CN104849805B - 基于旋转空心正方柱的二维正方晶格光子晶体 - Google Patents

基于旋转空心正方柱的二维正方晶格光子晶体 Download PDF

Info

Publication number
CN104849805B
CN104849805B CN201510280503.3A CN201510280503A CN104849805B CN 104849805 B CN104849805 B CN 104849805B CN 201510280503 A CN201510280503 A CN 201510280503A CN 104849805 B CN104849805 B CN 104849805B
Authority
CN
China
Prior art keywords
rotation
refraction
post
photonic crystal
hollow square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510280503.3A
Other languages
English (en)
Other versions
CN104849805A (zh
Inventor
欧阳征标
陈治良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201510280503.3A priority Critical patent/CN104849805B/zh
Publication of CN104849805A publication Critical patent/CN104849805A/zh
Priority to PCT/CN2016/083062 priority patent/WO2016188396A1/zh
Application granted granted Critical
Publication of CN104849805B publication Critical patent/CN104849805B/zh
Priority to US15/822,231 priority patent/US20180088276A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于旋转空心正方柱的二维正方晶格光子晶体,它包括高折射率介质柱和低折射率背景介质柱;所述光子晶体结构由元胞按正方晶格排列而成;所述正方晶格光子晶体的晶格常数为a;所述正方晶格光子晶体的元胞由高折射率旋转空心正方柱和背景介质组成;所述空心正方柱的外部轮廓线为第一旋转正方柱,其旋转角度α为45°~65°,边长b为0.6a~0.75a;所述空心正方柱的空心部位的截面为第二旋转正方柱,其旋转角度β为25°~50°,边长c为0.33a~0.50a。本发明具有非常大的绝对禁带相对值的二维正方晶格光子晶体结构,可广泛应用于大规模集成光路的设计中。

