WO2015172307A1 - 建立基站扇区与天线之间对应关系的方法、基站及天线 - Google Patents

建立基站扇区与天线之间对应关系的方法、基站及天线 Download PDF

Info

Publication number
WO2015172307A1
WO2015172307A1 PCT/CN2014/077316 CN2014077316W WO2015172307A1 WO 2015172307 A1 WO2015172307 A1 WO 2015172307A1 CN 2014077316 W CN2014077316 W CN 2014077316W WO 2015172307 A1 WO2015172307 A1 WO 2015172307A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna
signal
port
modulation
Prior art date
Application number
PCT/CN2014/077316
Other languages
English (en)
French (fr)
Inventor
沈俭
皮斯帕内⋅凯瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14892181.0A priority Critical patent/EP3136773B1/en
Priority to PCT/CN2014/077316 priority patent/WO2015172307A1/zh
Priority to CN201480029049.8A priority patent/CN105409274A/zh
Publication of WO2015172307A1 publication Critical patent/WO2015172307A1/zh
Priority to US15/350,991 priority patent/US9699672B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a base station, and an antenna for establishing a correspondence between a base station sector and an antenna.
  • a Remote Electrical Tilt (RET) can adjust the beam downtilt angle of an antenna through a network at a remote control center, which can greatly reduce the adjustment and maintenance cost of the antenna downtilt and improve work efficiency.
  • RET Remote Electrical Tilt
  • network optimization engineers can adjust the downtilt angle of the ESC antenna corresponding to the base station sector in the operation and maintenance center of the base station to improve sector coverage and improve wireless network performance.
  • a base station typically includes a plurality of sectors (e.g., three), and each of the plurality of sectors corresponds to at least one electrically adjustable antenna. Because there is no corresponding relationship between the sector and the antenna in the operation and maintenance center, when the network optimization engineer optimizes a certain sector in the operation and maintenance center, it is impossible to know which down-tilt angle of the electronically-tuned antenna can be adjusted to improve the sector. Coverage.
  • the traditional solution records the correspondence between the RF port of the ESC antenna and the RF port of the base station by the constructor. Since the RF signal is transmitted between the base station and the ESC antenna through the RF port, the ESC antenna and the sector can be obtained. Correspondence between the two, and then the correspondence between the sector and the ESC antenna is configured in the operation and maintenance center to adjust the ESC antenna according to the corresponding relationship of the configuration.
  • the manual recording method is easy to copy the serial number of the ESC antenna, and it is easy to make a mistake when the correspondence relationship is recorded into the system. Therefore, there is a problem that the error rate is high, and the efficiency of manual recording is low.
  • a method, a base station, and an antenna for establishing a correspondence between a sector of a base station and an antenna are provided to solve the problems of low accuracy, low efficiency, and high labor cost in the prior art.
  • the present invention provides a base station, including: a ⁇ type biaser, a modulation circuit, a base station controller, and a DC power supply, wherein the number of the T-type biasers and the number of the modulation circuits are both The number of RF ports is the same;
  • the input end of the modulation circuit is connected to the DC power source, and the output end is connected to the DC input of the ⁇ type biaser
  • the control end is connected to the output end of the base station controller
  • the modulation circuit is configured to generate a modulation signal
  • the AC input end of the T-type biaser is input with a radio frequency signal
  • the output end is connected to the radio frequency port of the base station
  • a T-type biaser is configured to couple the modulated signal with the radio frequency signal to obtain a coupled signal and transmit the corresponding signal to a corresponding antenna through the base station radio frequency port, so that the antenna demodulates the coupled signal and inputs through an AISG
  • the port sends feedback information to the base station, where the feedback information includes identifier information of the antenna radio port that receives the coupled signal;
  • the base station controller is configured to control the modulation circuit to generate the modulation signal, and receive the feedback information, and establish a correspondence between a sector and an antenna of the base station according to the feedback information.
  • the output of the base station controller outputs identification information of a radio frequency port of the base station connected to the ⁇ -type biaser
  • the modulating circuit appends the identification information of the radio frequency port of the base station to the DC voltage signal to obtain a modulation signal.
  • the modulating circuit includes: a control switch and a diode in-line series branch;
  • An anode of the diode-connected series branch is an input end of the modulation circuit, and a cathode is an output end of the modulation circuit;
  • the control switch is connected in parallel to the two ends of the diode in the same direction through the first end and the second end, and the control end of the control switch is the control end of the modulation switch.
  • control switch is a PN transistor or an NMOS transistor
  • the base of the PN type transistor controls the control end of the switch, the collector is connected to the anode of the diode in the same direction, and the emitter is connected to the cathode of the diode in the same direction;
  • the gate of the MOS transistor is a control terminal of the control switch, the drain is connected to the anode of the diode in the same direction, and the source is connected to the cathode of the diode in the same direction.
  • the present invention further provides an antenna, including: a remote control unit RCU, and a T-type biaser and a demodulation circuit corresponding to the antenna frequency port;
  • the AC input end of the T-type biaser is connected to the antenna RF port, the DC output end is connected to the input end of the demodulation circuit, and the AC output end outputs an RF signal, and the T-type biaser is used for coupling signals provided by the base station. Decoupling to obtain a modulated signal and providing the same to the demodulation circuit; the coupled signal is coupled by the base station to the modulated signal and the radio frequency signal; The output end of the demodulation circuit is connected to the input end of the RCU, and is used to demodulate the modulated signal to provide the RCU;
  • the RCU is configured to generate feedback information according to the demodulated signal and the identifier information corresponding to the antenna radio port of the coupled signal, and provide the information to the base station through an AISG input port, where the feedback information is used to enable the base station to establish a base station.
  • the correspondence between the sector and the antenna is configured to generate feedback information according to the demodulated signal and the identifier information corresponding to the antenna radio port of the coupled signal, and provide the information to the base station through an AISG input port, where the feedback information is used to enable the base station to establish a base station.
  • the method further includes: a single-pole multi-throw switch;
  • the fixed end of the single-pole multi-throw switch is connected to the input end of the RCU, and the movable end is respectively connected to the output end of the demodulation circuit, and the switch state of the single-pole multi-throw switch is controlled by the RCU.
  • the demodulating circuit includes: a comparator
  • the non-inverting input terminal of the comparator is connected to the AC output end of the ⁇ -type biaser through a capacitor, the inverting input end is connected to the ground end through a current limiting resistor, the output end is connected to the input end of the RCU, and the output end is The inverting input is connected through a feedback resistor.
  • the present invention further provides a base station, comprising: a T-type biaser, a detecting resistor, a current detecting circuit, a demodulating circuit, a base station controller, and a DC power supply, wherein the ⁇ -type biasing device, the current detecting circuit, and The demodulation circuits are all in one-to-one correspondence with the radio frequency ports of the base station;
  • the DC input end of the ⁇ -type biaser is connected to the DC power source through the detecting resistor, the RF input signal is input to the AC input end, and the AC output end is connected to the RF port of the base station;
  • the two input ends of the current detecting circuit are connected in parallel at two ends of the detecting resistor, and the output end is connected to the input end of the demodulating circuit for detecting a current modulated signal fed back by the antenna;
  • the ⁇ -type biasing device is configured to couple the DC signal input by the DC input terminal and the RF signal to obtain a coupling signal, and transmit the signal to the antenna, so that the antenna is separated from the coupled signal to obtain the DC a signal, modulating a current of the DC signal to obtain a current modulated signal, and feeding back to the base station through an antenna RF port, where the current modulated signal includes identification information of an antenna RF port that receives the coupled signal;
  • An output end of the circuit is connected to the information input end of the base station controller, and is configured to demodulate the current modulated signal detected by the current detecting circuit to obtain a demodulated signal;
  • the base station controller is configured to determine, according to the demodulation signal, a correspondence between an antenna radio port and a base station radio port, and establish a correspondence between a sector and an antenna of the base station, and generate the Current modulated signal.
  • the The non-inverting input terminal of the comparator is connected to the output end of the current detecting circuit through a capacitor, the inverting input end is connected to the ground end through a current limiting resistor, and the output end is connected to the information input end of the base station controller, and the The output terminal is connected to the inverting input through a feedback resistor.
  • the present invention further provides an antenna, including: a remote control unit RCU, and a T-type biaser and a modulation circuit corresponding to the antenna frequency port;
  • the AC input end of the T-type biaser is connected to the RF port on the antenna side, and the DC output end is connected to the input end of the modulation circuit for separating the DC signal from the coupled signal transmitted by the base station;
  • a control end of the modulation circuit is connected to an output end of the RCU;
  • the RCU is configured to control, according to a control signal transmitted by the base station, the modulation circuit to modulate a current of the DC signal output by the T-type biaser to obtain a current modulation signal, so that the base station detects the current modulation signal. And determining a correspondence between the antenna radio port and the base station radio frequency port according to the current modulation signal, and establishing a correspondence between the sector and the antenna of the base station.
  • the modulating circuit includes a pull-down resistor and a control switch
  • the first end of the control switch is connected to the ground through the pull-down resistor, the second end is an input end of the modulation circuit, and the control end of the control switch is a control end of the modulation circuit.
  • the output end of the RCU outputs identification information of an antenna radio port connected to the T-type biaser
  • the modulation circuit appends the identification information of the antenna radio frequency port to the DC current signal to obtain a current modulation signal.
  • the present invention further provides a method for establishing a correspondence between a base station sector and an antenna, which is applied to a base station, and includes:
  • Generating a modulation signal when receiving a request to establish a correspondence between a base station sector and an antenna coupling the modulation signal with the radio frequency signal to obtain a coupling signal and transmitting the signal to the antenna, so that the antenna demodulates the modulation Transmitting, and feeding back, to the base station, identification information of the antenna radio port that includes the demodulated signal;
  • Receiving the feedback information parsing the feedback information to obtain identification information of the antenna radio port; establishing identifier information of the antenna radio port and a correspondence between radio frequency ports of the base station transmitting the coupling signal, to obtain a base station sector Corresponding to the antenna.
  • the generating the modulated signal includes: adding the identification information of the radio frequency port of the base station to the DC voltage signal to obtain the modulated signal.
  • the present invention further provides a method for establishing a correspondence between a base station sector and an antenna, and the method is applied to an antenna, including:
  • the generating the feedback information according to the modulating signal and the identifier information corresponding to the antenna radio port of the modulating signal including:
  • the present invention further provides a method for establishing a correspondence between a base station sector and an antenna, which is applied to a base station, and includes:
  • the present invention further provides a method for establishing a correspondence between a base station sector and an antenna, and the method is applied to an antenna, including:
  • Transmitting the current modulation signal to the base station so that the base station demodulates the current modulation signal to obtain identification information of the antenna radio frequency port, and transmitting the coupling signal according to the identifier information of the antenna radio frequency port.
  • the identification information of the base station radio frequency port establishes a correspondence between the base station sector and the antenna.
  • the method for establishing a correspondence between a sector of a base station and an antenna is provided by the base station, and the modulated signal is generated by the base station, and is transmitted to the corresponding antenna through the radio frequency port, and after receiving the modulated signal, the antenna receives the modulated signal.
  • the feedback information including the identification information of the antenna radio port of the modulated signal is generated and fed back to the base station. Therefore, the base station determines that there is a correspondence between the radio frequency port of the base station that transmits the modulated signal and the antenna radio frequency port that receives the modulated signal, thereby establishing a correspondence between the base station sector and the antenna, which is more efficient and accurate than the manual recording mode. high.
  • Another method for establishing a correspondence between a base station sector and an antenna is to generate a current modulated signal including identification information of an antenna RF port by an antenna.
  • the base station is capable of detecting the current modulated signal, and according to demodulating the current modulated signal, obtaining an antenna RF port that generates the current modulated signal, so that the base station determines the antenna RF port that generates the current modulated signal and detects the
  • There is a correspondence between the RF ports of the base stations of the current modulation signals thereby automatically establishing a correspondence between the sectors and the antennas, and the efficiency is high and the accuracy is high compared with the manual recording method.
  • FIG. 1 is a schematic structural diagram of a base station connected to an antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a voltage waveform of a DC power supply according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a voltage waveform of a modulated signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing voltage waveforms obtained by a demodulation circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario of a multi-port antenna network corresponding to the embodiment shown in FIG. 1.
  • FIG. 6 is a schematic diagram of a multi-antenna cascade network corresponding to the embodiment shown in FIG.
  • FIG. 7 is a schematic structural diagram of another antenna connected to a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a multi-port antenna networking corresponding to the embodiment shown in FIG. 7;
  • FIG. 9 is a schematic diagram of a multi-antenna cascade networking scenario corresponding to the embodiment shown in FIG. 7.
  • FIG. 10 is a schematic flowchart showing a method for establishing a correspondence between a base station sector and an antenna according to an embodiment of the present invention. ;
  • FIG. 11 is a schematic flow chart showing another method for establishing a correspondence between a base station sector and an antenna according to an embodiment of the present invention.
  • the present invention provides a method, a base station, and an antenna for establishing a correspondence between a sector of a base station and an antenna, and transmitting a modulated signal between the base station and the electronically tuned antenna, and determining a radio frequency of the modulated signal side by transmitting and receiving
  • the correspondence between the ports enables the base station to automatically obtain the correspondence between the RF port of the ESC antenna and the RF port of the base station. Compared with the manual recording mode, the accuracy is high and the efficiency is high.
  • FIG. 1 a schematic structural diagram of a connection between a base station and an antenna according to an embodiment of the present invention is shown.
  • FIG. 1 only shows a partial structure of a base station and an antenna for automatically establishing a correspondence between a sector and an antenna. Portions not related to the technical solution of the present invention are not shown.
  • the base station 100 includes: a Bias-T1 (T-type bias), a modulation circuit 101, a base station controller 102, and a DC power supply 103.
  • the Bias-T1 and the modulation circuit 101 all correspond to the RF ports of the base station, that is, each base station RF port corresponds to one Bias-T1 and one modulation circuit 101.
  • the input terminal of the modulation circuit 101 is connected to the DC power source 103, the output terminal is connected to the DC input terminal of the Bias-T, and the control terminal is connected to the output terminal of the base station controller 102.
  • the AC input terminal of the Bias-Tl 11 has an RF signal, and the AC output terminal 12 is connected to the base station RF port R01.
  • the Bias-Tl is used to couple the modulated signal transmitted by the modulation circuit 101 with the RF signal received by the AC input terminal 13 to obtain a coupled signal. And transmitting the coupled signal to the corresponding antenna RF port through the base station RF port.
  • the antenna 200 includes: a remote control unit RCU, a Bias-T2, and a demodulation circuit 201; wherein, the Bias-T2 and the demodulation circuit 201 correspond to the antenna RF port.
  • the AC input terminal 21 of the Bias-T2 is connected to the antenna RF port R01, the DC output terminal 22 is connected to the input end of the demodulation circuit 201, and the AC output terminal 23 outputs the RF signal.
  • the output of the demodulation circuit 201 is connected to the input of the RCU.
  • the AISG input port of the antenna 200 is connected to the AISG port of the base station 100 for receiving control commands transmitted by the base station.
  • the process of automatically establishing the correspondence between sectors and antennas in the system shown in Figure 1 is as follows:
  • the control modulation circuit 101 When the base station controller 102 in the base station 100 receives the verification request issued by the operation and maintenance center, the control modulation circuit 101 generates a corresponding modulation signal and provides it to the Bias-T1.
  • the Bias-Tl couples the modulated signal with the RF signal received at the AC input to obtain a coupled signal, and transmits it to the antenna 100 through the RF port R01.
  • the antenna 200 After receiving the coupled signal transmitted by the base station side, the antenna 200 separates the coupled signal from the radio frequency signal and the modulated signal by the Bias-T2, and the radio frequency signal is output through the AC output terminal 23, and the modulated signal is supplied to the demodulation circuit through the DC output terminal 22.
  • the demodulation circuit 201 demodulates the modulated signal and provides it to the RCU.
  • the RCU generates feedback information according to the demodulated signal and the identification information of the antenna RF port that receives the coupled signal, and feeds back to the base station 100 through the AISG bus. .
  • the base station controller 102 in the base station 100 determines, according to the feedback information of the identifier information of the antenna RF port fed back by the antenna 200, the base station determines to transmit the coupled signal according to the transmission condition between the base station and the RF port of the antenna.
  • the base station RF port corresponds to the antenna RF port that receives the coupled signal, and further determines the correspondence between the base station sector and the antenna according to the relationship between the base station RF port and the sector.
  • the base station provided in this embodiment is capable of generating a modulated signal and coupling the modulated signal to the radio frequency signal, and then transmitting the signal to the antenna RF port through the base station RF port, and the antenna side receives the coupled signal, and then separates the modulated signal, and sends the modulated signal to the base station.
  • Receiving an antenna RF port that includes the coupled signal of the modulated signal so that the base station obtains a correspondence between the base station RF port and the antenna RF port, and automatically establishes a correspondence between the base station sector and the antenna, and compares the efficiency with the manual recording method. High and accurate.
  • the modulation circuit 101 on the side of the base station 100 includes a diode-in-line series branch and a control switch Q.
  • the diode co-directional series includes diodes in the same direction, for example, D1 and D2. After D1 and D2 are connected in series in the same direction, the anode of D1 is the anode of the diode parallel branch, and the cathode of D2 is the cathode of the diode parallel circuit.
  • the control switch Q is connected in parallel at both ends of the diode-to-ground series branch. Specifically, the first end of Q is connected to the anode of D1, and the second end of Q is connected to the cathode of D2.
  • the control terminal of Q is connected to the output of the base station controller 102, and the base station controller 102 controls the switching state of the Q.
  • Q can be realized by a switch tube, for example, a PN type transistor or a MOS tube
  • the base of the PN type transistor is extremely Q
  • the collector is connected to the anode of the diode in the same direction
  • the emitter is connected to the diode.
  • the gate of the NMOS transistor is the control terminal of Q
  • the drain is connected to the anode of the diode in the same direction
  • the source is connected to the cathode of the diode in the same direction.
  • Vcc-1.4 the DC voltage signal input from the DC input terminal 13 of the Bias-T is Vcc-1.4, where Vcc is the voltage of the DC power source 103.
  • Vcc the voltage of the DC power source 103.
  • a waveform diagram of Vcc is shown, for example, Vcc is always 12V.
  • the base station controller 102 controls Q to continuously open and close, causing Vcc to continuously fluctuate, and obtains the voltage waveform shown in FIG. 3.
  • the voltage difference between the voltage peak and the valley is the voltage drop of the diode series branch, for example, D1 and D2.
  • the sum of the voltage drops is 1.4V, which makes the switching modulator function.
  • the demodulation circuit 201 in the antenna 200 may include a comparator A1.
  • the non-inverting input terminal of A1 is connected to the DC output terminal 22 of the Bias-T2 through a capacitor C1, and the non-inverting input terminal is connected through a current limiting resistor R1.
  • the inverting input terminal of A1 is connected to the grounding terminal through a current limiting resistor R2.
  • the output of A1 is connected to the input of RCU, and the output of A1 is connected to the inverting input through feedback resistor R3.
  • the power supply terminal of A1 has a DC voltage (not shown in Figure 1).
  • FIG. 4 shows the voltage waveform of the output of the demodulation circuit. The low level is close to 0V and the high level is 5V.
  • the reference voltage of the inverting input terminal is set according to the modulation signal generated by the base station side. For example, if the high voltage of the modulation signal is 12V and the low voltage is (12-1.4) V, the reference voltage can be set to 11V.
  • the binary code corresponding to the identification information of the RF port of the base station may be added to the DC voltage signal to obtain a modulated signal and transmitted to the antenna.
  • the antenna can obtain the identification information of the base station RF port R01 that sends the modulated signal by demodulating the modulated signal, and the antenna feeds back the identification information of the antenna RF port A01 of the modulated signal and the identification information of the RF port of the base station to the antenna.
  • Base station Therefore, the base station learns that the RF port R01 of the base station is connected to the antenna RF port A01, and establishes a correspondence between the sector and the antenna according to the correspondence between the base station and the RF port of the antenna.
  • the base station 100 includes four RF ports, and the antenna 200 includes four RF ports.
  • Each base station RF port has a unique identification number (i.e., the identification information mentioned above).
  • Each antenna RF port has a unique identification number (ie, identification information).
  • Each RF port in the base station is provided with a Bias-Tl and a modulation circuit.
  • each antenna RF port is provided with a Bias-T2 and a demodulation circuit, and a single-pole multi-throw switch is arranged between the demodulation circuit and the RCU, wherein the fixed end of the single-pole multi-throw switch is connected to the input end of the RCU.
  • each dynamic end and the output of a demodulation circuit End connection RCU pre-records the antenna RF port corresponding to each mobile terminal.
  • the base station controller (not shown in FIG. 5) in the base station 100 is configured to control each modulation circuit to generate a modulated signal, and the Bias-Tl couples the modulated signal with the radio frequency signal and transmits the modulated signal to the antenna RF port corresponding to the antenna side.
  • the modulated signal received by each antenna RF port is transmitted to the RCU through a single-pole multi-throw switch through the corresponding Bias-T2 separated modulated signal.
  • the RCU controls the single-pole multi-throw switch to switch in a certain order to receive the modulated signal received by each antenna RF port.
  • the base station controller may sequentially control the modulation circuit to generate a modulation signal, and correspondingly, the RCU switches the single-pole multi-throw switch in sequence, and the correspondence between the dynamic end of the single-pole multi-throw switch and the antenna RF port is The relationship determines an antenna RF port that receives the modulated signal, and feeds back, to the base station, identification information of the antenna RF port that received the modulated signal. After receiving the identification information, the base station controls the modulation circuit to stop outputting the modulation signal, and controls the next modulation circuit to generate a modulation signal, and so on, until all the base station RF ports output an overmodulation signal, and finally determine each RF of the base station. Correspondence between the port and each RF port of the antenna.
  • the base station controller controls all the modulation circuits in the base station to simultaneously output the modulated signals, and at this time, generates corresponding signals according to preset information corresponding to the respective modulation circuits (for example, identification information of the RF ports). Modulated signal.
  • the RCU on the antenna side controls the switching of the single-pole multi-throw switch in a certain order, and receives the modulated signals of the respective channels.
  • the RCU demodulates the modulated signal to obtain the identification information of the RF port of the base station, and feeds back to the base station via the AISG port together with the antenna RF port that receives the modulated signal.
  • the base station can draw a connection diagram of the base station RF port, the antenna RF port, and the RCU according to the feedback information of the antenna.
  • the base station RF port 4 transmits a modulated signal including the identification information of the port to the antenna side, and the antenna RF port 3 receives the modulated signal, and after the RCU demodulates the identification information of the base station RF port 4, the identifier of the base station RF port 4 is determined. The information is fed back to the base station along with the identification information of the antenna RF port 3, and the base station learns that the base station RF port 4 is connected to the antenna RF port 3.
  • base station 100 includes four RF ports.
  • the antenna 210 includes an RF port 1 and an RF port 2, and the antenna 220 includes an RF port 3 and an RF port 4.
  • Each RF port in the base station is provided with a Bias-Tl and a modulation circuit.
  • each antenna RF port is provided with a Bias-T2 and a demodulation circuit, and a single-pole multi-throw switch is arranged in each antenna.
  • the connection mode of the single-pole multi-throw switch is similar to that of FIG. 5, and is not here. Let me repeat.
  • the base station controller can simultaneously send control commands to the RCUs of the two antennas through the AISG port.
  • the working mode of the multi-antenna cascading networking scenario is similar to that of the embodiment shown in Figure 5, and is not described here.
  • the base station RF port 3 transmits a modulated signal including the identification information of the port to the antenna side, and the antenna RF After receiving the modulation signal, the RCU demodulates the identification information of the RF port 3 of the base station, and then sends the identification information of the RF port 3 of the base station together with the identification information of the antenna RF port 4 to the base station, and the base station learns the RF port 3 and the antenna of the base station.
  • RF port 4 corresponds to the connection.
  • FIG. 7 a schematic structural diagram of another antenna connected to a base station according to the present invention is shown.
  • the base station 300 includes: Bias-T3, a detecting resistor R4, a current detecting circuit 301, a demodulating circuit 302, a base station controller 303, and a DC power source 304; wherein, Bias-T3, a current detecting circuit, and a demodulating circuit Both correspond to the base station RF port one-to-one;
  • the DC input terminal 31 of the Bias-T3 is connected to the DC power supply 304 through the detecting resistor R4, the RF input signal is input to the AC input terminal 32, and the AC output terminal 33 is connected to the RF port of the base station.
  • the two input terminals of the current detecting circuit 301 are connected in parallel across the detecting resistor R4, and the output terminal is connected to the input terminal of the demodulating circuit 302.
  • the output of the demodulation circuit 302 is coupled to the information input of the base station controller 303.
  • the demodulation circuit 302 can be implemented by a current comparator, and the working process of the comparator is similar to the demodulation circuit in the foregoing embodiment, and details are not described herein again.
  • the antenna 400 includes: an RCU, and a Bias-T4 and a modulation circuit 401 corresponding to the antenna RF port.
  • the AC input terminal of the Bias-T4 is connected to the RF port on the antenna side, and the DC output terminal 42 is connected to the modulation circuit.
  • the AC output 43 outputs an RF signal.
  • the control terminal of the modulation circuit 401 is connected to the output of the RCU.
  • the DC power supply in the base station transmits a DC voltage signal to the DC input end of the Bias-T3, and the DC voltage signal is coupled with the RF signal by the Bias-T3 to obtain a coupled signal, which is transmitted to the antenna side through the RF port;
  • the coupled signal is separated by the Bias-T4, the DC voltage signal is outputted through the DC output of the Bias-T4, and the RF signal is output through the AC output of the Bias-T4.
  • the control command is sent to the antenna through the AISG port, and the control command is used to enable the modulation circuit 401 to output the DC voltage signal according to the DC output end of the Bias-T4.
  • a current modulating signal is generated, the current modulating signal comprising identification information of an antenna RF port that receives the coupled signal.
  • the current detecting circuit 301 on the base station side can detect the current modulated signal, and demodulate it by the demodulating circuit 302 to obtain the identification information of the antenna RF port, and transmit the identification information to the base station controller 303.
  • the base station controller 303 determines that the received antenna RF port corresponding to the identifier information is correspondingly connected to the base station RF port that sends the coupling signal, thereby determining a correspondence between the base station sector and the antenna.
  • the current detecting circuit in this embodiment can use the current detecting circuit existing in the base station, and therefore, the circuit cost can be reduced.
  • the modulation circuit 401 may include a pull-down resistor R5 and a control switch K.
  • the control switch ⁇ is the same as the above-mentioned control switch Q, and may be implemented by using a triode or a MOS switch.
  • the first end of the control switch ⁇ is connected to the ground through the pull-down resistor R5, the second end is the input end of the modulation circuit 401, and the control end of the control switch ⁇ is the control end of the modulation circuit 401.
  • the control port When the RCU of the antenna receives the modulation signal control command sent by the base station controller through the AISG port, the control port is closed. At this time, the pull-down resistor forms a path with the DC voltage signal output from the DC output of the Bias-T4, that is, Bias- The current load of the DC output of the T4 changes. According to the identification information of the RF port of the antenna, the K is continuously closed and disconnected. SP, the identification information of the RF port of the antenna is added to the DC current signal to obtain a current modulated signal.
  • the antenna The current detecting circuit on the base station side corresponding to the antenna RF port corresponding to the side control switch K can detect the current change, and the base station controller determines that the antenna RF port with the switching action has a corresponding relationship with the base station RF port where the current abnormality occurs.
  • the base station 300 includes four RF ports, and the antenna 400 includes four RF ports.
  • Each base station RF port has a unique identification number (i.e., the identification information mentioned above).
  • Each antenna RF port has a unique identification number (ie, identification information).
  • Each RF port in the base station is provided with a Bias-T3, a current detecting circuit and a demodulation circuit. Accordingly, each antenna RF port is provided with a Bias-T4 and a modulation circuit.
  • the base station controller may control the modulation circuit on the antenna side to generate a current modulation signal one by one, so that the base station controller establishes a correspondence relationship between the antenna RF port and the base station RF port one by one, and finally obtains a complete antenna connection relationship.
  • the base station controller may simultaneously control the modulation circuit on the antenna side to generate a current modulation signal, the base modulation controller detects the current modulation signal, and demodulates to generate the current modulation signal. Corresponding identification information of the antenna RF port, so that the base station RF port of the current modulation signal is detected and the antenna RF port corresponding to the identification information is correspondingly connected, and finally a complete antenna connection relationship diagram is obtained.
  • the specific working process is the same as the embodiment shown in FIG. 7, and details are not described herein again.
  • FIG. 9 a schematic diagram of a multi-antenna cascade networking scenario corresponding to the embodiment shown in FIG. 7 is shown.
  • the base station 100 includes four RF ports, and the connection manner of the base station controller is the same as that shown in FIG.
  • the antenna 410 includes an RF port 1 and an RF port 2
  • the antenna 420 includes an RF port 3 and an RF port 4.
  • Each RF port in the base station is provided with a Bias-T3, a current detecting circuit and a demodulation circuit.
  • each antenna RF port is provided with a Bias-T4 and a modulation circuit.
  • a base station can simultaneously control multiple antennas cascaded through an AISG port.
  • the process of establishing the correspondence between the antenna RF port and the base station RF port in the multi-antenna cascade network is the same as that in the embodiment shown in FIG. 8 and will not be described here.
  • FIG. 10 a schematic flowchart of a method for establishing a correspondence between a base station sector and an antenna according to an embodiment of the present invention is shown. The method is applied to a system in which a base station and an antenna are connected.
  • the base station After receiving the request from the operation and maintenance center to establish the correspondence between the base station sector and the antenna, the base station performs the following steps:
  • Step S110 The base station generates a modulation signal.
  • the base station after receiving the foregoing request information, the base station first commands the antenna to prepare to receive the signal, and after receiving the response information of the antenna, generates a modulation signal;
  • the base station may add the identification information of the radio frequency signal of the base station to the radio frequency signal to obtain the modulation signal.
  • Step S120 The base station couples the modulated signal and the radio frequency signal to obtain a coupled signal.
  • Step S130 The base station transmits the coupled signal to the antenna through the base station radio frequency port.
  • Step S140 the antenna receives the coupling signal through an antenna radio frequency port.
  • Step S150 the antenna separates the modulated signal from the coupled signal.
  • the antenna can be separated by a T-type bias to obtain an AC RF signal and a DC modulated signal.
  • Step S160 The antenna generates feedback information according to the modulation signal and the identifier information corresponding to the antenna radio port of the coupled signal, and transmits the feedback information to the base station.
  • the antenna feeds back the feedback information to the base station through the AISG port.
  • Step S170 The base station parses the feedback information to obtain identification information of the antenna radio port.
  • Step S180 The base station establishes a correspondence between the identifier information of the antenna radio port and the radio frequency port of the base station that sends the coupled signal, to obtain a correspondence between the base station sector and the antenna.
  • the antenna after receiving the modulated signal, the antenna feeds back identification information corresponding to the antenna radio port of the modulated signal to the base station.
  • the base station can determine the corresponding connection between the base station radio frequency signal transmitting the modulated signal and the antenna radio frequency port receiving the modulated signal.
  • the base station may control each of the base station radio frequency ports to generate modulated signals one by one, and determine one by one that each base station may also add preset information to the modulated signal, even if the base station radio frequency port simultaneously transmits the modulated signal, the base station
  • the correspondence between the radio frequency port of the base station and the radio frequency port of the antenna may be established according to the preset information included in the antenna and the identifier information of the antenna radio port.
  • the method for establishing a correspondence between a base station sector and an antenna provided by this embodiment, where the base station generates a modulation signal And transmitted to the corresponding antenna through the radio frequency port, and the antenna receives the modulated signal to generate feedback information, and feeds back to the base station.
  • the base station determines that there is a correspondence between the radio frequency port of the base station that transmits the modulated signal and the antenna radio frequency port that receives the modulated signal, thereby automatically establishing a correspondence between the sector and the antenna, and the efficiency is high and the accuracy is high compared with the manual recording mode.
  • FIG. 11 a flow chart of another method for establishing a correspondence between a base station sector and an antenna according to an embodiment of the present invention is shown. The method is applied to a system in which a base station and an antenna are connected.
  • the method includes the following steps:
  • Step S210 The base station couples the DC signal with the RF signal to obtain a coupled signal, and transmits the signal to the antenna through the RF port of the base station.
  • the DC signal can be coupled to the RF signal via a ⁇ -type bias.
  • Step S220 The base station sends a control command for generating a current modulation signal to the antenna through the AISG port. After receiving the request from the operation and maintenance center to establish a correspondence between the base station sector and the antenna, the base station sends the control command to the antenna.
  • Step S230 After receiving the control command, the antenna modulates the DC signal in the coupled signal transmitted by the base station according to the identifier information of the antenna RF port that receives the coupled signal to obtain a current modulated signal.
  • the current modulation signal may be generated by using the modulation circuit 401 shown in FIG. 7, and the identification information of the antenna RF port receiving the coupled signal is added to the DC current signal to obtain a current modulation signal.
  • Step S240 The base station demodulates the detected current modulated signal to obtain identification information of the antenna radio port.
  • the current modulated signal can be demodulated by the demodulation circuit 302 shown in FIG.
  • Step S250 The base station establishes a correspondence between the base station sector and the antenna according to the identifier information of the antenna radio port and the radio frequency port of the base station that generates the coupled signal.
  • a current modulation signal including identifier information of an antenna RF port is generated by the antenna.
  • the base station is capable of detecting the current modulated signal, and according to demodulating the current modulated signal, obtaining an antenna RF port that generates the current modulated signal, so that the base station determines the antenna RF port that generates the current modulated signal and detects the There is a correspondence between the RF ports of the base stations of the current modulation signals, thereby automatically establishing a correspondence between the sectors and the antennas, which is more efficient and has higher accuracy than the manual recording method.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供的建立基站扇区与天线之间对应关系的方法、基站及天线,基站(或天线)产生调制信号,天线(或基站)对应的射频端口能够接收所述调制信号,从而由基站确定基站侧发送调制信号的射频端口与天线侧接收所述调制信号的射频端口之间存在对应关系,从而由基站建立扇区与天线之间的对应关系,与人工记录方式相比,效率高且准确率高。

Description

建立基站扇区与天线之间对应关系的方法、 基站及天线
技术领域 本发明涉及通信技术领域, 尤其涉及建立基站扇区与天线间对应关系的方法、基 站及天线。 背景技术 电调天线 (Remote Electrical Tilt, RET) 可以在远端控制中心通过网络调节天线 的波束下倾角, 能够大幅降低天线下倾角的调节和维护成本, 提高工作效率。对于使 用电调天线的无线网络,网优工程师可以在基站的操作维护中心调整基站扇区对应的 电调天线的下倾角, 改善扇区覆盖、 提升无线网络性能。
基站通常包括多个扇区 (例如, 3 个), 多个每个扇区至少对应一个电调天线。 由于操作维护中心中没有扇区与天线之间的对应关系, 因此, 当网优工程师在操作维 护中心对某一扇区进行优化时,无法获知调节哪个电调天线的下倾角才能改善该扇区 的覆盖。
传统的解决方式通过施工人员记录电调天线的 RF端口与基站的 RF端口之间的 对应关系, 由于基站与电调天线之间通过 RF端口传递射频信号, 因此能够得到电调 天线与扇区之间的对应关系,然后,在操作维护中心配置好扇区与电调天线之间的对 应关系, 以便对照配置的对应关系调节电调天线。但是, 人工记录方式容易抄错电调 天线的序列号, 向系统录入记录的对应关系时易出错, 因此存在出错率高的问题, 而 且, 人工记录的效率低。 发明内容 本发明实施例中提供了建立基站扇区与天线间对应关系的方法、基站及天线, 以 解决现有技术中的准确率低、 效率低和人工成本高的问题。
为了解决上述技术问题, 本发明实施例公开了如下技术方案:
第一方面, 本发明提供一种基站, 包括: τ型偏置器、 调制电路、 基站控制器和 直流电源,其中,所述 T型偏置器的数量及所述调制电路的数量均与基站射频端口的 数量相同;
所述调制电路的输入端连接所述直流电源,输出端连接所述 τ型偏置器的直流输 入端, 控制端连接所述基站控制器的输出端, 所述调制电路用于产生调制信号; 所述 T型偏置器的交流输入端输入有射频信号, 输出端连接基站射频端口; 所述 T型偏置器用于将所述调制信号与所述射频信号耦合,得到耦合信号并通过 所述基站射频端口传输给对应的天线,以使所述天线解调所述耦合信号,并经由 AISG 输入端口向基站上传反馈信息,所述反馈信息包含接收到耦合信号的天线射频端口的 标识信息;
所述基站控制器用于控制所述调制电路产生所述调制信号,以及接收所述反馈信 息, 并根据所述反馈信息建立基站的扇区与天线之间的对应关系。
结合第一方面, 在第一方面的第一种可能的实现方式中,
所述基站控制器的输出端输出与所述 τ 型偏置器连接的基站射频端口的标识信 息;
所述调制电路将所述基站射频端口的标识信息附加到直流电压信号上,得打调制 信号。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的 实现方式中, 所述调制电路包括: 控制开关和二极管同向串联支路;
所述二极管同向串联支路的阳极为所述调制电路的输入端、阴极为所述调制电路 的输出端;
所述控制开关通过第一端和第二端并联在所述二极管同向串联支路的两端,所述 控制开关的控制端为所述调制开关的控制端。
结合第一方面的第二种可能的实现方式, 在第一方面的第三种可能的实现方式 中, 所述控制开关为 PN型三极管或 NMOS管;
所述 PN型三极管的基极为控制开关的控制端, 集电极连接所述二极管同向串 联支路的阳极, 发射极连接所述二极管同向串联支路的阴极;
所述 MOS管的栅极为控制开关的控制端, 漏极连接所述二极管同向串联支路 的阳极, 源极连接所述二极管同向串联支路的阴极。
第二方面, 本发明还提供一种天线, 包括: 远端控制单元 RCU, 以及与天线射 频端口一一对应的 T型偏置器和解调电路;
所述 T型偏置器的交流输入端连接天线射频端口,直流输出端连接所述解调电路 的输入端,交流输出端输出射频信号,所述 T型偏置器用于将基站提供的耦合信号解 耦得到调制信号, 并提供给所述解调电路; 所述耦合信号由所述基站将所述调制信号 和射频信号耦合得到; 所述解调电路的输出端连接所述 RCU的输入端, 用于对所述调制信号进行解调 后提供所述 RCU;
所述 RCU用于根据解调后的信号以及接收到所述耦合信号的天线射频端口对应 的标识信息, 生成反馈信息, 并通过 AISG输入端口提供给基站, 所述反馈信息用于 使基站建立基站扇区与天线之间的对应关系。
结合第二方面, 在第二方面的第一种可能的实现方式中, 当天线射频端口的数量 为多个时, 还包括: 单刀多掷开关;
所述单刀多掷开关的不动端连接所述 RCU的输入端, 动端分别连接所述解调电 路的输出端, 并由所述 RCU控制所述单刀多掷开关的开关状态。
结合第二方面, 在第二方面的第二种可能的实现方式中, 所述解调电路包括: 比 较器;
所述比较器的同相输入端通过电容连接所述 τ型偏置器的交流输出端,反相输入 端通过限流电阻连接接地端, 输出端连接所述 RCU的输入端, 且所述输出端通过反 馈电阻连接所述反相输入端。
第三方面, 本发明还提供一种基站, 包括: T型偏置器、 检测电阻、 电流检测电 路、 解调电路、 基站控制器和直流电源, 其中, τ型偏置器、 电流检测电路和解调电 路均与基站射频端口一一对应;
所述 τ型偏置器的直流输入端通过所述检测电阻连接所述直流电源,交流输入端 输入有射频信号, 交流输出端连接基站射频端口;
所述电流检测电路的两个输入端并联在所述检测电阻的两端,输出端连接所述解 调电路的输入端, 用于检测天线反馈回的电流调制信号;
所述 τ 型偏置器用于将所述直流输入端输入的直流信号及所述射频信号进行耦 合得到耦合信号, 并传输给天线, 以使所述天线从所述耦合信号中分离得到所述直流 信号, 对所述直流信号的电流进行调制, 得到电流调制信号, 并通过天线射频端口反 馈给基站, 所述电流调制信号包含接收到所述耦合信号的天线射频端口的标识信息; 所述解调电路的输出端连接所述基站控制器的信息输入端,用于将电流检测电路 检测到的电流调制信号进行解调得到解调信号;
所述基站控制器用于根据所述解调信号确定天线射频端口与基站射频端口之间 的对应关系, 并建立基站的扇区与天线之间的对应关系, 以及, 通过 AISG端口控制 天线产生所述电流调制信号。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述解调电路包括比较 器,所述比较器的同相输入端通过电容连接所述电流检测电路的输出端, 反相输入端 通过限流电阻连接接地端,输出端连接所述基站控制器的信息输入端, 且所述输出端 通过反馈电阻连接所述反相输入端。
第四方面, 本发明还提供一种天线, 包括: 远端控制单元 RCU, 以及与天线射 频端口一一对应的 T型偏置器和调制电路;
所述 T型偏置器的交流输入端连接天线侧的射频端口,直流输出端连接所述调制 电路的输入端, 用于从基站传输的耦合信号中分离出直流信号;
所述调制电路的控制端连接所述 RCU的输出端;
所述 RCU用于根据基站传输的控制信号控制所述调制电路对 T型偏置器输出的 所述直流信号的电流进行调制,得到电流调制信号, 以使所述基站检测到所述电流调 制信号, 并根据所述电流调制信号确定天线射频端口与基站射频端口的对应关系, 并 建立基站的扇区与天线之间的对应关。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述调制电路包括下拉 电阻和控制开关;
所述控制开关的第一端通过所述下拉电阻连接接地端,第二端为所述调制电路的 输入端, 所述控制开关的控制端为所述调制电路的控制端。
结合第四方面, 在第四方面的第二种可能的实现方式中, 所述 RCU的输出端输 出与所述 T型偏置器连接的天线射频端口的标识信息;
所述调制电路将所述天线射频端口的标识信息附加到直流电流信号上,得到电流 调制信号。
第五方面, 本发明还提供一种建立基站扇区与天线之间对应关系的方法, 应用于 基站, 包括:
当接收到建立基站扇区与天线之间对应关系的请求时, 产生调制信号; 将所述调制信号与射频信号进行耦合, 得到耦合信号并传输给天线, 以使所述天 线解调所述调制信号,并向基站反馈包含所述接收到所述解调信号的天线射频端口的 标识信息;
接收所述反馈信息, 解析所述反馈信息得到所述天线射频端口的标识信息; 建立所述天线射频端口的标识信息及发送所述耦合信号的基站射频端口之间的 对应关系, 得到基站扇区与天线之间的对应关。
结合第五方面, 在第五方面的第一种可能的实现方式中, 产生调制信号, 包括: 将基站射频端口的标识信息附加到直流电压信号上, 得到所述调制信号。 第六方面, 本发明还提供一种建立基站扇区与天线之间对应关系的方法, 应用于 天线, 包括:
接收基站传输的耦合信号,所述耦合信号由射频信号和基站产生的调制信号耦合 得到;
从所述耦合信号中分离得到所述调制信号;
根据所述调制信号及接收所述调制信号的天线射频端口对应的标识信息,生成反 馈信息, 并传输给基站, 以使基站根据所述反馈信息建立基站扇区与天线之间的对应 关系。
结合第六方面, 在第六方面的第一种可能的实现方式中, 根据所述调制信号及接 收所述调制信号的天线射频端口对应的标识信息, 生成反馈信息, 包括:
解调所述调制信号, 得到传输所述调制信号的基站射频端口的标识信息, 所述调 制信号由基站将射频端口的标识信息附加到直流电压信号上得到;
根据所述基站射频端口的标识信息,以及接收所述调制信号的天线射频端口生成 反馈信息。
第七方面, 本发明还提供一种建立基站扇区与天线之间对应关系的方法, 应用于 基站, 包括:
将直流电压信号与射频信号进行耦合, 得到耦合信号, 并将所述耦合信号传输给 天线, 以使所述天线从所述耦合信号中分离得到所述直流信号,对所述直流信号的电 流进行调制得到电流调制信号, 并将所述电流调制信号反馈给基站,所述电流调制信 号包含接收到所述耦合信号的天线射频端口的标识信息;
检测天线产生的电流调制信号, 并对所述电流调制信号进行解调, 得到所述天线 射频端口的标识信息;
根据所述天线射频端口的标识信息及产生所述耦合信号的基站射频端口,建立基 站扇区与天线之间的对应关系。
第八方面, 本发明还提供一种建立基站扇区与天线之间对应关系的方法, 应用于 天线, 包括:
从基站传输的耦合信号中分离得到直流信号;
根据接收到所述耦合信号的天线射频端口的标识信息, 对所述直流信号进行调 制, 得到电流调制信号;
将所述电流调制信号传输给基站,以使所述基站解调所述电流调制信号得到所述 天线射频端口的标识信息,并根据所述天线射频端口的标识信息及发送所述耦合信号 的基站射频端口的标识信息, 建立基站扇区与天线之间的对应关系。
由以上技术方案可见,本发明实施例提供一种建立基站扇区与天线之间对应关系 的方法, 通过基站产生调制信号, 并通过射频端口传输给对应的天线, 天线接收到所 述调制信号后产生包含接收到所述调制信号的天线射频端口的标识信息的反馈信息, 并反馈给基站。从而由基站确定发送调制信号的基站射频端口与接收调制信号的天线 射频端口之间存在对应关系,进而建立基站扇区与天线之间的对应关系, 与人工记录 方式相比, 效率高且准确率高。
本发明提供的另一种建立基站扇区与天线之间对应关系的方法,由天线产生包含 天线 RF端口的标识信息的电流调制信号。 基站能够检测到所述电流调制信号, 并根 据解调所述电流调制信号, 得到产生该电流调制信号的天线 RF端口, 从而由基站确 定产生所述电流调制信号的天线 RF端口与检测到所述电流调制信号的基站 RF端口 之间存在对应关系,从而自动建立扇区与天线之间的对应关系,与人工记录方式相比, 效率高且准确率高。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了本发明实施例一种基站与天线连接的结构示意图;
图 2示出了本发明实施例一种直流电源的电压波形示意图;
图 3示出了本发明实施例一种调制信号的电压波形示意图;
图 4示出了本发明实施例一种解调电路得到的电压波形示意图;
图 5示出了与图 1所示实施例对应的一种多端口天线组网的应用场景图; 图 6示出了与图 1所示实施例对应的一种多天线级联组网场景示意图; 图 7示出了本发明实施例另一种天线与基站连接的结构示意图;
图 8示出了与图 7所示实施例对应的一种多端口天线组网场景图;
图 9示出了与图 7所示实施例对应的一种多天线级联组网场景示意图; 图 10示出了本发明实施例一种建立基站扇区与天线之间对应关系的方法流程示 意图;
图 11示出了本发明实施例另一种建立基站扇区与天线之间对应关系的方法流程 示意图。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地,对于本领域普通技术人 员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 具体实施方式 为实现本发明的目的, 本发明提供了建立基站扇区与天线间对应关系的方法、基 站及天线,通过在基站和电调天线之间发送调制信号,通过确定收发调制信号侧射频 端口之间的对应关系,使得基站能够自动获得电调天线的射频端口与基站的射频端口 之间的对应关系, 与人工记录方式相比, 准确率高且效率高。
以上是本发明的核心思想, 为了使本领域技术人员更好地理解本发明方案, 下面 将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然, 所述描述的实施例仅是本发明一部分实施例, 而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
请参见图 1, 示出了本发明实施例一种基站与天线连接的结构示意图, 图 1仅示 出了基站、天线内部的用于自动建立扇区与天线之间对应关系的部分结构,其它与本 发明的技术方案无关的部分未示出。
如图 1所示, 基站 100包括: Bias-Tl (T型偏置器)、 调制电路 101、 基站控制 器 102和直流电源 103。 其中, Bias-Tl、 调制电路 101均与基站 RF端口一一对应, 即每个基站 RF端口均对应一个 Bias-Tl和一个调制电路 101。
调制电路 101的输入端连接直流电源 103, 输出端连接 Bias-T的直流输入端, 控 制端连接基站控制器 102的输出端。
Bias-Tl的交流输入端 11输入有射频信号,交流输出端 12连接基站 RF端口 R01。 Bias-Tl用于将调制电路 101传输的调制信号与交流输入端 13接收到的射频信号耦 合, 得到耦合信号。并通过基站 RF端口将所述耦合信号传输给对应的天线 RF端口。
如图 1所示, 天线 200包括: 远端控制单元 RCU、 Bias-T2和解调电路 201 ; 其 中, Bias-T2、 解调电路 201均与天线 RF端口——对应。
Bias-T2的交流输入端 21连接天线 RF端口 R01, 直流输出端 22连接解调电路 201的输入端, 交流输出端 23输出射频信号。 解调电路 201的输出端连接 RCU的输 入端。
天线 200的 AISG输入端口连接基站 100的 AISG端口, 用于接收基站传输的控 制指令。
图 1所示系统的自动建立扇区与天线之间对应关系的过程如下: 基站 100内的基站控制器 102接收到操作维护中心下发的校验请求时,控制调制 电路 101产生相应的调制信号, 并提供给 Bias-Tl。 Bias-Tl将所述调制信号和交流输 入端接收到的射频信号耦合得到耦合信号, 并通过 RF端口 R01传输至天线 100。
天线 200接收到基站侧传输的耦合信号后, 由 Bias-T2将所述耦合信号分离出射 频信号和调制信号, 射频信号通过交流输出端 23输出, 调制信号经过直流输出端 22 提供给解调电路 201。 解调电路 201将所述调制信号进行解调后提供给 RCU, RCU 根据解调后的信号, 以及接收到所述耦合信号的天线 RF端口的标识信息生成反馈信 息, 通过 AISG总线反馈给基站 100。
基站 100内的基站控制器 102根据天线 200反馈的包含天线 RF端口的标识信息 的反馈信息, 基站根据所述耦合信号在基站与天线的 RF端口之间的传输情况, 确定 发送所述耦合信号的基站 RF端口与接收到所述耦合信号的天线 RF端口相对应, 进 而根据基站 RF端口与扇区之间的关系, 确定基站扇区与天线之间的对应关系。
本实施例提供的基站能够产生调制信号并将所述调制信号耦合到射频信号上,然 后通过基站 RF端口传输给天线 RF端口, 天线侧接收到耦合信号后分离出所述调制 信号, 并向基站反馈接收包含所述调制信号的耦合信号的天线 RF端口, 从而使基站 得到基站 RF端口与天线 RF端口的对应关系, 实现自动建立基站扇区与天线的对应 关系, 与人工记录方式相比, 效率高且准确率高。
可选地, 如图 1所示, 基站 100侧的调制电路 101包括二极管同向串联支路和控 制开关 Q。
所述二极管同向串联支路包括同向串联的二极管, 例如, D1 和 D2。 D1 与 D2 同向串联后, D1的阳极为二极管同向串联支路的阳极, D2的阴极为二极管同向串联 电路的阴极。
控制开关 Q并联在二极管同向串联支路的两端, 具体的, Q的第一端连接 D1的 阳极, Q的第二端连接 D2的阴极。 Q的控制端连接基站控制器 102的输出端, 由基 站控制器 102控制 Q的开关状态。
其中, Q可以通过开关管实现, 例如, PN型三极管或 MOS管, PN型三极 管的基极为 Q 的控制端, 集电极连接所述二极管同向串联支路的阳极, 发射极连接 所述二极管同向串联支路的阴极。 NMOS管的栅极为 Q的控制端, 漏极连接所述二 极管同向串联支路的阳极, 源极连接所述二极管同向串联支路的阴极
正常情况下 Q闭合, 此时, 直流电流经过 Q传输到 Bias-Tl的直流输入端 13, 二极管同向串联支路中没有直流电流经过。 当基站控制器 102接收到自动建立扇区与天线对应关系的请求时,产生控制信号 控制 Q断开, 此时, 直流电流经过二极管同向串联支路传输到 Bias-Tl的直流输入端 13, 由于二极管有电流流经, 因此二极管上产生正向导通压降, D1和 D2的压降之 和为 1.4V。 此时, Bias-T的直流输入端 13输入的直流电压信号为 Vcc-1.4, 其中, Vcc为直流电源 103的电压。 参见图 2, 示出了 Vcc的波形图, 例如, Vcc恒为 12V。
基站控制器 102控制 Q连续断开、 闭合, 使 Vcc出现连续波动, 得到图 3所示 的电压波形, 电压波峰与波谷的电压差为二极管串联支路上的电压降, 例如, 为 D1 和 D2的电压降之和 1.4V, 从而实现开关调制器的作用。
如图 1所示, 天线 200中的解调电路 201可以包括比较器 Al, A1的同相输入端 通过电容 C1连接 Bias-T2的直流输出端 22, 同时, 该同相输入端通过限流电阻 R1 连接接地端; A1的反相输入端通过限流电阻 R2连接接地端。 A1的输出端连接 RCU 的输入端, 且 A1的输出端通过反馈电阻 R3连接反相输入端。 A1的供电端输入有直 流电压 (图 1中未示出)。
当 A1的同相输入端的电压高于反相输入端的参考电压时, 输出端输出高电平信 号; 当 A1的同相输入端的电压低于反相输入算的参考电压时, 输出端输出低电平信 号。 图 4示出了解调电路输出的电压波形图, 低电平接近 0V, 高电平为 5V。
其中, 反相输入端的参考电压根据基站侧产生的调制信号设定, 例如, 调制信号 的高电压为 12V, 低电压为 (12-1.4) V, 则可以将参考电压设定为 11V。
优选地,可以将基站 RF端口的标识信息对应的二进制码附加到直流电压信号上, 得到调制信号并传输给天线。天线通过解调该调制信号可以得到发送所述调制信号的 基站 RF端口 R01的标识信息, 天线将自身接收到所述调制信号的天线 RF端口 A01 的标识信息与基站 RF端口的标识信息一起反馈给基站。 从而使基站获知基站的 RF 端口 R01与天线 RF端口 A01连接, 进而根据基站与天线的 RF端口对应关系, 建立 扇区与天线之间的对应关系。
请参见图 5, 示出了一种多端口天线组网的应用场景图, 如图 5所示, 基站 100 包括四个 RF端口, 天线 200包括四个 RF端口。 每个基站 RF端口具有一个唯一的 识别号 (即, 上文提及的标识信息)。 每个天线 RF端口具有一个唯一的识别号 (即, 标识信息)。
基站内的每个 RF端口均设置有 Bias-Tl和调制电路。 相应的, 每个天线 RF端 口都设置有 Bias-T2和解调电路, 而且, 解调电路和 RCU之间设置有单刀多掷开关, 其中, 单刀多掷开关的不动端连接 RCU的输入端, 每个动端与一个解调电路的输出 端连接, RCU预先记录每个动端所对应天线 RF端口。
基站 100内的基站控制器(图 5中未示出)用于控制各个调制电路产生调制信号, 由 Bias-Tl将调制信号与射频信号耦合后传输至天线侧对应的天线 RF端口。 每个天 线 RF端口接收的耦合信号经过相应的 Bias-T2分离得到的调制信号通过单刀多掷开 关传输至 RCU。 具体的, RCU控制单刀多掷开关按照一定的顺序切换, 以接收各个 天线 RF端口接收到的调制信号。
在本发明一示例性实施例中, 基站控制器可以逐次控制调制电路产生调制信号, 相应的, RCU按顺序切换单刀多掷开关,通过单刀多掷开关的动端与天线 RF端口之 间的对应关系, 确定接收到调制信号的天线 RF端口, 并向基站反馈接收到所述调制 信号的天线 RF端口的标识信息。 基站接收到所述标识信息后, 控制所述调制电路停 止输出调制信号, 并控制下一个调制电路产生调制信号, 依次类推, 直到全部基站 RF端口都输出过调制信号,最终确定出基站的各个 RF端口与天线的各个 RF端口之 间的对应关系。
在本发明的另一示例性实施例中,基站控制器控制基站内的全部调制电路同时输 出调制信号, 此时, 根据各个调制电路对应的预设信息(例如, RF端口的标识信息) 产生相应的调制信号。 天线侧的 RCU按照一定的顺序控制单刀多掷开关切换, 接收 各个通道的调制信号。 RCU解调调制信号得到基站 RF端口的标识信息, 与接收到该 调制信号的天线 RF端口一起经由 AISG端口反馈给基站。 基站根据天线反馈的信息 可以绘制出基站 RF端口、 天线 RF端口和 RCU的组网连接关系图。
例如,基站 RF端口 4向天线侧发送包含该端口的标识信息的调制信号,天线 RF 端口 3接收到该调制信号, RCU解调得到基站 RF端口 4的标识信息后, 将基站 RF 端口 4的标识信息与天线 RF端口 3的标识信息一起反馈给基站, 基站获知基站 RF 端口 4与天线 RF端口 3对应连接。
请参见图 6, 示出了一种多天线级联组网场景示意图。 如图 6所示, 基站 100包 括四个 RF端口。 天线 210包括 RF端口 1和 RF端口 2, 天线 220包括 RF端口 3和 RF端口 4。 基站内的每个 RF端口均设置有 Bias-Tl和调制电路。 相应的, 每个天线 RF端口都设置有 Bias-T2和解调电路, 而且, 每个天线内均设置一个单刀多掷开关, 其中, 单刀多掷开关的连接方式与图 5相似, 此处不再赘述。
基站控制器通过 AISG端口可以同时向两个天线的 RCU下发控制指令。 多天线 级联组网场景的工作方式与图 5对应的实施例相似, 此处不再赘述。
例如,基站 RF端口 3向天线侧发送包含该端口的标识信息的调制信号,天线 RF 端口 4接收到该调制信号, RCU解调得到基站 RF端口 3的标识信息后, 将基站 RF 端口 3的标识信息与天线 RF端口 4的标识信息一起反馈给基站, 基站获知基站 RF 端口 3与天线 RF端口 4对应连接。
请参见图 7, 示出了本发明另一种天线与基站连接的结构示意图。
如图 7所示, 基站 300包括: Bias-T3、 检测电阻 R4、 电流检测电路 301、 解调 电路 302、 基站控制器 303和直流电源 304; 其中, Bias-T3、 电流检测电路和解调电 路均与基站射频端口一一对应;
Bias-T3的直流输入端 31通过检测电阻 R4连接直流电源 304,交流输入端 32输 入有射频信号, 交流输出端 33连接基站射频端口。
电流检测电路 301的两个输入端并联在检测电阻 R4的两端, 输出端连接解调电 路 302的输入端。 解调电路 302的输出端连接基站控制器 303的信息输入端。
其中, 解调电路 302可以通过电流比较器实现, 比较器的工作过程与上述实施例 中的解调电路相似, 此处不再赘述。
天线 400包括: RCU, 以及与天线 RF端口——对应的 Bias-T4和调制电路 401。 Bias-T4的交流输入端 41连接天线侧的射频端口, 直流输出端 42连接调制电路
401的输入端, 交流输出端 43输出射频信号。 调制电路 401的控制端连接 RCU的输 出端。
其中, 图 7所示的天线与基站连接的系统的工作过程如下:
基站内的直流电源向 Bias-T3的直流输入端传输直流电压信号, 由 Bias-T3将所 述直流电压信号与射频信号耦合后得到耦合信号, 通过 RF端口传输到天线侧; 天线 侧接收到所述耦合信号后, 通过 Bias-T4将耦合信号分离, 经 Bias-T4的直流输出端 输出直流电压信号, 经 Bias-T4的交流输出端输出射频信号。
当基站控制器 303接收到操作维护中心下发的校验请求时, 通过 AISG端口向天 线下发控制指令, 该控制指令用于使调制电路 401根据 Bias-T4的直流输出端输出的 直流电压信号产生电流调制信号,所述电流调制信号包含接收到所述耦合信号的天线 RF端口的标识信息。此时, 基站侧的电流检测电路 301能够检测到该电流调制信号, 并经过解调电路 302进行解调后得到所述天线 RF端口的标识信息, 传输给基站控制 器 303。 基站控制器 303确定接收到的所述标识信息对应的天线 RF端口与发送所述 耦合信号的基站 RF端口对应连接, 从而确定基站扇区与天线之间的对应关系。
需要说明的是, 本实施例中的电流检测电路可以采用基站内已有的电流检测电 路, 因此, 能够降低电路成本。 可选地, 参见图 7, 所述调制电路 401可以包括下拉电阻 R5和控制开关 K, 控 制开关 Κ与上述的控制开关 Q相同, 可以采用三极管或 MOS等开关管实现。
控制开关 Κ的第一端通过所述下拉电阻 R5连接接地端, 第二端为调制电路 401 的输入端, 控制开关 Κ的控制端为调制电路 401的控制端。
当天线的 RCU接收到基站控制器通过 AISG端口下发的产生调制信号控制命令 时, 控制 Κ闭合, 此时, 下拉电阻与 Bias-T4的直流输出端输出的直流电压信号形成 通路, 即 Bias-T4的直流输出端的电流负荷变化, 通过, 根据天线 RF端口的标识信 息控制 K连续闭合断开, SP, 将天线 RF端口的标识信息附加到直流电流信号上, 得 到电流调制信号, 此时, 天线侧控制开关 K对应的天线 RF端口所对应的基站侧的电 流检测电路能够检测到电流变化情况, 基站控制器确定有开关动作的天线 RF端口与 出现电流异常的基站 RF端口存在对应关系。
请参见图 8, 示出了与图 7所示实施例对应的一种多端口天线组网场景图, 如图 8所示, 基站 300包括四个 RF端口, 天线 400包括四个 RF端口。 每个基站 RF端口 具有一个唯一的识别号 (即, 上文提及的标识信息)。 每个天线 RF端口具有一个唯 一的识别号 (即, 标识信息)。
基站内的每个 RF端口均设置有 Bias-T3、 电流检测电路和解调电路, 相应的, 每个天线 RF端口都设置有 Bias-T4和调制电路。
在本发明一示例性实施例中,基站控制器可以逐一控制天线侧的调制电路产生电 流调制信号, 使基站控制器逐个将天线 RF端口与基站 RF端口建立对应关系, 最终 获得完整的天线连接关系图。
在本发明的另一示例性实施例中,基站控制器可以同时控制天线侧的调制电路产 生电流调制信号, 由基站控制器检测到所述电流调制信号, 并解调得到产生该电流调 制信号所对应的天线 RF端口的标识信息, 从而检测到该电流调制信号的基站 RF端 口与所述标识信息对应的天线 RF端口对应连接, 最终获得完整的天线连接关系图。 具体的工作过程与图 7所示实施例相同, 此处不再赘述。
请参见图 9, 示出了与图 7所示实施例对应的一种多天线级联组网场景示意图。 如图 9所示, 基站 100包括四个 RF端口, 其中, 基站控制器的连接方式与图 8 所示的方式相同。天线 410包括 RF端口 1和 RF端口 2, 天线 420包括 RF端口 3和 RF端口 4。 基站内的每个 RF端口均设置有 Bias-T3、 电流检测电路和解调电路。 相 应的, 每个天线 RF端口都设置有 Bias-T4和调制电路。 多天线级联网络中, 基站可 以通过 AISG端口同时控制级联的多个天线。 多天线级联网络中建立天线 RF端口与基站 RF端口间对应关系的过程与图 8所 示的实施例相同, 此处不再赘述。
请参见图 10, 示出了本发明实施例一种建立基站扇区与天线之间对应关系的方 法流程示意图, 该方法应用于基站和天线连接的系统中。
基站接收到操作维护中心下发的建立基站扇区与天线之间的对应关系的请求后, 执行以下步骤:
步骤 S110, 基站产生调制信号。
可选地, 基站接收到上述的请求信息后, 首先命令天线准备接收信号, 并在接收 到天线的响应信息后, 产生调制信号;
可选地, 基站可以将基站射频信号的标识信息附加到射频信号上, 得到所述调制 信号。
步骤 S120, 基站将所述调制信号和射频信号进行耦合, 得到耦合信号。
步骤 S130, 基站将所述耦合信号通过基站射频端口传输给天线。
步骤 S140, 天线通过天线射频端口接收所述耦合信号。
步骤 S150, 天线从所述耦合信号中分离得到所述调制信号。
天线可以通过 T 型偏置器将所述耦合信号分离得到交流射频信号和直流的调制 信号。
步骤 S160, 天线根据所述调制信号及接收到所述耦合信号的天线射频端口对应 的标识信息, 生成反馈信息, 并将所述反馈信息传输给基站。
天线通过 AISG端口将所述反馈信息反馈给基站。
步骤 S170, 基站解析所述反馈信息得到所述天线射频端口的标识信息。
步骤 S180, 基站建立所述天线射频端口的标识信息及发送所述耦合信号的基站 射频端口之间的对应关系, 得到基站扇区与天线之间的对应关系。
在本发明一示例性实施例中,天线接收到所述调制信号后,将接收所述调制信号 的天线射频端口对应的标识信息反馈给基站。这样,基站就能确定发送调制信号的基 站射频信号和接收调制信号的天线射频端口之间对应连接。
在本发明另一示例性实施例中,基站可以控制各个基站射频端口逐一产生调制信 号, 并逐一确定各个基站还可以将预设信息附加到调制信号上, 即使基站射频端口同 时发送调制信号,基站可以根据天线反馈的包含预设信息和天线射频端口的标识信息 建立基站射频端口和天线射频端口之间的对应关系。
本实施例提供的建立基站扇区与天线之间对应关系的方法, 由基站产生调制信 号, 并通过射频端口传输给对应的天线, 天线接收到所述调制信号后产生反馈信息, 并反馈给基站。基站确定发送所述调制信号的基站射频端口与接收调制信号的天线射 频端口之间存在对应关系, 从而自动建立扇区与天线的对应关系, 与人工记录方式相 比, 效率高且准确率高。
请参见图 11, 示出了本发明实施例另一种建立基站扇区与天线之间对应关系的 方法流程示意图, 该方法应用于基站和天线连接的系统中。
如图 11所示, 所述方法包括以下步骤:
步骤 S210, 基站将直流信号与射频信号进行耦合, 得到耦合信号, 并通过基站 射频端口传输给天线。
可以通过 τ型偏置器将直流信号与射频信号进行耦合。
步骤 S220, 基站通过 AISG端口向天线下发产生电流调制信号的控制命令。 基站接收到操作维护中心下发的建立基站扇区与天线之间的对应关系的请求后, 向天线下发所述控制命令。
步骤 S230, 天线接收到所述控制命令后, 根据接收到所述耦合信号的天线射频 端口的标识信息, 对基站传输的耦合信号中的直流信号进行调制得到电流调制信号。
在本发明一示例性实施例中,可以利用图 7所示的调制电路 401产生电流调制信 号,将接收所述耦合信号的天线射频端口的标识信息附加到直流电流信号上得到电流 调制信号。
步骤 S240, 基站对检测到的电流调制信号进行解调, 得到所述天线射频端口的 标识信息。 可以通过图 7所示的解调电路 302对电流调制信号进行解调。
步骤 S250, 基站根据天线射频端口的标识信息及产生所述耦合信号的基站射频 端口, 建立基站扇区与天线之间的对应关系。
本实施例提供的建立基站扇区与天线之间对应关系的方法,由天线产生包含天线 RF端口的标识信息的电流调制信号。 基站能够检测到所述电流调制信号, 并根据解 调所述电流调制信号, 得到产生该电流调制信号的天线 RF端口, 从而由基站确定产 生所述电流调制信号的天线 RF端口与检测到所述电流调制信号的基站 RF端口之间 存在对应关系, 从而自动建立扇区与天线之间的对应关系, 与人工记录方式相比, 效 率高且准确率高。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部 分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。尤其, 对于 装置或系统实施例而言, 由于其基本相似于方法实施例, 所以描述得比较简单, 相关 之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性 的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单 元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分 布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实 施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下, 即可以理解并 实施。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序 模块。 一般地, 程序模块包括执行特定任务或实现特定抽象数据类型的例程、 程序、 对象、 组件、 数据结构等等。 也可以在分布式计算环境中实践本发明, 在这些分布式 计算环境中, 由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环 境中, 程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
需要说明的是, 在本文中, 诸如 "第一 "和 "第二"等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体 或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括" 、 "包含"或者 其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包 括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的情况下, 由语 句 "包括一个…… " 限定的要素, 并不排除在包括所述要素的过程、 方法、物品或者 设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式, 应当指出, 对于本技术领域的普通技术人 员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种基站, 其特征在于, 包括: τ 型偏置器、 调制电路、 基站控制器和 直流电源,其中,所述 τ型偏置器的数量及所述调制电路的数量均与基站射频端 口的数量相同;
所述调制电路的输入端连接所述直流电源,输出端连接所述 T型偏置器的直 流输入端, 控制端连接所述基站控制器的输出端, 所述调制电路用于产生调制信 号;
所述 τ型偏置器的交流输入端输入有射频信号, 输出端连接基站射频端口; 所述 τ型偏置器用于将所述调制信号与所述射频信号耦合,得到耦合信号并 通过所述基站射频端口传输给对应的天线, 以使所述天线解调所述耦合信号, 并 经由 AISG输入端口向基站上传反馈信息,所述反馈信息包含接收到耦合信号的 天线射频端口的标识信息;
所述基站控制器用于控制所述调制电路产生所述调制信号,以及接收所述反 馈信息, 并根据所述反馈信息建立基站的扇区与天线之间的对应关系。
2、 根据权利要求 1所述的基站, 其特征在于:
所述基站控制器的输出端输出与所述 T 型偏置器连接的基站射频端口的标 识信息;
所述调制电路将所述基站射频端口的标识信息附加到直流电压信号上,得打 调制信号。
3、 根据权利要求 1或 2所述的基站, 其特征在于, 所述调制电路包括: 控 制开关和二极管同向串联支路;
所述二极管同向串联支路的阳极为所述调制电路的输入端、阴极为所述调制 电路的输出端;
所述控制开关通过第一端和第二端并联在所述二极管同向串联支路的两端, 所述控制开关的控制端为所述调制开关的控制端。
4、 根据权利要求 3所述的基站, 其特征在于, 所述控制开关为 PN型三极 管或 MOS管;
所述 PN型三极管的基极为控制开关的控制端, 集电极连接所述二极管同 向串联支路的阳极, 发射极连接所述二极管同向串联支路的阴极;
所述 MOS管的栅极为控制开关的控制端, 漏极连接所述二极管同向串联 支路的阳极, 源极连接所述二极管同向串联支路的阴极。
5、 一种天线, 其特征在于, 包括: 远端控制单元 RCU, 以及与天线射频端 口一一对应的 T型偏置器和解调电路;
所述 τ型偏置器的交流输入端连接天线射频端口,直流输出端连接所述解调 电路的输入端,交流输出端输出射频信号,所述 τ型偏置器用于将基站提供的耦 合信号解耦得到调制信号, 并提供给所述解调电路; 所述耦合信号由所述基站将 所述调制信号和射频信号耦合得到;
所述解调电路的输出端连接所述 RCU的输入端, 用于对所述调制信号进行 解调后提供所述 RCU;
所述 RCU用于根据解调后的信号以及接收到所述耦合信号的天线射频端口 对应的标识信息, 生成反馈信息, 并通过 AISG输入端口提供给基站, 所述反馈 信息用于使基站建立基站扇区与天线之间的对应关系。
6、 根据权利要求 5所述的天线, 其特征在于, 当天线射频端口的数量为多 个时, 还包括: 单刀多掷开关;
所述单刀多掷开关的不动端连接所述 RCU的输入端, 动端分别连接所述解 调电路的输出端, 并由所述 RCU控制所述单刀多掷开关的开关状态。
7、 根据权利要求 5所述的天线, 其特征在于, 所述解调电路包括: 比较器; 所述比较器的同相输入端通过电容连接所述 T型偏置器的交流输出端,反相 输入端通过限流电阻连接接地端, 输出端连接所述 RCU的输入端, 且所述输出 端通过反馈电阻连接所述反相输入端。
8、 一种基站, 其特征在于, 包括: T型偏置器、 检测电阻、 电流检测电路、 解调电路、 基站控制器和直流电源, 其中, τ型偏置器、 电流检测电路和解调电 路均与基站射频端口一一对应;
所述 τ型偏置器的直流输入端通过所述检测电阻连接所述直流电源,交流输 入端输入有射频信号, 交流输出端连接基站射频端口;
所述电流检测电路的两个输入端并联在所述检测电阻的两端,输出端连接所 述解调电路的输入端, 用于检测天线反馈回的电流调制信号;
所述 T 型偏置器用于将所述直流输入端输入的直流信号及所述射频信号进 行耦合得到耦合信号, 并传输给天线, 以使所述天线从所述耦合信号中分离得到 所述直流信号, 对所述直流信号的电流进行调制, 得到电流调制信号, 并通过天 线射频端口反馈给基站,所述电流调制信号包含接收到所述耦合信号的天线射频 端口的标识信息;
所述解调电路的输出端连接所述基站控制器的信息输入端,用于将电流检测 电路检测到的电流调制信号进行解调得到解调信号;
所述基站控制器用于根据所述解调信号确定天线射频端口与基站射频端口 之间的对应关系, 并建立基站的扇区与天线之间的对应关系, 以及, 通过 AISG 端口控制天线产生所述电流调制信号。
9、 根据权利要求 8所述的基站, 其特征在于: 所述解调电路包括比较器, 所述比较器的同相输入端通过电容连接所述电流检测电路的输出端,反相输入端 通过限流电阻连接接地端, 输出端连接所述基站控制器的信息输入端, 且所述输 出端通过反馈电阻连接所述反相输入端。
10、 一种天线, 其特征在于, 包括: 远端控制单元 RCU, 以及与天线射频 端口一一对应的 T型偏置器和调制电路;
所述 T型偏置器的交流输入端连接天线侧的射频端口,直流输出端连接所述 调制电路的输入端, 用于从基站传输的耦合信号中分离出直流信号;
所述调制电路的控制端连接所述 RCU的输出端;
所述 RCU用于根据基站传输的控制信号控制所述调制电路对 T型偏置器输 出的所述直流信号的电流进行调制, 得到电流调制信号, 以使所述基站检测到所 述电流调制信号,并根据所述电流调制信号确定天线射频端口与基站射频端口的 对应关系, 并建立基站的扇区与天线之间的对应关。
11、 根据权利要求 10所述的天线, 其特征在于, 所述调制电路包括下拉电 阻和控制开关;
所述控制开关的第一端通过所述下拉电阻连接接地端,第二端为所述调制电 路的输入端, 所述控制开关的控制端为所述调制电路的控制端。
12、 根据权利要求 10所述的天线, 其特征在于:
所述 RCU的输出端输出与所述 T型偏置器连接的天线射频端口的标识信息; 所述调制电路将所述天线射频端口的标识信息附加到直流电流信号上,得到 电流调制信号。
13、 一种建立基站扇区与天线之间对应关系的方法, 应用于基站, 其特征在 于, 包括:
当接收到建立基站扇区与天线之间对应关系的请求时, 产生调制信号; 将所述调制信号与射频信号进行耦合, 得到耦合信号并传输给天线, 以使所 述天线解调所述调制信号,并向基站反馈包含所述接收到所述解调信号的天线射 频端口的标识信息;
接收所述反馈信息, 解析所述反馈信息得到所述天线射频端口的标识信息; 建立所述天线射频端口的标识信息及发送所述耦合信号的基站射频端口之 间的对应关系, 得到基站扇区与天线之间的对应关。
14、 根据权利要求 13所述方法, 其特征在于, 产生调制信号, 包括: 将基站射频端口的标识信息附加到直流电压信号上, 得到所述调制信号。
15、 一种建立基站扇区与天线之间对应关系的方法, 应用于天线, 其特征在 于, 包括:
接收基站传输的耦合信号,所述耦合信号由射频信号和基站产生的调制信号 耦合得到;
从所述耦合信号中分离得到所述调制信号;
根据所述调制信号及接收所述调制信号的天线射频端口对应的标识信息,生 成反馈信息, 并传输给基站, 以使基站根据所述反馈信息建立基站扇区与天线之 间的对应关系。
16、 根据权利要求 15所述的方法, 其特征在于, 根据所述调制信号及接收 所述调制信号的天线射频端口对应的标识信息, 生成反馈信息, 包括:
解调所述调制信号, 得到传输所述调制信号的基站射频端口的标识信息, 所 述调制信号由基站将射频端口的标识信息附加到直流电压信号上得到;
根据所述基站射频端口的标识信息,以及接收所述调制信号的天线射频端口 生成反馈信息。
17、 一种建立基站扇区与天线之间对应关系的方法, 应用于基站, 其特征在 于, 包括:
将直流电压信号与射频信号进行耦合, 得到耦合信号, 并将所述耦合信号传 输给天线, 以使所述天线从所述耦合信号中分离得到所述直流信号, 对所述直流 信号的电流进行调制得到电流调制信号, 并将所述电流调制信号反馈给基站, 所 述电流调制信号包含接收到所述耦合信号的天线射频端口的标识信息;
检测天线产生的电流调制信号, 并对所述电流调制信号进行解调, 得到所述 天线射频端口的标识信息;
根据所述天线射频端口的标识信息及产生所述耦合信号的基站射频端口,建 立基站扇区与天线之间的对应关系。
18、 一种建立基站扇区与天线之间对应关系的方法, 应用于天线, 其特征在 于, 包括:
从基站传输的耦合信号中分离得到直流信号;
根据接收到所述耦合信号的天线射频端口的标识信息,对所述直流信号进行 调制, 得到电流调制信号;
将所述电流调制信号传输给基站,以使所述基站解调所述电流调制信号得到 所述天线射频端口的标识信息,并根据所述天线射频端口的标识信息及发送所述 耦合信号的基站射频端口的标识信息, 建立基站扇区与天线之间的对应关系。
PCT/CN2014/077316 2014-05-12 2014-05-12 建立基站扇区与天线之间对应关系的方法、基站及天线 WO2015172307A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14892181.0A EP3136773B1 (en) 2014-05-12 2014-05-12 Method for establishing correspondence between sector of base station and antenna, base station, and antenna
PCT/CN2014/077316 WO2015172307A1 (zh) 2014-05-12 2014-05-12 建立基站扇区与天线之间对应关系的方法、基站及天线
CN201480029049.8A CN105409274A (zh) 2014-05-12 2014-05-12 建立基站扇区与天线之间对应关系的方法、基站及天线
US15/350,991 US9699672B2 (en) 2014-05-12 2016-11-14 Method for establishing correspondence between sector of base station and antenna, base station, and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077316 WO2015172307A1 (zh) 2014-05-12 2014-05-12 建立基站扇区与天线之间对应关系的方法、基站及天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/350,991 Continuation US9699672B2 (en) 2014-05-12 2016-11-14 Method for establishing correspondence between sector of base station and antenna, base station, and antenna

Publications (1)

Publication Number Publication Date
WO2015172307A1 true WO2015172307A1 (zh) 2015-11-19

Family

ID=54479133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077316 WO2015172307A1 (zh) 2014-05-12 2014-05-12 建立基站扇区与天线之间对应关系的方法、基站及天线

Country Status (4)

Country Link
US (1) US9699672B2 (zh)
EP (1) EP3136773B1 (zh)
CN (1) CN105409274A (zh)
WO (1) WO2015172307A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804655A (zh) * 2016-10-11 2019-05-24 华为技术有限公司 射频网络中信号传输的方法、射频系统和检测设备
US11038280B2 (en) 2016-10-11 2021-06-15 Huawei Technologies Co., Ltd. Radio frequency system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133866B2 (en) 2014-02-25 2021-09-28 Pharmaseq, Inc. All optical identification and sensor system with power on discovery
EP3496207B1 (en) * 2014-03-10 2020-10-21 Huawei Technologies Co., Ltd. Remote electrical tilt unit, base station, and method for managing remote electrical tilt antenna
US10882258B1 (en) 2016-01-22 2021-01-05 Pharmaseq, Inc. Microchip affixing probe and method of use
CN108574496A (zh) * 2017-03-08 2018-09-25 深圳市脉冲星通信科技有限公司 跟踪通信基站天线系统
CN108494461B (zh) * 2018-03-16 2020-06-16 Oppo广东移动通信有限公司 无线通信设备
US11546129B2 (en) * 2020-02-14 2023-01-03 P-Chip Ip Holdings Inc. Light-triggered transponder
US20220085992A1 (en) 2020-09-17 2022-03-17 P-Chip Ip Holdings Inc. Devices, systems, and methods using microtransponders
US11455479B1 (en) * 2021-05-10 2022-09-27 Nokomis, Inc. Intelligent multiple antenna and radio interconnect optimizer and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
CN101043239A (zh) * 2007-04-28 2007-09-26 华为技术有限公司 一种偏置t形头与控制天线的系统
CN102833770A (zh) * 2012-08-14 2012-12-19 华为技术有限公司 电调天线设备及其关联小区的方法、天线组件及基站

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012413B1 (en) * 2003-08-01 2006-03-14 Tyco Electronics Power Systems, Inc. Controller for a power factor corrector and method of regulating the power factor corrector
CN1930784B (zh) * 2004-03-10 2010-06-09 松下电器产业株式会社 发送装置及无线通信装置
US20070161348A1 (en) * 2006-01-06 2007-07-12 Gribben Douglas A Cellular base station subsystem
TWI312603B (en) * 2006-03-17 2009-07-21 Innolux Display Corp Battery charging circuit
US7558334B2 (en) * 2006-09-01 2009-07-07 Panasonic Corporation Enhanced hybrid class-S modulator
US7937063B1 (en) * 2007-08-29 2011-05-03 Clear Wireless Llc Method and system for configuring a tower top low noise amplifier
US20090141623A1 (en) * 2007-11-27 2009-06-04 Hyun Jung Central Antenna Management System With Centralized Database
US8095093B2 (en) * 2008-09-03 2012-01-10 Panasonic Corporation Multi-mode transmitter having adaptive operating mode control
CN102365829B (zh) * 2009-03-27 2015-04-22 西门子公司 用于基站与天线之间的通信的无线电通信系统和方法
US8160647B2 (en) * 2009-05-01 2012-04-17 Nokia Siemens Networks Oy Filter system for use in co-site and control method thereof
TWI405162B (zh) * 2009-12-28 2013-08-11 Au Optronics Corp 閘極驅動電路
CN101951014A (zh) * 2010-10-29 2011-01-19 上海致远绿色能源有限公司 风光柴市电一体化供电系统
GB2485543B (en) * 2010-11-17 2014-03-12 Socowave Technologies Ltd Mimo antenna calibration device,integrated circuit and method for compensating phase mismatch
JP2012155863A (ja) * 2011-01-21 2012-08-16 Toshiba Lighting & Technology Corp 直流点灯照明装置
JP5677875B2 (ja) * 2011-03-16 2015-02-25 日立マクセル株式会社 非接触電力伝送システム
TWI438369B (zh) * 2011-07-19 2014-05-21 Wistron Corp 燈條結構及光源裝置
EP2602894B1 (en) * 2011-12-05 2014-04-09 Efore OYJ Circuit, method and system for overload protection
CN102710277A (zh) * 2012-05-24 2012-10-03 摩比天线技术(深圳)有限公司 一种射频扼流装置及包括该装置的天线系统
CN103096467B (zh) * 2013-01-25 2015-12-09 华为技术有限公司 基站天馈口与天线端口连接关系的定位方法和装置
US9350232B2 (en) * 2013-03-14 2016-05-24 Apple Inc. Power supply with continuous spread-spectrum switching signal
US20150195001A1 (en) * 2014-01-07 2015-07-09 Quintel Technology Limited Antenna system with enhanced inter-sector interference mitigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
CN101043239A (zh) * 2007-04-28 2007-09-26 华为技术有限公司 一种偏置t形头与控制天线的系统
CN102833770A (zh) * 2012-08-14 2012-12-19 华为技术有限公司 电调天线设备及其关联小区的方法、天线组件及基站

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804655A (zh) * 2016-10-11 2019-05-24 华为技术有限公司 射频网络中信号传输的方法、射频系统和检测设备
EP3515102A4 (en) * 2016-10-11 2019-07-24 Huawei Technologies Co., Ltd. SIGNAL TRANSMISSION METHOD IN A HIGH FREQUENCY NETWORK, HIGH FREQUENCY SYSTEM AND DETECTION DEVICE
US10554230B2 (en) 2016-10-11 2020-02-04 Huawei Technologies Co., Ltd. Signal transmission method in radio frequency network, radio frequency system, and detection device
US11038280B2 (en) 2016-10-11 2021-06-15 Huawei Technologies Co., Ltd. Radio frequency system

Also Published As

Publication number Publication date
US20170064570A1 (en) 2017-03-02
EP3136773A1 (en) 2017-03-01
EP3136773A4 (en) 2017-08-23
EP3136773B1 (en) 2019-07-31
US9699672B2 (en) 2017-07-04
CN105409274A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2015172307A1 (zh) 建立基站扇区与天线之间对应关系的方法、基站及天线
US10386902B2 (en) Methods and systems for supplying and receiving power over ethernet
CN110235456A (zh) 智能设备入网方法、移动终端、云服务器、设备及系统
US9860772B2 (en) Method and apparatus for determining connection relationship between an antenna feeding port of base station and an antenna port
US10554230B2 (en) Signal transmission method in radio frequency network, radio frequency system, and detection device
RU2553264C2 (ru) Самовыявление rf конфигурации для беспроводной системы
US9730079B2 (en) Joint positioning method and device
CN110636483A (zh) 一种配网方法及系统
CN104901725A (zh) 信号传输设备、定位器、信号传输系统及信号传输方法
US11038280B2 (en) Radio frequency system
US2243118A (en) Automatic antenna switching diversity system
CN109348493B (zh) 一种高可靠性的无线通信系统链路备份装置及其控制方法
CN105869375B (zh) 遥控终端控制终端设备的方法及装置、遥控终端
CN103945414A (zh) 一种确认频段与远程电调倾角之间映射关系的方法、设备
CN110677745B (zh) 配电装置、系统和方法
US10531517B2 (en) Connection method for wireless system
CN106028467A (zh) 计算机控制方法及系统及移动终端
WO2015172306A1 (zh) 天线级联关系的识别方法、天线设备及天线控制设备
WO2016015221A1 (zh) 电调天线以及天线阵列与基站配对方法
CN215187409U (zh) 一种无线modem冗余备份电路
CN108833869B (zh) 一种用于有线电视网络上行通道的可切换突发光发射电路
US20240152942A1 (en) Method for automated surveying of hotel guests
CN111131887B (zh) 支持同轴电缆多媒体联盟标准的装置和终端设备
US3182261A (en) Ssb-fm detector
CN102036138B (zh) 无线麦克风系统及其自动安装调试方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029049.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014892181

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892181

Country of ref document: EP