WO2016017267A1 - Power conversion device - Google Patents
Power conversion device Download PDFInfo
- Publication number
- WO2016017267A1 WO2016017267A1 PCT/JP2015/065963 JP2015065963W WO2016017267A1 WO 2016017267 A1 WO2016017267 A1 WO 2016017267A1 JP 2015065963 W JP2015065963 W JP 2015065963W WO 2016017267 A1 WO2016017267 A1 WO 2016017267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power semiconductor
- conversion device
- power conversion
- opening
- seal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/40137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
Definitions
- the present invention relates to a power converter, and more particularly to a power converter that controls a motor for driving a vehicle.
- a power conversion device including a power semiconductor module that houses a circuit body having a power semiconductor element in a metal case.
- a power converter is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle.
- the power semiconductor module is sealed with resin with both the front and back surfaces of the power semiconductor element soldered to a conductive plate and the electrode terminals exposed.
- the metal case has a heat radiating part that is bonded to each of the conductive plates by a heat conductive insulating adhesive on both sides. Each heat dissipating part is formed with a plurality of heat dissipating fins.
- the metal case has a bottomed can shape having a flange portion opened at one end, and the power semiconductor module inserts the electrode terminal of the power semiconductor element into the opening of the metal case. In this state, it is housed in a metal case.
- This metal case has a structure in which two fin plates on which a frame and a plurality of fins are formed are joined. An opening is formed in the frame so as to face the front and back surfaces of the circuit body in which the power semiconductor element is resin-sealed, and a pair of fin plates having a plurality of fins are disposed and joined in the opening (for example, see Patent Document 1).
- the heat radiating part of the metal case is pressurized so as to sandwich the power semiconductor module, and the inner surface of the metal case and the power semiconductor unit are insulated with heat conductivity. Adhere with an adhesive. (For example, refer to Patent Document 2).
- this metal case has a structure in which two fin plates on which a frame and a plurality of fins are formed are joined, there is a joint between the flange and the fin. It will be long. As a result, when the power semiconductor module is installed in a water channel, a space is created between the flange and the fin, and when the cooling water is flowed, the cooling water that wants to flow through the fin is much in the space where there is no fin with low resistance. Flowing (this flow is called a bypass flow), cooling water flowing to the fin portion is reduced, and the heat transfer coefficient of the fin may be reduced.
- a spacer can be provided to close the space between the flange and the fin, but there are disadvantages such as an increase in the number of parts and processes. It is desired to prevent a bypass flow between the flange fins without providing a part such as a spacer.
- an object of the present invention is to provide a power converter having high heat dissipation performance in a power converter using a double-sided cooling power semiconductor device.
- a power conversion device includes a power semiconductor module, an opening for inserting the power semiconductor module, and a flow path forming body that forms a flow path connected to the opening.
- the power semiconductor module includes a circuit body having a power semiconductor element, a first base part and a second base part that are arranged to face each other so as to sandwich the circuit body, and the first base part and the second base part.
- the first base part includes a first fin and a first seal part that closes a part of the opening on a side close to the opening
- 2 base part has a 2nd fin and the 2nd seal part which block
- the said 1st seal part is not formed in the said frame Connected to the side of the first base portion, and Is connected to the second seal portion side of the second base portion which is not formed, the opening is closed and a portion of the frame member and the first sealing portion by the second sealing portion.
- the distance between the flange and the fin can be shortened, and the bypass flow generated in the gap formed between the flange and the fin can be suppressed.
- the cooling water flows sufficiently to the fin part (heat dissipating part), so the heat transfer coefficient of the fin part can be improved, the heat dissipating performance of the power semiconductor module is improved, and a highly reliable power converter is realized. it can.
- FIG. 2 is an exploded perspective view of the power conversion apparatus illustrated in FIG. 1.
- FIG. 2 is a cross-sectional view of a cooling chamber in which a power semiconductor module 100 is housed in the power conversion apparatus illustrated in FIG. 1.
- FIG. 3 is an external perspective view of a power semiconductor module 100 illustrated in FIG. 2.
- 2 is an external perspective view of a circuit body 30 accommodated in a power semiconductor module 100 as viewed from the front side.
- FIG. FIG. 3 is an external perspective view of a circuit body 30 accommodated in a power semiconductor module 100 as viewed from the back side.
- FIG. 6 is a perspective view of the circuit body 30 illustrated in FIG. 5 with a sealing resin removed.
- FIG. 5 is exploded perspective view of the power conversion apparatus illustrated in FIG. 1.
- FIG. 2 is a cross-sectional view of a cooling chamber in which a power semiconductor module 100 is housed in the power conversion apparatus illustrated in FIG. 1.
- FIG. 3 is an external perspective view of a power semiconductor module 100 illustrated in FIG. 2.
- the power conversion device 200 is used as a power supply device for an electric vehicle or a hybrid vehicle. Although not shown, the power conversion device 200 includes an inverter circuit connected to the motor generator, and includes a booster circuit connected to an external battery and a control circuit for controlling the whole.
- the power conversion device 200 includes a housing 201 formed of an aluminum-based metal such as aluminum or an aluminum alloy, and a bottom lid 202 fastened to the housing 201 by a fastening member (not shown).
- the housing 201 and the bottom cover 202 can also be formed by integral molding.
- An upper lid (not shown) is fastened to the upper portion of the housing 201 by a fastening member to form a sealed container.
- a peripheral wall 211 for forming a cooling flow path is formed inside the housing 201, and a cooling chamber 210 is formed by the peripheral wall 211 and the bottom lid 202.
- a support member 220 having a plurality of (four in FIG. 2) side walls 221 and a plurality (three in FIG. 2) of power semiconductor modules 100 disposed between the side walls 221 are housed. . Details of the power semiconductor module 100 will be described later.
- a pair of through holes are provided on one side of the housing 201, one of the through holes is provided with an inlet pipe 203a, and the other of the through holes is provided with an outlet pipe 203b.
- a cooling medium such as cooling water flows into the cooling chamber 210 from the inlet pipe 203a, flows out through the cooling path between the side wall 221 of the support member 220 and each power semiconductor module 100, and flows out from the outlet pipe 203b. To do.
- the cooling medium flowing out from the outlet pipe 203b is cooled by a cooling device such as a radiator (not shown), and circulates again so as to flow into the cooling chamber 210 from the inlet pipe 203a.
- Cooling chamber 210 is sealed by cover member 240 with seal member 231 interposed.
- the cover member 240 has an opening 241 through which the DC positive electrode terminal 35a of the power semiconductor element and the like housed in each power semiconductor module 100 is inserted.
- the peripheral edge portion of the cover member 240 is fixed to the upper portion of the peripheral wall 211 forming the cooling chamber 210 by a fastening member (not shown).
- a capacitor module 250 including a plurality of capacitor elements 251 for smoothing DC power supplied to the inverter circuit is housed in an outer region of the cooling chamber 210 of the housing 201.
- the DC bus bar assembly 261 is disposed on the capacitor module 250 and the power semiconductor module 100.
- the DC bus bar assembly 261 transmits DC power between the capacitor module 250 and the power semiconductor module 100.
- a control circuit board assembly 262 including a driver circuit unit for controlling the inverter circuit is disposed above the DC side bus bar assembly 261 and the cover member 240.
- the AC bus bar assembly 263 is connected to the power semiconductor module 100 and transmits AC power.
- AC bus bar assembly 263 includes a current sensor.
- FIG. 3 is a cross-sectional view of the cooling chamber 210 in which the power semiconductor module 100 is accommodated in the power conversion apparatus illustrated in FIG. 1. However, in FIG. 3, the peripheral wall 211 and the bottom cover 202 of the cooling chamber 210 are not shown.
- a support member 220 having four side walls 221 is installed in the cooling chamber 210.
- the bottom surface 220a of the support member 220 is placed on the top surface of the bottom lid 202, and is fixed to the bottom lid 202 by a fastening member (not shown).
- the side walls 221a on both sides are formed higher than the two central side walls 221b, and are formed at substantially the same height as the power semiconductor module 100.
- a recess 222a for inserting a part of the power semiconductor module 100 is formed on the bottom surface 222 in the cooling flow path of the support member 220, which is generated in the cooling flow path opposite to the opening 241. It is possible to easily suppress the bypass flow.
- the recess 222a is not necessarily required, and may be formed of a member different from the support member 220.
- a total of three power semiconductor modules 100 are disposed in the cooling flow path formed between the side wall 221a and the central side wall 221b, or between the central side walls 221b, and are built in each power semiconductor module 100.
- a convex portion 242 that is inserted between the power semiconductor modules 100 is integrally formed on the cover member 240 in which the opening 241 into which the DC positive electrode terminal 35 a of the power semiconductor element 31 is inserted is formed.
- a concave portion 243 is formed in the middle portion of the convex portion 242. The convex portions 242 on both sides of the convex portion 242 are placed on top of the side walls 221a on both sides.
- Each power semiconductor module 100 has a metal case 40 that houses the circuit body 30 (see FIG. 5).
- the metal case 40 has the flange portion 11 at the top.
- Each convex portion 242 provided on the cover member 240 presses each flange portion 11 toward each opening 241 side of the cover member 240.
- each convex part 242 provided in the cover member 240 is provided with a concave part 243 for holding a sealing member 78 such as an O-ring.
- the seal member 78 seals between the power semiconductor module 100 and the cover member 240.
- the power semiconductor module 100 will be described with reference to FIGS.
- FIG. 4 is an external perspective view as an embodiment of the power semiconductor module 100 of the present embodiment.
- FIG. 5 is an external perspective view of the circuit body 30 accommodated in the power semiconductor module 100 as viewed from the front side.
- FIG. 6 is an external perspective view of the power semiconductor unit viewed from the back side.
- FIG. 7 is a perspective view of the circuit body 30 shown in FIG. 5 with the sealing resin removed.
- FIG. 8 is a perspective view of the circuit body 30 shown in FIG. 7 before wire bonding the electrode terminal and the power semiconductor element.
- FIG. 9 is a sectional view taken along line IX-IX of the circuit body unit 10A shown in FIG.
- symbol of the member of the circuit body unit 10B corresponding to the circuit body unit 10A is also attached
- FIG. 12 is a diagram showing a part of the power module manufacturing process shown in FIG.
- FIG. 13 is a diagram illustrating a part of the power module manufacturing process illustrated in FIG. 4.
- FIG. 14 is a cross-sectional view of the power module shown in FIG.
- a circuit body 30 (see FIGS. 5 and 6) that includes a switching element and is transfer molded is housed in a metal case 40 that is a CAN-type cooler.
- the CAN type cooler is a cooler having a flat cylindrical shape having an insertion port 17 on one surface and a bottom on the other surface.
- the metal case 40 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C. ing.
- the metal case 40 is composed of a case frame 41 a and a pair of heat radiating members 41 b having a plurality of heat radiating fins 42.
- the heat dissipating member 41b also functions as a base portion that sandwiches the circuit body 30.
- each heat radiating member 41b has a heat radiating fin 42.
- Each heat radiating member 41 b forms the flange portion 11 on the side of the metal case 40 on the side close to the insertion port 17.
- the flange portion 11 is formed integrally with the heat radiating member 41b.
- the case frame 41a has a U-shape by an opening for fitting each heat radiating member 41b (see FIG. 13). In a state where each heat radiating member 41b is fitted into this opening, the side of the heat radiating member 41b where the flange portion 11 is not formed and the case frame 41a are joined at the joint 43 (see FIG. 13).
- As the joining for example, FSW (friction stir welding), laser welding, brazing, liquid seal, or the like can be applied.
