WO2016015530A1 - Mems麦克风 - Google Patents

Mems麦克风 Download PDF

Info

Publication number
WO2016015530A1
WO2016015530A1 PCT/CN2015/082285 CN2015082285W WO2016015530A1 WO 2016015530 A1 WO2016015530 A1 WO 2016015530A1 CN 2015082285 W CN2015082285 W CN 2015082285W WO 2016015530 A1 WO2016015530 A1 WO 2016015530A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
mems microphone
lower plate
support portion
upper plate
Prior art date
Application number
PCT/CN2015/082285
Other languages
English (en)
French (fr)
Inventor
胡永刚
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Priority to US15/119,878 priority Critical patent/US10003890B2/en
Priority to JP2016557262A priority patent/JP6307171B2/ja
Priority to EP15827631.1A priority patent/EP3177038B1/en
Publication of WO2016015530A1 publication Critical patent/WO2016015530A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0037For increasing stroke, i.e. achieve large displacement of actuated parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/14Non-planar diaphragms or cones corrugated, pleated or ribbed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to the field of semiconductor device technologies, and in particular, to a MEMS microphone.
  • Capacitive MEMS microphone chips have been researched for more than 20 years. During this period, many types of microphone chips have been developed, including piezoresistive, piezoelectric and capacitive, among which capacitive MEMS microphones are the most widely used. Capacitive MEMS microphones have the following advantages: small size, high sensitivity, good frequency characteristics, and low noise. In addition, capacitive MEMS microphones have a wide operating temperature and can operate in harsh environments. Capacitive microphones are divided into two-film capacitor structures and single-film capacitor structures, most of which are designed with a dual-film structure.
  • Capacitive silicon-based MEMS microphones typically consist of a backplate and a diaphragm.
  • the diaphragm has a certain flexibility, and the diaphragm can be vibrated by air; and the back plate has a certain rigidity, and is filled with holes, also called sound holes, through which air can pass, so that the diaphragm vibrates, and the back plate does not follow The vibration of the air vibrates.
  • the back plate and the diaphragm form a flat-plate capacitor, and the sound vibrates through the air to vibrate the flexible diaphragm, thereby changing the capacitance of the plate capacitor. This change in capacitance provides an electrical signal that can be detected by the peripheral circuitry, thereby enabling the conversion from a sound signal to an electrical signal.
  • MEMS devices including silicon-based microphones, are typically produced using integrated circuit fabrication techniques. Silicon-based microphones have very broad application prospects in the fields of hearing aids and mobile communication devices.
  • the flexibility of the diaphragm determines the sensitivity of the microphone. This is because the greater the compliance, the greater the longitudinal displacement of the diaphragm and the greater the electrical signal produced. However, the softer the diaphragm, the easier it is to adhere to the backing plate, resulting in the MEMS microphone not working properly, which seriously affects the yield.
  • the central area of the diaphragm has the highest mechanical sensitivity and the largest deformation, it is the easiest to adhere to the backing plate. After the center area of the backing plate is dug, the diaphragm and the backing plate can be effectively prevented from sticking together. However, since the central region of the diaphragm has the highest mechanical sensitivity, the edge is low, and the middle portion of the back plate is dug, the center position of the diaphragm is wasted, and the sensitivity of the MEMS microphone is lowered.
  • a MEMS microphone includes a base, a support portion, an upper plate and a lower plate, the base is provided with an opening extending through the middle, the lower plate is spanned across the opening, and the support portion is fixed to the lower portion On the plate, the upper plate is attached to the support portion, and a cavity is formed between the support portion, the upper plate and the lower plate, and the upper plate and/or the lower plate The intermediate portion is provided with a recess relative to the cavity, and the upper plate and the lower plate are insulated.
  • the central portion of the upper plate or the central portion of the lower plate is provided with a concave portion, the central portion of the upper plate and the central portion of the lower plate are far apart to form an upper plate of the variable capacitance structure ( For example, as a diaphragm and a lower plate (for example, as a backing plate), it is not easy to adhere, and the probability of occurrence of the problem of the vibration of the diaphragm and the backing plate is effectively reduced, and the yield is improved.
  • the central region of the plate of the variable capacitor does not need to be dug, the sensitivity of the MEMS microphone is maximized by effectively utilizing the region with the highest mechanical sensitivity of the diaphragm.
  • FIG. 1 is a top plan view of one embodiment of a MEMS microphone
  • Figure 2 is a side cross-sectional view taken along line A-A' of Figure 1;
  • FIG. 3 is a top plan view of another embodiment MEMS microphone
  • Figure 4 is a side cross-sectional view taken along line A-A' of Figure 3 .
  • FIG. 1 is a top plan view of a MEMS microphone in accordance with one embodiment of the present invention. Please refer to Figure 2.
  • a MEMS microphone includes a substrate 100, a support portion 200, an upper plate 300 and a lower plate 400.
  • the substrate 100 is provided with an opening 120 extending through the middle.
  • the lower plate 400 is spanned over the opening 120, and the support portion 200 is fixed to the lower pole.
  • the upper plate 300 is attached to the support portion 200, and the cavity 500 is formed between the support portion 200, the upper plate 300 and the lower plate 400, and the middle plate 300 and the lower plate 400 are at least one of the middle portions.
  • the region is provided with a recess 600 relative to the cavity 500, and the upper plate 300 and the lower plate 400 are insulated.
