WO2016015627A1 - 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体 - Google Patents

基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体 Download PDF

Info

Publication number
WO2016015627A1
WO2016015627A1 PCT/CN2015/085343 CN2015085343W WO2016015627A1 WO 2016015627 A1 WO2016015627 A1 WO 2016015627A1 CN 2015085343 W CN2015085343 W CN 2015085343W WO 2016015627 A1 WO2016015627 A1 WO 2016015627A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
photonic crystal
forbidden band
refractive index
square lattice
Prior art date
Application number
PCT/CN2015/085343
Other languages
English (en)
French (fr)
Inventor
欧阳征标
王晶晶
Original Assignee
深圳大学
欧阳征标
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 欧阳征标 filed Critical 深圳大学
Publication of WO2016015627A1 publication Critical patent/WO2016015627A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Definitions

  • the invention relates to a wide absolute forbidden band two-dimensional photonic crystal.
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • the frequency interval in which the electromagnetic field state density is zero is defined as the TE or TM complete band gap of the photonic crystal, and the frequency interval in which TE and TM are completely forbidden band is called photonic crystal.
  • Absolute forbidden band Designing a photonic crystal with a complete forbidden band or absolute forbidden band, it can simply and effectively regulate the macroscopic electromagnetic properties of the medium, including selecting the frequency band, mode and transmission path in which the electromagnetic wave is propagated, and controlling the absorption or radiation characteristics of the medium therein. Photon motion, the basis for making various photonic devices.
  • the wider the photonic band gap the better the performance of the device.
  • the wider the photonic band gap the wider the operating band of the photonic crystal waveguide, the smaller the transmission loss, the photonic crystal resonator and the laser.
  • the higher the quality factor the better the photonic crystal has a better restraining effect on spontaneous emission, and the higher the reflectivity of the photonic crystal mirror.
  • a photonic crystal with a complete forbidden band and an absolute forbidden band has a photonic band gap for light in different propagation directions. Therefore, photonic crystals with complete forbidden band and absolute forbidden band have received extensive attention.
  • a non-square lattice structure such as a triangular lattice or a hexagonal lattice is required.
  • a square lattice structure can be used to make the optical path simple and easy to improve the optical path. Integration, while the traditional forbidden lattice photonic crystal has a very small forbidden band width, so a square lattice photonic crystal with a large absolute forbidden band has become a goal that people have been pursuing.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a novel square lattice photonic crystal structure which is easy to integrate optical paths and has a large relative forbidden band width.
  • the present invention has been achieved by the following technical solutions.
  • the large absolute forbidden band square lattice photonic crystal based on the single-link column and the circular column of the present invention comprises a high refractive index dielectric column and a low refractive index background dielectric column; the high refractive index dielectric column is connected by a circular column and a ring
  • the flat plate dielectric column of the ring is composed of a single link; the flat single link is parallel to a horizontal lattice vector or a vertical lattice vector of the square lattice cell; and the photonic crystal structure is formed by arranging the cells in a square lattice;
  • the lattice constant of the square lattice photonic crystal is a; the width D of the flat dielectric column is 0.048a, the outer diameter R of the circular column is 0.27a, and the difference between the inner and outer diameters of the circular column
  • the ratio T to the outer diameter of the ring is 0.296, and the absolute value of the absolute forbidden band width of the photonic crystal structure is 9.8177%.
  • the high refractive index medium is silicon, gallium arsenide, titanium dioxide or a high refractive index medium having a refractive index greater than 2;
  • the high refractive index medium is silicon and has a refractive index of 3.4.
  • the low refractive index background medium is air, magnesium fluoride, silicon dioxide or a low refractive index medium.
  • the low refractive index medium is air.
  • the distance from the leftmost end of the left flat connecting rod of the horizontal cell vector cell to the rightmost end of the right flat connecting rod is a.
  • the distance from the bottommost end of the lower plate connecting rod of the vertical cell vector cell to the top end of the upper plate connecting rod is a.
  • the width of the flat dielectric column is 0.02a ⁇ D ⁇ 0.06a
  • the outer diameter of the circular column is 0.245a ⁇ R ⁇ 0.32a
  • the ratio of the difference between the inner and outer diameters of the circular column and the outer diameter of the annular ring For 0.25 ⁇ T ⁇ 0.45, the absolute forbidden band relative value of the photonic crystal structure is greater than 5%.
  • the width of the slab dielectric column is 0.032a ⁇ D ⁇ 0.06a
  • the outer diameter of the circular column is 0.245a ⁇ R ⁇ 0.29a
  • the ratio of the difference between the inner and outer diameters of the circular column and the outer diameter of the annular ring For 0.29 ⁇ T ⁇ 0.39, the absolute forbidden band relative value of the photonic crystal structure is greater than 7%.
  • the photonic crystal structure of the present invention can be widely applied to large-scale integrated optical path design. Compared with the prior art, it has the following positive effects.
  • the photonic crystal structure of the present invention has a very large absolute forbidden band, which provides more space for the application of photonic crystals, and also brings greater convenience and flexibility to the design and manufacture of photonic crystal devices.
  • the photonic crystal of the invention belongs to a square lattice, has a simple optical path, is convenient for design, and is easy to integrate large-scale optical paths;
  • the photonic crystal of the present invention belongs to a square lattice, and connection and coupling are easily realized between different optical elements in the optical path and between different optical paths, which is advantageous in reducing cost.
  • FIG. 1 is a schematic view showing the structure of a two-dimensional photonic crystal of a square lattice parallel to a horizontal lattice vector of the present invention.
  • FIG. 2 is a schematic view showing the structure of a two-dimensional photonic crystal of a square lattice in which a connecting rod is parallel to a vertical cell of a cell according to the present invention.
  • Figure 3 is a graph showing the effect of the width of the flat dielectric column on the relative value of the absolute forbidden band.
  • FIG. 4 is an energy band diagram of a photonic crystal structure according to the relative absolute maximum band gap width of the present invention.
  • Fig. 5 is a structural diagram showing the relationship of the maximum absolute forbidden band relative value of the photonic crystal shown in Fig. 1.
  • the photonic crystal structure of the present invention comprises a high refractive index dielectric column and a low refractive index background dielectric column, and the entire photonic crystal structure is formed by a cell in a square lattice.
  • the high refractive index dielectric column is divided into two parts: a circular column and a flat dielectric column single connecting rod connecting the rings; referring to FIG. 1 and FIG.
  • a cell of the photonic crystal the cell is made of tetragonal
  • the lattice arrangement constitutes the photonic crystal; the dotted line in the figure represents the boundary of the cell; the flat-plate link is parallel to the horizontal lattice vector or the vertical lattice vector of the square lattice cell; the crystal of the square lattice photonic crystal
  • the lattice constant is a; the width D of the flat dielectric column is 0.048a, the outer diameter R of the circular cylinder is 0.27a, and the ratio of the difference between the inner and outer diameters of the circular cylinder and the outer diameter of the annular ring is 0.296.
  • the relative forbidden band width of the photonic crystal structure is 9.8177%; the width of the flat dielectric column is 0.02a ⁇ D ⁇ 0.06a, and the outer diameter of the circular column is 0.245a ⁇ R ⁇ 0.32a, the ring
  • the ratio of the difference between the inner and outer diameters of the column and the outer diameter of the ring is 0.25 ⁇ T ⁇ 0.45, and the absolute value of the absolute band gap of the photonic crystal structure is greater than 5%;
  • the width of the slab dielectric column is 0.032a ⁇ D ⁇ 0.06a, the outer diameter of the circular column is 0.245a ⁇ R ⁇ 0.29a, and the ratio of the difference between the inner and outer diameters of the annular column and the outer diameter of the annular ring is 0.29 ⁇ T ⁇ 0.39.
  • the absolute forbidden band relative value of the photonic crystal structure is greater than 7%.
  • the distance from the leftmost end of the left flat connecting rod of the cell to the rightmost end of the right flat connecting rod is a; see FIG. 2
  • the flat plate link is parallel to the vertical lattice vector of the square lattice cell, and the distance from the bottommost end of the lower plate connecting rod of the cell to the topmost end of the upper plate connecting rod is a;
  • the high refractive index dielectric material Including silicon (Si), gallium arsenide, titanium dioxide, etc.
  • the background medium is a low refractive index medium
  • the low refractive index dielectric material includes air, magnesium fluoride, silicon dioxide, and the like.
  • the ratio of the absolute forbidden band width to the forbidden band center frequency is taken as the index of the forbidden band width, which is called the relative forbidden band width relative value.
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • the fixed T is 0.304
  • R is 0.26a
  • D is scanned based on the plane wave expansion method, and the result shown in FIG. 3 is obtained.
  • the high refractive index medium is silicon
  • the low refractive index medium is air
  • the fixed R is 0.27a
  • D is 0.048a
  • the corresponding T value is 0.296.
  • the energy band diagram is shown in Figure 4.
  • the photonic crystal structure under the final structural parameters is shown in Figure 5.
  • the dotted line in the figure is the boundary of the cell.
  • High refractive index medium is silicon
  • low refractive index medium is air
  • the inner diameter of the circular cylinder is 0.09715 micrometer.
  • the absolute value of the obtained photonic crystal is obtained.
  • the forbidden band range is (0.953053 ⁇ 0.888241), and the relative value of the absolute forbidden band corresponds to 7.03819%.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,包括高折射率介质柱和低折射率背景介质柱。高折射率介质柱由圆环柱和连接圆环的平板介质柱单连杆构成。平板单连杆平行于正方晶格元胞的水平格矢量或者垂直格矢量。光子晶体结构由元胞按正方晶格排列而成。正方晶格光子晶体的晶格常数为a。平板介质柱的宽度D为0.048a,圆环柱的外径R为0.27a,圆环柱的内外径之差与圆环外径的比值T为0.296,光子晶体结构绝对禁带宽度相对值为9.8177%。该光子晶体结构具有非常大的绝对禁带,可广泛应用于大规模集成光路设计中。

Description

基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体 技术领域
本发明涉及宽绝对禁带二维光子晶体。
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
在频域,对任意方向传播的TE或TM波,电磁场态密度为零的频率区间定义为光子晶体的TE或TM完全禁带,同时为TE和TM完全禁带的频率区间被称为光子晶体的绝对禁带。设计具有完全禁带或绝对禁带的光子晶体,能够简单而有效地调控介质的宏观电磁特性,包括选择其中传播电磁波的频带、模式和传输路径,控制其中介质的吸收或辐射等特性,是控制光子运动、制作各种光子器件的基础。
对于各种光子晶体器件而言,光子禁带越宽,器件的性能越好,例如,光子禁带越宽,则光子晶体波导的工作频带越宽、传输损耗越小,光子晶体谐振腔和激光器的品质因子越高,光子晶体对自发辐射的约束效果越好,光子晶体反射镜的反射率越高等。具有完全禁带和绝对禁带的光子晶体因对不同传播方向上的光都存在光子带隙。因此具有完全禁带和绝对禁带的光子晶体受到了广泛关注。
传统上,要获得大的相对禁带,需要采用三角晶格、六角晶格等非正方晶格结构,但是在光子晶体集成光路中,采用正方晶格结构可以使光路简洁,并易于提高光路的集成度,而传统的正方晶格光子晶体的绝对禁带宽度很小,因此具有大的绝对禁带的正方晶格光子晶体成为人们一直追求的目标。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种易于光路集成,大绝对禁带宽度相对值的新型正方晶格光子晶体结构。
为实现以上目的,本发明是通过以下技术方案予以实现。
本发明的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体包括高折射率介质柱和低折射率背景介质柱;所述的高折射率介质柱由圆环柱和连接圆环的平板介质柱单连杆构成;所述平板单连杆平行于正方晶格元胞的水平格矢量或者垂直格矢量;所述的光子晶体结构由元胞按正方晶格排列而成;所述的正方晶格光子晶体的晶格常数为a;所述平板介质柱的宽度D为0.048a,所述圆环柱的外径R为0.27a,所述圆环柱的内外径之差与圆环外径的比值T为0.296,光子晶体结构绝对禁带宽度相对值为9.8177%。
所述高折射率介质为硅、砷化镓、二氧化钛或折射率大于2的高折射率介质;
所述高折射率介质为硅,其折射率为3.4。
所述低折射率背景介质为空气、氟化镁、二氧化硅或低折射率介质。
所述低折射率介质为空气。
所述水平格矢量元胞的左平板连接杆的最左端到右平板连接杆的最右端的距离为a。
所述垂直格矢量元胞的下平板连接杆的最底端到上平板连接杆的最顶端的距离为a。
所述平板介质柱的宽度为0.02a≤D≤0.06a,所述圆环柱的外径为0.245a≤R≤0.32a,所述圆环柱的内外径之差与圆环外径的比值为0.25≤T≤0.45,所述光子晶体结构的绝对禁带相对值大于5%。
所述平板介质柱的宽度为0.032a≤D≤0.06a,所述圆环柱的外径为0.245a≤R≤0.29a,所述圆环柱的内外径之差与圆环外径的比值为0.29≤T≤0.39,所述光子晶体结构的绝对禁带相对值大于7%。
本发明的光子晶体结构可广泛应用于大规模集成光路设计中。它与现有技术相比,有如下积极效果。
1.本发明的光子晶体结构具有非常大的绝对禁带,为光子晶体的应用提供了更大的空间,同时也为光子晶体器件的设计和制造带来更大的方便和灵活性。
2.本发明的光子晶体属于正方晶格,光路简洁,便于设计,易于大规模光路集成;
3.本发明的光子晶体属于正方晶格,光路中不同光学元件之间以及不同光路之间易于实现连接和耦合,有利于降低成本。
附图说明
图1为本发明的连杆平行于元胞水平格矢量的正方晶格二维光子晶体的结构示意图。
图2为本发明的连杆平行于元胞垂直格矢量的正方晶格二维光子晶体的结构示意图。
图3为本发明平板介质柱的宽度对于绝对禁带相对值的影响图。
图4为本发明光子晶体结构对应于最大绝对禁带宽度相对值的能带图。
图5为图1所示光子晶体最大绝对禁带相对值的参数结构图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的阐述。
本发明的光子晶体结构包括高折射率介质柱和低折射率背景介质柱,整个光子晶体结构是由元胞按正方晶格生成的。所述高折射率介质柱分为两个部分:圆环柱和连接圆环的平板介质柱单连杆;参照图1和图2所示为光子晶体的一个元胞,该元胞按正方晶格排列构成所述的光子晶体;图中虚线表示元胞的边界;所述的平板连杆平行于正方晶格元胞的水平格矢量或垂直格矢量;所述的正方晶格光子晶体的晶格常数为a;所述平板介质柱的宽度D为0.048a,所述圆环柱外径R为0.27a,所述圆环柱的内外径之差与圆环外径的比值T为0.296,光子晶体结构绝对禁带宽度相对值为9.8177%;所述平板介质柱的宽度为0.02a≤D≤0.06a,所述圆环柱的外径为0.245a≤R≤0.32a,所述圆环柱的内外径之差与圆环外径的比值为0.25≤T≤0.45,所述光子晶体结构的绝对禁带相对值大于5%;所述平板介质柱的宽度为 0.032a≤D≤0.06a,所述圆环柱的外径为0.245a≤R≤0.29a,所述圆环柱的内外径之差与圆环外径的比值为0.29≤T≤0.39,所述光子晶体结构的绝对禁带相对值大于7%。
参见图1所示的平板连杆平行于正方晶格元胞的水平格矢量,所述元胞的左平板连接杆的最左端到右平板连接杆的最右端的距离为a;参见图2所示的平板连杆平行于正方晶格元胞的垂直格矢量,所述元胞的下平板连接杆的最底端到上平板连接杆的最顶端的距离为a;所述高折射率介质材料包括硅(Si),砷化镓,二氧化钛等,所述背景介质为低折射率介质,低折射率介质材料包括空气、氟化镁、二氧化硅等。
通常将绝对禁带宽度与禁带中心频率的比值作为禁带宽度的考察指标,称之为绝对禁带宽度相对值。
利用平面波展开法进行大量的精细研究得到,最大的绝对禁带相对值和其对应的参数。
通过最速下降法对所述光子晶体结构进行优化搜索研究,能获得最大绝对禁带相对值,具体方法如下:
(1)确定三个参数的初扫描范围为:平板介质柱的宽度D=0.01a~0.2a,圆环柱的外径R=0.1a~0.5a,圆环柱的内外径之差与圆环外径的比值T=0.01~0.99。
(2)基于平面波展开法做粗扫描,得比较好的参数T为0.304,R为0.26a。
(3)高折射率介质采用硅,低折射率介质为空气,固定T为0.304,R为0.26a,基于平面波展开法对D进行扫描,得到图3所示的结果。图3中,D的值在0.025~0.069的范围内都有完全禁带,且在D等于0.048a处有最大绝对禁带相对值,为gapratio1=8.3256%。
(4)高折射率介质采用硅,低折射率介质采用空气,固定D为0.048a,T为0.304,基于平面波展开法对R进行扫描,得到最佳绝对禁带相对值gapratio2=9.5981%,对应的R值为0.27a。
(5)高折射率介质采用硅,低折射率介质采用空气,固定R为0.27a,D为0.048a,基于平面波展开法对T进行扫描,得到最佳绝对禁带相对值gapratio2=9.8177%,对应的T值为0.296。
(6)判断|(gapratio2-gapratio1)/(gapratio2+gapratio1)|是否小于1%,若否,则以前述各步的结果,对各参数进行新一轮扫描,直到|(gapratio2-gapratio1)/(gapratio2+gapratio1)|<1%才结束搜索,最终获得最优化的绝对禁带相对值及其所对应的结构参数。
最终得到的优化结果为:D=0.048a,R=0.27a,T=0.296时,最大绝对禁带的相对值=9.8177%。其能带图如图4所示,最终结构参数下的光子晶体结构如图5所示,图中虚线为元胞的边界。
根据以上结果给出如下9个实施例:
实施例1.高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.325,平板介质柱宽度D=0.048a=0.0156微米,圆环柱外径R=0.27a=0.08775微米,圆环柱内径为0.061776微米,所得到光子晶体的绝对禁带范围为(0.595718~0.539975),绝对禁带 的相对值对应为9.8177%.
实施例2.高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.45,平板介质柱宽度D=0.048a=0.0216微米,圆环柱外径R=0.27a=0.1215微米,圆环柱内径为0.085536微米,所得到光子晶体的绝对禁带范围为(0.824841~0.747657),绝对禁带相对值对应为9.8177%.
实施例3.高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.65,平板介质柱宽度D=0.048a=0.0312微米,圆环柱外径R=0.27a=0.1755微米,圆环柱内径为0.12355微米,所得到光子晶体的绝对禁带范围为(1.191436~1.079949),绝对禁带的相对值对应为9.8177%。
实施例4.高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.35,平板介质柱宽度D=0.028a=0.0098微米,圆环柱外径R=0.26a=0.091微米,圆环柱内径为0.06643微米,所得到光子晶体的绝对禁带范围为(0.602461~0.572953),绝对禁带的相对值对应为5.02118%。
实施例5.高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.475,平板介质柱宽度D=0.04a=0.0.019微米,圆环柱外径R=0.245a=0.116375微米,圆环柱内径为0.077971微米,所得到光子晶体的绝对禁带范围为(0.843575~0.79389),绝对禁带的相对值对应为6.06968%。
实施例6.高折射率介质采用硅,低折射率介质为空气,正方晶 格光子晶体的晶格常数a=0.5,平板介质柱宽度D=0.052a=0.026微米,圆环柱外径R=0.29a=0.145微米,圆环柱内径为0.09715微米,所得到光子晶体的绝对禁带范围为(0.953053~0.888241),绝对禁带的相对值对应为7.03819%。
实施例7.高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.685,平板介质柱宽度D=0.036a=0.02466微米,圆环柱外径R=0.275a=0.188375微米,圆环柱内径为0.126211微米,所得到光子晶体的绝对禁带范围为(1.243307~1.146885),绝对禁带的相对值对应为8.06788%。
实施例8.取高折射率介质采用硅,低折射率介质为空气,正方晶格光子晶体的晶格常数a=0.75,平板介质柱宽度D=0.048a=0.036微米,圆环柱外径R=0.275a=0.20625微米,圆环柱内径为0.142313微米,所得到光子晶体的绝对禁带范围为(1.385221~1.26531),绝对禁带的相对值对应为9.04728%。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (9)

