定方法および検体測定装置
WO2019146373A1 (ja) * 2018-01-26 2019-08-01 シスメックス株式会社 核酸分析装置および核酸抽出装置
US20200141960A1 (en) * 2017-07-25 2020-05-07 Hitachi High-Technologies Corporation Automated Analyzer and Image Processing Method
JPWO2020230401A1 (ja) * 2019-05-16 2020-11-19

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146220A1 (ja) * 2018-01-26 2019-08-01 株式会社日立ハイテクノロジーズ 自動分析装置
CN113665982A (zh) * 2020-05-15 2021-11-19 江苏雷镈智能科技有限公司 血液处理方法和血液放置装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270427A (ja) * 1994-03-31 1995-10-20 Shimadzu Corp 血液凝固測定装置
WO2006107016A1 (ja) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. 生体サンプルの複合自動分析装置、自動分析方法、及び反応キュベット
JP2013250218A (ja) * 2012-06-04 2013-12-12 Hitachi High-Technologies Corp 自動分析装置
WO2013187210A1 (ja) * 2012-06-11 2013-12-19 株式会社 日立ハイテクノロジーズ 自動分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779827B1 (fr) * 1998-06-10 2000-08-11 Junior Instruments Appareil d'analyse automatique utilisable pour la determination du temps de coagulation du sang
JP2001013151A (ja) 1999-06-30 2001-01-19 Mitsubishi Chemicals Corp 血液の検査装置
JP4829716B2 (ja) * 2006-08-18 2011-12-07 シスメックス株式会社 血液凝固分析装置
EP3098608A1 (en) 2011-05-20 2016-11-30 PerkinElmer Health Sciences, Inc. Lab members and liquid handling systems and methods including same
HU229210B1 (en) * 2011-11-16 2013-09-30 Diagon Kft Method and automatic device for in vitro diagnostic tests of blood clotting
JP5899075B2 (ja) * 2012-07-20 2016-04-06 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270427A (ja) * 1994-03-31 1995-10-20 Shimadzu Corp 血液凝固測定装置
WO2006107016A1 (ja) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. 生体サンプルの複合自動分析装置、自動分析方法、及び反応キュベット
JP2013250218A (ja) * 2012-06-04 2013-12-12 Hitachi High-Technologies Corp 自動分析装置
WO2013187210A1 (ja) * 2012-06-11 2013-12-19 株式会社 日立ハイテクノロジーズ 自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176585A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156105A (ja) * 2016-02-29 2017-09-07 シスメックス株式会社 血液凝固分析装置および血液凝固分析方法
CN107179414A (zh) * 2016-03-10 2017-09-19 西门子医学诊断产品有限责任公司 用于混合自动分析仪中液体的方法
JP2017167137A (ja) * 2016-03-10 2017-09-21 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動分析器において液体を混合するための方法
US10739363B2 (en) 2016-03-10 2020-08-11 Siemens Healthcare Diagnostics Products Gmbh Method for mixing a liquid in an automated analyzer
JP2018017603A (ja) * 2016-07-28 2018-02-01 株式会社日立ハイテクノロジーズ 自動分析装置
CN106645765A (zh) * 2017-01-06 2017-05-10 刘丹 自动分析装置及样本分析方法
US20200141960A1 (en) * 2017-07-25 2020-05-07 Hitachi High-Technologies Corporation Automated Analyzer and Image Processing Method
US11009519B2 (en) * 2017-07-25 2021-05-18 Hitachi High-Technologies Corporation Automated analyzer and image processing method
JP2019120510A (ja) * 2017-12-28 2019-07-22 シスメックス株式会社 検体測定方法および検体測定装置
JP7075213B2 (ja) 2017-12-28 2022-05-25 シスメックス株式会社 検体測定方法および検体測定装置
US11754580B2 (en) 2017-12-28 2023-09-12 Sysmex Corporation Sample measurement method and sample measurement device
JP2019128321A (ja) * 2018-01-26 2019-08-01 シスメックス株式会社 核酸分析装置および核酸抽出装置
WO2019146373A1 (ja) * 2018-01-26 2019-08-01 シスメックス株式会社 核酸分析装置および核酸抽出装置
JP7061471B2 (ja) 2018-01-26 2022-04-28 シスメックス株式会社 核酸分析装置
JPWO2020230401A1 (ja) * 2019-05-16 2020-11-19
JP7225386B2 (ja) 2019-05-16 2023-02-20 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
EP3176585A1 (en) 2017-06-07
US20170212138A1 (en) 2017-07-27
JPWO2016017289A1 (ja) 2017-04-27
CN106662593A (zh) 2017-05-10
JP6320535B2 (ja) 2018-05-09
CN106662593B (zh) 2018-09-28
US10267817B2 (en) 2019-04-23
EP3176585B1 (en) 2019-10-02
EP3176585A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6320535B2 (ja) 自動分析装置
JP7218458B2 (ja) 自動分析装置及び自動分析方法
JP2004279357A (ja) 自動分析装置
CN110023765B (zh) 自动分析装置
JP2006275962A (ja) 自動分析装置
JP2011099681A (ja) 自動分析装置
EP3588093A1 (en) Automated analyzer
EP3974837A1 (en) Automatic analysis device
JPWO2017138285A1 (ja) 自動分析装置
JP2008175731A (ja) 自動分析装置及びその保守方法
WO2019176296A1 (ja) 自動分析装置
JPWO2020116106A1 (ja) 自動分析装置
US11579159B2 (en) Automatic analysis device
CN113039438B (zh) 自动分析装置
JP2016090526A (ja) 自動分析装置
JP5806769B2 (ja) 分析方法、分注方法および昇温方法
JP2009222451A (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538200

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015828276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15326820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE