WO2016017065A1 - Image pickup lens system and image pickup device - Google Patents

Image pickup lens system and image pickup device Download PDF

Info

Publication number
WO2016017065A1
WO2016017065A1 PCT/JP2015/003187 JP2015003187W WO2016017065A1 WO 2016017065 A1 WO2016017065 A1 WO 2016017065A1 JP 2015003187 W JP2015003187 W JP 2015003187W WO 2016017065 A1 WO2016017065 A1 WO 2016017065A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
lens system
imaging
image side
Prior art date
Application number
PCT/JP2015/003187
Other languages
French (fr)
Japanese (ja)
Inventor
隆 杉山
隆 上高原
享博 下枝
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2016017065A1 publication Critical patent/WO2016017065A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an imaging lens system and an imaging apparatus.
  • An optical system for monitoring is required to be a bright optical system having an extremely wide field of view, high resolution, and an F number of about 2.0.
  • an imaging lens system for a vehicle-mounted camera is also required to be compact.
  • Patent Document 1 describes, in order from the object side, an imaging lens system including a first lens having negative power, a second lens having positive power, a diaphragm, and a third lens having positive power.
  • This imaging lens system is composed of three lenses and has a wide angle and a small size.
  • Patent Document 2 in order from the object side, a first lens having a negative power, a second lens, a third lens having a positive power, an aperture, one of which has a positive power and the other has a negative power
  • An imaging lens system comprising a cemented lens having a positive power as a whole and a fourth lens having a positive power and a fourth lens having a positive power is described.
  • This imaging lens system has a wide angle, a small F number, and high resolution.
  • the imaging lens system described in Patent Document 1 is composed of three lenses, the half angle of view is a wide angle of 77.2 ° to 79.0 °, and the F number is 2.8. It is. However, an imaging lens system having a smaller F number and a high resolution is required as an optical system for monitoring applications.
  • the imaging lens system described in Patent Document 2 has a half angle of view as wide as 78.9 ° to 79.7 ° compared to the imaging lens system described in Patent Document 1, and the F number is 2. 0.0 and a high resolving power.
  • this imaging lens system is composed of six lenses, it is difficult to reduce the size and the cost is high.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a wide-angle, bright, and compact imaging lens system.
  • the imaging lens system of the present invention is An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
  • the first lens group includes one or two negative lenses
  • the second lens group is composed of one positive lens
  • the third lens group is composed of one positive lens
  • the focal length of the entire lens system is f
  • the focal length of the third lens group is f 3
  • the following conditional expression (1) is satisfied. 0.9 ⁇ f 3 /f ⁇ 2.2 (1)
  • the ratio of the focal length of the third lens group and the focal length of the entire lens system within the range of the conditional expression (1), the change in the focal position of the entire lens system with respect to the temperature change can be reduced. If the lower limit value of conditional expression (1) is not reached, the power of the third lens group becomes larger than the power of the entire lens system. At this time, the power of the first lens unit increases in order to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the correction of the image plane becomes difficult. When the upper limit of conditional expression (1) is exceeded, the power of the third lens group becomes smaller than the power of the entire lens system. At this time, the power of the second lens unit is increased to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the back focus is shortened, so that it is difficult to arrange the imaging device. Become.
  • an image pickup lens system wherein an image side lens surface of a most image side lens constituting the third lens group satisfies the following conditional expression (2). 0.9 ⁇ f L31R2 / f ⁇ 2.0 (2)
  • n Refractive index of the most image side lens constituting the third lens group
  • R Radius of curvature of the image side lens surface of the most image side lens constituting the third lens group
  • the change in the focal position with respect to the temperature change can be reduced.
  • the focal length of the image side lens surface of the third lens group becomes larger than the power of the entire lens system.
  • the power of the first lens unit increases in order to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the correction of the image plane becomes difficult.
  • the power of the image side lens surface of the third lens group becomes smaller than the power of the entire lens system.
  • the power of the second lens unit is increased to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the back focus is shortened, so that it is difficult to arrange the imaging device. Become.
  • the first lens group is preferably composed of one negative lens.
  • the first lens group preferably comprises two negative lenses.
  • the focal length of the first lens group is f 1
  • the focal length of the second lens group is f 2
  • a small imaging lens system can be realized by placing the ratio of the focal length of the first lens group and the focal length of the second lens group within the range of conditional expression (4). If the lower limit value of conditional expression (4) is not reached, the power of the first lens group increases, thereby increasing the back focus and increasing the overall length of the lens system. If the upper limit of conditional expression (4) is exceeded, the power of the first lens group decreases, the back focus is shortened, and the distance between the third lens group and the image sensor is shortened. It becomes difficult. In addition, since the incident angle of the light beam to the image sensor increases, the amount of light around the lens system decreases and the shading of the captured image increases.
  • the horizontal angle of view is preferably 100 degrees or more.
  • the stop be between the second lens group and the third lens group.
  • the imaging lens system of the present invention is An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
  • the focal length of the entire lens system is f
  • the focal length of the third lens group is f 3
  • the following conditional expressions (1) and (2) are satisfied.
  • 0.9 ⁇ f 3 /f ⁇ 2.2 (1)
  • f L31R2 is the focal length of the image side lens surface of the most image side lens constituting the third lens group, and is defined by the following formula (3).
  • n Refractive index of the most image side lens constituting the third lens group
  • R Radius of curvature of the image side lens surface of the most image side lens constituting the third lens group
  • the imaging lens system of the present invention is An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
  • the focal length of the entire lens system is f
  • the focal length of the first lens group is f 1
  • the focal length of the second lens group is f 2
  • the focal length of the third lens group is f 3
  • the following conditional expressions (1) and (4) are satisfied. 0.9 ⁇ f 3 /f ⁇ 2.2 (1) 0.3 ⁇
  • the stop be between the second lens group and the third lens group.
  • the imaging apparatus of the present invention The imaging lens system described above; And an image pickup device disposed at a focal position of the image pickup lens system.
  • a wide-angle, bright and small imaging lens system can be provided.
  • FIG. 1 is a cross-sectional view of an imaging lens system according to Example 1.
  • FIG. 4 is an aberration diagram of the imaging lens system according to Example 1.
  • FIG. 4 is an aberration diagram of the imaging lens system according to Example 1.
  • 6 is a cross-sectional view of an imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is a cross-sectional view of an imaging lens system according to Example 3.
  • FIG. FIG. FIG. 1 is a cross-sectional view of an imaging lens system according to Example 1.
  • FIG. FIG. 4 is an aberration diagram of the imaging lens system according to Example 1.
  • FIG. 4 is an aberration diagram of the imaging lens system according to Example 1.
  • 6 is an aberration diagram of the imaging lens
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 3.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 3.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 3.
  • 6 is a cross-sectional view of an imaging lens system according to Example 4.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 4.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 4.
  • 6 is a cross-sectional view of an imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • FIG. 10 is a cross-sectional view of an imaging lens system according to Example 6.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 6.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 6.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 6.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 6.
  • FIG. 2 is a diagram illustrating a configuration of the imaging lens system 101 according to the first embodiment.
  • the imaging lens system 101 according to the first exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power and a second lens group G2 having a positive power. And a stop STOP and a third lens group G3 having a positive power.
  • the first lens group G1 includes a lens L11.
  • the second lens group G2 includes a lens L21.
  • the third lens group G3 includes a lens L31.
  • the imaging plane of the imaging lens system 101 is indicated by IMG.
  • the lens L11, the lens L21, and the lens L31 are plastic lenses.
  • the lens L11 is an aspheric lens having negative power.
  • the object side lens surface S1 of the lens L11 is a spherical surface having a negative curvature
  • the image side lens surface S2 is an aspherical surface having a positive curvature.
  • the object side lens surface S1 has a concave surface facing the object side
  • the image side lens surface S2 has a convex curved surface portion protruding toward the object side.
  • the lens L21 is an aspheric lens having positive power.
  • the object side lens surface S3 is an aspherical surface having a positive curvature
  • the image side lens surface S4 is an aspherical surface having a positive curvature.
  • the object side lens surface S3 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
  • the lens L31 is an aspheric lens having positive power.
  • the object side lens surface S6 is an aspherical surface having a negative curvature
  • the image side lens surface S7 is an aspherical surface having a negative curvature.
  • the object side lens surface S6 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S7 has a convex curved surface portion protruding toward the image side.
  • Table 1 shows lens data of each lens surface of the imaging lens system 101.
  • the lens data includes the radius of curvature, surface spacing, refractive index, and Abbe number of each surface.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surface is a first-order, second-order, third-order, fourth-order, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the conic coefficient, and r is the height of the light beam from the optical axis.
  • z is the sag amount
  • c is the reciprocal of the radius of curvature
  • k is the conic coefficient
  • r is the height of the light beam from the optical axis.
  • Table 2 shows the aspheric coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 1.
  • “ ⁇ 6.522528E-03” means “ ⁇ 6.522528 ⁇ 10 ⁇ 3 ”.
  • 3A to 3C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 according to the first embodiment.
  • the half angle of view ⁇ is 80 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (field angle).
  • FIG. 3B shows simulation results using light rays having a wavelength of 546 nm.
  • Table 3 shows the result of calculating the characteristic value of the imaging lens system 101 of Example 1.
  • the F number is FNo
  • the distance (optical total length) from the object-side lens surface S1 of the first lens L1 to the imaging surface IMG of the imaging lens system 101 is TL
  • the focal length of the entire lens system is f
  • the focal length of the first lens group G1 is f 1
  • the focal length of the second lens group G2 is f 2
  • the focal length of the third lens group G3 is f 3
  • the first lens group G1 and the second lens group G2 are combined.
  • FIG. 4 is a diagram illustrating a configuration of the imaging lens system 101 according to the second embodiment.
  • the imaging lens system 101 according to the second embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power and a second lens group G2 having a positive power. , And a third lens group G3 having a positive power.
  • the first lens group G1 includes a lens L11.
  • the second lens group G2 includes a lens L21.
  • the third lens group G3 includes a lens L31.
  • the lens L11 is a glass lens
  • the lenses L21 and L31 are plastic lenses.
  • the lens L11 is a spherical meniscus lens having negative power.
  • the object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature
  • the image side lens surface S2 is a spherical surface having a positive curvature.
  • the object side lens surface S1 and the image side lens surface S2 are concave on the image side.
  • the lens L21 is an aspheric lens having positive power.
  • the object side lens surface S3 is an aspherical surface having a positive curvature
  • the image side lens surface S4 is an aspherical surface having a positive curvature.
  • the object side lens surface S3 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
  • the lens L31 is an aspheric lens having positive power.
  • the object side lens surface S6 is an aspherical surface having a negative curvature
  • the image side lens surface S7 is an aspherical surface having a negative curvature.
  • the object side lens surface S6 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S7 has a convex curved surface portion protruding toward the image side.
  • Table 4 shows lens data of each lens surface of the imaging lens system 101.
  • a surface marked with “*” indicates an aspherical surface.
  • Table 5 shows the aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 2.
  • FIGS. 5A to 5C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of the second embodiment.
  • the half angle of view ⁇ is 80 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (field angle).
  • FIG. 5B shows simulation results using light rays having a wavelength of 546 nm.
  • Table 6 shows the results of calculating the characteristic values of the imaging lens system 101 of Example 2. Table 6 shows the results calculated for the same characteristic values as in Table 3.
  • FIG. 6 is a diagram illustrating a configuration of the imaging lens system 101 according to the third embodiment.
  • the imaging lens system 101 according to the third exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3.
  • the first lens group G1 includes a lens L11 and a lens L12.
  • the second lens group G2 includes a lens L21.
  • the third lens group G3 includes a lens L31.
  • the lens L11 is a glass lens
  • the lens L12, the lens L21, and the lens L31 are plastic lenses.
  • the lens L11 is a spherical meniscus lens having negative power.
  • the object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature
  • the image side lens surface S2 is a spherical surface having a positive curvature.
  • the object side lens surface S1 and the image side lens surface S2 are concave on the image side.
  • Lens L12 is an aspherical lens having negative power.
  • the object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature
  • the image side lens surface S4 is an aspheric surface having a positive curvature.
  • the object side lens surface S3 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
  • the lens L21 is an aspheric lens having positive power.
  • the object side lens surface S5 is an aspherical surface having a positive curvature
  • the image side lens surface S6 is an aspherical surface having a positive curvature.
  • the object side lens surface S5 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
  • the lens L31 is an aspheric lens having positive power.
  • the object side lens surface S8 is an aspherical surface having a positive curvature
  • the image side lens surface S9 is an aspherical surface having a negative curvature.
  • the object side lens surface S8 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
  • Table 7 shows lens data of each lens surface of the imaging lens system 101.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surfaces of the lens L21 and the lens L31 is expressed by the mathematical formula described in the first embodiment.
  • the aspherical shape adopted for the lens surface of the lens L12 is 4th order, 6th order, 8th order, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the cone coefficient, and r is the height of the light beam from the optical axis.
  • the 10th-order, 12th-order, 14th-order, and 16th-order aspherical coefficients are ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12, and ⁇ 14, respectively, they are expressed by the following equations.
  • Table 8 shows aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 3.
  • FIGS. 7A to 7C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 3.
  • FIG. As shown in FIGS. 7A to 7C, in the imaging lens system 101 of Example 3, the half angle of view ⁇ is 89 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (field angle).
  • Table 9 shows the results of calculating the characteristic values of the imaging lens system 101 of Example 3.
  • the F number is FNo
  • the distance from the object-side lens surface S1 of the first lens L11 to the imaging surface IMG of the imaging lens system 101 is TL
  • the focal length of the entire lens system is f
  • focal length f 1 of the first lens group G1 the focal length f 2 of the second lens group G2
  • the focal length f 3 of the third lens group G3 the focal distance f L11 of the lens L11, the focal length of the lens L12 F L12
  • the combined focal length of the first lens group G1 and the second lens group G2 is f 12
  • the combined focal length of the second lens group G2 and the third lens group G3 is f 23
  • the lens L12 and the lens L21 combined focal distance of the composite focal distance f L12L21, a composite focal length of the lens L11 and the lens L12 and the lens L21 and f L11L21, lens L12 and a lens L21 and lens
  • FIG. 8 is a diagram illustrating a configuration of the imaging lens system 101 according to the fourth embodiment.
  • the imaging lens system 101 according to the fourth exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3.
  • the first lens group G1 includes a lens L11 and a lens L12.
  • the second lens group G2 includes a lens L21.
  • the third lens group G3 includes a lens L31.
  • the lens L11 is a glass lens
  • the lens L12, the lens L21, and the lens L31 are plastic lenses.
  • the lens L11 is a spherical meniscus lens having negative power.
  • the object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature
  • the image side lens surface S2 is a spherical surface having a positive curvature.
  • the object side lens surface S1 and the image side lens surface S2 are concave on the image side.
  • Lens L12 is an aspherical lens having negative power.
  • the object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature
  • the image side lens surface S4 is an aspheric surface having a positive curvature.
  • the object side lens surface S3 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
  • the lens L21 is an aspheric lens having positive power.
  • the object side lens surface S5 is an aspherical surface having a positive curvature
  • the image side lens surface S6 is an aspherical surface having a positive curvature.
  • the object side lens surface S5 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
  • the lens L31 is an aspheric lens having positive power.
  • the object side lens surface S8 is an aspherical surface having a positive curvature
  • the image side lens surface S9 is an aspherical surface having a negative curvature.
  • the object side lens surface S8 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
  • Table 10 shows lens data of each lens surface of the imaging lens system 101.
  • a surface marked with “*” indicates an aspherical surface.
  • Table 11 shows the aspheric coefficients for defining the aspheric shape of the aspheric lens surface in the imaging lens system 101 of Example 4.
  • FIGS. 9A to 9C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 4.
  • FIG. 9A to 9C in the imaging lens system 101 of Example 4, the half angle of view ⁇ is 89 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (field angle).
  • FIG. 9B shows simulation results using light rays having a wavelength of 546 nm.
  • Table 12 shows the result of calculating the characteristic values of the imaging lens system 101 of Example 4.
  • Table 12 shows the calculation results for the same characteristic values as in Table 9.
  • FIG. 10 is a diagram illustrating a configuration of the imaging lens system 101 according to the fifth embodiment.
  • the imaging lens system 101 according to the fifth exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3.
  • the first lens group G1 includes a lens L11 and a lens L12.
  • the second lens group G2 includes a lens L21.
  • the third lens group G3 includes a lens L31.
  • the lens L11 is a glass lens
  • the lens L12, the lens L21, and the lens L31 are plastic lenses.
  • the lens L11 is a spherical meniscus lens having negative power.
  • the object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature
  • the image side lens surface S2 is a spherical surface having a positive curvature.
  • the object side lens surface S1 and the image side lens surface S2 are concave on the image side.
  • Lens L12 is an aspherical lens having negative power.
  • the object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature
  • the image side lens surface S4 is an aspheric surface having a positive curvature.
  • the object side lens surface S3 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
  • the lens L21 is an aspheric lens having positive power.
  • the object side lens surface S5 is an aspherical surface having a positive curvature
  • the image side lens surface S6 is an aspherical surface having a positive curvature.
  • the object side lens surface S5 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
  • the lens L31 is an aspheric lens having positive power.
  • the object side lens surface S8 is an aspherical surface having a negative curvature
  • the image side lens surface S9 is an aspherical surface having a negative curvature.
  • the object side lens surface S8 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
  • Table 13 shows lens data of each lens surface of the imaging lens system 101.
  • a surface marked with “*” indicates an aspherical surface.
  • Table 14 shows the aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 5.
  • FIGS. 11A to 11C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 5.
  • FIG. 11A to 11C in the imaging lens system 101 of Example 5, the half angle of view ⁇ is 107 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (field angle).
  • FIG. 11B shows simulation results using light rays having a wavelength of 546 nm.
  • Table 15 shows the results of calculating the characteristic values of the imaging lens system 101 of Example 5. Table 15 shows the results calculated for the same characteristic values as in Table 9.
  • FIG. 12 is a diagram illustrating a configuration of the imaging lens system 101 according to the sixth embodiment.
  • the imaging lens system 101 according to the sixth exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3.
  • the first lens group G1 includes a lens L11 and a lens L12.
  • the second lens group G2 includes a lens L21.
  • the third lens group G3 includes a lens L31.
  • the lens L11 is a glass lens
  • the lens L12, the lens L21, and the lens L31 are plastic lenses.
  • the lens L11 is a spherical meniscus lens having negative power.
  • the object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature
  • the image side lens surface S2 is a spherical surface having a positive curvature.
  • the object side lens surface S1 and the image side lens surface S2 are concave on the image side.
  • Lens L12 is an aspherical lens having negative power.
  • the object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature
  • the image side lens surface S4 is an aspheric surface having a positive curvature.
  • the object side lens surface S3 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
  • the lens L21 is an aspheric lens having positive power.
  • the object side lens surface S5 is an aspherical surface having a positive curvature
  • the image side lens surface S6 is an aspherical surface having a positive curvature.
  • the object side lens surface S5 has a convex curved surface portion protruding toward the object side
  • the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
  • the lens L31 is an aspheric lens having positive power.
  • the object side lens surface S8 is an aspherical surface having a negative curvature
  • the image side lens surface S9 is an aspherical surface having a negative curvature.
  • the object side lens surface S8 has a convex curved surface portion protruding toward the image side
  • the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
  • Table 16 shows lens data of each lens surface of the imaging lens system 101.
  • a surface marked with “*” indicates an aspherical surface.
  • Table 17 shows the aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 6.
  • FIGS. 13A to 13C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 6.
  • FIG. 13A to 13C in the imaging lens system 101 of Example 6, the half angle of view ⁇ is 109 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (field angle).
  • FIG. 13B shows simulation results using light rays having a wavelength of 546 nm.
  • Table 18 shows the result of calculating the characteristic values of the imaging lens system 101 of Example 6. Table 18 shows the results calculated for the same characteristic values as in Table 9.
  • Table 19 shows the results of calculating the parameters of conditional expressions (1), (2), and (4) in the imaging lens systems 101 of Examples 1 to 6.
  • FIG. 1 is a diagram illustrating a configuration of an imaging apparatus 100 using an imaging lens system 101.
  • the imaging apparatus 100 includes an imaging lens system 101, a cover glass 102, and an imaging element 103.
  • the imaging lens system 101, the cover glass 102, and the imaging element 103 are accommodated in a housing (not shown).
  • the image sensor 103 is an element that converts received light into an electrical signal.
  • a CCD image sensor or a CMOS image sensor is used.
  • the image sensor 103 is disposed at the imaging position of the imaging lens system 101.
  • the horizontal angle of view is an angle of view corresponding to the horizontal direction of the image sensor 103.
  • the cover glass 102 is provided on the image sensor 103 in order to protect the image sensor 103 from foreign matter.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • the application of the imaging lens system 101 of the present invention is not limited to an in-vehicle camera or a surveillance camera, and can be used for other applications such as mounting in a small electronic device such as a mobile phone.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided is an image pickup lens system that is wide angle, bright, and miniature. This image pickup lens system (101) comprises, in order from the object side, the following: a negative-power first lens group (G1); a positive-power second lens group (G2); and a positive-power third lens group (G3). The first lens group (G1) comprises one or two negative lenses, the second lens group (G2) comprises one positive lens, and the third lens group (G3) comprises one positive lens. The present invention is characterized in that, when the focal length of the entire lens system is f, and the focal length of the third lens group is f3, formula (1) is satisfied. (1): 0.8<f3/f<1.5

