JP2006301222A - Super-wide angle lens - Google Patents

Super-wide angle lens Download PDF

Info

Publication number
JP2006301222A
JP2006301222A JP2005121853A JP2005121853A JP2006301222A JP 2006301222 A JP2006301222 A JP 2006301222A JP 2005121853 A JP2005121853 A JP 2005121853A JP 2005121853 A JP2005121853 A JP 2005121853A JP 2006301222 A JP2006301222 A JP 2006301222A
Authority
JP
Japan
Prior art keywords
lens
wide
super
angle
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005121853A
Other languages
Japanese (ja)
Other versions
JP4744184B2 (en
Inventor
Tatsu Ota
龍 大田
Yasuhiko Abe
泰彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2005121853A priority Critical patent/JP4744184B2/en
Publication of JP2006301222A publication Critical patent/JP2006301222A/en
Application granted granted Critical
Publication of JP4744184B2 publication Critical patent/JP4744184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, thin-shaped super-wide angle lens of high optical performance, suitable for an on-vehicle television camera and a monitoring television camera, etc. <P>SOLUTION: A 1st biconcave lens 1 having negative refractive index, a 2nd lens 2 having negative refractive index, wherein the curvature radius of the surface on the object side is larger than that on the image field side, a 3rd lens 3 having positive refractive index, an aperture diaphragm SD of a prescribed diameter, and a 4th biconvex lens 4 having positive refractive index are arranged in order from the object side to the image field side. Regarding the super-wide angle lens, by introducing 4-group and 4-lens constitution, and also, making the 1st lens a negative lens, an appropriately wide diagonal viewing angle of ≥130° is secured, the whole lens length is shortened, and a back focus required to arrange an infrared cut filter or a low-pass filter required for a lens system for a digital camera equipped with a CCD or the like is secured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CCD等の固体撮像素子を用いたデジタルスチルカメラ等に使用される超小型の広角レンズに関し、特に、車載用テレビカメラ、監視用テレビカメラ等のレンズ系に適用される対角画角が130度以上の広角をなす超広角レンズに関する。   The present invention relates to an ultra-compact wide-angle lens used for a digital still camera or the like using a solid-state imaging device such as a CCD, and more particularly to a diagonal image applied to a lens system such as an in-vehicle TV camera or a surveillance TV camera. The present invention relates to a super wide angle lens having a wide angle of 130 degrees or more.

近年、デジタルスチルカメラの普及に伴い電子撮影装置に用いられるレンズに関して、高性能、低コスト、コンパクト化の要求が強くなってきている。例えば、広角、高性能、低コスト、及びコンパクト化を満たすレンズ構成の多くは、バックフォーカスを十分に確保しつつ射出角度の小さくしたレトロフォーカスタイプを採用している。
また、一般に監視用テレビカメラや車載用テレビカメラ等に使用されるレンズは、軽量及びコンパクトで大きい画角をもつことが要望され、特に車載用テレビカメラ等の用途には、広範な視野をカバーするために130°以上の大画角をもつ超広角レンズであることが望まれている。
しかしながら、従来のこの種の超広角レンズは、一般に8枚あるいは10枚以上のレンズ構成からなるものがほとんどである。
In recent years, with the widespread use of digital still cameras, there is an increasing demand for high performance, low cost, and compactness regarding lenses used in electronic photographing apparatuses. For example, many lens configurations that satisfy a wide angle, high performance, low cost, and compactness adopt a retrofocus type in which an emission angle is small while sufficiently ensuring a back focus.
In general, lenses used in surveillance TV cameras and in-vehicle TV cameras are required to be lightweight, compact and have a large angle of view, and cover a wide field of view, especially in applications such as in-vehicle TV cameras. Therefore, an ultra-wide-angle lens having a large angle of view of 130 ° or more is desired.
However, most of the conventional super wide-angle lenses of this type are generally composed of eight or ten or more lenses.

一方、レンズの構成枚数が少ないものとしては、物体側から像面側に向かって順に配列された、物体側に凸面を向けたメニスカス形状の第1レンズ、物体側に凸面を向けたメニスカス形状の第2レンズ、両凸形状の第3レンズからなる3枚構成の超広角レンズが知られている(例えば、特許文献1参照)。
しなしながら、この超広角レンズでは、第1レンズの外径が大き過ぎて、小型化、コンパクト化の要求に対応していない。
On the other hand, as a lens having a small number of lenses, a first meniscus lens having a convex surface facing the object side and a meniscus shape having a convex surface facing the object side are arranged in order from the object side to the image surface side. A super-wide-angle lens having a three-piece structure including a second lens and a biconvex third lens is known (for example, see Patent Document 1).
However, in this super-wide-angle lens, the outer diameter of the first lens is too large to meet the demand for miniaturization and compactness.

また、レンズの構成枚数が少ないものとしては、物体側から像面側に向けて順に配列された、物体側に凸面を向けたメニスカス形状の第1レンズ、物体側に凸面を向けたメニスカス形状の第2レンズ、両凸形状の第3レンズ、両凸形状の第4レンズからなる4枚構成の超広角レンズが知られている(例えば、特許文献2参照)。
しかしながら、この超広角レンズでは、全てのレンズにガラスレンズを使用しているため、低コスト化の要求に対応していない。
In addition, as a lens having a small number of lenses, a first meniscus lens having a convex surface facing the object side and a meniscus shape having a convex surface facing the object side, which are arranged in order from the object side to the image surface side. A four-lens super wide-angle lens composed of a second lens, a biconvex third lens, and a biconvex fourth lens is known (for example, see Patent Document 2).
However, this ultra-wide-angle lens does not meet the demand for cost reduction because glass lenses are used for all lenses.

特開2003−195161号公報JP 2003-195161 A 特開平4−238312号公報JP-A-4-238312

本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは、4群4枚という構成で、対角画角が130度以上、諸収差特に歪曲収差が良好に補正され、30万画素程度の撮像素子に対応した高性能かつコンパクトで安価な超広角レンズを提供することにある。   The present invention has been made in view of the above circumstances. The object of the present invention is a configuration of 4 elements in 4 groups, a diagonal angle of view of 130 degrees or more, and various aberrations, particularly distortion aberrations, are well corrected. Another object of the present invention is to provide a high-performance, compact, and inexpensive ultra-wide-angle lens compatible with an image sensor with about 300,000 pixels.

本発明の超広角レンズは、物体側から像面側に向けて順に配列された、負の屈折率を有し両凹形状の第1レンズと、負の屈折率を有し像面側よりも物体側の面の曲率半径が大きい第2レンズと、正の屈折率を有する第3レンズと、所定の口径をなす開口絞りと、正の屈折率を有し両凸形状の第4レンズと、からなることを特徴としている。
この構成によれば、4群4枚構成を採用すると共に第1レンズを負の屈折力をもつ負レンズとすることにより、対角画角が130°以上の適切な広画角を確保でき、レンズ全長を短くすることができる。また、レトロフォーカスタイプにすることにより、CCD等の撮像素子を搭載したデジタルカメラのレンズ系に必要な赤外光カットフィルターあるいはローパスフィルター等を配置するためのバックフォーカスを確保することができる。
The super wide-angle lens of the present invention includes a first lens having a negative refractive index and a biconcave shape arranged in order from the object side to the image plane side, and having a negative refractive index than the image plane side. A second lens having a large curvature radius on the object side surface, a third lens having a positive refractive index, an aperture stop having a predetermined aperture, and a biconvex fourth lens having a positive refractive index; It is characterized by consisting of.
According to this configuration, by adopting a four-group four-lens configuration and making the first lens a negative lens having a negative refractive power, an appropriate wide angle of view with a diagonal angle of 130 ° or more can be secured, The total lens length can be shortened. Further, by using the retrofocus type, it is possible to secure a back focus for arranging an infrared light cut filter or a low-pass filter necessary for a lens system of a digital camera equipped with an image pickup device such as a CCD.

上記構成において、第1レンズ、第2レンズ、及び第4レンズは、物体側及び像面側の両面が非球面でかつ周辺に向かうに連れて屈折力が弱くなるように形成されている、構成を採用することができる。
この構成によれば、第1レンズ及び第2レンズの両面を非球面とすることにより、特に歪曲収差を良好に補正することができ、広画角化を達成することができる。
また、像面に最も近いレンズ(第4レンズ)の両面を非球面とすることにより、主として上光線側のコマ収差を良好に補正しつつ諸収差を良好に補正することができる。
仮に、像面に最も近いレンズ(第4レンズ)の両面を球面にして同等の効果を得るためには、さらに2枚程度のレンズが必要になって薄型化を達成することができないが、像面に最も近いレンズ(第4レンズ)の両面を非球面とすることにより、薄型化を達成しつつ、球面収差、非点収差、コマ収差等の諸収差を良好に補正することができ、高い光学性能を得ることができる。
In the above configuration, the first lens, the second lens, and the fourth lens are formed such that both the object side and the image surface side are aspherical surfaces, and the refractive power becomes weaker toward the periphery. Can be adopted.
According to this configuration, since both surfaces of the first lens and the second lens are aspherical surfaces, particularly distortion can be corrected well, and a wide angle of view can be achieved.
Further, by making both surfaces of the lens (fourth lens) closest to the image surface aspherical, various aberrations can be corrected well while mainly correcting the coma aberration on the upper ray side.
For example, in order to obtain the same effect by making both surfaces of the lens (fourth lens) closest to the image surface spherical, it is necessary to have about two more lenses, and thinning cannot be achieved. By making both surfaces of the lens (fourth lens) closest to the surface aspherical, it is possible to satisfactorily correct various aberrations such as spherical aberration, astigmatism, and coma while achieving thinning. Optical performance can be obtained.

上記構成において、第1レンズ、第2レンズ、第3レンズ、及び第4レンズの少なくとも一つは、樹脂材料により形成されている、構成を採用することができる。
この構成によれば、少なくとも一つのレンズを樹脂材料により形成したプラスチックレンズとすることにより、ガラスレンズを採用する場合に比べて、生産コストの低減、軽量化を達成することができ、又、非球面を容易に形成することができるため、収差補正の自由度が増加した分だけコンパクト化が可能になる。
In the above configuration, a configuration in which at least one of the first lens, the second lens, the third lens, and the fourth lens is formed of a resin material can be employed.
According to this configuration, since at least one lens is a plastic lens formed of a resin material, the production cost can be reduced and the weight can be reduced as compared with the case where a glass lens is used. Since the spherical surface can be easily formed, it is possible to reduce the size by increasing the degree of freedom of aberration correction.

上記構成において、レンズ全系の焦点距離をf、第4レンズの像面側の面から像面までの間隔をD9とするとき、次の条件式(1)
(1)1.2<D9/f<1.4
を満足する、構成を採用することができる。
この構成によれば、条件式(1)を満たすことにより、赤外光カットフィルターあるいはローパスフィルター等を配置するために必要なスペース(バックフォーカス)を確保しつつ、十分な撮影画角を得ることができ、諸収差、特に歪曲収差を良好に補正することができる。
In the above configuration, when the focal length of the entire lens system is f and the distance from the image plane side surface of the fourth lens to the image plane is D9, the following conditional expression (1)
(1) 1.2 <D9 / f <1.4
A configuration that satisfies the above can be adopted.
According to this configuration, by satisfying conditional expression (1), it is possible to obtain a sufficient shooting angle of view while ensuring a space (back focus) necessary for arranging an infrared light cut filter or a low-pass filter. Thus, various aberrations, particularly distortion can be corrected well.

上記構成において、レンズ全系の焦点距離をf、第1レンズ及び第2レンズの合成焦点距離をf12、第4レンズの焦点距離をfとするとき、次の条件式(2),(3)
(2)−2.9f<f12<−2.5f
(3)1.45f<f<1.95f
を満足する、構成を採用することができる。
この構成によれば、条件式(2),(3)を満たすことにより、十分な撮影画角を確保しつつ適切なバックフォーカスを得ることができ、又、第1レンズ(前玉)の外径を小さくできるため、小型化、コンパクト化を達成することができる。
In the above configuration, when the focal length of the entire lens system is f, the combined focal length of the first lens and the second lens is f 12 , and the focal length of the fourth lens is f 4 , the following conditional expressions (2), ( 3)
(2) -2.9f <f 12 < -2.5f
(3) 1.45f <f 4 <1.95f
A configuration that satisfies the above can be adopted.
According to this configuration, by satisfying the conditional expressions (2) and (3), an appropriate back focus can be obtained while ensuring a sufficient shooting angle of view, and the outside of the first lens (front lens) can be obtained. Since the diameter can be reduced, downsizing and downsizing can be achieved.

上記構成において、第1レンズのアッベ数をν1、第3レンズのアッベ数をν3とするとき、次の条件式(4)
(4)|ν1−ν3|>35
を満足する、構成を採用することができる。
この構成によれば、条件式(4)を満たすことにより、解像度に影響を及ぼす色収差、特に軸上色収差と倍率色収差を良好に補正することができる。
In the above configuration, when the Abbe number of the first lens is ν1 and the Abbe number of the third lens is ν3, the following conditional expression (4)
(4) | ν1-ν3 |> 35
A configuration that satisfies the above can be adopted.
According to this configuration, by satisfying conditional expression (4), it is possible to satisfactorily correct chromatic aberration that affects resolution, particularly axial chromatic aberration and lateral chromatic aberration.

上記構成をなす超広角レンズによれば、4群4枚という構成で、対角画角が130度以上、諸収差特に歪曲収差が良好に補正され、30万画素程度の撮像素子に対応した高性能かつコンパクトで安価な超広角レンズを得ることができる。   According to the super wide-angle lens having the above-described configuration, the four-group four-lens configuration has a diagonal angle of view of 130 degrees or more, various aberrations, particularly distortion aberration, are well corrected, and is compatible with an imaging device having about 300,000 pixels. A super-wide-angle lens with high performance, compactness, and low cost can be obtained.

以下、本発明の最良の実施形態について、添付図面を参照しつつ説明する。
図1及び図2は、本発明に係る超広角レンズの一実施形態を示すものであり、図1は概略構成図、図2は光路図である。
この超広角レンズは、図1に示すように、物体側から像面側に向けて順に配列された、負の屈折率を有し両凹形状の第1レンズ1、負の屈折率を有し像面側よりも物体側の面の曲率半径が大きい第2レンズ2、正の屈折率を有する第3レンズ3、所定の口径をなす開口絞りSD、正の屈折率を有し両凸形状の第4レンズ4により形成されている。そして、第4レンズ4の後方に像面Pが配置されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the accompanying drawings.
1 and 2 show an embodiment of an ultra-wide-angle lens according to the present invention. FIG. 1 is a schematic configuration diagram, and FIG. 2 is an optical path diagram.
As shown in FIG. 1, this super-wide-angle lens has a negative refractive index, a biconcave first lens 1 arranged in order from the object side to the image plane side, and a negative refractive index. The second lens 2 having a radius of curvature larger on the object side surface than the image surface side, the third lens 3 having a positive refractive index, an aperture stop SD having a predetermined aperture, and a biconvex shape having a positive refractive index. It is formed by the fourth lens 4. An image plane P is disposed behind the fourth lens 4.

ここでは、第1レンズ1、第2レンズ2、第3レンズ3、開口絞りSD、第4レンズ4、及び像面Pが、光軸Lに沿って物体側から像面側に向けて順に配列される構成において、図1に示すように、それぞれの面をSi(i=1〜9)、それぞれの面Siの曲率半径をRi(i=1〜9)、d線に対する屈折率をNi(i=1〜4)及びアッベ数をνi(i=1〜4)、第1レンズ1〜像面Pまでのそれぞれの光軸L上における間隔(厚さ、空気間隔)をDi(i=1〜9)で表す。
また、レンズ全系の焦点距離をf、第1レンズ1と第2レンズ2との合成焦点距離をf12、第4レンズ4の焦点距離をf、第4レンズ4の像面側の面から像面Pまでの間隔(バックフォーカス)をD9で表す。
Here, the first lens 1, the second lens 2, the third lens 3, the aperture stop SD, the fourth lens 4, and the image plane P are sequentially arranged along the optical axis L from the object side to the image plane side. In this configuration, as shown in FIG. 1, each surface is Si (i = 1 to 9), the radius of curvature of each surface Si is Ri (i = 1 to 9), and the refractive index with respect to the d-line is Ni ( i = 1 to 4), Abbe number is νi (i = 1 to 4), and the distance (thickness, air distance) on each optical axis L from the first lens 1 to the image plane P is Di (i = 1). ~ 9).
The focal length of the entire lens system is f, the combined focal length of the first lens 1 and the second lens 2 is f 12 , the focal length of the fourth lens 4 is f 4 , and the image plane side surface of the fourth lens 4 The distance from the image surface P to the image plane P (back focus) is represented by D9.

第1レンズ1は、好ましくは樹脂材料により形成され、負の屈折力をもつように、物体側の面S1が凹状でかつ像面側の面S2が凹状をなす両凹形状のレンズである。
第2レンズ2は、好ましくは樹脂材料により形成され、負の屈折力をもつように、物体側の面S3が凸状でかつ像面側の面S4が凹状をなすメニスカス形状のレンズであり、又、像面側の面S4の曲率半径R4よりも物体側の面S3の曲率半径R3が大きく形成されている。
第3レンズ3は、好ましくは樹脂材料により形成され、正の屈折率をもつように、物体側の面S5が凸状でかつ像面側の面S6が凹状をなすメニスカス形状のレンズである。
第4レンズ4は、好ましくは樹脂材料により形成され、正の屈折力をもつように、物体側の面S8が凸状でかつ像面側の面S9が凸状をなす両凸形状のレンズである。
The first lens 1 is preferably a resin material and is a biconcave lens in which the object-side surface S1 is concave and the image-side surface S2 is concave so as to have negative refractive power.
The second lens 2 is preferably a resin material, and is a meniscus lens in which the object-side surface S3 is convex and the image-side surface S4 is concave so as to have negative refractive power, The curvature radius R3 of the object side surface S3 is larger than the curvature radius R4 of the image side surface S4.
The third lens 3 is preferably a resin material and is a meniscus lens in which the object-side surface S5 is convex and the image-side surface S6 is concave so as to have a positive refractive index.
The fourth lens 4 is preferably a bi-convex lens formed of a resin material and having a positive refractive power and an object-side surface S8 having a convex shape and an image-side surface S9 having a convex shape. is there.

このように、第1レンズ1〜第4レンズ4からなる4群4枚構成を採用すると共に第1レンズ1を負の屈折力をもつ負レンズとしたことにより、対角画角が130°以上の適切な広画角を得ることができ、レンズ全長を短くすることができる。
また、レトロフォーカスタイプにすることにより、CCD等の撮像素子を搭載したデジタルカメラのレンズ系に必要な赤外光カットフィルターあるいはローパスフィルター等を配置するためのスペース(バックフォーカス)を確保することができる。
また、第1レンズ1〜第4レンズ4の少なくとも一つのレンズが樹脂材料により形成されることにより、ガラスレンズを採用する場合に比べて、生産コストの低減、軽量化を達成することができ、又、非球面を容易に形成することができるため、収差補正の自由度が増加した分だけコンパクト化が可能になる。
Thus, by adopting a four-group four-lens configuration including the first lens 1 to the fourth lens 4 and making the first lens 1 a negative lens having negative refractive power, the diagonal angle of view is 130 ° or more. An appropriate wide angle of view can be obtained, and the total lens length can be shortened.
In addition, by adopting the retrofocus type, it is possible to secure a space (back focus) for arranging an infrared light cut filter or a low-pass filter necessary for a lens system of a digital camera equipped with an image sensor such as a CCD. it can.
In addition, since at least one of the first lens 1 to the fourth lens 4 is formed of a resin material, the production cost can be reduced and the weight can be reduced as compared with the case where a glass lens is employed. In addition, since an aspherical surface can be easily formed, it is possible to reduce the size by increasing the degree of freedom of aberration correction.

ここで、第4レンズ4は、好ましくは、物体側及び像面側の両面S8,S9が非球面でかつ周辺に向かうに連れて屈折力が弱くなるように形成される。これにより、主として上光線側のコマ収差を良好に補正しつつ諸収差を良好に補正することができる。
仮に、像面に最も近いレンズ(第4レンズ4)の両面S8,S9を球面にすると、同等の効果を得るためにはさらに2枚程度のレンズが必要になって薄型化を達成することが困難になる。そこで、像面Pに最も近いレンズ(第4レンズ4)の両面S8,S9を非球面とすることにより、薄型化を達成しつつ、球面収差、非点収差、コマ収差等の諸収差を良好に補正することができ、高い光学性能を得ることができる。
Here, the fourth lens 4 is preferably formed such that both the object side and the image surface side S8, S9 are aspherical surfaces and the refractive power becomes weaker toward the periphery. As a result, various aberrations can be corrected well while mainly correcting the coma aberration on the upper ray side.
If both surfaces S8 and S9 of the lens closest to the image plane (fourth lens 4) are made spherical, about two more lenses are required to achieve the same effect, thereby achieving a reduction in thickness. It becomes difficult. Therefore, by making both surfaces S8 and S9 of the lens (fourth lens 4) closest to the image plane P aspherical, various aberrations such as spherical aberration, astigmatism, and coma are excellent while achieving thinning. Thus, high optical performance can be obtained.

また、第1レンズ1及び第2レンズ2は、好ましくは、物体側及び像面側の両面S1,S2,S3,S4が非球面でかつ周辺に向かうに連れて屈折力が弱くなるように形成される。これにより、特に歪曲収差を良好に補正することができ、広画角化を達成することができる。   Further, the first lens 1 and the second lens 2 are preferably formed such that both the object side and the image surface side S1, S2, S3, and S4 are aspherical surfaces, and the refractive power becomes weaker toward the periphery. Is done. Thereby, especially a distortion aberration can be correct | amended favorably and a wide view angle can be achieved.

ここで、第1レンズ1〜第4レンズ4の非球面を表す式は、次式で規定される。
Z=Cy/[1+(1−εC1/2]+Dy+Ey+Fy+Gy10
ただし、Z:非球面の頂点における接平面から,光軸Lからの高さがyの非球面上の点までの距離、y:光軸からの高さ、C:非球面の頂点における曲率(1/R)、ε:円錐定数、D,E,F,G:非球面係数である。
Here, the expression representing the aspheric surfaces of the first lens 1 to the fourth lens 4 is defined by the following expression.
Z = Cy 2 / [1+ (1-εC 2 y 2 ) 1/2 ] + Dy 4 + Ey 6 + Fy 8 + Gy 10
Where Z: distance from the tangent plane at the apex of the aspheric surface to a point on the aspheric surface whose height from the optical axis L is y, y: height from the optical axis, C: curvature at the apex of the aspheric surface ( 1 / R), ε: conic constant, D, E, F, G: aspheric coefficient.

上記構成においては、レンズ全系の焦点距離f、第4レンズ4の像面側の面S9から像面Pまでの間隔D9が、好ましくは、次の条件式(1)
(1)1.2<D9/f<1.4
を満足するように形成される。
条件式(1)は、CCDカメラ用レンズに必要なバックフォーカス(間隔D9)を規定するものである。D9/fの値が上限値以上になってバックフォーカスが長くなると、発生する負の歪曲収差が大きくなる。一方、D9/fの値が下限値以下になってバックフォーカスが短くなると、全体に得られる撮影画角を十分に大きくすることが困難になり、赤外光カットフィルターあるいはローパスフィルター等を配置するスペースを確保するのが困難になる。
したがって、条件式(1)を満たすことにより、赤外光カットフィルターあるいはローパスフィルター等を配置するために必要なスペース(バックフォーカス)を確保しつつ、十分な撮影画角を得ることができ、諸収差、特に歪曲収差を良好に補正できる。
In the above configuration, the focal length f of the entire lens system and the distance D9 from the image plane side surface S9 to the image plane P of the fourth lens 4 are preferably the following conditional expression (1):
(1) 1.2 <D9 / f <1.4
It is formed so as to satisfy.
Conditional expression (1) defines the back focus (distance D9) required for the CCD camera lens. When the value of D9 / f exceeds the upper limit value and the back focus becomes longer, the generated negative distortion becomes larger. On the other hand, when the value of D9 / f is less than the lower limit and the back focus is shortened, it becomes difficult to sufficiently increase the obtained field angle of view, and an infrared light cut filter or a low-pass filter is disposed. It becomes difficult to secure space.
Therefore, by satisfying conditional expression (1), it is possible to obtain a sufficient shooting angle of view while ensuring a space (back focus) necessary for arranging an infrared light cut filter or a low-pass filter. Aberrations, particularly distortion, can be corrected well.

また、上記構成においては、レンズ全系の焦点距離f、第1レンズ1及び第2レンズ2の合成焦点距離f12、第4レンズ4の焦点距離をfが、好ましくは、次の条件式(2),(3)
(2)−2.9f<f12<−2.5f
(3)1.45f<f<1.95f
を満足するように形成される。
条件式(2),(3)を満たすことにより、十分な撮影画角を確保しつつ適切なバックフォーカスを得ることができる。また、第1レンズ1(前玉)の外径を小さくできるため、小型化、コンパクト化を達成することができる。尚、仮に3群3枚構成において、第1レンズのみで条件式(2)と同等の焦点距離を得ようとすると、第1レンズの像面側の曲率半径が非常に小さくなり、レンズの加工が困難になる。
In the above configuration, the focal length f of the entire lens system, the combined focal length f 12 of the first lens 1 and the second lens 2, and the focal length of the fourth lens 4 are f 4 , preferably the following conditional expression (2), (3)
(2) -2.9f <f 12 < -2.5f
(3) 1.45f <f 4 <1.95f
It is formed so as to satisfy.
By satisfying conditional expressions (2) and (3), it is possible to obtain an appropriate back focus while securing a sufficient shooting angle of view. Moreover, since the outer diameter of the 1st lens 1 (front lens) can be made small, size reduction and compactization can be achieved. If a focal length equivalent to the conditional expression (2) is obtained with only the first lens in the three-group three-lens configuration, the curvature radius on the image plane side of the first lens becomes very small, and the lens is processed. Becomes difficult.

さらに、上記構成においては、第1レンズ1のアッベ数ν1、第3レンズ3のアッベ数ν3が、好ましくは、次の条件式(4)
(4)|ν1−ν3|>35
を満足するように形成される。
条件式(4)を満たすことにより、解像度に影響を及ぼす色収差、特に軸上色収差と倍率色収差を良好に補正することができる。
Furthermore, in the above-described configuration, the Abbe number ν1 of the first lens 1 and the Abbe number ν3 of the third lens 3 are preferably the following conditional expression (4):
(4) | ν1-ν3 |> 35
It is formed so as to satisfy.
By satisfying conditional expression (4), it is possible to satisfactorily correct chromatic aberration that affects resolution, particularly axial chromatic aberration and lateral chromatic aberration.

次に、上記超広角レンズの具体的な数値による実施例を、実施例1、実施例2として以下に示す。   Next, specific numerical examples of the super-wide-angle lens will be described below as Example 1 and Example 2.

実施例1における条件式(1)〜(4)の数値データ、第1レンズ1〜第4レンズ4の主な仕様諸元、種々の数値データ(設定値)は以下の通りである。
<条件式の値>
(1)D9/f=1.33/1.04=1.28
(2)f=1.04、f12=−2.75、−3.02<−2.75<−2.60
(3)f=1.04、f=1.64、1.51<1.64<2.03
(4)ν1=56.3、ν3=18.9、│ν1−ν3│=│56.3−18.9│=37.4>35
Numerical data of conditional expressions (1) to (4) in the first embodiment, main specifications of the first lens 1 to the fourth lens 4, and various numerical data (setting values) are as follows.
<Value of conditional expression>
(1) D9 / f = 1.33 / 1.04 = 1.28
(2) f = 1.04, f 12 = -2.75, -3.02 <-2.75 <-2.60
(3) f = 1.04, f 4 = 1.64, 1.51 <1.64 <2.03
(4) ν1 = 56.3, ν3 = 18.9, | ν1−ν3 | = | 56.3-18.9 | = 37.4> 35

<仕様諸元>
物体距離=無限大、レンズ全系の焦点距離(f)=1.04mm、第1レンズ及び第2レンズの合成焦点距離(f12)=−2.75mm、第4レンズの焦点距離(f)=1.64mm、Fナンバー=2.8、射出瞳位置=2.38mm、レンズ全長=13.0mm、バックフォーカス(空気換算)=1.33mm、画角(2ω)=140.7°、ディストーション(最大値)=−23.8%
<非球面>
第1レンズ1の両面S1,S2、第2レンズ2の両面S3,S4、第4レンズ4の両面S8,S9
<曲率半径>
R1=−43.304mm(非球面)、R2=3.134mm(非球面)、R3=8.762mm(非球面)、R4=2.745mm(非球面)、R5=3.542mm、R6=16.083mm、R7=∞、R8=4.567mm(非球面)、R9=−0.838mm(非球面)
<光軸上の間隔>
D1=1.830mm、D2=1.451mm、D3=1.065mm、D4=0.478mm、D5=2.33mm、D6=0.498mm、D7=0.896mm、D8=2.743mm、D9=1.333mm
<屈折率(Nd)>
N1=1.525120、N2=1.525120、N3=1.922860、N4=1.525120
<アッベ数(νd)>
ν1=56.3、ν2=56.3、ν3=18.9、ν4=56.3
<Specification specifications>
Object distance = infinity, focal length of entire lens system (f) = 1.04 mm, combined focal length of first lens and second lens (f 12 ) = − 2.75 mm, focal length of fourth lens (f 4 ) = 1.64 mm, F-number = 2.8, exit pupil position = 2.38 mm, total lens length = 13.0 mm, back focus (air conversion) = 1.33 mm, field angle (2ω) = 140.7 °, Distortion (maximum value) = -23.8%
<Aspherical surface>
Both surfaces S1, S2 of the first lens 1, both surfaces S3, S4 of the second lens 2, and both surfaces S8, S9 of the fourth lens 4
<Curvature radius>
R1 = −43.304 mm (aspheric surface), R2 = 3.134 mm (aspheric surface), R3 = 8.762 mm (aspheric surface), R4 = 2.745 mm (aspheric surface), R5 = 3.542 mm, R6 = 16 .083 mm, R7 = ∞, R8 = 4.567 mm (aspheric surface), R9 = −0.838 mm (aspheric surface)
<Spacing on the optical axis>
D1 = 1.830 mm, D2 = 1.451 mm, D3 = 1.005 mm, D4 = 0.478 mm, D5 = 2.33 mm, D6 = 0.498 mm, D7 = 0.896 mm, D8 = 2.743 mm, D9 = 1.333mm
<Refractive index (Nd)>
N1 = 1.525120, N2 = 1.525120, N3 = 1.922860, N4 = 1.525120
<Abbe number (νd)>
ν1 = 56.3, ν2 = 56.3, ν3 = 18.9, ν4 = 56.3

<非球面係数の数値データ>
<S1面>
ε=−4.919041、D=2.521963×10−5、E=8.287960×10−7、F=1.271981×10−8、G=−7.67472×10−10
<S2面>
ε=0.069026、D=0.016926、E=−1.78512×10−3、F=−2.81600×10−5、G=−1.00320×10−5
<S3面>
ε=8.575587、D=1.61654×10−4、E=3.665278×10−5、F=−2.39254×10−5、G=−8.01936×10−4
<S4面>
ε=−1.327210、D=−0.036409、E=0.013830、F=−2.38200×10−3、G=2.130445×10−4
<S8面>
ε=0.250456、D=−0.039621、E=0.018291、F=−4.79312×10−3、G=5.645256×10−4
<S9面>
ε=−1.198487、D=0.065498、E=−0.024298、F=4.30720×10−3、G=−1.83991×10−4
<Numerical data of aspheric coefficient>
<S1 surface>
ε = −4.919041, D = 2.521963 × 10 −5 , E = 8.287960 × 10 −7 , F = 1.271981 × 10 −8 , G = −7.667472 × 10 −10
<S2 surface>
ε = 0.069026, D = 0.016926, E = -1.78512 × 10 −3 , F = −2.881600 × 10 −5 , G = −1.0032020 × 10 −5
<S3 surface>
ε = 8.575587, D = 1.616654 × 10 −4 , E = 3.665278 × 10 −5 , F = −2.39254 × 10 −5 , G = −8.001936 × 10 −4
<S4 surface>
ε = −1.327210, D = −0.036409, E = 0.013830, F = −2.38200 × 10 −3 , G = 2.130445 × 10 −4
<S8 surface>
ε = 0.250456, D = −0.039621, E = 0.0189291, F = −4.779312 × 10 −3 , G = 5.645256 × 10 −4
<S9 surface>
ε = -1.198487, D = 0.0654498, E = −0.024298, F = 4.330720 × 10 −3 , G = −1.83991 × 10 −4

この実施例1における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差に関する収差線図は図3に示すような結果となる。尚、図3において、Sはサジタル平面での収差、Mはメリジオナル平面での収差を示す。
この実施例1によるレンズ仕様によれば、レンズ全長が13.0mm、Fナンバーが2.8、画角(2ω)が140.7°で、特に歪曲収差が良好に補正されて光学性能が高く、薄型で小型の超広角レンズが得られる。
The aberration diagram regarding the spherical aberration, astigmatism, distortion (distortion) and lateral chromatic aberration in Example 1 is as shown in FIG. In FIG. 3, S represents the aberration on the sagittal plane, and M represents the aberration on the meridional plane.
According to the lens specifications according to Example 1, the total lens length is 13.0 mm, the F number is 2.8, the angle of view (2ω) is 140.7 °, and particularly, distortion is corrected well, and the optical performance is high. A thin and small super wide-angle lens can be obtained.

実施例2における条件式(1)〜(4)の数値データ、第1レンズ1〜第4レンズ4の主な仕様諸元、種々の数値データ(設定値)は以下の通りである。
<条件式の値>
(1)D9/f=1.33/1.07=1.24
(2)f=1.07、f12=−2.78、−3.07<−2.78<−2.65
(3)f=1.07、f=1.64、1.54<1.64<2.07
(4)ν1=64.1、ν3=18.9、│ν1−ν3│=│64.1−18.9│=45.2>35
Numerical data of the conditional expressions (1) to (4) in the second embodiment, main specification specifications of the first lens 4 to the fourth lens 4, and various numerical data (setting values) are as follows.
<Value of conditional expression>
(1) D9 / f = 1.33 / 1.07 = 1.24
(2) f = 1.07, f 12 = -2.78, -3.07 <-2.78 <-2.65
(3) f = 1.07, f 4 = 1.64, 1.54 <1.64 <2.07
(4) ν1 = 64.1, ν3 = 18.9, | ν1-ν3 | = | 64.1-18.9 | = 45.2> 35

<仕様諸元>
物体距離=無限大、レンズ全系の焦点距離(f)=1.07mm、第1レンズ及び第2レンズの合成焦点距離(f12)=−2.78mm、第4レンズの焦点距離(f)=1.64mm、Fナンバー=2.8、射出瞳位置=2.54mm、レンズ全長=12.7mm、バックフォーカス(空気換算)=1.33mm、画角(2ω)=142.1°、ディストーション(最大値)=−28.7%
<非球面>
第1レンズ1の両面S1,S2、第2レンズ2の両面S3,S4、第4レンズ4の両面S8,S9
<曲率半径>
R1=−42.891mm(非球面)、R2=3.134mm(非球面)、R3=8.753mm(非球面)、R4=2.752mm(非球面)、R5=3.517mm、R6=16.051mm、R7=∞、R8=4.413mm(非球面)、R9=−0.842mm(非球面)
<光軸上の間隔>
D1=1.705mm、D2=1.445mm、D3=1.029mm、D4=0.451mm、D5=2.322mm、D6=0.456mm、D7=0.859mm、D8=2.713mm、D9=1.333mm
<屈折率(Nd)>
N1=1.516330、N2=1.525120、N3=1.922860、N4=1.525120
<アッベ数(νd)>
ν1=64.1、ν2=56.3、ν3=18.9、ν4=56.3
<Specification specifications>
Object distance = infinity, focal length of entire lens system (f) = 1.07 mm, combined focal length of first lens and second lens (f 12 ) = − 2.78 mm, focal length of fourth lens (f 4 ) = 1.64 mm, F-number = 2.8, exit pupil position = 2.54 mm, total lens length = 12.7 mm, back focus (air conversion) = 1.33 mm, field angle (2ω) = 142.1 °, Distortion (maximum value) = -28.7%
<Aspherical surface>
Both surfaces S1, S2 of the first lens 1, both surfaces S3, S4 of the second lens 2, and both surfaces S8, S9 of the fourth lens 4
<Curvature radius>
R1 = −42.889mm (aspherical surface), R2 = 3.134 mm (aspherical surface), R3 = 8.753 mm (aspherical surface), R4 = 2.752 mm (aspherical surface), R5 = 3.517 mm, R6 = 16 .051 mm, R7 = ∞, R8 = 4.413 mm (aspheric surface), R9 = −0.842 mm (aspheric surface)
<Spacing on the optical axis>
D1 = 1.705 mm, D2 = 1.445 mm, D3 = 1.029 mm, D4 = 0.451 mm, D5 = 2.322 mm, D6 = 0.456 mm, D7 = 0.659 mm, D8 = 2.713 mm, D9 = 1.333mm
<Refractive index (Nd)>
N1 = 1.516330, N2 = 1.525120, N3 = 1.922860, N4 = 1.525120
<Abbe number (νd)>
ν1 = 64.1, ν2 = 56.3, ν3 = 18.9, ν4 = 56.3

<非球面係数の数値データ>
<S1面>
ε=−3.088380、D=2.42501×10−5、E=8.7068×10−7、F=1.439649×10−8、G=−7.20092×10−10
<S2面>
ε=0.068948、D=0.016966、E=−1.78133×10−3、F=3.448596×10−5、G=−2.38016×10−5
<S3面>
ε=8.597569、D=1.124966×10−4、E=3.448596×10−5、F=−2.38019×10−5、G=−7.9818×10−6
<S4面>
ε=−1.273547、D=−0.036151、E=0.013847、F=−2.38603×10−3、G=2.114568×10−4
<S8面>
ε=0.246821、D=−0.039653、E=0.018351、F=−4.78373×10−3、G=5.625891×10−4
<S9面>
ε=−1.201276、D=0.065733、E=−0.024271、F=4.307228×10−3、G=−1.87138×10−4
<Numerical data of aspheric coefficient>
<S1 surface>
ε = −3.088380, D = 2.42501 × 10 −5 , E = 8.7068 × 10 −7 , F = 1.439649 × 10 −8 , G = −7.20092 × 10 −10
<S2 surface>
ε = 0.068948, D = 0.016966, E = −1.78133 × 10 −3 , F = 3.448596 × 10 −5 , G = −2.381616 × 10 −5
<S3 surface>
ε = 8.597569, D = 1.124966 × 10 −4 , E = 3.448596 × 10 −5 , F = −2.38019 × 10 −5 , G = −7.9818 × 10 −6
<S4 surface>
ε = −1.273547, D = −0.036151, E = 0.013847, F = −2.38603 × 10 −3 , G = 2.114568 × 10 −4
<S8 surface>
ε = 0.246821, D = −0.039653, E = 0.0138351, F = −4.778373 × 10 −3 , G = 5.625891 × 10 −4
<S9 surface>
ε = −1.201276, D = 0.065733, E = −0.024271, F = 4.307228 × 10 −3 , G = −1.87138 × 10 −4

この実施例2における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差に関する収差線図は図4に示すような結果となる。尚、図4において、Sはサジタル平面での収差、Mはメリジオナル平面での収差を示す。
この実施例2によるレンズ仕様によれば、レンズ全長が12.7mm、Fナンバーが2.8、画角(2ω)が142.1°で、特に歪曲収差が良好に補正されて光学性能が高く、薄型で小型の超広角レンズが得られる。
The aberration diagram regarding the spherical aberration, astigmatism, distortion (distortion) and lateral chromatic aberration in Example 2 is as shown in FIG. In FIG. 4, S represents the aberration on the sagittal plane, and M represents the aberration on the meridional plane.
According to the lens specifications according to the second embodiment, the total lens length is 12.7 mm, the F number is 2.8, the field angle (2ω) is 142.1 °, and particularly, distortion is corrected well and the optical performance is high. A thin and small super wide-angle lens can be obtained.

以上述べたように、本発明の超広角レンズは、超小型及び薄型で30万画素程度の撮像素子に対応し得る高い光学性能を確保できるため、車載用テレビカメラ、監視用テレビカメラ等の超広角レンズとして適用できるのは勿論のこと、その他の用途に用いられるカメラの超広角レンズとしても有用である。   As described above, the ultra-wide-angle lens of the present invention is ultra-compact and thin and can secure high optical performance that can accommodate an image sensor with about 300,000 pixels. Of course, it can be applied as a wide-angle lens, and is also useful as a super-wide-angle lens of a camera used for other purposes.

本発明に係る超広角レンズの一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the super wide angle lens which concerns on this invention. 図1に示す超広角レンズの光路図である。FIG. 2 is an optical path diagram of the super wide angle lens shown in FIG. 1. 実施例1における、球面収差、非点収差、歪曲収差、倍率色収差を示す収差図である。FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration in Example 1. 実施例2における、球面収差、非点収差、歪曲収差、倍率色収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration in Example 2.

符号の説明Explanation of symbols

L 光軸
f レンズ全系の焦点距離
12 第1レンズ及び第2レンズの合成焦点距離
第4レンズの焦点距離
1 第1レンズ
2 第2レンズ
3 第3レンズ
4 第4レンズ
SD 開口絞り
P 像面
ν1 第1レンズのアッベ数
ν3 第3レンズのアッベ数
D9 第4レンズの像面側の面から像面までの光軸上の間隔
L Optical axis f Focal length f of entire lens system 12 Synthetic focal length f of first lens and second lens f 4 Focal length of fourth lens 1 First lens 2 Second lens 3 Third lens 4 Fourth lens SD Aperture stop P Image plane ν1 Abbe number of the first lens ν3 Abbe number of the third lens D9 Distance on the optical axis from the image plane side surface of the fourth lens to the image plane

Claims (6)

物体側から像面側に向けて順に配列された、
負の屈折率を有し両凹形状の第1レンズと、
負の屈折率を有し像面側よりも物体側の面の曲率半径が大きい第2レンズと、
正の屈折率を有する第3レンズと、
所定の口径をなす開口絞りと、
正の屈折率を有し両凸形状の第4レンズと、
からなることを特徴とする超広角レンズ。
Arranged in order from the object side to the image plane side,
A biconcave first lens having a negative refractive index;
A second lens having a negative refractive index and a larger radius of curvature of the object side surface than the image surface side;
A third lens having a positive refractive index;
An aperture stop having a predetermined aperture;
A biconvex fourth lens having a positive refractive index;
An ultra-wide-angle lens characterized by comprising
前記第1レンズ、第2レンズ、及び第4レンズは、物体側及び像面側の両面が非球面でかつ周辺に向かうに連れて屈折力が弱くなるように形成されている、
ことを特徴とする請求項1記載の超広角レンズ。
The first lens, the second lens, and the fourth lens are formed such that both the object side and the image side are aspherical surfaces, and the refractive power becomes weaker toward the periphery.
The super-wide-angle lens according to claim 1.
前記第1レンズ、第2レンズ、第3レンズ、及び第4レンズの少なくとも一つは、樹脂材料により形成されている、
ことを特徴とする請求項1又は2に記載の超広角レンズ。
At least one of the first lens, the second lens, the third lens, and the fourth lens is formed of a resin material.
The super-wide-angle lens according to claim 1 or 2,
レンズ全系の焦点距離をf、前記第4レンズの像面側の面から像面までの間隔をD9とするとき、下記条件式(1)を満足することを特徴とする請求項1ないし3いずれか一つに記載の超広角レンズ。
(1)1.2<D9/f<1.4
The following conditional expression (1) is satisfied, where f is the focal length of the entire lens system, and D9 is the distance from the image plane side surface to the image plane of the fourth lens. The super wide-angle lens according to any one of the above.
(1) 1.2 <D9 / f <1.4
レンズ全系の焦点距離をf、前記第1レンズ及び第2レンズの合成焦点距離をf12、前記第4レンズの焦点距離をfとするとき、下記条件式(2),(3)を満足することを特徴とする請求項1ないし4いずれか一つに記載の超広角レンズ。
(2)−2.9f<f12<−2.5f
(3)1.45f<f<1.95f
When the focal length of the entire lens system is f, the combined focal length of the first lens and the second lens is f 12 , and the focal length of the fourth lens is f 4 , the following conditional expressions (2) and (3) are satisfied. The super-wide-angle lens according to claim 1, wherein the super-wide-angle lens is satisfied.
(2) -2.9f <f 12 < -2.5f
(3) 1.45f <f 4 <1.95f
前記第1レンズのアッベ数をν1、前記第3レンズのアッベ数をν3とするとき、下記条件式(4)を満足することを特徴とする請求項1ないし5いずれか一つに記載の超広角レンズ。
(4)|ν1−ν3|>35
The super condition according to claim 1, wherein when the Abbe number of the first lens is ν1 and the Abbe number of the third lens is ν3, the following conditional expression (4) is satisfied. Wide angle lens.
(4) | ν1-ν3 |> 35
JP2005121853A 2005-04-20 2005-04-20 Super wide angle lens Expired - Fee Related JP4744184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121853A JP4744184B2 (en) 2005-04-20 2005-04-20 Super wide angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121853A JP4744184B2 (en) 2005-04-20 2005-04-20 Super wide angle lens

Publications (2)

Publication Number Publication Date
JP2006301222A true JP2006301222A (en) 2006-11-02
JP4744184B2 JP4744184B2 (en) 2011-08-10

Family

ID=37469593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121853A Expired - Fee Related JP4744184B2 (en) 2005-04-20 2005-04-20 Super wide angle lens

Country Status (1)