Description

基于旋转空心正方柱的二维正方晶格光子晶体
技术领域
本发明涉及宽绝对禁带二维光子晶体,更具体地说,本发明涉及基于旋转空心正方柱的二维正方晶格光子晶体。
背景技术
1987年,美国贝尔实验室的E.Yablonovitch在研究如何抑制自发辐射和Princeton大学的S.John在研究光子局域时各自独立提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或者两种以上具有不同介电常数的材料构成的人工晶体。
现代光学的主要挑战之一是对光的人工控制,随着光通信和计算机技术的日益发展,对于光信号的控制和操作越发的重要。由于光子晶体具有可以使某一特定频率和特定方向的光通过或者禁止这一性质,因而对光子晶体的研究备受人们的关注。
因为绝对禁带中的电磁场模式是完全不存在的,所以当电子能带与光子晶体绝对禁带重叠时,自发辐射就被抑制了。拥有绝对禁带的光子晶体可以通过控制自发辐射来改变场与物质的相互作用以及提高光学器件的性能。这些光子晶体可以应用在半导体激光器,太阳能电池,高品质谐振腔以及滤波器上。
光子晶体元胞中介电材料的分布对于禁带有着强烈的影响,并且禁带的选择对于光子晶体的应用有着很大的影响,特别是大的绝对禁带对于宽带信号的控制是非常有效的。
对于频率处在绝对禁带中的光,无论偏振态和波矢如何,都不可能通过。拥有大光子禁带可以用来制作:光波导,液晶光子晶体光纤、负折射率成像、缺陷模式的光子晶体激光器以及缺陷腔。大的光子晶体绝对禁带可以在缺陷模式的光子晶体激光器中抑制自发辐射,尤其是在自发辐射光谱范围很宽的情况下。如果我们想得到拥有窄谐振峰的光子晶体谐振腔时,较大的光子晶体绝对禁带是必需的。在各种光学器件中,偏振无关的光子晶体绝对禁带是非常重要的。正是因为光子晶体的许多器件都要利用光子禁带,所以世界各国的科学家都力求设计出具有更大的绝对禁带的光子晶体结构。
发明内容
本发明的目的是克服现有技术的不足之处,提供一种易于光路集成,且具有大的绝对禁带相对值的二维正方晶格光子晶体结构。
本发明的目的通过下述技术方案予以实现。
本发明的基于旋转空心正方柱的二维正方晶格光子晶体包括高折射率介质柱和低折射率背景介质柱;所述光子晶体结构由元胞按正方晶格排列而成;所述正方晶格光子晶体的晶格常数为a;所述正方晶格光子晶体的元胞由高折射率旋转空心正方柱和背景介质组成;所述空心正方柱的外部轮廓线为第一旋转正方柱,其旋转角度α为45°~65°,边长b为0.6a~0.75a;所述空心正方柱的空心部位的截面为第二旋转正方柱,其旋转角度β为25°~50°,边长c为0.33a~0.50a。
所述高折射率介质为硅、砷化镓、二氧化钛,或者折射率大于2的高折射率介质。
所述高折射率介质材料为硅,其折射率为3.4。
所述背景介质为低折射率介质。
所述低折射率背景介质为空气、真空、氟化镁、二氧化硅,或者折射率低于1.6的介质。
所述高折射率介质材料为硅,所述低折射率介质材料为空气;所述第一旋转正方柱的旋转角度为45°<α<65°,其边长为0.6a<b<0.75a;所述第二旋转正方柱的旋转角度为25°<β<50°,其边长为0.33a<c<0.5a;所述光子晶体结构的绝对禁带相对值大于10%。
所述高折射率介质材料为硅,所述低折射率介质材料为空气;所述第一旋转正方柱的旋转角度α为59.395°,其边长b0.7005a;所述第二旋转正方柱的旋转角度β为30.026°,其边长c为0.4658a;所述光子晶体结构的绝对禁带相对值为19.609%。
本发明的基于旋转空心正方柱的二维正方晶格光子晶体,可广泛应用于大规模集成光路的设计中。它与现有技术相比,有如下优点:
(1)本发明光子晶体结构具有非常大的绝对禁带,可以为光子晶体器件的设计和制造带来更大的方便和灵活性。
(2)光子晶体集成光路中,光路中不同光学器件之间以及不同光路之间易于连接和耦合,采用正方晶格结构可以使光路简洁,且易于提高光路的集成度。
(3)设计简洁,易于制作,降低了制作成本。
附图说明
图1为本发明的基于旋转空心正方柱的二维正方晶格光子晶体的元胞结构示意图。
图2为图1所示采用辅助线的参数结构截面图。
图3为实施例1采用元胞参数值所对应的光子带结构图。
图4为实施例2采用元胞参数值所对应的光子带结构图。
图5为实施例3采用元胞参数值所对应的光子带结构图。
图6为实施例4采用元胞参数值所对应的光子带结构图。
图7为实施例5采用元胞参数值所对应的光子带结构图。
图8为实施例6采用元胞参数值所对应的光子带结构图。
图9为实施例7采用元胞参数值所对应的光子带结构图。
图10为实施例8采用元胞参数值所对应的光子带结构图。
图11为实施例9采用元胞参数值所对应的光子带结构图。
图12为实施例10采用元胞参数值所对应的光子带结构图。
图13为实施例11采用元胞参数值所对应的光子带结构图。
图14为实施例12采用元胞参数值所对应的光子带结构图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细阐述:
如图1所示,本发明的基于旋转空心正方柱的二维正方晶格光子晶体包括高折射率介质柱和低折射率背景介质柱;光子晶体结构由元胞按正方晶格排列而成;正方晶格光子晶体的晶格常数为a;正方晶格光子晶体的元胞由高折射率旋转空心正方柱和背景介质组成,背景介质为低折射率介质;如图2所示,本发明的旋转空心正方柱的外部轮廓线为第一旋转正方柱,该第一旋转正方柱的旋转角度α为45°~65°,其边长b为0.6a~0.75a;空心正方柱的空心部位的截面为第二旋转正方柱,该第二旋转正方柱的旋转角度β为25°~50°,其边长c为0.33a~0.50a。高折射率介质为硅、砷化镓、二氧化钛,或者折射率大于2的高折射率介质;低折射率背景介质为空气、真空、氟化镁、二氧化硅,或者折射率低于1.6的介质。
实施例1
高折射率材料采用硅,低折射率材料为空气,α=45°,β=30.026°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图3所示可知,具有大绝对禁带相对值为6.31%。
实施例2
高折射率材料采用硅,低折射率材料为空气,α=55°,β=30.026°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图4所示可知,具有大绝对禁带相对值为16.393%。
实施例3
高折射率材料采用硅,低折射率材料为空气,α=65°,β=30.026°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图5所示可知,具有大绝对禁带相对值为14.98%。
实施例4
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=30.026°,b=0.6a,c=0.399a。本实施例的数值模拟结果如图6所示可知,具有大绝对禁带相对值为9%。
实施例5
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=30.026°,b=0.7a,c=0.4655a。本实施例的数值模拟结果如图7所示可知,具有大绝对禁带相对值为19.58%。
实施例6
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=30.026°,b=0.75a,c=0.49875a。本实施例的数值模拟结果如图8所示可知,具有大绝对禁带相对值为16.28%。
实施例7
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=25°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图9所示可知,具有大绝对禁带相对值为17.21%。
实施例8
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=38°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图10所示可知,具有大绝对禁带相对值为16.57%。
实施例9
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=50°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图11所示可知,具有大绝对禁带相对值为10.9%。
实施例10
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=30.026°,b=0.7005a,c=0.33a。本实施例的数值模拟结果如图12所示可知,具有大绝对禁带相对值为11.11%。
实施例11
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=30.026°,b=0.7005a,c=0.46583a。本实施例的数值模拟结果如图13所示可知,具有大绝对禁带相对值为19.609%。
实施例12
高折射率材料采用硅,低折射率材料为空气,α=59.395°,β=30.026°,b=0.7005a,c=0.5a。本实施例的数值模拟结果如图14所示可知,具有大绝对禁带相对值为10.94%。
以上之详细描述仅为清楚理解本发明,而不应将其看作是对本发明不必要的限制,因此对本发明的任何改动对本领域中的技术熟练的人是显而易见的。

Claims (6)

1.一种基于旋转空心正方柱的二维正方晶格光子晶体,其特征在于:它包括高折射率介质柱和低折射率背景介质柱;所述高折射率介质为折射率大于2的高折射率介质;所述低折射率背景介质为折射率低于1.6的介质;所述光子晶体结构由元胞按正方晶格排列而成;所述正方晶格光子晶体的元胞由高折射率旋转空心正方柱和低折射率背景介质柱组成;所述空心正方柱的外部轮廓线为第一高折射率旋转空心正方柱,所述第一高折射率旋转空心正方柱的旋转角度α为45°~65°,边长b为0.6a~0.75a,其中a为正方晶格光子晶体的晶格常数;所述空心正方柱的空心部位的截面为第二高折射率旋转空心正方柱,所述第二高折射率旋转空心正方柱的旋转角度β为25°~50°,边长c为0.33a~0.50a。
2.按照权利要求1所述的基于旋转空心正方柱的二维正方晶格光子晶体,其特征在于:所述高折射率介质为硅、砷化镓或者二氧化钛。
3.按照权利要求1所述的基于旋转空心正方柱的二维正方晶格光子晶体,其特征在于:所述高折射率介质的折射率为3.4。
4.按照权利要求1所述的基于旋转空心正方柱的二维正方晶格光子晶体,其特征在于:所述低折射率背景介质为空气、真空、氟化镁或者二氧化硅。
5.按照权利要求1或2或4所述的基于旋转空心正方柱的二维正方晶格光子晶体,其特征在于:所述高折射率介质为硅,所述低折射率背景介质为空气;所述第一高折射率旋转空心正方柱的旋转角度为45°<α<65°,其边长为0.6a<b<0.75a;所述第二高折射率旋转空心正方柱的旋转角度为25°<β<50°,其边长为0.33a<c<0.5a;所述光子晶体结构的绝对禁带相对值大于10%。
6.按照权利要求1或2或4所述的基于旋转空心正方柱的二维正方晶格光子晶体,其特征在于:所述高折射率介质为硅,所述低折射率背景介质为空气;所述第一高折射率旋转空心正方柱的旋转角度α为59.395°,其边长b为0.7005a;所述第二高折射率旋转空心正方柱的旋转角度β为30.026°,其边长c为0.4658a;所述光子晶体结构的绝对禁带相对值为19.609%。
CN201510280503.3A 2015-05-27 2015-05-27 基于旋转空心正方柱的二维正方晶格光子晶体 Expired - Fee Related CN104849805B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510280503.3A CN104849805B (zh) 2015-05-27 2015-05-27 基于旋转空心正方柱的二维正方晶格光子晶体
PCT/CN2016/083062 WO2016188396A1 (zh) 2015-05-27 2016-05-23 基于旋转空心正方柱的二维正方晶格光子晶体
US15/822,231 US20180088276A1 (en) 2015-05-27 2017-11-27 Two-dimensional square lattice photonic crystal based on rotated hollow square rods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510280503.3A CN104849805B (zh) 2015-05-27 2015-05-27 基于旋转空心正方柱的二维正方晶格光子晶体

Publications (2)

Publication Number Publication Date
CN104849805A CN104849805A (zh) 2015-08-19
CN104849805B true CN104849805B (zh) 2017-10-03

Family

ID=53849581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510280503.3A Expired - Fee Related CN104849805B (zh) 2015-05-27 2015-05-27 基于旋转空心正方柱的二维正方晶格光子晶体

Country Status (3)

Country Link
US (1) US20180088276A1 (zh)
CN (1) CN104849805B (zh)
WO (1) WO2016188396A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849805B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于旋转空心正方柱的二维正方晶格光子晶体
CN104849806B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于十字连杆与旋转空心正方柱的二维正方晶格光子晶体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197042A1 (en) * 2001-04-06 2002-12-26 Shigeo Kittaka Optical device, and wavelength multiplexing optical recording head
AU2003302230A1 (en) * 2002-10-16 2004-06-18 Lake Shore Cryotronics, Inc. Method of manufacturing a spectral filter for green and longer wavelengths
JP4881056B2 (ja) * 2006-05-01 2012-02-22 キヤノン株式会社 電磁波吸収体部を含むフォトニック結晶電磁波デバイス、及びその製造方法
CN103901536B (zh) * 2014-04-11 2016-08-17 深圳大学 一种圆环杆与平板连杆的二维正方晶格光子晶体
CN104155718B (zh) * 2014-07-28 2017-07-04 欧阳征标 基于高折射率内圆外方空心柱的正方晶格光子晶体
CN104297842B (zh) * 2014-09-29 2017-03-22 深圳市浩源光电技术有限公司 一种十字连杆与旋转正方杆的二维正方晶格光子晶体
CN104849805B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于旋转空心正方柱的二维正方晶格光子晶体
CN104849806B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于十字连杆与旋转空心正方柱的二维正方晶格光子晶体
CN104820264B (zh) * 2015-05-27 2017-11-14 欧阳征标 旋转空心正方柱与旋转三角柱二维正方晶格光子晶体

Also Published As

Publication number Publication date
WO2016188396A1 (zh) 2016-12-01
CN104849805A (zh) 2015-08-19
US20180088276A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US10139560B2 (en) Hollow-core optical fibers
CN104820264B (zh) 旋转空心正方柱与旋转三角柱二维正方晶格光子晶体
CN104297842B (zh) 一种十字连杆与旋转正方杆的二维正方晶格光子晶体
US20220334313A1 (en) Integrated polarization rotation and splitting using mode hybridization between multple core structures
WO2016015630A1 (zh) 基于十字连杆柱和圆柱的大绝对禁带正方晶格光子晶体
CN104849805B (zh) 基于旋转空心正方柱的二维正方晶格光子晶体
CN103645536A (zh) 一种全固态大模场光子带隙光纤
CN106772703A (zh) 一种基于绝缘体上硅薄膜(soi)的1×8高性能光子晶体并行复用传感器阵列结构
CN104849806B (zh) 基于十字连杆与旋转空心正方柱的二维正方晶格光子晶体
CN104155718B (zh) 基于高折射率内圆外方空心柱的正方晶格光子晶体
CN104101946B (zh) 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
CN102778723B (zh) 一种短轴渐减椭圆空气孔阵列的单模单偏振光子晶体光纤
CN102759776B (zh) 一种具有高耦合效率的光子晶体槽波导结构
CN104122607A (zh) 基于三连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
CN103048730A (zh) 一种微结构太赫兹光纤
CN104950388B (zh) 圆孔式正方晶格光子晶体低折射率单补偿散射柱直角波导
CN111308582B (zh) 二维光子晶体平板、设计方法及利用此平板的光器件
CN104950385B (zh) 方柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
CN103645535B (zh) 一种高双折射太赫兹光纤
You et al. Inverse designed ultra-compact broadband high-order mode filter
Wu et al. Ultralow loss waveguide crossing with low imbalance for two transverse electric modes
Zhan et al. Q-factor Enhancement in Slow-Light Nanobeam Cavities on a Silicon Nitride Platform
CN104950389B (zh) 圆柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
Wang et al. F-shaped Channel-Drop Filter Based On Photonic Crystal Double Ring Resonators
Zhou et al. Highly Directional Radiation from Photonic Crystal Slabs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171101

Address after: 518060 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Patentee after: Shenzhen University

Address before: 518060 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Co-patentee before: Shenzhen University

Patentee before: Ouyang Zhengbiao

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171003

Termination date: 20200527

CF01 Termination of patent right due to non-payment of annual fee