  • the central region of the upper plate 300 or the central region of the lower plate 400 is provided with the recess 600, the central region of the upper plate 300 and the central region of the lower plate 400 are far apart to form a variable capacitance structure.
  • the upper plate 300 (for example, as a diaphragm) and the lower plate 400 (for example, as a back plate) are not easily adhered, which effectively reduces the probability of occurrence of the problem of the diaphragm and the back plate adhesion, and improves the yield.
  • the region with the highest mechanical sensitivity of the diaphragm is effectively utilized, and the sensitivity of the MEMS microphone is maintained to the utmost extent.
  • Fig. 3 is a plan view of another embodiment of a MEMS microphone
  • Fig. 4 is a side cross-sectional view taken along line A-A' of Fig. 3.
  • the intermediate portion of the upper plate 300 is provided with a recess 600 relative to the cavity 500 and the lower plate 400 has no recess
  • the lower plate The intermediate portion of the 400 is provided with a recess relative to the cavity 500 and the upper plate 300 has no recess, or the intermediate portion of the upper plate 300 and the intermediate portion of the lower plate 400 are provided with recesses relative to the cavity 500.
  • the intermediate portion of the upper plate 300 and the intermediate portion of the lower plate 400 are both provided with respect to the recess of the cavity 500 to more effectively reduce the probability of occurrence of the diaphragm and back plate adhesion problems, thereby improving the yield.
  • the material of the substrate 100 is Si in this embodiment, and may be other semiconductor or semiconductor compound such as one of Ge, SiGe, SiC, SiO 2 and Si 3 N 4 .
  • a second insulating layer may also be disposed on the substrate, and the lower plate 400 is connected across the second insulating layer, and the second insulating layer functions to insulate the substrate 100 and the lower plate 400 from each other.
  • the upper plate 300 when the upper plate 300 serves as a diaphragm and the lower plate 400 serves as a back plate, the upper plate 300 is a flexible film, and the lower plate 400 is a rigid film; as shown in FIGS. 3 and 4, When the upper plate 300 is used as the back plate and the lower plate 400 is used as the diaphragm, the upper plate 300 is a rigid film, and the lower plate 400 is a flexible film.
  • the rigid film is not easily deformed by the vibration of the sound wave, and the flexible film is easily deformed by the vibration of the sound wave.
  • a plurality of uniformly distributed sound holes 700 are provided as the upper plate 300 or the lower plate 400 of the diaphragm.
  • the sound holes 700 may also be non-uniformly distributed.
  • the sound holes 700 are concentrated in the middle portion of the upper plate 300 or the lower plate 400.
  • the material of the flexible film includes Si, Ge, SiGe, SiC, or Al, W, Ti, or one of nitrides of Al, W, and Ti.
  • the upper plate 300 and the lower plate 400 include a conductive layer, and the upper plate 300 and the lower plate 400 may be a structure of a conductive material as a whole or a composite layer structure including a conductive layer.
  • a cavity 500 is formed between the support portion 200, the upper plate 300 and the lower plate 400.
  • the cavity 500 is actually released by the sacrificial layer.
  • the sacrificial layer is etched away to form a cavity.
  • the shape of the recess 600 is circular in this embodiment, and may be a polygon in other embodiments, such as a square, a regular hexagon, a regular octagon, or the like.
  • the support portion 200 includes a first insulating layer 220, and the presence of the first insulating layer 220 insulates the upper plate 300 and the lower plate 400 from each other.
  • the support portion 200 may have a structure in which the entirety is an insulating material, or may be a composite layer structure including an insulating layer.
  • the support portion 200 is a square-shaped structure in this embodiment, and a through opening 280 is provided in the middle, and the opening 280 of the support portion 200 is slightly larger than the opening 120 of the substrate 100, as shown in FIGS. 1 and 3.
  • the support portion 200 includes a support column 240 that is independent of the frame-shaped structure body of the support portion 200. There is a space 260 between the support column 240 and the frame-shaped structure body.
  • the support column 240 is mainly used to set the upper electrode 800, and the interval 260
  • the function of the electrode 800 is to isolate the electrode 800 from the square-shaped structure body of the support portion 200, so that the electrode 800 is isolated from the large-area upper plate 300 on the square-shaped structure body of the support portion 200, thereby reducing parasitic capacitance. Impact.
  • the support portion 200 is further provided with a notch 250 for exposing the lower plate 400 under the support portion 200 to manufacture the lower electrode 900.
  • the notch 250 is a through-hole structure in this embodiment, and may be a notch on the side of the support portion 200 in other embodiments.
  • the support portion 200 may also be other multi-frame-shaped structures, such as a regular hexagonal frame structure, a regular octagonal frame structure, or a circular ring structure.
  • the MEMS microphone further includes an upper electrode 800 and a lower electrode 900, and the material of the upper electrode 800 and the lower electrode 900 includes one of P-type silicon or N-type silicon.
  • the upper electrode 800 is electrically connected to the upper plate 300 on the upper plate 300 on the support post 240, and the lower electrode 900 is located in the notch 250 on the support portion 200 and is electrically connected to the lower plate 400.
  • the substrate 100 is a support structure for providing support, and does not necessarily mean that the substrate 100 is a single member.
  • the substrate 100 can be represented as a multilayer structure, and the multilayer structure can be formed by epitaxy and deposition. Or a process such as bonding. It will be understood that the illustrations in Figures 1 through 4 are simple examples of some of the main structures of the device and do not represent the overall structure of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)

