WO2016013794A1 - Device for purifying exhaust gas - Google Patents

Device for purifying exhaust gas Download PDF

Info

Publication number
WO2016013794A1
WO2016013794A1 PCT/KR2015/007295 KR2015007295W WO2016013794A1 WO 2016013794 A1 WO2016013794 A1 WO 2016013794A1 KR 2015007295 W KR2015007295 W KR 2015007295W WO 2016013794 A1 WO2016013794 A1 WO 2016013794A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst device
carrier
oxidation catalyst
gas purification
Prior art date
Application number
PCT/KR2015/007295
Other languages
French (fr)
Korean (ko)
Inventor
임인혁
최남일
김중수
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to CN201580039462.7A priority Critical patent/CN106661990A/en
Priority to KR1020177000330A priority patent/KR102107657B1/en
Publication of WO2016013794A1 publication Critical patent/WO2016013794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus. More particularly, the present invention relates to an exhaust gas purification apparatus for maintaining the performance of the selective reduction catalyst apparatus and the oxidation catalyst apparatus.
  • the exhaust gas treatment system of an internal combustion engine may include exhaust gas aftertreatment devices such as oxidation catalyst (OC) and selective catalyst reduction (SCR) to reduce pollutants contained in the exhaust gas. Can be.
  • exhaust gas aftertreatment devices such as oxidation catalyst (OC) and selective catalyst reduction (SCR) to reduce pollutants contained in the exhaust gas.
  • OC oxidation catalyst
  • SCR selective catalyst reduction
  • nitrogen oxide is reduced to nitrogen gas and water by catalytic reaction with nitrogen oxide (NOX) by spraying urea water or the like from a reducing agent injection module.
  • NOX nitrogen oxide
  • the oxidation catalyst device may oxidize carbon monoxide and hydrocarbons contained in the exhaust gas.
  • the exhaust gas may include engine oil leaked during the fuel combustion process, and if low quality fuel is used, impurities such as sulfur (S) may be included.
  • Engine oil and impurities in the exhaust gas may act as a poisoning material for the oxidation catalyst, which may reduce the performance of the oxidation catalyst device.
  • An object of the present invention to provide an exhaust gas purification apparatus for maintaining the performance of the selective reduction catalyst device.
  • Another object of the present invention is to provide an exhaust gas purification apparatus for maintaining the performance of the oxidation catalyst device.
  • the exhaust gas purifying apparatus according to claim 1 may be mounted at at least one position in front of the oxidation catalyst device or between the oxidation catalyst device and the selective reduction catalyst device and at least one carrier through which the exhaust gas passes, and the carrier It may include a washcoat layer coated on the surface to collect the impurities contained in the exhaust gas or the oxide material released from the oxidation catalyst device.
  • the oxide material may be Pt, Pd, Rh, Ir, Ag, Sn, Ru, or the like.
  • the carrier may be cordierite, silicon carbide, pecaloy, NiCrAl, NiFeCrAl, or the like.
  • the carrier may have a honeycomb shape.
  • the carrier may be canned together with the oxidation catalyst device.
  • the carrier may be installed inside the exhaust pipe.
  • the carrier may be integrally formed with the oxidation catalyst device.
  • the washcoat layer may be Al 2 O 3, SiO 2, TiO 2, CeO 2, ZrO 2, V 2 O 5, La 2 O 3, zeolite, or the like.
  • the washcoat layer may increase a contact area with the exhaust gas.
  • the washcoat layer may have a surface area of 50 to 60 m 2 / g.
  • the carrier may have a metal fiber structure.
  • the carrier may be in the form of a metal foam.
  • the impurity may be engine oil.
  • the exhaust gas purifying apparatus may collect precious metals or oxides separated from the oxidation catalyst apparatus. Accordingly, the oxide material can be prevented from flowing into the selective reduction catalyst device to maintain the performance of the selective reduction catalyst device.
  • the performance of the oxidation catalyst device can be maintained by collecting impurities such as engine oil contained in the exhaust gas.
  • FIG. 1 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 2 is a view showing the exhaust gas purification device of FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2.
  • FIG. 4 is a view showing the oxidation catalyst device of FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. 4.
  • FIG. 6 is a graph showing the NOx conversion efficiency of the selective reduction catalyst when the exhaust gas purification apparatus is not used.
  • FIG. 8 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 9 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 10 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 11 is a cross-sectional view taken along the line CC ′ of FIG. 10.
  • FIG. 12 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 13 is a cross-sectional view taken along the line D-D 'of FIG. 12.
  • FIG. 14 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • 15 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • 16 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • 17 is a cross-sectional view taken along the line E-E 'of FIG. 16.
  • FIG. 18 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • first, second, etc. are used herein to describe various members, parts, regions, and / or parts, it is obvious that these members, parts, regions, and / or parts should not be limited by these terms. Do. These terms are only used to distinguish one member, part, region or part from another region or part. Thus, the first member, part, region, or portion, which will be described below, may refer to the second member, component, region, or portion without departing from the teachings of the present invention.
  • top or “above” and “bottom” or “bottom” may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements described above. Thus, the exemplary term “top” may include both “bottom” and “top” directions depending on the particular direction of the figure. If the component faces in the other direction (rotated 90 degrees with respect to the other direction), the relative descriptions used herein may be interpreted accordingly.
  • FIG. 1 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • 2 is a view showing the exhaust gas purification device of FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2.
  • 4 is a view showing the oxidation catalyst device of FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. 4.
  • 6 is a graph showing the NOx conversion efficiency of the selective reduction catalyst when the exhaust gas purification apparatus is not used.
  • 7 is a graph showing NOX emissions and NOX conversion efficiency with and without an exhaust gas purification device.
  • the exhaust gas treatment system 10 is installed in the exhaust pipe P to remove carbon monoxide and hydrocarbons in the exhaust gas F (Oxidation Catalyst 200), an oxidation catalyst.
  • Selective Catalyst Reduction (300) installed in the exhaust pipe (P) downstream of the device (200) to reduce NOx, and between the oxidation catalyst device (200) and the selective reduction catalyst device (300). It may include an exhaust gas purification device 100 is mounted to the exhaust pipe (P) of the capacitive particles that can be separated from the oxidation catalyst device 200.
  • the exhaust gas F exhausted from the engine of the internal combustion engine is oxidized catalyst 200, exhaust gas purification apparatus 100 and selective reduction along the exhaust pipe P. It may be discharged to the outside through the catalytic device 300 in sequence.
  • the exhaust gas purification device 100 may be located downstream of the oxidation catalyst device 200, and the selective reduction catalyst device 300 may be located downstream of the exhaust gas purification device 100. At this time, being located "downstream" indicates that the exhaust gas F discharged from the engine is relatively closer to the outside.
  • the exhaust gas purification apparatus 100 may include a first washcoat layer 120 coated on the first carrier 110 and the first carrier 110.
  • the first carrier 110 can have at least one first passageway 112 extending in the axial direction.
  • the exhaust gas discharged from the engine passes through the first passage 112, and then may be discharged to the outside via the selective reduction catalyst device 300.
  • the first carrier 110 may be formed in a honeycomb shape by extruding a raw material of a ceramic material.
  • the first carrier include cordierite, silicon carbide, pecaloy, NiCrAl, NiFeCrAl, and the like.
  • the first carrier 110 is made of a ceramic material, it is easily broken by an external impact. Thus, it can be wrapped and canned in a relatively soft mat to protect it from external impacts.
  • the first carrier 110 may be formed to have a porous structure using a metal.
  • the first carrier may be formed of a metal fiber structure in which metal fibers are woven like a net, or in the form of a metal foam having a myriad of pores.
  • the first washcoat layer 120 may be coated on the surface of the first passage 112 of the first carrier 110 to capture the oxide material released from the oxidation catalyst device 200.
  • the first washcoat layer include Al 2 O 3, SiO 2, TiO 2, CeO 2, ZrO 2, V 2 O 5, La 2 O 3, zeolite, and the like.
  • the first washcoat layer 120 may be coated on the surface of the first carrier 110 by immersing one end of the first carrier 110 in a washcoat solution and forming a negative pressure at the other end.
  • the first carrier 110 may be mounted upstream of the selective reduction catalyst device 300. Therefore, the exhaust gas purification apparatus 100 may collect the oxide particles separated from the oxidation catalyst device 200 and prevent the inflow into the selective reduction catalyst device 300.
  • the oxidation catalyst device 200 may be exposed to a high temperature of 850 ° C. or more. At this time, the oxide material may be separated from the oxidation catalyst device 200 and discharged downstream together with the exhaust gas F. The discharged oxide material may be attached to and removed from the surface of the first washcoat layer 120 while passing through the first passage 112 of the exhaust gas purification apparatus 100.
  • the oxides include Pt, Pd, Rh, Ir, Ag, Sn, Ru, and the like.
  • the contact area with the exhaust gas F may be increased.
  • the surface area per unit weight of the uncoated first carrier is about 0.00643 m 2 / g, whereas when the first washcoat layer is coated, the surface area per unit weight may be 50 to 60 m 2 / g. have. That is, by coating the first washcoat layer 120 on the surface of the first carrier 110, the surface area contacting the exhaust gas F may be increased by about 7700 to 9300 times. As a result, an oxide material such as the noble metal separated from the oxidation catalyst device 200 may be greatly increased to prevent the inflow into the selective reduction catalyst device 300 by greatly increasing the chance of encountering the exhaust gas purification device 100.
  • the oxidation catalyst device 200 includes a second washcoat layer 220 coated on the second carrier 210 and the second carrier 210 and including the oxidation catalyst. can do.
  • the second carrier 210 can have at least one second passage 212 extending in the axial direction.
  • the exhaust gas discharged from the engine passes through the second passage 212, and then may be discharged to the outside through the exhaust gas purification device 100 and the selective reduction catalyst device 300 in sequence.
  • the second carrier 210 may be formed in a honeycomb shape by extruding a raw material of a ceramic material. Examples of the second carrier include cordierite, silicon carbide, pecaloy, NiCrAl, NiFeCrAl, and the like.
  • the second carrier 210 is made of a ceramic material, it is easily broken by an external impact. Therefore, it can be wrapped and canned in a relatively soft mat to protect it from external impacts.
  • the second carrier 210 may be formed to have a porous structure using a metal.
  • the second carrier may be formed of a metal fiber structure in which metal fibers are woven like a net, or in the form of a metal foam having numerous pores.
  • the second washcoat layer 220 may be coated on the surface of the second passage 212 of the second carrier 210 and may include an oxidation catalyst.
  • the oxidation catalyst include Pt, Pd, Rh, Ir, Ag, Sn, Ru, and the like.
  • the second washcoat layer 220 may be coated on the surface of the second carrier 210 by immersing one end of the second carrier 210 in a washcoat solution and forming a negative pressure at the other end.
  • the exhaust gas F discharged from the engine may enter the oxidation catalyst device 200 along the exhaust pipe P and pass through the second passages 212 formed in the second carrier 210. have.
  • the oxidation catalyst included in the second washcoat layer 220 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water.
  • the exhaust gas F passing through the oxidation catalyst device 200 may be discharged to the outside via the exhaust gas purification device 100 and the selective reduction catalyst device 300 in sequence.
  • the oxidation catalyst device 200 may include an oxidation catalyst device for oxidizing carbon monoxide and hydrocarbons included in exhaust gas of a diesel engine or a compressed natural gas engine.
  • a diesel oxidation catalyst may be used to purify harmful carbon monoxide, hydrocarbons, and soluble organic fractions in the exhaust gas.
  • the oxidation catalyst device 200 may include a diesel particulate filter for removing particulate matter in the exhaust gas F.
  • the diesel particulate filter may comprise a carrier having at least one passage extending in the axial direction.
  • the carrier may be formed in a honeycomb shape by extruding a raw material of a ceramic material. Examples of the carrier include cordierite, silicon carbide, pecaloy and the like.
  • the passages of the diesel particulate filter may have a structure that is alternately blocked over one. That is, the downstream may be blocked in the passage upstream and the downstream may be open in the passage blocked upstream. Accordingly, the exhaust gas F introduced into the passage in which the upstream is opened may pass through the pores formed in the carrier and flow into the passage in which the neighboring downstream is opened. In this process, particulate matter in the exhaust gas F can be filtered through the carrier.
  • the selective reduction catalyst device 300 may include a reducing agent injection module 320 and at least one selective reduction catalyst device.
  • the selective reduction catalyst device may include first to third selective reduction catalyst devices 312, 314, and 316.
  • the reducing agent injection module may be installed upstream than the first to third selective reduction catalyst devices.
  • the reducing agent injection module 320 may inject a reducing agent such as urea water into the exhaust pipe P. Since the temperature of the exhaust gas F discharged from the engine is a high temperature of several hundred degrees Celsius, the reducing agent injected in the exhaust pipe P can be vaporized immediately. The vaporized reducing agent may be mixed with the exhaust gas F and supplied to the first to third selective reduction catalyst devices 312, 314, and 316.
  • a reducing agent such as urea water
  • the first to third selective reduction catalyst devices (312, 314, 316) may be installed downstream than the reducing agent injection module 320, by reducing the nitrogen oxides (NOX) by the following reaction schemes 1 to 3 Can be converted to nitrogen (N2), which is harmless to humans.
  • NOX nitrogen oxides
  • Urea ((NH 2) 2 CO) may produce ammonia (NH 3) by hydrolysis.
  • the ammonia thus produced can be converted to nitrogen (N 2), which is harmless to the human body by reducing NO and NO 2.
  • the oxide material released from the oxidation catalyst device 200 may lower the performance of the selective reduction catalyst device 300.
  • the NOX reduction reaction is normally performed, and the NOX conversion efficiency is positive.
  • the first selective reduction catalyst device 312 attached to the front end of the selective reduction catalyst device 300 may exhibit a negative NOx conversion efficiency. This is because the oxide material released from the oxidation catalyst device 200 is attached to the first selective reduction catalyst device 312 to oxidize the ammonia to NOx.
  • the NOx conversion efficiency may be calculated by Equation 1 below.
  • NOx may be further generated through the reactions, and secondary products such as N 2 O and greenhouse gases may also be generated.
  • secondary products such as N 2 O and greenhouse gases may also be generated.
  • the ammonia supplied from the reducing agent injection module 320 is not used as a reducing agent for reducing NO x to N 2, but rather is oxidized to NO x by the oxide material. This may cause a problem that the NOx conversion efficiency of the selective reduction catalyst device 300 is reduced.
  • the exhaust gas purification apparatus 100 may improve the performance of the selective reduction catalyst 300 by capturing oxide material.
  • the North American NOX emission standard of 0.20 g / hp ⁇ hr can be satisfied and the NOX conversion efficiency It can maintain more than 70%. This is because the oxidized materials separated from the oxidation catalyst device 200 are filtered out of the exhaust gas purification device 100, so that the selective reduction catalyst device 300 can perform the NOx reduction function properly.
  • the exhaust gas treatment system 10 may further include an ammonia slip catalyst device 400.
  • the ammonia slip catalyst device 400 may be installed in the exhaust pipe P downstream of the selective reduction catalyst device 300 to remove ammonia.
  • the ammonia generated by the urea injected from the reducing agent injection module 320 may reduce nitrogen oxides in the exhaust gas F.
  • ammonia may be supplied in an amount larger than the stoichiometric amount. For this reason, the ammonia may be released into the atmosphere without being completely consumed through the catalytic reaction, which may cause air pollution. This is called an ammonia slip phenomenon.
  • the ammonia slip catalyst device 400 may prevent the ammonia slip phenomenon by removing the ammonia that is not consumed by the selective reduction catalyst device 300.
  • the exhaust gas purification apparatus 100 prevents the oxide material separated from the oxidation catalyst device 200 and the exhaust pipe P from flowing into the selective reduction catalyst device 300. can do. Accordingly, the selective reduction catalyst device 300 may perform a NOx reduction action without degrading the performance, and may reduce the amount of NOx discharged to the exhaust pipe (P).
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except that the exhaust gas purification apparatus is canned together with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • the exhaust gas treatment system 11 may include an exhaust gas purification apparatus 100 canned together with the oxidation catalyst device 200.
  • the first and second carriers are made of a ceramic material, they are easily broken by an external impact. Thus, the canning process is carried out by wrapping it in a relatively soft mat to protect the carriers from external impact.
  • the first carrier 110 may be placed directly behind the second carrier 210 to be canned at a time. Alternatively, the first carrier 110 may be canned separately from the second carrier 210, respectively.
  • FIG. 9 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except where the exhaust gas purification apparatus is installed. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • the exhaust gas treatment system 12 may purify the exhaust gas installed inside the exhaust pipe P connecting the oxidation catalyst device 200 and the selective reduction catalyst device 300.
  • Device 100 may be included.
  • the exhaust gas purification device 100 may maintain the performance of the selective reduction catalyst device 300 by collecting the oxide material separated from the oxidation catalyst device 200. Therefore, the exhaust gas purification apparatus 100 may be installed at various positions between the oxidation catalyst device 200 and the selective reduction catalyst device 300. For example, the exhaust gas purification apparatus may be installed inside the exhaust pipe connecting the oxidation catalyst apparatus and the selective reduction catalyst apparatus without separately canning.
  • the exhaust gas purification apparatus 100 may be installed at various positions between the oxidation catalyst device 200 and the selective reduction catalyst device 300. That is, the exhaust gas purification apparatus 100 may be canned at one time with the oxidation catalyst apparatus 200 or may be separately canned. Alternatively, the exhaust gas purification apparatus 100 may be mounted inside the exhaust pipe P.
  • FIG. 10 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 11 is a cross-sectional view taken along the line CC ′ of FIG. 10.
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except that the exhaust gas purification apparatus is integrally formed with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • the exhaust gas treatment system 13 may include an exhaust gas purification apparatus 100 formed integrally with the oxidation catalyst device 200.
  • one carrier may be formed in a honeycomb shape so as to have at least one passage extending in the axial direction by extruding a raw material of ceramic material. Subsequently, a first washcoat layer 121 may be coated on the rear end 111 of the carrier, and a second washcoat layer 221 may be coated on the front end 211 of the carrier. In this case, the first and second washcoat layers 121 and 221 may be formed by dip coating in which one end of the carrier is immersed in the washcoat solution and then taken out.
  • the exhaust gas F discharged from the engine may pass through the second washcoat layer 221 and the first washcoat layer 121 in order to be discharged downstream.
  • the second washcoat layer 221 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water.
  • the first washcoat layer 121 may collect an oxide material such as a noble metal separated from the second washcoat layer 221.
  • the exhaust gas purifying apparatus 100 may be zone-coated with the first washcoat layer 121 at the rear end of the oxidation catalyst apparatus 200 to integrate with the oxidation catalyst apparatus 200. Can be formed.
  • the first washcoat layer 121 may collect the oxide material released from the second washcoat layer 221 to maintain the performance of the selective reduction catalyst 300.
  • FIG. 12 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • FIG. 13 is a cross-sectional view taken along the line D-D 'of FIG. 12.
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except that the exhaust gas purification apparatus is installed upstream of the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • an exhaust gas treatment system 14 is installed in an exhaust pipe P, and an oxidation catalyst device 200 to remove carbon monoxide and hydrocarbons in the exhaust gas F and an oxidation catalyst device 200.
  • NOX nitrogen oxides
  • It may include an exhaust gas purification device 102 that can be collected. That is, the exhaust gas purification device 102 may be located upstream than the oxidation catalyst device 200 and the selective reduction catalyst device 300.
  • the exhaust gas purification apparatus 102 may include a third carrier 115 having a third passage 117 and a third washcoat layer 125 coated on the third carrier 115.
  • the third carrier 115 and the third washcoat layer 125 may be formed in substantially the same shape and material as the first carrier 110 and the first washcoat layer 120, respectively.
  • the exhaust gas discharged from the engine passes through the third passage 117, and then may be discharged to the outside through the oxidation catalyst device 200 and the selective reduction catalyst device 300 in order.
  • the contact area with the exhaust gas F may be increased by coating the third washcoat layer 125 on the surface of the third carrier 115.
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 12 except that the exhaust gas purification apparatus is canned together with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • the exhaust gas treatment system 15 is an exhaust gas canned together with the oxidation catalyst device 200 and the oxidation catalyst device 200 upstream of the oxidation catalyst device 200.
  • the purification device 102 may be included.
  • the second and third carriers are made of a ceramic material, they are easily broken by an external impact. Thus, the canning process is carried out by wrapping it in a relatively soft mat to protect the carriers from external impact.
  • the third carrier 115 may be placed directly in front of the second carrier 210 to be canned at a time.
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 12 except for the position where the exhaust gas purification apparatus is installed. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • the exhaust gas treatment system 16 may include an exhaust gas purification device 102 installed inside the exhaust pipe P in front of the oxidation catalyst device 200. .
  • the exhaust gas purification device 102 can maintain the performance of the oxidation catalyst device 200 by collecting impurities such as engine oil contained in the exhaust gas. Therefore, the exhaust gas purification device 102 may be installed at various positions in front of the oxidation catalyst device 200. For example, the exhaust gas purification apparatus may be installed inside the exhaust pipe in front of the oxidation catalyst apparatus without separately canning.
  • 16 is a diagram illustrating an exhaust gas treatment system according to example embodiments. 17 is a cross-sectional view taken along the line E-E 'of FIG. 16.
  • the exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 12 except that the exhaust gas purification apparatus is integrally formed with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
  • the exhaust gas treatment system 17 may include an exhaust gas purification apparatus 102 formed integrally with the oxidation catalyst device 200.
  • one carrier may be formed in a honeycomb shape so as to have at least one passage extending in the axial direction by extruding a raw material of ceramic material.
  • a second washcoat layer 222 may be coated on the rear end 215 of the carrier, and a third washcoat layer 126 may be coated on the front end 116 of the carrier.
  • the second and third washcoat layers 222 and 126 may be formed by dip coating by dipping one end of the carrier into the washcoat solution.
  • the exhaust gas F exhausted from the engine may pass through the third washcoat layer 126 and the second washcoat layer 222 in order to be discharged downstream.
  • the third washcoat layer 126 may collect impurities such as engine oil included in the exhaust gas F.
  • the second washcoat layer 221 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water.
  • the exhaust gas purification apparatus 102 may be installed at various positions upstream of the oxidation catalyst apparatus 200. That is, the exhaust gas purification device 102 can be canned at one time with the oxidation catalyst device 200 or separately canned. Alternatively, the exhaust gas purification device 102 may be mounted inside the exhaust pipe P. In some cases, the exhaust gas purification device 102 may be integrally formed with the oxidation catalyst device 200 by zone coating the third washcoat layer 126 on the front end of the oxidation catalyst device 200. Accordingly, the exhaust gas purification device 102 may maintain the performance of the oxidation catalyst device 200 by removing impurities such as engine oil contained in the exhaust gas.
  • FIGS. 18 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
  • the exhaust gas treatment system is an exhaust gas treatment system described with reference to FIGS. 1 and 12, respectively, except that a plurality of exhaust gas purification apparatuses are installed upstream of the oxidation catalyst apparatus and between the oxidation catalyst apparatus and the conversion catalyst apparatus. Is substantially the same or similar to Accordingly, like reference numerals refer to like elements, and repeated descriptions of like elements are omitted.
  • an exhaust gas treatment system 18 is installed in an exhaust pipe P, and an oxidation catalyst device 200 to remove carbon monoxide and hydrocarbons in exhaust gas F and an oxidation catalyst device 200. And a selective reduction catalyst (300), and an exhaust gas purification device (104) installed in the exhaust pipe (P) downstream to reduce nitrogen oxides (NOX).
  • the exhaust gas purification device 104 includes a first exhaust gas purification unit 105 mounted on the exhaust pipe P between the oxidation catalyst device 200 and the selective reduction catalyst device 300, and the oxidation catalyst device 200 upstream. It may include a second exhaust gas purification unit 106 mounted on the exhaust pipe (P) of the.
  • the first exhaust gas purification unit 105 may prevent the oxide material separated from the oxidation catalyst device 200 and the exhaust pipe P from flowing into the selective reduction catalyst device 300. Accordingly, the selective reduction catalyst device 300 may perform a NOx reduction action without degrading the performance, and may reduce the amount of NOx discharged to the exhaust pipe (P).
  • the first exhaust gas purification unit 105 may be canned at one time with the oxidation catalyst device 200 or may be integrally formed with the oxidation catalyst device 200. In some cases, it may be mounted in the exhaust pipe P between the oxidation catalyst device 200 and the selective reduction catalyst device 300.
  • the second exhaust gas purification unit 106 may prevent impurities such as engine oil and sulfur (S) contained in the exhaust gas from flowing into the oxidation catalyst device 200. Accordingly, the oxidation catalyst device 200 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water without degrading performance.
  • impurities such as engine oil and sulfur (S) contained in the exhaust gas from flowing into the oxidation catalyst device 200. Accordingly, the oxidation catalyst device 200 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water without degrading performance.
  • the second exhaust gas purification unit 106 may be canned at one time with the oxidation catalyst device 200 or may be integrally formed with the oxidation catalyst device 200. In some cases, it may be mounted in the exhaust pipe (P) upstream of the oxidation catalyst device 200.
  • the exhaust gas purification apparatus 104 may collect impurities in the exhaust gas to prevent performance degradation of the oxidation catalyst apparatus 200, and may prevent the oxidation catalyst apparatus 200 and the exhaust gas.
  • the performance of the selective reduction catalyst device 300 may be prevented by collecting the oxide material separated from the pipe P.
  • exhaust gas purification device 105 first exhaust gas purification unit
  • second exhaust gas purification unit 110 first carrier
  • third washcoat layer 200 oxidation catalyst device
  • first selective reduction catalyst device 314 second selective reduction catalyst device
  • third selective reduction catalyst device 320 reducing agent injection module