  1. 一种基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,它包括高折射率介质柱和低折射率背景介质柱;所述的高折射率介质柱由圆环柱和连接圆环的平板介质柱单连杆构成;所述的平板单连杆平行于正方晶格元胞的水平格矢量或者垂直格矢量;所述的光子晶体结构由元胞按正方晶格排列而成;所述的正方晶格光子晶体的晶格常数为a;所述平板介质柱的宽度D为0.048a,所述圆环柱外径R为0.27a,所述圆环柱的内外径之差与圆环外径的比值T为0.296,光子晶体结构绝对禁带宽度相对值为9.8177%。
  2. 按照权利要求1所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述高折射率介质为硅、砷化镓、二氧化钛或折射率大于2的高折射率介质。
  3. 按照权利要求2所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述高折射率介质为硅,其折射率为3.4。
  4. 按照权利要求1所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述背景介质为低折射率介质,该低折射率介质为空气、氟化镁、二氧化硅或低折射率介质。
  5. 按照权利要求4所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述低折射率介质为空气。
  6. 按照权利要求1所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述水平格矢量元胞的左平板连接 杆的最左端到右平板连接杆的最右端的距离为a。
  7. 按照权利要求1所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述垂直格矢量元胞的下平板连接杆的最底端到上平板连接杆的最顶端的距离为a。
  8. 按照权利要求1所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述平板介质柱的宽度为0.02a≤D≤0.06a,所述圆环柱的外径为0.245a≤R≤0.32a,所述圆环柱的内外径之差与圆环外径的比值为0.25≤T≤0.45,所述光子晶体结构的绝对禁带相对值大于5%。
  9. 按照权利要求1所述的基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体,其特征在于,所述平板介质柱的宽度为0.032a≤D≤0.06a,所述圆环柱的外径为0.245a≤R≤0.29a,所述圆环柱的内外径之差与圆环外径的比值0.29≤T≤0.39,所述光子晶体结构的绝对禁带相对值大于7%。
PCT/CN2015/085343 2014-07-28 2015-07-28 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体 WO2016015627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410363204.1A CN104101946B (zh) 2014-07-28 2014-07-28 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
CN201410363204.1 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016015627A1 true WO2016015627A1 (zh) 2016-02-04

Family

ID=51670230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085343 WO2016015627A1 (zh) 2014-07-28 2015-07-28 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体

Country Status (2)

Country Link
CN (1) CN104101946B (zh)
WO (1) WO2016015627A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101946B (zh) * 2014-07-28 2017-07-18 欧阳征标 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
CN104459990B (zh) * 2014-12-10 2017-01-11 欧阳征标 基于平板光子晶体的高消光比偏振无关光开关
CN104459991B (zh) * 2014-12-10 2016-08-24 欧阳征标 基于平板光子晶体的高偏振度及高消光比te光开关
CN109324358B (zh) * 2018-12-18 2020-05-19 中南民族大学 一种低折射率比下大完全光子带隙光子晶体的设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051275A1 (en) * 1999-06-09 2002-05-02 Masatoshi Tokushima Photonic crystal and its fabrication
JP2003107255A (ja) * 2001-09-28 2003-04-09 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
US20070253660A1 (en) * 2006-05-01 2007-11-01 Canon Kabushiki Kaisha Photonic-crystal electromagnetic-wave device including electromagnetic-wave absorptive portion and method for producing the same
CN101713843A (zh) * 2009-11-17 2010-05-26 长飞光纤光缆有限公司 具有偏振保持性能的低损耗全固光子带隙光纤
CN103901513A (zh) * 2014-04-21 2014-07-02 山东大学 二维类石墨烯复式结构光子晶体
CN103901536A (zh) * 2014-04-11 2014-07-02 深圳大学 一种圆环杆与平板连杆的二维正方晶格光子晶体
CN104101946A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051275A1 (en) * 1999-06-09 2002-05-02 Masatoshi Tokushima Photonic crystal and its fabrication
JP2003107255A (ja) * 2001-09-28 2003-04-09 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
US20070253660A1 (en) * 2006-05-01 2007-11-01 Canon Kabushiki Kaisha Photonic-crystal electromagnetic-wave device including electromagnetic-wave absorptive portion and method for producing the same
CN101713843A (zh) * 2009-11-17 2010-05-26 长飞光纤光缆有限公司 具有偏振保持性能的低损耗全固光子带隙光纤
CN103901536A (zh) * 2014-04-11 2014-07-02 深圳大学 一种圆环杆与平板连杆的二维正方晶格光子晶体
CN103901513A (zh) * 2014-04-21 2014-07-02 山东大学 二维类石墨烯复式结构光子晶体
CN104101946A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体

Also Published As

Publication number Publication date
CN104101946A (zh) 2014-10-15
CN104101946B (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2015154661A1 (zh) 一种圆环杆与平板连杆的二维正方晶格光子晶体
WO2016015630A1 (zh) 基于十字连杆柱和圆柱的大绝对禁带正方晶格光子晶体
WO2016015627A1 (zh) 基于单连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
US20170242156A1 (en) Two-dimensional square-lattice photonic crystal with cross-shaped connecting rods and rotated square rods
WO2016015631A1 (zh) 基于三连杆柱和圆环柱的大绝对禁带正方晶格光子晶体
WO2016015632A1 (zh) 基于高折射率内圆外方空心柱的正方晶格光子晶体
US10094979B2 (en) Two-dimensional square-lattice photonic crystal with rotated hollow square rods and rotated triangle rods
US10509144B2 (en) Two-dimensional square-lattice photonic crystal based on cross rods and rotated hollow square rods
US20180088276A1 (en) Two-dimensional square lattice photonic crystal based on rotated hollow square rods
CN109324358B (zh) 一种低折射率比下大完全光子带隙光子晶体的设计方法
CN114185116B (zh) 一种能够实现拓扑边界态和/或零维角态的拓扑光通信器件
WO2016050181A1 (zh) 圆孔式正方晶格光子晶体低折射率单补偿散射柱直角波导
WO2016050180A1 (zh) 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
WO2016050179A1 (zh) 方柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
Liang et al. Photocontrol phase shifting with extraordinary optical transmission of terahertz waves via vanadium dioxide based metasurface
CN110320578A (zh) 一种近红外波段可调谐多功能波束调控器件
CN111308582A (zh) 二维光子晶体平板、设计方法及利用此平板的光器件
WO2016050188A1 (zh) 方柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
WO2016050182A1 (zh) 圆柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
Vertchenko et al. Index-near-zero modes in Si photonic crystal supported by accidental bound states in the continuum
Brener Recent advances in linear and nonlinear all-dielectric metamaterials.
WO2016050187A1 (zh) 圆柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
CN102166845A (zh) 增强纳米三明治品质因子的结构
Akalin Terahertz metasurfaces: Fabrication and characterization of flat lenses and antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827399

Country of ref document: EP

Kind code of ref document: A1