- the metal case having such a shape By using the metal case having such a shape, even when the power semiconductor module 100 is inserted into a flow path through which a coolant such as water, oil, or organic matter flows, a seal against the coolant can be secured by the flange portion 11. The cooling medium can be prevented from entering the power semiconductor module 100 with a simple configuration.
- a coolant such as water, oil, or organic matter flows
- a heat conductive insulating layer 51 is interposed between the circuit body 30 housed in the metal case 40 and the pair of heat radiating members 41 b.
- the insulating layer 51 conducts heat generated from the circuit body 30 to the heat radiating member 41b, and is formed of a material having high thermal conductivity and high withstand voltage.
- a thin film such as aluminum oxide (alumina) or aluminum nitride, or an insulating sheet or adhesive containing these fine powders can be used.
- conductor plates 33 to 36 see FIGS. 5, 6, and 7) for soldering the power semiconductor elements are exposed on both the front and back surfaces of the circuit body 30. 33 to 36 and the heat radiating member 41b are coupled so as to be able to conduct heat.
- the circuit body 30 includes a first sealing resin 6 and a second sealing resin 15 (see FIG. 3) provided on the outer periphery of the first sealing resin 6.
- the power semiconductor element 31U and the diode 32U shown in FIGS. 7 to 9 are fixed between the conductor plate 35 and the conductor plate 33 via the solder material 61 on one side and the solder material 62 on the other side. Yes. Similarly, the power semiconductor element 31L and the diode 32L are fixed between the conductor plate 36 and the conductor plate 34 via solder materials 61 and 62 on one side and the other side.
- FIG. 10 is a circuit diagram showing an embodiment of a circuit built in the circuit body 30, and this circuit diagram is also referred to in the following description.
- the power semiconductor element 31U, the diode 32U, the power semiconductor element 31L, and the diode 32L constitute the upper and lower arm series circuit 121.
- a DC positive terminal 35a is formed on the DC positive conductor plate 35, and an AC output terminal 36a is formed on the AC output conductor plate 36 (see FIG. 7 and the like).
- a power semiconductor element 31U and a diode 32U are bonded to the conductor plate 35 on the DC positive electrode side to form an upper arm circuit.
- the input / output portion of the power semiconductor element 31U has a plurality of signal terminals 24U and wires 26U (see FIG. 7).
- a power semiconductor element 31L and a diode 32L are bonded to the AC output side conductor plate 36 to form a lower arm circuit.
- the input / output portion of the power semiconductor element 31L has a plurality of signal terminals. 24L is connected by a wire 26L (see FIG. 7).
- the conductor plate 35, the conductor plate 33, the DC positive electrode terminal 35a, the signal terminal 24U, the power semiconductor element 31U, and the diode 32U constitute a circuit body unit 10A.
- the conductor plate 36, the conductor plate 34, the AC output terminal 36a, the signal terminal 24L, the power semiconductor element 31L, and the diode 32L constitute a circuit body unit 10B.
- a lead 38 is integrally formed on the conductor plate 33.
- the tip of the lead 38 is connected to the conductor plate 36, thereby connecting the circuit body units 10 ⁇ / b> A and 10 ⁇ / b> B.
- the circuit body 30 seals the circuit body units 10A and 10B with the first sealing resin 6, and the outer periphery of the first sealing resin 6 includes a DC positive terminal 35a, a signal terminal 24U, an AC output terminal 36a, and a signal terminal 24L. It has a structure sealed with the second sealing resin 15 so as to be exposed.
- the circuit body unit 10B includes a temperature sensor 8 (see FIG. 7) for detecting the temperature of the conductor plate 36, that is, the temperature of the power semiconductor element 31L.
- the DC negative terminal 34 a is connected to the conductor plate 34 and protrudes from the first sealing resin 6.
- the circuit body units 10 ⁇ / b> A and 10 ⁇ / b> B are sealed with the first sealing resin 6 to form the circuit body 30. Both front and back surfaces of the circuit body 30, that is, one surface where the upper surface 33b of the conductor plate 33 and the upper surface 34b of the conductor plate 34 are exposed, and the other surface where the upper surface 35b of the conductor plate 35 and the upper surface 36b of the conductor plate 36 are exposed.
- the insulating layer 51 is formed.
- the insulating layer 51 can be formed by, for example, a method of attaching an insulating sheet or a method of applying an insulating adhesive.
- the intermediate unit 70 (see FIG. 12) integrated with the circuit body 30 through the pair of heat radiation members 41b and the insulating layer 51 is fitted into the U-shaped case frame body 41a.
- the case frame body 41a and the side where each flange member 11b is not formed with the flange portion 11 are joined (see FIG. 13).
- FSW frequency stir welding
- laser welding brazing
- liquid seal or the like
- a convex portion 71 is formed on the side of the case frame 41a that connects to the heat radiating member 41b, and the heat radiating member 41b is in contact with the side surfaces 71a and 71b of the convex portion 71. Then, the case frame body 41a and each heat radiation member 41b are connected.
- the heat dissipation member 41b is formed with a recess 74 on the side where the circuit body 30 is disposed.
- the recess 74 is formed so as to surround the region where the heat radiation fin 42 is formed.
- the recessed part 74 is formed so that it may be thinner than the area
- the thickness of the concave portion 74 can be made thinner than that of the fin base portion.
- a thin portion can be formed.
- the heat radiating member 41 b Due to the presence of the deformed portion around the bonding portion between the insulating layer 51 and the circuit body 30, due to the temperature change such as the temperature cycle, the heat radiating member 41 b is forced outward by the expansion of the metal case 40. Even when receiving heat, the tensile stress generated on the connection surface between the heat dissipation member 41b and the insulating layer 51 can be reduced. Therefore, the interface between the insulating layer 51 and the heat dissipation member 41b, or the insulating layer 51 and the conductor plate 33, the conductor It is possible to suppress separation at the interface with the plate 34.
- the distance X1 between the side surfaces 71a and 71b of the convex portion 71 of the case frame 41a is smaller than the distance X2 between the connection portions 72 of the pair of heat radiation members 41b formed so as to sandwich the circuit body 30, that is, X1 ⁇ X2. It is formed to become.
- the connecting portion 72 of the heat radiating member 41b is connected while being pressurized from the outside of the module, so that a compressive force is applied to the inside of the power semiconductor module 100 and insulation is achieved.
- a compressive stress remains in the layer 51 in the thickness direction.
- the flange portion 11 is integrally formed on the side near the opening of the metal case 40 on the heat radiating member 41b having the plurality of heat radiating fins 42.
- the opening 241 of the cover member 240 that forms the flow path is closed by a part of the case frame 41 a and the flange 11. That is, the flange part 11 of one heat radiating member 41 functions as a first seal part, and the flange part 11 of the other heat radiating member 41 functions as a second seal part.
- the distance between the flange part 11 and the radiation fin 42 can be shortened, and a bypass is generated in a gap formed between the flange part 11 and the radiation fin 42.
- the flow can be suppressed.
- the cooling water sufficiently flows through the radiation fins 42, so that the heat transfer coefficient of the radiation fins 42 can be improved, the heat radiation performance of the power semiconductor module 100 is improved, and a highly reliable power conversion device can be realized. .
- the insulating layers 51 are formed on both the front and back surfaces of the circuit body 30, and the both surfaces are insulated.
- a plurality of heat dissipating members 41 b are formed on the upper surface 51 b of the layer 51.
- the case frame body 41a is joined to form the metal case 40, thereby joining the heat radiation member 41b and the case frame body 41a.
- the circuit body 30 having the insulating layers 51 formed on both sides is inserted into the metal case 40, and the circuit body 30 is clamped from the outside of the pair of heat radiation members 41b. It is possible to suppress the peeling of the insulating layer 51 caused by the springback after pressing, which is a concern when the circuit body 30 and the heat radiating member 41b on the front and back sides are bonded via the insulating layer 51 by applying pressure. .
- FIG. 16 shows a modification of the power module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. 14 indicate the same components, and thus detailed description thereof is omitted.
- the surface 11b and the fin forming surface 42a of the heat radiating member 41b are formed on the same surface, and the plate thickness of the flange portion 11 and the heat radiating portion The thickness of 41c is the same.
- FIG. 17 shows still another modified example of the power semiconductor module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. 14 indicate the same components, and thus detailed description thereof is omitted.
- the joint 73 connected to the case frame 41a has a convex shape protruding outward. That is, the thickness of the joint portion 73 is larger than the thickness of the intermediate portion that connects the region where the radiation fins 42 are formed and the joint portion 73.
- the connecting portion 76 of the heat radiating member 41b is connected to the connecting portion 75 of the case frame 41a at the joint where the heat radiating member 41b forming the metal case 40 and the case frame 41a are connected. Is on the inside.
- the case frame 41a has a connection portion 75 that overlaps with the connection portion 76 when viewed from the direction perpendicular to the surface on which the heat dissipation fins 42 of the heat dissipation member 41b are formed. Further, the connecting portion 76 is formed closer to the circuit body 30 than the connecting portion 75 and is connected to the connecting portion 75. Even in this case, the same effect as that of the power module shown in FIG. 14 can be obtained. (Embodiment 5) FIG. 19 shows a modification of the power conversion device shown in FIG. 3, and the same reference numerals as those in FIG. 3 indicate the same components, and thus detailed description thereof is omitted.
- the space between the cover member 240 and the seal portion 11c of the power semiconductor module 100 is sealed with a resin material 81 such as a liquid seal.
- a resin material 81 such as a liquid seal
- a liquid seal is formed in the opening of the power semiconductor module 100 by forming the concave portion 80.
- the effect which prevents going into a part is acquired.
- the insulating layer 51 is not necessarily required as long as the power semiconductor module 100 has a structure in which the heat dissipation member 41b and the circuit body 30 are in close contact with each other so as to conduct heat.
- the structure of the housing 201 of the power conversion device 200 and the layout of the electronic components housed in the housing 201 shown in the above embodiment are shown as examples, and can be applied with various modifications. .
- the shape of the radiating fins 42 is pin fins, but other shapes such as straight fins and corrugated fins may be used.
- the in-vehicle power conversion device mounted on the electric vehicle or the hybrid vehicle has been described as an example.
- the power conversion device has a cooling structure in which the power module is immersed in the cooling medium, the present invention The invention can be applied as well.
- Power semiconductor module 121 ... Upper and lower arm series circuit, 200 ... Power converter, 201 ... Housing, 202 ... Bottom cover, 203a ... Inlet Piping for piping, 203b outlet piping, 210 ... cooling chamber, 211 ... peripheral wall, 220 ... support member, 220a ... bottom surface, 221 ... side wall, 221a ... side wall on both sides, 221b ... central side wall, 222 ... in cooling channel Bottom surface, 222a ... concave portion, 231 ... seal member, 240 ... cover member, 241 ... opening, 242 ... convex portion, 243 ... concave portion, 250 ... capacitor module, 251 ... capacitor element, 61 ... DC-side bus bar assembly, 262 ... control circuit board assembly, 263 ... AC side bus bar assembly, X1 ... distance, X2 ... distance
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
The present invention addresses the problem of providing a power conversion device having high heat radiation performance. This power conversion device is provided with a power semiconductor module, and a flow path formation body for forming an opening and a flow path connected to the opening. The power semiconductor module is provided with a circuit body having a power semiconductor element, a first base section and second base section, and a frame connected to the first base section and the second base section. The first base section has a first fin and on a side near the opening a first sealing section for blocking a part of the opening. The second base section has a second fin and on a side near the opening a second sealing section for blocking a part of the opening. The frame is connected to a side of the first base section where the first sealing section is not formed, and is connected to a side of the second base section where the second sealing section is not formed. The opening is blocked by a part of the frame, the first sealing section, and the second sealing section.
Description
本発明は、電力変換装置に関し、特に車両用駆動用のモータを制御する電力変換装置に関する。
The present invention relates to a power converter, and more particularly to a power converter that controls a motor for driving a vehicle.
パワー半導体素子を有する回路体を金属製ケース内に収容するパワー半導体モジュールを備える電力変換装置が知られている。このような電力変換装置は、例えば、電気自動車やハイブリッド自動車等の電気車両に搭載される。
There is known a power conversion device including a power semiconductor module that houses a circuit body having a power semiconductor element in a metal case. Such a power converter is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle.
パワー半導体モジュールは、パワー半導体素子の表裏両面を導電板に半田付けし、電極端子を露出した状態で樹脂により封止される。
The power semiconductor module is sealed with resin with both the front and back surfaces of the power semiconductor element soldered to a conductive plate and the electrode terminals exposed.
金属製ケースは、両面に、導電板の各々に熱伝導性の絶縁接着剤により接着される放熱部を有する。各放熱部には、放熱用の複数のフィンが形成されている。また金属製ケ―スは、一側端部側が開口されたフランジ部を有する有底缶型形状を有し、パワー半導体モジュールは、パワー半導体素子の電極端子を、前記金属製ケースの開口に挿通した状態で金属製ケース内に収容される。
The metal case has a heat radiating part that is bonded to each of the conductive plates by a heat conductive insulating adhesive on both sides. Each heat dissipating part is formed with a plurality of heat dissipating fins. The metal case has a bottomed can shape having a flange portion opened at one end, and the power semiconductor module inserts the electrode terminal of the power semiconductor element into the opening of the metal case. In this state, it is housed in a metal case.
この金属製ケースは,フレームと複数のフィンが形成されたフィンプレート2枚が接合された構造となっている。フレームには、パワー半導体素子を樹脂封止された回路体の表裏面に対向して開口が形成され、この開口内に、複数のフィンを有する一対のフィンプレートが配置され,接合されている(例えば、特許文献1参照)。
This metal case has a structure in which two fin plates on which a frame and a plurality of fins are formed are joined. An opening is formed in the frame so as to face the front and back surfaces of the circuit body in which the power semiconductor element is resin-sealed, and a pair of fin plates having a plurality of fins are disposed and joined in the opening ( For example, see Patent Document 1).
金属製ケース内にパワー半導体モジュールが収納された状態で、金属製ケースの放熱部を、パワー半導体モジュールを挟圧するように加圧して、金属製ケース内面とパワー半導体ユニットとを熱伝導性の絶縁接着剤により接着する。(例えば、特許文献2参照)。
In a state where the power semiconductor module is housed in the metal case, the heat radiating part of the metal case is pressurized so as to sandwich the power semiconductor module, and the inner surface of the metal case and the power semiconductor unit are insulated with heat conductivity. Adhere with an adhesive. (For example, refer to Patent Document 2).
このような電力変換装置においては、パワー半導体モジュールの小型化のためには更なる放熱性の向上(冷却効率の向上)が求められている。
In such a power conversion device, further improvement in heat dissipation (improvement of cooling efficiency) is required in order to reduce the size of the power semiconductor module.
しかし,この金属製ケースが,フレームと複数のフィンが形成されたフィンプレート2枚が接合された構造の場合,フランジとフィンとの間に接合部が存在するため,フランジとフィン間の距離が長くなってしまう。その結果,パワー半導体モジュールを水路に取り付けた場合,フランジとフィンとの間に空間ができ,冷却水を流した時に,フィン部に流れて欲しい冷却水が抵抗の小さいフィンが無い空間部に多く流れてしまい(この流れをバイパス流と呼ぶ),フィン部に流れる冷却水が減少し,フィンの熱伝達率が低下する可能性がある。
However, if this metal case has a structure in which two fin plates on which a frame and a plurality of fins are formed are joined, there is a joint between the flange and the fin. It will be long. As a result, when the power semiconductor module is installed in a water channel, a space is created between the flange and the fin, and when the cooling water is flowed, the cooling water that wants to flow through the fin is much in the space where there is no fin with low resistance. Flowing (this flow is called a bypass flow), cooling water flowing to the fin portion is reduced, and the heat transfer coefficient of the fin may be reduced.
このバイパス流を防止するために,フランジとフィンとの空間をふさぐためのスペーサを設けることもできるが,部品点数,工程が増えるなどのデメリットがある。スペーサなどの部品を設けることなく,フランジーフィン間のバイパス流を防止することが望まれている。
In order to prevent this bypass flow, a spacer can be provided to close the space between the flange and the fin, but there are disadvantages such as an increase in the number of parts and processes. It is desired to prevent a bypass flow between the flange fins without providing a part such as a spacer.
そこで,本発明の目的は、両面冷却型パワー半導体装置を用いた電力変換装置において,放熱性能の高い電力変換装置を提供することにある。
Therefore, an object of the present invention is to provide a power converter having high heat dissipation performance in a power converter using a double-sided cooling power semiconductor device.
上記課題を解決するために、本発明に係る電力変換装置は、パワー半導体モジュールと、前記パワー半導体モジュールを挿入する開口及び当該開口と繋がる流路を形成する流路形成体と、を備え、前記パワー半導体モジュールは、パワー半導体素子を有する回路体と、前記回路体を挟むように互いに対向して配置された第1ベース部と第2ベース部と、前記第1ベース部と前記第2ベース部と接続される枠体と、を備え、前記第1ベース部は、第1フィンと、前記開口に近い側の辺に当該開口の一部を塞ぐ第1シール部と、を有し、前記第2ベース部は、第2フィンと、前記開口に近い側の辺に当該開口の一部を塞ぐ第2シール部と、を有し、前記枠体は、前記第1シール部が形成されていない前記第1ベース部の辺と接続され、かつ前記第2シール部が形成されていない前記第2ベース部の辺と接続され、前記開口は、前記枠体の一部と前記第1シール部と前記第2シール部により塞がれる。
In order to solve the above-described problem, a power conversion device according to the present invention includes a power semiconductor module, an opening for inserting the power semiconductor module, and a flow path forming body that forms a flow path connected to the opening. The power semiconductor module includes a circuit body having a power semiconductor element, a first base part and a second base part that are arranged to face each other so as to sandwich the circuit body, and the first base part and the second base part. And the first base part includes a first fin and a first seal part that closes a part of the opening on a side close to the opening, 2 base part has a 2nd fin and the 2nd seal part which block | closes a part of the said opening in the edge | side near the said opening, The said 1st seal part is not formed in the said frame Connected to the side of the first base portion, and Is connected to the second seal portion side of the second base portion which is not formed, the opening is closed and a portion of the frame member and the first sealing portion by the second sealing portion.
本発明によれば、フランジとフィン間を接合する必要がなくなるためフランジとフィンとの間の距離を短くでき,フランジとフィンとの間にできる隙間に発生するバイパス流を抑制することができる。その結果,フィン部(放熱部)に冷却水が十分に流れるため,フィン部の熱伝達率を向上することができ,パワー半導体モジュールの放熱性能が向上し,信頼性の高い電力変換装置が実現できる。
According to the present invention, since it is not necessary to join the flange and the fin, the distance between the flange and the fin can be shortened, and the bypass flow generated in the gap formed between the flange and the fin can be suppressed. As a result, the cooling water flows sufficiently to the fin part (heat dissipating part), so the heat transfer coefficient of the fin part can be improved, the heat dissipating performance of the power semiconductor module is improved, and a highly reliable power converter is realized. it can.
(実施形態1)
[電力変換装置]
以下、図を参照して、本発明に係る電力変換装置の一実施の形態を説明する。 (Embodiment 1)
[Power converter]
Hereinafter, an embodiment of a power conversion device according to the present invention will be described with reference to the drawings.
[電力変換装置]
以下、図を参照して、本発明に係る電力変換装置の一実施の形態を説明する。 (Embodiment 1)
[Power converter]
Hereinafter, an embodiment of a power conversion device according to the present invention will be described with reference to the drawings.
図1は、本発明の電力変換装置の一実施の形態としての外観斜視図であり、図2は、図1に図示された電力変換装置の分解斜視図である。
FIG. 1 is an external perspective view as an embodiment of a power conversion device of the present invention, and FIG. 2 is an exploded perspective view of the power conversion device shown in FIG.
電力変換装置200は、電気自動車やハイブリッド自動車の電源装置として用いられる。図示はしないが、電力変換装置200は、モータジェネレータに接続されたインバータ回路を内蔵し、また、外部のバッテリに接続された昇圧回路および全体を制御する制御回路を備えている。
The power conversion device 200 is used as a power supply device for an electric vehicle or a hybrid vehicle. Although not shown, the power conversion device 200 includes an inverter circuit connected to the motor generator, and includes a booster circuit connected to an external battery and a control circuit for controlling the whole.
電力変換装置200は、アルミニウムやアルミニウム合金等のアルミニウム系金属により形成された筐体201および筐体201に締結部材(不図示)により締結される底蓋202を有する。筐体201と底蓋202とは、一体成型により形成することもできる。筐体201の上部には、不図示の上蓋が締結部材により締結され、密閉状の容器が形成される。
The power conversion device 200 includes a housing 201 formed of an aluminum-based metal such as aluminum or an aluminum alloy, and a bottom lid 202 fastened to the housing 201 by a fastening member (not shown). The housing 201 and the bottom cover 202 can also be formed by integral molding. An upper lid (not shown) is fastened to the upper portion of the housing 201 by a fastening member to form a sealed container.
筐体201の内部には、冷却流路を形成するための周壁211が形成され、周壁211と底蓋202とにより冷却用室210が形成されている。
A peripheral wall 211 for forming a cooling flow path is formed inside the housing 201, and a cooling chamber 210 is formed by the peripheral wall 211 and the bottom lid 202.
冷却用室210内には、複数(図2では4つ)の側壁221を有する支持部材220および各側壁221間に配置される複数(図2では3つ)のパワー半導体モジュール100が収納される。パワー半導体モジュール100の詳細は後述する。
In the cooling chamber 210, a support member 220 having a plurality of (four in FIG. 2) side walls 221 and a plurality (three in FIG. 2) of power semiconductor modules 100 disposed between the side walls 221 are housed. . Details of the power semiconductor module 100 will be described later.
筐体201の一側部には、一対の貫通孔が設けられ、貫通孔の一方には、入口用配管203aが設けられ、貫通孔の他方には、出口用配管203bが設けられている。冷却水などの冷却媒体は、入口用配管203aから冷却用室210内に流入し、支持部材220の側壁221と各パワー半導体モジュール100との間の冷却路を流通して出口用配管203bから流出する。出口用配管203bから流出した冷却媒体は、不図示のラジエータ等の冷却装置によって冷却されて、再び、入口用配管203aから冷却用室210内に流入するように循環する。
A pair of through holes are provided on one side of the housing 201, one of the through holes is provided with an inlet pipe 203a, and the other of the through holes is provided with an outlet pipe 203b. A cooling medium such as cooling water flows into the cooling chamber 210 from the inlet pipe 203a, flows out through the cooling path between the side wall 221 of the support member 220 and each power semiconductor module 100, and flows out from the outlet pipe 203b. To do. The cooling medium flowing out from the outlet pipe 203b is cooled by a cooling device such as a radiator (not shown), and circulates again so as to flow into the cooling chamber 210 from the inlet pipe 203a.