Abstract

一种MEMS麦克风,包括基底(100)、支撑部(200)、上极板(300)和下极板(400),基底(100)设有贯通中间的开口(120),下极板(400)跨设于开口(120),支撑部(200)固定于下极板(400)上,上极板(300)贴于支撑部(200)上,支撑部(200)、上极板(300)和下极板(400)之间形成容腔(500),上极板(300)和下极板(400)其中至少之一的中间区域设有相对于容腔(500)的凹部(600),上极板(300)和下极板(400)之间绝缘。

Description

MEMS麦克风
【技术领域】
本发明涉及半导体器件技术领域,特别涉及一种 MEMS 麦克风。
【背景技术】
MEMS麦克风芯片的研究已经有20多年了,在此期间有很多类型的麦克风芯片研发出来,其中有压阻式、压电式和电容式等,其中电容式的MEMS麦克风应用最为广泛。电容式MEMS麦克风拥有以下优点:体积小、灵敏度高、频率特性好、噪声低等。除此之外,电容式MEMS麦克风还具有很宽的工作温度,可以在很恶劣的环境下工作。电容式麦克风又分为双膜电容结构和单膜电容结构,其中大部分设计都采用双膜结构。
电容式硅基MEMS麦克风通常由背板和振膜组成。其中振膜具有一定柔韧性,可通过空气使振膜振动;而背板具有一定刚性,并且布满孔洞,也称为声孔,空气可穿过这些声孔,使振膜振动,背板不随空气的振动而振动。背板和振膜构成了一个平板电容,声音通过空气使柔韧的振膜振动,从而使平板电容的电容值发生变化。这种电容值的变化为外围电路提供了一种可供探测的电信号,从而实现了从声音信号到电信号的转换。MEMS器件,包括硅基麦克风,通常是采用集成电路制造技术来生产的。硅基麦克风在助听器和移动通讯设备等领域有着非常广阔的应用前景。
对电容式硅基MEMS麦克风来说,振膜的柔度决定了麦克风的灵敏度。这是因为柔度越大振膜的纵向位移就越大,产生的电信号就越大。但是振膜越柔软就越容易和背板粘连起来,导致MEMS麦克风不能正常工作,严重影响成品率。防止振膜和背板粘连起来的方法有很多,目前比较有效的方法是制作防粘连突起,但是增加了工艺步骤,增加了成本。另一种方法是将背板中心区域挖掉。因为振膜的中心区域机械灵敏度最高,形变最大,最容易和背板粘连在一起,将背板中心区域挖掉之后,可以有效防止振膜和背板粘连在一起。但是由于振膜的中心区域机械灵敏度最高,边缘低,背板的中间区域挖掉之后,浪费了振膜的中心位置,降低了MEMS麦克风的灵敏度。
【发明内容】
基于此,有必要提供一种MEMS麦克风,该MEMS麦克风可以有效降低出现振膜和背板粘连问题的几率,提高成品率。
一种MEMS麦克风,包括基底、支撑部、上极板和下极板,所述基底设有贯通中间的开口,所述下极板跨设于所述开口,所述支撑部固定于所述下极板上,所述上极板贴于所述支撑部上,所述支撑部、所述上极板和所述下极板之间形成容腔,所述上极板和/或下极板的中间区域设有相对于所述容腔的凹部,所述上极板和所述下极板之间绝缘。
上述MEMS麦克风,由于上极板的中间区域或下极板的中心区域设有凹部,上极板的中心区域和下极板的中心区域的距离较远,构成可变电容结构的上极板(例如作为振膜)和下极板(例如作为背板)之间不容易粘连,有效降低出现振膜和背板粘连问题的几率,提高成品率。同时,由于可变电容的极板的中心区域不需要被挖掉,有效利用振膜机械灵敏度最高的区域,最大程度保持了MEMS麦克风的灵敏度。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是其中一实施例MEMS麦克风的俯视图;
图2是沿图1中A-A’线的侧面剖视图;
图3是另一实施例MEMS麦克风的俯视图;
图4是沿图3中A-A’线的侧面剖视图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的具体实施方式进行详细描述。