Country Link
JP (1) JP4744184B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041382A1 (en) * 2007-09-28 2009-04-02 Konica Minolta Opto, Inc. Wide-angle optical system, imaging lens device, monitor camera, and digital apparatus
JP2009265354A (en) * 2008-04-25 2009-11-12 Fujinon Corp Imaging lens, and imaging device using imaging lens
JP2010014855A (en) * 2008-07-02 2010-01-21 Fujinon Corp Imaging lens and imaging apparatus
US7697220B2 (en) 2007-11-30 2010-04-13 Olympus Imaging Corp. Image forming optical system
KR100998003B1 (en) * 2008-09-23 2010-12-03 노명재 Optical distortion free system of micromini and super-wide angle for security camera system
JP2011048334A (en) * 2009-07-29 2011-03-10 Fujifilm Corp Imaging lens and imaging apparatus
JPWO2009066532A1 (en) * 2007-11-22 2011-04-07 コニカミノルタオプト株式会社 Wide-angle optical system, imaging lens device, monitor camera, and digital equipment
US8184384B2 (en) 2009-03-31 2012-05-22 Fujifilm Corporation Imaging lens and imaging apparatus
JP2014186178A (en) * 2013-03-25 2014-10-02 Kyocera Corp Image capturing lens and image capturing device
WO2016017065A1 (en) * 2014-07-30 2016-02-04 日立マクセル株式会社 Image pickup lens system and image pickup device
CN105388586A (en) * 2015-07-09 2016-03-09 瑞声声学科技(深圳)有限公司 Camera lens
JP2017134359A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
JP2017134358A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
CN108761744A (en) * 2018-07-16 2018-11-06 北京未来橙网络科技有限公司 Bugeye lens
JP2020030443A (en) * 2019-11-28 2020-02-27 マクセル株式会社 Image capturing lens system and image capturing device
WO2020134128A1 (en) * 2018-12-25 2020-07-02 浙江舜宇光学有限公司 Imaging lens assembly
CN111381348A (en) * 2018-12-27 2020-07-07 株式会社腾龙 Optical system and image pickup apparatus
JP2020170205A (en) * 2020-07-22 2020-10-15 マクセル株式会社 Image capturing lens system and image capturing device
CN112866534A (en) * 2014-08-10 2021-05-28 核心光电有限公司 Zoom double-aperture camera with folding lens
US11163134B2 (en) 2018-12-20 2021-11-02 Largan Precision Co., Ltd. Imaging lens system, identification module and electronic device
WO2022057050A1 (en) * 2020-09-19 2022-03-24 诚瑞光学(深圳)有限公司 Camera optical lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017064751A1 (en) 2015-10-13 2018-08-30 オリンパス株式会社 Imaging apparatus and optical apparatus including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197787A (en) * 1996-12-27 1998-07-31 Olympus Optical Co Ltd Objective lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197787A (en) * 1996-12-27 1998-07-31 Olympus Optical Co Ltd Objective lens

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009041382A1 (en) * 2007-09-28 2011-01-27 コニカミノルタオプト株式会社 Wide-angle optical system, imaging lens device, monitor camera, and digital equipment
WO2009041382A1 (en) * 2007-09-28 2009-04-02 Konica Minolta Opto, Inc. Wide-angle optical system, imaging lens device, monitor camera, and digital apparatus
US8576501B2 (en) 2007-09-28 2013-11-05 Konica Minolta Opto, Inc. Wide-angle optical system, image pickup lens device, monitor camera, and digital apparatus
JPWO2009066532A1 (en) * 2007-11-22 2011-04-07 コニカミノルタオプト株式会社 Wide-angle optical system, imaging lens device, monitor camera, and digital equipment
US7697220B2 (en) 2007-11-30 2010-04-13 Olympus Imaging Corp. Image forming optical system
JP2009265354A (en) * 2008-04-25 2009-11-12 Fujinon Corp Imaging lens, and imaging device using imaging lens
JP2010014855A (en) * 2008-07-02 2010-01-21 Fujinon Corp Imaging lens and imaging apparatus
KR100998003B1 (en) * 2008-09-23 2010-12-03 노명재 Optical distortion free system of micromini and super-wide angle for security camera system
US8184384B2 (en) 2009-03-31 2012-05-22 Fujifilm Corporation Imaging lens and imaging apparatus
JP2011048334A (en) * 2009-07-29 2011-03-10 Fujifilm Corp Imaging lens and imaging apparatus
JP2014186178A (en) * 2013-03-25 2014-10-02 Kyocera Corp Image capturing lens and image capturing device
WO2016017065A1 (en) * 2014-07-30 2016-02-04 日立マクセル株式会社 Image pickup lens system and image pickup device
CN112866534A (en) * 2014-08-10 2021-05-28 核心光电有限公司 Zoom double-aperture camera with folding lens
CN112866534B (en) * 2014-08-10 2023-04-18 核心光电有限公司 Tele lens module
CN105388586A (en) * 2015-07-09 2016-03-09 瑞声声学科技(深圳)有限公司 Camera lens
JP2017134358A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
JP2017134359A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
CN108761744A (en) * 2018-07-16 2018-11-06 北京未来橙网络科技有限公司 Bugeye lens
CN108761744B (en) * 2018-07-16 2023-09-01 北京未来橙网络科技有限公司 super wide angle lens
US11163134B2 (en) 2018-12-20 2021-11-02 Largan Precision Co., Ltd. Imaging lens system, identification module and electronic device
WO2020134128A1 (en) * 2018-12-25 2020-07-02 浙江舜宇光学有限公司 Imaging lens assembly
CN111381348A (en) * 2018-12-27 2020-07-07 株式会社腾龙 Optical system and image pickup apparatus
JP2020030443A (en) * 2019-11-28 2020-02-27 マクセル株式会社 Image capturing lens system and image capturing device
JP2020170205A (en) * 2020-07-22 2020-10-15 マクセル株式会社 Image capturing lens system and image capturing device
JP6997265B2 (en) 2020-07-22 2022-02-04 マクセル株式会社 Imaging lens system and imaging device
WO2022057050A1 (en) * 2020-09-19 2022-03-24 诚瑞光学(深圳)有限公司 Camera optical lens

Also Published As

Publication number Publication date
JP4744184B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4744184B2 (en) Super wide angle lens
JP6403711B2 (en) Imaging lens
JP6144973B2 (en) Imaging lens
JP4887507B1 (en) Imaging lens
JP5513641B1 (en) Imaging lens
JP5513648B1 (en) Imaging lens
JP6710473B2 (en) Imaging lens
JP2008058387A (en) Superwide-angle lens
JP6755073B2 (en) Imaging lens
JP4781487B1 (en) Imaging lens
JP3983855B2 (en) Shooting lens
CN108351494B (en) Imaging lens
JP2007322844A (en) Imaging lens
US10809494B2 (en) Imaging lens
WO2014119402A1 (en) Image pickup device and electronic equipment
JP5815907B1 (en) Imaging lens
JP2015138174A (en) Image capturing lens
JP2008112000A (en) Zoom lens
JP6341712B2 (en) Imaging lens
JP2006301221A (en) Imaging lens
JP2005316010A (en) Imaging lens
JP2006309043A (en) Imaging lens
JP6268208B2 (en) Imaging lens
JP2008096621A (en) Imaging lens
JP2015161760A (en) imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees