JP2014002252A - Imaging optical system and imaging device - Google Patents

Imaging optical system and imaging device Download PDF

Info

Publication number
JP2014002252A
JP2014002252A JP2012137114A JP2012137114A JP2014002252A JP 2014002252 A JP2014002252 A JP 2014002252A JP 2012137114 A JP2012137114 A JP 2012137114A JP 2012137114 A JP2012137114 A JP 2012137114A JP 2014002252 A JP2014002252 A JP 2014002252A
Authority
JP
Japan
Prior art keywords
lens
optical system
imaging optical
imaging
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012137114A
Other languages
Japanese (ja)
Inventor
Tomofumi Koishi
知文 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012137114A priority Critical patent/JP2014002252A/en
Publication of JP2014002252A publication Critical patent/JP2014002252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wide-angle imaging optical system excellent in optical performance even though it is compact and thin in physical dimensions by two elements of a lens, and to provide an imaging device that employs the wide-angle imaging optical system.SOLUTION: An imaging optical system is configured to arrange in order from an object side: a first lens that has a diffraction surface formed on an object-side surface in a meniscus shape with a convex surface facing the object side and has negative refractive power; an aperture stop; and a second lens that has positive refractive power in a shape with a convex surface facing an image side. Preferably the imaging optical system satisfies the following conditional expressions (1) and (2). -2.2<f1/f<-1.5...(1) and 1.5<f2/f<2.0...(2), where f denotes a focal length of an entire lens system, and f1 and f2 denote respective focal lengths of the first and second lenses. The imaging device includes the imaging optical system and an imaging element that converts an optical image to be formed by the imaging optical system into an electric signal.

Description

本発明は、監視用カメラや車載用カメラ等、固体撮像素子を備えた撮像装置に用いられる単焦点の広角撮像光学系およびそれを用いた撮像装置に関するものである。   The present invention relates to a single-focus wide-angle imaging optical system used in an imaging apparatus equipped with a solid-state imaging device, such as a monitoring camera and an in-vehicle camera, and an imaging apparatus using the same.

監視用カメラや車載用カメラ等に用いられる撮像光学系には、広画角を確保しながら画面全域で結像性能が良いことが要求される。また、搭載スペースが限られることが多いことなどから小型で軽量であることが要求される。   Imaging optical systems used for surveillance cameras, in-vehicle cameras, and the like are required to have good imaging performance over the entire screen while ensuring a wide angle of view. In addition, since the mounting space is often limited, it is required to be small and lightweight.

これらの要望に対応し得る可能性がある単焦点の広角撮像光学系として、下記の特許文献1、2、3が提案されている。しかしながら、この特許文献1、2に記載される単焦点レンズは構成レンズの枚数を減らし、小型化、軽量化を図った広角撮像光学系であるが全画角が100度以下であり、さらなる広画角化の要求を満足することが出来なかった。またこの問題を克服した特許文献3に記載される単焦点レンズでは、レンズ枚数を3枚とし広い画角を達成することができたが、現在では更なる小型化が望まれている。   The following Patent Documents 1, 2, and 3 have been proposed as single-focus wide-angle imaging optical systems that may be able to meet these demands. However, the single focus lens described in Patent Documents 1 and 2 is a wide-angle imaging optical system in which the number of constituent lenses is reduced, and the size and weight are reduced. The request for angle of view could not be satisfied. In addition, the single focus lens described in Patent Document 3 that overcomes this problem can achieve a wide angle of view by using three lenses, but at present, further miniaturization is desired.

特開1993−215964号公報JP 1993-215964 特開2003−140038号公報JP 2003-140038 A 特開2003−195161号公報JP 2003-195161 A

本発明は、2枚構成によって小型、薄型でありながら、高い光学性能を持つ広角撮像光学系およびそれを用いた撮像装置を提供する。   The present invention provides a wide-angle imaging optical system having a high optical performance while having a small size and a thin thickness due to the two-lens configuration, and an imaging apparatus using the same.

上記課題を解決するため、本発明の撮像光学系は、物体側から順に、物体側に凸の回折面を向けたメニスカス形状の負の屈折力を有する第1レンズと、開口絞りと、像側に凸面を向けた形状の正の屈折力を有する第2レンズと、が配置される。   In order to solve the above problems, an imaging optical system of the present invention includes, in order from the object side, a first lens having a negative refractive power of a meniscus shape having a convex diffractive surface facing the object side, an aperture stop, and an image side And a second lens having a positive refracting power and having a convex surface facing the surface.

好適には、下記条件式(1)および(2)を満足する。   Preferably, the following conditional expressions (1) and (2) are satisfied.

−2.2<f1/f<−1.5 … (1)
1.5<f2/f<2.0 … (2)
ただし、
f:レンズ全系の焦点距離
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
上記課題を解決するため、本発明の撮像装置は、上述のいずれかの撮像光学系と、その撮像光学系により形成される光学像を電気信号に変換する撮像素子とを備えたことを特徴とする。
−2.2 <f1 / f <−1.5 (1)
1.5 <f2 / f <2.0 (2)
However,
f: Focal length of the entire lens system f1: Focal length of the first lens f2: Focal length of the second lens In order to solve the above problems, an imaging apparatus according to the present invention includes any one of the imaging optical systems described above and the imaging thereof. And an imaging device that converts an optical image formed by the optical system into an electrical signal.

本発明によれば、2枚構成によって小型、薄型で諸収差が良好に補正された高い光学性能を持つ広角撮像光学系を提供することができる。その結果、監視カメラや車載用カメラへの搭載に適したコンパクトな広角撮像光学系を実現することができる。   According to the present invention, it is possible to provide a wide-angle imaging optical system having a high optical performance in which various aberrations are well corrected by a two-lens configuration. As a result, it is possible to realize a compact wide-angle imaging optical system suitable for mounting on a surveillance camera or a vehicle-mounted camera.

本実施形態の撮像光学系の基本構成を示す図である。It is a figure which shows the basic composition of the imaging optical system of this embodiment. 本実施形態において、撮像光学系の絞り部、各レンズに対して付与した面番号を示す図である。In this embodiment, it is a figure which shows the surface number provided with respect to the aperture | diaphragm | squeeze part of an imaging optical system, and each lens. 実施例1 において、球面収差、および非点収差を示す収差図である。FIG. 4 is an aberration diagram showing spherical aberration and astigmatism in Example 1. 実施例2 において採用した撮像光学系の構成を示す図である。6 is a diagram illustrating a configuration of an imaging optical system employed in Example 2. FIG. 実施例2 において、球面収差、および非点収差を示す収差図である。In Example 2, it is an aberrational figure which shows spherical aberration and astigmatism. 実施例3 において採用した撮像光学系の構成を示す図である。6 is a diagram illustrating a configuration of an imaging optical system employed in Example 3. FIG. 実施例3 において、球面収差、および非点収差を示す収差図である。In Example 3, it is an aberrational figure which shows spherical aberration and astigmatism. 本発明の実施形態の撮像装置の基本構成を示す図である。1 is a diagram illustrating a basic configuration of an imaging apparatus according to an embodiment of the present invention.

以下、図面を参照しながら、本発明の実施形態を詳細に説明する。図1に実施の形態のレンズ構成をそれぞれ光学断面で示す。これらの実施形態は物体側から順に、第1レンズ110、開口絞り120、第2レンズ130、カバーガラス140、CCD(Charge Coupled Device)やCMOS(Complementary Mental-Oxide Semiconductor device)等の撮像素子150が配置される2枚構成の単焦点レンズ100である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the lens configuration of the embodiment in an optical section. In these embodiments, in order from the object side, the first lens 110, the aperture stop 120, the second lens 130, the cover glass 140, an image sensor 150 such as a CCD (Charge Coupled Device) or a CMOS (Complementary Mental-Oxide Semiconductor device) is provided. This is a single-focus lens 100 having a two-lens configuration.

本発明を実施した撮像光学系で2枚のレンズは、物体側から順に、負の屈折力を有する第1レンズ110と、開口絞り120と、正の屈折力を有する第2レンズ130のように配列されている。広角レンズでは、広い画角を得るために焦点距離を短くする必要があるが、機構的な制約からバックフォーカスは焦点距離に比べて長くしなくてはならない。そこで、前方に負の屈折力を有するレンズを配置し、入射した光を一度発散した後、後方の正の屈折力を有するレンズで集光することにより、レンズ系の主点をレンズ後方に飛出させ焦点距離に比べて長いバックフォーカスを確保することが可能となる。具体的には負の第1レンズで光を発散させ、正の第2レンズで集光する。物体側に負レンズを配置することで、主点を後方に置くのに十分な負の屈折力を得ながら、諸収差を良好に補正することができる。強い屈折力をもつ第2レンズを開口絞り後に配置することにより、像面への入射角度を小さくし、かつ収差を良好に補正することが可能となる。   In the imaging optical system embodying the present invention, the two lenses are, in order from the object side, a first lens 110 having a negative refractive power, an aperture stop 120, and a second lens 130 having a positive refractive power. It is arranged. With a wide-angle lens, it is necessary to shorten the focal length in order to obtain a wide angle of view, but the back focus must be longer than the focal length due to mechanical limitations. Therefore, a lens having a negative refractive power is arranged in the front, once incident light is diverged, and then condensed by a lens having a positive rear refractive power, so that the principal point of the lens system is moved backward. It is possible to ensure a long back focus compared to the focal length. Specifically, light is diverged by a negative first lens and condensed by a positive second lens. By disposing a negative lens on the object side, various aberrations can be favorably corrected while obtaining a negative refractive power sufficient to place the principal point behind. By disposing the second lens having a strong refractive power after the aperture stop, it is possible to reduce the incident angle on the image plane and correct aberrations satisfactorily.

前記撮像光学系で、第1レンズ110は物体側に凸面を向けたメニスカスレンズであり、第2レンズ130は像側に凸面を向けている。前記第1レンズが物体側に凸面を向けたメニスカス形状を有することで、第1面に対する軸外光線の入射角度を小さく保つことが可能となり、収差の発生を抑えることが出来る。前記第2レンズが像側に凸面を向け、像側に非球面を有することで、像面への入射角度を小さくすることが出来る。また、第1レンズの物体側面に回折面を有することにより第1レンズで発生する色収差を補正し、良好な画像が得られる。   In the imaging optical system, the first lens 110 is a meniscus lens having a convex surface facing the object side, and the second lens 130 has a convex surface facing the image side. Since the first lens has a meniscus shape with a convex surface facing the object side, the incident angle of off-axis rays with respect to the first surface can be kept small, and the occurrence of aberration can be suppressed. Since the second lens has a convex surface on the image side and an aspheric surface on the image side, the incident angle on the image surface can be reduced. In addition, since the diffractive surface is provided on the object side surface of the first lens, chromatic aberration generated in the first lens is corrected, and a good image can be obtained.

撮像光学系100において、物体側OBJS より入射した光は、第1レンズ110の物体側R1面1、像面側R2面2、開口絞り120の面3、第2レンズ130の物体側R3面4、像面側R4面5、カバーガラス140の物体側R5面6、像面側R6面7、を順次通過し撮像素子150へと集光される。   In the imaging optical system 100, the light incident from the object side OBJS is the object side R1 surface 1, the image surface side R2 surface 2, the surface 3 of the aperture stop 120 of the first lens 110, and the object side R3 surface 4 of the second lens 130. The image side R4 surface 5, the object side R5 surface 6 and the image surface side R6 surface 7 of the cover glass 140 are sequentially passed through and condensed on the image sensor 150.

本発明を実施した撮像光学系で好ましくは、条件式(1)および(2)を満足するように構成される。
−2.2<f1/f<−1.5 … (1)
1.5<f2/f<2.0 … (2)
ただし、fはレンズ全系の焦点距離、f1は第1レンズの焦点距離、f2は第2レンズの焦点距離である。
The imaging optical system embodying the present invention is preferably configured to satisfy conditional expressions (1) and (2).
−2.2 <f1 / f <−1.5 (1)
1.5 <f2 / f <2.0 (2)
Here, f is the focal length of the entire lens system, f1 is the focal length of the first lens, and f2 is the focal length of the second lens.

(1)の上限値を超えると、負の屈折力が大きくなり、倍率の色収差の補正は容易となるが、第1レンズ像側面の曲率が小さくなりすぎてしまい、製造が難しくなる。下限値を超えると、第1レンズ物体側面の曲率が小さくなるために有効径が大きくなり、レンズ系の小型化が難しくなるとともに、広い画角を得るために必要な負の屈折力が得られなくなる。第2レンズの、特に像側面は収差の補正を大きく行なっているため、(2)の上限値を超えると、正の屈折力が小さくなりすぎて、緒収差の補正が困難になる。逆に下限値を超えると、第2レンズ像側面の曲率が小さくなりすぎてしまうために、製造が難しくなる。   If the upper limit of (1) is exceeded, the negative refractive power increases, and the correction of chromatic aberration of magnification becomes easy, but the curvature of the first lens image side surface becomes too small, making it difficult to manufacture. When the lower limit is exceeded, the effective diameter increases because the curvature of the side surface of the first lens object decreases, and it becomes difficult to reduce the size of the lens system, and the negative refractive power necessary to obtain a wide angle of view is obtained. Disappear. Since the aberration correction of the second lens, particularly on the image side surface, is largely performed, if the upper limit of (2) is exceeded, the positive refractive power becomes too small and it becomes difficult to correct the aberration. On the other hand, if the lower limit is exceeded, the curvature of the side surface of the second lens image becomes too small, making manufacture difficult.

以下に、撮像光学系の具体的な数値による実施例1から3を示す。1から3の数値実施例において、焦点距離、Fナンバー、画角、像高、レンズ全長、バックフォーカス(Bf)は次の表1に記載の通りである。また、同じく1から3の数値実施例において、条件式(1)および(2)の数値データは、次の表2に記載の値になる。   Examples 1 to 3 according to specific numerical values of the imaging optical system are shown below. In the numerical examples 1 to 3, the focal length, F number, angle of view, image height, total lens length, and back focus (Bf) are as shown in Table 1 below. Similarly, in the numerical examples 1 to 3, the numerical data of the conditional expressions (1) and (2) are the values described in Table 2 below.

なお、以下の数値実施例の中で記載されるレンズの非球面の形状について、物体側から像面側へ向かう方向を正としたとき、面頂点に対する接平面からの深さZは、hを光線の高さ、cを中心曲率半径の逆数、k、A、B、C、Dを係数として数式1で表される。ただし、kは円錐係数、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。   For the aspherical shape of the lens described in the following numerical examples, when the direction from the object side to the image plane side is positive, the depth Z from the tangent plane to the surface vertex is h. The height of the ray, c is the reciprocal of the central radius of curvature, and k, A, B, C, and D are coefficients. Here, k represents a conic coefficient, A represents a fourth-order aspheric coefficient, B represents a sixth-order aspheric coefficient, C represents an eighth-order aspheric coefficient, and D represents a tenth-order aspheric coefficient. .

また、以下の数値実施例の中で記載される回折面の位相分布φは、λ0を設計波長、C1、C2、C3、C4を回折面の位相係数、hを光線の高さとしたとき数式2で表される。ただし、C1は2次の位相係数を、C2は4次の位相係数を、C3は6次の位相係数を、C4は8次の位相係数をそれぞれ表している。   The phase distribution φ of the diffractive surface described in the following numerical examples is expressed by Equation 2 where λ0 is the design wavelength, C1, C2, C3, and C4 are the phase coefficients of the diffractive surface, and h is the height of the light beam. It is represented by Here, C1 represents a second-order phase coefficient, C2 represents a fourth-order phase coefficient, C3 represents a sixth-order phase coefficient, and C4 represents an eighth-order phase coefficient.

実施の形態1におけるレンズ系の基本構成は図2に示され、各数値データ(設定値)は表3、表4、表5に、球面収差、および非点収差を示す収差図は図3にそれぞれ示される。
図2に示すように、第1レンズは物体側に凸面を向けたメニスカス形状、開口絞りの像側に配置される第2レンズは両凸形状を有する。第1レンズと第2レンズはそれぞれ両面に非球面を有する。
The basic configuration of the lens system in Embodiment 1 is shown in FIG. 2, each numerical data (setting value) is shown in Table 3, Table 4, and Table 5, and aberration diagrams showing spherical aberration and astigmatism are shown in FIG. Each is shown.
As shown in FIG. 2, the first lens has a meniscus shape with a convex surface facing the object side, and the second lens arranged on the image side of the aperture stop has a biconvex shape. Each of the first lens and the second lens has an aspheric surface on both sides.

また、図に示すように第1レンズの厚さとなるR1面1とR2面2間の距離をD1、第1レンズのR2面2と絞り部の面3までの距離をD2、絞り部の面3と第2レンズのR3面4間の距離をD3、第2レンズの厚さとなるR3面4とR4面5間の距離をD4、第2レンズのR4面5とカバーガラス140のR5面6までの距離をD5、カバーガラス140の厚さとなるR5面6とR6面7間の距離をD6、カバーガラス140のR6面7と結像面150までの距離をD7とする。   Further, as shown in the figure, the distance between the R1 surface 1 and the R2 surface 2 which is the thickness of the first lens is D1, the distance between the R2 surface 2 of the first lens and the surface 3 of the aperture portion is D2, and the surface of the aperture portion 3 is the distance between the R3 surface 4 of the second lens and D3, the distance between the R3 surface 4 and the R4 surface 5 which is the thickness of the second lens is D4, the R4 surface 5 of the second lens and the R5 surface 6 of the cover glass 140. Is D5, the distance between the R5 surface 6 and the R6 surface 7 that is the thickness of the cover glass 140 is D6, and the distance between the R6 surface 7 of the cover glass 140 and the imaging surface 150 is D7.

表3は、実施例1における撮像光学系の各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。表中の記号*は非球面の面を、♯は回折面をそれぞれ表している(以下の実施例においても同様)。表4は、所定面の非球面係数を示している。表5は、所定面の回折面係数を示している。
<数値実施例1>
Table 3 shows the stop corresponding to each surface number of the imaging optical system in Example 1, the radius of curvature R, the interval D, the refractive index Nd, and the dispersion value νd of each lens. The symbol * in the table represents an aspheric surface, and # represents a diffraction surface (the same applies to the following examples). Table 4 shows the aspheric coefficient of the predetermined surface. Table 5 shows the diffraction surface coefficients of the predetermined surface.
<Numerical Example 1>

図3は、実施例1において、図3(A)が球面収差を、図3(B)が非点収差をそれぞれ示している。図3(B)の縦軸は結像面150での像高を表し、図3(B)中、波長587.6nmの光線における破線Tはタンジェンシャル像面の値、実線Sはサジタル像面の値をそれぞれ示している。図3からわかるように、実施例1によれば、球面、非点の諸収差が良好に補正され、結像性能に優れた撮像光学系が得られる。   3A and 3B show spherical aberration and FIG. 3B shows astigmatism in Example 1, respectively. The vertical axis in FIG. 3B represents the image height on the imaging plane 150. In FIG. 3B, the broken line T in the light beam having a wavelength of 587.6 nm is the value of the tangential image plane, and the solid line S is the sagittal image plane. Each value is shown. As can be seen from FIG. 3, according to the first embodiment, the spherical optical and astigmatism aberrations are corrected well, and an imaging optical system with excellent imaging performance can be obtained.

実施の形態2におけるレンズ系の基本構成は図4に示され、各数値データ(設定値)は表6、表7、表8に、球面収差、および非点収差を示す収差図は図5にそれぞれ示される。
図4に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、開口絞り120の像側に配置される第2レンズ130は両凸形状を有する。第1レンズと第2レンズはそれぞれ両面に非球面を有する。
The basic configuration of the lens system in the second embodiment is shown in FIG. 4, each numerical data (setting value) is shown in Table 6, Table 7, and Table 8, and the aberration diagram showing spherical aberration and astigmatism is shown in FIG. Each is shown.
As shown in FIG. 4, the first lens 110 has a meniscus shape with a convex surface facing the object side, and the second lens 130 arranged on the image side of the aperture stop 120 has a biconvex shape. Each of the first lens and the second lens has an aspheric surface on both sides.

表6は、実施例2における撮像光学系の各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。表7は、所定面の非球面係数を示している。表8は、所定面の回折面係数を示している。
<数値実施例2>
Table 6 shows the stop corresponding to each surface number of the imaging optical system in Example 2, the radius of curvature R, the interval D, the refractive index Nd, and the dispersion value νd of each lens. Table 7 shows the aspheric coefficient of the predetermined surface. Table 8 shows the diffraction surface coefficients of the predetermined surface.
<Numerical Example 2>

図5は、実施例2において、図5(A)が球面収差を、図5(B)が非点収差をそれぞれ示している。図5(B)の縦軸は結像面150での像高を表している。図5からわかるように、実施例2によれば、球面、非点の諸収差が良好に補正され、結像性能に優れた撮像光学系が得られる。   5A and 5B, in Example 2, FIG. 5A shows spherical aberration, and FIG. 5B shows astigmatism, respectively. The vertical axis in FIG. 5B represents the image height on the imaging plane 150. As can be seen from FIG. 5, according to the second embodiment, spherical and astigmatism aberrations are satisfactorily corrected, and an imaging optical system having excellent imaging performance can be obtained.

実施の形態3におけるレンズ系の基本構成は図6に示され、各数値データ(設定値)は表9、表10、表11に、球面収差、および非点収差を示す収差図は図7にそれぞれ示される。   The basic configuration of the lens system according to Embodiment 3 is shown in FIG. 6, each numerical data (setting value) is shown in Table 9, Table 10, and Table 11, and aberration diagrams showing spherical aberration and astigmatism are shown in FIG. Each is shown.

図6に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、開口絞り120の像側に配置される第2レンズ130は両凸形状を有する。第1レンズと第2レンズはそれぞれ両面に非球面を有する。   As shown in FIG. 6, the first lens 110 has a meniscus shape with a convex surface facing the object side, and the second lens 130 disposed on the image side of the aperture stop 120 has a biconvex shape. Each of the first lens and the second lens has an aspheric surface on both sides.

表9は、実施例3における撮像光学系の各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。表10は、所定面の非球面係数を示している。表11は、所定面の回折面係数を示している。
<数値実施例3>
Table 9 shows the stop corresponding to each surface number of the imaging optical system in Example 3, the radius of curvature R, the interval D, the refractive index Nd, and the dispersion value νd of each lens. Table 10 shows the aspheric coefficient of the predetermined surface. Table 11 shows the diffraction surface coefficients of the predetermined surface.
<Numerical Example 3>

図7は、実施例3において、図7(A)が球面収差を、図7(B)が非点収差をそれぞれ示している。図7(B)の縦軸は結像面150での像高を表している。図7からわかるように、実施例3によれば、球面、非点の諸収差が良好に補正され、結像性能に優れた撮像光学系が得られる。   7A and 7B, in Example 3, FIG. 7A shows spherical aberration, and FIG. 7B shows astigmatism. The vertical axis in FIG. 7B represents the image height at the imaging plane 150. As can be seen from FIG. 7, according to the third embodiment, the spherical optical and astigmatism aberrations are favorably corrected, and an imaging optical system excellent in imaging performance can be obtained.

以上、本実施形態の広角の撮像光学系について説明したが、本発明はこれらの実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で種種の変形が可能である。例えば、上記実施例において、カバーガラス140に赤外線除去フィルターを設ける構成にしたり、赤外カットコートをカバーガラス140の面に施しても良い。また、他のレンズ面やローパスフィルター等のフィルターに赤外コートを施しても良い。   Although the wide-angle imaging optical system of the present embodiment has been described above, the present invention is not limited to these examples, and various modifications can be made without departing from the scope of the invention. For example, in the above embodiment, the cover glass 140 may be provided with an infrared removing filter, or an infrared cut coat may be applied to the surface of the cover glass 140. Further, infrared coating may be applied to other lens surfaces and filters such as a low-pass filter.

本実施形態の広角の撮像光学系によれば、撮像素子を用いた撮像系、特に監視用カメラや車載カメラ等に好適であり、小型、薄型で高い光学性能の広角の撮像光学系、及び、前記広角の撮像光学系を備えた撮像装置が実現できる。   According to the wide-angle imaging optical system of the present embodiment, it is suitable for an imaging system using an imaging device, particularly a surveillance camera, an in-vehicle camera, and the like, and is a small-sized, thin and high-optical performance wide-angle imaging optical system, and An imaging device including the wide-angle imaging optical system can be realized.

図8に本発明による撮像光学系100を用いた撮像装置200の実施形態の断面図を示す。撮像光学系100およびCCD(Charge Coupled Device)やCMOS(Complementary Mental-Oxide Semiconductor device)等の撮像素子210は筐体220によって位置関係を規定、保持される。このとき撮像光学系100の結像面150は撮像素子210の受光面に一致するように配置されている。   FIG. 8 shows a cross-sectional view of an embodiment of an imaging apparatus 200 using the imaging optical system 100 according to the present invention. The imaging optical system 100 and the imaging element 210 such as a CCD (Charge Coupled Device) or a CMOS (Complementary Mental-Oxide Semiconductor device) are defined and held by the housing 220. At this time, the imaging surface 150 of the imaging optical system 100 is disposed so as to coincide with the light receiving surface of the imaging element 210.

撮像光学系100によって取り込まれ、撮像素子210の受光面に結像した被写体像は、撮像素子210の光電変換機能によって電気信号に変換されて、画像信号として撮像装置200から出力される。   The subject image captured by the imaging optical system 100 and formed on the light receiving surface of the imaging element 210 is converted into an electrical signal by the photoelectric conversion function of the imaging element 210 and output from the imaging apparatus 200 as an image signal.

上述のような撮像光学系100は、構成枚数が少なく、小型、軽量であるため、搭載スペースがコンパクトにできるため、様々な用途の撮像装置に適している。また広角撮像光学系でありながら、歪曲収差の発生を低減し、高い光学性能を持つ被写体像を撮像素子210の受光面上に結像でき、視認性に優れた画像信号を出力できるため、特に監視用カメラや車載用カメラ等において優位性の高い撮像装置の実現が可能である。   Since the imaging optical system 100 as described above has a small number of components, is small and lightweight, and can be compact in mounting space, it is suitable for imaging apparatuses for various applications. In addition, since it is a wide-angle imaging optical system, it can reduce the occurrence of distortion, and can form a subject image with high optical performance on the light receiving surface of the imaging device 210, and output an image signal with excellent visibility. It is possible to realize an imaging device having a high advantage in a monitoring camera, a vehicle-mounted camera, or the like.

100,100A〜100C・・・撮像光学系
110 ・・・第1レンズ
120 ・・・開口絞り部
130 ・・・第2レンズ
140 ・・・カバーガラス
150 ・・・結像面
200 ・・・撮像装置
210 ・・・撮像素子
220 ・・・筐体
DESCRIPTION OF SYMBOLS 100,100A-100C ... Imaging optical system 110 ... 1st lens 120 ... Aperture stop part 130 ... 2nd lens 140 ... Cover glass 150 ... Imaging surface 200 ... Imaging Device 210... Image sensor 220.

Claims (3)

物体側から順に、物体側に凸面を向けたメニスカス形状で物体側面に回折面を形成した負の屈折力を有する第1レンズと、開口絞りと、像側に凸面を向けた形状の正の屈折力を有する第2レンズと、が配置される撮像光学系。   In order from the object side, a first lens having a negative refractive power having a meniscus shape with a convex surface facing the object side and a diffractive surface formed on the side surface of the object, an aperture stop, and positive refraction having a shape with the convex surface facing the image side An imaging optical system in which a second lens having power is disposed. 下記条件式(1)および(2)を満足する請求項1に記載の撮像光学系。
−2.2<f1/f<−1.5 … (1)
1.5<f2/f<2.0 … (2)
ただし、
f:レンズ全系の焦点距離
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
The imaging optical system according to claim 1, wherein the following conditional expressions (1) and (2) are satisfied.
−2.2 <f1 / f <−1.5 (1)
1.5 <f2 / f <2.0 (2)
However,
f: focal length of the entire lens system f1: focal length of the first lens f2: focal length of the second lens
前記第1もしくは第2請求項のいずれかに記載の撮像光学系と、当該撮像光学系により形成される光学像を電気信号に変換する撮像素子とを備えたことを特徴とする撮像装置。   An imaging apparatus comprising: the imaging optical system according to claim 1; and an imaging element that converts an optical image formed by the imaging optical system into an electrical signal.
JP2012137114A 2012-06-18 2012-06-18 Imaging optical system and imaging device Pending JP2014002252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137114A JP2014002252A (en) 2012-06-18 2012-06-18 Imaging optical system and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137114A JP2014002252A (en) 2012-06-18 2012-06-18 Imaging optical system and imaging device

Publications (1)

Publication Number Publication Date
JP2014002252A true JP2014002252A (en) 2014-01-09

Family

ID=50035477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137114A Pending JP2014002252A (en) 2012-06-18 2012-06-18 Imaging optical system and imaging device

Country Status (1)

Country Link
JP (1) JP2014002252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149431A (en) * 2013-02-01 2014-08-21 Konica Minolta Inc Image forming optical system for far infrared ray, imaging optical device, and digital equipment
CN112285881A (en) * 2020-07-29 2021-01-29 湖北华鑫光电有限公司 Two-lens small-diameter large-field-angle lens
CN112462496A (en) * 2020-11-23 2021-03-09 天津欧菲光电有限公司 Optical imaging lens, lens module and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149431A (en) * 2013-02-01 2014-08-21 Konica Minolta Inc Image forming optical system for far infrared ray, imaging optical device, and digital equipment
CN112285881A (en) * 2020-07-29 2021-01-29 湖北华鑫光电有限公司 Two-lens small-diameter large-field-angle lens
WO2022022116A1 (en) * 2020-07-29 2022-02-03 湖北华鑫光电有限公司 Two-lens piece small-diameter lens having large field of view
CN112462496A (en) * 2020-11-23 2021-03-09 天津欧菲光电有限公司 Optical imaging lens, lens module and electronic equipment

Similar Documents

Publication Publication Date Title
JP5252842B2 (en) Imaging lens
JP5084335B2 (en) Imaging lens
KR102077234B1 (en) Photographing lens and photographing apparatus
JP2015011050A (en) Imaging lens and imaging device
JP6952830B2 (en) Imaging lens system
JP6149410B2 (en) Far-infrared imaging optical system, imaging optical device, and digital equipment
US20140347515A1 (en) Imaging lens and imaging device using same
JP5893997B2 (en) Imaging lens and imaging apparatus
JP2019095657A (en) Imaging lens and imaging device
JP2009265338A (en) Wide-angle imaging lens
JP2017009973A (en) Image capturing lens and image capturing device
JP2018155833A (en) Imaging lens and imaging apparatus
JP2010128100A (en) Wide-angle lens and imaging module
JP5725967B2 (en) Imaging lens
JP5247307B2 (en) Wide-angle lens and imaging module
JP2012177736A (en) Imaging lens
JP2017167253A (en) Imaging lens system and imaging device
JP6290694B2 (en) Imaging lens and imaging apparatus
JP2021144151A (en) Image capturing lens system and image capturing device
JP6598729B2 (en) Imaging lens, imaging apparatus, and in-vehicle camera system
JP6517621B2 (en) Imaging lens and imaging apparatus
JP2016188893A (en) Imaging lens system and imaging device
JP2014002252A (en) Imaging optical system and imaging device
JP7193362B2 (en) Imaging lens and imaging device
WO2016017065A1 (en) Image pickup lens system and image pickup device