Description

撮像レンズ系及び撮像装置Imaging lens system and imaging apparatus
 本発明は、撮像レンズ系及び撮像装置に関する。 The present invention relates to an imaging lens system and an imaging apparatus.
 監視用途の光学系として、屋内外の安全性を確保する監視カメラ用レンズ系、車外及び車内監視用の車載カメラ用レンズ系などがある。監視用途の光学系には、視界が極めて広く、かつ、高い解像力を有するとともに、さらに、Fナンバが2.0程度の明るい光学系であることが求められる。また、特に、車載カメラ用の撮像レンズ系では、コンパクトさも求められる。 There are a monitoring camera lens system for ensuring safety indoors and outdoors, and an in-vehicle camera lens system for monitoring outside and inside the vehicle. An optical system for monitoring is required to be a bright optical system having an extremely wide field of view, high resolution, and an F number of about 2.0. In particular, an imaging lens system for a vehicle-mounted camera is also required to be compact.
 特許文献1には、物体側から順に、負のパワーを有する第1レンズ、正のパワーを有する第2レンズ、絞り、正のパワーを有する第3レンズからなる撮像レンズ系が記載されている。この撮像レンズ系は、レンズ3枚から構成され、広角かつ小型である。 Patent Document 1 describes, in order from the object side, an imaging lens system including a first lens having negative power, a second lens having positive power, a diaphragm, and a third lens having positive power. This imaging lens system is composed of three lenses and has a wide angle and a small size.
 特許文献2には、物体側から順に、負のパワーを有する第1レンズ、第2レンズ、正のパワーを有する第3レンズ、絞り、いずれか一方が正のパワーを有し他方が負のパワーを有する第4レンズ及び第5レンズを接合してなり全体として正のパワーを有する接合レンズと、正のパワーを有する第6レンズからなる撮像レンズ系が記載されている。この撮像レンズ系は、広角で、Fナンバが小さく、かつ高解像力を有する。 In Patent Document 2, in order from the object side, a first lens having a negative power, a second lens, a third lens having a positive power, an aperture, one of which has a positive power and the other has a negative power An imaging lens system comprising a cemented lens having a positive power as a whole and a fourth lens having a positive power and a fourth lens having a positive power is described. This imaging lens system has a wide angle, a small F number, and high resolution.
特許5393521号公報Japanese Patent No. 5393521 特許5042767号公報Japanese Patent No. 5042767
 特許文献1に記載の撮像レンズ系は、レンズ3枚で構成されているにも関わらず、半画角が77.2°~79.0°と広角であり、かつ、Fナンバが2.8である。しかし、監視用途の光学系として、より小さいFナンバを有し、かつ、高解像力の撮像レンズ系が求められている。 Although the imaging lens system described in Patent Document 1 is composed of three lenses, the half angle of view is a wide angle of 77.2 ° to 79.0 °, and the F number is 2.8. It is. However, an imaging lens system having a smaller F number and a high resolution is required as an optical system for monitoring applications.
 特許文献2に記載の撮像レンズ系は、特許文献1に記載の撮像レンズ系と比較して、半画角が78.9°~79.7°と同程度に広角であり、Fナンバが2.0と小さく、かつ、解像力が高い。しかし、この撮像レンズ系は、6枚のレンズからなるため、小型化が難しく、高コストであった。 The imaging lens system described in Patent Document 2 has a half angle of view as wide as 78.9 ° to 79.7 ° compared to the imaging lens system described in Patent Document 1, and the F number is 2. 0.0 and a high resolving power. However, since this imaging lens system is composed of six lenses, it is difficult to reduce the size and the cost is high.
 本発明は、上述の問題を解決するためなされたものであり、広角で、明るく、かつ、小型の撮像レンズ系を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a wide-angle, bright, and compact imaging lens system.
 本発明の撮像レンズ系は、
 物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群とからなる撮像レンズ系であって、
 前記第1レンズ群は1枚又は2枚の負レンズからなり、
 前記第2レンズ群は1枚の正レンズからなり、
 前記第3レンズ群は1枚の正レンズからなり、
 レンズ系全体の焦点距離をf、
 前記第3レンズ群の焦点距離をf
 としたときに、下記の条件式(1)を満たすことを特徴とする。
 0.9<f/f<2.2  (1)
The imaging lens system of the present invention is
An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
The first lens group includes one or two negative lenses,
The second lens group is composed of one positive lens,
The third lens group is composed of one positive lens,
The focal length of the entire lens system is f,
The focal length of the third lens group is f 3 ,
The following conditional expression (1) is satisfied.
0.9 <f 3 /f<2.2 (1)
 第3レンズ群の焦点距離とレンズ系全体の焦点距離との比を条件式(1)の範囲内に置くことにより、温度変化に対するレンズ系全体の焦点位置の変化を小さくできる。条件式(1)の下限値を下回ると、第3レンズ群のパワーがレンズ系全体のパワーに対して大きくなる。このとき、レンズ系全体のパワーを一定に保つために第1レンズ群のパワーが増大し、温度変化に対する焦点位置変化のバランスが崩れるとともに、像面の補正が困難になる。条件式(1)の上限値を超えると、第3レンズ群のパワーがレンズ系全体のパワーに対して小さくなる。このとき、レンズ系全体のパワーを一定に保つために第2レンズ群のパワーが増大し、温度変化に対する焦点位置変化のバランスが崩れるとともに、バックフォーカスが短くなるため撮像素子を配置するのが難しくなる。 By placing the ratio of the focal length of the third lens group and the focal length of the entire lens system within the range of the conditional expression (1), the change in the focal position of the entire lens system with respect to the temperature change can be reduced. If the lower limit value of conditional expression (1) is not reached, the power of the third lens group becomes larger than the power of the entire lens system. At this time, the power of the first lens unit increases in order to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the correction of the image plane becomes difficult. When the upper limit of conditional expression (1) is exceeded, the power of the third lens group becomes smaller than the power of the entire lens system. At this time, the power of the second lens unit is increased to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the back focus is shortened, so that it is difficult to arrange the imaging device. Become.
 本発明では、
 前記第3レンズ群を構成する最も像側のレンズの像側レンズ面は、下記の条件式(2)を満たすことを特徴とする撮像レンズ系。
0.9<fL31R2/f<2.0  (2)
 ただし、fL31R2は第3レンズ群を構成する最も像側のレンズの像側レンズ面の焦点距離であり、以下の式(3)で定義されることが好ましい。
 1/fL31R2=-(n-1)/R  (3)
n:第3レンズ群を構成する最も像側のレンズの屈折率
R:第3レンズ群を構成する最も像側のレンズの像側レンズ面の曲率半径
In the present invention,
An image pickup lens system, wherein an image side lens surface of a most image side lens constituting the third lens group satisfies the following conditional expression (2).
0.9 <f L31R2 / f <2.0 (2)
However, f L31R2 is the focal length of the image side lens surface of the most image side lens constituting the third lens group, and is preferably defined by the following formula (3).
1 / f L31R2 = − (n−1) / R (3)
n: Refractive index of the most image side lens constituting the third lens group R: Radius of curvature of the image side lens surface of the most image side lens constituting the third lens group
 第3レンズ群の像側レンズ面(R2面)の正のパワーを大きくすることにより、温度変化に対する焦点位置の変化を小さくできる。条件式(2)の下限値を下回ると、第3レンズ群の像側レンズ面の焦点距離がレンズ系全体のパワーに対して大きくなる。このとき、レンズ系全体のパワーを一定に保つために第1レンズ群のパワーが増大し、温度変化に対する焦点位置変化のバランスが崩れるとともに、像面の補正が困難になる。条件式(2)の上限値を超えると、第3レンズ群の像側レンズ面のパワーがレンズ系全体のパワーに対して小さくなる。このとき、レンズ系全体のパワーを一定に保つために第2レンズ群のパワーが増大し、温度変化に対する焦点位置変化のバランスが崩れるとともに、バックフォーカスが短くなるため撮像素子を配置するのが難しくなる。 By increasing the positive power of the image side lens surface (R2 surface) of the third lens group, the change in the focal position with respect to the temperature change can be reduced. If the lower limit value of conditional expression (2) is not reached, the focal length of the image side lens surface of the third lens group becomes larger than the power of the entire lens system. At this time, the power of the first lens unit increases in order to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the correction of the image plane becomes difficult. When the upper limit value of conditional expression (2) is exceeded, the power of the image side lens surface of the third lens group becomes smaller than the power of the entire lens system. At this time, the power of the second lens unit is increased to keep the power of the entire lens system constant, and the balance of the focal position change with respect to the temperature change is lost, and the back focus is shortened, so that it is difficult to arrange the imaging device. Become.
 本発明では、
 前記第1レンズ群は1枚の負レンズからなる
 ことが好ましい。
In the present invention,
The first lens group is preferably composed of one negative lens.
 また、本発明では、
 前記第1レンズ群は2枚の負レンズからなる
 ことが好ましい。
In the present invention,
The first lens group preferably comprises two negative lenses.
 本発明では、
 前記第1レンズ群の焦点距離をf
 前記第2レンズ群の焦点距離をf
 としたときに、下記の条件式(4)を満たすことが好ましい。
 0.3<|f/f|<1.5  (4)
In the present invention,
The focal length of the first lens group is f 1 ,
The focal length of the second lens group is f 2 ,
It is preferable that the following conditional expression (4) is satisfied.
0.3 <| f 1 / f 2 | <1.5 (4)
 第1レンズ群の焦点距離と第2レンズ群の焦点距離との比を条件式(4)の範囲内に置くことにより、小型の撮像レンズ系を実現できる。条件式(4)の下限値を下回ると、第1レンズ群のパワーが増大することにより、バックフォーカスが増大してレンズ系の全長増大につながる。条件式(4)の上限値を上回ると、第1レンズ群のパワーが減少することにより、バックフォーカスが短くなり、第3レンズ群と撮像素子との距離が短くなるため、撮像素子の配置が難しくなる。また、撮像素子への光線の入射角が増大するため、レンズ系の周辺光量が低下し、撮像画像のシェーディングが大きくなる。 A small imaging lens system can be realized by placing the ratio of the focal length of the first lens group and the focal length of the second lens group within the range of conditional expression (4). If the lower limit value of conditional expression (4) is not reached, the power of the first lens group increases, thereby increasing the back focus and increasing the overall length of the lens system. If the upper limit of conditional expression (4) is exceeded, the power of the first lens group decreases, the back focus is shortened, and the distance between the third lens group and the image sensor is shortened. It becomes difficult. In addition, since the incident angle of the light beam to the image sensor increases, the amount of light around the lens system decreases and the shading of the captured image increases.
 本発明では、
 水平画角が100度以上である
 ことが好ましい。
In the present invention,
The horizontal angle of view is preferably 100 degrees or more.
 本発明では、
 絞りが前記第2レンズ群と前記第3レンズ群との間にある
 ことが好ましい。
In the present invention,
It is preferable that the stop be between the second lens group and the third lens group.
 本発明の撮像レンズ系は、
 物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群とからなる撮像レンズ系であって、
 レンズ系全体の焦点距離をf、
 前記第3レンズ群の焦点距離をf
 としたときに、下記の条件式(1)及び(2)を満たすことを特徴とする。
 0.9<f/f<2.2  (1)
 0.9<fL31R2/f<2.0  (2)
 ただし、fL31R2は第3レンズ群を構成する最も像側のレンズの像側レンズ面の焦点距離であり、以下の式(3)で定義される。
 1/fL31R2=-(n-1)/R  (3)
n:第3レンズ群を構成する最も像側のレンズの屈折率
R:第3レンズ群を構成する最も像側のレンズの像側レンズ面の曲率半径
The imaging lens system of the present invention is
An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
The focal length of the entire lens system is f,
The focal length of the third lens group is f 3 ,
The following conditional expressions (1) and (2) are satisfied.
0.9 <f 3 /f<2.2 (1)
0.9 <f L31R2 / f <2.0 (2)
Here, f L31R2 is the focal length of the image side lens surface of the most image side lens constituting the third lens group, and is defined by the following formula (3).
1 / f L31R2 = − (n−1) / R (3)
n: Refractive index of the most image side lens constituting the third lens group R: Radius of curvature of the image side lens surface of the most image side lens constituting the third lens group
 本発明の撮像レンズ系は、
 物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群とからなる撮像レンズ系であって、
 レンズ系全体の焦点距離をf、
 前記第1レンズ群の焦点距離をf
 前記第2レンズ群の焦点距離をf
 前記第3レンズ群の焦点距離をf
 としたときに、下記の条件式(1)及び(4)を満たすことを特徴とする。
 0.9<f/f<2.2  (1)
 0.3<|f/f|<1.5  (4)
The imaging lens system of the present invention is
An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
The focal length of the entire lens system is f,
The focal length of the first lens group is f 1 ,
The focal length of the second lens group is f 2 ,
The focal length of the third lens group is f 3 ,
The following conditional expressions (1) and (4) are satisfied.
0.9 <f 3 /f<2.2 (1)
0.3 <| f 1 / f 2 | <1.5 (4)
 本発明では、
 絞りが前記第2レンズ群と前記第3レンズ群との間にある
 ことが好ましい。
In the present invention,
It is preferable that the stop be between the second lens group and the third lens group.
 本発明の撮像装置は、
 上述の撮像レンズ系と、
 前記撮像レンズ系の焦点位置に配置された撮像素子と、を有する
 ことを特徴とする。
The imaging apparatus of the present invention
The imaging lens system described above;
And an image pickup device disposed at a focal position of the image pickup lens system.
 本発明によれば、広角で、明るく、かつ、小型の撮像レンズ系を提供することができる。 According to the present invention, a wide-angle, bright and small imaging lens system can be provided.
実施の形態1に係る撮像装置の断面図である。2 is a cross-sectional view of the imaging apparatus according to Embodiment 1. FIG. 実施例1に係る撮像レンズ系の断面図である。1 is a cross-sectional view of an imaging lens system according to Example 1. FIG. 実施例1に係る撮像レンズ系の収差図である。FIG. 4 is an aberration diagram of the imaging lens system according to Example 1. 実施例1に係る撮像レンズ系の収差図である。FIG. 4 is an aberration diagram of the imaging lens system according to Example 1. 実施例1に係る撮像レンズ系の収差図である。FIG. 4 is an aberration diagram of the imaging lens system according to Example 1. 実施例2に係る撮像レンズ系の断面図である。6 is a cross-sectional view of an imaging lens system according to Example 2. FIG. 実施例2に係る撮像レンズ系の収差図である。6 is an aberration diagram of the imaging lens system according to Example 2. FIG. 実施例2に係る撮像レンズ系の収差図である。6 is an aberration diagram of the imaging lens system according to Example 2. FIG. 実施例2に係る撮像レンズ系の収差図である。6 is an aberration diagram of the imaging lens system according to Example 2. FIG. 実施例3に係る撮像レンズ系の断面図である。6 is a cross-sectional view of an imaging lens system according to Example 3. FIG. 実施例3に係る撮像レンズ系の収差図である。FIG. 6 is an aberration diagram of the imaging lens system according to Example 3. 実施例3に係る撮像レンズ系の収差図である。FIG. 6 is an aberration diagram of the imaging lens system according to Example 3. 実施例3に係る撮像レンズ系の収差図である。FIG. 6 is an aberration diagram of the imaging lens system according to Example 3. 実施例4に係る撮像レンズ系の断面図である。6 is a cross-sectional view of an imaging lens system according to Example 4. FIG. 実施例4に係る撮像レンズ系の収差図である。FIG. 10 is an aberration diagram of the imaging lens system according to Example 4. 実施例4に係る撮像レンズ系の収差図である。FIG. 10 is an aberration diagram of the imaging lens system according to Example 4. 実施例4に係る撮像レンズ系の収差図である。FIG. 10 is an aberration diagram of the imaging lens system according to Example 4. 実施例5に係る撮像レンズ系の断面図である。6 is a cross-sectional view of an imaging lens system according to Example 5. FIG. 実施例5に係る撮像レンズ系の収差図である。FIG. 10 is an aberration diagram of the imaging lens system according to Example 5. 実施例5に係る撮像レンズ系の収差図である。FIG. 10 is an aberration diagram of the imaging lens system according to Example 5. 実施例5に係る撮像レンズ系の収差図である。FIG. 10 is an aberration diagram of the imaging lens system according to Example 5. 実施例6に係る撮像レンズ系の断面図である。10 is a cross-sectional view of an imaging lens system according to Example 6. FIG. 実施例6に係る撮像レンズ系の収差図である。10 is an aberration diagram of the imaging lens system according to Example 6. FIG. 実施例6に係る撮像レンズ系の収差図である。10 is an aberration diagram of the imaging lens system according to Example 6. FIG. 実施例6に係る撮像レンズ系の収差図である。10 is an aberration diagram of the imaging lens system according to Example 6. FIG.
 以下、本発明の実施の形態に係る撮像レンズ系101の実施例について説明する。 Hereinafter, examples of the imaging lens system 101 according to the embodiment of the present invention will be described.
 (実施例1)
 図2は、実施例1の撮像レンズ系101の構成を示す図である。
 図2に示すように、実施例1の撮像レンズ系101は、物体側から像側に向かって順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、絞りSTOPと、正のパワーを有する第3レンズ群G3と、から構成される。第1レンズ群G1は、レンズL11から構成される。第2レンズ群G2は、レンズL21から構成される。第3レンズ群G3は、レンズL31から構成される。撮像レンズ系101の結像面はIMGで示されている。実施例1の撮像レンズ系101では、レンズL11、レンズL21、及び、レンズL31はプラスチックレンズである。
(Example 1)
FIG. 2 is a diagram illustrating a configuration of the imaging lens system 101 according to the first embodiment.
As illustrated in FIG. 2, the imaging lens system 101 according to the first exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power and a second lens group G2 having a positive power. And a stop STOP and a third lens group G3 having a positive power. The first lens group G1 includes a lens L11. The second lens group G2 includes a lens L21. The third lens group G3 includes a lens L31. The imaging plane of the imaging lens system 101 is indicated by IMG. In the imaging lens system 101 of Example 1, the lens L11, the lens L21, and the lens L31 are plastic lenses.
 レンズL11は、負のパワーを有する非球面レンズである。レンズL11の物体側レンズ面S1は負の曲率を有する球面であり、像側レンズ面S2は正の曲率を有する非球面である。物体側レンズ面S1は物体側に凹面を向けており、像側レンズ面S2は物体側に突出する凸形状の曲面部分を有している。 The lens L11 is an aspheric lens having negative power. The object side lens surface S1 of the lens L11 is a spherical surface having a negative curvature, and the image side lens surface S2 is an aspherical surface having a positive curvature. The object side lens surface S1 has a concave surface facing the object side, and the image side lens surface S2 has a convex curved surface portion protruding toward the object side.
 レンズL21は、正のパワーを有する非球面レンズである。物体側レンズ面S3は正の曲率を有する非球面であり、像側レンズ面S4は正の曲率を有する非球面である。物体側レンズ面S3は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S4は物体側に突出する凸形状の曲面部分を有している。 The lens L21 is an aspheric lens having positive power. The object side lens surface S3 is an aspherical surface having a positive curvature, and the image side lens surface S4 is an aspherical surface having a positive curvature. The object side lens surface S3 has a convex curved surface portion protruding toward the object side, and the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
 レンズL31は、正のパワーを有する非球面レンズである。物体側レンズ面S6は負の曲率を有する非球面であり、像側レンズ面S7は負の曲率を有する非球面である。物体側レンズ面S6は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S7は像側に突出する凸形状の曲面部分を有している。 The lens L31 is an aspheric lens having positive power. The object side lens surface S6 is an aspherical surface having a negative curvature, and the image side lens surface S7 is an aspherical surface having a negative curvature. The object side lens surface S6 has a convex curved surface portion protruding toward the image side, and the image side lens surface S7 has a convex curved surface portion protruding toward the image side.
 表1に、撮像レンズ系101の各レンズ面のレンズデータを示す。レンズデータとしては、各面の曲率半径、面間隔、屈折率、及びアッベ数を載せている。「*印」がついた面は、非球面であることを示している。 Table 1 shows lens data of each lens surface of the imaging lens system 101. The lens data includes the radius of curvature, surface spacing, refractive index, and Abbe number of each surface. A surface marked with “*” indicates an aspherical surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 レンズ面に採用する非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸からの光線高さとして、1次、2次、3次、4次、5次、6次、7次、8次の非球面係数をそれぞれβ1、β2、β3、β4、β5、β6、β7、β8、としたときに、次式により表わされる。 The aspherical shape adopted for the lens surface is a first-order, second-order, third-order, fourth-order, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the conic coefficient, and r is the height of the light beam from the optical axis. When the fifth-order, sixth-order, seventh-order, and eighth-order aspherical coefficients are β1, β2, β3, β4, β5, β6, β7, and β8, respectively, they are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 表2に、実施例1の撮像レンズ系101において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表2において、例えば「-6.522528E-03」は、「-6.522528×10-3」を意味する。 Table 2 shows the aspheric coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 1. In Table 2, for example, “−6.522528E-03” means “−6.522528 × 10 −3 ”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3A~図3Cは、実施例1の撮像レンズ系101の縦収差図、像面湾曲図、歪曲収差図である。図3A~図3Cに示すように、実施例1の撮像レンズ系101では、半画角ωが80°、Fナンバが2.0である。図3Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図3Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図3Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図3Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図3A~図3Cでは、波長546nmの光線によるシミュレーション結果を示してある。 3A to 3C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 according to the first embodiment. As shown in FIGS. 3A to 3C, in the imaging lens system 101 of Example 1, the half angle of view ω is 80 ° and the F number is 2.0. In the longitudinal aberration diagram of FIG. 3A, the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter. In the field curvature diagram of FIG. 3B, the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle). In FIG. 3B, Sag indicates the field curvature in the sagittal plane, and Tan indicates the field curvature in the tangential plane. In the distortion diagram of FIG. 3C, the horizontal axis represents the amount of distortion (%) of the image, and the vertical axis represents the image height (field angle). FIG. 3A to FIG. 3C show simulation results using light rays having a wavelength of 546 nm.
 表3に、実施例1の撮像レンズ系101の特性値を計算した結果を示す。撮像レンズ系101において、FナンバをFNo、第1レンズL1の物体側レンズ面S1から撮像レンズ系101の結像面IMGまでの距離(光学全長)をTL、レンズ系全体の焦点距離をf、第1レンズ群G1の焦点距離をf、第2レンズ群G2の焦点距離をf、第3レンズ群G3の焦点距離をf、第1レンズ群G1と第2レンズ群G2との合成焦点距離をf12、第2レンズ群G2と第3レンズ群G3との合成焦点距離をf23、レンズL31の像側レンズ面S7の焦点距離をfL31R2、としたときのこれらの特性値は、表3に示す通りである。各種の焦点距離は、546nmの波長の光線を用いて計算した。 Table 3 shows the result of calculating the characteristic value of the imaging lens system 101 of Example 1. In the imaging lens system 101, the F number is FNo, the distance (optical total length) from the object-side lens surface S1 of the first lens L1 to the imaging surface IMG of the imaging lens system 101 is TL, the focal length of the entire lens system is f, The focal length of the first lens group G1 is f 1 , the focal length of the second lens group G2 is f 2 , the focal length of the third lens group G3 is f 3 , and the first lens group G1 and the second lens group G2 are combined. When the focal length is f 12 , the combined focal length of the second lens group G2 and the third lens group G3 is f 23 , and the focal length of the image side lens surface S7 of the lens L31 is f L31R2 , these characteristic values are As shown in Table 3. Various focal lengths were calculated using light rays with a wavelength of 546 nm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例2)
 図4は、実施例2の撮像レンズ系101の構成を示す図である。
 図4に示すように、実施例2の撮像レンズ系101は、物体側から像側に向かって順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、絞りと、正のパワーを有する第3レンズ群G3と、から構成される。第1レンズ群G1は、レンズL11から構成される。第2レンズ群G2は、レンズL21から構成される。第3レンズ群G3は、レンズL31から構成される。実施例1の撮像レンズ系101では、レンズL11はガラスレンズで、レンズL21及びレンズL31はプラスチックレンズである。
(Example 2)
FIG. 4 is a diagram illustrating a configuration of the imaging lens system 101 according to the second embodiment.
As illustrated in FIG. 4, the imaging lens system 101 according to the second embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power and a second lens group G2 having a positive power. , And a third lens group G3 having a positive power. The first lens group G1 includes a lens L11. The second lens group G2 includes a lens L21. The third lens group G3 includes a lens L31. In the imaging lens system 101 of Example 1, the lens L11 is a glass lens, and the lenses L21 and L31 are plastic lenses.
 レンズL11は、負のパワーを有する球面メニスカスレンズである。レンズL11の物体側レンズ面S1は正の曲率を有する球面であり、像側レンズ面S2は正の曲率を有する球面である。物体側レンズ面S1及び像側レンズ面S2は像側に凹面を向けている。 The lens L11 is a spherical meniscus lens having negative power. The object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature, and the image side lens surface S2 is a spherical surface having a positive curvature. The object side lens surface S1 and the image side lens surface S2 are concave on the image side.
 レンズL21は、正のパワーを有する非球面レンズである。物体側レンズ面S3は正の曲率を有する非球面であり、像側レンズ面S4は正の曲率を有する非球面である。物体側レンズ面S3は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S4は物体側に突出する凸形状の曲面部分を有している。 The lens L21 is an aspheric lens having positive power. The object side lens surface S3 is an aspherical surface having a positive curvature, and the image side lens surface S4 is an aspherical surface having a positive curvature. The object side lens surface S3 has a convex curved surface portion protruding toward the object side, and the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
 レンズL31は、正のパワーを有する非球面レンズである。物体側レンズ面S6は負の曲率を有する非球面であり、像側レンズ面S7は負の曲率を有する非球面である。物体側レンズ面S6は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S7は像側に突出する凸形状の曲面部分を有している。 The lens L31 is an aspheric lens having positive power. The object side lens surface S6 is an aspherical surface having a negative curvature, and the image side lens surface S7 is an aspherical surface having a negative curvature. The object side lens surface S6 has a convex curved surface portion protruding toward the image side, and the image side lens surface S7 has a convex curved surface portion protruding toward the image side.
 表4に、撮像レンズ系101の各レンズ面のレンズデータを示す。「*印」がついた面は、非球面であることを示している。 Table 4 shows lens data of each lens surface of the imaging lens system 101. A surface marked with “*” indicates an aspherical surface.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表5に、実施例2の撮像レンズ系101において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。 Table 5 shows the aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図5A~図5Cは、実施例2の撮像レンズ系101の縦収差図、像面湾曲図、歪曲収差図である。図5A~図5Cに示すように、実施例2の撮像レンズ系101では、半画角ωが80°、Fナンバが2.0である。図5Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図5Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図5Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図5Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図5A~図5Cでは、波長546nmの光線によるシミュレーション結果を示してある。 FIGS. 5A to 5C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of the second embodiment. As shown in FIGS. 5A to 5C, in the imaging lens system 101 of Example 2, the half angle of view ω is 80 ° and the F number is 2.0. In the longitudinal aberration diagram of FIG. 5A, the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter. In the field curvature diagram of FIG. 5B, the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle). In FIG. 5B, Sag indicates the field curvature in the sagittal plane, and Tan indicates the field curvature in the tangential plane. In the distortion diagram of FIG. 5C, the horizontal axis represents the amount of distortion (%) of the image, and the vertical axis represents the image height (field angle). FIG. 5A to FIG. 5C show simulation results using light rays having a wavelength of 546 nm.
 表6に、実施例2の撮像レンズ系101の特性値を計算した結果を示す。表6には、表3と同様の特性値について計算した結果を示す。 Table 6 shows the results of calculating the characteristic values of the imaging lens system 101 of Example 2. Table 6 shows the results calculated for the same characteristic values as in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例3)
 図6は、実施例3の撮像レンズ系101の構成を示す図である。
 実施例3の撮像レンズ系101は、物体側から像側に向かって順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、絞りと、正のパワーを有する第3レンズ群G3と、から構成される。第1レンズ群G1は、レンズL11及びレンズL12から構成される。第2レンズ群G2は、レンズL21から構成される。第3レンズ群G3は、レンズL31から構成される。実施例3の撮像レンズ系101では、レンズL11はガラスレンズであり、レンズL12、レンズL21、及びレンズL31はプラスチックレンズである。
Example 3
FIG. 6 is a diagram illustrating a configuration of the imaging lens system 101 according to the third embodiment.
The imaging lens system 101 according to the third exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3. The first lens group G1 includes a lens L11 and a lens L12. The second lens group G2 includes a lens L21. The third lens group G3 includes a lens L31. In the imaging lens system 101 of Example 3, the lens L11 is a glass lens, and the lens L12, the lens L21, and the lens L31 are plastic lenses.
 レンズL11は、負のパワーを有する球面メニスカスレンズである。レンズL11の物体側レンズ面S1は正の曲率を有する球面であり、像側レンズ面S2は正の曲率を有する球面である。物体側レンズ面S1及び像側レンズ面S2は像側に凹面を向けている。 The lens L11 is a spherical meniscus lens having negative power. The object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature, and the image side lens surface S2 is a spherical surface having a positive curvature. The object side lens surface S1 and the image side lens surface S2 are concave on the image side.
 レンズL12は、負のパワーを有する非球面レンズである。レンズL12の物体側レンズ面S3は負の曲率を有する非球面であり、像側レンズ面S4は正の曲率を有する非球面である。物体側レンズ面S3は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S4は物体側に突出する凸形状の曲面部分を有している。 Lens L12 is an aspherical lens having negative power. The object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature, and the image side lens surface S4 is an aspheric surface having a positive curvature. The object side lens surface S3 has a convex curved surface portion protruding toward the image side, and the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
 レンズL21は、正のパワーを有する非球面レンズである。物体側レンズ面S5は正の曲率を有する非球面であり、像側レンズ面S6は正の曲率を有する非球面である。物体側レンズ面S5は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S6は物体側に突出する凸形状の曲面部分を有している。 The lens L21 is an aspheric lens having positive power. The object side lens surface S5 is an aspherical surface having a positive curvature, and the image side lens surface S6 is an aspherical surface having a positive curvature. The object side lens surface S5 has a convex curved surface portion protruding toward the object side, and the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
 レンズL31は、正のパワーを有する非球面レンズである。物体側レンズ面S8は正の曲率を有する非球面であり、像側レンズ面S9は負の曲率を有する非球面である。物体側レンズ面S8は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S9は像側に突出する凸形状の曲面部分を有している。 The lens L31 is an aspheric lens having positive power. The object side lens surface S8 is an aspherical surface having a positive curvature, and the image side lens surface S9 is an aspherical surface having a negative curvature. The object side lens surface S8 has a convex curved surface portion protruding toward the object side, and the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
 表7に、撮像レンズ系101の各レンズ面のレンズデータを示す。「*印」がついた面は、非球面であることを示している。 Table 7 shows lens data of each lens surface of the imaging lens system 101. A surface marked with “*” indicates an aspherical surface.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 レンズL21及びレンズL31のレンズ面に採用される非球面形状は、実施例1で説明した数式で表される。レンズL12のレンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸からの光線高さとして、4次、6次、8次、10次、12次、14次、16次の非球面係数をそれぞれα4、α6、α8、α10、α12、α14、としたときに、次式により表わされる。 The aspherical shape adopted for the lens surfaces of the lens L21 and the lens L31 is expressed by the mathematical formula described in the first embodiment. The aspherical shape adopted for the lens surface of the lens L12 is 4th order, 6th order, 8th order, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the cone coefficient, and r is the height of the light beam from the optical axis. When the 10th-order, 12th-order, 14th-order, and 16th-order aspherical coefficients are α4, α6, α8, α10, α12, and α14, respectively, they are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 表8に、実施例3の撮像レンズ系101において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。 Table 8 shows aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図7A~図7Cは、実施例3の撮像レンズ系101の縦収差図、像面湾曲図、歪曲収差図である。図7A~図7Cに示すように、実施例3の撮像レンズ系101では、半画角ωが89°、Fナンバが2.0である。図7Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図7Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図7Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図7Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図7A~図7Cでは、波長546nmの光線によるシミュレーション結果を示してある。 7A to 7C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 3. FIG. As shown in FIGS. 7A to 7C, in the imaging lens system 101 of Example 3, the half angle of view ω is 89 ° and the F number is 2.0. In the longitudinal aberration diagram of FIG. 7A, the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter. In the field curvature diagram of FIG. 7B, the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle). In FIG. 7B, Sag indicates the field curvature in the sagittal plane, and Tan indicates the field curvature in the tangential plane. In the distortion diagram of FIG. 7C, the horizontal axis represents the amount of distortion (%) of the image, and the vertical axis represents the image height (field angle). 7A to 7C show simulation results using light rays having a wavelength of 546 nm.
 表9に、実施例3の撮像レンズ系101の特性値を計算した結果を示す。撮像レンズ系101において、FナンバをFNo、第1レンズL11の物体側レンズ面S1から撮像レンズ系101の結像面IMGまでの距離(光学全長)をTL、レンズ系全体の焦点距離をf、第1レンズ群G1の焦点距離をf、第2レンズ群G2の焦点距離をf、第3レンズ群G3の焦点距離をf、レンズL11の焦点距離をfL11、レンズL12の焦点距離をfL12、第1レンズ群G1と第2レンズ群G2との合成焦点距離をf12、第2レンズ群G2と第3レンズ群G3との合成焦点距離をf23、レンズL12とレンズL21との合成焦点距離をfL12L21、レンズL11とレンズL12とレンズL21との合成焦点距離をfL11L21、レンズL12とレンズL21とレンズL31との合成焦点距離をfL12L31、レンズL31の像側レンズ面S7の焦点距離をfL31R2、としたときのこれらの特性値は、表9に示す通りである。各種の焦点距離は、546nmの波長の光線を用いて計算した。 Table 9 shows the results of calculating the characteristic values of the imaging lens system 101 of Example 3. In the imaging lens system 101, the F number is FNo, the distance from the object-side lens surface S1 of the first lens L11 to the imaging surface IMG of the imaging lens system 101 is TL, the focal length of the entire lens system is f, focal length f 1 of the first lens group G1, the focal length f 2 of the second lens group G2, the focal length f 3 of the third lens group G3, the focal distance f L11 of the lens L11, the focal length of the lens L12 F L12 , the combined focal length of the first lens group G1 and the second lens group G2 is f 12 , the combined focal length of the second lens group G2 and the third lens group G3 is f 23 , and the lens L12 and the lens L21 combined focal distance of the composite focal distance f L12L21, a composite focal length of the lens L11 and the lens L12 and the lens L21 and f L11L21, lens L12 and a lens L21 and lens L31 The f L12L31, these characteristic values when the focal length of the image side lens surface S7 in the lens L31 and f L31R2, and are as shown in Table 9. Various focal lengths were calculated using light rays with a wavelength of 546 nm.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (実施例4)
 図8は、実施例4の撮像レンズ系101の構成を示す図である。
 実施例4の撮像レンズ系101は、物体側から像側に向かって順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、絞りと、正のパワーを有する第3レンズ群G3と、から構成される。第1レンズ群G1は、レンズL11及びレンズL12から構成される。第2レンズ群G2は、レンズL21から構成される。第3レンズ群G3は、レンズL31から構成される。実施例4の撮像レンズ系101では、レンズL11はガラスレンズであり、レンズL12、レンズL21、及びレンズL31はプラスチックレンズである。
Example 4
FIG. 8 is a diagram illustrating a configuration of the imaging lens system 101 according to the fourth embodiment.
The imaging lens system 101 according to the fourth exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3. The first lens group G1 includes a lens L11 and a lens L12. The second lens group G2 includes a lens L21. The third lens group G3 includes a lens L31. In the imaging lens system 101 of Example 4, the lens L11 is a glass lens, and the lens L12, the lens L21, and the lens L31 are plastic lenses.
 レンズL11は、負のパワーを有する球面メニスカスレンズである。レンズL11の物体側レンズ面S1は正の曲率を有する球面であり、像側レンズ面S2は正の曲率を有する球面である。物体側レンズ面S1及び像側レンズ面S2は像側に凹面を向けている。 The lens L11 is a spherical meniscus lens having negative power. The object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature, and the image side lens surface S2 is a spherical surface having a positive curvature. The object side lens surface S1 and the image side lens surface S2 are concave on the image side.
 レンズL12は、負のパワーを有する非球面レンズである。レンズL12の物体側レンズ面S3は負の曲率を有する非球面であり、像側レンズ面S4は正の曲率を有する非球面である。物体側レンズ面S3は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S4は物体側に突出する凸形状の曲面部分を有している。 Lens L12 is an aspherical lens having negative power. The object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature, and the image side lens surface S4 is an aspheric surface having a positive curvature. The object side lens surface S3 has a convex curved surface portion protruding toward the image side, and the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
 レンズL21は、正のパワーを有する非球面レンズである。物体側レンズ面S5は正の曲率を有する非球面であり、像側レンズ面S6は正の曲率を有する非球面である。物体側レンズ面S5は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S6は物体側に突出する凸形状の曲面部分を有している。 The lens L21 is an aspheric lens having positive power. The object side lens surface S5 is an aspherical surface having a positive curvature, and the image side lens surface S6 is an aspherical surface having a positive curvature. The object side lens surface S5 has a convex curved surface portion protruding toward the object side, and the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
 レンズL31は、正のパワーを有する非球面レンズである。物体側レンズ面S8は正の曲率を有する非球面であり、像側レンズ面S9は負の曲率を有する非球面である。物体側レンズ面S8は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S9は像側に突出する凸形状の曲面部分を有している。 The lens L31 is an aspheric lens having positive power. The object side lens surface S8 is an aspherical surface having a positive curvature, and the image side lens surface S9 is an aspherical surface having a negative curvature. The object side lens surface S8 has a convex curved surface portion protruding toward the object side, and the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
 表10に、撮像レンズ系101の各レンズ面のレンズデータを示す。「*印」がついた面は、非球面であることを示している。 Table 10 shows lens data of each lens surface of the imaging lens system 101. A surface marked with “*” indicates an aspherical surface.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表11に、実施例4の撮像レンズ系101において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。 Table 11 shows the aspheric coefficients for defining the aspheric shape of the aspheric lens surface in the imaging lens system 101 of Example 4.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図9A~図9Cは、実施例4の撮像レンズ系101の縦収差図、像面湾曲図、歪曲収差図である。図9A~図9Cに示すように、実施例4の撮像レンズ系101では、半画角ωが89°、Fナンバが2.0である。図9Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図9Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図9Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図9Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図9A~図9Cでは、波長546nmの光線によるシミュレーション結果を示してある。 FIGS. 9A to 9C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 4. FIG. As shown in FIGS. 9A to 9C, in the imaging lens system 101 of Example 4, the half angle of view ω is 89 ° and the F number is 2.0. In the longitudinal aberration diagram of FIG. 9A, the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter. In the field curvature diagram of FIG. 9B, the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle). In FIG. 9B, Sag indicates the field curvature in the sagittal plane, and Tan indicates the field curvature in the tangential plane. In the distortion diagram of FIG. 9C, the horizontal axis indicates the amount of image distortion (%), and the vertical axis indicates the image height (angle of view). FIG. 9A to FIG. 9C show simulation results using light rays having a wavelength of 546 nm.
 表12に、実施例4の撮像レンズ系101の特性値を計算した結果を示す。表12には、表9と同様の特性値について計算した結果を示す。 Table 12 shows the result of calculating the characteristic values of the imaging lens system 101 of Example 4. Table 12 shows the calculation results for the same characteristic values as in Table 9.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (実施例5)
 図10は、実施例5の撮像レンズ系101の構成を示す図である。
 実施例5の撮像レンズ系101は、物体側から像側に向かって順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、絞りと、正のパワーを有する第3レンズ群G3と、から構成される。第1レンズ群G1は、レンズL11及びレンズL12から構成される。第2レンズ群G2は、レンズL21から構成される。第3レンズ群G3は、レンズL31から構成される。実施例5の撮像レンズ系101では、レンズL11はガラスレンズであり、レンズL12、レンズL21、及びレンズL31はプラスチックレンズである。
(Example 5)
FIG. 10 is a diagram illustrating a configuration of the imaging lens system 101 according to the fifth embodiment.
The imaging lens system 101 according to the fifth exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3. The first lens group G1 includes a lens L11 and a lens L12. The second lens group G2 includes a lens L21. The third lens group G3 includes a lens L31. In the imaging lens system 101 of Example 5, the lens L11 is a glass lens, and the lens L12, the lens L21, and the lens L31 are plastic lenses.
 レンズL11は、負のパワーを有する球面メニスカスレンズである。レンズL11の物体側レンズ面S1は正の曲率を有する球面であり、像側レンズ面S2は正の曲率を有する球面である。物体側レンズ面S1及び像側レンズ面S2は像側に凹面を向けている。 The lens L11 is a spherical meniscus lens having negative power. The object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature, and the image side lens surface S2 is a spherical surface having a positive curvature. The object side lens surface S1 and the image side lens surface S2 are concave on the image side.
 レンズL12は、負のパワーを有する非球面レンズである。レンズL12の物体側レンズ面S3は負の曲率を有する非球面であり、像側レンズ面S4は正の曲率を有する非球面である。物体側レンズ面S3は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S4は物体側に突出する凸形状の曲面部分を有している。 Lens L12 is an aspherical lens having negative power. The object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature, and the image side lens surface S4 is an aspheric surface having a positive curvature. The object side lens surface S3 has a convex curved surface portion protruding toward the image side, and the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
 レンズL21は、正のパワーを有する非球面レンズである。物体側レンズ面S5は正の曲率を有する非球面であり、像側レンズ面S6は正の曲率を有する非球面である。物体側レンズ面S5は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S6は物体側に突出する凸形状の曲面部分を有している。 The lens L21 is an aspheric lens having positive power. The object side lens surface S5 is an aspherical surface having a positive curvature, and the image side lens surface S6 is an aspherical surface having a positive curvature. The object side lens surface S5 has a convex curved surface portion protruding toward the object side, and the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
 レンズL31は、正のパワーを有する非球面レンズである。物体側レンズ面S8は負の曲率を有する非球面であり、像側レンズ面S9は負の曲率を有する非球面である。物体側レンズ面S8は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S9は像側に突出する凸形状の曲面部分を有している。 The lens L31 is an aspheric lens having positive power. The object side lens surface S8 is an aspherical surface having a negative curvature, and the image side lens surface S9 is an aspherical surface having a negative curvature. The object side lens surface S8 has a convex curved surface portion protruding toward the image side, and the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
 表13に、撮像レンズ系101の各レンズ面のレンズデータを示す。「*印」がついた面は、非球面であることを示している。 Table 13 shows lens data of each lens surface of the imaging lens system 101. A surface marked with “*” indicates an aspherical surface.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表14に、実施例5の撮像レンズ系101において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。 Table 14 shows the aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 5.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 図11A~図11Cは、実施例5の撮像レンズ系101の縦収差図、像面湾曲図、歪曲収差図である。図11A~図11Cに示すように、実施例5の撮像レンズ系101では、半画角ωが107°、Fナンバが2.0である。図11Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図11Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図11Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図11Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図11A~図11Cでは、波長546nmの光線によるシミュレーション結果を示してある。 FIGS. 11A to 11C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 5. FIG. As shown in FIGS. 11A to 11C, in the imaging lens system 101 of Example 5, the half angle of view ω is 107 ° and the F number is 2.0. In the longitudinal aberration diagram of FIG. 11A, the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter. In the field curvature diagram of FIG. 11B, the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle). In FIG. 11B, Sag indicates the field curvature in the sagittal plane, and Tan indicates the field curvature in the tangential plane. In the distortion diagram of FIG. 11C, the horizontal axis indicates the amount of distortion (%) of the image, and the vertical axis indicates the image height (angle of view). FIG. 11A to FIG. 11C show simulation results using light rays having a wavelength of 546 nm.
 表15に、実施例5の撮像レンズ系101の特性値を計算した結果を示す。表15には、表9と同様の特性値について計算した結果を示す。 Table 15 shows the results of calculating the characteristic values of the imaging lens system 101 of Example 5. Table 15 shows the results calculated for the same characteristic values as in Table 9.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (実施例6)
 図12は、実施例6の撮像レンズ系101の構成を示す図である。
 実施例6の撮像レンズ系101は、物体側から像側に向かって順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、絞りと、正のパワーを有する第3レンズ群G3と、から構成される。第1レンズ群G1は、レンズL11及びレンズL12から構成される。第2レンズ群G2は、レンズL21から構成される。第3レンズ群G3は、レンズL31から構成される。実施例6の撮像レンズ系101では、レンズL11はガラスレンズであり、レンズL12、レンズL21、及びレンズL31はプラスチックレンズである。
Example 6
FIG. 12 is a diagram illustrating a configuration of the imaging lens system 101 according to the sixth embodiment.
The imaging lens system 101 according to the sixth exemplary embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, a diaphragm, and a positive power. And a third lens group G3. The first lens group G1 includes a lens L11 and a lens L12. The second lens group G2 includes a lens L21. The third lens group G3 includes a lens L31. In the imaging lens system 101 of Example 6, the lens L11 is a glass lens, and the lens L12, the lens L21, and the lens L31 are plastic lenses.
 レンズL11は、負のパワーを有する球面メニスカスレンズである。レンズL11の物体側レンズ面S1は正の曲率を有する球面であり、像側レンズ面S2は正の曲率を有する球面である。物体側レンズ面S1及び像側レンズ面S2は像側に凹面を向けている。 The lens L11 is a spherical meniscus lens having negative power. The object side lens surface S1 of the lens L11 is a spherical surface having a positive curvature, and the image side lens surface S2 is a spherical surface having a positive curvature. The object side lens surface S1 and the image side lens surface S2 are concave on the image side.
 レンズL12は、負のパワーを有する非球面レンズである。レンズL12の物体側レンズ面S3は負の曲率を有する非球面であり、像側レンズ面S4は正の曲率を有する非球面である。物体側レンズ面S3は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S4は物体側に突出する凸形状の曲面部分を有している。 Lens L12 is an aspherical lens having negative power. The object side lens surface S3 of the lens L12 is an aspheric surface having a negative curvature, and the image side lens surface S4 is an aspheric surface having a positive curvature. The object side lens surface S3 has a convex curved surface portion protruding toward the image side, and the image side lens surface S4 has a convex curved surface portion protruding toward the object side.
 レンズL21は、正のパワーを有する非球面レンズである。物体側レンズ面S5は正の曲率を有する非球面であり、像側レンズ面S6は正の曲率を有する非球面である。物体側レンズ面S5は物体側に突出する凸形状の曲面部分を有しており、像側レンズ面S6は物体側に突出する凸形状の曲面部分を有している。 The lens L21 is an aspheric lens having positive power. The object side lens surface S5 is an aspherical surface having a positive curvature, and the image side lens surface S6 is an aspherical surface having a positive curvature. The object side lens surface S5 has a convex curved surface portion protruding toward the object side, and the image side lens surface S6 has a convex curved surface portion protruding toward the object side.
 レンズL31は、正のパワーを有する非球面レンズである。物体側レンズ面S8は負の曲率を有する非球面であり、像側レンズ面S9は負の曲率を有する非球面である。物体側レンズ面S8は像側に突出する凸形状の曲面部分を有しており、像側レンズ面S9は像側に突出する凸形状の曲面部分を有している。 The lens L31 is an aspheric lens having positive power. The object side lens surface S8 is an aspherical surface having a negative curvature, and the image side lens surface S9 is an aspherical surface having a negative curvature. The object side lens surface S8 has a convex curved surface portion protruding toward the image side, and the image side lens surface S9 has a convex curved surface portion protruding toward the image side.
 表16に、撮像レンズ系101の各レンズ面のレンズデータを示す。「*印」がついた面は、非球面であることを示している。 Table 16 shows lens data of each lens surface of the imaging lens system 101. A surface marked with “*” indicates an aspherical surface.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表17に、実施例6の撮像レンズ系101において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。 Table 17 shows the aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 101 of Example 6.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 図13A~図13Cは、実施例6の撮像レンズ系101の縦収差図、像面湾曲図、歪曲収差図である。図13A~図13Cに示すように、実施例6の撮像レンズ系101では、半画角ωが109°、Fナンバが2.0である。図13Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図13Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図13Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図13Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図13A~図13Cでは、波長546nmの光線によるシミュレーション結果を示してある。 FIGS. 13A to 13C are a longitudinal aberration diagram, a field curvature diagram, and a distortion diagram of the imaging lens system 101 of Example 6. FIG. As shown in FIGS. 13A to 13C, in the imaging lens system 101 of Example 6, the half angle of view ω is 109 ° and the F number is 2.0. In the longitudinal aberration diagram of FIG. 13A, the horizontal axis indicates the position where the light beam intersects the optical axis Z, and the vertical axis indicates the height at the pupil diameter. In the field curvature diagram of FIG. 13B, the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle). In FIG. 13B, Sag indicates the field curvature in the sagittal plane, and Tan indicates the field curvature in the tangential plane. In the distortion diagram of FIG. 13C, the horizontal axis represents the amount of distortion (%) of the image, and the vertical axis represents the image height (field angle). FIG. 13A to FIG. 13C show simulation results using light rays having a wavelength of 546 nm.
 表18に、実施例6の撮像レンズ系101の特性値を計算した結果を示す。表18には、表9と同様の特性値について計算した結果を示す。 Table 18 shows the result of calculating the characteristic values of the imaging lens system 101 of Example 6. Table 18 shows the results calculated for the same characteristic values as in Table 9.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表19に、実施例1~6の撮像レンズ系101において、条件式(1)、(2)及び(4)のパラメータを計算した結果を示す。 Table 19 shows the results of calculating the parameters of conditional expressions (1), (2), and (4) in the imaging lens systems 101 of Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 (撮像装置への適用例)
 図1は、撮像レンズ系101を用いた撮像装置100の構成を示す図である。撮像装置100は、撮像レンズ系101と、カバーガラス102と、撮像素子103と、を備える。撮像レンズ系101と、カバーガラス102と、撮像素子103と、は筐体(不図示)に収容されている。
(Application example to imaging device)
FIG. 1 is a diagram illustrating a configuration of an imaging apparatus 100 using an imaging lens system 101. The imaging apparatus 100 includes an imaging lens system 101, a cover glass 102, and an imaging element 103. The imaging lens system 101, the cover glass 102, and the imaging element 103 are accommodated in a housing (not shown).
 撮像素子103は、受光した光を電気信号に変換する素子であり、例えば、CCDイメージセンサやCMOSイメージセンサが用いられる。撮像素子103は、撮像レンズ系101の結像位置に配置されている。なお、水平画角とは、撮像素子103の水平方向に対応する画角である。 The image sensor 103 is an element that converts received light into an electrical signal. For example, a CCD image sensor or a CMOS image sensor is used. The image sensor 103 is disposed at the imaging position of the imaging lens system 101. The horizontal angle of view is an angle of view corresponding to the horizontal direction of the image sensor 103.
 カバーガラス102は、撮像素子103を異物から保護するために、撮像素子103上に設けられている。 The cover glass 102 is provided on the image sensor 103 in order to protect the image sensor 103 from foreign matter.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、本発明の撮像レンズ系101の用途は、車載カメラや監視カメラに限定されるものではなく、携帯電話等の小型電子機器に搭載する等の他の用途にも用いることができる。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, the application of the imaging lens system 101 of the present invention is not limited to an in-vehicle camera or a surveillance camera, and can be used for other applications such as mounting in a small electronic device such as a mobile phone.
 この出願は、2014年7月30日に出願された日本出願特願2014-154924を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-154924 filed on July 30, 2014, the entire disclosure of which is incorporated herein.
100 撮像装置
101 撮像レンズ
102 カバーガラス
103 撮像素子
G1~G3 第1レンズ群~第3レンズ群
L11~L31 レンズ
DESCRIPTION OF SYMBOLS 100 Image pick-up apparatus 101 Imaging lens 102 Cover glass 103 Image pick-up element G1-G3 1st lens group-3rd lens group L11-L31 Lens

Claims (11)

  1.  物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群とからなる撮像レンズ系であって、
     前記第1レンズ群は1枚又は2枚の負レンズからなり、
     前記第2レンズ群は1枚の正レンズからなり、
     前記第3レンズ群は1枚の正レンズからなり、
     レンズ系全体の焦点距離をf、
     前記第3レンズ群の焦点距離をf
     としたときに、下記の条件式(1)を満たすことを特徴とする撮像レンズ系。
     0.9<f/f<2.2  (1)
    An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
    The first lens group includes one or two negative lenses,
    The second lens group is composed of one positive lens,
    The third lens group is composed of one positive lens,
    The focal length of the entire lens system is f,
    The focal length of the third lens group is f 3 ,
    An imaging lens system satisfying the following conditional expression (1):
    0.9 <f 3 /f<2.2 (1)
  2.  請求項1に記載の撮像レンズ系であって、
     前記第3レンズ群を構成する最も像側のレンズの像側レンズ面は、下記の条件式(2)を満たすことを特徴とする撮像レンズ系。
     0.9<fL31R2/f<2.0  (2)
     ただし、fL31R2は第3レンズ群を構成する最も像側のレンズの像側レンズ面の焦点距離であり、以下の式(3)で定義される。
     1/fL31R2=-(n-1)/R  (3)
    n:第3レンズ群を構成する最も像側のレンズの屈折率
    R:第3レンズ群を構成する最も像側のレンズの像側レンズ面の曲率半径
    The imaging lens system according to claim 1,
    An image pickup lens system, wherein an image side lens surface of a most image side lens constituting the third lens group satisfies the following conditional expression (2).
    0.9 <f L31R2 / f <2.0 (2)
    Here, f L31R2 is the focal length of the image side lens surface of the most image side lens constituting the third lens group, and is defined by the following formula (3).
    1 / f L31R2 = − (n−1) / R (3)
    n: Refractive index of the most image side lens constituting the third lens group R: Radius of curvature of the image side lens surface of the most image side lens constituting the third lens group
  3.  請求項1又は2に記載の撮像レンズ系であって、
     前記第1レンズ群は1枚の負レンズからなる
     ことを特徴とする撮像レンズ系。
    The imaging lens system according to claim 1 or 2,
    The imaging lens system, wherein the first lens group includes one negative lens.
  4.  請求項1又は2に記載の撮像レンズ系であって、
     前記第1レンズ群は2枚の負レンズからなる
     ことを特徴とする撮像レンズ系。
    The imaging lens system according to claim 1 or 2,
    The imaging lens system, wherein the first lens group includes two negative lenses.
  5.  請求項1~4のいずれか一項に記載の撮像レンズ系であって、
     前記第1レンズ群の焦点距離をf
     前記第2レンズ群の焦点距離をf
     としたときに、下記の条件式(4)を満たすことを特徴とする撮像レンズ系。
     0.3<|f/f|<1.5  (4)
    The imaging lens system according to any one of claims 1 to 4,
    The focal length of the first lens group is f 1 ,
    The focal length of the second lens group is f 2 ,
    An imaging lens system satisfying the following conditional expression (4):
    0.3 <| f 1 / f 2 | <1.5 (4)
  6.  請求項1~5のいずれか一項に記載の撮像レンズ系であって、
     水平画角が100度以上であることを特徴とする撮像レンズ系。
    An imaging lens system according to any one of claims 1 to 5,
    An imaging lens system having a horizontal angle of view of 100 degrees or more.
  7.  請求項1~6のいずれか一項に記載の撮像レンズ系であって、
     絞りが前記第2レンズ群と前記第3レンズ群との間にあることを特徴とする撮像レンズ系。
    The imaging lens system according to any one of claims 1 to 6,
    An imaging lens system, wherein an aperture is between the second lens group and the third lens group.
  8.  物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群とからなる撮像レンズ系であって、
     レンズ系全体の焦点距離をf、
     前記第3レンズ群の焦点距離をf
     としたときに、下記の条件式(1)及び(2)を満たすことを特徴とする撮像レンズ系。
     0.9<f/f<2.2  (1)
     0.9<fL31R2/f<2.0  (2)
     ただし、fL31R2は第3レンズ群を構成する最も像側のレンズの像側レンズ面の焦点距離であり、以下の式(3)で定義される。
     1/fL31R2=-(n-1)/R  (3)
    n:第3レンズ群を構成する最も像側のレンズの屈折率
    R:第3レンズ群を構成する最も像側のレンズの像側レンズ面の曲率半径
    An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
    The focal length of the entire lens system is f,
    The focal length of the third lens group is f 3 ,
    An imaging lens system satisfying the following conditional expressions (1) and (2):
    0.9 <f 3 /f<2.2 (1)
    0.9 <f L31R2 / f <2.0 (2)
    Here, f L31R2 is the focal length of the image side lens surface of the most image side lens constituting the third lens group, and is defined by the following formula (3).
    1 / f L31R2 = − (n−1) / R (3)
    n: Refractive index of the most image side lens constituting the third lens group R: Radius of curvature of the image side lens surface of the most image side lens constituting the third lens group
  9.  物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群とからなる撮像レンズ系であって、
     レンズ系全体の焦点距離をf、
     前記第1レンズ群の焦点距離をf
     前記第2レンズ群の焦点距離をf
     前記第3レンズ群の焦点距離をf
     としたときに、下記の条件式(1)及び(4)を満たすことを特徴とする撮像レンズ系。
     0.9<f/f<2.2  (1)
     0.3<|f/f|<1.5  (4)
    An imaging lens system comprising, in order from the object side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power,
    The focal length of the entire lens system is f,
    The focal length of the first lens group is f 1 ,
    The focal length of the second lens group is f 2 ,
    The focal length of the third lens group is f 3 ,
    An imaging lens system satisfying the following conditional expressions (1) and (4):
    0.9 <f 3 /f<2.2 (1)
    0.3 <| f 1 / f 2 | <1.5 (4)
  10.  請求項8又は9に記載の撮像レンズ系であって、
     絞りが前記第2レンズ群と前記第3レンズ群との間にある
     ことを特徴とする撮像レンズ系。
    The imaging lens system according to claim 8 or 9, wherein
    An imaging lens system, wherein an aperture is between the second lens group and the third lens group.
  11.  請求項1~10のいずれか一項に記載の撮像レンズ系と、
     前記撮像レンズ系の焦点位置に配置された撮像素子と、を有する
     ことを特徴とする撮像装置。
    An imaging lens system according to any one of claims 1 to 10;
    An image pickup device disposed at a focal position of the image pickup lens system.
PCT/JP2015/003187 2014-07-30 2015-06-25 Image pickup lens system and image pickup device WO2016017065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154924A JP2016031501A (en) 2014-07-30 2014-07-30 Imaging lens system and imaging device
JP2014-154924 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017065A1 true WO2016017065A1 (en) 2016-02-04

Family

ID=55216995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003187 WO2016017065A1 (en) 2014-07-30 2015-06-25 Image pickup lens system and image pickup device

Country Status (2)

Country Link
JP (1) JP2016031501A (en)
WO (1) WO2016017065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643585A (en) * 2016-07-22 2018-01-30 日本电产三协株式会社 Wide-angle lens

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI533020B (en) 2015-01-09 2016-05-11 大立光電股份有限公司 Compact optical system, image capturing unit and electronic device
TWI612326B (en) * 2016-10-21 2018-01-21 大立光電股份有限公司 Micro imaging system, imaging apparatus and electronic device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170821A (en) * 1996-12-16 1998-06-26 Olympus Optical Co Ltd Objective lens for endoscope
JPH10239594A (en) * 1996-12-27 1998-09-11 Olympus Optical Co Ltd Electronic endoscope
JPH11271607A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Small-sized image pickup optical system
JP2004337346A (en) * 2003-05-15 2004-12-02 Olympus Corp Objective lens and endoscope using it
JP2006301222A (en) * 2005-04-20 2006-11-02 Nidec Copal Corp Super-wide angle lens
JP2007025499A (en) * 2005-07-20 2007-02-01 Alps Electric Co Ltd Optical device
JP2007279547A (en) * 2006-04-11 2007-10-25 Olympus Corp Imaging optical system
JP2008242040A (en) * 2007-03-27 2008-10-09 Fujinon Corp Wide-angle imaging lens and imaging apparatus
JP2009003343A (en) * 2007-06-25 2009-01-08 Fujinon Corp Super-wide angle imaging lens and imaging apparatus
JP2010014855A (en) * 2008-07-02 2010-01-21 Fujinon Corp Imaging lens and imaging apparatus
JP2010231190A (en) * 2009-03-06 2010-10-14 Fujifilm Corp Imaging lens and imaging apparatus
US20120212839A1 (en) * 2011-02-23 2012-08-23 Largan Precision Co., Ltd. Wide viewing angle optical lens assembly

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170821A (en) * 1996-12-16 1998-06-26 Olympus Optical Co Ltd Objective lens for endoscope
JPH10239594A (en) * 1996-12-27 1998-09-11 Olympus Optical Co Ltd Electronic endoscope
JPH11271607A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Small-sized image pickup optical system
JP2004337346A (en) * 2003-05-15 2004-12-02 Olympus Corp Objective lens and endoscope using it
JP2006301222A (en) * 2005-04-20 2006-11-02 Nidec Copal Corp Super-wide angle lens
JP2007025499A (en) * 2005-07-20 2007-02-01 Alps Electric Co Ltd Optical device
JP2007279547A (en) * 2006-04-11 2007-10-25 Olympus Corp Imaging optical system
JP2008242040A (en) * 2007-03-27 2008-10-09 Fujinon Corp Wide-angle imaging lens and imaging apparatus
JP2009003343A (en) * 2007-06-25 2009-01-08 Fujinon Corp Super-wide angle imaging lens and imaging apparatus
JP2010014855A (en) * 2008-07-02 2010-01-21 Fujinon Corp Imaging lens and imaging apparatus
JP2010231190A (en) * 2009-03-06 2010-10-14 Fujifilm Corp Imaging lens and imaging apparatus
US20120212839A1 (en) * 2011-02-23 2012-08-23 Largan Precision Co., Ltd. Wide viewing angle optical lens assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643585A (en) * 2016-07-22 2018-01-30 日本电产三协株式会社 Wide-angle lens

Also Published As

Publication number Publication date
JP2016031501A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP5671190B2 (en) Imaging lens and imaging apparatus
JP5252842B2 (en) Imaging lens
JP5335710B2 (en) Imaging lens and imaging apparatus
JP6753749B2 (en) Imaging lens and imaging device
JP6952830B2 (en) Imaging lens system
JP6927815B2 (en) Imaging lens system and imaging device
WO2017204364A1 (en) Image-capturing lens system and image-capturing device
JP2011232418A (en) Imaging lens and imaging device
JP2008268268A (en) Imaging lens
JP2018155833A (en) Imaging lens and imaging apparatus
JP2019179155A (en) Image capturing lens system and image capturing device
JP2017167339A (en) Wide angle lens system and imaging device
JP2017167253A (en) Imaging lens system and imaging device
WO2016017065A1 (en) Image pickup lens system and image pickup device
JP2016188893A (en) Imaging lens system and imaging device
JP6653183B2 (en) Imaging lens system and imaging device
JP7267115B2 (en) Optical lens system and imaging device
JP7193362B2 (en) Imaging lens and imaging device
JP2011048334A (en) Imaging lens and imaging apparatus
JP6290694B2 (en) Imaging lens and imaging apparatus
JP6740440B2 (en) Imaging lens system and imaging device
JP2011257640A (en) Imaging lens and imaging apparatus
JP2014002252A (en) Imaging optical system and imaging device
JP2022105397A (en) Image capturing lens system and image capturing device
WO2022071011A1 (en) Image-forming lens system and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826308

Country of ref document: EP

Kind code of ref document: A1