图1是本发明其中一实施例MEMS麦克风的俯视图。请结合图2。
一种MEMS麦克风,包括基底100、支撑部200、上极板300和下极板400,基底100设有贯通中间的开口120,下极板400跨设于开口120,支撑部200固定于下极板400上,上极板300贴于支撑部200上,支撑部200、上极板300和下极板400之间形成容腔500,上极板300和下极板400其中至少之一的中间区域设有相对于容腔500的凹部600,上极板300和下极板400之间绝缘。
上述MEMS麦克风,由于上极板300的中心区域或下极板400的中心区域设有凹部600,上极板300的中心区域和下极板400的中心区域的距离较远,构成可变电容结构的上极板300(例如作为振膜)和下极板400(例如作为背板)之间不容易粘连,有效降低出现振膜和背板粘连问题的几率,提高成品率。同时,由于可变电容的上下极板的中心区域不需要被挖掉,有效利用振膜机械灵敏度最高的区域,最大程度保持了MEMS麦克风的灵敏度。
下面对本实施例作详细描述。
图3是另一实施例MEMS麦克风的俯视图,图4是沿图3中A-A’线的侧面剖视图。在图1和图3显示的实施例中,上极板300的中间区域设有相对于容腔500的凹部600而下极板400则没有凹部,在其他实施例中,也可以是下极板400的中间区域设有相对于容腔500的凹部而上极板300则没有凹部,或者上极板300的中间区域和下极板400的中间区域都设有相对于容腔500的凹部。上极板300的中间区域和下极板400的中间区域都设有相对于容腔500的凹部能更有效降低出现振膜和背板粘连问题的几率,提高成品率。
基底100的材料在本实施例中为Si,还可以为其他半导体或半导体的化合物,例如Ge、SiGe、SiC、SiO2和Si3N4中的一种。基底上还可以设有第二绝缘层,下极板400跨接于第二绝缘层上,第二绝缘层的作用在于使基底100和下极板400相互绝缘。
如图1和图2,当上极板300作为振膜而下极板400作为背板时,上极板300为柔韧性薄膜,下极板400为坚硬性薄膜;如图3和图4,当上极板300作为背板而下极板400作为振膜时,上极板300为坚硬性薄膜,下极板400为柔韧性薄膜。坚硬性薄膜不容易受到声波振动而形变,柔韧性薄膜容易受到声波振动而形变。作为振膜的上极板300或下极板400,设有多个均匀分布的声孔700。当然声孔700也可以非均匀分布,例如声孔700在上极板300或下极板400的中间区域较为集中。柔韧性薄膜的材质包括Si、Ge、SiGe、SiC,或者Al、W、Ti,或者Al、W、Ti的氮化物中的一种。上极板300和下极板400包含导电层,上极板300和下极板400可以是整体都是导电材质的结构,也可以是包含了导电层的复合层结构。
支撑部200、上极板300和下极板400之间形成容腔500,容腔500实际上是由牺牲层经过释放而来的,在释放过程中,牺牲层被腐蚀掉,形成空腔。凹部600的形状在本实施例中为圆形,在其他实施例中还可以是多边形,例如方形、正六边形、正八边形等。
支撑部200包含了第一绝缘层220,第一绝缘层220的存在使得上极板300和下极板400之间相互绝缘。支撑部200可以是整体都是绝缘材质的结构,也可以是包含了绝缘层的复合层结构。支撑部200在本实施例中为方框形结构,中间设有贯通的开口280,支撑部200的开口280比基底100的开口120略大,见图1和图3。支撑部200包括了一个独立于支撑部200方框形结构主体的支撑柱240,支撑柱240与方框形结构主体之间存在间隔260,支撑柱240主要用于设置上电极800,而间隔260的作用则是使电极800与支撑部200的方框形结构主体有所隔离,从而使得电极800与支撑部200的方框形结构主体上大面积的上极板300有所隔离,降低寄生电容的影响。支撑部200上还设有缺口250,用于暴露支撑部200下的下极板400以制造下电极900。缺口250在本实施例中为通孔结构,在其他实施例中还可以是在支撑部200边上的缺口。