冷却用室210は、シール部材231を介在して、カバー部材240により密封される。カバー部材240は、各パワー半導体モジュール100内に収納された、パワー半導体素子の直流正極端子35a等が挿通される開口部241を有する。カバー部材240の周
縁部は冷却用室210を形成する周壁211の上部に、不図示の締結部材により固定される。 Coolingchamber 210 is sealed by cover member 240 with seal member 231 interposed. The cover member 240 has an opening 241 through which the DC positive electrode terminal 35a of the power semiconductor element and the like housed in each power semiconductor module 100 is inserted. The peripheral edge portion of the cover member 240 is fixed to the upper portion of the peripheral wall 211 forming the cooling chamber 210 by a fastening member (not shown).
縁部は冷却用室210を形成する周壁211の上部に、不図示の締結部材により固定される。 Cooling
筐体201の冷却用室210の外側領域には、インバータ回路に供給される直流電力を平滑化するための複数のコンデンサ素子251を備えるコンデンサモジュール250が収納される。
A capacitor module 250 including a plurality of capacitor elements 251 for smoothing DC power supplied to the inverter circuit is housed in an outer region of the cooling chamber 210 of the housing 201.
コンデンサモジュール250とパワー半導体モジュール100の上部に、直流側バスバーアセンブリ261が配置される。直流側バスバーアセンブリ261は、コンデンサモジュール250とパワー半導体モジュール100の間に直流電力を伝達する。
The DC bus bar assembly 261 is disposed on the capacitor module 250 and the power semiconductor module 100. The DC bus bar assembly 261 transmits DC power between the capacitor module 250 and the power semiconductor module 100.
直流側バスバーアセンブリ261およびカバー部材240の上方には、インバータ回路を制御するドライバ回路部を含む、制御回路基板アセンブリ262が配置されている。
A control circuit board assembly 262 including a driver circuit unit for controlling the inverter circuit is disposed above the DC side bus bar assembly 261 and the cover member 240.
交流側バスバーアセンブリ263は、パワー半導体モジュール100と接続され、交流電力を伝達する。また、交流側バスバーアセンブリ263は、電流センサを有する。
The AC bus bar assembly 263 is connected to the power semiconductor module 100 and transmits AC power. In addition, AC bus bar assembly 263 includes a current sensor.
[冷却用室の構造]
図3は、図1に図示された電力変換装置における、パワー半導体モジュール100が収納された冷却用室210の断面図である。但し、図3においては、冷却用室210の周壁211および底蓋202は、図示を省略されている。 [Cooling chamber structure]
FIG. 3 is a cross-sectional view of thecooling chamber 210 in which the power semiconductor module 100 is accommodated in the power conversion apparatus illustrated in FIG. 1. However, in FIG. 3, the peripheral wall 211 and the bottom cover 202 of the cooling chamber 210 are not shown.
図3は、図1に図示された電力変換装置における、パワー半導体モジュール100が収納された冷却用室210の断面図である。但し、図3においては、冷却用室210の周壁211および底蓋202は、図示を省略されている。 [Cooling chamber structure]
FIG. 3 is a cross-sectional view of the
冷却用室210内には、4つの側壁221を有する支持部材220が設置される。支持部材220の底面220aが、底蓋202の上面に載置され、不図示の締結部材により、底蓋202に固定される。
In the cooling chamber 210, a support member 220 having four side walls 221 is installed. The bottom surface 220a of the support member 220 is placed on the top surface of the bottom lid 202, and is fixed to the bottom lid 202 by a fastening member (not shown).
両側の側壁221aは、2つの中央側壁221bより高く形成されるとともに、パワー半導体モジュール100とほぼ同じ高さに形成されている。また,支持部材220の冷却流路内の底面222にはパワー半導体モジュール100の一部を挿入するための凹部222aが形成されており,これにより開口部241とは反対側の冷却流路に発生するバイパス流を容易に抑制することができる。この凹部222aは必ずしも必要ではなく,支持部材220とは別部材で形成されていてもよい。
The side walls 221a on both sides are formed higher than the two central side walls 221b, and are formed at substantially the same height as the power semiconductor module 100. In addition, a recess 222a for inserting a part of the power semiconductor module 100 is formed on the bottom surface 222 in the cooling flow path of the support member 220, which is generated in the cooling flow path opposite to the opening 241. It is possible to easily suppress the bypass flow. The recess 222a is not necessarily required, and may be formed of a member different from the support member 220.
上述した如く、側壁221aと中央側壁221bとの間や、中央側壁221b同士の間に形成された冷却流路に,計3つのパワー半導体モジュール100が配置され、また、各パワー半導体モジュール100に内蔵されたパワー半導体素子31の直流正極端子35a等が挿通される開口部241が形成されているカバー部材240には、各パワー半導体モジュール100間に嵌入される凸部242が一体成型されている。凸部242の中間部には、凹部243が形成されている。凸部242の両側部側の凸部242は、両側の側壁221aの上部に載置されている。
As described above, a total of three power semiconductor modules 100 are disposed in the cooling flow path formed between the side wall 221a and the central side wall 221b, or between the central side walls 221b, and are built in each power semiconductor module 100. A convex portion 242 that is inserted between the power semiconductor modules 100 is integrally formed on the cover member 240 in which the opening 241 into which the DC positive electrode terminal 35 a of the power semiconductor element 31 is inserted is formed. A concave portion 243 is formed in the middle portion of the convex portion 242. The convex portions 242 on both sides of the convex portion 242 are placed on top of the side walls 221a on both sides.
各パワー半導体モジュール100は、回路体30(図5参照)を収納する金属製ケース40を有する。金属製ケース40は、上部にフランジ部11を有する。カバー部材240に設けられた各凸部242は、各フランジ部11をカバー部材240の各開口部241側に向けて押し付けている。また,カバー部材240に設けられた各凸部242には例えばOリングなどのシール部材78を保持するための凹部243が設けられている。このシール部材78によりパワー半導体モジュール100とカバー部材240との間が密閉される。
Each power semiconductor module 100 has a metal case 40 that houses the circuit body 30 (see FIG. 5). The metal case 40 has the flange portion 11 at the top. Each convex portion 242 provided on the cover member 240 presses each flange portion 11 toward each opening 241 side of the cover member 240. Moreover, each convex part 242 provided in the cover member 240 is provided with a concave part 243 for holding a sealing member 78 such as an O-ring. The seal member 78 seals between the power semiconductor module 100 and the cover member 240.
[パワー半導体モジュール100]
図4ないし図9を参照してパワー半導体モジュール100について説明する。 [Power Semiconductor Module 100]
Thepower semiconductor module 100 will be described with reference to FIGS.
図4ないし図9を参照してパワー半導体モジュール100について説明する。 [Power Semiconductor Module 100]
The
図4は、本実施形態のパワー半導体モジュール100の一実施の形態としての外観斜視図である。図5はパワー半導体モジュール100内に収容される回路体30を表面側から観た外観斜視図である。図6は、パワー半導体ユニットを裏面側から観た外観斜視図である。また、図7は図5に図示された回路体30の封止樹脂を除去した状態の斜視図である。図8は図7に図示された回路体30において、電極端子とパワー半導体素子とをワイヤボンディングする前の斜視図である。さらに、図9は図8に図示された回路体ユニット10AのIX-IX線断面図である。なお、図9においては、回路体ユニット10Aに対応する回路体ユニット10Bの部材の符号も付してある。
FIG. 4 is an external perspective view as an embodiment of the power semiconductor module 100 of the present embodiment. FIG. 5 is an external perspective view of the circuit body 30 accommodated in the power semiconductor module 100 as viewed from the front side. FIG. 6 is an external perspective view of the power semiconductor unit viewed from the back side. FIG. 7 is a perspective view of the circuit body 30 shown in FIG. 5 with the sealing resin removed. FIG. 8 is a perspective view of the circuit body 30 shown in FIG. 7 before wire bonding the electrode terminal and the power semiconductor element. Further, FIG. 9 is a sectional view taken along line IX-IX of the circuit body unit 10A shown in FIG. In addition, in FIG. 9, the code | symbol of the member of the circuit body unit 10B corresponding to the circuit body unit 10A is also attached | subjected.
また図12は、図4に図示されたパワーモジュール製造工程の一部を表す図である。図13は、図4に図示されたパワーモジュール製造工程の一部を表す図である。図14は、図4に図示されたパワーモジュールの断面図である。
FIG. 12 is a diagram showing a part of the power module manufacturing process shown in FIG. FIG. 13 is a diagram illustrating a part of the power module manufacturing process illustrated in FIG. 4. FIG. 14 is a cross-sectional view of the power module shown in FIG.
パワー半導体モジュール100は、スイッチング素子を含みトランスファーモールドされた回路体30(図5及び図6を参照)を、CAN型冷却器である金属製ケース40内に収納したものである。ここで、CAN型冷却器とは、一面に挿通口17を、他面に底部を有する扁平状の筒型形状をした冷却器である。金属製ケース40は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成されている。
In the power semiconductor module 100, a circuit body 30 (see FIGS. 5 and 6) that includes a switching element and is transfer molded is housed in a metal case 40 that is a CAN-type cooler. Here, the CAN type cooler is a cooler having a flat cylindrical shape having an insertion port 17 on one surface and a bottom on the other surface. The metal case 40 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C. ing.
図4に示すように,金属製ケース40は、ケース枠体41aと、複数の放熱フィン42を有する一対の放熱部材41bとから構成されている。放熱部材41bは、回路体30を挟みこむベース部としても機能する。
As shown in FIG. 4, the metal case 40 is composed of a case frame 41 a and a pair of heat radiating members 41 b having a plurality of heat radiating fins 42. The heat dissipating member 41b also functions as a base portion that sandwiches the circuit body 30.
ここで,各放熱部材41bには放熱フィン42を有する。また各放熱部材41bは、金属製ケース40の挿通口17に近い側の辺にフランジ部11を形成する。このフランジ部11は、放熱部材41bと一体に形成される。
Here, each heat radiating member 41b has a heat radiating fin 42. Each heat radiating member 41 b forms the flange portion 11 on the side of the metal case 40 on the side close to the insertion port 17. The flange portion 11 is formed integrally with the heat radiating member 41b.
ケース枠体41aは、各放熱部材41bを嵌合する開口により,コの字形状をしている(図13参照)。この開口部に各放熱部材41bを嵌合した状態で、接合部43(図13参照)において各放熱部材41bのフランジ部11が形成されていない辺とケース枠体41aとが接合されている。接合としては、例えば、FSW(摩擦攪拌接合)、レーザ溶接、ろう付,液状シール等を適用することができる。
The case frame 41a has a U-shape by an opening for fitting each heat radiating member 41b (see FIG. 13). In a state where each heat radiating member 41b is fitted into this opening, the side of the heat radiating member 41b where the flange portion 11 is not formed and the case frame 41a are joined at the joint 43 (see FIG. 13). As the joining, for example, FSW (friction stir welding), laser welding, brazing, liquid seal, or the like can be applied.
このような形状の金属製のケースを用いることで、パワー半導体モジュール100を水や油,有機物などの冷媒が流れる流路内に挿入しても、冷媒に対するシールをフランジ部11にて確保できるため、冷却媒体がパワー半導体モジュール100の内部に侵入するのを簡易な構成で防ぐことができる。
By using the metal case having such a shape, even when the power semiconductor module 100 is inserted into a flow path through which a coolant such as water, oil, or organic matter flows, a seal against the coolant can be secured by the flange portion 11. The cooling medium can be prevented from entering the power semiconductor module 100 with a simple configuration.
金属製ケース40内に収納された回路体30と一対の放熱部材41bとの間には、図3に図示されるように、熱伝導性の絶縁層51が介装されている。絶縁層51は、回路体30から発生する熱を放熱部材41bに熱伝導するものであり、熱伝導率が高く、かつ、絶縁耐圧が大きい材料で形成されている。例えば、酸化アルミニウム(アルミナ)、窒化アルミニウム等の薄膜、あるいは、これらの微粉末を含有する絶縁シートまたは接着剤を用いることができる。後述するが、回路体30の表裏両面には、パワー半導体素子を半田付けする導体板33~36(図5、図6及び図7を参照)が表出しており、絶縁層51は、導体板33~36と放熱部材41bとを熱伝導可能に結合している。
As shown in FIG. 3, a heat conductive insulating layer 51 is interposed between the circuit body 30 housed in the metal case 40 and the pair of heat radiating members 41 b. The insulating layer 51 conducts heat generated from the circuit body 30 to the heat radiating member 41b, and is formed of a material having high thermal conductivity and high withstand voltage. For example, a thin film such as aluminum oxide (alumina) or aluminum nitride, or an insulating sheet or adhesive containing these fine powders can be used. As will be described later, conductor plates 33 to 36 (see FIGS. 5, 6, and 7) for soldering the power semiconductor elements are exposed on both the front and back surfaces of the circuit body 30. 33 to 36 and the heat radiating member 41b are coupled so as to be able to conduct heat.
[回路体30]
図7等に図示されるように、回路体30の表面側には、交流出力側の導体板33と直流負極側の導体板34とが同一平面上に配置されている。第1封止樹脂6は、回路体30の表面側において、図5に図示されるように、導体板33の上面33bと導体板34の上面34bを露出して、導体板33および34の周囲全体を被覆している。第1封止樹脂6の表面は、導体板33の上面33bおよび導体板34の上面34bと面一となっている。 [Circuit body 30]
As illustrated in FIG. 7 and the like, the AC outputside conductor plate 33 and the DC negative electrode side conductor plate 34 are arranged on the same plane on the surface side of the circuit body 30. As illustrated in FIG. 5, the first sealing resin 6 exposes the upper surface 33 b of the conductor plate 33 and the upper surface 34 b of the conductor plate 34 on the surface side of the circuit body 30, and surrounds the conductor plates 33 and 34. The whole is covered. The surface of the first sealing resin 6 is flush with the upper surface 33 b of the conductor plate 33 and the upper surface 34 b of the conductor plate 34.
図7等に図示されるように、回路体30の表面側には、交流出力側の導体板33と直流負極側の導体板34とが同一平面上に配置されている。第1封止樹脂6は、回路体30の表面側において、図5に図示されるように、導体板33の上面33bと導体板34の上面34bを露出して、導体板33および34の周囲全体を被覆している。第1封止樹脂6の表面は、導体板33の上面33bおよび導体板34の上面34bと面一となっている。 [Circuit body 30]
As illustrated in FIG. 7 and the like, the AC output
同様に、図6及び図9に図示されるように、回路体30の裏面側には、直流正極側の導体板35と交流出力側の導体板36とが同一平面上に配置されている。回路体30は、第1封止樹脂6および第1封止樹脂6の外周に設けられた第2封止樹脂15(図3参照)を有する。
Similarly, as shown in FIGS. 6 and 9, on the back side of the circuit body 30, the DC positive-side conductor plate 35 and the AC output-side conductor plate 36 are arranged on the same plane. The circuit body 30 includes a first sealing resin 6 and a second sealing resin 15 (see FIG. 3) provided on the outer periphery of the first sealing resin 6.
第1封止樹脂6は、図6に図示されるように、回路体30の裏面側において、導体板35の上面35bと導体板36の上面36bを露出して、導体板35および36の周囲全体を被覆している。第1封止樹脂6の表面は、導体板35の上面35bおよび導体板36の上面36bと面一となっている。導体板33~36は、例えば、銅,銅合金,あるいはアルミニウム,アルミニウム合金などにより形成されている。
As shown in FIG. 6, the first sealing resin 6 exposes the upper surface 35 b of the conductor plate 35 and the upper surface 36 b of the conductor plate 36 on the back side of the circuit body 30, and surrounds the conductor plates 35 and 36. The whole is covered. The surface of the first sealing resin 6 is flush with the upper surface 35 b of the conductor plate 35 and the upper surface 36 b of the conductor plate 36. The conductor plates 33 to 36 are made of, for example, copper, copper alloy, aluminum, aluminum alloy, or the like.
図7ないし図9に示されるパワー半導体素子31Uおよびダイオード32Uは、一面側に半田材61を介して、他面側に半田材62を介して導体板35および導体板33の間に固着されている。同様に、パワー半導体素子31Lおよびダイオード32Lは、一面側および他面側に半田材61、62を介して、導体板36および導体板34の間に固着されている。
The power semiconductor element 31U and the diode 32U shown in FIGS. 7 to 9 are fixed between the conductor plate 35 and the conductor plate 33 via the solder material 61 on one side and the solder material 62 on the other side. Yes. Similarly, the power semiconductor element 31L and the diode 32L are fixed between the conductor plate 36 and the conductor plate 34 via solder materials 61 and 62 on one side and the other side.
図10は、回路体30に内蔵された回路一実施の形態を示す回路図であり、以下の説明では、この回路図も合わせて参照する。
FIG. 10 is a circuit diagram showing an embodiment of a circuit built in the circuit body 30, and this circuit diagram is also referred to in the following description.
パワー半導体素子31U、ダイオード32U,パワー半導体素子31L、ダイオード32Lは、上下アーム直列回路121を構成する。
The power semiconductor element 31U, the diode 32U, the power semiconductor element 31L, and the diode 32L constitute the upper and lower arm series circuit 121.
直流正極側の導体板35には直流正極端子35aが形成され、交流出力側の導体板36には交流出力端子36aが形成される(図7等参照)。また、直流正極側の導体板35にはパワー半導体素子31Uおよびダイオード32Uがボンディングされ上アーム回路を構成しており、パワー半導体素子31Uの入出力部は、複数の信号端子24Uとワイヤ26U(図7参照)により接続されている。
A DC positive terminal 35a is formed on the DC positive conductor plate 35, and an AC output terminal 36a is formed on the AC output conductor plate 36 (see FIG. 7 and the like). A power semiconductor element 31U and a diode 32U are bonded to the conductor plate 35 on the DC positive electrode side to form an upper arm circuit. The input / output portion of the power semiconductor element 31U has a plurality of signal terminals 24U and wires 26U (see FIG. 7).
また、交流出力側の導体板36には、パワー半導体素子31Lおよびダイオード32L(図10参照)がボンディングされ下アーム回路を構成しており、パワー半導体素子31Lの入出力部は、複数の信号端子24Lがワイヤ26L(図7参照)により接続されている。
A power semiconductor element 31L and a diode 32L (see FIG. 10) are bonded to the AC output side conductor plate 36 to form a lower arm circuit. The input / output portion of the power semiconductor element 31L has a plurality of signal terminals. 24L is connected by a wire 26L (see FIG. 7).
図7及び図8に図示されるように、導体板35、導体板33、直流正極端子35a、信号端子24U、パワー半導体素子31Uおよびダイオード32Uは、回路体ユニット10Aを構成する。また、導体板36、導体板34、交流出力端子36a、信号端子24L、パワー半導体素子31Lおよびダイオード32Lは、回路体ユニット10Bを構成する。
7 and 8, the conductor plate 35, the conductor plate 33, the DC positive electrode terminal 35a, the signal terminal 24U, the power semiconductor element 31U, and the diode 32U constitute a circuit body unit 10A. Further, the conductor plate 36, the conductor plate 34, the AC output terminal 36a, the signal terminal 24L, the power semiconductor element 31L, and the diode 32L constitute a circuit body unit 10B.
図7に図示されるように、導体板33にはリード38が一体に形成されている。リード38の先端は導体板36に接続されており、これにより、回路体ユニット10Aおよび10Bが接続されている。
As shown in FIG. 7, a lead 38 is integrally formed on the conductor plate 33. The tip of the lead 38 is connected to the conductor plate 36, thereby connecting the circuit body units 10 </ b> A and 10 </ b> B.
回路体30は、回路体ユニット10A及び10Bを第1封止樹脂6で封止し、第1封止樹脂6の外周を直流正極端子35a、信号端子24U、交流出力端子36a、信号端子24Lが露出されるように第2封止樹脂15により封止した構造を有する。回路体ユニット10Bは、導体板36の温度、すなわち、パワー半導体素子31Lの温度を検出するための温度センサ8(図7参照)を備えている。
The circuit body 30 seals the circuit body units 10A and 10B with the first sealing resin 6, and the outer periphery of the first sealing resin 6 includes a DC positive terminal 35a, a signal terminal 24U, an AC output terminal 36a, and a signal terminal 24L. It has a structure sealed with the second sealing resin 15 so as to be exposed. The circuit body unit 10B includes a temperature sensor 8 (see FIG. 7) for detecting the temperature of the conductor plate 36, that is, the temperature of the power semiconductor element 31L.
直流負極端子34aは、導体板34と接続され、第1封止樹脂6から突出する。
[パワー半導体モジュール100の作製方法]
パワー半導体モジュール100を作製するには、図5及び図6に図示されるように、回路体ユニット10A、10Bを第1封止樹脂6で封止し、回路体30を形成する。回路体30の表裏両面、すなわち、導体板33の上面33bおよび導体板34の上面34bが表出された一面と、導体板35の上面35bおよび導体板36の上面36bが表出された他面に、絶縁層51を形成する。絶縁層51の形成は、例えば、絶縁シートを貼り付ける方法、あるいは絶縁性接着剤を塗布する方法等を用いることができる。 The DC negative terminal 34 a is connected to theconductor plate 34 and protrudes from the first sealing resin 6.
[Production Method of Power Semiconductor Module 100]
In order to manufacture thepower semiconductor module 100, as shown in FIGS. 5 and 6, the circuit body units 10 </ b> A and 10 </ b> B are sealed with the first sealing resin 6 to form the circuit body 30. Both front and back surfaces of the circuit body 30, that is, one surface where the upper surface 33b of the conductor plate 33 and the upper surface 34b of the conductor plate 34 are exposed, and the other surface where the upper surface 35b of the conductor plate 35 and the upper surface 36b of the conductor plate 36 are exposed. Then, the insulating layer 51 is formed. The insulating layer 51 can be formed by, for example, a method of attaching an insulating sheet or a method of applying an insulating adhesive.
[パワー半導体モジュール100の作製方法]
パワー半導体モジュール100を作製するには、図5及び図6に図示されるように、回路体ユニット10A、10Bを第1封止樹脂6で封止し、回路体30を形成する。回路体30の表裏両面、すなわち、導体板33の上面33bおよび導体板34の上面34bが表出された一面と、導体板35の上面35bおよび導体板36の上面36bが表出された他面に、絶縁層51を形成する。絶縁層51の形成は、例えば、絶縁シートを貼り付ける方法、あるいは絶縁性接着剤を塗布する方法等を用いることができる。 The DC negative terminal 34 a is connected to the
[Production Method of Power Semiconductor Module 100]
In order to manufacture the
さらに図11に示されるように、両面の絶縁層51の上面51bに,複数の放熱フィン42を有する放熱部材(放熱部)41bをそれぞれ形成する。たとえば,一対の放熱部材41bの外方から回路体30を挟圧するように加圧する。この加圧により、回路体30と表裏の放熱部材41bとが絶縁層51を介して接着される。加圧は1対の放熱部材41bを一度に接着してもよいし,放熱部材41bを1枚ずつ接着してもよい。
Further, as shown in FIG. 11, heat dissipating members (heat dissipating portions) 41b having a plurality of heat dissipating fins 42 are formed on the upper surfaces 51b of the insulating layers 51 on both sides. For example, the circuit body 30 is pressurized from outside the pair of heat radiation members 41b. By this pressurization, the circuit body 30 and the heat radiating members 41 b on the front and back sides are bonded via the insulating layer 51. The pressurization may be performed by bonding a pair of heat radiating members 41b at a time or by bonding the heat radiating members 41b one by one.
その後,一対の放熱部材41bと,絶縁層51を介して回路体30と一体化した中間ユニット70(図12参照)は,コの字形状のケース枠体41aに嵌合され,接合部43においてケース枠体41aと各放熱部材41bのフランジ部11が形成されていない辺とが接合される(図13参照)。接合としては,例えば,FSW(摩擦攪拌接合),レーザ溶接、ろう付,液状シール等を適用することができる。
After that, the intermediate unit 70 (see FIG. 12) integrated with the circuit body 30 through the pair of heat radiation members 41b and the insulating layer 51 is fitted into the U-shaped case frame body 41a. The case frame body 41a and the side where each flange member 11b is not formed with the flange portion 11 are joined (see FIG. 13). As the joining, for example, FSW (friction stir welding), laser welding, brazing, liquid seal or the like can be applied.
図13に示されるように、ケース枠体41aの放熱部材41bと接続する側には凸部71が形成されており,その凸部71の側面71aと71bに,放熱部材41bが接するように配置し,ケース枠体41aと各放熱部材41bとが接続される。
As shown in FIG. 13, a convex portion 71 is formed on the side of the case frame 41a that connects to the heat radiating member 41b, and the heat radiating member 41b is in contact with the side surfaces 71a and 71b of the convex portion 71. Then, the case frame body 41a and each heat radiation member 41b are connected.
図14に示されるように、放熱部材41bには、回路体30が配置された側に凹部74が形成される。凹部74は、放熱フィン42が形成された領域を囲むように形成される。そして凹部74は、放熱フィン42が形成された領域よりも薄く形成されるか剛性が小さくなるように形成されるので、放熱フィン42が形成された領域よりも変形されやすい。つまり、凹部74は、変形部として機能する。
As shown in FIG. 14, the heat dissipation member 41b is formed with a recess 74 on the side where the circuit body 30 is disposed. The recess 74 is formed so as to surround the region where the heat radiation fin 42 is formed. And since the recessed part 74 is formed so that it may be thinner than the area | region in which the radiation fin 42 was formed, or it was formed so that rigidity might become small, it is easier to deform | transform than the area | region in which the radiation fin 42 was formed. That is, the concave portion 74 functions as a deforming portion.
例えば,図14のように凹部74の板厚がフィンベース部の板厚よりも薄い構造とすることができる。図11に示すように,放熱部材41bの回路体30側に凹部74を形成することにより,薄肉部を形成することができる。
For example, as shown in FIG. 14, the thickness of the concave portion 74 can be made thinner than that of the fin base portion. As shown in FIG. 11, by forming the recess 74 on the circuit body 30 side of the heat dissipation member 41b, a thin portion can be formed.
絶縁層51と回路体30との接着部の周囲に変形部があることにより,温度サイクルなどの温度変化に起因して,金属製ケース40の膨張により,放熱部材41bがケースの外向きの力を受けるような場合でも,放熱部材41bと絶縁層51との接続面に発生する引張応力を低減できるため,絶縁層51と放熱部材41bとの界面,あるいは,絶縁層51と導体板33,導体板34との界面ではく離するのを抑制することが可能である。
Due to the presence of the deformed portion around the bonding portion between the insulating layer 51 and the circuit body 30, due to the temperature change such as the temperature cycle, the heat radiating member 41 b is forced outward by the expansion of the metal case 40. Even when receiving heat, the tensile stress generated on the connection surface between the heat dissipation member 41b and the insulating layer 51 can be reduced. Therefore, the interface between the insulating layer 51 and the heat dissipation member 41b, or the insulating layer 51 and the conductor plate 33, the conductor It is possible to suppress separation at the interface with the plate 34.
図4におけるパワー半導体モジュール100の放熱部材41b間とケース枠体41aとの接続部の寸法関係を説明するための断面図及び正面図である。
FIG. 5 is a cross-sectional view and a front view for explaining a dimensional relationship of a connecting portion between a heat radiation member 41b of the power semiconductor module 100 and a case frame body 41a in FIG.
ケース枠体41aの凸部71の側面71aと71b間の距離X1は,回路体30を挟むように形成した1対の放熱部材41bの接続部72間の距離X2よりも小さく,すなわちX1<X2となるように形成されている。
The distance X1 between the side surfaces 71a and 71b of the convex portion 71 of the case frame 41a is smaller than the distance X2 between the connection portions 72 of the pair of heat radiation members 41b formed so as to sandwich the circuit body 30, that is, X1 <X2. It is formed to become.
ケース枠体41aと放熱部材41bとを接続する際には,放熱部材41bの接続部72をモジュールの外側から加圧しながら接続することにより,パワー半導体モジュール100内部には圧縮力が負荷され,絶縁層51には厚さ方向に圧縮応力が残留する。これにより,繰り返しの熱負荷がかかった場合でも,引き剥がし方向に引張応力が発生するのを抑制することができ,絶縁層51がはく離するのを抑制する効果も得られる。
When connecting the case frame body 41a and the heat radiating member 41b, the connecting portion 72 of the heat radiating member 41b is connected while being pressurized from the outside of the module, so that a compressive force is applied to the inside of the power semiconductor module 100 and insulation is achieved. A compressive stress remains in the layer 51 in the thickness direction. Thereby, even when a repeated thermal load is applied, the generation of tensile stress in the peeling direction can be suppressed, and the effect of suppressing the separation of the insulating layer 51 can be obtained.
ここで,放熱部材41bのフィンが形成されている領域と接続部72の間に当該領域よりも剛性の低い凹部74を設けることにより,接続部72を押付けてケース枠体41aに接続する際,金属製ケース40外側から加圧したときに放熱部材41bの中央部が浮き上がるのを防止することができる効果もある。なお凹部74とは別に、放熱部材41bのフィンが形成されている領域よりも剛性の低い中間部を設けるようにしてもよい。
Here, by providing the concave portion 74 having a lower rigidity than the region between the region where the fin of the heat radiation member 41b is formed and the connection portion 72, when the connection portion 72 is pressed and connected to the case frame body 41a, There is also an effect that it is possible to prevent the central portion of the heat radiating member 41b from being lifted when pressurized from the outside of the metal case 40. In addition to the recess 74, an intermediate portion having a rigidity lower than that of the region where the fins of the heat radiation member 41b are formed may be provided.
本実施形態においては,複数の放熱フィン42を有する放熱部材41bに金属ケース40の開口に近い側の辺に,フランジ部11が一体に形成されている。また図3に示されるように、流路を形成するカバー部材240の開口部241は、ケース枠体41aの一部とフランジ部11により塞がれる。つまり一方の放熱部材41のフランジ部11は第1シール部として機能し、他方の放熱部材41のフランジ部11は第2シール部として機能する。
In the present embodiment, the flange portion 11 is integrally formed on the side near the opening of the metal case 40 on the heat radiating member 41b having the plurality of heat radiating fins 42. As shown in FIG. 3, the opening 241 of the cover member 240 that forms the flow path is closed by a part of the case frame 41 a and the flange 11. That is, the flange part 11 of one heat radiating member 41 functions as a first seal part, and the flange part 11 of the other heat radiating member 41 functions as a second seal part.
これにより,フランジ部11と放熱フィン42間を接合する必要がなくなるため,フランジ部11と放熱フィン42間の距離を短くでき,フランジ部11と放熱フィン42との間にできる隙間に発生するバイパス流を抑制することができる。その結果,放熱フィン42に冷却水が十分に流れるため,放熱フィン42の熱伝達率を向上することができ,パワー半導体モジュール100の放熱性能が向上し,信頼性の高い電力変換装置が実現できる。
Thereby, since it is not necessary to join between the flange part 11 and the radiation fin 42, the distance between the flange part 11 and the radiation fin 42 can be shortened, and a bypass is generated in a gap formed between the flange part 11 and the radiation fin 42. The flow can be suppressed. As a result, the cooling water sufficiently flows through the radiation fins 42, so that the heat transfer coefficient of the radiation fins 42 can be improved, the heat radiation performance of the power semiconductor module 100 is improved, and a highly reliable power conversion device can be realized. .
また,図11ないし図15に示された本実施形態におけるパワー半導体モジュール100の製造方法では,回路体30を形成後,回路体30の表裏両面に、絶縁層51を形成し,さらに両面の絶縁層51の上面51bに,複数の放熱部材41bを形成する。このように一対の放熱部材41bと,絶縁層51を介して回路体30と一体化した中間ユニット70を形成後,コの字形状のケース枠体41aに嵌合され,接合部43においてケース枠体41aと各放熱部材41bのフランジ部11が形成されていない辺とが接合される。これにより,金属製ケース40に半導体モジュール30が収納されたパワー半導体モジュール100が形成される。
Further, in the method of manufacturing the power semiconductor module 100 according to the present embodiment shown in FIGS. 11 to 15, after the circuit body 30 is formed, the insulating layers 51 are formed on both the front and back surfaces of the circuit body 30, and the both surfaces are insulated. A plurality of heat dissipating members 41 b are formed on the upper surface 51 b of the layer 51. After the intermediate unit 70 integrated with the circuit body 30 is formed through the pair of heat radiating members 41b and the insulating layer 51 as described above, the intermediate unit 70 is fitted into the U-shaped case frame body 41a. The body 41a and the side where the flange portion 11 of each heat radiation member 41b is not formed are joined. Thereby, the power semiconductor module 100 in which the semiconductor module 30 is housed in the metal case 40 is formed.
このように,絶縁層51を介して放熱部材41bと回路体30を接合した後で,ケース枠体41aを接合し,金属製ケース40にすることにより,放熱部材41bとケース枠体41aを接合し,金属製ケース40を形成後,両面に絶縁層51が形成された回路体30を、金属製ケース40内に挿入し,一対の放熱部材41bの外方から回路体30を挟圧するように加圧して,回路体30と表裏の放熱部材41bとが絶縁層51を介して接着させる場合に懸念される,加圧後のスプリングバックにより発生する,絶縁層51のはく離を抑制することができる。
Thus, after joining the heat radiation member 41b and the circuit body 30 via the insulating layer 51, the case frame body 41a is joined to form the metal case 40, thereby joining the heat radiation member 41b and the case frame body 41a. Then, after forming the metal case 40, the circuit body 30 having the insulating layers 51 formed on both sides is inserted into the metal case 40, and the circuit body 30 is clamped from the outside of the pair of heat radiation members 41b. It is possible to suppress the peeling of the insulating layer 51 caused by the springback after pressing, which is a concern when the circuit body 30 and the heat radiating member 41b on the front and back sides are bonded via the insulating layer 51 by applying pressure. .
本実施形態においては,フランジ部11にOリング用の溝などの加工が設けられていない場合について図示したが,必要に応じて,Oリング用の溝など,が設けられていてもよい。シール材としては,Oリング,液状ガスケットなどを用いることができる。
(実施形態2)
図16は,図14に示す電力変換装置のパワーモジュールの変形例を示すもので,図14の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。 In the present embodiment, the case where theflange portion 11 is not provided with a process such as an O-ring groove is illustrated, but an O-ring groove or the like may be provided as necessary. As the sealing material, an O-ring, a liquid gasket, or the like can be used.
(Embodiment 2)
FIG. 16 shows a modification of the power module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. 14 indicate the same components, and thus detailed description thereof is omitted.
(実施形態2)
図16は,図14に示す電力変換装置のパワーモジュールの変形例を示すもので,図14の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。 In the present embodiment, the case where the
(Embodiment 2)
FIG. 16 shows a modification of the power module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. 14 indicate the same components, and thus detailed description thereof is omitted.
図16に示す変形例において,金属製ケース40を形成する放熱部材41bにおいて,表面11bと放熱部材41bのフィン形成面42aが同じ面上に形成されており,フランジ部11の板厚と放熱部41cの板厚が同じである。
In the modification shown in FIG. 16, in the heat radiating member 41b forming the metal case 40, the surface 11b and the fin forming surface 42a of the heat radiating member 41b are formed on the same surface, and the plate thickness of the flange portion 11 and the heat radiating portion The thickness of 41c is the same.
これにより,放熱部材41bの構造を単純化できるため,加工のためのコストが低減できるというメリットがある。
(実施形態3)
図17は,図14に示す電力変換装置のパワー半導体モジュールのさらに別の変形例を示すもので,図14の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。
図17に示す変形例において,金属製ケース40を形成する放熱部材41bにおいて,ケース枠体41aと接続される接合部73が外側に突き出した凸形状となっている。つまり接合部73の厚さは、放熱フィン42が形成された領域と当該接合部73を繋ぐ中間部の厚さよりも大きく形成される。 Thereby, since the structure of theheat radiating member 41b can be simplified, there exists an advantage that the cost for a process can be reduced.
(Embodiment 3)
FIG. 17 shows still another modified example of the power semiconductor module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. 14 indicate the same components, and thus detailed description thereof is omitted.
In the modification shown in FIG. 17, in theheat radiating member 41b forming the metal case 40, the joint 73 connected to the case frame 41a has a convex shape protruding outward. That is, the thickness of the joint portion 73 is larger than the thickness of the intermediate portion that connects the region where the radiation fins 42 are formed and the joint portion 73.
(実施形態3)
図17は,図14に示す電力変換装置のパワー半導体モジュールのさらに別の変形例を示すもので,図14の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。
図17に示す変形例において,金属製ケース40を形成する放熱部材41bにおいて,ケース枠体41aと接続される接合部73が外側に突き出した凸形状となっている。つまり接合部73の厚さは、放熱フィン42が形成された領域と当該接合部73を繋ぐ中間部の厚さよりも大きく形成される。 Thereby, since the structure of the
(Embodiment 3)
FIG. 17 shows still another modified example of the power semiconductor module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. 14 indicate the same components, and thus detailed description thereof is omitted.
In the modification shown in FIG. 17, in the
これにより,接合部73とケース枠体41aをFSWで接合する場合,接続部の剛性を確保し,接続しやすくするとともに,ツール先端で発生する熱が絶縁シート51とモジュールの接続界面に伝熱されるのを抑制する効果がある。
(実施形態4)
図18は,図14に示す電力変換装置のパワーモジュールパワー半導体モジュールのさらに別の変形例を示すもので,図14の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。 As a result, when the joint 73 and thecase frame 41a are joined by FSW, the rigidity of the connection is ensured and the connection is facilitated, and the heat generated at the tip of the tool is transferred to the connection interface between the insulating sheet 51 and the module. This has the effect of suppressing
(Embodiment 4)
FIG. 18 shows still another modified example of the power module power semiconductor module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. To do.
(実施形態4)
図18は,図14に示す電力変換装置のパワーモジュールパワー半導体モジュールのさらに別の変形例を示すもので,図14の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。 As a result, when the joint 73 and the
(Embodiment 4)
FIG. 18 shows still another modified example of the power module power semiconductor module of the power conversion device shown in FIG. 14, and the same reference numerals as those in FIG. To do.
図18に示す変形例において,金属製ケース40を形成する放熱部材41bと,ケース枠体41aとが接続される接合部において,ケース枠体41aの接続部75よりも放熱部材41bの接続部76の方が内側にとなっている。
In the modification shown in FIG. 18, the connecting portion 76 of the heat radiating member 41b is connected to the connecting portion 75 of the case frame 41a at the joint where the heat radiating member 41b forming the metal case 40 and the case frame 41a are connected. Is on the inside.
つまりケース枠体41aは、放熱部材41bの放熱フィン42の形成面の垂直方向から見た場合に接続部76と重なる接続部75を有する。さらに接続部76は、接続部75よりも回路体30に近い側に形成されかつ接続部75と接続される。この場合でも,図14に示したパワーモジュールと同様の効果が得られる。
(実施形態5)
図19は,図3に示す電力変換装置の変形例を示すもので,図3の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。 That is, thecase frame 41a has a connection portion 75 that overlaps with the connection portion 76 when viewed from the direction perpendicular to the surface on which the heat dissipation fins 42 of the heat dissipation member 41b are formed. Further, the connecting portion 76 is formed closer to the circuit body 30 than the connecting portion 75 and is connected to the connecting portion 75. Even in this case, the same effect as that of the power module shown in FIG. 14 can be obtained.
(Embodiment 5)
FIG. 19 shows a modification of the power conversion device shown in FIG. 3, and the same reference numerals as those in FIG. 3 indicate the same components, and thus detailed description thereof is omitted.
(実施形態5)
図19は,図3に示す電力変換装置の変形例を示すもので,図3の符号と同符号は同一構成部品を示すので,再度の詳細な説明は省略する。 That is, the
(Embodiment 5)
FIG. 19 shows a modification of the power conversion device shown in FIG. 3, and the same reference numerals as those in FIG. 3 indicate the same components, and thus detailed description thereof is omitted.
図19に示す変形例において,カバー部材240とパワー半導体モジュール100のシール部11c間は液状シールなどの樹脂材料81で封止されている。液状シールなどの樹脂材料で封止することにより,パワー半導体モジュール100のシール部11c,あるいはカバー部材240にOリング用の溝を形成する必要がなく,低コスト化ができるというメリットがある。
19, the space between the cover member 240 and the seal portion 11c of the power semiconductor module 100 is sealed with a resin material 81 such as a liquid seal. By sealing with a resin material such as a liquid seal, there is an advantage that it is not necessary to form an O-ring groove in the seal portion 11c of the power semiconductor module 100 or the cover member 240, and the cost can be reduced.
カバー部材240に形成された、各パワー半導体モジュール100間に嵌入される凸部242の根本付近には,必ずしも必要ではないが,凹部80を形成することにより,液状シールがパワー半導体モジュール100の開口部に回り込むのを防ぐ効果が得られる。上記実施形態では、回路体30と放熱部材41bとの間に絶縁層51を介装した構造として例示した。しかし、絶縁層51は必ずしも必要ではなく、放熱部材41bと回路体30とが熱伝導可能に密着する構造とされたパワー半導体モジュール100であればよい。
Although not necessarily required near the root of the convex portion 242 formed between the power semiconductor modules 100 formed on the cover member 240, a liquid seal is formed in the opening of the power semiconductor module 100 by forming the concave portion 80. The effect which prevents going into a part is acquired. In the said embodiment, it illustrated as a structure which interposed the insulating layer 51 between the circuit body 30 and the thermal radiation member 41b. However, the insulating layer 51 is not necessarily required as long as the power semiconductor module 100 has a structure in which the heat dissipation member 41b and the circuit body 30 are in close contact with each other so as to conduct heat.
上記実施形態に示した電力変換装置200の筐体201の構造および筐体201内に収納される電子部品のレイアウトは、一例として示すものであり、種々、変形して適用することが可能である。
The structure of the housing 201 of the power conversion device 200 and the layout of the electronic components housed in the housing 201 shown in the above embodiment are shown as examples, and can be applied with various modifications. .
上述した実施の形態では、放熱フィン42の形状をピンフィンとしたが、他の形状、例えばストレートフィンやコルゲートフィンであっても良い。
In the above-described embodiment, the shape of the radiating fins 42 is pin fins, but other shapes such as straight fins and corrugated fins may be used.
また、上述した実施の形態では、電気自動車やハイブリッド自動車に搭載される車載用の電力変換装置を例に説明したが、パワーモジュールを冷却媒体中に浸す冷却構造の電力変換装置であれば、本発明を同様に適用することができる。
In the above-described embodiment, the in-vehicle power conversion device mounted on the electric vehicle or the hybrid vehicle has been described as an example. However, if the power conversion device has a cooling structure in which the power module is immersed in the cooling medium, the present invention The invention can be applied as well.
その他、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で、種々変形して適用することが可能である。
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be applied within the scope of the gist of the present invention.
6…第1封止樹脂、8…温度センサ、10A…回路体ユニット、10B…回路体ユニット、11…フランジ部、11b…表面、11c…シール部、15…第2封止樹脂、17…挿通口、24L…信号端子、24U…信号端子、26L…ワイヤ、26U…ワイヤ、30…回路体、31…パワー半導体素子、31U…パワー半導体素子、31L…パワー半導体素子、32U…ダイオード、32L…ダイオード、33…導体板、33b…上面、34…導体板、34a…直流負極端子、34b…上面、35…導体板、35a…直流正極端子、35b…上面、36…導体板、36a…交流出力端子、36b…上面、38…リード、40…金属製ケース、41a…ケース枠体、41b…放熱部材、42…放熱フィン、43…接合部、51…絶縁層、51b…上面、61…半田材、62…半田材、70…中間ユニット、71…凸部、71a…側面、71b…側面、72…接続部、73…接合部、74…凹部、75…接続部、76…接続部、78…シール部材、80…凹部、81…樹脂材料、100…パワー半導体モジュール、121…上下アーム直列回路、200…電力変換装置、201…筐体、202…底蓋、203a…入口用配管、203b…出口用配管、210…冷却用室、211…周壁、220…支持部材、220a…底面、221…側壁、221a…両側の側壁、221b…中央側壁、222…冷却流路内の底面、222a…凹部、231…シール部材、240…カバー部材、241…開口部、242…凸部、243…凹部、250…コンデンサモジュール、251…コンデンサ素子、261…直流側バスバーアセンブリ、262…制御回路基板アセンブリ、263…交流側バスバーアセンブリ、X1…距離、X2…距離
6 ... 1st sealing resin, 8 ... Temperature sensor, 10A ... Circuit body unit, 10B ... Circuit body unit, 11 ... Flange part, 11b ... Surface, 11c ... Seal part, 15 ... 2nd sealing resin, 17 ... Insertion 24L ... signal terminal, 24U ... signal terminal, 26L ... wire, 26U ... wire, 30 ... circuit body, 31 ... power semiconductor element, 31U ... power semiconductor element, 31L ... power semiconductor element, 32U ... diode, 32L ... diode 33 ... conductor plate 33b ... upper surface 34 ... conductor plate 34a ... DC negative electrode terminal 34b ... upper surface 35 ... conductor plate 35a ... DC positive electrode terminal 35b ... upper surface 36 ... conductor plate 36a ... AC output terminal , 36b ... upper surface, 38 ... lead, 40 ... metal case, 41a ... case frame, 41b ... heat radiating member, 42 ... heat radiating fin, 43 ... junction, 51 ... insulating layer, 51b Upper surface, 61 ... solder material, 62 ... solder material, 70 ... intermediate unit, 71 ... convex portion, 71a ... side surface, 71b ... side surface, 72 ... connecting portion, 73 ... joining portion, 74 ... concave portion, 75 ... connecting portion, 76 DESCRIPTION OF SYMBOLS ... Connection part, 78 ... Seal member, 80 ... Recess, 81 ... Resin material, 100 ... Power semiconductor module, 121 ... Upper and lower arm series circuit, 200 ... Power converter, 201 ... Housing, 202 ... Bottom cover, 203a ... Inlet Piping for piping, 203b outlet piping, 210 ... cooling chamber, 211 ... peripheral wall, 220 ... support member, 220a ... bottom surface, 221 ... side wall, 221a ... side wall on both sides, 221b ... central side wall, 222 ... in cooling channel Bottom surface, 222a ... concave portion, 231 ... seal member, 240 ... cover member, 241 ... opening, 242 ... convex portion, 243 ... concave portion, 250 ... capacitor module, 251 ... capacitor element, 61 ... DC-side bus bar assembly, 262 ... control circuit board assembly, 263 ... AC side bus bar assembly, X1 ... distance, X2 ... distance
Claims (8)
- パワー半導体モジュールと、
前記パワー半導体モジュールを挿入する開口及び当該開口と繋がる流路を形成する流路形成体と、を備え、
前記パワー半導体モジュールは、
パワー半導体素子を有する回路体と、
前記回路体を挟むように互いに対向して配置された第1ベース部と第2ベース部と、
前記第1ベース部と前記第2ベース部と接続される枠体と、を備え、
前記第1ベース部は、第1フィンと、前記開口に近い側の辺に当該開口の一部を塞ぐ第1シール部と、を有し、
前記第2ベース部は、第2フィンと、前記開口に近い側の辺に当該開口の一部を塞ぐ第2シール部と、を有し、
前記枠体は、前記第1シール部が形成されていない前記第1ベース部の辺と接続され、かつ前記第2シール部が形成されていない前記第2ベース部の辺と接続され、
前記開口は、前記枠体の一部と前記第1シール部と前記第2シール部により塞がれる電力変換装置。 A power semiconductor module;
An opening for inserting the power semiconductor module and a flow path forming body for forming a flow path connected to the opening,
The power semiconductor module is
A circuit body having a power semiconductor element;
A first base portion and a second base portion disposed to face each other so as to sandwich the circuit body;
A frame body connected to the first base portion and the second base portion,
The first base portion includes a first fin and a first seal portion that closes a part of the opening on a side near the opening,
The second base portion includes a second fin and a second seal portion that closes a part of the opening on a side close to the opening,
The frame is connected to a side of the first base part where the first seal part is not formed, and is connected to a side of the second base part where the second seal part is not formed,
The opening is a power converter that is closed by a part of the frame, the first seal portion, and the second seal portion. - 請求項1に記載の電力変換装置であって、
前記第1シール部の厚みは、前記第1ベース部の厚みより大きい電力変換装置。 The power conversion device according to claim 1,
The thickness of the said 1st seal | sticker part is a power converter device larger than the thickness of the said 1st base part. - 請求項1に記載の電力変換装置であって、
前記第1シール部の厚みと前記第1ベース部の厚みが同一である電力変換装置。 The power conversion device according to claim 1,
The power conversion device in which the thickness of the first seal portion and the thickness of the first base portion are the same. - 請求項1ないし3に記載のいずれかの電力変換装置であって、
前記第1ベース部の前記第1フィンが形成されている領域と前記第1シール部との間に、当該第1ベース部及び当該第1シール部よりも剛性が小さい中間部が設けられている電力変換装置。 The power conversion device according to any one of claims 1 to 3,
Between the area | region in which the said 1st fin of the said 1st base part is formed, and the said 1st seal part, the intermediate part whose rigidity is smaller than the said 1st base part and the said 1st seal part is provided. Power conversion device. - 請求項1ないし3に記載のいずれかの電力変換装置であって、
前記第1ベース部の前記第1フィンが形成されている領域と前記第1シール部との間に、当該第1ベース部及び当該第1シール部よりも厚みが小さい中間部が設けられている電力変換装置。 The power conversion device according to any one of claims 1 to 3,
An intermediate portion having a thickness smaller than that of the first base portion and the first seal portion is provided between the region where the first fin of the first base portion is formed and the first seal portion. Power conversion device. - 請求項1ないし5に記載のいずれかの電力変換装置であって、
前記枠体は、前記第1ベース部と前記第2ベース部の間の空間に向かって突出する前記突出部を形成し、
前記回路体は、前記第1ベース部と前記第2ベース部の間の距離が前記突出部の厚みよりも大きくなるように形成される電力変換装置。 The power conversion device according to any one of claims 1 to 5,
The frame body forms the protruding portion protruding toward the space between the first base portion and the second base portion,
The said circuit body is a power converter device formed so that the distance between the said 1st base part and the said 2nd base part may become larger than the thickness of the said protrusion part. - 請求項1ないし6に記載のいずれかの電力変換装置であって、
前記第1ベース部は、前記枠体との接続部と、前記第1フィンが形成された領域と当該接続部を繋ぐ中間部と、を有し、
前記接続部の厚さは、前記中間部の厚さよりも大きく形成される電力変換装置。 The power conversion device according to any one of claims 1 to 6,
The first base portion includes a connection portion with the frame body, a region where the first fin is formed, and an intermediate portion that connects the connection portion,
The thickness of the said connection part is a power converter device formed more largely than the thickness of the said intermediate part. - 請求項1ないし5に記載のいずれかの電力変換装置であって、
前記第1ベース部は、前記枠体との第1接続部を有し、
前記枠体は、前記第1ベース部の前記第1フィンの形成面の垂直方向から見た場合に前記第1接続部と重なる第2接続部と有し、
前記第1接続部は、前記第2接続部よりも前記回路体に近い側に形成されかつ前記第2接続部と接続される電力変換装置。 The power conversion device according to any one of claims 1 to 5,
The first base portion has a first connection portion with the frame,
The frame body has a second connection portion that overlaps the first connection portion when viewed from a direction perpendicular to the formation surface of the first fin of the first base portion,
The first connection unit is a power conversion device that is formed closer to the circuit body than the second connection unit and connected to the second connection unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-157296 | 2014-08-01 | ||
JP2014157296A JP6215151B2 (en) | 2014-08-01 | 2014-08-01 | Power converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016017267A1 true WO2016017267A1 (en) | 2016-02-04 |
Family
ID=55217172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065963 WO2016017267A1 (en) | 2014-08-01 | 2015-06-03 | Power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6215151B2 (en) |
WO (1) | WO2016017267A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3370332A1 (en) * | 2017-03-03 | 2018-09-05 | Semiconductor Components Industries, LLC | Stray inductance reduction in packaged semiconductor devices and modules |
JP2019135888A (en) * | 2018-02-05 | 2019-08-15 | 日本電産株式会社 | Manufacturing method for motor, and motor |
US11031379B2 (en) | 2019-09-04 | 2021-06-08 | Semiconductor Components Industries, Llc | Stray inductance reduction in packaged semiconductor devices |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017187781A1 (en) * | 2016-04-28 | 2017-11-02 | 日立オートモティブシステムズ株式会社 | Power conversion device |
JP6591673B2 (en) * | 2016-07-08 | 2019-10-16 | 日立オートモティブシステムズ株式会社 | Power converter |
JP6971931B2 (en) * | 2018-07-27 | 2021-11-24 | 日立Astemo株式会社 | Power semiconductor device |
US20240178742A1 (en) * | 2021-04-21 | 2024-05-30 | Mitsubishi Electric Corporation | Power conversion device and method for controlling power conversion device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010110143A (en) * | 2008-10-31 | 2010-05-13 | Hitachi Automotive Systems Ltd | Power conversion device and electric vehicle |
JP2010119300A (en) * | 2008-03-11 | 2010-05-27 | Hitachi Automotive Systems Ltd | Power conversion device |
JP2011077464A (en) * | 2009-10-02 | 2011-04-14 | Hitachi Automotive Systems Ltd | Semiconductor device, power semiconductor module, and power converter equipped with power semiconductor module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5941787B2 (en) * | 2012-08-09 | 2016-06-29 | 日立オートモティブシステムズ株式会社 | Power module and method for manufacturing power module |
-
2014
- 2014-08-01 JP JP2014157296A patent/JP6215151B2/en not_active Expired - Fee Related
-
2015
- 2015-06-03 WO PCT/JP2015/065963 patent/WO2016017267A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010119300A (en) * | 2008-03-11 | 2010-05-27 | Hitachi Automotive Systems Ltd | Power conversion device |
JP2010110143A (en) * | 2008-10-31 | 2010-05-13 | Hitachi Automotive Systems Ltd | Power conversion device and electric vehicle |
JP2011077464A (en) * | 2009-10-02 | 2011-04-14 | Hitachi Automotive Systems Ltd | Semiconductor device, power semiconductor module, and power converter equipped with power semiconductor module |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3370332A1 (en) * | 2017-03-03 | 2018-09-05 | Semiconductor Components Industries, LLC | Stray inductance reduction in packaged semiconductor devices and modules |
CN108538806A (en) * | 2017-03-03 | 2018-09-14 | 半导体组件工业公司 | The encapsulation semiconductor devices and module of stray inductance with reduction |
US10090279B2 (en) | 2017-03-03 | 2018-10-02 | Semiconductor Components Industries, Llc | Stray inductance reduction in packaged semiconductor devices and modules |
JP2019135888A (en) * | 2018-02-05 | 2019-08-15 | 日本電産株式会社 | Manufacturing method for motor, and motor |
US11031379B2 (en) | 2019-09-04 | 2021-06-08 | Semiconductor Components Industries, Llc | Stray inductance reduction in packaged semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
JP2016036194A (en) | 2016-03-17 |
JP6215151B2 (en) | 2017-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6286320B2 (en) | Power module | |
JP6215151B2 (en) | Power converter | |
JP6979864B2 (en) | Power semiconductor devices and their manufacturing methods | |
JP5502805B2 (en) | Power module and power converter using the same | |
WO2016140153A1 (en) | Electric power conversion device | |
WO2014083976A1 (en) | Inverter device | |
JP6263311B2 (en) | Power converter | |
JP2003101277A (en) | Structural body for cooling heating element and manufacturing method thereof | |
JP2010135697A (en) | Lamination module structure | |
JP2022092545A (en) | Electric circuit body, power conversion device, and method for manufacturing electric circuit body | |
JP2012016095A (en) | Electric power conversion device | |
WO2018131301A1 (en) | Power semiconductor device | |
WO2019003718A1 (en) | Power semiconductor device and power conversion device using same | |
JP5879292B2 (en) | Power converter | |
WO2014024361A1 (en) | Cooling structure and power conversion device | |
WO2019142543A1 (en) | Power semiconductor device | |
JP4038455B2 (en) | Semiconductor device | |
JP7151638B2 (en) | Power module manufacturing method | |
JP6119419B2 (en) | Power converter | |
WO2017119286A1 (en) | Power semiconductor module | |
JP7549520B2 (en) | Power module and power conversion device | |
JP7555262B2 (en) | Electrical circuit and power conversion device | |
US20240006271A1 (en) | Heating element cooling structure and power conversion device | |
JP2022188312A (en) | Power module and method for manufacturing power module | |
JP2014045014A (en) | Power semiconductor module, power conversion apparatus and power semiconductor module manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15827835 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15827835 Country of ref document: EP Kind code of ref document: A1 |