WO2016015632A1 - 基于高折射率内圆外方空心柱的正方晶格光子晶体 - Google Patents

基于高折射率内圆外方空心柱的正方晶格光子晶体 Download PDF

Info

Publication number
WO2016015632A1
WO2016015632A1 PCT/CN2015/085348 CN2015085348W WO2016015632A1 WO 2016015632 A1 WO2016015632 A1 WO 2016015632A1 CN 2015085348 W CN2015085348 W CN 2015085348W WO 2016015632 A1 WO2016015632 A1 WO 2016015632A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
medium
high refractive
photonic crystal
square
Prior art date
Application number
PCT/CN2015/085348
Other languages
English (en)
French (fr)
Inventor
欧阳征标
黄浩
Original Assignee
深圳大学
欧阳征标
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 欧阳征标 filed Critical 深圳大学
Publication of WO2016015632A1 publication Critical patent/WO2016015632A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Definitions

  • the invention relates to a wide absolute forbidden band two-dimensional photonic crystal.
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • the frequency interval in which the electromagnetic field state density is zero is defined as the TE or TM complete band gap of the photonic crystal, and the frequency interval in which TE and TM are completely forbidden band is called photonic crystal.
  • Absolute forbidden band Designing a photonic crystal with a complete forbidden band or absolute forbidden band, it can simply and effectively regulate the macroscopic electromagnetic properties of the medium, including selecting the frequency band, mode and transmission path in which the electromagnetic wave is propagated, and controlling the absorption or radiation characteristics of the medium therein. Photon motion, the basis for making various photonic devices.
  • the wider the photonic band gap the better the performance of the device.
  • the wider the photonic band gap the wider the operating band of the photonic crystal waveguide, the smaller the transmission loss, the photonic crystal resonator and the laser.
  • the higher the quality factor the better the photonic crystal has a better restraining effect on spontaneous emission, and the higher the reflectivity of the photonic crystal mirror.
  • Photonic crystals with complete forbidden band and absolute forbidden band have photon band gaps for light in different propagation directions, so photonic crystals with complete forbidden band and absolute forbidden band have received extensive attention.
  • a non-square lattice structure such as a triangular lattice or a hexagonal lattice is required.
  • a square lattice structure can be used to make the optical path simple and easy to improve the optical path. Integration, while the traditional forbidden lattice photonic crystal has a very small forbidden band width, so a square lattice photonic crystal with a large absolute forbidden band is a goal that people have been pursuing.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a square lattice photonic crystal structure of a high refractive index inner circular outer hollow column which is easy to integrate optical path and has a large relative forbidden band width.
  • the present invention has been achieved by the following technical solutions.
  • the cell of the square lattice photonic crystal based on the high refractive index inner circular hollow column of the present invention is composed of a high refractive index inner circular hollow column and a low refractive index background medium;
  • the photonic crystal structure is respectively inner and outer a circular, square high refractive index hollow column and a medium square column are arranged in a square lattice in a low refractive index medium background;
  • the lattice constant of the photonic crystal square lattice is a;
  • the hollow column is outside
  • the square side length Xscale is 0.74013a
  • the media column rotation angle ShapeAngle is 27.264
  • the inner circular hole radius Radius is 0.3119a
  • the relative absolute maximum band gap is 18.184%.
  • the inner circular outer hollow dielectric column is a high refractive index medium; the inner circular hole medium is a low refractive index background medium.
  • the high refractive index medium is silicon, gallium arsenide, titanium dioxide or a high refractive index medium having a refractive index greater than 2.
  • the high refractive index medium is silicon and has a refractive index of 3.4.
  • the low refractive index background medium is air, magnesium fluoride, silicon dioxide or a low refractive index medium.
  • the low refractive index background medium is air.
  • the outer square side length of the hollow column is 0.591841a ⁇ Xscale ⁇ 0.938776a
  • the rotation angle of the dielectric column is 6.42857 ⁇ ShapeAngle ⁇ 39.4898
  • the radius of the inner circular hole is 0.247561a ⁇ Radius ⁇ 0.440527a
  • the rate medium is silicon
  • the low refractive index medium is air
  • the absolute forbidden band corresponds to a value of 5% to 8%.
  • the outer square side length of the hollow column is 0.612249a ⁇ Xscale ⁇ 0.857144a
  • the rotation angle of the dielectric column is 12.8571 ⁇ ShapeAngle ⁇ 39.4898
  • the radius of the inner circular hole is 0.262275a ⁇ Radius ⁇ 0.34989a
  • high refraction The rate medium is silicon
  • the low refractive index medium is air.
  • the relative value of the absolute forbidden band corresponds to 8% to 11%.
  • the outer square side length of the hollow column is 0.653065a ⁇ Xscale ⁇ 0.816328a
  • the rotation angle of the dielectric column is 15.6122 ⁇ ShapeAngle ⁇ 36.7347
  • the radius of the inner circular hole is 0.273171a ⁇ Radius ⁇ 0.333229a
  • high refraction The rate medium is silicon
  • the low refractive index medium is air.
  • the relative value of the absolute forbidden band corresponds to 11 to 14%.
  • the outer square side length of the hollow column is 0.683024a ⁇ Xscale ⁇ 0.789256a
  • the rotation angle of the dielectric column is 21.1224 ⁇ ShapeAngle ⁇ 33.9796
  • the radius of the inner circular hole is 0.276248a ⁇ Radius ⁇ 0.324389a
  • high refraction The rate medium is silicon
  • the low refractive index medium is air.
  • the relative value of the absolute forbidden band corresponds to 14% to 17%.
  • the outer square side length of the hollow column is 0.693881a ⁇ Xscale ⁇ 0.775512a
  • the rotation angle of the dielectric column is 24.7959 ⁇ ShapeAngle ⁇ 30.3061
  • the radius of the inner circular hole is 0.30281a ⁇ Radius ⁇ 0.312933a
  • high refraction Rate medium is silicon
  • low fold The medium of the rate is air
  • the relative value of the absolute band gap is 17% to 18%.
  • the photonic crystal structure of the present invention can be widely applied to large-scale integrated optical path design. Compared with the prior art, it has the following positive effects.
  • the photonic crystal structure of the present invention has a very large absolute forbidden band, which provides more space for the application of photonic crystals, and also brings greater convenience and flexibility to the design and manufacture of photonic crystal devices.
  • the photonic crystal of the invention belongs to a square lattice, has a simple optical path, is convenient for design, and is easy to integrate large-scale optical paths;
  • the photonic crystal of the present invention belongs to a square lattice, and connection and coupling are easily realized between different optical elements in the optical path and between different optical paths, which is advantageous in reducing cost.
  • FIG. 1 is a schematic view showing the cell structure of a square lattice two-dimensional photonic crystal in the present invention.
  • the circular hole is a low refractive index medium
  • the inner circular hollow dielectric column is a high refractive index dielectric material, including silicon, gallium arsenide, titanium dioxide, etc.
  • the medium in the background medium and the circular hole is the same low refractive index medium.
  • the dotted line in the figure indicates the boundary of the cell.
  • FIG. 4 is a cell structure diagram of the photon crystal corresponding to the maximum absolute forbidden band relative value parameter shown in FIG. 1.
  • the photonic crystal structure of the present invention is composed of a high refractive index hollow column having a circular outer side and a high refractive index dielectric square column (silica square column) arranged in a square lattice in a low refractive index medium background.
  • a cell of a large absolute forbidden band square lattice photonic crystal based on a high refractive index inner circular hollow column is shown in the figure, and a broken line in the figure indicates a boundary of a cell, the photon
  • the cells of the crystal are composed of a high refractive index inner circular hollow column and a low refractive index background medium; the entire photonic crystal structure is formed by the cell in a square lattice; the photonic crystal structure is rounded from the inside to the outside respectively.
  • the shape and square high refractive index hollow column and the medium square column are arranged in a square lattice in the background of the low refractive index medium, that is, the entire photonic crystal structure is formed by the cell in a square lattice; the photonic crystal square
  • the lattice constant of the crystal lattice is a; the outer square side length Xscale of the hollow cylinder is 0.74013a, the rotation angle of the dielectric column ShapeAngle is 27.264, and the radius of the inner circular hole Radius is 0.3119a, corresponding to the relative value of the maximum absolute forbidden band.
  • the outer square side length of the hollow column is 0.591841a ⁇ Xscale ⁇ 0.938776a
  • the rotation angle of the dielectric column is 6.42857 ⁇ ShapeAngle ⁇ 39.4898
  • the radius of the inner circular hole is 0.247561a ⁇ Radi Us ⁇ 0.440527a
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • the absolute forbidden band relative value corresponds to 5% to 8%
  • the outer square side length of the hollow column is 0.612249a ⁇ Xscale ⁇ 0.857144a
  • the rotation angle of the dielectric column is 12.8571 ⁇ ShapeAngle ⁇ 39.4898
  • the radius of the inner circular hole is 0.262275a ⁇ Radius ⁇ 0.34989a
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • the absolute value of the absolute forbidden band corresponds to 8% to 11%
  • the outer square side length of the hollow column is 0.653065a ⁇ Xscale
  • the outer square side length of the hollow column is 0.683024a ⁇ Xscale ⁇ 0.789256a
  • the rotation angle of the dielectric column is 21.1224 ⁇ ShapeAngle ⁇ 33.9796
  • the radius of the inner circular hole is 0.276248a ⁇ Radius ⁇ 0.324389a
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • the absolute value of the absolute forbidden band corresponds to 14% to 17%
  • the outer square side length of the hollow column is 0.693881a ⁇ Xscale ⁇ 0.775512a
  • the rotation angle of the dielectric column is 24.7959 ⁇ ShapeAngle ⁇ 30.3061
  • the radius of the inner circular hole is 0.30281a ⁇ Radius ⁇ 0.312933a
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • the relative value of the absolute forbidden band It shall be 17% to 18%.
  • the hollow region in the hollow column and the region outside the intracellular column in the cell are low refractive index media, that is, the medium in the background medium and the medium in the circular hole are the same low refractive index medium, and the low refractive index background medium.
  • the medium in the circular hole, the low refractive index dielectric material includes air, magnesium fluoride, silicon dioxide and the like having a refractive index greater than 2, and the low refractive index background medium is air.
  • the inner circular hollow dielectric column is a high refractive index medium, and the high refractive index dielectric material comprises silicon (Si), gallium arsenide, titanium dioxide, etc., and the high refractive index dielectric material is silicon (Si), and its refractive index is 3.4.
  • the ratio of the absolute forbidden band width to the forbidden band center frequency is taken as the index of the forbidden band width, which is called the relative forbidden band width relative value.
  • the largest absolute band gap The pair of values and their corresponding parameters.
  • the high refractive index material is silicon
  • the low refractive index medium is air
  • Xscale is scanned based on the plane wave expansion method, and the result shown in FIG. 2 is obtained.
  • high refractive index material is silicon
  • low refractive index medium is air
  • Xscale 0.74013a
  • ShapeAngle 27.264
  • Radius 0.3119a
  • the relative absolute maximum band gap value is 18.184%.
  • the energy band diagram is shown in Figure 2.
  • the photonic crystal structure under the final structural parameters is shown in Figure 3.
  • the dotted line in the figure indicates the boundary of the cell.
  • High refractive index medium is silicon
  • low refractive index medium is air
  • a 0.55
  • the absolute forbidden band range is (0.56592 ⁇ 0.60471), and the absolute forbidden band corresponds to 6.6138%.
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • a 0.6
  • the absolute forbidden band range is (0.55519 ⁇ 0.60304), and the absolute forbidden band corresponds to 8.25%.
  • the absolute forbidden band range is (0.52077 ⁇ 0.59823), and the absolute value of the absolute forbidden band corresponds to 13.826%.
  • the absolute forbidden band range is (0.49483 ⁇ 0.58034), and the relative value of the absolute forbidden band corresponds to 15.896%.
  • the absolute forbidden band range of the obtained photonic crystal is (0.50628 ⁇ 0.59635)
  • the relative value of the absolute forbidden band corresponds to 16.319%.
  • the absolute forbidden band range of the crystal is (0.49642 ⁇ 0.5956), and the relative value of the absolute forbidden band corresponds to 18.184%.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种基于高折射率内圆外方空心柱的正方晶格光子晶体,光子晶体的元胞由高折射率内圆外方空心柱和低折射率背景介质构成。光子晶体结构分别由内外侧为圆形、方形的高折射率空心柱、介质方柱在低折射率介质背景中按正方晶格排列而成。光子晶体正方晶格的晶格常数为a。空心柱的外正方形边长为0.74013a,介质柱的旋转角度为27.264,内圆孔的半径为0.3119a,对应最大绝对禁带的相对值为18.184%。该光子晶体属于正方晶格,光路中不同光学元件之间以及不同光路之间易于实现连接和耦合,有利于降低成本。该光子晶体结构具有非常大的绝对禁带,可广泛应用于大规模集成光路设计中。

Description

基于高折射率内圆外方空心柱的正方晶格光子晶体 技术领域
本发明涉及宽绝对禁带二维光子晶体。
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
在频域,对任意方向传播的TE或TM波,电磁场态密度为零的频率区间定义为光子晶体的TE或TM完全禁带,同时为TE和TM完全禁带的频率区间被称为光子晶体的绝对禁带。设计具有完全禁带或绝对禁带的光子晶体,能够简单而有效地调控介质的宏观电磁特性,包括选择其中传播电磁波的频带、模式和传输路径,控制其中介质的吸收或辐射等特性,是控制光子运动、制作各种光子器件的基础。
对于各种光子晶体器件而言,光子禁带越宽,器件的性能越好,例如,光子禁带越宽,则光子晶体波导的工作频带越宽、传输损耗越小,光子晶体谐振腔和激光器的品质因子越高,光子晶体对自发辐射的约束效果越好,光子晶体反射镜的反射率越高等。具有完全禁带和绝对禁带的光子晶体因对不同传播方向上的光都存在光子带隙,因此具有完全禁带和绝对禁带的光子晶体受到了广泛关注。
传统上,要获得大的相对禁带,需要采用三角晶格、六角晶格等非正方晶格结构,但是在光子晶体集成光路中,采用正方晶格结构可以使光路简洁,并易于提高光路的集成度,而传统的正方晶格光子晶体的绝对禁带宽度很小,因此具有大的绝对禁带的正方晶格光子晶体成是人们一直追求的目标。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种易于光路集成,大绝对禁带宽度相对值的高折射率内圆外方空心柱的正方晶格光子晶体结构。
为实现以上目的,本发明是通过以下技术方案予以实现。
本发明的基于高折射率内圆外方空心柱的正方晶格光子晶体的原胞由高折射率内圆外方空心柱和低折射率背景介质构成;所述的光子晶体结构分别由内外侧为圆形、方形的高折射率空心柱、介质方柱在低折射率介质背景中按正方晶格排列而成;所述光子晶体正方晶格的晶格常数为a;所述空心柱的外正方形边长Xscale为0.74013a,介质柱的旋转角度ShapeAngle为27.264,内圆孔的半径Radius为0.3119a,对应最大绝对禁带的相对值为18.184%。
所述内圆外方空心介质柱为高折射率介质;所述内圆孔的介质为低折射率背景介质。
所述的高折射率介质为硅、砷化镓、二氧化钛或折射率大于2的高折射率介质。
所述的高折射率介质为硅,其折射率为3.4。
所述的低折射率背景介质为空气、氟化镁、二氧化硅或低折射率介质。
所述的低折射率背景介质为空气。
所述空心柱的外正方形边长为0.591841a≤Xscale≤0.938776a,所述介质柱的旋转角度为6.42857≤ShapeAngle≤39.4898,所述内圆孔的半径为0.247561a≤Radius≤0.440527a,高折射率介质为硅,低折射率介质为空气,绝对禁带相对值对应为5%~8%。
所述空心柱的外正方形边长为0.612249a≤Xscale≤0.857144a,所述介质柱的旋转角度为12.8571≤ShapeAngle≤39.4898,所述内圆孔的半径为0.262275a≤Radius≤0.34989a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为8%~11%。
所述空心柱的外正方形边长为0.653065a≤Xscale≤0.816328a,所述介质柱的旋转角度为15.6122≤ShapeAngle≤36.7347,所述内圆孔的半径为0.273171a≤Radius≤0.333229a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为11~14%。
所述空心柱的外正方形边长为0.683024a≤Xscale≤0.789256a,所述介质柱的旋转角度为21.1224≤ShapeAngle≤33.9796,所述内圆孔的半径为0.276248a≤Radius≤0.324389a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为14%~17%。
所述空心柱的外正方形边长为0.693881a≤Xscale≤0.775512a,所述介质柱的旋转角度为24.7959≤ShapeAngle≤30.3061,所述内圆孔的半径为0.30281a≤Radius≤0.312933a,高折射率介质为硅,低折 射率介质为空气,绝对禁带的相对值对应为17%~18%。
本发明的光子晶体结构可广泛应用于大规模集成光路设计中。它与现有技术相比,有如下积极效果。
1.本发明的光子晶体结构具有非常大的绝对禁带,为光子晶体的应用提供了更大的空间,同时也为光子晶体器件的设计和制造带来更大的方便和灵活性。
2.本发明的光子晶体属于正方晶格,光路简洁,便于设计,易于大规模光路集成;
3.本发明的光子晶体属于正方晶格,光路中不同光学元件之间以及不同光路之间易于实现连接和耦合,有利于降低成本。
附图说明
图1为本发明中正方晶格二维光子晶体的元胞结构示意图。图中圆孔内为低折射率介质,内圆外方空心介质柱为高折射率介质材料,包括硅,砷化镓,二氧化钛等,背景介质和圆孔内的介质为相同的低折射率介质,包括空气,氟化镁,二氧化硅等。图中虚线表示元胞的边界。
图2取Xscale=0.74013a,Radius=0.3119a,高折射率材料为硅,低折射率介质为空气时,平板介质柱的旋转角度ShapeAngle对绝对禁带相对值的影响图。
图3为本发明的光子晶体结构对应最大的绝对禁带宽度相对值能带图,对应Xscale=0.74013a,ShapeAngle=27.264,Radius=0.3119a,高折射率材料为硅,低折射率介质为空气。
图4为图1所示的光子晶体对应最大绝对禁带相对值参数的元胞结构图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的阐述。
本发明的光子晶体结构由内侧为圆形外侧为方形的高折射率空心柱、高折射率介质方柱(硅质方柱)在低折射率介质背景中按正方晶格排列而成。参照图1元胞结构所示为本发明的基于高折射率内圆外方空心柱的大绝对禁带正方晶格光子晶体的一个元胞,图中虚线表示元胞的边界,所述的光子晶体的元胞由高折射率内圆外方空心柱和低折射率背景介质构成;整个光子晶体结构是由该元胞按正方晶格生成的;所述的光子晶体结构分别由内外侧为圆形、方形的高折射率空心柱、介质方柱在低折射率介质背景中按正方晶格排列而成,即整个光子晶体结构是由该元胞按正方晶格生成的;所述光子晶体正方晶格的晶格常数为a;所述空心柱的外正方形边长Xscale为0.74013a,介质柱的旋转角度ShapeAngle为27.264,内圆孔的半径Radius为0.3119a,对应最大绝对禁带的相对值为18.184%;所述空心柱的外正方形边长为0.591841a≤Xscale≤0.938776a,所述介质柱的旋转角度为6.42857≤ShapeAngle≤39.4898,所述内圆孔的半径为0.247561a≤Radius≤0.440527a,高折射率介质为硅,低折射率介质为空气,绝对禁带相对值对应为5%~8%;所述空心柱的外正方形边长为0.612249a≤Xscale≤0.857144a,所述介质柱的旋转角度为12.8571≤ShapeAngle≤39.4898,所述内圆孔的半径为0.262275a≤Radius≤ 0.34989a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为8%~11%;所述空心柱的外正方形边长为0.653065a≤Xscale≤0.816328a,所述介质柱的旋转角度为15.6122≤ShapeAngle≤36.7347,所述内圆孔的半径为0.273171a≤Radius≤0.333229a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为11~14%;所述空心柱的外正方形边长为0.683024a≤Xscale≤0.789256a,所述介质柱的旋转角度为21.1224≤ShapeAngle≤33.9796,所述内圆孔的半径为0.276248a≤Radius≤0.324389a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为14%~17%;所述空心柱的外正方形边长为0.693881a≤Xscale≤0.775512a,所述介质柱的旋转角度为24.7959≤ShapeAngle≤30.3061,所述内圆孔的半径为0.30281a≤Radius≤0.312933a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为17%~18%。所述元胞中的空心柱内的空心区域和元胞内柱外的区域均为低折射率介质,即背景介质和圆孔内的介质分别为相同的低折射率介质,低折射率背景介质为圆孔内的介质,低折射率介质材料包括空气,氟化镁,二氧化硅等折射率大于2的高折射率介质,低折射率背景介质为空气。所述内圆外方空心介质柱为高折射率介质,高折射率介质材料包括硅(Si),砷化镓,二氧化钛等,高折射率介质材料采用硅(Si),其折射率为3.4。
通常将绝对禁带宽度与禁带中心频率的比值作为禁带宽度的考察指标,称之为绝对禁带宽度相对值。
利用平面波展开法进行大量的精细研究得到,最大的绝对禁带相 对值和其对应的参数。
通过最速下降法对所述光子晶体结构进行优化搜索研究,能获得最大绝对禁带相对值,具体方法如下:
(1)确定三个参数的初扫描范围为:Xscale=(0.01a~a),ShapeAngle=(0,45),Radius=(0.01a~0.99a)。
(2)基于平面波展开法做粗扫描,得到比较好的参数ShapeAngle=24,Radius=0.66418a。
(3)高折射率材料为硅,低折射率介质为空气,固定ShapeAngle=24,Radius=0.66418a,基于平面波展开法对Xscale进行扫描,得到图2所示的结果。图2中,Xscale的值在0.68498a~0.77477a的范围内都有完全禁带,且在Xscale等于0.74067a处有最大绝对禁带相对值,为gapratio1=18.123%。
(4)固定Xscale为0.74067a,ShapeAngle=24,基于平面波展开法对Radius进行扫描,得到最佳绝对禁带相对值gapratio2=17.969%,对应的Radius值为0.34021a。
(5)固定Xscale为0.73867a,Radius=0.34021a,基于平面波展开法对ShapeAngle进行扫描,得到最佳绝对禁带相对值gapratio2=18.231%,对应的ShapeAngle值为26.81。
(6)判断|(gapratio2-gapratio1)/(gapratio2+gapratio1)|是否小于1%,若否,则以前述各步的结果,对各参数进行新一轮扫描,直到|(gapratio2-gapratio1)/(gapratio2+gapratio1)|<1%才结束搜索,最终获得最优化的绝对禁带相对值及其所对应的结构参数。
最终得到的优化结果为:高折射率材料为硅,低折射率介质为空气,Xscale=0.74013a,ShapeAngle=27.264,Radius=0.3119a时,最大绝对禁带的相对值=18.184%。其能带图如图2所示,最终结构参数下的光子晶体结构如图3所示。图中虚线表示元胞的边界。
根据以上结果给出如下6个实施例:
实施例1.高折射率介质采用硅,低折射率介质为空气,a=0.55,Xscale=0.74013a=0.4070715微米,ShapeAngle=27.264a=14.9952,Radius=0.3119a=0.171545微米,所得到光子晶体的绝对禁带范围为(0.56592~0.60471),绝对禁带相对值对应为6.6138%.
实施例2.高折射率介质采用为硅,低折射率介质为空气,a=0.6,Xscale=0.74013a=0.444078微米,ShapeAngle=27.264a=16.3584,Radius=0.3119a=0.18714微米,所得到光子晶体的绝对禁带范围为(0.55519~0.60304),绝对禁带的相对值对应为8.25%。
实施例3.取高折射率介质采用硅,低折射率介质为空气,a=0.8,Xscale=0.74013a=0.592104微米,ShapeAngle=27.264a=21.8112,Radius=0.3119a=0.24952微米,所得到光子晶体的绝对禁带范围为(0.52077~0.59823),绝对禁带的相对值对应为13.826%。
实施例4.取高折射率介质采用硅,低折射率介质为空气,a=1.1,Xscale=0.74013a=0.814143微米,ShapeAngle=27.264a=29.9904,Radius=0.3119a=0.34309微米,所得到光子晶体的绝对禁带范围为(0.49483~0.58034),绝对禁带的相对值对应为15.896%。
实施例5.取高折射率介质采用硅,低折射率介质为空气,a=0.9, Xscale=0.74013a=0.666117微米,ShapeAngle=27.264a=24.5376,Radius=0.3119a=0.28071微米,所得到光子晶体的绝对禁带范围为(0.50628~0.59635),绝对禁带的相对值对应为16.319%。
实施例6.取高折射率介质采用为硅,低折射率介质为空气,a=1,Xscale=0.74013a=0.74013微米,ShapeAngle=27.264a=27.264,Radius=0.3119a=0.3119微米,所得到光子晶体的绝对禁带范围为(0.49642~0.5956),绝对禁带的相对值对应为18.184%。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (11)

  1. 一种基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述光子晶体的元胞由高折射率内圆外方空心柱和低折射率背景介质构成;所述的光子晶体结构分别由内外侧为圆形、方形的高折射率空心柱、介质方柱在低折射率介质背景中按正方晶格排列而成;所述光子晶体正方晶格的晶格常数为a;所述空心柱的外正方形边长Xscale为0.74013a,介质柱的旋转角度ShapeAngle为27.264,内圆孔的半径Radius为0.3119a,对应最大绝对禁带的相对值为18.184%。
  2. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述内圆外方空心介质柱为高折射率介质;所述内圆孔的介质为低折射率背景介质。
  3. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述的高折射率介质为硅、砷化镓、二氧化钛或折射率大于2的高折射率介质。
  4. 按照权利要求3所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述的高折射率介质为硅,其折射率为3.4。
  5. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述的低折射率背景介质为空气、氟化镁、二氧化硅或低折射率介质。
  6. 按照权利要求5所述的基于高折射率内圆外方空心柱的正方 晶格光子晶体,其特征在于,所述的低折射率背景介质为空气。
  7. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述空心柱的外正方形边长为0.591841a≤Xscale≤0.938776a,所述介质柱的旋转角度为6.42857≤ShapeAngle≤39.4898,所述内圆孔的半径为0.247561a≤Radius≤0.440527a,高折射率介质为硅,低折射率介质为空气,绝对禁带相对值对应为5%~8%。
  8. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述空心柱的外正方形边长为0.612249a≤Xscale≤0.857144a,所述介质柱的旋转角度为12.8571≤ShapeAngle≤39.4898,所述内圆孔的半径为0.262275a≤Radius≤0.34989a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为8%~11%;所述空心柱的外正方形边长为0.653065a≤Xscale≤0.816328a。
  9. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述介质柱的旋转角度为15.6122≤ShapeAngle≤36.7347,所述内圆孔的半径为0.273171a≤Radius≤0.333229a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为11~14%。
  10. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述空心柱的外正方形边长为0.683024a≤Xscale≤0.789256a,所述介质柱的旋转角度为21.1224≤ ShapeAngle≤33.9796,所述内圆孔的半径为0.276248a≤Radius≤0.324389a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为14%~17%。
  11. 按照权利要求1所述的基于高折射率内圆外方空心柱的正方晶格光子晶体,其特征在于,所述空心柱的外正方形边长为0.693881a≤Xscale≤0.775512a,所述介质柱的旋转角度为24.7959≤ShapeAngle≤30.3061,所述内圆孔的半径为0.30281a≤Radius≤0.312933a,高折射率介质为硅,低折射率介质为空气,绝对禁带的相对值对应为17%~18%。
PCT/CN2015/085348 2014-07-28 2015-07-28 基于高折射率内圆外方空心柱的正方晶格光子晶体 WO2016015632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410363232.3A CN104155718B (zh) 2014-07-28 2014-07-28 基于高折射率内圆外方空心柱的正方晶格光子晶体
CN201410363232.3 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016015632A1 true WO2016015632A1 (zh) 2016-02-04

Family

ID=51881264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085348 WO2016015632A1 (zh) 2014-07-28 2015-07-28 基于高折射率内圆外方空心柱的正方晶格光子晶体

Country Status (2)

Country Link
CN (1) CN104155718B (zh)
WO (1) WO2016015632A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155718B (zh) * 2014-07-28 2017-07-04 欧阳征标 基于高折射率内圆外方空心柱的正方晶格光子晶体
CN104459989B (zh) * 2014-12-10 2017-03-08 深圳市浩源光电技术有限公司 基于平板光子晶体的高消光比te光开关
CN104820264B (zh) * 2015-05-27 2017-11-14 欧阳征标 旋转空心正方柱与旋转三角柱二维正方晶格光子晶体
CN104849805B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于旋转空心正方柱的二维正方晶格光子晶体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048422A1 (en) * 2000-08-15 2002-04-25 Cotteverte Jean-Charles J.C. Active photonic crystal waveguide device
CN1971312A (zh) * 2005-11-24 2007-05-30 中国科学院半导体研究所 正方晶格二维光子晶体
JP2011107383A (ja) * 2009-11-17 2011-06-02 Nec Corp 共振器
US20130298380A1 (en) * 2011-12-16 2013-11-14 Furukawa Electric Co., Ltd Method of manufacturing photonic bandgap fiber
CN103901513A (zh) * 2014-04-21 2014-07-02 山东大学 二维类石墨烯复式结构光子晶体
CN103901536A (zh) * 2014-04-11 2014-07-02 深圳大学 一种圆环杆与平板连杆的二维正方晶格光子晶体
CN104155718A (zh) * 2014-07-28 2014-11-19 欧阳征标 基于高折射率内圆外方空心柱的正方晶格光子晶体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048422A1 (en) * 2000-08-15 2002-04-25 Cotteverte Jean-Charles J.C. Active photonic crystal waveguide device
CN1971312A (zh) * 2005-11-24 2007-05-30 中国科学院半导体研究所 正方晶格二维光子晶体
JP2011107383A (ja) * 2009-11-17 2011-06-02 Nec Corp 共振器
US20130298380A1 (en) * 2011-12-16 2013-11-14 Furukawa Electric Co., Ltd Method of manufacturing photonic bandgap fiber
CN103901536A (zh) * 2014-04-11 2014-07-02 深圳大学 一种圆环杆与平板连杆的二维正方晶格光子晶体
CN103901513A (zh) * 2014-04-21 2014-07-02 山东大学 二维类石墨烯复式结构光子晶体
CN104155718A (zh) * 2014-07-28 2014-11-19 欧阳征标 基于高折射率内圆外方空心柱的正方晶格光子晶体

Also Published As

Publication number Publication date
CN104155718A (zh) 2014-11-19
CN104155718B (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2015154661A1 (zh) 一种圆环杆与平板连杆的二维正方晶格光子晶体
WO2016015630A1 (zh) 基于十字连杆柱和圆柱的大绝对禁带正方晶格光子晶体
WO2016015632A1 (zh) 基于高折射率内圆外方空心柱的正方晶格光子晶体
Devarapu et al. Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays
US20170242156A1 (en) Two-dimensional square-lattice photonic crystal with cross-shaped connecting rods and rotated square rods
WO2016015627A1 (zh) 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
WO2016015631A1 (zh) 基于三连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
US10094979B2 (en) Two-dimensional square-lattice photonic crystal with rotated hollow square rods and rotated triangle rods
Panahpour et al. Refraction enhancement in plasmonics by coherent control of plasmon resonances
Khalkhali et al. Design of high-Q polystyrene nonlinear cavity for ultrafast all-optical switching in mid-infrared photonic crystal slabs with cavity-waveguide structure
US10509144B2 (en) Two-dimensional square-lattice photonic crystal based on cross rods and rotated hollow square rods
US20180088276A1 (en) Two-dimensional square lattice photonic crystal based on rotated hollow square rods
CN103048730A (zh) 一种微结构太赫兹光纤
WO2016050181A1 (zh) 圆孔式正方晶格光子晶体低折射率单补偿散射柱直角波导
WO2016050179A1 (zh) 方柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
Archuleta-Garcia et al. Enlargement of photonic band gap in porous silicon dielectric mirrors
WO2016050180A1 (zh) 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
CN102122026B (zh) 基于光子晶体表面态的二维光子晶体分束器
WO2016050188A1 (zh) 方柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
WO2016050186A2 (zh) 方孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
CN111308582A (zh) 二维光子晶体平板、设计方法及利用此平板的光器件
WO2016050182A1 (zh) 圆柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
Palka et al. Focusing with 2D square photonic crystal with concavo-concavo boundaries
WO2016050187A1 (zh) 圆柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
Kieliszczyk et al. Tunable Hyperbolic Metamaterials for Novel Photonic Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827622

Country of ref document: EP

Kind code of ref document: A1