在其他实施例中,支撑部200还可以是其他多边框形结构,例如正六边形框形结构、正八边形框形结构,或者是圆环形结构。
MEMS麦克风还包括上电极800和下电极900,上电极800和下电极900的材质包括P型硅或N型硅中的一种。上电极800位于支撑柱240上的上极板300上和上极板300电连接,下电极900位于支撑部200上的缺口250中并与下极板400电连接。
最后需要说明的是,基底100是表示一种提供支撑的支撑结构,并不一定表示基底100是一个单独的构件,基底100可以表示为多层结构,其多层结构可以是通过外延、淀积或键合等工艺形成。可以理解,图1~图4中的图示是对器件的一些主要结构的简单示例,并不代表器件的全部结构。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种MEMS麦克风,其特征在于,包括基底、支撑部、上极板和下极板,所述基底设有贯通中间的开口,所述下极板跨设于所述开口,所述支撑部固定于所述下极板上,所述上极板贴于所述支撑部上,所述支撑部、所述上极板和所述下极板之间形成容腔,所述上极板和下极板其中至少之一的中间区域设有相对于所述容腔的凹部,所述上极板和所述下极板之间绝缘。
  2. 根据权利要求1 所述的MEMS麦克风,其特征在于,所述上极板为柔韧性薄膜,所述下极板为坚硬性薄膜。
  3. 根据权利要求1所述的MEMS麦克风,其特征在于,所述上极板为坚硬性薄膜,所述下极板为柔韧性薄膜。
  4. 根据权利要求1 所述的MEMS麦克风,其特征在于,所述上极板或下极板设有多个声孔。
  5. 根据权利要求1所述的MEMS麦克风,其特征在于,所述凹部的形状为圆形、多边形中的一种。
  6. 根据权利要求1所述的MEMS麦克风,其特征在于,所述上极板和所述下极板包含导电层。
  7. 根据权利要求1 所述的MEMS麦克风,其特征在于,所述基底的材料包括Si、Ge、SiGe、SiC、SiO2和Si3N4中的一种。
  8. 根据权利要求1 所述的MEMS麦克风,其特征在于,所述支撑部包含用于使所述上极板和所述下极板之间绝缘的第一绝缘层。
  9. 根据权利要求1 所述的MEMS麦克风,其特征在于,所述支撑部包括环形结构、多边框形结构中的一种。
  10. 根据权利要求1 所述的MEMS麦克风,其特征在于,所述支撑部包括了一个独立于所述支撑部主体的支撑柱。
  11. 根据权利要求1所述的MEMS麦克风,其特征在于,还包括上电极和下电极,所述上电极和所述下电极的材质包括P型硅和N型硅中的一种,所述上电极和所述上极板电连接,所述下电极和所述下极板电连接。
PCT/CN2015/082285 2014-08-01 2015-06-25 Mems麦克风 WO2016015530A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/119,878 US10003890B2 (en) 2014-08-01 2015-06-25 MEMS microphone
JP2016557262A JP6307171B2 (ja) 2014-08-01 2015-06-25 Memsマイクロホン
EP15827631.1A EP3177038B1 (en) 2014-08-01 2015-06-25 Mems microphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410376030.2A CN105338458B (zh) 2014-08-01 2014-08-01 Mems麦克风
CN201410376030.2 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015530A1 true WO2016015530A1 (zh) 2016-02-04

