WO2016015221A1 - 电调天线以及天线阵列与基站配对方法 - Google Patents

电调天线以及天线阵列与基站配对方法 Download PDF

Info

Publication number
WO2016015221A1
WO2016015221A1 PCT/CN2014/083220 CN2014083220W WO2016015221A1 WO 2016015221 A1 WO2016015221 A1 WO 2016015221A1 CN 2014083220 W CN2014083220 W CN 2014083220W WO 2016015221 A1 WO2016015221 A1 WO 2016015221A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna array
rcu
power
base station
Prior art date
Application number
PCT/CN2014/083220
Other languages
English (en)
French (fr)
Inventor
董经纬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/083220 priority Critical patent/WO2016015221A1/zh
Priority to CN201480012447.9A priority patent/CN105519018B/zh
Publication of WO2016015221A1 publication Critical patent/WO2016015221A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an electrical tow antenna and a method for pairing an antenna array with a base station. Background technique
  • the electric adjustable antenna refers to a mobile antenna that uses an electronically adjusted downtilt angle.
  • the principle of electronic downtilt is to change the phase of the collinear array antenna, change the amplitude of the vertical component and the horizontal component, and change the intensity of the composite component field strength. Thereby the vertical pattern of the antenna is tilted down. Because the ESC antenna can realize remote online operation and optimization, it avoids the engineering personnel to adjust the antenna downtilt angle, so it has been widely used in mobile communication systems.
  • the electrical adjustment antenna includes an antenna array and a Remote Control Unit (RCU), the antenna array improves the directivity of the radiation field and enhances the intensity of the radiation field, and the RCU controls the downtilt angle of the electronically adjustable antenna.
  • the communication between the electrical tune antenna and the base station is based on the Antenna Interface Standards Group (AISG) protocol, wherein the interface between the RCU and the base station is an AISG interface.
  • AISG Antenna Interface Standards Group
  • the RCU will report the downtilt angle of the ESC antenna to the base station through the AISG interface, and adjust the tilt angle of the ESC antenna according to the command to adjust the antenna downtilt angle received from the base station.
  • the electrical tune antenna cannot detect the antenna power information and report the power information to the base station.
  • an embodiment of the present invention provides an electrical tune antenna and a method for pairing an antenna array with a base station.
  • an embodiment of the present invention provides an electrical adjustment antenna, including an antenna array and a corresponding remote control unit RCU, where the electrical adjustment antenna further includes:
  • the RCU is configured to transmit the power value to a base station corresponding to the antenna array.
  • the RCU is further configured to: combine the power value and an antenna sequence number corresponding to the antenna array into a power size information unit, and send To the base station.
  • an embodiment of the present invention provides an electrical adjustment antenna, including at least one set of first electrical adjustment antenna units, and a set of second electrical adjustment antenna units.
  • the first electrical adjustment antenna unit includes a first antenna array.
  • the corresponding first remote control unit RCU, the second electrically adjustable antenna unit includes a second antenna array and a corresponding second RCU; each of the first RCU and the second RCU are sequentially connected;
  • the electric adjustment antenna unit further includes:
  • a coupling device disposed on the radio frequency path of the first antenna array, configured to couple the radio frequency signals of the first antenna array to obtain a coupling signal
  • a detecting device connecting the coupling device and the first RCU, for detecting the coupled signal output by the coupling device to obtain a corresponding power value, and transmitting the power value to the first RCU;
  • the first RCU is configured to form the power value and an antenna sequence number corresponding to the first antenna array into a power size information unit, and send the same to the connected first RCU until the sending To the second RCU;
  • the second electrically adjustable antenna unit further includes:
  • a coupling device disposed on the radio frequency path of the second antenna array, configured to couple the radio frequency signals of the second antenna array to obtain a coupling signal
  • a detecting device connecting the coupling device and the second RCU, for detecting the coupled signal output by the coupling device to obtain a corresponding power value, and transmitting the power value to the second RCU;
  • the second RCU is configured to form the power value and the antenna sequence number corresponding to the second antenna array into a power size information unit, and together with the power size information unit sent by each of the first RCUs. Sending to a base station corresponding to the second antenna array.
  • an embodiment of the present invention provides a processing method for pairing an antenna array and a base station in an electrical tune antenna, including:
  • the power level of the radio frequency signal of the antenna array to be paired is set to a preset value, and the preset value is different from the power level of the radio frequency signal of the other antenna array;
  • the antenna array to be paired is the first antenna array or the Said second antenna array;
  • the first RCU obtains a corresponding power size information unit according to the power query request, and sends the information to the second RCU;
  • the second RCU And obtaining, according to the power query request, a corresponding power size information unit, and sending the power size information unit sent by each of the first RCUs to a base station corresponding to the second antenna array;
  • the base station corresponding to the second antenna array acquires a power size information unit including the preset value, and obtains a corresponding antenna sequence number therefrom to complete pairing between the antenna array and the base station.
  • the power level of the radio frequency signal of the antenna array to be paired is set to a preset value, and the preset value is compared with the radio frequency signal of the other antenna array.
  • the different power levels include:
  • the electrical tuning antenna and the antenna array and the base station pairing method provided by the embodiments of the present invention can obtain the power value of the RF path of the antenna array by setting the coupling device and the detecting device, and the RCU sends the power value to the power value after obtaining the power value.
  • the base station corresponding to the antenna array is configured to detect the antenna power and report the power information to the base station.
  • FIG. 1 is a schematic structural diagram of an electrical adjustment antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an electrical adjustment antenna according to another embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for pairing an antenna array and a base station of the electrical tune antenna of FIG. 2. detailed description
  • FIG. 1 is a schematic structural diagram of an electric adjustable antenna according to an embodiment of the present invention.
  • the electrical adjustment antenna 100 provided in this embodiment includes an antenna array 11 and a corresponding remote control unit RCU12.
  • the electric adjustable antenna 100 further includes: a coupling device 91 and a detecting device 92.
  • the coupling device 91 is disposed on the RF path of the antenna array 11 for coupling the RF signals of the antenna array 11 to obtain a coupled signal.
  • the detecting means 92 is connected to the coupling means 91 and the RCU 12 for detecting the coupled signal output from the coupling means 91 to obtain a corresponding power value, and transmits the power value to the RCU 12.
  • the RCU 12 is configured to transmit the power value to the base station 200 corresponding to the antenna array 11.
  • the communication between the electrical tune antenna and the base station can be based on the AISG protocol, and the interface between the RCU and the base station can be an AISG interface.
  • the RCU 12 transmits the power value to the base station 200 corresponding to the antenna array 11, which can be implemented by modifying the AISG protocol, that is, adding the AISG command to the AISG protocol, or by adding a private command to the private interface allowed by the AISG protocol.
  • the coupling device 91 may employ a prior art coupler or other device that can acquire the radio frequency signal of the antenna array 11.
  • the detection device 92 can use the prior art envelope detector, the peer detector or other device that can implement power detection to obtain the power value, which is not limited in this embodiment.
  • the electrical adjustment antenna, the coupling device, the detecting device and the RCU provided in this embodiment are sequentially connected, and the coupling device disposed on the RF path of the antenna array acquires the RF signal of the antenna array, and the detecting device detects the RF signal to obtain the RF signal power.
  • the value, gp can be obtained by the coupling device and the detecting device.
  • the power value is transmitted to the base station corresponding to the antenna array through the RCU, and the antenna power reporting is implemented. Therefore, the electrical adjustment antenna provided in this embodiment implements the electrical adjustment antenna to detect the antenna power and report the power information to the base station.
  • the RCU 12 is further configured to use the power value and the antenna array 11
  • the required antenna sequence numbers constitute a power size information unit and are transmitted to the base station 200.
  • the antenna serial number is in one-to-one correspondence with the antenna, and the antenna serial number may be pre-stored in the RCU of the electrical adjustment antenna, that is, the RCU 12 knows in advance the antenna serial number corresponding to the antenna array 11.
  • the RCU 12 combines the power value and the antenna sequence number corresponding to the antenna array 11 into a power size information unit, and may have various combinations, such as "antenna serial number + power value", "power value + antenna serial number", and "antenna sequence". No.
  • power value & antenna serial number wherein the connection symbol between the power value and the antenna serial number may also be other symbols, and the unit of the power value may be watt (referred to as w) or decibel. Milliwatt (abbreviated as dBm), this embodiment does not limit the specific form of the power size information unit.
  • FIG. 2 is a schematic structural diagram of an electric adjustable antenna according to another embodiment of the present invention.
  • the electrical adjustment antenna 1000 includes two sets of first electrical adjustment antenna units, which are a first electrical adjustment antenna unit 101 and a first electrical adjustment antenna unit 102, and a set of second electrical adjustment antenna units 103, respectively.
  • the first electrical antenna unit 101 includes a first antenna array 21 and a corresponding first remote control unit RCU22.
  • the first electrical antenna unit 102 includes a first antenna array 31 and a corresponding first remote control unit RCU32.
  • the electrical adjustment antenna unit 103 includes a second antenna array 41 and a corresponding second RCU 42.
  • the first RCU 22 is connected to the first RCU 32, and the first RCU 32 is connected to the second RCU 42.
  • the first electrically adjustable antenna unit 101 further includes a coupling device 93 and a detecting device 94.
  • the coupling device 93 is disposed on the RF path of the first antenna array 21 for coupling the RF signals of the first antenna array 21 to obtain a coupled signal.
  • the detecting means 94 is coupled to the coupling means 93 and the first RCU 22 for detecting the coupled power output by detecting the coupled signal output from the coupling means 93 and transmitting the power value to the first RCU 22.
  • the first RCU 22 is configured to form the power value and the antenna sequence number corresponding to the first antenna array 21 into a power size information unit, and send the signal to the connected first RCU 32, where the first RCU 32 uses the power size information unit. Send to the second RCU42.
  • the first electrically adjustable antenna unit 102 further includes a coupling device 95 and a detection device 96.
  • the coupling device 95 is disposed on the radio frequency path of the first antenna array 31 for coupling the radio frequency signals of the first antenna array 31 to obtain a coupling signal.
  • the detecting means 96 is connected to the coupling means 95 and the first RCU 32 for detecting the coupled signal output by the coupling means 95 to obtain a corresponding power value and transmitting the power value to the first RCU 32.
  • the first RCU 32 is configured to form the power value and the antenna sequence number corresponding to the first antenna array 31 into a power size information unit, and send the power to the second RCU 42.
  • the second electrically adjustable antenna unit 103 further includes a coupling device 97 and a detecting device 98.
  • the coupling device 97 is disposed on the radio frequency path of the second antenna array 41 for coupling the radio frequency signals of the second antenna array 41 to obtain a coupling signal.
  • the detector device 98 is coupled to the coupling device 97 and the second RCU 42 for detecting the coupled signal output by the coupling device 97 to obtain a corresponding power value and transmitting the power value to the second RCU 42.
  • the second RCU 42 is configured to combine the power value and the antenna sequence number corresponding to the second antenna array 41 into a power size information unit, and send the power size information unit sent by the first RCU 22 and the first RCU 32 together.
  • the base station 203 corresponding to the second antenna array 41.
  • the first electrically adjustable antenna unit included in the electrically adjustable antenna 1000 is not limited to two groups, and may include only one group, or may include two or more groups, that is, the electrically adjustable antenna 1000 includes at least one set of first An electrical adjustment antenna unit, and a set of second electrical adjustment antenna units.
  • the first RCU and the second RCU are sequentially connected, and each of the first RCUs combines the power value and the antenna sequence number corresponding to the first antenna array into a power size information unit, and sends the signal to the connected first RCU until the first RCU is sent. To the second RCU.
  • the antenna serial number is in one-to-one correspondence with the antenna, and the antenna serial number may be pre-stored in the RCU of the electrical antenna, that is, the RCU knows in advance the antenna serial number corresponding to the antenna array.
  • the RCU combines the power value and the antenna sequence number corresponding to the antenna array into the power size information unit, and may have multiple combinations, for example, "antenna serial number + power value", "power value + antenna serial number”.
  • connection symbol between the power value and the antenna serial number may also be other symbols, and the unit of the power value may be watt (referred to as w It can also be decibel milliwatt (abbreviated as dBm).
  • w watt
  • dBm decibel milliwatt
  • the electrical adjustment antenna provided in this embodiment includes at least one set of first electrical adjustment antenna units and a set of second electrical adjustment antenna units.
  • the coupling device disposed on the RF path of the antenna array acquires the RF signal of the antenna array, and the detecting device detects the RF signal to obtain the RF signal power value, ⁇ ⁇ , the ESC can be obtained through the coupling device and the detecting device The power value of the antenna.
  • the RCU combines the power value and the antenna sequence number corresponding to the antenna array into a power size information unit, and is sequentially connected by each of the first RCU and the second RCU, and the second RCU can obtain the power size information unit of all the antenna arrays, and the antenna array
  • the antenna serial number and the power value correspond one-to-one.
  • the electrical adjustment antenna provided in this embodiment implements the electrical adjustment antenna to detect the antenna power and report the power information to the base station.
  • the antenna sequence numbers corresponding to the first antenna array and the second antenna array are different from each other.
  • FIG. 3 is a flow chart of a method for pairing an antenna array and a base station of the electrical tune antenna of FIG. 2. Please also refer to Figure 2 and Figure 3.
  • the electrical adjustment antenna 1000 includes a first electrically adjustable antenna unit 101, a first electrically adjustable antenna unit 102, and a second electrically adjustable antenna unit 103, and the second electrically adjustable antenna unit 103 is coupled to the base station 203.
  • the base station 203 will obtain three sets of power size information units, which are respectively: an antenna sequence number corresponding to the second antenna array 41 and a power size information unit composed of corresponding power values, and a first antenna.
  • this embodiment provides a processing method, which is specifically as follows:
  • Step 101 The power level of the radio frequency signal of the antenna array to be paired is set to a preset value, where the preset value is different from the power level of the radio frequency signal of the other antenna array; the antenna array to be paired is the first An antenna array or the second antenna array;
  • the base station 203 needs to confirm the paired antenna array, that is, it is necessary to confirm which of the first antenna array 21, the first antenna array 31 , and the second antenna array 41 is the antenna array corresponding to the base station 203.
  • the base station 203 sets the radio frequency signal power value of the antenna array to a preset value V3, and the radio frequency signal power value of the antenna array of the known base station 202 is V2, and the radio frequency signal power value of the antenna array of the base station 201 is VI, wherein the preset value V3 It is different from the values of V2 and VI.
  • the purpose of setting the preset value V3 is to enable the base station 203 to distinguish the power values of its corresponding antenna array.
  • the power value of the antenna array corresponding to the base station 203 is the smallest among the three base stations; when VKV2 ⁇ V3 is set, the power value of the antenna array corresponding to the base station 203 is three.
  • the power of the base station is the largest; when V2>V3>V1 or V1>V3>V2 is set, the power value of the antenna array corresponding to the base station 203 is the power of the three base stations.
  • This embodiment does not add the specific value of the preset value V3. To limit.
  • the power level of the radio frequency signal of the antenna array to be paired may be set to a preset value, and the power level of the radio frequency signal of the other antenna array is set to be zero, and the preset value is not zero.
  • the power values configured by the base station 201, the base station 202, and the base station 203 can be shared by the interface between the base stations or the upper layer device of the base station. gp, the base station can know the power values of other base station configurations. This embodiment does not limit the manner of information sharing.
  • Step 103 Send a power query request to the first RCU and the second RCU, where the first RCU obtains a corresponding power size information unit according to the power query request, and sends the information to the second RCU.
  • the second RCU obtains a corresponding power size information unit according to the power query request, and sends the power size information unit sent by each of the first RCUs to the base station corresponding to the second antenna array;
  • the base station 203 sends a power query request to the first RCU 22, the first RCU 32, and the second RCU 42 through the AISG interface.
  • the power query request may be an AISG command added when the AISG protocol is modified, or may be a private interface allowed by the AISG protocol. Added private command.
  • the first RCU 22 obtains the corresponding power size information unit R1 according to the power query request, and sends the power size information unit R1 to the first RCU 32.
  • the first RCU 32 obtains the corresponding power size information unit R2 according to the power query request, and the power is obtained.
  • the size information unit R1 and the power size information unit R2 are sent together to the second RCU 42; the second RCU 42 obtains the corresponding power size information unit R3 according to the power query request, and the power size information unit R1, the power size information unit R2, and the power The size information unit R3 is sent to the base station 203.
  • base station 203 obtains three sets of power size information elements.
  • Step 105 The base station corresponding to the second antenna array acquires a power size information unit including the preset value, and obtains a corresponding antenna sequence number from the base antenna to complete pairing between the antenna array and the base station.
  • the antenna array corresponding to the base station 203 can be confirmed by combining the power value of the radio frequency signals set by the base stations 201, 202, and 203 in the step 101.
  • the specific process is as follows: For example, the obtained power values in R1, R2, and R3 are ranked as R1>R2>R3, B, the power value of the first antenna array 21>the power value of the first antenna array 31>the second antenna array 41 Power value.
  • the power value of the radio frequency signals set by the base stations 201, 202, and 203 in step 101 is ranked as V1>V2>V3, B, and the power value of the antenna array corresponding to the base station 203.
  • the antenna array corresponding to the base station 203 is the second antenna array 41 corresponding to the power size information unit R3. Since the power size information unit R3 further includes the antenna serial number, the base station 203 obtains the second antenna array 41 matched with the base antenna 203. Antenna serial number.
  • the processing method of the antenna array and the base station pairing provided in this embodiment is to set the power level of the radio frequency signal of the antenna array to be paired to a preset value, because the preset value is different from the power level of the radio frequency signals of other antenna arrays, and is combined with the base station to check
  • the power value in the obtained power size information unit is different in size, and the pairing relationship between the antenna array and the base station can be confirmed by comparison.
  • the power size information unit further includes an antenna sequence number
  • the base station can obtain the antenna sequence number of the antenna array paired with the base station.
  • the method provided in this embodiment can obtain the pairing relationship between the antenna array and the base station and the antenna serial number by configuring the antenna power and querying the antenna power, which is simpler and more convenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种电调天线以及天线阵列与基站配对方法。电调天线包括一天线阵列和对应的远程控制单元RCU,所述电调天线还包括:耦合装置,设置在所述天线阵列的射频通路上,用于对所述天线阵列的射频信号进行耦合,获得耦合信号;检波装置,连接所述耦合装置和所述RCU,用于通过检测所述耦合装置输出的所述耦合信号以获得对应的功率值,并将所述功率值发送给所述RCU;其中,所述RCU用于将所述功率值发送给与所述天线阵列对应的基站。

Description

电调天线以及天线阵列与基站配对方法
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种电调天线以及天线阵列 与基站配对方法。 背景技术
电调天线, 是指使用电子调整下倾角度的移动天线, 电子下倾的原理是 通过改变共线阵天线振子的相位, 改变垂直分量和水平分量的幅值大小, 改 变合成分量场强强度, 从而使天线的垂直方向性图下倾。 由于电调天线可以 实现远程在线作业和优化, 避免了工程人员进站调整天线下倾角, 所以, 在 移动通信系统中得到了越来越广泛的应用。
现有技术中, 电调天线包括天线阵列和远程控制单元 (Remote Control Unit,简称 RCU),天线阵列改善辐射场的方向性和加强辐射场的强度, RCU 用来控制电调天线的下倾角度。 电调天线和基站的通信基于天线接口标准 (Antenna Interface Standards Group, 简称 AISG) 协议, 其中, RCU和基站 的接口为 AISG接口。 RCU会通过 AISG接口将电调天线的下倾角度上报给 基站, 也会根据从基站接收到的调整天线下倾角度的命令来进行电调天线下 倾角度的调整。
但是, 现有技术中存在下述问题: 电调天线无法检测天线功率信息并将 该功率信息上报给基站。 发明内容
针对现有技术的问题, 本发明实施例提供一种电调天线以及天线阵列与 基站配对方法。
第一方面, 本发明实施例提供一种电调天线, 包括一天线阵列和对应的 远程控制单元 RCU, 所述电调天线还包括:
耦合装置, 设置在所述天线阵列的射频通路上, 用于对所述天线阵列的 射频信号进行耦合, 获得耦合信号; 检波装置, 连接所述耦合装置和所述 RCU, 用于通过检测所述耦合装置 输出的所述耦合信号以获得对应的功率值,并将所述功率值发送给所述 RCU; 其中, 所述 RCU用于将所述功率值发送给与所述天线阵列对应的基站。 结合第一方面, 在第一方面的第一种可能的实现方式中, 所述 RCU还用 于, 将所述功率值以及所述天线阵列所对应的天线序列号组成功率大小信息 单元, 并发送给所述基站。
第二方面, 本发明实施例提供一种电调天线, 包括至少一组第一电调天 线单元, 以及一组第二电调天线单元; 所述第一电调天线单元包括一第一天 线阵列和对应的第一远程控制单元 RCU, 所述第二电调天线单元包括一第二 天线阵列和对应的第二 RCU;各所述第一 RCU以及所述第二 RCU依次连接; 所述第一电调天线单元还包括:
耦合装置, 设置在所述第一天线阵列的射频通路上, 用于对所述第一天 线阵列的射频信号进行耦合, 获得耦合信号;
检波装置, 连接所述耦合装置和所述第一 RCU, 用于通过检测所述耦合 装置输出的所述耦合信号以获得对应的功率值, 并将所述功率值发送给所述 第一 RCU;
其中, 所述第一 RCU, 用于将所述功率值以及所述第一天线阵列所对应 的天线序列号组成功率大小信息单元, 并发送给所连接的下一个所述第一 RCU, 直至发送到所述第二 RCU;
所述第二电调天线单元还包括:
耦合装置, 设置在所述第二天线阵列的射频通路上, 用于对所述第二天 线阵列的射频信号进行耦合, 获得耦合信号;
检波装置, 连接所述耦合装置和所述第二 RCU, 用于通过检测所述耦合 装置输出的所述耦合信号以获得对应的功率值, 并将所述功率值发送给所述 第二 RCU;
其中, 所述第二 RCU, 用于将所述功率值以及所述第二天线阵列所对应 的天线序列号组成功率大小信息单元,并与各所述第一 RCU发送过来的功率 大小信息单元一起发送给与所述第二天线阵列对应的基站。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述第一天线 阵列和所述第二天线阵列所各自对应的天线序列号, 互不相同。 第三方面, 本发明实施例提供一种用于在电调天线中进行天线阵列和基 站配对的处理方法, 包括:
设置待配对的天线阵列的射频信号的功率大小为预设值, 所述预设值与 其他天线阵列的射频信号的功率大小不同; 所述待配对的天线阵列为所述第 —天线阵列或所述第二天线阵列;
向所述第一 RCU和第二 RCU发送功率査询请求,所述第一 RCU根据所 述功率査询请求获得对应的功率大小信息单元, 并发送至所述第二 RCU; 所 述第二 RCU根据所述功率査询请求获得对应的功率大小信息单元,并与各所 述第一 RCU发送过来的功率大小信息单元一起发送给与所述第二天线阵列 对应的基站;
与所述第二天线阵列对应的基站获取包括所述预设值的功率大小信息单 元, 并从中获取对应的天线序列号以完成天线阵列和基站的配对。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述设置待配 对的天线阵列的射频信号的功率大小为预设值, 所述预设值与其他天线阵列 的射频信号的功率大小不同包括:
设置待配对的天线阵列的射频信号的功率大小为预设值, 并设置其他天 线阵列的射频信号的功率大小为零, 且所述预设值不为零。
本发明实施例提供的电调天线以及天线阵列与基站配对方法, 通过设置 耦合装置和检波装置, 可以获取到天线阵列射频通路的功率值, RCU获取到 该功率值后将该功率值发送给与天线阵列对应的基站, 从而实现了电调天线 检测天线功率并将该功率信息上报给基站。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的电调天线的结构示意图;
图 2为本发明另一实施例提供的电调天线的结构示意图;
图 3为图 2中电调天线的天线阵列和基站配对的方法流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明一实施例提供的电调天线的结构示意图。