Abstract

In an exhaust gas processing system comprising an oxidation catalyst device and a selective catalyst reduction device which are sequentially installed in an exhaust pipe through which exhaust gas from an internal combustion engine is exhausted, a device for purifying exhaust gas comprises: at least one carrier through which exhaust gas passes, the at least one carrier being installable on at least one of the position ahead of the oxidation catalyst device and the position between the oxidation catalyst device and the selective catalyst reduction device; and a wash coat, which coats the surface of the carrier, for collecting impurities included in the exhaust gas or oxidative material deviated from the oxidation catalyst device.

Description

배기가스 정화 장치Exhaust gas purification device
본 발명은 배기가스 정화 장치에 관한 것이다. 더욱 자세하게는, 선택적환원촉매장치 및 산화촉매장치의 성능을 유지하기 위한 배기가스 정화 장치에 관한 것이다.The present invention relates to an exhaust gas purification apparatus. More particularly, the present invention relates to an exhaust gas purification apparatus for maintaining the performance of the selective reduction catalyst apparatus and the oxidation catalyst apparatus.
내연기관의 배기가스 처리 시스템은 배기가스 중에 함유된 공해 물질들을 감소시키기 위해 산화촉매장치(Oxidation Catalyst, OC) 및 선택적환원촉매장치(Selective Catalyst Reduction, SCR) 등과 같은 배기가스 후처리 장치들을 구비할 수 있다.The exhaust gas treatment system of an internal combustion engine may include exhaust gas aftertreatment devices such as oxidation catalyst (OC) and selective catalyst reduction (SCR) to reduce pollutants contained in the exhaust gas. Can be.
선택적환원촉매장치의 경우, 환원제 분사 모듈에서 요소수 등을 분사하여 질소산화물(NOX)과 촉매 반응시킴으로써 질소산화물을 질소 가스와 물로 환원시킨다.In the selective reduction catalyst device, nitrogen oxide is reduced to nitrogen gas and water by catalytic reaction with nitrogen oxide (NOX) by spraying urea water or the like from a reducing agent injection module.
그러나, 배기가스의 온도가 올라가거나 실화(misfire)가 발생하면 산화촉매장치 내부의 귀금속이나 산화물질 등이 이탈되어 선택적환원촉매장치의 전단에 부착될 수 있다. 이로 인해, 선택적환원촉매장치의 질소산화물 전환 효율이 떨어지는 문제가 발생할 수 있다.However, when the temperature of the exhaust gas rises or misfire occurs, precious metal or oxide material in the oxidation catalyst device may be separated and attached to the front end of the selective reduction catalyst device. This may cause a problem that the efficiency of nitrogen oxide conversion of the selective reduction catalyst device is lowered.
한편, 산화촉매장치는 배기가스 중에 포함된 일산화탄소 및 탄화수소를 산화시킬 수 있다. 그런데, 배기가스 중에는 연료 연소과정에서 누유된 엔진 오일이 포함될 수 있으며, 저품질의 연료를 사용한 경우라면 황(S) 등의 불순물도 포함될 수 있다. 배기가스 중의 엔진 오일 및 불순물은 산화촉매에 대한 피독물질로 작용할 수 있으며, 이로 인해 산화촉매장치의 성능이 저하될 수 있다.On the other hand, the oxidation catalyst device may oxidize carbon monoxide and hydrocarbons contained in the exhaust gas. However, the exhaust gas may include engine oil leaked during the fuel combustion process, and if low quality fuel is used, impurities such as sulfur (S) may be included. Engine oil and impurities in the exhaust gas may act as a poisoning material for the oxidation catalyst, which may reduce the performance of the oxidation catalyst device.
본 발명의 일 목적은 선택적환원촉매장치의 성능을 유지하기 위한 배기가스 정화 장치를 제공하는데 있다.An object of the present invention to provide an exhaust gas purification apparatus for maintaining the performance of the selective reduction catalyst device.
본 발명의 다른 목적은 산화촉매장치의 성능을 유지하기 위한 배기가스 정화 장치를 제공하는데 있다.Another object of the present invention is to provide an exhaust gas purification apparatus for maintaining the performance of the oxidation catalyst device.
상술한 본 발명의 일 목적을 달성하기 위하여, 내연기관으로부터 배기가스가 배출되는 배기파이프에 순차적으로 설치되는 산화촉매장치 및 선택적환원촉매장치를 포함하는 배기가스 처리 시스템에 있어서, 예시적인 실시예들에 따른 배기가스 정화 장치는, 상기 산화촉매장치의 전방, 또는 상기 산화촉매장치 및 상기 선택적환원촉매장치 사이 중에서 적어도 하나의 위치에 장착 가능하고 상기 배기가스가 통과하는 적어도 하나의 담체, 및 상기 담체 표면에 코팅되며 상기 배기가스에 포함된 불순물 또는 상기 산화촉매장치에서 이탈된 산화물질을 포집하기 위한 워시코트 층을 포함할 수 있다.In order to achieve the above object of the present invention, in the exhaust gas treatment system including an oxidation catalyst device and a selective reduction catalyst device which is sequentially installed in the exhaust pipe from which the exhaust gas is discharged from the internal combustion engine, exemplary embodiments The exhaust gas purifying apparatus according to claim 1 may be mounted at at least one position in front of the oxidation catalyst device or between the oxidation catalyst device and the selective reduction catalyst device and at least one carrier through which the exhaust gas passes, and the carrier It may include a washcoat layer coated on the surface to collect the impurities contained in the exhaust gas or the oxide material released from the oxidation catalyst device.
예시적인 실시예들에 있어서, 상기 산화물질은 Pt, Pd, Rh, Ir, Ag, Sn, 및 Ru 등일 수 있다.In exemplary embodiments, the oxide material may be Pt, Pd, Rh, Ir, Ag, Sn, Ru, or the like.
예시적인 실시예들에 있어서, 상기 담체는 코디어라이트, 탄화규소, 페칼로이, NiCrAl, NiFeCrAl 등일 수 있다.In exemplary embodiments, the carrier may be cordierite, silicon carbide, pecaloy, NiCrAl, NiFeCrAl, or the like.
예시적인 실시예들에 있어서, 상기 담체는 허니콤 형상일 수 있다.In exemplary embodiments, the carrier may have a honeycomb shape.
예시적인 실시예들에 있어서, 상기 담체는 상기 산화촉매장치와 함께 캐닝될 수 있다.In exemplary embodiments, the carrier may be canned together with the oxidation catalyst device.
예시적인 실시예들에 있어서, 상기 담체는 배기파이프 내부에 설치될 수 있다.In exemplary embodiments, the carrier may be installed inside the exhaust pipe.
예시적인 실시예들에 있어서, 상기 담체는 상기 산화촉매장치와 일체로 형성될 수 있다.In example embodiments, the carrier may be integrally formed with the oxidation catalyst device.
예시적인 실시예들에 있어서, 상기 워시코트 층은 Al2O3, SiO2, TiO2, CeO2, ZrO2, V2O5, La2O3, 제올라이트 등일 수 있다.In example embodiments, the washcoat layer may be Al 2 O 3, SiO 2, TiO 2, CeO 2, ZrO 2, V 2 O 5, La 2 O 3, zeolite, or the like.
예시적인 실시예들에 있어서, 상기 워시코트 층은 상기 배기가스와 접촉면적을 증가시킬 수 있다.In example embodiments, the washcoat layer may increase a contact area with the exhaust gas.
예시적인 실시예들에 있어서, 상기 워시코트 층은 50 내지 60m2/g의 표면적을 가질 수 있다.In example embodiments, the washcoat layer may have a surface area of 50 to 60 m 2 / g.
예시적인 실시예들에 있어서, 상기 담체는 금속 섬유 구조(metal fiber structure)를 가질 수 있다.In example embodiments, the carrier may have a metal fiber structure.
예시적인 실시예들에 있어서, 상기 담체는 금속 폼(metal foam) 형상일 수 있다.In example embodiments, the carrier may be in the form of a metal foam.
예시적인 실시예들에 있어서, 상기 불순물은 엔진 오일일 수 있다.In exemplary embodiments, the impurity may be engine oil.
그러나, 본 발명이 해결하고자 하는 과제는 상술한 과제들에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-described problems, and may be variously expanded within a range without departing from the spirit and scope of the present invention.
예시적인 실시예들에 따른 배기가스 정화 장치는 산화촉매장치로부터 이탈된 귀금속이나 산화물질 등을 포집할 수 있다. 이에 따라, 산화물질이 선택적환원촉매장치로 유입되는 것을 방지하여 선택적환원촉매장치의 성능을 유지할 수 있다.The exhaust gas purifying apparatus according to the exemplary embodiments may collect precious metals or oxides separated from the oxidation catalyst apparatus. Accordingly, the oxide material can be prevented from flowing into the selective reduction catalyst device to maintain the performance of the selective reduction catalyst device.
또한, 상기 배기가스 정화 장치가 산화촉매장치보다 상류에 설치되는 경우에는, 배기가스 중에 포함된 엔진오일 등의 불순물을 포집함으로써, 산화촉매장치의 성능을 유지할 수 있다.In addition, when the exhaust gas purification device is installed upstream of the oxidation catalyst device, the performance of the oxidation catalyst device can be maintained by collecting impurities such as engine oil contained in the exhaust gas.
다만, 본 발명의 효과는 상기 언급한 효과에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and may be variously expanded within a range without departing from the spirit and scope of the present invention.
도 1은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.1 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 2는 도 1의 배기가스 정화 장치를 나타내는 도면이다.2 is a view showing the exhaust gas purification device of FIG.
도 3은 도 2의 A-A'라인을 따라 절단한 단면도이다.3 is a cross-sectional view taken along the line AA ′ of FIG. 2.
도 4는 도 1의 산화촉매장치를 나타내는 도면이다.4 is a view showing the oxidation catalyst device of FIG.
도 5는 도 4의 B-B'라인을 따라 절단한 단면도이다.FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. 4.
도 6은 배기가스 정화 장치를 사용하지 않은 경우 선택적환원촉매장치의 NOX 전환 효율을 나타내는 그래프이다.6 is a graph showing the NOx conversion efficiency of the selective reduction catalyst when the exhaust gas purification apparatus is not used.
도 7은 배기가스 정화 장치를 사용한 경우와 사용하지 않은 경우에서의 NOX 배출량과 NOX 전환 효율을 나타내는 그래프이다.7 is a graph showing NOX emissions and NOX conversion efficiency with and without an exhaust gas purification device.
도 8은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.8 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 9는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.9 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 10은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.10 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 11은 도 10의 C-C'라인을 따라 절단한 단면도이다.FIG. 11 is a cross-sectional view taken along the line CC ′ of FIG. 10.
도 12는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.12 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 13은 도 12의 D-D'라인을 따라 절단한 단면도이다.FIG. 13 is a cross-sectional view taken along the line D-D 'of FIG. 12.
도 14는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.14 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 15는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.15 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 16은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.16 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
도 17은 도 16의 E-E'라인을 따라 절단한 단면도이다.17 is a cross-sectional view taken along the line E-E 'of FIG. 16.
도 18은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다.18 is a diagram illustrating an exhaust gas treatment system according to example embodiments.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity of description.
명세서 전체에 걸쳐서, 하나의 구성요소가 다른 구성요소 "상에", "연결되어", 또는 "커플링되어" 위치한다고 언급할 때는, 상술한 하나의 구성요소가 직접적으로 다른 구성요소 "상에", "연결되어", 또는 "커플링되어" 접촉하거나, 그 사이에 개재되는 또 다른 구성요소들이 존재할 수 있다고 해석될 수 있다. 반면에, 하나의 구성요소가 다른 구성요소 "직접적으로 상에", "직접 연결되어", 또는 "직접 커플링되어" 위치한다고 언급할 때는, 그 사이에 개재되는 다른 구성요소들이 존재하지 않는다고 해석된다. 동일한 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.Throughout the specification, when referring to one component "located", "connected", or "coupled" to another component, the above-described one component directly on another component " It may be interpreted that there may be other components that are in contact with, or “in connection with,” or “coupled to”. On the other hand, when one component is said to be located on another component "directly on", "directly connected", or "directly coupled", it is interpreted that there are no other components intervening therebetween. do. Like numbers refer to like elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역 또는 부분을 다른 영역 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1 부재, 부품, 영역 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2 부재, 부품, 영역 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, and / or parts, it is obvious that these members, parts, regions, and / or parts should not be limited by these terms. Do. These terms are only used to distinguish one member, part, region or part from another region or part. Thus, the first member, part, region, or portion, which will be described below, may refer to the second member, component, region, or portion without departing from the teachings of the present invention.
또한, "상의" 또는 "위의" 및 "하의" 또는 "아래의"와 같은 상대적인 용어들은 도면들에서 도해되는 것처럼 다른 요소들에 대한 어떤 요소들의 관계를 기술하기 위해 여기에서 사용될 수 있다. 상대적 용어들은 도면들에서 묘사되는 방향에 추가하여 장치의 다른 방향들을 포함하는 것을 의도한다고 이해될 수 있다. 예를 들어, 도면들에서 장치가 뒤집어 진다면(turned over), 다른 요소들의 상부의 면 상에 존재하는 것으로 묘사되는 요소들은 상술한 다른 요소들의 하부의 면 상에 방향을 가지게 된다. 그러므로, 예로써 든 "상의"라는 용어는, 도면의 특정한 방향에 의존하여 "하의" 및 "상의" 방향 모두를 포함할 수 있다. 구성 요소가 다른 방향으로 향한다면(다른 방향에 대하여 90도 회전), 본 명세서에 사용되는 상대적인 설명들은 이에 따라 해석될 수 있다.Also, relative terms such as "top" or "above" and "bottom" or "bottom" may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements described above. Thus, the exemplary term "top" may include both "bottom" and "top" directions depending on the particular direction of the figure. If the component faces in the other direction (rotated 90 degrees with respect to the other direction), the relative descriptions used herein may be interpreted accordingly.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다. 이하 실시예들은 하나 또는 복수 개를 조합하여 구성할 수도 있다.Embodiments of the present invention will now be described with reference to the drawings, which schematically illustrate ideal embodiments of the present invention. In the figures, for example, variations in the shape shown may be expected, depending on manufacturing techniques and / or tolerances. Accordingly, embodiments of the inventive concept should not be construed as limited to the specific shapes of the regions shown herein, but should include, for example, changes in shape resulting from manufacturing. The following embodiments may be configured by combining one or a plurality.
도 1은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 도 2는 도 1의 배기가스 정화 장치를 나타내는 도면이다. 도 3은 도 2의 A-A'라인을 따라 절단한 단면도이다. 도 4는 도 1의 산화촉매장치를 나타내는 도면이다. 도 5는 도 4의 B-B'라인을 따라 절단한 단면도이다. 도 6은 배기가스 정화 장치를 사용하지 않은 경우 선택적환원촉매장치의 NOX 전환 효율을 나타내는 그래프이다. 도 7은 배기가스 정화 장치를 사용한 경우와 사용하지 않은 경우에서의 NOX 배출량과 NOX 전환 효율을 나타내는 그래프이다.1 is a diagram illustrating an exhaust gas treatment system according to example embodiments. 2 is a view showing the exhaust gas purification device of FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2. 4 is a view showing the oxidation catalyst device of FIG. FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. 4. 6 is a graph showing the NOx conversion efficiency of the selective reduction catalyst when the exhaust gas purification apparatus is not used. 7 is a graph showing NOX emissions and NOX conversion efficiency with and without an exhaust gas purification device.
도 1 내지 도 7을 참조하면, 배기가스 처리 시스템(10)은 배기파이프(P)에 설치되어 배기가스(F) 중의 일산화탄소 및 탄화수소를 제거하기 위한 산화촉매장치(Oxidation Catalyst, 200), 산화촉매장치(200) 하류의 배기파이프(P)에 설치되어 질소산화물(NOX)을 환원시키는 선택적환원촉매장치(Selective Catalyst Reduction, 300), 및 산화촉매장치(200)와 선택적환원촉매장치(300) 사이의 배기파이프(P)에 장착되며 산화촉매장치(200)로부터 이탈된 입자를 포집할 수 있는 배기가스 정화 장치(100)를 포함할 수 있다.1 to 7, the exhaust gas treatment system 10 is installed in the exhaust pipe P to remove carbon monoxide and hydrocarbons in the exhaust gas F (Oxidation Catalyst 200), an oxidation catalyst. Selective Catalyst Reduction (300) installed in the exhaust pipe (P) downstream of the device (200) to reduce NOx, and between the oxidation catalyst device (200) and the selective reduction catalyst device (300). It may include an exhaust gas purification device 100 is mounted to the exhaust pipe (P) of the capacitive particles that can be separated from the oxidation catalyst device 200.
예시적인 실시예들에 있어서, 내연기관의 엔진(도시되지 않음)에서 배출된 배기가스(F)는 배기파이프(P)를 따라 산화촉매장치(200), 배기가스 정화 장치(100) 및 선택적환원촉매장치(300)를 차례로 거쳐 외부로 배출될 수 있다. 배기가스 정화 장치(100)는 산화촉매장치(200)의 하류에 위치하고, 선택적환원촉매장치(300)는 배기가스 정화 장치(100)의 하류에 위치할 수 있다. 이 때,'하류'에 위치하는 것은 엔진으로부터 배출되는 배기가스(F)의 흐름에서 상대적으로 외부에 더 가까이 있음을 나타낸다.In exemplary embodiments, the exhaust gas F exhausted from the engine of the internal combustion engine (not shown) is oxidized catalyst 200, exhaust gas purification apparatus 100 and selective reduction along the exhaust pipe P. It may be discharged to the outside through the catalytic device 300 in sequence. The exhaust gas purification device 100 may be located downstream of the oxidation catalyst device 200, and the selective reduction catalyst device 300 may be located downstream of the exhaust gas purification device 100. At this time, being located "downstream" indicates that the exhaust gas F discharged from the engine is relatively closer to the outside.
도 2 및 도 3에 도시된 바와 같이, 배기가스 정화 장치(100)는 제1 담체(110) 및 제1 담체(110) 상에 코팅되는 제1 워시코트 층(120)을 포함할 수 있다.As shown in FIGS. 2 and 3, the exhaust gas purification apparatus 100 may include a first washcoat layer 120 coated on the first carrier 110 and the first carrier 110.
제1 담체(110)는 축방향으로 연장하는 적어도 하나의 제1 통로(112)를 가질 수 있다. 상기 엔진에서 배출된 배기가스는 제1 통로(112)를 통과하며, 이후 선택적환원촉매장치(300)를 거쳐 외부로 배출될 수 있다. 예를 들면, 제1 담체(110)는 세라믹 재질의 원재료를 압출하여 허니콤 형상으로 형성될 수 있다. 상기 제1 담체의 예로서는, 코디어라이트, 탄화규소, 페칼로이, NiCrAl, NiFeCrAl 등을 들 수 있다. The first carrier 110 can have at least one first passageway 112 extending in the axial direction. The exhaust gas discharged from the engine passes through the first passage 112, and then may be discharged to the outside via the selective reduction catalyst device 300. For example, the first carrier 110 may be formed in a honeycomb shape by extruding a raw material of a ceramic material. Examples of the first carrier include cordierite, silicon carbide, pecaloy, NiCrAl, NiFeCrAl, and the like.
제1 담체(110)는 세라믹 재질로 구성되어 있어 외부 충격에 의해 깨지기 쉽다. 따라서, 외부 충격으로부터 보호하기 위하여 상대적으로 푹신푹신한 매트로 싸서 캐닝(canning)될 수 있다.Since the first carrier 110 is made of a ceramic material, it is easily broken by an external impact. Thus, it can be wrapped and canned in a relatively soft mat to protect it from external impacts.
이와 다르게, 제1 담체(110)는 금속을 이용하여 다공질 구조를 갖도록 형성될 수 있다. 예를 들면, 상기 제1 담체는 금속 섬유(metal fiber)가 그물망처럼 엮인 금속 섬유 구조(metal fiber structure)로 형성되거나, 또는 무수히 많은 기공들을 갖는 금속 폼(metal foam) 형상으로 형성될 수 있다.Alternatively, the first carrier 110 may be formed to have a porous structure using a metal. For example, the first carrier may be formed of a metal fiber structure in which metal fibers are woven like a net, or in the form of a metal foam having a myriad of pores.
제1 워시코트 층(120)은 제1 담체(110)의 제1 통로(112) 표면에 코팅되어 산화촉매장치(200)로부터 이탈된 산화물질을 포집할 수 있다. 상기 제1 워시코트 층의 예로서는 Al2O3, SiO2, TiO2, CeO2, ZrO2, V2O5, La2O3, 제올라이트 등을 들 수 있다. 제1 워시코트 층(120)은 제1 담체(110)의 일단을 워시코트 용액에 담그고, 타단에 음압을 형성하여 줌으로써 제1 담체(110) 표면에 코팅될 수 있다.The first washcoat layer 120 may be coated on the surface of the first passage 112 of the first carrier 110 to capture the oxide material released from the oxidation catalyst device 200. Examples of the first washcoat layer include Al 2 O 3, SiO 2, TiO 2, CeO 2, ZrO 2, V 2 O 5, La 2 O 3, zeolite, and the like. The first washcoat layer 120 may be coated on the surface of the first carrier 110 by immersing one end of the first carrier 110 in a washcoat solution and forming a negative pressure at the other end.
예시적인 실시예들에 있어서, 제1 담체(110)는 선택적환원촉매장치(300)의 상류에 장착될 수 있다. 따라서, 배기가스 정화 장치(100)는 산화촉매장치(200)로부터 이탈된 산화물질의 입자를 포집하여 선택적환원촉매장치(300)로의 유입을 방지할 수 있다.In exemplary embodiments, the first carrier 110 may be mounted upstream of the selective reduction catalyst device 300. Therefore, the exhaust gas purification apparatus 100 may collect the oxide particles separated from the oxidation catalyst device 200 and prevent the inflow into the selective reduction catalyst device 300.
구체적으로, 배기가스의 온도가 올라가거나 실화(misfire)가 발생하면 산화촉매장치(200)는 850℃ 이상의 고온에 노출될 수 있다. 이 때, 산화촉매장치(200)로부터 산화물질이 이탈되어 배기가스(F)와 함께 하류로 배출될 수 있다. 상기 배출된 산화물질은 배기가스 정화 장치(100)의 제1 통로(112)를 통과하면서 제1 워시코트 층(120) 표면에 부착되어 제거될 수 있다. 상기 산화물질의 예로서는, Pt, Pd, Rh, Ir, Ag, Sn, Ru 등을 들 수 있다.In detail, when the temperature of the exhaust gas rises or misfire occurs, the oxidation catalyst device 200 may be exposed to a high temperature of 850 ° C. or more. At this time, the oxide material may be separated from the oxidation catalyst device 200 and discharged downstream together with the exhaust gas F. The discharged oxide material may be attached to and removed from the surface of the first washcoat layer 120 while passing through the first passage 112 of the exhaust gas purification apparatus 100. Examples of the oxides include Pt, Pd, Rh, Ir, Ag, Sn, Ru, and the like.
제1 담체(110)의 표면에 제1 워시코트 층(120)을 코팅함으로써 배기가스(F)와의 접촉 면적을 증가시킬 수 있다. 예를 들면, 코팅이 되지 않은 제1 담체의 단위무게당 표면적은 약 0.00643m2/g 인데 비하여, 상기 제1 워시코트 층이 코팅된 경우에는 단위무게당 표면적이 50 내지 60m2/g일 수 있다. 즉, 제1 담체(110)의 표면에 제1 워시코트 층(120)을 코팅함으로써, 배기가스(F)와 접촉하는 표면적을 약 7700배 내지 9300배 증가시킬 수 있다. 이로 인해, 산화촉매장치(200)에서 이탈한 상기 귀금속과 같은 산화물질이 배기가스 정화 장치(100)와 만날 수 있는 기회를 크게 증가시켜 선택적환원촉매장치(300)로의 유입을 방지할 수 있다.By coating the first washcoat layer 120 on the surface of the first carrier 110, the contact area with the exhaust gas F may be increased. For example, the surface area per unit weight of the uncoated first carrier is about 0.00643 m 2 / g, whereas when the first washcoat layer is coated, the surface area per unit weight may be 50 to 60 m 2 / g. have. That is, by coating the first washcoat layer 120 on the surface of the first carrier 110, the surface area contacting the exhaust gas F may be increased by about 7700 to 9300 times. As a result, an oxide material such as the noble metal separated from the oxidation catalyst device 200 may be greatly increased to prevent the inflow into the selective reduction catalyst device 300 by greatly increasing the chance of encountering the exhaust gas purification device 100.
도 4 및 도 5에 도시된 바와 같이, 산화촉매장치(200)는 제2 담체(210) 및 제2 담체(210) 상에 코팅되며 산화촉매를 포함하는 제2 워시코트 층(220)을 포함할 수 있다.As shown in FIG. 4 and FIG. 5, the oxidation catalyst device 200 includes a second washcoat layer 220 coated on the second carrier 210 and the second carrier 210 and including the oxidation catalyst. can do.
제2 담체(210)는 축방향으로 연장하는 적어도 하나의 제2 통로(212)를 가질 수 있다. 상기 엔진에서 배출된 배기가스는 제2 통로(212)를 통과하며, 이후 배기가스 정화 장치(100) 및 선택적환원촉매장치(300)를 차례로 거쳐 외부로 배출될 수 있다. 제2 담체(210)는 세라믹 재질의 원재료를 압출하여 허니콤 형상으로 형성될 수 있다. 상기 제2 담체의 예로서는, 코디어라이트, 탄화규소, 페칼로이, NiCrAl, NiFeCrAl 등을 들 수 있다.The second carrier 210 can have at least one second passage 212 extending in the axial direction. The exhaust gas discharged from the engine passes through the second passage 212, and then may be discharged to the outside through the exhaust gas purification device 100 and the selective reduction catalyst device 300 in sequence. The second carrier 210 may be formed in a honeycomb shape by extruding a raw material of a ceramic material. Examples of the second carrier include cordierite, silicon carbide, pecaloy, NiCrAl, NiFeCrAl, and the like.
제2 담체(210)는 세라믹 재질로 구성되어 있어 외부 충격에 의해 깨지기 쉽다. 따라서, 외부 충격으로부터 보호하기 위하여 상대적으로 푹신푹신한 매트로 싸서 캐닝될 수 있다.Since the second carrier 210 is made of a ceramic material, it is easily broken by an external impact. Therefore, it can be wrapped and canned in a relatively soft mat to protect it from external impacts.
이와 다르게, 제2 담체(210)는 금속을 이용하여 다공질 구조를 갖도록 형성될 수 있다. 예를 들면, 상기 제2 담체는 금속 섬유(metal fiber)가 그물망처럼 엮인 금속 섬유 구조(metal fiber structure)로 형성되거나, 또는 무수히 많은 기공들을 갖는 금속 폼(metal foam) 형상으로 형성될 수 있다.Alternatively, the second carrier 210 may be formed to have a porous structure using a metal. For example, the second carrier may be formed of a metal fiber structure in which metal fibers are woven like a net, or in the form of a metal foam having numerous pores.
제2 워시코트 층(220)은 제2 담체(210)의 제2 통로(212) 표면에 코팅될 수 있고, 산화촉매를 포함할 수 있다. 상기 산화촉매의 예로서는, Pt, Pd, Rh, Ir, Ag, Sn, Ru 등을 들 수 있다. 제2 워시코트 층(220)은 제2 담체(210)의 일단을 워시코트 용액에 담그고, 타단에 음압을 형성하여 줌으로써 제2 담체(210) 표면에 코팅될 수 있다.The second washcoat layer 220 may be coated on the surface of the second passage 212 of the second carrier 210 and may include an oxidation catalyst. Examples of the oxidation catalyst include Pt, Pd, Rh, Ir, Ag, Sn, Ru, and the like. The second washcoat layer 220 may be coated on the surface of the second carrier 210 by immersing one end of the second carrier 210 in a washcoat solution and forming a negative pressure at the other end.
엔진(도시되지 않음)으로부터 배출된 배기가스(F)는 배기파이프(P)를 따라 산화촉매장치(200)로 유입되어 제2 담체(210)에 형성된 제2 통로들(212)을 통과할 수 있다. 이 때, 제2 워시코트 층(220)에 포함된 상기 산화촉매는 배기가스(F) 중의 일산화탄소 및 탄화수소를 이산화탄소 및 물로 산화시킬 수 있다. 산화촉매장치(200)를 통과한 배기가스(F)는 배기가스 정화 장치(100) 및 선택적환원촉매장치(300)를 차례로 거쳐 외부로 배출될 수 있다.The exhaust gas F discharged from the engine (not shown) may enter the oxidation catalyst device 200 along the exhaust pipe P and pass through the second passages 212 formed in the second carrier 210. have. In this case, the oxidation catalyst included in the second washcoat layer 220 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water. The exhaust gas F passing through the oxidation catalyst device 200 may be discharged to the outside via the exhaust gas purification device 100 and the selective reduction catalyst device 300 in sequence.
예시적인 실시예들에 있어서, 산화촉매장치(200)는 디젤 엔진 또는 압축천연가스 엔진의 배기가스에 포함된 일산화탄소 및 탄화수소를 산화시키기 위한 산화촉매장치를 포함할 수 있다.In exemplary embodiments, the oxidation catalyst device 200 may include an oxidation catalyst device for oxidizing carbon monoxide and hydrocarbons included in exhaust gas of a diesel engine or a compressed natural gas engine.
예를 들면, 디젤 엔진을 사용하는 내연 기관에 있어서, 배기가스 중의 유해한 일산화탄소, 탄화수소 및 용해성 유기물질(Soluble Organic Fraction)을 정화시키기 위하여 디젤 산화촉매장치(Diesel Oxidation Catalyst)를 사용할 수 있다.For example, in an internal combustion engine using a diesel engine, a diesel oxidation catalyst may be used to purify harmful carbon monoxide, hydrocarbons, and soluble organic fractions in the exhaust gas.
예시적인 실시예들에 있어서, 산화촉매장치(200)는 배기가스(F) 중의 입자상 물질을 제거하기 위한 디젤 미립자 필터(Diesel Particulate Filter)를 포함할 수 있다.In example embodiments, the oxidation catalyst device 200 may include a diesel particulate filter for removing particulate matter in the exhaust gas F.
상기 디젤 미립자 필터는 축방향으로 연장하는 적어도 하나의 통로를 갖는 담체를 포함할 수 있다. 상기 담체는 세라믹 재질의 원재료를 압출하여 허니콤 형상으로 형성될 수 있다. 상기 담체의 예로서는, 코디어라이트, 탄화규소, 페칼로이 등을 들 수 있다.The diesel particulate filter may comprise a carrier having at least one passage extending in the axial direction. The carrier may be formed in a honeycomb shape by extruding a raw material of a ceramic material. Examples of the carrier include cordierite, silicon carbide, pecaloy and the like.
상기 디젤 미립자 필터의 상기 통로들은 하나 건너 교대로 막힌 구조일 수 있다. 즉, 상류가 개방된 통로의 경우에는 하류가 막혀있고, 상류가 막힌 통로의 경우에는 하류가 개방되어 있을 수 있다. 따라서, 상기 상류가 개방된 통로로 유입된 배기가스(F)는 상기 담체에 형성되어 있는 기공을 통과하여 이웃하는 상기 하류가 개방된 통로로 흘러갈 수 있다. 이 과정에서, 배기가스(F) 중의 입자상 물질은 상기 담체를 통해 여과될 수 있다.The passages of the diesel particulate filter may have a structure that is alternately blocked over one. That is, the downstream may be blocked in the passage upstream and the downstream may be open in the passage blocked upstream. Accordingly, the exhaust gas F introduced into the passage in which the upstream is opened may pass through the pores formed in the carrier and flow into the passage in which the neighboring downstream is opened. In this process, particulate matter in the exhaust gas F can be filtered through the carrier.
일정 거리를 주행한 이후에는, 상기 디젤 미립자 필터를 재생시켜줄 필요가 있다. 상기 여과된 입자상 물질에 의해 필터가 막힐 염려가 있기 때문이다. 상기 재생 과정은 상기 입자상 물질의 발화온도인 550℃ 이상으로 배기가스(F) 온도를 상승시켜 상기 입자상 물질을 연소시키거나 또는 세륨 등의 첨가제를 가하여 상기 입자상 물질의 산화 온도를 감소시키는 방식이 사용될 수 있다.After traveling a certain distance, it is necessary to regenerate the diesel particulate filter. This is because the filter may be clogged by the filtered particulate matter. In the regeneration process, a method of increasing the exhaust gas (F) temperature above the ignition temperature of the particulate matter to burn the particulate matter or adding an additive such as cerium may reduce the oxidation temperature of the particulate matter. Can be.
도 1에 도시된 바와 같이, 예시적인 실시예들에 있어서, 선택적환원촉매장치(300)는 환원제 분사 모듈(320) 및 적어도 하나의 선택적환원촉매장치를 포함할 수 있다. 예를 들면, 상기 선택적환원촉매장치는 제1 내지 제3 선택적환원촉매장치들(312, 314, 316)을 포함할 수 있다. 상기 환원제 분사 모듈은 상기 제1 내지 제3 선택적환원촉매장치들보다 상류에 설치될 수 있다.As shown in FIG. 1, in the exemplary embodiments, the selective reduction catalyst device 300 may include a reducing agent injection module 320 and at least one selective reduction catalyst device. For example, the selective reduction catalyst device may include first to third selective reduction catalyst devices 312, 314, and 316. The reducing agent injection module may be installed upstream than the first to third selective reduction catalyst devices.
환원제 분사 모듈(320)은 요소수 등의 환원제를 배기파이프(P) 내에 분사할 수 있다. 엔진으로부터 배출된 배기가스(F)의 온도는 수백 ℃에 이르는 고온이므로, 배기파이프(P) 내에 분사된 상기 환원제는 곧바로 기화될 수 있다. 기화된 환원제는 배기가스(F)와 혼합되어 제1 내지 제3 선택적환원촉매장치들(312, 314, 316)로 공급될 수 있다.The reducing agent injection module 320 may inject a reducing agent such as urea water into the exhaust pipe P. Since the temperature of the exhaust gas F discharged from the engine is a high temperature of several hundred degrees Celsius, the reducing agent injected in the exhaust pipe P can be vaporized immediately. The vaporized reducing agent may be mixed with the exhaust gas F and supplied to the first to third selective reduction catalyst devices 312, 314, and 316.
제1 내지 제3 선택적환원촉매장치들(312, 314, 316)은 환원제 분사 모듈(320)보다 하류에 설치될 수 있고, 다음과 같은 반응식 1 내지 반응식 3에 의해 질소산화물(NOX)을 환원시켜 인체에 무해한 질소(N2)로 변환시킬 수 있다.The first to third selective reduction catalyst devices (312, 314, 316) may be installed downstream than the reducing agent injection module 320, by reducing the nitrogen oxides (NOX) by the following reaction schemes 1 to 3 Can be converted to nitrogen (N2), which is harmless to humans.
[반응식 1]Scheme 1
Figure PCTKR2015007295-appb-I000001
Figure PCTKR2015007295-appb-I000001
[반응식 2]Scheme 2
Figure PCTKR2015007295-appb-I000002
Figure PCTKR2015007295-appb-I000002
[반응식 3]Scheme 3
Figure PCTKR2015007295-appb-I000003
Figure PCTKR2015007295-appb-I000003
요소((NH2)2CO)는 가수 분해에 의해 암모니아(NH3)를 생성할 수 있다. 이렇게 생성된 상기 암모니아는 NO 및 NO2를 환원시켜, 인체에 무해한 질소(N2)로 변환시킬 수 있다.Urea ((NH 2) 2 CO) may produce ammonia (NH 3) by hydrolysis. The ammonia thus produced can be converted to nitrogen (N 2), which is harmless to the human body by reducing NO and NO 2.
이 때, 산화촉매장치(200)에서 이탈된 산화물질은 선택적환원촉매장치(300)의 성능을 저하시킬 수 있다.At this time, the oxide material released from the oxidation catalyst device 200 may lower the performance of the selective reduction catalyst device 300.
도 6에 도시된 바와 같이, 선택적환원촉매장치(300)의 후단에 부착된 제2 및 제3 선택적환원촉매장치들(314, 316)에서는 NOX 환원 반응이 정상적으로 이루어져 NOX 전환 효율이 양의 값을 가질 수 있다. 하지만, 선택적환원촉매장치(300)의 전단에 부착된 제1 선택적환원촉매장치(312)의 경우에는 오히려 음의 NOX 전환 효율을 나타낼 수 있다. 이는 산화촉매장치(200)에서 이탈된 산화물질이 제1 선택적환원촉매장치(312)에 부착됨으로써 상기 암모니아를 NOX로 산화시키기 때문이다. 이 경우에 있어서, 상기 NOX 전환 효율은 다음과 같은 수학식 1에 의해 계산될 수 있다.As shown in FIG. 6, in the second and third selective reduction catalyst devices 314 and 316 attached to the rear end of the selective reduction catalyst device 300, the NOX reduction reaction is normally performed, and the NOX conversion efficiency is positive. Can have However, in the case of the first selective reduction catalyst device 312 attached to the front end of the selective reduction catalyst device 300 may exhibit a negative NOx conversion efficiency. This is because the oxide material released from the oxidation catalyst device 200 is attached to the first selective reduction catalyst device 312 to oxidize the ammonia to NOx. In this case, the NOx conversion efficiency may be calculated by Equation 1 below.
수학식 1
Figure PCTKR2015007295-appb-M000001
Equation 1
Figure PCTKR2015007295-appb-M000001
배기가스의 온도가 올라가거나 실화가 발생하면 산화촉매장치(200) 내부의 귀금속이나 산화물질 입자들이 이탈되어 제1 선택적환원촉매장치(312)에 부착될 수 있다. 이에 따라, 반응식 4 내지 반응식 6과 같은 반응이 일어날 수 있고, 상기 반응식 1에서 생성된 상기 암모니아는 제1 선택적환원촉매장치(312)에서 산화될 수 있다.When the temperature of the exhaust gas rises or misfire occurs, precious metal or oxide particles inside the oxidation catalyst device 200 may be separated and attached to the first selective reduction catalyst device 312. Accordingly, a reaction as in Schemes 4 to 6 may occur, and the ammonia generated in Scheme 1 may be oxidized in the first selective reduction catalyst device 312.
[반응식 4]Scheme 4
Figure PCTKR2015007295-appb-I000004
Figure PCTKR2015007295-appb-I000004
[반응식 5]Scheme 5
Figure PCTKR2015007295-appb-I000005
Figure PCTKR2015007295-appb-I000005
[반응식 6]Scheme 6
Figure PCTKR2015007295-appb-I000006
Figure PCTKR2015007295-appb-I000006
상기 반응들을 통하여 NOX가 추가로 생성되고 N2O 및 온실가스 등의 제2차 생성물질들도 발생할 수 있다. 이는 환원제 분사 모듈(320)에서 공급된 상기 암모니아가 NOX를 N2로 환원시키는 환원제로 사용되지 못하고, 상기 산화물질에 의해 오히려 NOX로 산화되어 버리기 때문이다. 이로 인해 선택적환원촉매장치(300)의 NOX 전환 효율이 감소하는 문제가 발생할 수 있다.NOx may be further generated through the reactions, and secondary products such as N 2 O and greenhouse gases may also be generated. This is because the ammonia supplied from the reducing agent injection module 320 is not used as a reducing agent for reducing NO x to N 2, but rather is oxidized to NO x by the oxide material. This may cause a problem that the NOx conversion efficiency of the selective reduction catalyst device 300 is reduced.
도 7에 도시된 바와 같이, 예시적인 실시예들에 따른 배기가스 정화 장치(100)는 산화물질을 포집하여 선택적환원촉매장치(300)의 성능을 향상시킬 수 있다.As illustrated in FIG. 7, the exhaust gas purification apparatus 100 according to the exemplary embodiments may improve the performance of the selective reduction catalyst 300 by capturing oxide material.
배기가스 정화 장치(100)를 사용하지 않은 배기가스 처리 시스템의 경우에는, 가동 시간이 50시간일 때 배기파이프(P)를 통한 NOX 배출량이 급격히 증가하고 NOX 전환 효율은 급격히 감소된다. 이는 산화촉매장치(200)에서 이탈된 산화물질들이 선택적환원촉매장치(300)에 부착되어, 선택적환원촉매장치(300)의 성능을 저하시키기 때문이다.In the case of the exhaust gas treatment system which does not use the exhaust gas purification apparatus 100, when the operation time is 50 hours, the NOX emission through the exhaust pipe P increases rapidly and the NOX conversion efficiency decreases rapidly. This is because the oxides released from the oxidation catalyst device 200 are attached to the selective reduction catalyst device 300, thereby degrading the performance of the selective reduction catalyst device 300.
이와 대조적으로, 배기가스 정화 장치(100)를 사용한 배기가스 처리 시스템의 경우에는, 가동 시간이 1000시간 지난 시점에서도 북미의 NOX 배출 기준인 0.20g/hp·hr을 만족시킬 수 있고 NOX 전환 효율도 70% 이상을 유지할 수 있다. 이는 산화촉매장치(200)에서 이탈된 산화물질들이 배기가스 정화 장치(100)에서 걸러짐으로써, 선택적환원촉매장치(300)가 NOX 환원 기능을 제대로 수행할 수 있기 때문이다.In contrast, in the case of the exhaust gas treatment system using the exhaust gas purification device 100, even after 1000 hours of operation time, the North American NOX emission standard of 0.20 g / hp · hr can be satisfied and the NOX conversion efficiency It can maintain more than 70%. This is because the oxidized materials separated from the oxidation catalyst device 200 are filtered out of the exhaust gas purification device 100, so that the selective reduction catalyst device 300 can perform the NOx reduction function properly.
예시적인 실시예들에 있어서, 배기가스 처리 시스템(10)은 암모니아 슬립 촉매 장치(400)를 더 포함할 수 있다. 예를 들면, 암모니아 슬립 촉매 장치(400)는 선택적환원촉매장치(300) 하류의 배기파이프(P)에 설치되어 암모니아를 제거할 수 있다.In exemplary embodiments, the exhaust gas treatment system 10 may further include an ammonia slip catalyst device 400. For example, the ammonia slip catalyst device 400 may be installed in the exhaust pipe P downstream of the selective reduction catalyst device 300 to remove ammonia.
환원제 분사 모듈(320)에서 분사된 상기 요소에 의해 생성된 상기 암모니아는 배기가스(F) 중의 질소산화물을 환원시킬 수 있다. 이 때, 상기 질소산화물의 전환 효율을 극대화시키기 위해서 화학양론적 양보다 더 많은 양의 암모니아를 공급할 수 있다. 이로 인해, 상기 암모니아가 촉매반응을 통해 완전히 소모되지 않고 대기 중으로 방출되어 대기 오염을 유발할 수 있는데, 이를 암모니아 슬립(Ammonia slip) 현상이라 한다. 암모니아 슬립 촉매 장치(400)는 선택적환원촉매장치(300)에서 소모되지 못한 상기 암모니아를 제거함으로써 암모니아 슬립 현상을 방지할 수 있다.The ammonia generated by the urea injected from the reducing agent injection module 320 may reduce nitrogen oxides in the exhaust gas F. In this case, in order to maximize the conversion efficiency of the nitrogen oxides, ammonia may be supplied in an amount larger than the stoichiometric amount. For this reason, the ammonia may be released into the atmosphere without being completely consumed through the catalytic reaction, which may cause air pollution. This is called an ammonia slip phenomenon. The ammonia slip catalyst device 400 may prevent the ammonia slip phenomenon by removing the ammonia that is not consumed by the selective reduction catalyst device 300.
상술한 바와 같이, 예시적인 실시예들에 따른 배기가스 정화 장치(100)는 산화촉매장치(200) 및 배기파이프(P)로부터 이탈된 산화물질이 선택적환원촉매장치(300)로 유입되는 것을 방지할 수 있다. 이에 따라, 선택적환원촉매장치(300)는 성능 저하 없이 NOX 환원작용을 수행할 수 있고, 배기파이프(P)로 배출되는 NOX의 양을 줄일 수 있다.As described above, the exhaust gas purification apparatus 100 according to the exemplary embodiments prevents the oxide material separated from the oxidation catalyst device 200 and the exhaust pipe P from flowing into the selective reduction catalyst device 300. can do. Accordingly, the selective reduction catalyst device 300 may perform a NOx reduction action without degrading the performance, and may reduce the amount of NOx discharged to the exhaust pipe (P).
도 8은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 산화촉매장치와 함께 캐닝되는 것을 제외하고는 도 1을 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.8 is a diagram illustrating an exhaust gas treatment system according to example embodiments. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except that the exhaust gas purification apparatus is canned together with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 8을 참조하면, 예시적인 실시예들에 있어서, 배기가스 처리 시스템(11)은 산화촉매장치(200)와 함께 캐닝된 배기가스 정화 장치(100)를 포함할 수 있다.Referring to FIG. 8, in exemplary embodiments, the exhaust gas treatment system 11 may include an exhaust gas purification apparatus 100 canned together with the oxidation catalyst device 200.
상기 제1 및 제2 담체들은 세라믹 재질로 구성되어 있어 외부 충격에 의해 깨지기 쉽다. 따라서, 외부 충격으로부터 상기 담체들을 보호하기 위하여 상대적으로 푹신푹신한 매트로 싸서 캔에 넣는 캐닝 공정을 거치게 된다. 이 때, 제1 담체(110)를 제2 담체(210) 후단에 바로 두어 한번에 캐닝할 수 있다. 이와는 다르게, 제1 담체(110)를 제2 담체(210)와 따로 각각 캐닝할 수도 있다.Since the first and second carriers are made of a ceramic material, they are easily broken by an external impact. Thus, the canning process is carried out by wrapping it in a relatively soft mat to protect the carriers from external impact. In this case, the first carrier 110 may be placed directly behind the second carrier 210 to be canned at a time. Alternatively, the first carrier 110 may be canned separately from the second carrier 210, respectively.
도 9는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 설치되는 위치를 제외하고는 도 1을 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.9 is a diagram illustrating an exhaust gas treatment system according to example embodiments. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except where the exhaust gas purification apparatus is installed. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 9를 참조하면, 예시적인 실시예들에 있어서, 배기가스 처리 시스템(12)은 산화촉매장치(200)와 선택적환원촉매장치(300)를 연결하는 배기파이프(P) 내부에 설치된 배기가스 정화 장치(100)를 포함할 수 있다.Referring to FIG. 9, in the exemplary embodiments, the exhaust gas treatment system 12 may purify the exhaust gas installed inside the exhaust pipe P connecting the oxidation catalyst device 200 and the selective reduction catalyst device 300. Device 100 may be included.
배기가스 정화 장치(100)는 산화촉매장치(200)로부터 이탈된 산화물질을 포집함으로써, 선택적환원촉매장치(300)의 성능을 유지할 수 있다. 따라서, 배기가스 정화 장치(100)는 산화촉매장치(200)와 선택적환원촉매장치(300) 사이의 다양한 위치에 설치될 수 있다. 예를 들면, 상기 배기가스 정화 장치를 별도로 캐닝하지 않고 상기 산화촉매장치와 상기 선택적환원촉매장치를 연결하는 상기 배기파이프 내부에 설치할 수 있다.The exhaust gas purification device 100 may maintain the performance of the selective reduction catalyst device 300 by collecting the oxide material separated from the oxidation catalyst device 200. Therefore, the exhaust gas purification apparatus 100 may be installed at various positions between the oxidation catalyst device 200 and the selective reduction catalyst device 300. For example, the exhaust gas purification apparatus may be installed inside the exhaust pipe connecting the oxidation catalyst apparatus and the selective reduction catalyst apparatus without separately canning.
상술한 바와 같이, 예시적인 실시예들에 따른 배기가스 정화 장치(100)는 산화촉매장치(200)와 선택적환원촉매장치(300) 사이의 다양한 위치에 설치될 수 있다. 즉, 배기가스 정화 장치(100)를 산화촉매장치(200)와 한번에 캐닝하거나 또는 별도로 캐닝할 수 있다. 이와 다르게, 배기가스 정화 장치(100)를 배기파이프(P) 내부에 장착할 수도 있다.As described above, the exhaust gas purification apparatus 100 according to the exemplary embodiments may be installed at various positions between the oxidation catalyst device 200 and the selective reduction catalyst device 300. That is, the exhaust gas purification apparatus 100 may be canned at one time with the oxidation catalyst apparatus 200 or may be separately canned. Alternatively, the exhaust gas purification apparatus 100 may be mounted inside the exhaust pipe P.
도 10은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 도 11은 도 10의 C-C'라인을 따라 절단한 단면도이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 산화촉매장치와 일체로 형성되는 것을 제외하고는 도 1을 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.10 is a diagram illustrating an exhaust gas treatment system according to example embodiments. FIG. 11 is a cross-sectional view taken along the line CC ′ of FIG. 10. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except that the exhaust gas purification apparatus is integrally formed with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 10 및 도 11을 참조하면, 예시적인 실시예들에 있어서, 배기가스처리 시스템(13)은 산화촉매장치(200)와 일체로 형성된 배기가스 정화 장치(100)를 포함할 수 있다.10 and 11, in exemplary embodiments, the exhaust gas treatment system 13 may include an exhaust gas purification apparatus 100 formed integrally with the oxidation catalyst device 200.
예를 들면, 세라믹 재질의 원재료를 압출하여 축방향으로 연장하는 적어도 하나의 통로를 구비하도록 허니콤 형상으로 하나의 담체를 형성할 수 있다. 이어서, 상기 담체의 후단부(111)에는 제1 워시코트 층(121)을 코팅하고 상기 담체의 전단부(211)에는 제2 워시코트 층(221)을 코팅할 수 있다. 이 경우에 있어서, 제1 및 제2 워시코트 층들(121, 221)은 상기 담체의 일단을 워시코트 용액에 담갔다가 꺼내는 딥 코팅법(dip coating)에 의해 형성될 수 있다.For example, one carrier may be formed in a honeycomb shape so as to have at least one passage extending in the axial direction by extruding a raw material of ceramic material. Subsequently, a first washcoat layer 121 may be coated on the rear end 111 of the carrier, and a second washcoat layer 221 may be coated on the front end 211 of the carrier. In this case, the first and second washcoat layers 121 and 221 may be formed by dip coating in which one end of the carrier is immersed in the washcoat solution and then taken out.
엔진(도시되지 않음)에서 배출된 배기가스(F)는 제2 워시코트 층(221) 및 제1 워시코트 층(121)을 차례로 통과하여 하류로 배출될 수 있다. 제2 워시코트 층(221)은 배기가스(F) 중의 일산화탄소 및 탄화수소를 이산화탄소 및 물로 산화시킬 수 있다. 제1 워시코트 층(121)은 제2 워시코트 층(221)에서 이탈된 귀금속 등의 산화물질을 포집할 수 있다.The exhaust gas F discharged from the engine (not shown) may pass through the second washcoat layer 221 and the first washcoat layer 121 in order to be discharged downstream. The second washcoat layer 221 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water. The first washcoat layer 121 may collect an oxide material such as a noble metal separated from the second washcoat layer 221.
상술한 바와 같이, 예시적인 실시예들에 따른 배기가스 정화 장치(100)는 산화촉매장치(200)의 후단에 제1 워시코트 층(121)을 구역 코팅하여 산화촉매장치(200)와 일체로 형성될 수 있다. 이 경우에 있어서, 제1 워시코트 층(121)은 제2 워시코트 층(221)에서 이탈된 산화물질을 포집하여 선택적환원촉매장치(300)의 성능을 유지할 수 있다.As described above, the exhaust gas purifying apparatus 100 according to the exemplary embodiments may be zone-coated with the first washcoat layer 121 at the rear end of the oxidation catalyst apparatus 200 to integrate with the oxidation catalyst apparatus 200. Can be formed. In this case, the first washcoat layer 121 may collect the oxide material released from the second washcoat layer 221 to maintain the performance of the selective reduction catalyst 300.
도 12는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 도 13은 도 12의 D-D'라인을 따라 절단한 단면도이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 산화촉매장치 상류에 설치된다는 것을 제외하고는 도 1을 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.12 is a diagram illustrating an exhaust gas treatment system according to example embodiments. FIG. 13 is a cross-sectional view taken along the line D-D 'of FIG. 12. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 1 except that the exhaust gas purification apparatus is installed upstream of the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 12를 참조하면, 배기가스 처리 시스템(14)은 배기파이프(P)에 설치되어 배기가스(F) 중의 일산화탄소 및 탄화수소를 제거하기 위한 산화촉매장치(Oxidation Catalyst, 200), 산화촉매장치(200) 하류의 배기파이프(P)에 설치되어 질소산화물(NOX)을 환원시키는 선택적환원촉매장치(Selective Catalyst Reduction, 300), 및 산화촉매장치(200) 상류의 배기파이프(P)에 설치되어 불순물을 포집할 수 있는 배기가스 정화 장치(102)를 포함할 수 있다. 즉, 배기가스 정화 장치(102)는 산화촉매장치(200) 및 선택적환원촉매장치(300)보다 상류에 위치할 수 있다.Referring to FIG. 12, an exhaust gas treatment system 14 is installed in an exhaust pipe P, and an oxidation catalyst device 200 to remove carbon monoxide and hydrocarbons in the exhaust gas F and an oxidation catalyst device 200. ) Installed in the exhaust pipe (P) downstream to reduce the nitrogen oxides (NOX) (Selective Catalyst Reduction, 300), and the exhaust pipe (P) upstream of the oxidation catalyst device 200 to remove impurities It may include an exhaust gas purification device 102 that can be collected. That is, the exhaust gas purification device 102 may be located upstream than the oxidation catalyst device 200 and the selective reduction catalyst device 300.
도 13을 참조하면, 배기가스 정화 장치(102)는 제3 통로(117)를 갖는 제3 담체(115) 및 제3 담체(115) 상에 코팅되는 제3 워시코트 층(125)을 포함할 수 있다. 이 경우에 있어서, 제3 담체(115) 및 제3 워시코트 층(125)은 각각 제1 담체(110) 및 제1 워시코트 층(120)과 실질적으로 동일한 형상 및 재질로 형성될 수 있다.Referring to FIG. 13, the exhaust gas purification apparatus 102 may include a third carrier 115 having a third passage 117 and a third washcoat layer 125 coated on the third carrier 115. Can be. In this case, the third carrier 115 and the third washcoat layer 125 may be formed in substantially the same shape and material as the first carrier 110 and the first washcoat layer 120, respectively.
엔진에서 배출된 배기가스는 제3 통로(117)를 통과하며, 이후 산화촉매장치(200) 및 선택적환원촉매장치(300)를 차례로 거쳐 외부로 배출될 수 있다. 이 때, 제3 담체(115) 표면에 제3 워시코트 층(125)을 코팅함으로써 배기가스(F)와의 접촉 면적을 증가시킬 수 있다. 이로 인해, 배기가스 중에 포함된 엔진 오일 등의 불순물이 배기가스 정화 장치(102)와 만날 수 있는 기회를 크게 증가시켜 산화촉매장치(200)로의 유입을 방지할 수 있다.The exhaust gas discharged from the engine passes through the third passage 117, and then may be discharged to the outside through the oxidation catalyst device 200 and the selective reduction catalyst device 300 in order. In this case, the contact area with the exhaust gas F may be increased by coating the third washcoat layer 125 on the surface of the third carrier 115. As a result, it is possible to greatly increase the chance that impurities such as engine oil contained in the exhaust gas meet with the exhaust gas purification device 102, thereby preventing the inflow into the oxidation catalyst device 200.
도 14는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 산화촉매장치와 함께 캐닝되는 것을 제외하고는 도 12를 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.14 is a diagram illustrating an exhaust gas treatment system according to example embodiments. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 12 except that the exhaust gas purification apparatus is canned together with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 14를 참조하면, 예시적인 실시예들에 있어서, 배기가스 처리 시스템(15)은 산화촉매장치(200) 및 산화촉매장치(200)의 상류에서 산화촉매장치(200)와 함께 캐닝된 배기가스 정화 장치(102)를 포함할 수 있다.Referring to FIG. 14, in the exemplary embodiments, the exhaust gas treatment system 15 is an exhaust gas canned together with the oxidation catalyst device 200 and the oxidation catalyst device 200 upstream of the oxidation catalyst device 200. The purification device 102 may be included.
상기 제2 및 제3 담체들은 세라믹 재질로 구성되어 있어 외부 충격에 의해 깨지기 쉽다. 따라서, 외부 충격으로부터 상기 담체들을 보호하기 위하여 상대적으로 푹신푹신한 매트로 싸서 캔에 넣는 캐닝 공정을 거치게 된다. 이 때, 제3 담체(115)를 제2 담체(210) 전단에 바로 두어 한번에 캐닝할 수 있다.Since the second and third carriers are made of a ceramic material, they are easily broken by an external impact. Thus, the canning process is carried out by wrapping it in a relatively soft mat to protect the carriers from external impact. In this case, the third carrier 115 may be placed directly in front of the second carrier 210 to be canned at a time.
도 15는 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 설치되는 위치를 제외하고는 도 12를 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.15 is a diagram illustrating an exhaust gas treatment system according to example embodiments. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 12 except for the position where the exhaust gas purification apparatus is installed. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 15를 참조하면, 예시적인 실시예들에 있어서, 배기가스 처리 시스템(16)은 산화촉매장치(200) 전단의 배기파이프(P) 내부에 설치된 배기가스 정화 장치(102)를 포함할 수 있다.Referring to FIG. 15, in the exemplary embodiments, the exhaust gas treatment system 16 may include an exhaust gas purification device 102 installed inside the exhaust pipe P in front of the oxidation catalyst device 200. .
배기가스 정화 장치(102)는 배기가스 중에 포함된 엔진 오일 등의 불순물을 포집함으로써, 산화촉매장치(200)의 성능을 유지할 수 있다. 따라서, 배기가스 정화 장치(102)는 산화촉매장치(200) 전단의 다양한 위치에 설치될 수 있다. 예를 들면, 상기 배기가스 정화 장치를 별도로 캐닝하지 않고 상기 산화촉매장치 전단의 상기 배기파이프 내부에 설치할 수 있다.The exhaust gas purification device 102 can maintain the performance of the oxidation catalyst device 200 by collecting impurities such as engine oil contained in the exhaust gas. Therefore, the exhaust gas purification device 102 may be installed at various positions in front of the oxidation catalyst device 200. For example, the exhaust gas purification apparatus may be installed inside the exhaust pipe in front of the oxidation catalyst apparatus without separately canning.
도 16은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 도 17은 도 16의 E-E'라인을 따라 절단한 단면도이다. 상기 배기가스 처리 시스템은 배기가스 정화 장치가 산화촉매장치와 일체로 형성되는 것을 제외하고는 도 12를 참조로 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다.16 is a diagram illustrating an exhaust gas treatment system according to example embodiments. 17 is a cross-sectional view taken along the line E-E 'of FIG. 16. The exhaust gas treatment system is substantially the same as or similar to the exhaust gas treatment system described with reference to FIG. 12 except that the exhaust gas purification apparatus is integrally formed with the oxidation catalyst apparatus. Accordingly, the same components are denoted by the same reference numerals, and repeated descriptions of the same components are omitted.
도 16 및 도 17을 참조하면, 예시적인 실시예들에 있어서, 배기가스처리 시스템(17)은 산화촉매장치(200)와 일체로 형성된 배기가스 정화 장치(102)를 포함할 수 있다.16 and 17, in exemplary embodiments, the exhaust gas treatment system 17 may include an exhaust gas purification apparatus 102 formed integrally with the oxidation catalyst device 200.
예를 들면, 세라믹 재질의 원재료를 압출하여 축방향으로 연장하는 적어도 하나의 통로를 구비하도록 허니콤 형상으로 하나의 담체를 형성할 수 있다. 이어서, 상기 담체의 후단부(215)에는 제2 워시코트 층(222)을 코팅하고 상기 담체의 전단부(116)에는 제3 워시코트 층(126)을 코팅할 수 있다. 이 경우에 있어서, 제2 및 제3 워시코트 층들(222, 126)은 상기 담체의 일단을 워시코트 용액에 담갔다가 꺼내는 딥 코팅법(dip coating)에 의해 형성될 수 있다.For example, one carrier may be formed in a honeycomb shape so as to have at least one passage extending in the axial direction by extruding a raw material of ceramic material. Subsequently, a second washcoat layer 222 may be coated on the rear end 215 of the carrier, and a third washcoat layer 126 may be coated on the front end 116 of the carrier. In this case, the second and third washcoat layers 222 and 126 may be formed by dip coating by dipping one end of the carrier into the washcoat solution.
엔진(도시되지 않음)에서 배출된 배기가스(F)는 제3 워시코트 층(126) 및 제2 워시코트 층(222)을 차례로 통과하여 하류로 배출될 수 있다. 제3 워시코트 층(126)은 배기가스(F) 중에 포함된 엔진 오일 등의 불순물을 포집할 수 있다. 제2 워시코트 층(221)은 배기가스(F) 중의 일산화탄소 및 탄화수소를 이산화탄소 및 물로 산화시킬 수 있다.The exhaust gas F exhausted from the engine (not shown) may pass through the third washcoat layer 126 and the second washcoat layer 222 in order to be discharged downstream. The third washcoat layer 126 may collect impurities such as engine oil included in the exhaust gas F. The second washcoat layer 221 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water.
상술한 바와 같이, 예시적인 실시예들에 따른 배기가스 정화 장치(102)는 산화촉매장치(200) 상류의 다양한 위치에 설치될 수 있다. 즉, 배기가스 정화 장치(102)를 산화촉매장치(200)와 한번에 캐닝하거나 또는 별도로 캐닝할 수 있다. 이와 다르게, 배기가스 정화 장치(102)를 배기파이프(P) 내부에 장착할 수도 있다. 또한, 경우에 따라서는 배기가스 정화 장치(102)는 산화촉매장치(200)의 전단에 제3 워시코트 층(126)을 구역 코팅하여 산화촉매장치(200)와 일체로 형성될 수 있다. 이에 따라, 배기가스 정화 장치(102)는 배기가스 중에 포함된 엔진 오일 등의 불순물을 제거하여 산화촉매장치(200)의 성능을 유지할 수 있다.As described above, the exhaust gas purification apparatus 102 according to the exemplary embodiments may be installed at various positions upstream of the oxidation catalyst apparatus 200. That is, the exhaust gas purification device 102 can be canned at one time with the oxidation catalyst device 200 or separately canned. Alternatively, the exhaust gas purification device 102 may be mounted inside the exhaust pipe P. In some cases, the exhaust gas purification device 102 may be integrally formed with the oxidation catalyst device 200 by zone coating the third washcoat layer 126 on the front end of the oxidation catalyst device 200. Accordingly, the exhaust gas purification device 102 may maintain the performance of the oxidation catalyst device 200 by removing impurities such as engine oil contained in the exhaust gas.
도 18은 예시적인 실시예들에 따른 배기가스 처리 시스템을 나타내는 도면이다. 상기 배기가스 처리 시스템은 복수 개의 배기가스 정화 장치들이 산화촉매장치 상류 및 산화촉매장치와 환??촉매장치 사이에 각각 설치된다는 것을 제외하고는 도 1 및 도 12를 참조로 각각 설명한 배기가스 처리 시스템과 실질적으로 동일하거나 유사하다. 이에 따라, 동일한 구성요소들에 대해서는 동일한 참조부호들로 나타내고, 또한 동일한 구성요소들에 대한 반복 설명은 생략한다18 is a diagram illustrating an exhaust gas treatment system according to example embodiments. The exhaust gas treatment system is an exhaust gas treatment system described with reference to FIGS. 1 and 12, respectively, except that a plurality of exhaust gas purification apparatuses are installed upstream of the oxidation catalyst apparatus and between the oxidation catalyst apparatus and the conversion catalyst apparatus. Is substantially the same or similar to Accordingly, like reference numerals refer to like elements, and repeated descriptions of like elements are omitted.
도 18을 참조하면, 배기가스 처리 시스템(18)은 배기파이프(P)에 설치되어 배기가스(F) 중의 일산화탄소 및 탄화수소를 제거하기 위한 산화촉매장치(Oxidation Catalyst, 200), 산화촉매장치(200) 하류의 배기파이프(P)에 설치되어 질소산화물(NOX)을 환원시키는 선택적환원촉매장치(Selective Catalyst Reduction, 300), 및 배기가스 정화 장치(104)를 포함할 수 있다. 배기가스 정화 장치(104)는 산화촉매장치(200)와 선택적환원촉매장치(300) 사이의 배기파이프(P)에 장착되는 제1 배기가스 정화 유닛(105), 및 산화촉매장치(200) 상류의 배기파이프(P)에 장착되는 제2 배기가스 정화 유닛(106)을 포함할 수 있다.Referring to FIG. 18, an exhaust gas treatment system 18 is installed in an exhaust pipe P, and an oxidation catalyst device 200 to remove carbon monoxide and hydrocarbons in exhaust gas F and an oxidation catalyst device 200. And a selective reduction catalyst (300), and an exhaust gas purification device (104) installed in the exhaust pipe (P) downstream to reduce nitrogen oxides (NOX). The exhaust gas purification device 104 includes a first exhaust gas purification unit 105 mounted on the exhaust pipe P between the oxidation catalyst device 200 and the selective reduction catalyst device 300, and the oxidation catalyst device 200 upstream. It may include a second exhaust gas purification unit 106 mounted on the exhaust pipe (P) of the.
제1 배기가스 정화 유닛(105)은 산화촉매장치(200) 및 배기파이프(P)로부터 이탈된 산화물질이 선택적환원촉매장치(300)로 유입되는 것을 방지할 수 있다. 이에 따라, 선택적환원촉매장치(300)는 성능 저하 없이 NOX 환원작용을 수행할 수 있고, 배기파이프(P)로 배출되는 NOX의 양을 줄일 수 있다.The first exhaust gas purification unit 105 may prevent the oxide material separated from the oxidation catalyst device 200 and the exhaust pipe P from flowing into the selective reduction catalyst device 300. Accordingly, the selective reduction catalyst device 300 may perform a NOx reduction action without degrading the performance, and may reduce the amount of NOx discharged to the exhaust pipe (P).
이 경우에 있어서, 제1 배기가스 정화 유닛(105)은 산화촉매장치(200)와 한번에 캐닝되거나 산화촉매장치(200)와 일체로 형성될 수도 있다. 또한 경우에 따라서는 산화촉매장치(200)와 선택적환원촉매장치(300) 사이의 배기파이프(P) 내부에 장착될 수도 있다.In this case, the first exhaust gas purification unit 105 may be canned at one time with the oxidation catalyst device 200 or may be integrally formed with the oxidation catalyst device 200. In some cases, it may be mounted in the exhaust pipe P between the oxidation catalyst device 200 and the selective reduction catalyst device 300.
제2 배기가스 정화 유닛(106)은 배기가스 중에 포함된 엔진 오일, 황(S) 등의 불순물이 산화촉매장치(200)로 유입되는 것을 방지할 수 있다. 이에 따라, 산화촉매장치(200)는 성능 저하 없이 배기가스(F) 중의 일산화탄소 및 탄화수소를 이산화탄소 및 물로 산화시킬 수 있다.The second exhaust gas purification unit 106 may prevent impurities such as engine oil and sulfur (S) contained in the exhaust gas from flowing into the oxidation catalyst device 200. Accordingly, the oxidation catalyst device 200 may oxidize carbon monoxide and hydrocarbons in the exhaust gas F to carbon dioxide and water without degrading performance.
이 경우에 있어서, 제2 배기가스 정화 유닛(106)은 산화촉매장치(200)와 한번에 캐닝되거나 산화촉매장치(200)와 일체로 형성될 수도 있다. 또한 경우에 따라서는 산화촉매장치(200) 상류의 배기파이프(P) 내부에 장착될 수도 있다.In this case, the second exhaust gas purification unit 106 may be canned at one time with the oxidation catalyst device 200 or may be integrally formed with the oxidation catalyst device 200. In some cases, it may be mounted in the exhaust pipe (P) upstream of the oxidation catalyst device 200.
상술한 바와 같이, 예시적인 실시예들에 따른 배기가스 정화 장치(104)는 배기가스 중의 불순물을 포집하여 산화촉매장치(200)의 성능 저하를 방지할 수 있고, 산화촉매장치(200) 및 배기파이프(P)로부터 이탈된 산화물질을 포집하여 선택적환원촉매장치(300)의 성능 저하를 방지할 수 있다.As described above, the exhaust gas purification apparatus 104 according to the exemplary embodiments may collect impurities in the exhaust gas to prevent performance degradation of the oxidation catalyst apparatus 200, and may prevent the oxidation catalyst apparatus 200 and the exhaust gas. The performance of the selective reduction catalyst device 300 may be prevented by collecting the oxide material separated from the pipe P.
이상에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be appreciated.
* 부호의 설명* Explanation of the sign
F: 배기가스 P: 배기파이프F: exhaust gas P: exhaust pipe
10, 11, 12, 13, 14, 15, 16, 17, 18: 배기가스 처리 시스템10, 11, 12, 13, 14, 15, 16, 17, 18: exhaust gas treatment system
100, 102, 104: 배기가스 정화 장치 105: 제1 배기가스 정화 유닛100, 102, 104: exhaust gas purification device 105: first exhaust gas purification unit
106: 제2 배기가스 정화 유닛 110: 제1 담체106: second exhaust gas purification unit 110: first carrier
111, 215: 담체 후단부 112: 제1 통로111, 215: Rear end of carrier 112: First passage
115: 제3 담체 116, 211: 담체 전단부115: third carrier 116, 211: carrier front end
117: 제3 통로 120, 121: 제1 워시코트 층117: third passage 120, 121: first washcoat layer
125, 126: 제3 워시코트 층 200: 산화촉매장치125 and 126: third washcoat layer 200: oxidation catalyst device
210: 제2 담체 212: 제2 통로210: second carrier 212: second passage
220, 221, 222: 제2 워시코트 층 300: 선택적환원촉매장치220, 221, 222: second washcoat layer 300: selective reduction catalyst device
312: 제1 선택적환원촉매장치 314: 제2 선택적환원촉매장치312: first selective reduction catalyst device 314: second selective reduction catalyst device
316: 제3 선택적환원촉매장치 320: 환원제 분사 모듈316: third selective reduction catalyst device 320: reducing agent injection module
400: 암모니아 슬립 촉매 장치400: ammonia slip catalyst unit

Claims (13)

  1. 내연기관으로부터 배기가스가 배출되는 배기파이프에 순차적으로 설치되는 산화촉매장치 및 선택적환원촉매장치를 포함하는 배기가스 처리 시스템에 있어서,An exhaust gas treatment system comprising an oxidation catalyst device and a selective reduction catalyst device which are sequentially installed in an exhaust pipe through which exhaust gas is discharged from an internal combustion engine,
    상기 산화촉매장치의 전방, 또는 상기 산화촉매장치 및 상기 선택적환원촉매장치 사이 중에서 적어도 하나의 위치에 장착 가능하고, 상기 배기가스가 통과하는 적어도 하나의 담체; 및At least one carrier that is mountable in at least one position in front of the oxidation catalyst device or between the oxidation catalyst device and the selective reduction catalyst device, and through which the exhaust gas passes; And
    상기 담체 표면에 코팅되며, 상기 배기가스에 포함된 불순물 또는 상기 산화촉매장치에서 이탈된 산화물질을 포집하기 위한 워시코트 층을 포함하는 배기가스 정화 장치.And a washcoat layer coated on the surface of the carrier to collect impurities contained in the exhaust gas or oxides released from the oxidation catalyst device.
  2. 제 1 항에 있어서, 상기 산화물질은 Pt, Pd, Rh, Ir, Ag, Sn 및 Ru을 포함하는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the oxide material comprises Pt, Pd, Rh, Ir, Ag, Sn, and Ru.
  3. 제 1 항에 있어서, 상기 담체는 코디어라이트, 탄화규소, 페칼로이, NiCrAl 및 NiFeCrAl로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier comprises at least one selected from the group consisting of cordierite, silicon carbide, pecaloy, NiCrAl, and NiFeCrAl.
  4. 제 1 항에 있어서, 상기 담체는 허니콤 형상인 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier has a honeycomb shape.
  5. 제 1 항에 있어서, 상기 담체는 상기 산화촉매장치와 함께 캐닝되는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier is canned together with the oxidation catalyst device.
  6. 제 1 항에 있어서, 상기 담체는 배기파이프 내부에 설치되는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier is installed in an exhaust pipe.
  7. 제 1 항에 있어서, 상기 담체는 상기 산화촉매장치와 일체로 형성되는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier is formed integrally with the oxidation catalyst device.
  8. 제 1 항에 있어서, 상기 워시코트 층은 Al2O3, SiO2, TiO2, CeO2, ZrO2, V2O5, La2O3 및 제올라이트로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 배기가스 정화 장치.The apparatus of claim 1, wherein the washcoat layer comprises at least one selected from the group consisting of Al 2 O 3, SiO 2, TiO 2, CeO 2, ZrO 2, V 2 O 5, La 2 O 3 and zeolite.
  9. 제 1 항에 있어서, 상기 워시코트 층은 상기 배기가스와 접촉면적을 증가시키는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the washcoat layer increases the contact area with the exhaust gas.
  10. 제 1 항에 있어서, 상기 워시코트 층은 50 내지 60m2/g의 표면적을 갖는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the washcoat layer has a surface area of 50 to 60 m 2 / g.
  11. 제 1 항에 있어서, 상기 담체는 금속 섬유 구조(metal fiber structure)를 가지는 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier has a metal fiber structure.
  12. 제 1 항에 있어서, 상기 담체는 금속 폼(metal foam) 형상인 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the carrier has a metal foam shape.
  13. 제 1 항에 있어서, 상기 불순물은 엔진 오일인 것을 특징으로 하는 배기가스 정화 장치.The exhaust gas purification apparatus according to claim 1, wherein the impurities are engine oil.
PCT/KR2015/007295 2014-07-22 2015-07-14 Device for purifying exhaust gas WO2016013794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580039462.7A CN106661990A (en) 2014-07-22 2015-07-14 Device for purifying exhaust gas
KR1020177000330A KR102107657B1 (en) 2014-07-22 2015-07-14 Exhaust gas cleaning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0092795 2014-07-22
KR20140092795 2014-07-22

Publications (1)

Publication Number Publication Date
WO2016013794A1 true WO2016013794A1 (en) 2016-01-28

Family

ID=55163290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007295 WO2016013794A1 (en) 2014-07-22 2015-07-14 Device for purifying exhaust gas

Country Status (3)

Country Link
KR (1) KR102107657B1 (en)
CN (1) CN106661990A (en)
WO (1) WO2016013794A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279813A (en) * 1999-03-31 2000-10-10 Suzuki Motor Corp Exhaust gas cleaning catalyst and its manufacture
JP2008155204A (en) * 2006-11-29 2008-07-10 Ict:Kk Oxidation catalyst and exhaust gas purification system using the same
KR100882665B1 (en) * 2007-11-20 2009-02-06 현대자동차주식회사 Diesel particulate filter
WO2011162030A1 (en) * 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
KR101191883B1 (en) * 2010-07-29 2012-10-16 한국에너지기술연구원 Diesel vehicles exhaust gas purification device and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (en) 1999-04-16 2000-10-31 Isuzu Motors Ltd Exhaust emission control device for diesel engine
KR100969378B1 (en) * 2008-03-31 2010-07-09 현대자동차주식회사 Apparatus for purifying exhaust gas
US8137648B2 (en) * 2010-10-12 2012-03-20 Ford Global Technologies, Llc Diesel engine exhaust treatment system and method including a platinum group metal trapping device
GB201200781D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst
GB2497597A (en) * 2011-12-12 2013-06-19 Johnson Matthey Plc A Catalysed Substrate Monolith with Two Wash-Coats
EP2674584B2 (en) * 2012-06-14 2020-04-29 Umicore AG & Co. KG Use of an oxidation catalyst for preventing the contamination of an SCR catalyst with platinum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279813A (en) * 1999-03-31 2000-10-10 Suzuki Motor Corp Exhaust gas cleaning catalyst and its manufacture
JP2008155204A (en) * 2006-11-29 2008-07-10 Ict:Kk Oxidation catalyst and exhaust gas purification system using the same
KR100882665B1 (en) * 2007-11-20 2009-02-06 현대자동차주식회사 Diesel particulate filter
WO2011162030A1 (en) * 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
KR101191883B1 (en) * 2010-07-29 2012-10-16 한국에너지기술연구원 Diesel vehicles exhaust gas purification device and control method thereof

Also Published As

Publication number Publication date
KR102107657B1 (en) 2020-05-07
CN106661990A (en) 2017-05-10
KR20170016445A (en) 2017-02-13

Similar Documents

Publication Publication Date Title
WO2010068059A2 (en) Dual functional catalysts for decomposition and oxidation of nitrogen monoxide, mixed catalysts for exhaust-gas reducing device including the same, and preparation method thereof
WO2011132918A2 (en) Device for discharging exhaust gas from diesel engine, having ammonolysis module
RU2007131191A (en) EXHAUST GAS TREATMENT SYSTEM
WO2011090189A1 (en) Exhaust purification device and exhaust purification method for diesel engine
RU2008129368A (en) DOCK AND PARTICLE CONTROL SYSTEM FOR DIESEL ENGINES
CA2319483A1 (en) System for nox reduction in exhaust gases
WO2011068376A2 (en) Exhaust gas filtering device
KR100999616B1 (en) Apparatus for reducing nitrogen oxide cotained in exhaust gas
EP1055806A3 (en) NOx trap and particulate filter system for an internal combustion engine
CN110732320B (en) Diesel engine tail gas oxidation catalyst and preparation method and application thereof
KR20110024599A (en) Apparatus for after-treatment of exhaust from diesel engine
WO2012115336A2 (en) Multifunctional exhaust gas purifying filter, and exhaust gas purifying apparatus using same
WO2018080179A1 (en) Exhaust gas post-processing system
JP2010242515A (en) Exhaust emission control system and exhaust emission control method
WO2016013794A1 (en) Device for purifying exhaust gas
KR101022018B1 (en) Exhaust gas purification system of engine and marine engine with the same
WO2020005026A1 (en) Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method
EP2444611B1 (en) Exhaust purification system of an internal combustion engine
SE9201158D0 (en) PUT TO CLEAN EXHAUST
JP2000282852A (en) Exhaust emission control device
EP0811419A3 (en) Catalytic apparatus purifying exhaust gas emitted from diesel engine
WO2021054538A1 (en) System and method for injecting reducing agent in selective catalytic reduction reaction
KR101703624B1 (en) Exhaust gas processing system
WO2023048398A1 (en) Exhaust gas post-treatment system, for diesel engine, comprising denitrification catalyst-coated filter
KR101011758B1 (en) After-treatment apparatus for treating exhaust gases from diesel engines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000330

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15824175

Country of ref document: EP

Kind code of ref document: A1