Family

ID=55216742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082285 WO2016015530A1 (zh) 2014-08-01 2015-06-25 Mems麦克风

Country Status (5)

Country Link
US (1) US10003890B2 (zh)
EP (1) EP3177038B1 (zh)
JP (1) JP6307171B2 (zh)
CN (1) CN105338458B (zh)
WO (1) WO2016015530A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776725B1 (ko) * 2015-12-11 2017-09-08 현대자동차 주식회사 멤스 마이크로폰 및 그 제조방법
US9648433B1 (en) * 2015-12-15 2017-05-09 Robert Bosch Gmbh Absolute sensitivity of a MEMS microphone with capacitive and piezoelectric electrodes
CN114697841A (zh) * 2020-12-30 2022-07-01 无锡华润上华科技有限公司 Mems麦克风及其振膜结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309173A1 (en) * 2008-06-16 2009-12-17 Rohm Co., Ltd. Mems sensor
CN101841758A (zh) * 2010-03-08 2010-09-22 瑞声声学科技(深圳)有限公司 电容mems麦克风
CN102264021A (zh) * 2010-12-07 2011-11-30 歌尔声学股份有限公司 一种mems麦克风芯片
EP2565153A1 (en) * 2011-09-02 2013-03-06 Nxp B.V. Acoustic transducers with perforated membranes
CN103281659A (zh) * 2013-05-03 2013-09-04 歌尔声学股份有限公司 Mems麦克风及其制作方法
CN203446028U (zh) * 2013-09-13 2014-02-19 山东共达电声股份有限公司 Mems麦克风及电子设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611779B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 電気信号−音響信号変換器及びその製造方法並びに電気信号−音響変換装置
US7405924B2 (en) * 2004-09-27 2008-07-29 Idc, Llc System and method for protecting microelectromechanical systems array using structurally reinforced back-plate
US7152481B2 (en) * 2005-04-13 2006-12-26 Yunlong Wang Capacitive micromachined acoustic transducer
JP4211060B2 (ja) * 2005-08-29 2009-01-21 ヤマハ株式会社 コンデンサマイクロホン及びコンデンサマイクロホンの製造方法
JP4215076B2 (ja) * 2006-07-10 2009-01-28 ヤマハ株式会社 コンデンサマイクロホン及びその製造方法
US7951636B2 (en) * 2008-09-22 2011-05-31 Solid State System Co. Ltd. Method for fabricating micro-electro-mechanical system (MEMS) device
JP2010103701A (ja) * 2008-10-22 2010-05-06 Rohm Co Ltd Memsセンサ
US8094839B2 (en) * 2009-04-30 2012-01-10 Solid State System Co., Ltd. Microelectromechanical system (MEMS) device with senstivity trimming circuit and trimming process
US8464589B2 (en) * 2010-10-14 2013-06-18 Solid State System Co., Ltd. Micro-electromechanical systems (MEMS) structure
CN102740204A (zh) * 2011-04-08 2012-10-17 美律实业股份有限公司 具有立体振膜结构的微机电麦克风晶片及其制造方法
US8629011B2 (en) * 2011-06-15 2014-01-14 Robert Bosch Gmbh Epitaxial silicon CMOS-MEMS microphones and method for manufacturing
US20120328132A1 (en) * 2011-06-27 2012-12-27 Yunlong Wang Perforated Miniature Silicon Microphone
US9148726B2 (en) * 2011-09-12 2015-09-29 Infineon Technologies Ag Micro electrical mechanical system with bending deflection of backplate structure
US8723277B2 (en) * 2012-02-29 2014-05-13 Infineon Technologies Ag Tunable MEMS device and method of making a tunable MEMS device
US9409763B2 (en) 2012-04-04 2016-08-09 Infineon Technologies Ag MEMS device and method of making a MEMS device
CN202957976U (zh) * 2012-11-15 2013-05-29 歌尔声学股份有限公司 一种微机电传声器芯片
CN202957975U (zh) * 2012-11-15 2013-05-29 歌尔声学股份有限公司 微机电传声器芯片
CN202957978U (zh) * 2012-11-15 2013-05-29 歌尔声学股份有限公司 一种微机电传声器芯片
DE102013213717A1 (de) * 2013-07-12 2015-01-15 Robert Bosch Gmbh MEMS-Bauelement mit einer Mikrofonstruktur und Verfahren zu dessen Herstellung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309173A1 (en) * 2008-06-16 2009-12-17 Rohm Co., Ltd. Mems sensor
CN101841758A (zh) * 2010-03-08 2010-09-22 瑞声声学科技(深圳)有限公司 电容mems麦克风
CN102264021A (zh) * 2010-12-07 2011-11-30 歌尔声学股份有限公司 一种mems麦克风芯片
EP2565153A1 (en) * 2011-09-02 2013-03-06 Nxp B.V. Acoustic transducers with perforated membranes
CN103281659A (zh) * 2013-05-03 2013-09-04 歌尔声学股份有限公司 Mems麦克风及其制作方法
CN203446028U (zh) * 2013-09-13 2014-02-19 山东共达电声股份有限公司 Mems麦克风及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3177038A4 *