如图 1所示, 本实施例提供的电调天线 100, 包括一天线阵列 11和对应 的远程控制单元 RCU12。 电调天线 100还包括: 耦合装置 91和检波装置 92。 耦合装置 91设置在天线阵列 11的射频通路上,用于对天线阵列 11的射频信 号进行耦合, 获得耦合信号。 检波装置 92连接耦合装置 91和 RCU12, 用于 通过检测耦合装置 91输出的耦合信号以获得对应的功率值,并将该功率值发 送给 RCU12。 其中, RCU12用于将该功率值发送给与天线阵列 11对应的基 站 200。
电调天线和基站之间的通信可以基于 AISG协议, RCU和基站之间的接 口可以为 AISG接口。 RCU12将功率值发送给与天线阵列 11对应的基站 200, 可以通过修改 AISG协议实现, 即在 AISG协议中增加 AISG命令, 也可以通 过在 AISG协议允许的私有接口中增加私有命令实现。
另外, 在本实施例中, 耦合装置 91可以采用现有技术中耦合器或者其他 可以获取到天线阵列 11的射频信号的装置。 检波装置 92可以采用现有技术 中包络检波器、同歩检波器或者其他可以实现功率检测以获取功率值的装置, 本实施例对此不加以限制。
本实施例提供的电调天线, 耦合装置、 检波装置和 RCU依次相连, 设置 在天线阵列射频通路上的耦合装置获取到天线阵列的射频信号, 检波装置对 该射频信号进行检测获取到射频信号功率值, gp, 通过耦合装置和检波装置, 可以获取到电调天线的功率值。通过 RCU将功率值发送给与天线阵列对应的 基站, 实现了天线功率上报。 所以, 本实施例提供的电调天线, 实现了电调 天线检测天线功率并将该功率信息上报给基站。
进一歩, 上述实施例中, RCU12还用于将功率值以及天线阵列 11所对 应的天线序列号组成功率大小信息单元, 并发送给基站 200。 天线序列号与 天线是一一对应的, 天线序列号可以预先存储在电调天线的 RCU中, 也就是 说, RCU12预先知道天线阵列 11所对应的天线序列号。 RCU12将功率值以 及天线阵列 11所对应的天线序列号组成功率大小信息单元,可以有多种组合 方式, 例如是 "天线序列号 +功率值" 、 "功率值 +天线序列号" 、 "天线序 列号 &功率值"、 "功率值&天线序列号"等, 其中, 功率值和天线序列号之 间的连接符号也可以是其他符号, 功率值的单位可以是瓦特 (简称 w) 也可 以是分贝毫瓦 (简称 dBm) , 本实施例对功率大小信息单元的具体形式不加 以限制。
图 2为本发明另一实施例提供的电调天线的结构示意图。
如图 2所示, 电调天线 1000包括两组第一电调天线单元, 分别为第一电 调天线单元 101和第一电调天线单元 102, 以及一组第二电调天线单元 103。 第一电调天线单元 101包括一第一天线阵列 21 和对应的第一远程控制单元 RCU22;第一电调天线单元 102包括一第一天线阵列 31和对应的第一远程控 制单元 RCU32; 第二电调天线单元 103包括一第二天线阵列 41和对应的第 二 RCU42, 第一 RCU22与第一 RCU32连接, 第一 RCU32与第二 RCU42连 接。
第一电调天线单元 101还包括耦合装置 93和检波装置 94。 耦合装置 93 设置在第一天线阵列 21的射频通路上, 用于对第一天线阵列 21的射频信号 进行耦合, 获得耦合信号。 检波装置 94连接耦合装置 93和第一 RCU22, 用 于通过检测耦合装置 93输出的耦合信号以获得对应的功率值,并将该功率值 发送给第一 RCU22。 其中, 第一 RCU22用于将该功率值以及第一天线阵列 21所对应的天线序列号组成功率大小信息单元, 并发送给所连接的下一个第 一 RCU32, 第一 RCU32将该功率大小信息单元发送给第二 RCU42。
第一电调天线单元 102还包括耦合装置 95和检波装置 96。 耦合装置 95 设置在第一天线阵列 31的射频通路上, 用于对第一天线阵列 31的射频信号 进行耦合, 获得耦合信号。 检波装置 96连接耦合装置 95和第一 RCU32, 用 于通过检测耦合装置 95输出的耦合信号以获得对应的功率值,并将该功率值 发送给第一 RCU32。 其中, 第一 RCU32用于将该功率值以及第一天线阵列 31所对应的天线序列号组成功率大小信息单元, 并发送给第二 RCU42。 第二电调天线单元 103还包括耦合装置 97和检波装置 98。 耦合装置 97 设置在第二天线阵列 41的射频通路上, 用于对第二天线阵列 41的射频信号 进行耦合, 获得耦合信号。 检波装置 98连接耦合装置 97和第二 RCU42, 用 于通过检测耦合装置 97输出的耦合信号以获得对应的功率值,并将该功率值 发送给第二 RCU42。 其中, 第二 RCU42, 用于将该功率值以及第二天线阵列 41 所对应的天线序列号组成功率大小信息单元, 并与第一 RCU22、 第一 RCU32发送过来的功率大小信息单元一起发送给与第二天线阵列 41对应的 基站 203。
在上述实施例中, 电调天线 1000包括的第一电调天线单元不限于两组, 可以只包括一组, 也可以包括两组以上, 也就是说, 电调天线 1000包括至少 一组第一电调天线单元, 以及一组第二电调天线单元。 其中, 各第一 RCU以 及第二 RCU依次连接, 各第一 RCU将功率值以及第一天线阵列所对应的天 线序列号组成功率大小信息单元, 发送给所连接的下一个第一 RCU, 直至发 送到第二 RCU。
另外, 天线序列号与天线是一一对应的, 天线序列号可以预先存储在电 调天线的 RCU中, 也就是说, RCU预先知道天线阵列所对应的天线序列号。 在本实施例中, RCU将功率值以及天线阵列所对应的天线序列号组成功率大 小信息单元, 可以有多种组合方式, 例如是 "天线序列号 +功率值"、 "功率 值 +天线序列号" 、 "天线序列号&功率值" 、 "功率值&天线序列号"等, 其中, 功率值和天线序列号之间的连接符号也可以是其他符号, 功率值的单 位可以是瓦特 (简称 w) 也可以是分贝毫瓦 (简称 dBm) , 本实施例对功率 大小信息单元的具体形式不加以限制。
本实施例提供的电调天线, 包括至少一组第一电调天线单元, 以及一组 第二电调天线单元。 其中, 设置在天线阵列射频通路上的耦合装置获取到天 线阵列的射频信号,检波装置对该射频信号进行检测获取到射频信号功率值, §卩, 通过耦合装置和检波装置, 可以获取到电调天线的功率值。 RCU将功率 值以及天线阵列所对应的天线序列号组成功率大小信息单元, 而且, 通过各 第一 RCU以及第二 RCU依次连接,第二 RCU可以获得所有天线阵列的功率 大小信息单元, 且天线阵列的天线序列号和功率值一一对应。 通过第二 RCU 将多组功率大小信息单元发送给与第二天线阵列对应的基站, 实现了天线功 率的上报。 所以, 本实施例提供的电调天线, 实现了电调天线检测天线功率 并将该功率信息上报给基站。
在上述实施例中, 第一天线阵列和第二天线阵列所各自对应的天线序列 号, 互不相同。
图 3为图 2中电调天线的天线阵列和基站配对的方法流程图。 请同时参 照图 2和图 3。
现有技术中, 对于多个天线阵列级联场景, 为了区分基站和天线阵列的 配对关系, 只能靠手动抄写每个频段天线特殊的序列号, 效率低且容易出错。 如果数据搞错或丢失, 则需要再上站甚至爬到天线上再次获取序列号。
如图 2所示, 电调天线 1000包括第一电调天线单元 101、 第一电调天线 单元 102和第二电调天线单元 103, 第二电调天线单元 103与基站 203相连 接。根据本申请第二实施例的描述, 基站 203将获得三组功率大小信息单元, 分别为:第二天线阵列 41所对应的天线序列号和相应的功率值组成的功率大 小信息单元、第一天线阵列 31所对应的天线序列号和相应的功率值组成的功 率大小信息单元、第一天线阵列 21所对应的天线序列号和相应的功率值组成 的功率大小信息单元。 为了确认天线阵列和基站的配对关系, 本实施例提供 一种处理方法, 具体如下:
歩骤 101 : 设置待配对的天线阵列的射频信号的功率大小为预设值, 所 述预设值与其他天线阵列的射频信号的功率大小不同; 所述待配对的天线阵 列为所述第一天线阵列或所述第二天线阵列;
基站 203需要确认与之配对的天线阵列, 即需要确认第一天线阵列 21、 第一天线阵列 31、 第二天线阵列 41哪个是与基站 203相对应的天线阵列。 基站 203设置天线阵列的射频信号功率值为预设值 V3 ,而已知基站 202的天 线阵列的射频信号功率值为 V2, 基站 201 的天线阵列的射频信号功率值为 VI, 其中, 预设值 V3与 V2、 VI的值不相同。 设置预设值 V3的目的是可以 使基站 203区分出其对应的天线阵列的功率值。例如,当设置 V1〉V2〉V3时, 则基站 203 对应的天线阵列的功率值就是三个基站中功率最小的; 当设置 VKV2<V3时, 则基站 203对应的天线阵列的功率值就是三个基站中功率最 大的; 当设置 V2〉V3〉V1或者 V1〉V3〉V2时, 则基站 203对应的天线阵列的 功率值就是三个基站中功率居中的。 本实施例对预设值 V3 的具体数值不加 以限制。
在本实施例中, 还可以设置待配对的天线阵列的射频信号的功率大小为 预设值, 并设置其他天线阵列的射频信号的功率大小为零, 且所述预设值不 为零。 gP, 设置 V1=V2=0, V3≠0, 则基站 203对应的天线阵列的功率值就 是三个基站中唯一的非零值。
在本实施例中, 基站 201、 基站 202、 基站 203配置的功率值, 可以通过 基站间的接口或者基站上层设备实现信息共享, gp, 本基站可以获知其他基 站配置的功率值。 本实施例对于信息共享方式不加以限制。
歩骤 103: 向所述第一 RCU和第二 RCU发送功率査询请求, 所述第一 RCU根据所述功率査询请求获得对应的功率大小信息单元, 并发送至所述第 二 RCU; 所述第二 RCU根据所述功率査询请求获得对应的功率大小信息单 元,并与各所述第一 RCU发送过来的功率大小信息单元一起发送给与所述第 二天线阵列对应的基站;
基站 203通过 AISG接口向第一 RCU22、 第一 RCU32和第二 RCU42发 送功率査询请求, 该功率査询请求可以是通过修改 AISG协议时增加的 AISG 命令, 也可以是 AISG协议允许的私有接口中增加的私有命令。 第一 RCU22 根据功率査询请求获得对应的功率大小信息单元 Rl, 并将功率大小信息单元 R1发送至第一 RCU32; 第一 RCU32根据功率査询请求获得对应的功率大小 信息单元 R2, 并将功率大小信息单元 R1和功率大小信息单元 R2—起发送 至第二 RCU42; 第二 RCU42根据功率査询请求获得对应的功率大小信息单 元 R3, 并将功率大小信息单元 Rl、功率大小信息单元 R2和功率大小信息单 元 R3—起发送给基站 203。这样,基站 203就获得了三组功率大小信息单元。
歩骤 105: 与所述第二天线阵列对应的基站获取包括所述预设值的功率 大小信息单元,并从中获取对应的天线序列号以完成天线阵列和基站的配对。
基站 203获取到三组功率大小信息单元 Rl、 R2、 R3后, 结合歩骤 101 中基站 201、 202、 203设置的射频信号的功率值大小, 可以确认基站 203对 应的天线阵列。 具体过程如下: 例如, 获取到的 Rl、 R2、 R3中功率值排序 为 R1〉R2〉R3, B , 第一天线阵列 21的功率值〉第一天线阵列 31的功率值〉 第二天线阵列 41的功率值。 而歩骤 101中基站 201、 202、 203设置的射频信 号的功率值大小排序为 V1〉V2〉V3, B , 基站 203对应的天线阵列的功率值 最小,那么基站 203对应的天线阵列即为功率大小信息单元 R3对应的第二天 线阵列 41, 由于功率大小信息单元 R3 中还包含天线序列号, 所以基站 203 获得了与其配对的第二天线阵列 41的天线序列号。
本实施例提供的天线阵列和基站配对的处理方法, 设置待配对的天线阵 列的射频信号的功率大小为预设值, 因为预设值与其他天线阵列的射频信号 的功率大小不同, 结合基站査询获得的功率大小信息单元中的功率值大小不 同, 通过比对可以确认天线阵列和基站的配对关系。 由于功率大小信息单元 中还包含有天线序列号, 基站可以获得与其配对的天线阵列的天线序列号。 本实施例提供的方法, 通过配置天线功率和査询天线功率, 可以获取到天线 阵列和基站的配对关系以及天线序列号, 更加简单方便。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种电调天线, 包括一天线阵列和对应的远程控制单元 RCU, 其特 征在于, 所述电调天线还包括:
耦合装置, 设置在所述天线阵列的射频通路上, 用于对所述天线阵列的 射频信号进行耦合, 获得耦合信号;
检波装置, 连接所述耦合装置和所述 RCU, 用于通过检测所述耦合装置 输出的所述耦合信号以获得对应的功率值,并将所述功率值发送给所述 RCU; 其中, 所述 RCU用于将所述功率值发送给与所述天线阵列对应的基站。
2、 根据权利要求 1所述的电调天线, 其特征在于:
所述 RCU还用于,将所述功率值以及所述天线阵列所对应的天线序列号 组成功率大小信息单元, 并发送给所述基站。
3、 一种电调天线, 包括至少一组第一电调天线单元, 以及一组第二电调 天线单元; 所述第一电调天线单元包括一第一天线阵列和对应的第一远程控 制单元 RCU , 所述第二电调天线单元包括一第二天线阵列和对应的第二 RCU; 各所述第一 RCU以及所述第二 RCU依次连接; 其特征在于:
所述第一电调天线单元还包括:
耦合装置, 设置在所述第一天线阵列的射频通路上, 用于对所述第一天 线阵列的射频信号进行耦合, 获得耦合信号;
检波装置, 连接所述耦合装置和所述第一 RCU, 用于通过检测所述耦合 装置输出的所述耦合信号以获得对应的功率值, 并将所述功率值发送给所述 第一 RCU;
其中, 所述第一 RCU, 用于将所述功率值以及所述第一天线阵列所对应 的天线序列号组成功率大小信息单元, 并发送给所连接的下一个所述第一 RCU, 直至发送到所述第二 RCU;
所述第二电调天线单元还包括:
耦合装置, 设置在所述第二天线阵列的射频通路上, 用于对所述第二天 线阵列的射频信号进行耦合, 获得耦合信号;
检波装置, 连接所述耦合装置和所述第二 RCU, 用于通过检测所述耦合 装置输出的所述耦合信号以获得对应的功率值, 并将所述功率值发送给所述 第二 RCU; 其中, 所述第二 RCU, 用于将所述功率值以及所述第二天线阵列所对应 的天线序列号组成功率大小信息单元,并与各所述第一 RCU发送过来的功率 大小信息单元一起发送给与所述第二天线阵列对应的基站。
4、 根据权利要求 3所述的电调天线, 其特征在于, 所述第一天线阵列和 所述第二天线阵列所各自对应的天线序列号, 互不相同。
5、一种用于如权利要求 3或 4所述的电调天线中进行天线阵列和基站配 对的处理方法, 其特征在于, 所述方法包括:
设置待配对的天线阵列的射频信号的功率大小为预设值, 所述预设值与 其他天线阵列的射频信号的功率大小不同; 所述待配对的天线阵列为所述第 一天线阵列或所述第二天线阵列;
向所述第一 RCU和第二 RCU发送功率査询请求,所述第一 RCU根据所 述功率査询请求获得对应的功率大小信息单元, 并发送至所述第二 RCU; 所 述第二 RCU根据所述功率査询请求获得对应的功率大小信息单元,并与各所 述第一 RCU发送过来的功率大小信息单元一起发送给与所述第二天线阵列 对应的基站;
与所述第二天线阵列对应的基站获取包括所述预设值的功率大小信息单 元, 并从中获取对应的天线序列号以完成天线阵列和基站的配对。
6、 根据权利要求 5所述的方法, 其特征在于, 所述设置待配对的天线阵 列的射频信号的功率大小为预设值, 所述预设值与其他天线阵列的射频信号 的功率大小不同包括:
设置待配对的天线阵列的射频信号的功率大小为预设值, 并设置其他天 线阵列的射频信号的功率大小为零, 且所述预设值不为零。
PCT/CN2014/083220 2014-07-29 2014-07-29 电调天线以及天线阵列与基站配对方法 WO2016015221A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/083220 WO2016015221A1 (zh) 2014-07-29 2014-07-29 电调天线以及天线阵列与基站配对方法
CN201480012447.9A CN105519018B (zh) 2014-07-29 2014-07-29 电调天线以及天线阵列与基站配对方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083220 WO2016015221A1 (zh) 2014-07-29 2014-07-29 电调天线以及天线阵列与基站配对方法

Publications (1)

Publication Number Publication Date
WO2016015221A1 true WO2016015221A1 (zh) 2016-02-04

Family

ID=55216588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083220 WO2016015221A1 (zh) 2014-07-29 2014-07-29 电调天线以及天线阵列与基站配对方法

Country Status (2)

Country Link
CN (1) CN105519018B (zh)
WO (1) WO2016015221A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058468B (zh) * 2016-07-08 2019-06-18 广东通宇通讯股份有限公司 一种电调天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740864A (zh) * 2008-11-21 2010-06-16 中兴通讯股份有限公司 一种电调天线通信系统和方法
CN102170321A (zh) * 2011-04-20 2011-08-31 李英祥 一种基站天线参数监测仪及自动监测方法
CN102905279A (zh) * 2012-09-28 2013-01-30 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826411B2 (en) * 2002-06-27 2004-11-30 Interdigital Technology Corporation Low power interference signal code power (ISCP) measurement
CN1913369A (zh) * 2005-08-10 2007-02-14 中兴通讯股份有限公司 多载波码分多址通讯系统中发射功率检测的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740864A (zh) * 2008-11-21 2010-06-16 中兴通讯股份有限公司 一种电调天线通信系统和方法
CN102170321A (zh) * 2011-04-20 2011-08-31 李英祥 一种基站天线参数监测仪及自动监测方法
CN102905279A (zh) * 2012-09-28 2013-01-30 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置

Also Published As

Publication number Publication date
CN105519018B (zh) 2017-08-25
CN105519018A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN109075871B (zh) 使用超声波通信的载入和预设
WO2019149036A1 (zh) Mesh网络及其mesh设备和配网方法
TWI659624B (zh) 毫米波強波器、毫米波傳輸系統及毫米波傳輸方法
US11665662B2 (en) Method for onboarding in multiple access point network and access point using same
JP2017513345A5 (zh)
WO2013189347A2 (zh) 一种毫米波通信空间复用传输方法及毫米波通信设备
WO2014114237A1 (zh) 一种毫米波相控阵波束对准方法及通信设备
WO2013178132A1 (zh) 天线波束对准方法及装置
WO2015172307A1 (zh) 建立基站扇区与天线之间对应关系的方法、基站及天线
US20210203527A1 (en) Wireless extender with on-boarding ssid for simple and extensible onboarding
EP3086620B1 (en) Antenna control system and its operating method
US20150111508A1 (en) Antenna detection with non-volatile memory powered by dc over coaxial cable
WO2013167007A1 (zh) 滤除相邻频段干扰的方法及系统
US9775031B2 (en) Techniques for discovery of wi-fi serial bus and wi-fi docking services
KR102040709B1 (ko) 소형 스위칭 방향 제어 안테나
TW201110466A (en) Omnidirectional wideband antenna
US11064360B2 (en) Network device and WPS connection method thereof
RU94101U1 (ru) Радиостанция с фазированной антенной решеткой
CN103916153B (zh) 一种有源一体化天线微站
WO2016015221A1 (zh) 电调天线以及天线阵列与基站配对方法
KR20130135521A (ko) 에너지 전송 시스템에서 무선 에너지 송수신 장치 및 그 방법
CN108987894B (zh) 一种天线控制方法和天线装置
JP2016146629A (ja) 分配システムにおいてrf信号を受信する装置と同信号をrfエンティティに分配する装置
CN105406192B (zh) 一种带有隔离结构的超宽带mimo天线
CN103516408A (zh) 天馈网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898822

Country of ref document: EP

Kind code of ref document: A1