Also Published As

Publication number Publication date
EP3177038A1 (en) 2017-06-07
CN105338458B (zh) 2019-06-07
CN105338458A (zh) 2016-02-17
JP2017513333A (ja) 2017-05-25
EP3177038A4 (en) 2018-03-14
EP3177038B1 (en) 2020-03-18
JP6307171B2 (ja) 2018-04-04
US10003890B2 (en) 2018-06-19
US20170070824A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2016180262A1 (zh) Mems麦克风
CN107666645B (zh) 具有双振膜的差分电容式麦克风
KR101096544B1 (ko) 멤스 마이크로폰 패키지 및 패키징 방법
CN105792084B (zh) Mems麦克风及其制造方法
US20130236037A1 (en) Multi-Microphone System
EP1931173A3 (en) Condenser microphone having flexure hinge diaphragm and method of manufacturing the same
WO2017206813A1 (zh) Mems麦克风及其制备方法
TW200623930A (en) Capacitive vibration sensor, microphone, acoustic transducer, and manufacturing method thereof
TWI727164B (zh) 包括微機電系統裝置的組件及包括組件的電子裝置
EP2555543B1 (en) MEMS Microphone
WO2022142507A1 (zh) Mems麦克风及其振膜结构
WO2004107810A1 (ja) 音響検出機構及びその製造方法
ATE517522T1 (de) Kondensatormikrofon mit membran mit biegescharnier und herstellungsverfahren dafür
WO2016015530A1 (zh) Mems麦克风
WO2016029358A1 (en) Silicon speaker
WO2023130914A1 (zh) 电子设备及声学换能器
CN104754480B (zh) 微型机电系统麦克风及其制造方法
CN104811881A (zh) 压电扬声器及其形成方法
CN114501267B (zh) 像素发声单元及其制造方法、数字发声芯片和电子终端
CN104796831B (zh) 一种电容式麦克风及其制造方法
CN217985406U (zh) 一种mems压电扬声器
CN102413408A (zh) 一种增加背腔空间的微机电麦克风芯片及其制作工艺
JP4944494B2 (ja) 静電容量型センサ
KR101893056B1 (ko) 멤스 마이크로폰 칩 구조체 및 마이크로폰 패키지
KR20080008560A (ko) 압전형 마이크로폰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827631

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015827631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119878

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016557262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE