WO2020005026A1 - Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method - Google Patents

Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method Download PDF

Info

Publication number
WO2020005026A1
WO2020005026A1 PCT/KR2019/007916 KR2019007916W WO2020005026A1 WO 2020005026 A1 WO2020005026 A1 WO 2020005026A1 KR 2019007916 W KR2019007916 W KR 2019007916W WO 2020005026 A1 WO2020005026 A1 WO 2020005026A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
ruthenium
catalyst
iridium
nox reduction
Prior art date
Application number
PCT/KR2019/007916
Other languages
French (fr)
Korean (ko)
Inventor
유영우
허일정
이진희
김수민
박지훈
박정현
장태선
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2020005026A1 publication Critical patent/WO2020005026A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9427Processes characterised by a specific catalyst for removing nitrous oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1028Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to a deNOx catalyst having improved NOx reduction performance, a manufacturing method thereof, and a NOx reduction method, and more particularly, a NOx reduction that further improves NOx reduction performance by reforming the surface of the catalyst with a gas containing sulfur.
  • the present invention relates to a deNOx catalyst having improved performance, a method for preparing the same, and a method for reducing NOx.
  • Nitrogen oxides are mainly generated from mobile sources such as automobiles, and fixed sources such as industrial and power generation facilities, and have a great influence on the health and living environment of animals and plants.
  • nitrogen oxide is converted into nitric acid and nitrate, which cause acid rain, as well as causing visual disturbance and greenhouse effect, and about 40% of acid rain is caused by nitrogen oxide.
  • nitrogen oxide since nitrogen oxide has a strong adsorption performance of 20,000 times with respect to O 2 in hemoglobin, it is known as a substance that can cause great harm when the concentration is increased, and efforts to reduce it are urgently required.
  • Nitrogen oxides continue to increase, and the NOx emission rate by fuel is 7% Gas, 64% Oil and 29% Coal. %, Industrial plants 30%, power plants 15%, and heating 6%.
  • Nitrogen oxides are discharged mainly at about 5% fuel NOx due to the combustion of nitrogenous components in fuel oil and prompt NOx generated near the flame surface in the presence of hydrocarbons. And thermal NOx generated during combustion between fuel and fuel oil.
  • the pretreatment technique using the combustion method includes reducing the amount of excess air, cooling the combustion section, lowering the air preheating temperature, recirculating the exhaust gas, and improving the structure of the burner and the combustion chamber.
  • introduction of a post-treatment device is essential to effectively control them.
  • the wet method such as absorbing water, hydroxide or carbonate solution, sulfuric acid, etc.
  • the wet method has good efficiency.
  • a large amount of gas is treated, a huge amount of absorbent is required. The problem arises.
  • the selective catalytic reduction process utilizes a catalyst bed or system to treat the flue gas stream through selective conversion (reduction) of NO x to N 2 .
  • the SCR process usually utilizes ammonia or urea decomposing to ammonia as a reducing reactant injected into the flue gas stream upstream prior to contact with the catalyst.
  • SCR systems can typically achieve NOx removal rates in excess of 60%.
  • urea solution when urea solution is injected to the dosing module disposed at the front end to maintain the NOx purification performance at a certain level or more, the urea solution is thermally decomposed by the heat of the exhaust gas. Ammonia gas is produced, and the ammonia gas and the nitrogen oxide can react on the catalyst so that the nitrogen oxide can be changed to harmless nitrogen.
  • disadvantages include a system for supplying urea in the liquid state to the catalyst, and a large space is required because additional systems such as a container for storing the urea in the liquid state and an injection device are required. There is an economic disadvantage.
  • the conventional liquid urea system has a problem in that the urea is not vaporized and produced as a solid ammonium when the exhaust gas temperature is sprayed under the conditions of 200 °C or less because the liquid urea system has to inject the liquid and vaporize the heat from the exhaust gas .
  • urea since urea needs to be supplied periodically from the outside, inconvenience and additional management costs are required.
  • the present invention has been made to solve the above problems, by firing a support on which ruthenium and iridium are supported, and pretreating with a gas containing sulfur, NOx reduction performance at low temperatures of 170 ⁇ 300 °C without introducing an external reducing agent
  • An object of the present invention is to provide an improved deNOx catalyst, a preparation method thereof, and a method for reducing NOx.
  • the deNOx catalyst having improved NOx reduction performance is characterized in that the support is calcined by carrying ruthenium and iridium on a support, and the surface is modified with a gas containing sulfur.
  • the sulfur-containing gas is preferably at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS).
  • the ruthenium (Ru) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  • the iridium (Ir) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  • Method for producing a deNOx catalyst with improved NOx reduction performance (a) supporting ruthenium and iridium on a support; And (b) calcining the support on which ruthenium and iridium of step (a) are carried; And (c) reforming the support surface of step (b) with a gas containing sulfur.
  • step (a) it is preferable that ruthenium is firstly supported on the support and then iridium is secondly supported.
  • the step (c) is preferably performed for 1 to 10 hours at a temperature of 300 ⁇ 800 °C.
  • the step (d) it is preferable to modify the surface by flowing a gas containing sulfur to the support of the step (c).
  • the sulfur-containing gas is preferably at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS).
  • exhaust gas discharged from a ship engine is supplied to a deNOx catalyst through an exhaust gas discharge pipe to reduce NOx in the exhaust gas.
  • the deNOx catalyst is characterized in that the support surface is modified with a gas containing sulfur after calcining and supporting ruthenium and iridium on the support.
  • the sulfur-containing gas NOx using a deNOx catalyst, characterized in that at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and carbon monoxide (COS). Reduction Method.
  • the ruthenium (Ru) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  • the iridium (Ir) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  • the deNOx catalyst having improved NOx reduction performance Using the deNOx catalyst having improved NOx reduction performance according to the present invention, a manufacturing method thereof and a NOx reduction method, there is an advantage in that the removal efficiency of NOx present in the exhaust gas can be greatly improved even at a low temperature of 180 ° C. In particular, after aging under actual conditions of catalyst use, there is an effect that shows the superior performance over the existing deNOx system.
  • FIG. 1 is a flow chart showing a method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention.
  • Figure 2 shows the NOx removal efficiency before and after the surface modification of the catalyst prepared according to Example 1.
  • Figure 3 compares the removal efficiency of nitrogen oxides according to the concentration of SO 2 in the exhaust gas of the catalyst prepared according to Example 3.
  • temporal after-degree relationship for example, if the temporal after-degree relationship is described as 'after', 'following', 'after', 'before', etc. This may include non-consecutive unless' is used.
  • the SCR system is used to reduce NOx in exhaust gases generated during the operation of land plants, ships, and automobiles.
  • an SCR system is required to reduce nitrogen oxides in exhaust gas generated from an engine or a boiler of a ship subject to ship IMO regulation, or a boiler or an incinerator of a land plant.
  • the SCR system is a NOx reduction system using a selective catalytic reduction method.
  • the SCR system is configured to react NOx with a reducing agent while simultaneously reducing exhaust gas and a reducing agent in a catalyst to reduce the nitrogen and water vapor.
  • SCR systems use urea, which provides NH 3 or NH 3 as a reducing agent for NOx reduction.
  • the SCR system uses a catalyst having an active temperature range of 200 ° C to 400 ° C. Therefore, in the conventional SCR system, a reheating system for heating the exhaust gas is installed in front of the casing of the SCR reactor in which the catalyst is installed in order to increase the reaction efficiency by matching the conditions of the active temperature range.
  • the conventional SCR system has a weak function of removing hydrocarbons and carbon monoxide, which are harmful components, and thus, there is a problem in that an oxidation catalyst system or the like must be additionally installed in order to reduce overall harmful gases.
  • the present invention has been proposed to solve the above problems, by firing the support on which ruthenium and iridium are supported, and pretreatment with a gas containing sulfur, NOx removal efficiency is greatly increased at low temperatures of 170 ⁇ 300 °C without introducing a reducing agent
  • An object of the present invention is to provide a deNOx catalyst having improved NOx reduction performance and a method of preparing the same.
  • the deNOx catalyst having improved NOx reduction performance Using the deNOx catalyst having improved NOx reduction performance according to the present invention, a manufacturing method thereof and a NOx reduction method, there is an advantage in that the removal efficiency of NOx present in the exhaust gas can be greatly improved even at a low temperature of 180 ° C.
  • the removal efficiency of NOx present in the exhaust gas can be greatly improved even at a low temperature of 180 ° C.
  • there is an economic advantage because it does not need to introduce a separate reducing agent to remove NOx present in the exhaust gas.
  • the lean NOx trap is a method of occluding NOx in the Lean region (lean combustion) and reducing the NOx occluded in the Rich region (rich combustion), and the three-way conversion (TWC) catalyst is a stoichiometric air, fuel Catalysts that reduce NOx, CO and HC in engines operating at or near conditions.
  • the deNOx catalyst having improved NOx reduction performance is characterized in that ruthenium and iridium are supported and calcined on a support, and the surface is modified with a gas containing sulfur.
  • the sulfur-containing gas may be at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS), and specifically, may be sulfur dioxide (SO 2 ).
  • the concentration of the gas containing sulfur is not limited, but may be preferably 0.0001 to 10%, specifically 0.001 to 5%.
  • the deNOx catalyst having improved NOx reduction performance may be a modified surface of the catalyst at a wide temperature of 20 ⁇ 800 °C.
  • the catalyst By reforming the surface of the catalyst with a gas containing sulfur, the NOx removal efficiency at the low temperature of 170 ⁇ 300 °C can be greatly improved.
  • the catalyst has the advantage of further improving the NOx removal efficiency of the exhaust gas containing sulfur, such as the exhaust gas discharged from the vessel.
  • the deNOx catalyst having improved NOx reduction performance may provide that ruthenium (Ru) is loaded in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the support.
  • ruthenium ruthenium
  • the deNOx catalyst having improved NOx reduction performance may provide that the iridium (Ir) is loaded in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the support.
  • the firing may be fired for 1 to 10 hours at a temperature of 300 ⁇ 800 °C, specifically may be fired at 400 ⁇ 750 °C.
  • the calcination temperature is less than 400 °C, there is a disadvantage that can not impart activity to the catalyst, if it exceeds 750 °C there is a problem that the surface of the catalyst is deteriorated and the activity of the catalyst may be degraded, the above range is preferred.
  • the supporting amount of the iridium is in an appropriate range, but in order to sufficiently serve the purpose of increasing the NOx removal efficiency at low temperatures, it is preferable that the iridium is loaded in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the support. 0.1 parts by weight of the supported amount of iridium is the lowest supported amount for securing the activity of the catalyst. On the other hand, even if it carries more than 10 weight part, since the improvement of activity is insignificant and economically undesirable, the said range is preferable.
  • the iridium is an element of atomic number 77 and the element symbol is Ir.
  • Platinum group metals consist of five and six cycles of elements in groups 8, 9, and 10 of the periodic table: ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd), and platinum ( 6 metal elements of Pt).
  • Ru ruthenium
  • Os osmium
  • Rh rhodium
  • Ir iridium
  • Pd palladium
  • platinum 6 metal elements of Pt
  • the mass is silver white, but the powder is black.
  • the density is 22.56 g / cm at 20 ° C., next to osmium (density 22.59 g
  • the iridium is one of the refractory metals having the highest corrosion resistance, and does not react with air, water, acid, or alkali at room temperature, and does not dissolve in aqua regia.
  • IrO 2 iridium dioxide
  • IrO 2 is dissolved in aqua regia and decomposes into elements at about 1,100 ° C or higher. It reacts with some molten salts and also with halogen elements at high temperatures.
  • oxidation states of -3 to +6 are present, but oxidation states of +3 and +4 exist in the most common state.
  • the iridium compounds may be used as a catalyst for various chemical reactions.
  • [IrI 2 (CO) 2] - may be used as a catalyst in methanol (CH 3 OH) to carbonylation (carbonylation) cationic bar step (Cativa Process) making acetic acid (CH 3 COOH) by.
  • the amount of ruthenium supported is preferably in an appropriate range, but in order to sufficiently serve the purpose of increasing the NOx removal efficiency at low temperatures, it is preferable that ruthenium is loaded at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  • 0.1 parts by weight of the ruthenium supported amount is the lowest supported amount for securing the activity of the catalyst. Even if it carries more than 10 weight part, since the improvement of activity is insignificant and economically undesirable, the said range is preferable.
  • Ruthenium the element number 44, is a transition metal located at the center of the periodic table, and is one of the platinum group metals. Transition metals are elements filled with electrons in the d-electron shell, which are generally hard, strong, colored complexes of various oxidation states, and have a common catalytic activity.
  • Ruthenium belonging to group 8 has a common property of both the front transition metal and the post transition metal. Ruthenium is a rare metal that ranks approximately sixth in the smallest abundance of elements on the planet, and produces very little annual output. Thus, for most people, ruthenium will be considered a very new element. Ruthenium is mainly used as an alloy in the metal industry, as a catalyst in the chemical industry, and as an electrical contact and a resistive material in the electronic industry. It is also used for decorative and wear resistant plating of fine jewelry. Ruthenium complexes are also expected to be anticancer drugs and photocatalysts used to convert solar energy.
  • the deNOx catalyst having improved NOx reduction performance may additionally support other precious metals in addition to ruthenium and iridium, thereby limiting this within a range of increasing the NOx removal efficiency.
  • the preferred additional catalyst components for the ruthenium and iridium may be one or more precious metals selected from the group consisting of platinum, rhodium, palladium, and silver.
  • these additional precious metals may be platinum, rhodium and silver, and the platinum, rhodium, and silver preferably contain 0.1 to 10 parts by weight based on 100 parts by weight of the support.
  • the reason why the noble metal should be included within the above range is to exert the supporting effect of the additionally supported precious metal and not to deteriorate the properties of the main components ruthenium and iridium.
  • these additional precious metals may be supported in plural, for example, two kinds of precious metals of platinum and rhodium may be additionally supported with respect to iridium and ruthenium.
  • Platinum belongs to a rare element and ranks 74th in Clark number, and is produced as an alloy with a free state or other cognate elements, and is mainly produced in Russia, Ural, South Africa, Colombia, Canada and the like. Purity is 75 to 85% and impurities are other platinum group elements.
  • Rhodium is an element of atomic number 45, and the element symbol is Rh. It is a silvery white shiny transition metal, one of the platinum group metals. Usually produced and sold forms are blackish brown in powder or sponge form. In the periodic table, together with cobalt (Co) and iridium (Ir), they belong to group 9, and the elements of groups 8 to 10 are also called group 8B elements. Physical and chemical properties are closer to iridium or other platinum group metals than cobalt. It has a higher melting point and lower density than platinum.
  • the palladium is a rare element of the 71st Clark number, but more than platinum or gold. It is an alloy in platinum, gold and silver ores. It is a white metal, the lightest of the platinum group metals and the lowest melting point metal. It is malleable and ductile and alloys with almost all metals.
  • the metal has the property of absorbing a large amount of gas, especially hydrogen, which absorbs about 850 times hydrogen at room temperature and atmospheric pressure, with a marked expansion. When the hydrogen is released in a vacuum, it is as active as generator hydrogen. It is relatively reactive among the platinum group elements, so it is easy to be eroded by acid and is well soluble in aqua regia. Mild heating in oxygen produces oxides, but does not change in humid air or ozone at room temperature.
  • the silver is generally an off-white metal but also gray in powder.
  • the second malleable and ductile property of metals, followed by gold, can produce very thin silver foils. In addition, it transfers heat and electricity best and has very good processability and mechanical properties.
  • Metals such as silver, gold and platinum do not react easily with air or water. It reflects light well and is often used to make jewelry, and it is also called precious metal because the output is expensive due to its low output.
  • the malleable and ductile metals are followed by gold, which, when melted, occludes large amounts of oxygen in the air and releases them violently when solidified. Thermal and electrical conductivity is the largest of the metals.
  • a mixture of ruthenium and iridium may be supported on the support, and the support may be primarily supported on ruthenium and then secondly supported on iridium. Can be.
  • iridium and ruthenium are separately present due to the strong interaction between the iridium and the support, and thus synergistic effects of iridium and ruthenium cannot be expected.
  • strong support between the support and iridium may be prevented, and iridium and ruthenium may be present in close proximity, thereby improving low temperature performance.
  • the present invention is a catalyst for removing NOx in exhaust gas, and is an exhaust gas NOx reduction catalyst formed by simultaneously supporting and firing iridium and ruthenium in order to support the support, ruthenium and iridium or iridium first. .
  • the support may be one selected from the group consisting of aluminum oxide, zirconia, titania, silica, zeolite, ceria, and ceria-based multicomponent compounds, and specifically, may be aluminum oxide.
  • the support may be monolithized to be supported on the iridium and ruthenium precursor solutions to form a catalyst layer.
  • the support may sequentially include a ruthenium layer and an iridium layer on the monolith, and the ruthenium layer may be supported on the outer surface and the inner pores of the support, and an iridium layer may be formed on the ruthenium layer.
  • the specific surface area of the said aluminum oxide is 5 m 2 / g or more, specifically 50 m 2 / g or more, and more preferably 100 m 2 / g or more.
  • the specific surface area of the aluminum oxide is small, 5 m 2 / g or less, there is a disadvantage that the activity of the catalyst is inferior, the above range is preferable.
  • the aluminum oxide is generally called alumina and is colorless or white insoluble in water.
  • ⁇ -alumina is a product of the Bayer method. Melting Point 1,999 ⁇ 2,050 °C. ⁇ -alumina is said to be a stable form at high temperatures (above 1,500 ° C). (gamma) -alumina is obtained by heating and dehydrating a hydrate or (alpha) -hydrated alumina, and also maintaining it at 900 degreeC, and when it is 1000 degreeC or more, it has the characteristic of transition to alpha-alumina.
  • the aluminum oxide exhibits high specific surface area and good heat resistance to calcination at elevated temperatures, and is therefore preferred for use as a support for catalysts.
  • the aluminum oxide strongly interacts with sulfur and sulfur compounds present in the fuel and exhaust gas products, so that SO 4 can be adsorbed on the surface of the aluminum oxide. When adsorbed in that way, sulfur compounds can shorten the life of common noble metal catalysts.
  • the zirconia is zirconium oxide (IV) (ZrO 2 ), and is normally used as stabilized zirconia as an industrial material. It has a molecular weight of 123.22 and a melting point of about 2,700 ° C. The refractive index is large and the melting point is high, so the corrosion resistance is large. It does not dissolve in water, but dissolves in sulfuric acid and hydrofluoric acid. It can withstand rapid temperature change and can be used for equipment of rapid quenching and quenching.
  • the titania is an oxide of titanium, and absorbing ultraviolet rays can produce oxygen in the air or active oxygen having a strong oxidizing power in water. Because of this, it can act as an anti-pollution action, air purification action, antibacterial action, and environmentally friendly photocatalyst which is attracting attention these days.
  • Silica is a chemical combination of silicon and oxygen (SiO 2 ), and in nature, silica is composed of five homogeneous crystals (quartz, tridymite, cristobalite, coesite, stishovite), chalcedony, amorphous, and hydrated (opal). It exists in various forms.
  • the zeolite is also referred to as zeolite and has many kinds but commonalities such as high water content, crystal properties, and acid phase. Hardness does not exceed 6, specific gravity is about 2.2. Generally it is colorless transparent or white translucent. In addition, since the bond of each atom is loosely crystallized structurally, even if the moisture filling the space is released at high heat, the skeleton remains the same, so that other particulates can be adsorbed and used as a support for the catalyst.
  • the deNOx catalyst having improved NOx reduction performance may be calcined for 1 to 10 hours at a temperature of 300 to 800 ° C.
  • a deNOx catalyst with improved NOx reduction performance can be provided at low temperatures.
  • the catalyst component When the calcination temperature is higher than 800 ° C., the catalyst component may be volatilized, and the catalytic activity point may be reduced by calcination, thereby decreasing performance. In addition, a problem that a large energy consumption due to high temperature may occur, so the above range is preferable.
  • the firing may be carried out under atmospheric pressure such as hydrogen, argon and air, but is not limited thereto.
  • the deNOx catalyst having improved NOx reduction performance may be any one selected from the group consisting of TWC, LNT, and SCR catalysts.
  • Method for producing a deNOx catalyst with improved NOx reduction performance (a) supporting the ruthenium and iridium on the support (S100); And (b) calcining the support on which ruthenium and iridium of step (a) are carried (S200); And (c) reforming the support surface of step (b) with a gas containing sulfur (S300).
  • step (a) (S100) is a step (S100) of supporting ruthenium and iridium on a support.
  • the ruthenium and iridium mixture may be prepared and supported at the same time, and ruthenium may be firstly supported on the support, and then iridium may be secondly supported.
  • the reason for preparing the ruthenium and iridium mixture to support the support is to prevent the support of iridium on the support first. If iridium is first supported on the support, synergistic effects of iridium and ruthenium cannot be expected due to the strong interaction between the iridium and the support. In addition, when ruthenium and iridium are supported on the support, two components must be present in close proximity to achieve low temperature performance.
  • the support may be one selected from the group consisting of aluminum oxide, zirconia, titania, silica, zeolite, ceria, and ceria-based multicomponent compounds, and specifically, may be aluminum oxide.
  • the support may be monolithized to be supported on the iridium and ruthenium precursor solutions to form a catalyst layer.
  • the support may include a ruthenium layer and an iridium layer sequentially on a monolith, and the ruthenium layer may be supported on the outer surface and the inner pores of the support, and an iridium layer is formed on the ruthenium layer.
  • the specific surface area of the aluminum oxide used as the support in step (a) (S100) is 5 m 2 / g or more, specifically 50 m 2 / g or more and more specifically 100 m 2 / g or more desirable.
  • the ruthenium (Ru) of the step (a) (Su), may be carried in 0.1 to 10 parts by weight, preferably in 1.5 parts by weight with respect to 100 parts by weight of the support.
  • the carrying amount of ruthenium is preferably in an appropriate range. Specifically, in order to sufficiently exhibit the purpose of increasing the NOx removal efficiency at low temperatures, the loading amount of ruthenium is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the support.
  • the ruthenium is contained less than 0.1, the effect of removing NOx in the exhaust gas is insignificant, and if the ruthenium is included in excess of 10 parts by weight, there is a fear that the activity of iridium is suppressed, the above range is preferable.
  • step (a) (S100) After carrying out ruthenium on the support in step (a) (S100) it may further comprise the step of firing the ruthenium-supported support for 1 to 10 hours at a temperature of 300 ⁇ 800 °C.
  • the reason for firing after ruthenium is supported on the support is that ruthenium is supported on the support so as not to be released.
  • the support is added to a ruthenium solution and supported, and then calcined at 300 to 800 ° C. for 1 to 10 hours to prepare a ruthenium-supported support first.
  • ruthenium may comprise 1.5 parts by weight.
  • a catalyst component may be further included, and the preferred catalyst component may be at least one selected from the group consisting of platinum, rhodium, palladium, and silver.
  • Particularly preferred among these additional precious metals are platinum, rhodium and silver.
  • platinum carries 0.1-10 weight part with respect to the support amount of platinum, rhodium, and silver with respect to 100 weight part of said support bodies.
  • the supporting amount of rhodium and silver also contains 0.1-10 weight part with respect to 100 weight part of said support bodies, respectively.
  • these additional metals may be supported on a plurality.
  • step (a) (S100) it may be supported on the support on which ruthenium is supported iridium.
  • the supported amount of the iridium (Ir) may include 0.1 to 10 parts by weight, specifically, 1.5 parts by weight based on 100 parts by weight of the support.
  • the 0.1 part by weight is the minimum supported amount for securing the activity of the catalyst.
  • the said range is preferable.
  • a catalyst component may be further included in addition to the iridium, and the preferred catalyst component may be at least one selected from the group consisting of platinum, rhodium, palladium, and silver.
  • Particularly preferred among these additional precious metals are platinum, rhodium and silver.
  • platinum contains 0.1-10 weight part with respect to 100 weight part of said support bodies with respect to platinum, rhodium, and silver.
  • the supported amount of rhodium and silver also preferably contains 0.1 to 10 parts by weight based on 100 parts by weight of the support.
  • these additional metals may be supported on a plurality.
  • the step (b) (S200) may be performed for 1 to 10 hours at a temperature of 300 ⁇ 800 °C.
  • step (b) the sintering temperature of step (S200) is performed at 300 ° C. or lower, there is a disadvantage in that low-temperature activity of the resulting catalyst is lowered.
  • the calcination temperature is performed at 800 ° C. or higher, catalyst components may be volatilized and calcined. By this, the catalytically active point can be reduced, thereby reducing the performance. In addition, high energy consumption due to high temperature.
  • the step (c) (S300), the (b) step (S200) of reforming the surface of the support with a gas containing sulfur Step is performed in the method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention.
  • the step (c) (S300), by flowing a gas containing 0.0001 ⁇ 10% sulfur to the support of the step (b) (S200) to modify the surface, specifically, 0.001 ⁇ 5 at 20 ⁇ 800 °C
  • the surface may be modified by flowing a gas containing% sulfur.
  • the sulfur-containing gas may be at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS), and specifically, may be sulfur dioxide (SO 2 ).
  • the deNOx catalyst having improved NOx reduction performance may be modified on the surface of the catalyst at a wide range of temperature of 20 ⁇ 800 °C.
  • the method for preparing a deNOx catalyst having improved NOx reduction performance as described above may include two methods of first supporting ruthenium on the support and then supporting iridium and supporting the mixture of ruthenium and iridium on the support.
  • the deNOx catalyst prepared according to one embodiment of the present invention may be any one selected from the group consisting of TWC, LNT and SCR catalyst.
  • the exhaust gas discharged from the ship engine is supplied to the deNOx catalyst through the exhaust gas discharge pipe to reduce NOx in the exhaust gas, and the deNOx catalyst is supported on the support. After carrying and calcining ruthenium and iridium, the surface of the support is modified with a gas containing sulfur.
  • According to one embodiment of the present invention can provide a deNOx system comprising the step of removing NOx with the catalyst described above.
  • the diesel particulate filter for removing particulate matter in the exhaust gas flowing from the diesel engine;
  • a diesel oxidation catalyst disposed between the diesel engine and the diesel particulate filter;
  • a NOx abatement device disposed behind the diesel particulate filter to decompose nitrogen oxides contained in the exhaust gas, wherein the NOx abatement device includes a deNOx system for removing nitrogen oxides from the exhaust gas that has passed through the diesel particulate filter.
  • At least one catalyst prepared according to the present invention may be disposed therein.
  • the catalyst was prepared by modifying the catalyst surface by flowing 20 ppm (0.002%) of sulfur dioxide (SO 2) gas per hour after firing.
  • the ruthenium loading of the catalyst was 1.52 parts by weight based on 100 parts by weight of the total catalyst, and the loading of iridium was 2.11 parts by weight.
  • the dried ⁇ -aluminum oxide was calcined at a temperature of 500 ° C. for 4 hours. 0.190 g of IrCl 3 sample was dissolved in water, and then supported on calcined ⁇ -aluminum oxide and dried at 100 ° C. for 12 hours. The dried ⁇ -aluminum oxide was calcined at a temperature of 500 ° C. for 4 hours.
  • the amount of ruthenium supported by this catalyst is 1.52 parts by weight based on 100 parts by weight of the total catalyst, and the amount of iridium is 2.11 parts by weight.
  • the amount of ruthenium supported by this catalyst is 1.52 parts by weight based on 100 parts by weight of the total catalyst, and the amount of iridium is 2.11 parts by weight.
  • Figure 3 shows the NOx removal efficiency before and after the surface modification of the catalyst prepared according to Example 1.
  • the removal efficiency of NO is not improved, but the removal efficiency of NO 2 is greatly improved.
  • the catalyst is sent by flowing SO 2 gas. It can be seen that the removal efficiency of NO 2 is further improved when the surface is modified.
  • the catalyst prepared according to Example 3 was measured for nitrogen oxide removal activity under the following measurement conditions.
  • Figure 4 compares the removal efficiency of nitrogen oxides according to the concentration of SO 2 in the exhaust gas of the catalyst prepared according to Example 3.
  • the deNOx catalyst having improved NOx reduction performance according to the present invention is more effective to be applied to an SCR system such as a ship that discharges exhaust gas having a high content of SO 2 gas.

Abstract

The deNOx catalyst having improved NOx reduction performance, according to the present invention, is characterized in that a support, on which ruthenium and iridium are supported, is fired and is surface-modified with a gas comprising sulfur.

Description

NOx 저감 성능이 향상된 deNOx 촉매, 그 제조방법 및 NOx 저감방법DeNox catalyst with improved NOx reduction performance, method for producing same and NOx reduction method
본 발명은 NOx 저감 성능이 향상된 deNOx 촉매, 그 제조방법 및 NOx 저감방법에 관한 것으로, 더욱 상세하게는 deNOx 촉매를 황이 포함된 가스로 촉매의 표면을 개질함으로써, NOx 저감 성능을 더욱 향상시킨 NOx 저감 성능이 향상된 deNOx 촉매, 그 제조방법 및 NOx 저감방법에 관한 것이다.The present invention relates to a deNOx catalyst having improved NOx reduction performance, a manufacturing method thereof, and a NOx reduction method, and more particularly, a NOx reduction that further improves NOx reduction performance by reforming the surface of the catalyst with a gas containing sulfur. The present invention relates to a deNOx catalyst having improved performance, a method for preparing the same, and a method for reducing NOx.
질소 산화물은 자동차와 같은 이동원 및 산업계, 발전설비 등과 같은 고정원에서 주로 발생되며 동식물의 건강과 생활환경에 많은 영향을 미치게 된다.Nitrogen oxides are mainly generated from mobile sources such as automobiles, and fixed sources such as industrial and power generation facilities, and have a great influence on the health and living environment of animals and plants.
질소산화물은 NO, NO2, N2O, N2O4 등의 형태로 존재하며, 가장 큰 피해는 광화학 스모그의 생성에 관한 것으로 태양광의 존재 하에 탄화수소와 반응하여 광화학적 산화물을 생성시킨다.Nitrogen oxides exist in the form of NO, NO 2 , N 2 O, N 2 O 4, etc. The biggest damage is the production of photochemical smog, which reacts with hydrocarbons in the presence of sunlight to produce photochemical oxides.
또한 질소 산화물은 시정장애와 온실효과를 일으킬 뿐만 아니라 산성비의 원인이 되는 질산과 질산염으로 전환되어 산성비의 약 40 % 정도가 질소 산화물에 의한 것으로 추정되고 있다. 또한 질소 산화물은 헤모글로빈에서 O2에 대하여 20,000 배나 강력한 흡착성능을 갖고 있어 농도가 높아지면 큰 위해를 끼칠 수 있는 물질로 알려져 있어, 이의 저감을 위한 노력이 시급히 요청되고 있다.In addition, it is estimated that nitrogen oxide is converted into nitric acid and nitrate, which cause acid rain, as well as causing visual disturbance and greenhouse effect, and about 40% of acid rain is caused by nitrogen oxide. In addition, since nitrogen oxide has a strong adsorption performance of 20,000 times with respect to O 2 in hemoglobin, it is known as a substance that can cause great harm when the concentration is increased, and efforts to reduce it are urgently required.
질소 산화물은 계속해서 증가하고 있는 추세에 있으며, 연료별 NOx 배출 비율을 보면 가스(Gas) 7 %, 오일(Oil) 64 %, 석탄(Coal) 29 %이며, 발생원별 NOx 배출 비율로 보면 자동차 49 %, 산업공장 30 %, 발전소 15 %, 난방 6 % 등으로 발생되고 있다.Nitrogen oxides continue to increase, and the NOx emission rate by fuel is 7% Gas, 64% Oil and 29% Coal. %, Industrial plants 30%, power plants 15%, and heating 6%.
질소 산화물이 배출되는 경로는 크게 연료유에 존재하는 질소성분의 연소에 의한 fuel NOx가 약 5 %, 탄화수소 존재 하에 화염면 부근에서 발생되는 prompt NOx 가 미미한 수준을 차지하며, 나머지 대부분은 고온영역에서 공기와 연료유간의 연소과정에서 발생되는 thermal NOx가 차지하고 있다.Nitrogen oxides are discharged mainly at about 5% fuel NOx due to the combustion of nitrogenous components in fuel oil and prompt NOx generated near the flame surface in the presence of hydrocarbons. And thermal NOx generated during combustion between fuel and fuel oil.
이처럼 대기오염의 주원인인 질소 산화물의 배출을 줄이기 위하여 많은 나라에서 법적으로 규제하고 있다. 일본의 경우 새로 건립되는 대용량 가스, 기름, 석탄 연소 발전소의 질소 산화물 배출 규제치는 각각 60, 130, 200 ppm이다. 그러나 각 지방 정부가 규제하는 대기 중 질소산화물 농도를 달성하기 위하여 발전소의 경우 규제치보다 훨씬 아래인 15, 30, 60 ppm 이하에서 운전하고 있고, 가스 터빈은 5 ppm 이하에서 가동하고 있다. 유럽의 제한치는 발전소의 경우 30-50, 55-75, 50-100 ppm이고 가스 터빈은 25 ppm이다.In order to reduce the emission of nitrogen oxide which is the main cause of air pollution, many countries are legally regulated. In Japan, the limits for nitrogen oxide emissions from newly built large-scale gas, oil and coal-fired power plants are 60, 130 and 200 ppm, respectively. However, to achieve atmospheric NOx concentrations regulated by local governments, power plants operate below 15, 30 and 60 ppm, well below the regulatory level, and gas turbines operate below 5 ppm. European limits are 30-50, 55-75 and 50-100 ppm for power plants and 25 ppm for gas turbines.
이 같은 규제치를 만족하기 위하여 질소산화물을 저감하는 방법들이 필요하다. 그 중 연소 방법을 통한 전처리 기술은 과잉 공기량 삭감, 연소부분의 냉각, 공기 예열온도의 저하, 배기가스의 재순환, 버너 및 연소실의 구조 개량 등이 있다. 그러나 이런 방법들은 NOx 저감 효율이 낮아 효과적이지 못하기 때문에 이들을 효과적으로 제어하기 위해서는 후처리 장치의 도입이 필수적이다.In order to satisfy these regulations, methods for reducing nitrogen oxides are needed. Among them, the pretreatment technique using the combustion method includes reducing the amount of excess air, cooling the combustion section, lowering the air preheating temperature, recirculating the exhaust gas, and improving the structure of the burner and the combustion chamber. However, since these methods are not effective due to low NOx reduction efficiency, introduction of a post-treatment device is essential to effectively control them.
또한 물, 수산화물이나 탄산염의 용액, 황산 등에 흡수시키는 방법 등의 습식법의 경우는 효율은 좋으나 대용량의 가스 처리 시에는 엄청난 양의 흡수제가 필요하게 되고, 다시 질소산화물이 흡수된 용액을 2 차 폐수 처리해야 하는 문제가 발생하게 된다.In addition, the wet method, such as absorbing water, hydroxide or carbonate solution, sulfuric acid, etc., has good efficiency. However, when a large amount of gas is treated, a huge amount of absorbent is required. The problem arises.
건식법의 경우에도 molecular sieve나 활성탄 등의 흡착제를 이용한 방법의 경우는 미량의 질소 산화물이 연도 가스에 포함되어 있을 때 사용하는 방법으로 흡착해야 할 질소산화물의 양이 많아질 경우에는 적용하기 어려운 단점이 있다.Even in the dry method, a method using an adsorbent such as molecular sieve or activated carbon is difficult to apply when the amount of nitrogen oxide to be adsorbed is increased by a method used when a small amount of nitrogen oxide is contained in the flue gas. have.
이러한 이유로 현재 대부분의 연소 가스로부터 NOx 제거를 위한 현재의 기술은 보통 외부 환원제를 이용한 선택적 촉매 환원(Selective Catalytic Reduction: SCR) 기술을 이용한다.For this reason, current techniques for NOx removal from most combustion gases currently utilize selective catalytic reduction (SCR) techniques with external reducing agents.
선택적 촉매 환원 과정은 NOx의 N2로의 선택적 변환(환원)을 통해 연도 가스 스트림을 처리하기 위해 촉매 베드 또는 시스템을 이용한다. SCR 과정은 보통 촉매와 접촉되기에 앞서, 상류의 연도 가스 스트림으로 주입되는 환원성 반응물질로서 암모니아 또는 암모니아로 분해되는 요소를 이용한다. 상업적 용도에서 SCR 시스템은 전형적으로 60 %를 넘는 NOx 제거율을 달성할 수 있다.The selective catalytic reduction process utilizes a catalyst bed or system to treat the flue gas stream through selective conversion (reduction) of NO x to N 2 . The SCR process usually utilizes ammonia or urea decomposing to ammonia as a reducing reactant injected into the flue gas stream upstream prior to contact with the catalyst. In commercial applications, SCR systems can typically achieve NOx removal rates in excess of 60%.
일반적으로 사용되고 있는 SCR 촉매의 경우 NOx 정화 성능을 일정수준으로 이상으로 유지하기 위해 전단부에 배치되는 도징모듈(Dosing Module)에 우레아(Urea) 용액을 분사하면 배기가스의 열에 의해 우레아 용액이 열분해되어 암모니아 가스가 생성되고, 암모니아 가스와 질소산화물이 촉매 상에서 반응하여 질소산화물이 무해한 질소로 변화될 수 있다.In case of commonly used SCR catalyst, when urea solution is injected to the dosing module disposed at the front end to maintain the NOx purification performance at a certain level or more, the urea solution is thermally decomposed by the heat of the exhaust gas. Ammonia gas is produced, and the ammonia gas and the nitrogen oxide can react on the catalyst so that the nitrogen oxide can be changed to harmless nitrogen.
한편 단점으로는 액체 상태의 우레아를 촉매에 공급하기 위한 시스템을 갖추어야 하며, 액체 상태인 우레아를 저장하기 위한 용기, 및 분사 장치 등의 부수적인 시스템이 있어야 하므로 큰 공간이 필요하며, 추가적인 비용이 들어가기 때문에 경제적으로 불리한 측면이 있다.On the other hand, disadvantages include a system for supplying urea in the liquid state to the catalyst, and a large space is required because additional systems such as a container for storing the urea in the liquid state and an injection device are required. There is an economic disadvantage.
또한, 기존의 액체 우레아 시스템은 액체를 분사하고 배기가스에서 나오는 열에 의하여 우레아를 기화시켜야 하기 때문에 배출가스 온도가 200 ℃ 이하의 조건에서 분사되는 경우 우레아가 기화되지 않고 고체 암모늄으로 생성되는 문제점들이 있었다. 또한, 우레아는 외부에서 주기적으로 공급해주어야 하기 때문에 그에 따른 불편과 추가적인 관리비용이 소요된다.In addition, the conventional liquid urea system has a problem in that the urea is not vaporized and produced as a solid ammonium when the exhaust gas temperature is sprayed under the conditions of 200 ℃ or less because the liquid urea system has to inject the liquid and vaporize the heat from the exhaust gas . In addition, since urea needs to be supplied periodically from the outside, inconvenience and additional management costs are required.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 0001) KR 10-0665606 B1(Patent Document 0001) KR 10-0665606 B1
본 발명은 상기와 같은 문제점을 해결하기 위하여 창출된 것으로, 루테늄 및 이리듐이 담지된 지지체를 소성하고, 황이 포함된 가스로 전처리함으로써, 외부 환원제의 도입 없이도 170 ~ 300 ℃의 저온에서 NOx 저감 성능이 향상된 deNOx 촉매, 그 제조방법 및 NOx 저감방법을 제공하는 데 목적이 있다.The present invention has been made to solve the above problems, by firing a support on which ruthenium and iridium are supported, and pretreating with a gas containing sulfur, NOx reduction performance at low temperatures of 170 ~ 300 ℃ without introducing an external reducing agent An object of the present invention is to provide an improved deNOx catalyst, a preparation method thereof, and a method for reducing NOx.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problem (s) mentioned above, and other object (s) not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 바람직한 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매는, 지지체에 루테늄 및 이리듐이 담지되어 소성되고, 황이 포함된 가스로 표면이 개질된 것을 특징으로 한다.The deNOx catalyst having improved NOx reduction performance according to an exemplary embodiment of the present invention is characterized in that the support is calcined by carrying ruthenium and iridium on a support, and the surface is modified with a gas containing sulfur.
일 실시예에 있어서, 상기 황이 포함된 가스는, 이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1종 이상인 것이 바람직하다.In one embodiment, the sulfur-containing gas is preferably at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS).
일 실시예에 있어서, 상기 루테늄(Ru)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것이 바람직하다.In one embodiment, it is preferable that the ruthenium (Ru) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
일 실시예에 있어서, 상기 이리듐(Ir)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것이 바람직하다.In one embodiment, it is preferable that the iridium (Ir) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
본 발명의 바람직한 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법은, (a) 지지체에 루테늄 및 이리듐을 담지하는 단계; 및 (b) 상기 (a) 단계의 루테늄 및 이리듐이 담지된 지지체를 소성하는 단계; 및 (c) 상기 (b) 단계의 지지체 표면을 황이 포함된 가스로 개질하는 단계;를 포함하는 것을 특징으로 한다.Method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention, (a) supporting ruthenium and iridium on a support; And (b) calcining the support on which ruthenium and iridium of step (a) are carried; And (c) reforming the support surface of step (b) with a gas containing sulfur.
일 실시예에 있어서, 상기 (a) 단계는, 상기 지지체에 1차적으로 루테늄이 담지된 다음 2차적으로 이리듐이 담지되는 것이 바람직하다.In one embodiment, in the step (a), it is preferable that ruthenium is firstly supported on the support and then iridium is secondly supported.
일 실시예에 있어서, 상기 (c) 단계는, 300 ~ 800 ℃의 온도에서 1 ~ 10 시간 동안 수행되는 것이 바람직하다.In one embodiment, the step (c) is preferably performed for 1 to 10 hours at a temperature of 300 ~ 800 ℃.
일 실시예에 있어서, 상기 (d) 단계는, 상기 (c) 단계의 지지체에 황이 포함된 가스를 흘려주어 표면을 개질하는 것이 바람직하다.In one embodiment, the step (d), it is preferable to modify the surface by flowing a gas containing sulfur to the support of the step (c).
일 실시예에 있어서, 상기 황이 포함된 가스는, 이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1 종 이상인 것이 바람직하다.In one embodiment, the sulfur-containing gas is preferably at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS).
본 발명의 바람직한 다른 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매를 이용한 NOx 저감방법은, 선박엔진에서 배출되는 배기가스가 배기가스 배출관을 통해 deNOx 촉매로 공급되어 배기가스 내의 NOx를 환원시키고, 상기 deNOx 촉매는, 지지체에 루테늄 및 이리듐을 담지하고 소성한 후 지지체 표면을 황이 포함된 가스로 개질된 것을 특징으로 한다.In the NOx reduction method using a deNOx catalyst having improved NOx reduction performance according to another embodiment of the present invention, exhaust gas discharged from a ship engine is supplied to a deNOx catalyst through an exhaust gas discharge pipe to reduce NOx in the exhaust gas. The deNOx catalyst is characterized in that the support surface is modified with a gas containing sulfur after calcining and supporting ruthenium and iridium on the support.
일 실시예에 있어서, 상기 황이 포함된 가스는, 이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1종 이상인 것을 특징으로 하는 deNOx 촉매를 이용한 NOx 저감방법.In one embodiment, the sulfur-containing gas, NOx using a deNOx catalyst, characterized in that at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and carbon monoxide (COS). Reduction Method.
일 실시예에 있어서, 상기 루테늄(Ru)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것이 바람직하다.In one embodiment, it is preferable that the ruthenium (Ru) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
일 실시예에 있어서, 상기 이리듐(Ir)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것이 바람직하다.In one embodiment, it is preferable that the iridium (Ir) is supported at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
본 발명에 의한 NOx 저감 성능이 향상된 deNOx 촉매, 그 제조방법 및 NOx 저감방법을 이용하면, 180 ℃의 저온에서도 배기가스 내에 존재하는 NOx의 제거 효율을 크게 향상시킬 수 있는 장점이 있다. 특히, 촉매 실제 사용 조건 하의 aging 후에는 기존 deNOx 시스템보다 우위의 성능을 나타내는 효과가 있다.Using the deNOx catalyst having improved NOx reduction performance according to the present invention, a manufacturing method thereof and a NOx reduction method, there is an advantage in that the removal efficiency of NOx present in the exhaust gas can be greatly improved even at a low temperature of 180 ° C. In particular, after aging under actual conditions of catalyst use, there is an effect that shows the superior performance over the existing deNOx system.
또한, deNOx 촉매의 표면을 황이 포함된 가스로 표면 개질함으로써, 중온 영역에서 촉매의 선택도를 향상시켜 질소산화물 저감효과를 더욱 향상시킬 수 있으며, 황이 포함된 배기가스의 NOx제거에 더욱 효과적인 장점이 있다.In addition, by modifying the surface of the deNOx catalyst with a gas containing sulfur, it is possible to improve the selectivity of the catalyst in the middle temperature region to further improve the nitrogen oxide reduction effect, and more effective in removing NOx of sulfur-containing exhaust gas. have.
또한, 요소수 SCR과 달리 배기가스 내에 존재하는 NOx를 제거하기 위해 별도의 외부 환원제 도입이 필요하지 않아, 장치가 단순해지고 설치비, 관리비, 원료비 등에서 경제적인 장점이 있다. 특히, 기존의 우레아 SCR의 범위를 벗어나 LNT 및 DOC, 또는 TWC 등에 추가적인 deNOx 성능을 부여할 수 있고, 또한 CO와 탄화수소 역시 저감시킬 수 있는 효과가 있다.In addition, unlike the urea water SCR, it is not necessary to introduce a separate external reducing agent to remove NOx present in the exhaust gas, thereby simplifying the apparatus and having economic advantages in installation cost, maintenance cost, and raw material cost. In particular, it is possible to give additional deNOx performance to LNT and DOC, or TWC, etc., beyond the range of conventional urea SCR, and also to reduce CO and hydrocarbons.
도 1은 본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법을 나타낸 순서도이다.1 is a flow chart showing a method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention.
도 2은 실시예 1에 따라 제조된 촉매의 표면개질 전, 후의 NOx 제거효율을 나타낸 것이다.Figure 2 shows the NOx removal efficiency before and after the surface modification of the catalyst prepared according to Example 1.
도 3는 실시예 3에 따라 제조된 촉매의 배기가스 내의 SO2 농도에 따른 질소산화물의 제거효율을 비교한 것이다.Figure 3 compares the removal efficiency of nitrogen oxides according to the concentration of SO 2 in the exhaust gas of the catalyst prepared according to Example 3.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to provide general knowledge in the technical field to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited thereto. Like reference numerals refer to like elements throughout.
또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.In the case where 'comprises', 'haves', 'consists of' and the like mentioned in the present specification are used, other parts may be added unless 'only' is used. In the case where the component is expressed in the singular, the plural includes the plural unless specifically stated otherwise.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.In the case of the description of the positional relationship, for example, if the positional relationship of the two parts is described as 'on', 'upon', 'lower', 'next to', etc. Alternatively, one or more other parts may be located between the two parts unless 'direct' is used.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간 적 선후관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In the case of a description of a temporal relationship, for example, if the temporal after-degree relationship is described as 'after', 'following', 'after', 'before', etc. This may include non-consecutive unless' is used.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관관계로 함께 실시할 수도 있다.Each of the features of the various embodiments of the present invention may be combined or combined with each other, partly or wholly, and various technically interlocking and driving are possible, and each of the embodiments may be implemented independently of each other or may be implemented together in an association. It may be.
본 발명을 설명하기에 앞서 암모니아(NH3) 또는 암모니아 전구물질인 우레아를 사용하는 SCR 시스템에 대하여 간략하게 설명하도록 한다.Prior to describing the present invention, a brief description will be given of an SCR system using ammonia (NH 3 ) or ammonia precursor urea.
SCR 시스템이란, 육상 플랜트, 선박 및 자동차의 운전 중 발생하는 배기가스 중의 NOx 저감에 이용되고 있다. 예로써, 선박 IMO 규제적용 대상 선박의 엔진 또는 보일러, 또는 육상 플랜트의 보일러 또는 소각로에서 발생되는 배기가스 중의 질소산화물 저감을 위해서 SCR 시스템이 요구되고 있다. SCR 시스템은, 선택적 촉매 환원법을 이용한 NOx 저감 시스템으로서, 촉매 중에 배기가스와 환원제를 동시에 통과시키면서 NOx를 환원제와 반응시켜 질소와 수증기로 환원처리되도록 구성된다. 근래 들어 SCR 시스템을 개선하기 위한 많은 노력이 있어 왔다. 그러한 노력에도 불구하고, 선박 또는 일부 육상 플랜트가 갖는 특수성으로 인해 확실한 결과가 도출되지 못하고 있다.The SCR system is used to reduce NOx in exhaust gases generated during the operation of land plants, ships, and automobiles. For example, an SCR system is required to reduce nitrogen oxides in exhaust gas generated from an engine or a boiler of a ship subject to ship IMO regulation, or a boiler or an incinerator of a land plant. The SCR system is a NOx reduction system using a selective catalytic reduction method. The SCR system is configured to react NOx with a reducing agent while simultaneously reducing exhaust gas and a reducing agent in a catalyst to reduce the nitrogen and water vapor. Recently, there have been many efforts to improve the SCR system. In spite of such efforts, the specificity of ships or some land plants does not produce definite results.
일반적으로, SCR 시스템은 NOx 저감을 위한 환원제로 NH3 또는 NH3를 제공하는 우레아를 이용한다. 또한, SCR 시스템은 200 ℃ ~ 400 ℃의 활성 온도 범위를 갖는 촉매를 이용한다. 따라서, 종래의 SCR 시스템은, 상기 활성 온도 범위의 조건을 맞추어 반응 효율을 높이기 위해, 촉매가 설치된 SCR 리액터의 케이싱 전단에 배기가스를 가열하는 리히팅 시스템(reheating system)이 설치된다.In general, SCR systems use urea, which provides NH 3 or NH 3 as a reducing agent for NOx reduction. In addition, the SCR system uses a catalyst having an active temperature range of 200 ° C to 400 ° C. Therefore, in the conventional SCR system, a reheating system for heating the exhaust gas is installed in front of the casing of the SCR reactor in which the catalyst is installed in order to increase the reaction efficiency by matching the conditions of the active temperature range.
또한, 종래의 SCR 시스템은, SCR 리액터에서 반응을 마친 배기가스 중에 내포된 PM(Particle Material), 분진, 미세 먼지를 감소시키기 위해, SCR 리액터 케이싱의 후단에 집진 설비 등이 설치되어 큰 공간을 차지하는 문제점이 있다.In addition, in the conventional SCR system, in order to reduce PM (Particle Material), dust, and fine dust contained in the exhaust gas that has been reacted in the SCR reactor, a dust collecting facility or the like is installed at the rear of the SCR reactor casing to occupy a large space. There is a problem.
더욱이, 종래의 SCR 시스템은 유해성분인 탄화수소 및 일산화탄소를 제거하는 기능이 약하기 때문에 종합적인 유해가스 저감을 위해서는 산화촉매 시스템 등을 추가로 설치해야 한다는 문제가 있다.In addition, the conventional SCR system has a weak function of removing hydrocarbons and carbon monoxide, which are harmful components, and thus, there is a problem in that an oxidation catalyst system or the like must be additionally installed in order to reduce overall harmful gases.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 루테늄 및 이리듐이 담지된 지지체를 소성하고, 황이 포함된 가스로 전처리함으로써, 환원제의 도입 없이도 170 ~ 300 ℃의 저온에서 NOx 제거 효율이 크게 향상되는 NOx 저감 성능이 향상된 deNOx 촉매 및 그 제조방법을 제공하는 데 목적이 있다.The present invention has been proposed to solve the above problems, by firing the support on which ruthenium and iridium are supported, and pretreatment with a gas containing sulfur, NOx removal efficiency is greatly increased at low temperatures of 170 ~ 300 ℃ without introducing a reducing agent An object of the present invention is to provide a deNOx catalyst having improved NOx reduction performance and a method of preparing the same.
본 발명에 의한 NOx 저감 성능이 향상된 deNOx 촉매, 그 제조방법 및 NOx 저감방법을 이용하면, 180 ℃의 저온에서도 배기가스 내에 존재하는 NOx의 제거 효율을 크게 향상시킬 수 있는 장점이 있다. 또한, 우레아 SCR과 달리 배기가스 내에 존재하는 NOx를 제거하기 위해 별도의 환원제 도입이 필요하지 않기 때문에 경제적인 장점이 있다.Using the deNOx catalyst having improved NOx reduction performance according to the present invention, a manufacturing method thereof and a NOx reduction method, there is an advantage in that the removal efficiency of NOx present in the exhaust gas can be greatly improved even at a low temperature of 180 ° C. In addition, unlike urea SCR, there is an economic advantage because it does not need to introduce a separate reducing agent to remove NOx present in the exhaust gas.
특히, 기존의 우레아 SCR의 범위를 벗어나 LNT 및 DOC, 또는 TWC 등에 추가적인 deNOx 성능을 부여할 수 있고, 또한 CO와 탄화수소 역시 저감시킬 수 있다는 이점이 있다.In particular, it is possible to impart additional deNOx performance to LNT and DOC, or TWC, etc., beyond the scope of the existing urea SCR, and also to reduce CO and hydrocarbons.
상기 희박 NOx 트랩(LNT)은 Lean 영역(희박 연소)에서는 NOx를 흡장하였다가 Rich영역(농후한 연소)에서 흡장된 NOx를 환원시키는 방법이며, 삼원전환(TWC) 촉매는 화학양론적 공기, 연료 조건에서 또는 그 근처에서 작동되는 엔진 중의 NOx, CO 및 HC를 저감시키는 촉매이다.The lean NOx trap (LNT) is a method of occluding NOx in the Lean region (lean combustion) and reducing the NOx occluded in the Rich region (rich combustion), and the three-way conversion (TWC) catalyst is a stoichiometric air, fuel Catalysts that reduce NOx, CO and HC in engines operating at or near conditions.
본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매는 지지체에 루테늄 및 이리듐이 담지되어 소성되고, 황이 포함된 가스로 표면이 개질된 것을 특징으로 한다.The deNOx catalyst having improved NOx reduction performance according to an embodiment of the present invention is characterized in that ruthenium and iridium are supported and calcined on a support, and the surface is modified with a gas containing sulfur.
상기 황이 포함된 가스는, 이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1종 이상일 수 있으며, 구체적으로 이산화황(SO2)일 수 있다.The sulfur-containing gas may be at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS), and specifically, may be sulfur dioxide (SO 2 ).
또한, 상기 황이 포함된 가스의 농도는 제한하지 않으나, 바람직하게는 0.0001 ~ 10 %일 수 있으며, 구체적으로는 0.001 ~ 5 %일 수 있다. 또한, 상기 NOx 저감 성능이 향상된 deNOx 촉매는 20 ~ 800 ℃의 광범위한 온도에서 촉매의 표면이 개질된 것일 수 있다.In addition, the concentration of the gas containing sulfur is not limited, but may be preferably 0.0001 to 10%, specifically 0.001 to 5%. In addition, the deNOx catalyst having improved NOx reduction performance may be a modified surface of the catalyst at a wide temperature of 20 ~ 800 ℃.
상기 촉매의 표면을 황이 포함된 가스로 개질함으로써, 170 ~ 300 ℃의 저온에서 NOx 제거 효율이 크게 향상될 수 있다. 특히 상기 촉매는 선박에서 배출되는 배기가스와 같이 황이 포함된 배기가스의 NOx 제거 효율을 더욱 향상시킬 수 있는 장점이 있다.By reforming the surface of the catalyst with a gas containing sulfur, the NOx removal efficiency at the low temperature of 170 ~ 300 ℃ can be greatly improved. In particular, the catalyst has the advantage of further improving the NOx removal efficiency of the exhaust gas containing sulfur, such as the exhaust gas discharged from the vessel.
본 발명의 일 실시예에 따른, 상기 NOx 저감 성능이 향상된 deNOx 촉매는 상기 지지체 100 중량부에 대해, 상기 루테늄(Ru)이 0.1 ~ 10 중량부로 담지된 것을 제공할 수 있다.According to an embodiment of the present invention, the deNOx catalyst having improved NOx reduction performance may provide that ruthenium (Ru) is loaded in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the support.
본 발명의 일 실시예에 따른, 상기 NOx 저감 성능이 향상된 deNOx 촉매는 상기 지지체 100 중량부에 대해, 상기 이리듐(Ir)이 0.1 ~ 10 중량부로 담지된 것을 제공할 수 있다.According to one embodiment of the present invention, the deNOx catalyst having improved NOx reduction performance may provide that the iridium (Ir) is loaded in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the support.
상기 소성은 300 ~ 800 ℃의 온도에서 1 ~ 10 시간 동안 소성된 것일 수 있으며, 구체적으로는 400 ~ 750 ℃에서 소성된 것일 수 있다.The firing may be fired for 1 to 10 hours at a temperature of 300 ~ 800 ℃, specifically may be fired at 400 ~ 750 ℃.
상기 소성 온도가 400 ℃ 미만이면, 촉매에 활성을 부여할 수 없는 단점이 있으며, 750 ℃를 초과하면 촉매의 표면이 변질되어 촉매의 활성이 떨어질 수 있는 문제점이 있어 상기한 범위가 바람직하다.If the calcination temperature is less than 400 ℃, there is a disadvantage that can not impart activity to the catalyst, if it exceeds 750 ℃ there is a problem that the surface of the catalyst is deteriorated and the activity of the catalyst may be degraded, the above range is preferred.
상기 이리듐의 담지량은 적절한 범위로 하는 것이 바람직하나, 저온에서 NOx의 제거효율을 높이기 위한 목적을 충분히 발휘시키기 위해, 상기 지지체 100 중량부에 대해, 이리듐이 0.1 ∼ 10 중량부로 담지된 것이 바람직하다. 상기 이리듐 담지량의 0.1 중량부는 촉매의 활성을 확보하기 위한 최저의 담지량이다. 한편, 10 중량부를 초과하여 담지해도 활성의 향상은 미미하고 경제적으로 바람직하지 못하기 때문에 상기한 범위가 바람직하다.It is preferable that the supporting amount of the iridium is in an appropriate range, but in order to sufficiently serve the purpose of increasing the NOx removal efficiency at low temperatures, it is preferable that the iridium is loaded in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the support. 0.1 parts by weight of the supported amount of iridium is the lowest supported amount for securing the activity of the catalyst. On the other hand, even if it carries more than 10 weight part, since the improvement of activity is insignificant and economically undesirable, the said range is preferable.
상기 이리듐(iridium)은 원자번호 77 번의 원소로, 원소기호는 Ir이다. 코발트(Co), 로듐(Rh)과 함께 주기율표에서 9 족(8B 족)에 속하는 전이금속으로, 백금족 금속의 하나이다. 백금족 금속은 주기율표에서 8, 9, 10 족에 있는 5 주기와 6 주기의 원소들, 즉 루테늄(Ru), 오스뮴(Os), 로듐(Rh), 이리듐(Ir), 팔라듐(Pd), 백금(Pt)의 6 가지 금속 원소들을 말한다. 단단하나 연성이 적고 쉽게 부서져 가공하기가 어렵다. 덩어리는 은백색이나, 분말은 검정색이다. 밀도는 20 ℃에서 22.56 g/cm로, 모든 원소 중에서 오스뮴(밀도 22.59 g/cm) 다음으로 높다. 녹는점은 2,446 ℃이고, 끓는점은 4,430 ℃이다.The iridium is an element of atomic number 77 and the element symbol is Ir. A transition metal belonging to group 9 (group 8B) in the periodic table together with cobalt (Co) and rhodium (Rh), one of the platinum group metals. Platinum group metals consist of five and six cycles of elements in groups 8, 9, and 10 of the periodic table: ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd), and platinum ( 6 metal elements of Pt). Hard but less ductile and easily broken and difficult to machine. The mass is silver white, but the powder is black. The density is 22.56 g / cm at 20 ° C., next to osmium (density 22.59 g / cm) of all elements. Melting point is 2,446 ℃, boiling point is 4,430 ℃.
상기 이리듐은 내부식성이 가장 큰 refractory 금속 중의 하나로, 실온에서는 공기, 물, 산, 알칼리와 반응하지 않고 왕수(王水)에도 녹지 않는다. 공기 중에서 800 ℃ 이상으로 가열하거나 산화성 용융 알칼리와 반응시키면 이산화이리듐(IrO2)이 되는데, IrO2는 왕수에 녹으며, 약 1,100 ℃ 이상에서는 원소들로 분해된다. 일부 용융염과 반응하며, 고온에서는 할로겐 원소들과도 반응한다. 화합물에서는 -3 ~ +6의 산화상태를 가지나, +3 및 +4의 산화상태가 가장 흔한 상태로 존재한다.The iridium is one of the refractory metals having the highest corrosion resistance, and does not react with air, water, acid, or alkali at room temperature, and does not dissolve in aqua regia. When heated to 800 ° C or higher in air or reacted with oxidizing molten alkali, it becomes iridium dioxide (IrO 2 ). IrO 2 is dissolved in aqua regia and decomposes into elements at about 1,100 ° C or higher. It reacts with some molten salts and also with halogen elements at high temperatures. In compounds, oxidation states of -3 to +6 are present, but oxidation states of +3 and +4 exist in the most common state.
또한, 상기 이리듐 화합물들은 여러 가지 화학반응의 촉매로 이용될 수 있다. 예를 들어 [IrI2(CO)2]-은 메틸알코올(CH3OH)을 카르보닐화(carbonylation)시켜 아세트산(CH3COOH)을 만드는 카티바 공정(Cativa Process)에서 촉매로 사용될 수 있다.In addition, the iridium compounds may be used as a catalyst for various chemical reactions. For example, [IrI 2 (CO) 2] - may be used as a catalyst in methanol (CH 3 OH) to carbonylation (carbonylation) cationic bar step (Cativa Process) making acetic acid (CH 3 COOH) by.
상기 루테늄의 담지량은 적절한 범위로 하는 것이 바람직하나, 저온에서 NOx의 제거효율을 높이기 위한 목적을 충분히 발휘시키기 위해, 상기 지지체 100중량부에 대해, 루테늄이 0.1 ∼ 10 중량부로 담지된 것이 바람직하다.The amount of ruthenium supported is preferably in an appropriate range, but in order to sufficiently serve the purpose of increasing the NOx removal efficiency at low temperatures, it is preferable that ruthenium is loaded at 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
상기 루테늄 담지량 0.1 중량부는 촉매의 활성을 확보하기 위한 최저의 담지량이다. 10 중량부를 초과하여 담지해도 활성의 향상은 미미하고 경제적으로 바람직하지 못하기 때문에 상기한 범위가 바람직하다.0.1 parts by weight of the ruthenium supported amount is the lowest supported amount for securing the activity of the catalyst. Even if it carries more than 10 weight part, since the improvement of activity is insignificant and economically undesirable, the said range is preferable.
상기 원자번호 44 번 원소인 루테늄은 주기율표의 중앙에 위치하는 전이금속으로, 백금족 금속의 하나이다. 전이금속은 d-전자 껍질에 전자가 채워지는 원소들로, 대체로 단단하고 강하며, 색깔을 띠는 여러 산화 상태의 착화합물을 만들고, 촉매 활성을 보이는 공통점이 있다.Ruthenium, the element number 44, is a transition metal located at the center of the periodic table, and is one of the platinum group metals. Transition metals are elements filled with electrons in the d-electron shell, which are generally hard, strong, colored complexes of various oxidation states, and have a common catalytic activity.
그러나 세부적으로는 주기율표의 7 족에 속하는 앞 전이금속(early-transition metal)과 9 ~ 11 족에 속하는 후 전이금속(late-transition metal) 사이에 서로 상당히 다른 특성을 보인다.However, in detail, there is a significant difference between the early-transition metal belonging to Group 7 of the periodic table and the late-transition metal belonging to Groups 9-11.
8 족에 속하는 루테늄은 앞 전이금속과 후 전이금속의 공통적 특성을 모두 갖고 있어 응용성이 매우 큰 전이금속이다. 루테늄은 지구 상에 존재하는 원소 중에서 존재량이 적은 순위로 대략 6 번째가 되는 아주 희귀한 금속이며, 연간 생산량도 매우 적다. 따라서 대부분의 사람들에게 루테늄은 매우 생소한 원소로 여겨질 것이다. 루테늄은 금속 공업에서 합금제로, 화학공업에서 촉매로, 전자공업에서 전기접점 및 저항재료 등으로 주로 쓰인다. 또한 고급 장신구의 장식용 및 내마모성 도금에도 사용된다. 그리고 루테늄 착화합물은 항암제, 태양에너지 전환에 쓰이는 광촉매 등으로도 기대를 모으고 있는 원소이다.Ruthenium belonging to group 8 has a common property of both the front transition metal and the post transition metal. Ruthenium is a rare metal that ranks approximately sixth in the smallest abundance of elements on the planet, and produces very little annual output. Thus, for most people, ruthenium will be considered a very new element. Ruthenium is mainly used as an alloy in the metal industry, as a catalyst in the chemical industry, and as an electrical contact and a resistive material in the electronic industry. It is also used for decorative and wear resistant plating of fine jewelry. Ruthenium complexes are also expected to be anticancer drugs and photocatalysts used to convert solar energy.
그리고, 본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매는 루테늄 및 이리듐 외에 다른 귀금속을 추가로 담지될 수 있으며, 이것에 의해 NOx의 제거효율을 높이는 범위 안에서는 이를 제한하지 않는다.In addition, the deNOx catalyst having improved NOx reduction performance according to an embodiment of the present invention may additionally support other precious metals in addition to ruthenium and iridium, thereby limiting this within a range of increasing the NOx removal efficiency.
본 발명의 일 실시예에 있어서, 상기 루테늄 및 이리듐에 있어 바람직한 추가적인 촉매성분으로는, 백금, 로듐, 팔라듐, 및 은으로 이루어진 그룹 중에서 선택되는 하나 이상의 귀금속일 수 있다.In one embodiment of the present invention, the preferred additional catalyst components for the ruthenium and iridium may be one or more precious metals selected from the group consisting of platinum, rhodium, palladium, and silver.
이들의 추가적 귀금속 중에서 특히 바람직한 것은, 백금, 로듐 및 은일 수 있으며, 상기 백금, 로듐, 및 은은 상기 지지체 100 중량부에 대해, 각각 0.1 ~ 10 중량부를 포함하는 것이 바람직하다. 상기한 범위 내로 귀금속을 포함해야 하는 이유는 추가로 담지되는 귀금속의 담지 효과를 발휘시킴과 동시에 주성분인 루테늄 및 이리듐의 특성을 저하시키지 않도록 하기 위해서이다. 또한, 이들 추가적 귀금속은 복수 담지해도 좋고, 예컨대, 이리듐 및 루테늄에 대해서 백금 및 로듐의 2 종의 귀금속을 추가적으로 담지될 수도 있다.Particularly preferred among these additional precious metals may be platinum, rhodium and silver, and the platinum, rhodium, and silver preferably contain 0.1 to 10 parts by weight based on 100 parts by weight of the support. The reason why the noble metal should be included within the above range is to exert the supporting effect of the additionally supported precious metal and not to deteriorate the properties of the main components ruthenium and iridium. In addition, these additional precious metals may be supported in plural, for example, two kinds of precious metals of platinum and rhodium may be additionally supported with respect to iridium and ruthenium.
상기 백금은, 희유원소에 속하며 클라크수 제 74 위이고, 유리상태 또는 다른 동족원소와의 합금으로서 산출되며, 러시아의 우랄지방·남아프리카·콜롬비아·캐나다 등이 주산지이다. 순도는 75 ∼ 85 %이며 불순물은 다른 백금족원소이다.Platinum belongs to a rare element and ranks 74th in Clark number, and is produced as an alloy with a free state or other cognate elements, and is mainly produced in Russia, Ural, South Africa, Colombia, Canada and the like. Purity is 75 to 85% and impurities are other platinum group elements.
또한, 은백색의 귀금속으로 은보다 단단하고, 전성·연성이 있다. 냉간가공도 할 수 있으나, 보통은 800 ∼ 1,000 ℃로 가열하여 가공한다. 소량의 이리듐을 가하면 순수한 백금의 장점은 그대로 유지되면서 더 단단하고 강한 합금이 될 수 있다. 팽창률은 유리와 거의 같아서, 유리기구의 접합에 편리하다. 미세한 분말로 한 백금은 그 부피의 100 배 이상의 수소를 흡수하며, 적열한 백금은 수소를 흡수하여 투과시킨다. 공기나 수분 등에는 매우 안정하여 고온으로 가열해도 변하지 않고, 산·알칼리에 강하여 내식성이 크다. 다만 왕수에는 서서히 녹고, 가성알칼리와 함께 고온으로 가열하면 침식된다. 플루오르·염소·황·셀렌 등과 가열하면 반응한다.It is a silver-white noble metal, harder than silver, and has malleability and ductility. Cold work can also be done, but usually heated to 800 ~ 1,000 ℃. Adding a small amount of iridium can be a harder and stronger alloy while retaining the benefits of pure platinum. The expansion rate is almost the same as that of glass, which is convenient for joining glass appliances. Fine powdered platinum absorbs hydrogen at least 100 times its volume, and glowing platinum absorbs and permeates hydrogen. It is very stable to air and moisture and does not change even when heated to high temperature, and is resistant to acids and alkalis and has high corrosion resistance. However, it slowly melts in aqua regia and erodes when heated to high temperature with caustic alkali. It reacts when heated with fluorine, chlorine, sulfur, selenium and the like.
상기 로듐(Rhodium)은 원자번호 45 번의 원소로, 원소기호는 Rh이다. 은백색 광택이 나는 전이금속으로, 백금족 금속의 하나이다. 보통 생산·판매되는 형태는 분말이나 스펀지 형태로 흑갈색을 띤다. 주기율표에서는 코발트(Co), 이리듐(Ir)과 함께 9 족에 속하는데, 8 ~ 10 족 원소들을 8B 족 원소로 부르기도 한다. 물리 및 화학적 성질은 코발트보다는 이리듐이나 다른 백금족 금속들과 가깝다. 백금보다는 녹는점이 높고, 밀도가 낮다. 단단하여 잘 마모되지 않으며, 빛의 반사율이 크다, 공기 중에서 상온에서는 산화되지 않으며, 500 ℃ 이상에서는 서서히 산화되어 산화 로듐(Rh2O3)이 생성되지만 더욱 가열하면 다시 금속 로듐과 산소로 분해된다. 높은 온도에서는 황, 할로겐 원소들과 반응한다. 질산을 비롯한 대부분의 산에 녹지 않는다.Rhodium is an element of atomic number 45, and the element symbol is Rh. It is a silvery white shiny transition metal, one of the platinum group metals. Usually produced and sold forms are blackish brown in powder or sponge form. In the periodic table, together with cobalt (Co) and iridium (Ir), they belong to group 9, and the elements of groups 8 to 10 are also called group 8B elements. Physical and chemical properties are closer to iridium or other platinum group metals than cobalt. It has a higher melting point and lower density than platinum. It is hard and does not wear well, and has a high reflectance of light, it does not oxidize at room temperature in air, and slowly oxidizes above 500 ° C to form rhodium oxide (Rh 2 O 3 ), but when heated further, it is decomposed into metal rhodium and oxygen again. . At high temperatures it reacts with sulfur and halogens. Insoluble in most acids, including nitric acid.
상기 팔라듐은 클라크수 71 번째의 희유원소이지만, 백금이나 금보다는 많다. 백금석, 금, 은광석 속에 합금으로 함유되어 있다. 백색 금속으로, 백금족 금속 중 가장 가볍고 녹는점이 가장 낮은 금속으로 전성과 연성이 좋고 거의 모든 금속과 합금을 이룬다. 금속은 다량의 기체, 특히 수소를 흡수하는 성질을 지니는데, 상온, 상압에서 약 850 배의 수소를 흡수하며, 이때 뚜렷하게 팽창한다. 이 수소를 진공 속에 방출시키면 발생기 수소와 마찬가지로 활성이 강하다. 백금족 원소 중에서 비교적 반응성이 커서 산에 침식되기 쉬우며 왕수에는 잘 녹는다. 산소 속에서 약하게 가열하면 산화물을 만들지만 상온에서는 습한 공기나 오존 속에서도 변화하지 않는다.The palladium is a rare element of the 71st Clark number, but more than platinum or gold. It is an alloy in platinum, gold and silver ores. It is a white metal, the lightest of the platinum group metals and the lowest melting point metal. It is malleable and ductile and alloys with almost all metals. The metal has the property of absorbing a large amount of gas, especially hydrogen, which absorbs about 850 times hydrogen at room temperature and atmospheric pressure, with a marked expansion. When the hydrogen is released in a vacuum, it is as active as generator hydrogen. It is relatively reactive among the platinum group elements, so it is easy to be eroded by acid and is well soluble in aqua regia. Mild heating in oxygen produces oxides, but does not change in humid air or ozone at room temperature.
상기 은은, 일반적으로 회백색의 금속이지만 가루의 경우 회색을 띠기도 한다. 금속 중 금 다음으로 전성과 연성 성질이 커서 매우 얇은 은박도 만들 수 있다. 또한, 열과 전기를 가장 잘 전달하며 가공성과 기계적 성질이 매우 좋다. 은, 금 및 백금 등의 금속은 공기나 물과 쉽게 반응하지 않는다. 빛을 잘 반사해 반짝거려 장신구 등을 만드는 데 많이 사용하고, 산출량이 적어 가격이 비싸므로 귀금속이라고도 한다. 전성, 연성은 금에 이어 크며 융해하면 공기 중에서 다량의 산소를 흡장하며 응고할 때는 이를 격렬하게 방출한다. 열·전기의 전도성은 금속 중 가장 크다. 물과 대기 중에서는 안정하여 녹이 잘 슬지 않지만, 오존에서는 흑색의 과산화은으로, 황이나 황화수소에서는 흑색의 황화은으로 변한다. 보통의 산이나 알칼리에는 녹지 않지만 질산과 따뜻한 황산에는 녹아서 질산은, 황산 은이 되며, 보통 화합물에서의 산화수는 +1가와 +2가로 존재한다.The silver is generally an off-white metal but also gray in powder. The second malleable and ductile property of metals, followed by gold, can produce very thin silver foils. In addition, it transfers heat and electricity best and has very good processability and mechanical properties. Metals such as silver, gold and platinum do not react easily with air or water. It reflects light well and is often used to make jewelry, and it is also called precious metal because the output is expensive due to its low output. The malleable and ductile metals are followed by gold, which, when melted, occludes large amounts of oxygen in the air and releases them violently when solidified. Thermal and electrical conductivity is the largest of the metals. It is stable in water and air, and does not rust very well, but turns to black silver peroxide in ozone and black silver sulfide in sulfur or hydrogen sulfide. It does not dissolve in normal acids or alkalis, but it dissolves in nitric acid and warm sulfuric acid, and nitric acid becomes silver sulfate, and the oxidation number of ordinary compounds is present in +1 and +2 valences.
본 발명의 일 실시예에 따른 상기 NOx 저감 성능이 향상된 deNOx 촉매는, 상기 지지체에 루테늄 및 이리듐의 혼합물이 담지될 수 있으며, 상기 지지체가 1차적으로 루테늄에 담지된 다음 2차적으로 이리듐에 담지될 수 있다.In the deNOx catalyst having improved NOx reduction performance according to an embodiment of the present invention, a mixture of ruthenium and iridium may be supported on the support, and the support may be primarily supported on ruthenium and then secondly supported on iridium. Can be.
상기 지지체에 1차적으로 루테늄이 담지된 다음 2차적으로 이리듐이 담지되는 이유는 이리듐이 먼저 담지되는 것을 방지하기 위함이다.The reason why ruthenium is primarily supported on the support and then iridium is secondly supported is to prevent the iridium from being supported first.
상기 지지체를 이리듐에 먼저 담지한 후 루테늄에 담지하는 경우 이리듐과 지지체의 강한 상호작용으로 인하여 이리듐과 루테늄이 개별적으로 존재하게 되어 이리듐과 루테늄의 시너지 효과를 기대할 수 없다. 상기 지지체를 루테늄에 먼저 담지한 후 이리듐에 담지하는 경우 상기 지지체와 이리듐의 강한 상호작용을 방지할 수 있고 상기 이리듐과 루테늄이 가까이 존재할 수 있어 저온성능 증진을 기대할 수 있다.When the support is first supported on iridium and then on ruthenium, iridium and ruthenium are separately present due to the strong interaction between the iridium and the support, and thus synergistic effects of iridium and ruthenium cannot be expected. When the support is first supported on ruthenium and then supported on iridium, strong support between the support and iridium may be prevented, and iridium and ruthenium may be present in close proximity, thereby improving low temperature performance.
또한, 상기 지지체를 이리듐과 루테늄 혼합물에 담지하는 경우에도 상기 이리듐과 루테늄 혼합물이 가까이 존재하여 저온성능 증진효과를 나타낼 수 있다. 즉, 본 발명은, 배기가스 중의 NOx를 제거하는 촉매로서, 지지체, 루테늄 및 이리듐 순으로 또는 이리듐이 먼저 담지되는 것을 방지하기 위하여 이리듐과 루테늄을 동시에 담지하고 소성처리하여 이루어지는 배기가스 NOx 저감 촉매이다.In addition, even when the support is supported on the iridium and ruthenium mixture, the iridium and ruthenium mixture may be in close proximity to exhibit a low temperature performance enhancing effect. That is, the present invention is a catalyst for removing NOx in exhaust gas, and is an exhaust gas NOx reduction catalyst formed by simultaneously supporting and firing iridium and ruthenium in order to support the support, ruthenium and iridium or iridium first. .
상기 지지체는, 산화알루미늄, 지르코니아, 티타니아, 실리카, 제올라이트, 세리아 및 세리아 계열 다성분 화합물로 이루어진 그룹 중 선택되는 하나일 수 있으며, 구체적으로는 산화알루미늄일 수 있다. 이 때, 상기 지지체를 모노리스화 하여 상기 이리듐 및 루테늄 전구체 용액에 담지하여 촉매층을 형성시킬 수 있다.The support may be one selected from the group consisting of aluminum oxide, zirconia, titania, silica, zeolite, ceria, and ceria-based multicomponent compounds, and specifically, may be aluminum oxide. In this case, the support may be monolithized to be supported on the iridium and ruthenium precursor solutions to form a catalyst layer.
또한, 상기 지지체는 모노리스 상에서 루테늄층 및 이리듐층을 순차적으로 포함할 수 있으며, 상기 루테늄층은 상기 지지체 외부 표면 및 내부 기공 상에 담지될 수 있고, 상기 루테늄층 상부에 이리듐층이 적층되어 형성될 수 있다.In addition, the support may sequentially include a ruthenium layer and an iridium layer on the monolith, and the ruthenium layer may be supported on the outer surface and the inner pores of the support, and an iridium layer may be formed on the ruthenium layer. Can be.
상기 산화알루미늄의 비표면적은, 5 m2/g 이상이고, 구체적으로는 50 m2/g 이상이며, 더욱 구체적으로는 100 m2/g 이상인 것이 바람직하다.The specific surface area of the said aluminum oxide is 5 m 2 / g or more, specifically 50 m 2 / g or more, and more preferably 100 m 2 / g or more.
상기 산화알루미늄의 비표면적이, 5 m2/g 이하로 작을 경우, 촉매의 활성이 떨어지는 단점이 있어 상기한 범위가 바람직하다.When the specific surface area of the aluminum oxide is small, 5 m 2 / g or less, there is a disadvantage that the activity of the catalyst is inferior, the above range is preferable.
상기 산화알루미늄은 일반적으로 알루미나로 불리며, 무색 또는 백색으로 물에는 녹지 않는다. α-알루미나는 바이어법의 생성물이다. 녹는점 1,999 ~ 2,050 ℃. β-알루미나는 고온(1,500 ℃ 이상)에서 안정된 형태라고 일컬어진다. γ-알루미나는 수화물 또는 α-수화 알루미나를 가열 탈수하고, 나아가 900 ℃로 유지하면 얻어지는 것으로, 1,000 ℃ 이상으로 하면 α-알루미나로 전이하는 특징을 가지고 있다.The aluminum oxide is generally called alumina and is colorless or white insoluble in water. α-alumina is a product of the Bayer method. Melting Point 1,999 ~ 2,050 ℃. β-alumina is said to be a stable form at high temperatures (above 1,500 ° C). (gamma) -alumina is obtained by heating and dehydrating a hydrate or (alpha) -hydrated alumina, and also maintaining it at 900 degreeC, and when it is 1000 degreeC or more, it has the characteristic of transition to alpha-alumina.
상기 산화알루미늄은 높은 비표면적과 승온된 온도에서의 소성에 대한 양호한 내열성을 나타내어 촉매의 지지체로 사용하기에 바람직하다.The aluminum oxide exhibits high specific surface area and good heat resistance to calcination at elevated temperatures, and is therefore preferred for use as a support for catalysts.
그러나, 상기 산화알루미늄은 연료 및 배기가스 산물에 존재하는 황 및 유황 화합물과 강하게 상호작용하여, 상기 산화알루미늄의 표면에 SO4가 흡착될 수 있다. 그런 식으로 흡착될 경우, 유황 화합물은 일반적인 귀금속 촉매의 수명을 단축시킬 수 있는 있다.However, the aluminum oxide strongly interacts with sulfur and sulfur compounds present in the fuel and exhaust gas products, so that SO 4 can be adsorbed on the surface of the aluminum oxide. When adsorbed in that way, sulfur compounds can shorten the life of common noble metal catalysts.
상기 지르코니아는 산화 지르코늄(Ⅳ)(ZrO2)이며, 공업재료로서는 보통 안정화 지르코니아로서 사용한다. 분자량 123.22, 녹는점 약 2,700 ℃이다. 굴절률이 크고 녹는점이 높아서 내식성이 크다. 물에 녹지 않고, 황산·플루오르화 수소산에 녹는다. 급격한 온도의 변화에 견디므로 급열·급랭의 기구류에 사용될 수 있다.The zirconia is zirconium oxide (IV) (ZrO 2 ), and is normally used as stabilized zirconia as an industrial material. It has a molecular weight of 123.22 and a melting point of about 2,700 ° C. The refractive index is large and the melting point is high, so the corrosion resistance is large. It does not dissolve in water, but dissolves in sulfuric acid and hydrofluoric acid. It can withstand rapid temperature change and can be used for equipment of rapid quenching and quenching.
상기 티타니아는 티타늄의 산화물이며, 자외선을 흡수하면 공기 중의 산소나 물속에서 강한 산화력을 가지는 활성 산소를 만들어 낼 수 있다. 이로 인하여 오염 방지 작용, 공기 정화 작용, 항균 작용, 그리고 요즘 각광 받고 있는 환경 친화적인 광촉매로 작용할 수 있다.The titania is an oxide of titanium, and absorbing ultraviolet rays can produce oxygen in the air or active oxygen having a strong oxidizing power in water. Because of this, it can act as an anti-pollution action, air purification action, antibacterial action, and environmentally friendly photocatalyst which is attracting attention these days.
실리카는 규소와 산소의 화학적 결합체(SiO2)이며, 자연 상태에서 실리카는 5 가지의 동질 이상 결정(quartz, tridymite, cristobalite, coesite, stishovite), 은미정질(chalcedony), 비정질 및 수화화합물(opal) 등 다양한 형태로 존재한다.Silica is a chemical combination of silicon and oxygen (SiO 2 ), and in nature, silica is composed of five homogeneous crystals (quartz, tridymite, cristobalite, coesite, stishovite), chalcedony, amorphous, and hydrated (opal). It exists in various forms.
상기 제올라이트는 비석이라고도 하며, 종류는 많으나 함수량(含水量)이 많은 점, 결정의 성질, 산상 등의 공통성이 있다. 굳기는 6을 넘지 않으며, 비중은 약 2.2이다. 일반적으로 무색 투명하거나 백색 반투명이다. 또한, 결정구조적으로 각 원자의 결합이 느슨하여, 그 사이를 채우고 있는 수분을 고열로 방출시켜도 골격은 그대로 있으므로, 다른 미립물질들이 흡착될 수 있어 촉매의 지지체로 이용할 수 있다.The zeolite is also referred to as zeolite and has many kinds but commonalities such as high water content, crystal properties, and acid phase. Hardness does not exceed 6, specific gravity is about 2.2. Generally it is colorless transparent or white translucent. In addition, since the bond of each atom is loosely crystallized structurally, even if the moisture filling the space is released at high heat, the skeleton remains the same, so that other particulates can be adsorbed and used as a support for the catalyst.
본 발명의 일 실시예에 따른, 상기 NOx 저감 성능이 향상된 deNOx 촉매는, 300 ~ 800 ℃의 온도에서 1 ~ 10 시간 동안 소성된 것일 수 있다.According to an embodiment of the present invention, the deNOx catalyst having improved NOx reduction performance may be calcined for 1 to 10 hours at a temperature of 300 to 800 ° C.
상기 소성 온도가 300 ℃ 이상이 되어야만 저온에서 NOx의 제거효율을 높일 수 있으며, 상기 소성 온도 800 ℃ 이하가 되어야만 저온에서 NOx 저감 성능이 향상된 deNOx 촉매를 제공할 수 있다.Only when the calcination temperature is 300 ° C. or higher can be used to increase the NOx removal efficiency at low temperatures, and when the calcination temperature is 800 ° C. or lower, a deNOx catalyst with improved NOx reduction performance can be provided at low temperatures.
상기 소성 온도가 800 ℃를 초과하여 진행되면 촉매 성분이 휘발될 수 있으며, 소성에 의해 촉매 활성점이 감소하여 성능이 감소될 수 있다. 또한, 고온에 따른 에너지 소비가 크다는 문제점이 발생할 수 있어 상기한 범위가 바람직하다.When the calcination temperature is higher than 800 ° C., the catalyst component may be volatilized, and the catalytic activity point may be reduced by calcination, thereby decreasing performance. In addition, a problem that a large energy consumption due to high temperature may occur, so the above range is preferable.
상기 소성은 수소, 아르곤 및 공기 등의 대기압 하에서 수행될 수 있으며, 이를 제한하지는 않는다.The firing may be carried out under atmospheric pressure such as hydrogen, argon and air, but is not limited thereto.
본 발명의 일 실시예에 따른, 상기 NOx 저감 성능이 향상된 deNOx 촉매는, TWC, LNT 및 SCR 촉매의 그룹으로 이루어진 군에서 선택되는 어느 하나일 수 있다.According to one embodiment of the present invention, the deNOx catalyst having improved NOx reduction performance may be any one selected from the group consisting of TWC, LNT, and SCR catalysts.
이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법을 단계별로 상세히 설명한다.Hereinafter, a method for preparing a deNOx catalyst having improved NOx reduction performance according to an embodiment of the present invention will be described in detail with reference to FIG. 1.
본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법은, (a) 지지체에 루테늄 및 이리듐을 담지하는 단계(S100); 및 (b) 상기 (a) 단계의 루테늄 및 이리듐이 담지된 지지체를 소성하는 단계(S200); 및 (c) 상기 (b) 단계의 지지체 표면을 황이 포함된 가스로 개질하는 단계(S300);를 포함하는 것을 특징으로 한다.Method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention, (a) supporting the ruthenium and iridium on the support (S100); And (b) calcining the support on which ruthenium and iridium of step (a) are carried (S200); And (c) reforming the support surface of step (b) with a gas containing sulfur (S300).
본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법에 있어서, 상기 (a) 단계(S100)는, 지지체에 루테늄 및 이리듐을 담지하는 단계(S100)이다.In the method for producing a deNOx catalyst having improved NOx reduction performance according to an embodiment of the present invention, step (a) (S100) is a step (S100) of supporting ruthenium and iridium on a support.
상기 (a)단계는(100) 루테늄 및 이리듐 혼합물을 제조하여 동시에 담지할 수도 있으며, 상기 지지체에 1차적으로 루테늄이 담지된 다음 2차적으로 이리듐이 담지될 수 있다.In the step (a), the ruthenium and iridium mixture may be prepared and supported at the same time, and ruthenium may be firstly supported on the support, and then iridium may be secondly supported.
상기 루테늄 및 이리듐 혼합물을 제조하여 상기 지지체를 담지하는 이유는 상기 지지체에 이리듐이 먼저 담지되는 것을 방지하기 위함이다. 상기 지지체에 이리듐이 먼저 담지가 되면 상기 이리듐과 지지체의 강한 상호 작용으로 인하여 이리듐 및 루테늄의 시너지 효과를 기대할 수 없다. 또한, 상기 루테늄과 이리듐이 상기 지지체에 담지되었을 때 두 성분이 가까이 존재해야만 저온성능 증진효과를 기대할 수 있다.The reason for preparing the ruthenium and iridium mixture to support the support is to prevent the support of iridium on the support first. If iridium is first supported on the support, synergistic effects of iridium and ruthenium cannot be expected due to the strong interaction between the iridium and the support. In addition, when ruthenium and iridium are supported on the support, two components must be present in close proximity to achieve low temperature performance.
본 발명의 일 실시예에 따른, 상기 지지체는, 산화알루미늄, 지르코니아, 티타니아, 실리카, 제올라이트, 세리아 및 세리아 계열 다성분 화합물로 이루어진 그룹 중 선택되는 하나 일 수 있으며, 구체적으로는 산화알루미늄일 수 있다. 이 때, 상기 지지체를 모노리스화 하여 상기 이리듐 및 루테늄 전구체 용액에 담지하여 촉매층을 형성시킬 수 있다.According to an embodiment of the present invention, the support may be one selected from the group consisting of aluminum oxide, zirconia, titania, silica, zeolite, ceria, and ceria-based multicomponent compounds, and specifically, may be aluminum oxide. . In this case, the support may be monolithized to be supported on the iridium and ruthenium precursor solutions to form a catalyst layer.
또한, 상기 지지체는, 모노리스 상에서 루테늄층 및 이리듐층을 순차적으로 포함할 수 있으며, 상기 루테늄층은 상기 지지체 외부 표면 및 내부 기공 상에 담지될 수 있고, 상기 루테늄층 상부에 이리듐층이 적층되어 형성될 수 있다.In addition, the support may include a ruthenium layer and an iridium layer sequentially on a monolith, and the ruthenium layer may be supported on the outer surface and the inner pores of the support, and an iridium layer is formed on the ruthenium layer. Can be.
상기 (a) 단계(S100)에서 상기 지지체로 사용되는 상기 산화알루미늄의 비표면적은, 5 m2/g이상이고 구체적으로는 50 m2/g이상이고 더욱 구체적으로는 100 m2/g 이상이 바람직하다.The specific surface area of the aluminum oxide used as the support in step (a) (S100) is 5 m 2 / g or more, specifically 50 m 2 / g or more and more specifically 100 m 2 / g or more desirable.
상기 지지체인 산화알루미늄의 비표면적이 5 m2/g이하로 작을 경우, 촉매의 활성이 떨어지는 단점이 있어 상기 한 범위가 바람직하다.When the specific surface area of the aluminum oxide, which is the support, is less than 5 m 2 / g or less, there is a disadvantage in that the activity of the catalyst is deteriorated.
상기 (a) 단계(S100)의 상기 루테늄(Ru)은, 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지될 수 있으며, 바람직하게는 1.5 중량부로 담지될 수 있다.The ruthenium (Ru) of the step (a) (Su), may be carried in 0.1 to 10 parts by weight, preferably in 1.5 parts by weight with respect to 100 parts by weight of the support.
상기 루테늄의 담지량은, 적절한 범위로 하는 것이 바람직하나, 저온에서 NOx의 제거효율을 높이기 위한 목적을 충분히 발휘시키기 위해 구체적으로는 상기 지지체 100 중량부에 대해 0.1 ∼ 10 중량부로 하는 것이 바람직하다.The carrying amount of ruthenium is preferably in an appropriate range. Specifically, in order to sufficiently exhibit the purpose of increasing the NOx removal efficiency at low temperatures, the loading amount of ruthenium is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the support.
상기 루테늄이 0.1 미만으로 포함되면 배기가스 내에서 NOx을 제거하는 효과가 미미하고, 상기 루테늄이 10 중량부를 초과하여 포함되면, 이리듐의 활성이 억제될 우려가 있어 상기한 범위가 바람직하다.If the ruthenium is contained less than 0.1, the effect of removing NOx in the exhaust gas is insignificant, and if the ruthenium is included in excess of 10 parts by weight, there is a fear that the activity of iridium is suppressed, the above range is preferable.
상기 (a) 단계(S100)에서 지지체에 루테늄을 담지한 후 루테늄이 담지된 지지체를 300 ~ 800 ℃의 온도에서 1 ~ 10 시간 동안 소성하는 단계를 더 포함할 수 있다.After carrying out ruthenium on the support in step (a) (S100) it may further comprise the step of firing the ruthenium-supported support for 1 to 10 hours at a temperature of 300 ~ 800 ℃.
상기 지지체에 루테늄이 담지된 후 소성하는 이유는 상기 지지체에 루테늄이 담지되어 이탈되지 않기 위해 수행되는 것이다.The reason for firing after ruthenium is supported on the support is that ruthenium is supported on the support so as not to be released.
상기 지지체를 루테늄 용액에 투입하고 담지한 후 300 ~ 800 ℃에서 1 ~ 10 시간 동안 소성하여 루테늄이 담지된 지지체를 먼저 제조할 수 있다. 여기서 바람직하게는 상기 지지체 100 중량부에 대해, 루테늄은 1.5 중량부를 포함할 수 있다.The support is added to a ruthenium solution and supported, and then calcined at 300 to 800 ° C. for 1 to 10 hours to prepare a ruthenium-supported support first. Preferably, with respect to 100 parts by weight of the support, ruthenium may comprise 1.5 parts by weight.
상기 (a) 단계(S100)에서 루테늄 이외에 촉매성분을 추가로 포함할 수 있으며, 바람직한 촉매성분은, 백금, 로듐, 팔라듐 및 은으로 이루어진 그룹 중에서 선택되는 하나 이상일 수 있다. 이들의 추가적 귀금속 중에서 특히 바람직한 것은, 백금, 로듐 및 은이다. 이 경우 백금, 로듐 및 은의 담지량은, 상기 지지체 100 중량부에 대해, 백금이 0.1 ~ 10 중량부를 포함하는 것이 바람직하다. 또한, 로듐과 은의 담지량 역시 상기 지지체 100 중량부에 대해, 각각 0.1 ~ 10 중량부를 포함하는 것이 바람직하다. 상기와 동일하게, 추가적 귀금속 담지의 효과를 발휘시킴과 동시에, 주성분으로 되는 루테늄의 특성을 저하시키지 않도록 하기 위해서이다. 더욱이, 이들 추가적 금속은 복수 담지될 수 있다.In addition to the ruthenium in step (a) (S100), a catalyst component may be further included, and the preferred catalyst component may be at least one selected from the group consisting of platinum, rhodium, palladium, and silver. Particularly preferred among these additional precious metals are platinum, rhodium and silver. In this case, it is preferable that platinum carries 0.1-10 weight part with respect to the support amount of platinum, rhodium, and silver with respect to 100 weight part of said support bodies. In addition, it is preferable that the supporting amount of rhodium and silver also contains 0.1-10 weight part with respect to 100 weight part of said support bodies, respectively. In order to exert the effect of supporting an additional precious metal similarly to the above, in order not to reduce the characteristic of ruthenium which is a main component. Moreover, these additional metals may be supported on a plurality.
상기 (a) 단계(S100)에서 루테늄이 담지된 지지체에 이리듐을 담지할 수 있다.In the step (a) (S100) it may be supported on the support on which ruthenium is supported iridium.
여기서 상기 이리듐(Ir)의 담지량은, 상기 지지체 100 중량부에 대하여 상기 이리듐은 0.1 ~ 10 중량부를 포함할 수 있으며, 구체적으로는 1.5 중량부일 수 있다. 상기 0.1 중량부는 촉매의 활성을 확보하기 위한 최저 담지량이다. 한편, 10 중량부를 초과하여 담지해도 활성의 향상은 미미하기 때문에 경제적으로 바람직하지 못하기 때문에 상기한 범위가 바람직하다.Here, the supported amount of the iridium (Ir) may include 0.1 to 10 parts by weight, specifically, 1.5 parts by weight based on 100 parts by weight of the support. The 0.1 part by weight is the minimum supported amount for securing the activity of the catalyst. On the other hand, even if it carries more than 10 weight part, since the improvement of activity is insignificant, since it is economically undesirable, the said range is preferable.
이리듐 이외에 촉매성분을 추가로 포함할 수 있으며, 바람직한 촉매성분은, 백금, 로듐, 팔라듐 및 은으로 이루어진 그룹 중에서 선택되는 하나 이상일 수 있다. 이들의 추가적 귀금속 중에서 특히 바람직한 것은, 백금, 로듐 및 은이다. 이 경우 백금, 로듐 및 은의 담지량은, 상기 지지체 100 중량부에 대해, 백금이 0.1 ~ 10 중량부를 포함하는 것이 바람직하다. 또한, 로듐 및 은의 담지량 역시 상기 지지체 100 중량부에 대해, 각각 0.1 ~ 10 중량부를 포함하는 것이 바람직하다. 상기와 동일하게, 추가적 귀금속 담지의 효과를 발휘시킴과 동시에, 주성분으로 되는 이리듐의 특성을 저하시키지 않도록 하기 위해서이다. 더욱이, 이들 추가적 금속은 복수 담지될 수 있다.A catalyst component may be further included in addition to the iridium, and the preferred catalyst component may be at least one selected from the group consisting of platinum, rhodium, palladium, and silver. Particularly preferred among these additional precious metals are platinum, rhodium and silver. In this case, it is preferable that platinum contains 0.1-10 weight part with respect to 100 weight part of said support bodies with respect to platinum, rhodium, and silver. In addition, the supported amount of rhodium and silver also preferably contains 0.1 to 10 parts by weight based on 100 parts by weight of the support. In order to exhibit the effect of supporting an additional precious metal similarly to the above, and to prevent the characteristic of the iridium which becomes a main component from degrading. Moreover, these additional metals may be supported on a plurality.
본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법에 있어서, 상기 (b) 단계(S200)는, 상기 (a) 단계(100)의 루테늄 및 이리듐이 담지된 지지체를 소성하는 단계(S200)이다.In the method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention, the step (b) (S200), the (a) step 100 to burn the support on which ruthenium and iridium is supported Step S200.
상기 (b) 단계(S200)는, 300 ~ 800 ℃의 온도에서 1 ~ 10 시간 동안 수행될 수 있다.The step (b) (S200) may be performed for 1 to 10 hours at a temperature of 300 ~ 800 ℃.
상기 (b) 단계(S200)의 소성 온도가 300 ℃ 이하로 수행되면 최종 생성되는 촉매의 저온 활성이 떨어지는 단점이 있으며, 상기 소성 온도가 800 ℃ 이상으로 수행되면 촉매 성분이 휘발될 수 있으며, 소성에 의해 촉매 활성점이 감소하여 성능이 감소될 수 있다. 또한 고온에 따른 에너지 소비가 크다.When (b) the sintering temperature of step (S200) is performed at 300 ° C. or lower, there is a disadvantage in that low-temperature activity of the resulting catalyst is lowered. When the calcination temperature is performed at 800 ° C. or higher, catalyst components may be volatilized and calcined. By this, the catalytically active point can be reduced, thereby reducing the performance. In addition, high energy consumption due to high temperature.
본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법에 있어서, 상기 (c) 단계(S300)는, 상기 (b) 단계(S200)의 지지체 표면을 황이 포함된 가스로 개질하는 단계이다.In the method for producing a deNOx catalyst with improved NOx reduction performance according to an embodiment of the present invention, the step (c) (S300), the (b) step (S200) of reforming the surface of the support with a gas containing sulfur Step.
상기 (c) 단계(S300)는, 상기 (b) 단계(S200)의 지지체에 0.0001 ~ 10 % 황이 포함된 가스를 흘려주어 표면을 개질할 수 있으며, 구체적으로는 20 ~ 800 ℃에서 0.001 ~ 5 % 황이 포함된 가스를 흘려주어 표면을 개질할 수 있다.The step (c) (S300), by flowing a gas containing 0.0001 ~ 10% sulfur to the support of the step (b) (S200) to modify the surface, specifically, 0.001 ~ 5 at 20 ~ 800 ℃ The surface may be modified by flowing a gas containing% sulfur.
상기 황이 포함된 가스는, 이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1 종 이상일 수 있으며, 구체적으로는 이산화황(SO2)일 수 있다.The sulfur-containing gas may be at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS), and specifically, may be sulfur dioxide (SO 2 ).
또한, 상기 NOx 저감 성능이 향상된 deNOx 촉매는 20 ~ 800 ℃의 광범위한 온도에서 촉매의 표면이 개질될 수 있다.In addition, the deNOx catalyst having improved NOx reduction performance may be modified on the surface of the catalyst at a wide range of temperature of 20 ~ 800 ℃.
상기에서 설명한 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법은, 상기 지지체에 루테늄을 먼저 담지한 후 이리듐을 담지하는 방법과 상기 지지체에 루테늄 및 이리듐 혼합물을 담지하는 두 가지 방법일 수 있다.The method for preparing a deNOx catalyst having improved NOx reduction performance as described above may include two methods of first supporting ruthenium on the support and then supporting iridium and supporting the mixture of ruthenium and iridium on the support.
본 발명의 일 실시예에 따라 제조되는 deNOx 촉매는, TWC, LNT 및 SCR 촉매의 그룹으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The deNOx catalyst prepared according to one embodiment of the present invention may be any one selected from the group consisting of TWC, LNT and SCR catalyst.
본 발명의 일 실시예에 따라 deNOx 촉매를 이용한 NOx 저감방법은, 선박엔진에서 배출되는 배기가스가 배기가스 배출관을 통해 deNOx 촉매로 공급되어 배기가스 내의 NOx를 환원시키고, 상기 deNOx 촉매는, 지지체에 루테늄 및 이리듐을 담지하고 소성한 후 지지체 표면을 황이 포함된 가스로 개질된 것을 특징으로 한다.In the NOx reduction method using a deNOx catalyst according to an embodiment of the present invention, the exhaust gas discharged from the ship engine is supplied to the deNOx catalyst through the exhaust gas discharge pipe to reduce NOx in the exhaust gas, and the deNOx catalyst is supported on the support. After carrying and calcining ruthenium and iridium, the surface of the support is modified with a gas containing sulfur.
상기 deNOx 촉매는 본원발명의 상기에서 설명하였기에 이에 대한 설명은 생략한다.Since the deNOx catalyst has been described above in the present invention, description thereof will be omitted.
본 발명의 일 실시예에 따라 상기 기재된 촉매로 NOx를 제거하는 공정을 포함하는 deNOx 시스템을 제공할 수 있다.According to one embodiment of the present invention can provide a deNOx system comprising the step of removing NOx with the catalyst described above.
본 발명의 일 실시예에 따른 deNOx 시스템은, 디젤엔진으로부터 유입되는 배기가스 중 입자상 물질을 제거하는 디젤미립자필터; 상기 디젤엔진과 상기 디젤미립자필터 사이에 배치되는 디젤산화촉매기; 및 상기 디젤미립자필터 후방에 배치되어 배기가스에 포함된 질소 산화물을 분해하는 NOx 저감장치를 포함하고, 상기 NOx 저감장치는, 상기 디젤미립자필터를 통과한 배기가스의 질소 산화물을 제거하기 위해 deNOx 시스템 내부에 본 발명에 따라 제조된 촉매들이 적어도 하나 이상 배치될 수 있다.DeNOx system according to an embodiment of the present invention, the diesel particulate filter for removing particulate matter in the exhaust gas flowing from the diesel engine; A diesel oxidation catalyst disposed between the diesel engine and the diesel particulate filter; And a NOx abatement device disposed behind the diesel particulate filter to decompose nitrogen oxides contained in the exhaust gas, wherein the NOx abatement device includes a deNOx system for removing nitrogen oxides from the exhaust gas that has passed through the diesel particulate filter. At least one catalyst prepared according to the present invention may be disposed therein.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예Example 1 One
먼저, IrCl3 시료 0.190 g과 RuCl3 시료 0.193 g을 동시에 물에 용해시킨 뒤, 5 g의 γ-산화알루미늄에 담지시킨 후 이것을 100 ℃에서 12 시간 동안 건조시켰다. 건조된 γ-산화알루미늄을 500 ℃의 온도에서 4 시간 동안 소성하였다.First, 0.190 g of IrCl 3 sample and 0.193 g of RuCl 3 sample were simultaneously dissolved in water, and then supported on 5 g of γ-aluminum oxide, followed by drying at 100 ° C. for 12 hours. The dried γ-aluminum oxide was calcined at a temperature of 500 ° C. for 4 hours.
소성 후 시간 당 20 ppm(0.002 %)의 이산화황(SO2) 가스를 흘려주어 촉매 표면을 개질하여 촉매를 제조하였다.The catalyst was prepared by modifying the catalyst surface by flowing 20 ppm (0.002%) of sulfur dioxide (SO 2) gas per hour after firing.
이때 이 촉매의 루테늄 담지량은 전체 촉매 100 중량부를 기준으로 1.52 중량부이고, 이리듐의 담지량은 2.11 중량부이다.At this time, the ruthenium loading of the catalyst was 1.52 parts by weight based on 100 parts by weight of the total catalyst, and the loading of iridium was 2.11 parts by weight.
실시예Example 2 2
먼저, RuCl3 시료 0.193 g을 물에 용해시킨 뒤, 5 g의 γ-산화알루미늄에 담지시킨 후 이것을 100 ℃에서 12 시간 동안 건조시켰다.First, 0.193 g of RuCl 3 sample was dissolved in water, and then supported on 5 g of γ-aluminum oxide, which was dried at 100 ° C. for 12 hours.
건조된 γ-산화알루미늄을 500 ℃의 온도에서 4 시간 동안 소성하였다. IrCl3 시료 0.190 g을 물에 용해시킨 뒤, 이것에 소성된 γ-산화알루미늄에 담지하고 100 ℃에서 12 시간 동안 건조시켰다. 건조된 γ-산화알루미늄을 500 ℃의 온도에서 4 시간 동안 소성하였다.The dried γ-aluminum oxide was calcined at a temperature of 500 ° C. for 4 hours. 0.190 g of IrCl 3 sample was dissolved in water, and then supported on calcined γ-aluminum oxide and dried at 100 ° C. for 12 hours. The dried γ-aluminum oxide was calcined at a temperature of 500 ° C. for 4 hours.
소성 후 소성 후 시간 당 100 ppm(0.01 %)의 이산화황(SO2) 가스를 흘려주어 촉매의 표면을 개질하여 촉매를 제조하였다.After firing After the firing, 100 ppm (0.01%) of sulfur dioxide (SO 2) gas was flowed to modify the surface of the catalyst to prepare a catalyst.
이때 이 촉매의 루테늄 담지량은, 전체 촉매 100 중량부를 기준으로 1.52 중량부이고, 이리듐의 담지량은 2.11 중량부이다.At this time, the amount of ruthenium supported by this catalyst is 1.52 parts by weight based on 100 parts by weight of the total catalyst, and the amount of iridium is 2.11 parts by weight.
실시예Example 3 3
먼저, IrCl3 시료 0.190 g과 RuCl3 시료 0.193 g을 동시에 물에 용해시킨 뒤, 5 g의 γ-산화알루미늄에 담지시킨 후 이것을 100 ℃에서 12 시간 동안 건조시켰다. 건조 후 시료를 500 ℃의 온도에서 4 시간 동안 소성하여 촉매를 제조하였다.First, 0.190 g of IrCl 3 sample and 0.193 g of RuCl 3 sample were simultaneously dissolved in water, and then supported on 5 g of γ-aluminum oxide, followed by drying at 100 ° C. for 12 hours. After drying, the sample was calcined for 4 hours at a temperature of 500 ℃ to prepare a catalyst.
이때 이 촉매의 루테늄 담지량은, 전체 촉매 100 중량부를 기준으로 1.52 중량부이고, 이리듐의 담지량은 2.11 중량부이다.At this time, the amount of ruthenium supported by this catalyst is 1.52 parts by weight based on 100 parts by weight of the total catalyst, and the amount of iridium is 2.11 parts by weight.
실험예Experimental Example 1 One
실시예 1에 따라 제조된 촉매표면의 개질에 따른 NOx의 제거효율을 확인하였다.The removal efficiency of NOx according to the modification of the catalyst surface prepared according to Example 1 was confirmed.
도 3은 실시예 1에 따라 제조된 촉매의 표면개질 전, 후의 NOx 제거효율을 나타낸 것이다.Figure 3 shows the NOx removal efficiency before and after the surface modification of the catalyst prepared according to Example 1.
도 3을 참조하면, 20 ppm의 SO2 가스로 촉매의 표면을 개질했을 경우 NO의 제거효율은 향상되지 않지만, NO2의 제거효율은 크게 향상되는 것을 확인할 수 있으며, 특히 SO2 가스를 흘려 보내 촉매표면을 개질할 때 NO2의 제거효율이 더욱 향상되는 것을 확인할 수 있다.Referring to FIG. 3, when the surface of the catalyst is reformed with 20 ppm SO 2 gas, the removal efficiency of NO is not improved, but the removal efficiency of NO 2 is greatly improved. Particularly, the catalyst is sent by flowing SO 2 gas. It can be seen that the removal efficiency of NO 2 is further improved when the surface is modified.
실험예Experimental Example 2 : 배기가스 내의 SO2 농도에 따른 질소산화물 제거효율 확인 2: Confirmation of nitrogen oxide removal efficiency according to SO2 concentration in exhaust gas
실험예 1에서 촉매의 표면을 SO2 가스로 표면개질하였을 때 질소산화물의 제거효율이 더욱 향상되는 것을 확인하였기에 본 실험예 2에서는 표면개질 되지 않은 촉매의 SO2 가스를 포함하는 배기가스 내의 질소산화물의 제거효율을 확인하였다.In Experimental Example 1, when the surface of the catalyst was modified with SO 2 gas, it was confirmed that the removal efficiency of the nitrogen oxide was further improved. In Experimental Example 2, the nitrogen oxide in the exhaust gas containing the SO 2 gas of the unmodified catalyst was improved. The removal efficiency of was confirmed.
실시예 3에 따라 제조된 촉매를 아래와 같은 측정 조건 하에서 질소산화물 제거활성을 측정하였다.The catalyst prepared according to Example 3 was measured for nitrogen oxide removal activity under the following measurement conditions.
SO2: 20 ppm or 100 ppmSO 2 : 20 ppm or 100 ppm
질소산화물(NOx) : 50 ppmNOx: 50 ppm
CO: 0.7 %CO: 0.7%
O2: 5 %O 2 : 5%
H2O: 5 %,H 2 O: 5%,
N2: balance, 및 GHSV 200,000 h-1의 조건으로 측정하여 도 4에 그 결과를 나타내었다.It was measured under the condition of N 2 : balance and GHSV 200,000 h −1 , and the results are shown in FIG. 4.
도 4는 실시예 3에 따라 제조된 촉매의 배기가스 내의 SO2 농도에 따른 질소산화물의 제거효율을 비교한 것이다.Figure 4 compares the removal efficiency of nitrogen oxides according to the concentration of SO 2 in the exhaust gas of the catalyst prepared according to Example 3.
도 4에서 보는 바와 같이, 배기가스 내에 SO2 가스가 포함되어 있을 경우 170 ~ 300 ℃에서 NOx의 제거효율이 더욱 향상되는 것을 확인할 수 있다.As shown in Figure 4, when the SO 2 gas is included in the exhaust gas it can be seen that the removal efficiency of the NOx further improved at 170 ~ 300 ℃.
그 결과, 본 발명에 따른 NOx 저감 성능이 향상된 deNOx 촉매는 SO2 가스의 함량이 높은 배기가스를 배출하는 선박 등의 SCR 시스템에 적용하는 것이 더욱 효과적인 것을 확인할 수 있다.As a result, it can be confirmed that the deNOx catalyst having improved NOx reduction performance according to the present invention is more effective to be applied to an SCR system such as a ship that discharges exhaust gas having a high content of SO 2 gas.
지금까지 본 발명의 일 실시예에 따른 NOx 저감 성능이 향상된 deNOx 촉매 및 그 제조방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.So far, the deNOx catalyst having improved NOx reduction performance according to an embodiment of the present invention and a specific embodiment related to the preparation method thereof have been described, but it is obvious that various modifications can be made without departing from the scope of the present invention. .
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.In other words, the foregoing embodiments are to be understood in all respects as illustrative and not restrictive, the scope of the invention being indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be construed as being included in the scope of the present invention.

Claims (13)

  1. 지지체에 루테늄 및 이리듐이 담지되어 소성되고, 황이 포함된 가스로 표면이 개질된 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매.A deNOx catalyst with improved NOx reduction performance, characterized in that ruthenium and iridium are supported and calcined on a support, and the surface is modified with a gas containing sulfur.
  2. 제 1항에 있어서,The method of claim 1,
    상기 황이 포함된 가스는,The gas containing sulfur,
    이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1종 이상인 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매.DeNOx catalyst with improved NOx reduction performance, characterized in that at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS).
  3. 제 1항에 있어서,The method of claim 1,
    상기 루테늄(Ru)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매.The ruthenium (Ru), deNOx catalyst with improved NOx reduction performance, characterized in that supported by 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  4. 제 1항에 있어서,The method of claim 1,
    상기 이리듐은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매.The iridium is deNOx catalyst with improved NOx reduction performance, characterized in that supported by 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  5. (a) 지지체에 루테늄 및 이리듐을 담지하는 단계; 및(a) supporting ruthenium and iridium on a support; And
    (b) 상기 (a) 단계의 루테늄 및 이리듐이 담지된 지지체를 소성하는 단계; 및(b) calcining the support on which ruthenium and iridium of step (a) are carried; And
    (c) 상기 (b) 단계의 지지체 표면을 황이 포함된 가스로 개질하는 단계;를 포함하는 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법.(c) reforming the surface of the support of step (b) with a gas containing sulfur; and a method for producing a deNOx catalyst having improved NOx reduction performance, comprising: a.
  6. 제 5항에 있어서,The method of claim 5,
    상기 (a) 단계는,In step (a),
    상기 지지체에 1차적으로 루테늄이 담지된 다음 2차적으로 이리듐이 담지되는 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법.A method for producing a deNOx catalyst having improved NOx reduction performance, characterized in that ruthenium is firstly supported on the support and then iridium is secondly supported.
  7. 제 5항에 있어서,The method of claim 5,
    상기 (b) 단계는,In step (b),
    300 ~ 800 ℃의 온도에서 1 ~ 10 시간 동안 수행되는 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법.Method for producing a deNOx catalyst with improved NOx reduction performance, characterized in that carried out for 1 to 10 hours at a temperature of 300 ~ 800 ℃.
  8. 제 5항에 있어서,The method of claim 5,
    상기 (c) 단계는,In step (c),
    상기 (b) 단계의 지지체에 황이 포함된 가스를 흘려주어 표면을 개질하는 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법.The method for producing a deNOx catalyst having improved NOx reduction performance, characterized in that to modify the surface by flowing a gas containing sulfur to the support of step (b).
  9. 제 5항에 있어서,The method of claim 5,
    상기 황이 포함된 가스는,The gas containing sulfur,
    이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1 종 이상인 것을 특징으로 하는 NOx 저감 성능이 향상된 deNOx 촉매의 제조방법.A method for producing a deNOx catalyst with improved NOx reduction performance, characterized in that at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur monoxide (COS).
  10. 선박엔진에서 배출되는 배기가스가 배기가스 배출관을 통해 deNOx 촉매로 공급되어 배기가스 내의 NOx를 환원시키고,The exhaust gas discharged from the ship engine is supplied to the deNOx catalyst through the exhaust gas discharge pipe to reduce the NOx in the exhaust gas,
    상기 deNOx 촉매는,The deNOx catalyst,
    지지체에 루테늄 및 이리듐을 담지하고 소성한 후 지지체 표면을 황이 포함된 가스로 개질된 것을 특징으로 하는 deNOx 촉매를 이용한 NOx 저감방법.A method for reducing NOx using a deNOx catalyst, characterized in that after supporting ruthenium and iridium on a support and baking, the surface of the support is modified with a gas containing sulfur.
  11. 제 10항에 있어서,The method of claim 10,
    상기 황이 포함된 가스는,The gas containing sulfur,
    이산화황(SO2), 황화수소(H2S), 및 일산화탄소황(COS)으로 구성된 그룹 중 선택되는 1종 이상인 것을 특징으로 하는 deNOx 촉매를 이용한 NOx 저감방법.A method for reducing NOx using a deNOx catalyst, characterized in that at least one selected from the group consisting of sulfur dioxide (SO 2 ), hydrogen sulfide (H 2 S), and sulfur carbon monoxide (COS).
  12. 제 10항에 있어서,The method of claim 10,
    상기 루테늄(Ru)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것을 특징으로 하는 deNOx 촉매를 이용한 NOx 저감방법.The ruthenium (Ru), NOx reduction method using a deNOx catalyst, characterized in that supported by 0.1 to 10 parts by weight with respect to 100 parts by weight of the support.
  13. 제 10항에 있어서,The method of claim 10,
    상기 이리듐(Ir)은, 상기 지지체 100 중량부에 대해, 0.1 ~ 10 중량부로 담지된 것을 특징으로 하는 deNOx 촉매를 이용한 NOx 저감방법.The iridium (Ir) is 0.1 to 10 parts by weight based on 100 parts by weight of the support, characterized in that NOx reduction method using a deNOx catalyst, characterized in that.
PCT/KR2019/007916 2018-06-29 2019-06-28 Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method WO2020005026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0075274 2018-06-29
KR1020180075274A KR102141000B1 (en) 2018-06-29 2018-06-29 deNOx catalyst with improved NOx reduction performance, method of manufacturing the same and NOx abatement method

Publications (1)

Publication Number Publication Date
WO2020005026A1 true WO2020005026A1 (en) 2020-01-02

Family

ID=68987489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007916 WO2020005026A1 (en) 2018-06-29 2019-06-28 Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method

Country Status (2)

Country Link
KR (1) KR102141000B1 (en)
WO (1) WO2020005026A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102425528B1 (en) 2020-10-28 2022-07-25 한국화학연구원 Preparation method of deNOx catalysts having enhanced low-temperature activity by using chemical vapor deposition and deNOx catalyst therefrom
KR102596968B1 (en) 2021-06-15 2023-11-02 (주)일신종합환경 Apparatus for treating nitrogen oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263368A (en) * 1997-03-26 1998-10-06 Jisedai Haikazu Shokubai Kenkyusho:Kk Purifying device of exhaust gas
JP2000271428A (en) * 1999-03-24 2000-10-03 Toyota Motor Corp Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP2005118687A (en) * 2003-10-17 2005-05-12 Mitsubishi Heavy Ind Ltd Catalyst, capable of reducing so3, for treating exhaust gas, its preparing method and exhaust gas treating method using the catalyst for treating exhaust gas
JP2006272240A (en) * 2005-03-30 2006-10-12 Tsukishima Kikai Co Ltd Nitrous oxide removal method
KR20150132361A (en) * 2013-03-15 2015-11-25 엘지 퓨얼 셀 시스템즈 인코포레이티드 Catalysts for hydrocarbon reforming

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665606B1 (en) 2005-04-14 2007-01-09 희성엥겔하드주식회사 Rh solution with Ir impurity of above 400ppm for producing catalystic composition for purification of exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263368A (en) * 1997-03-26 1998-10-06 Jisedai Haikazu Shokubai Kenkyusho:Kk Purifying device of exhaust gas
JP2000271428A (en) * 1999-03-24 2000-10-03 Toyota Motor Corp Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP2005118687A (en) * 2003-10-17 2005-05-12 Mitsubishi Heavy Ind Ltd Catalyst, capable of reducing so3, for treating exhaust gas, its preparing method and exhaust gas treating method using the catalyst for treating exhaust gas
JP2006272240A (en) * 2005-03-30 2006-10-12 Tsukishima Kikai Co Ltd Nitrous oxide removal method
KR20150132361A (en) * 2013-03-15 2015-11-25 엘지 퓨얼 셀 시스템즈 인코포레이티드 Catalysts for hydrocarbon reforming

Also Published As

Publication number Publication date
KR20200002120A (en) 2020-01-08
KR102141000B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
KR102051861B1 (en) Ir-based deNOx catalyst and its preparation method
KR102051857B1 (en) High performance nitrogen oxide reduction catalyst and method for producing the same
WO2020005026A1 (en) Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method
WO2010068059A9 (en) Dual functional catalysts for decomposition and oxidation of nitrogen monoxide, mixed catalysts for exhaust-gas reducing device including the same, and preparation method thereof
KR920019415A (en) Exhaust gas purification catalyst
KR970069118A (en) Catalyst for exhaust gas purification
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
KR100756109B1 (en) Catalyst for the decomposition of ?2? in the ostwald process
KR102127133B1 (en) Ir-based deNOx catalyst and its preparation method
WO2021172829A1 (en) Method for removing residual chlorine, scr catalyst for reducing nitrogen oxide by same method, and preparation method therefor
EP0502161A1 (en) Reduction of nitrogen oxide and carbon monoxide in effluent gases
KR20190142352A (en) Method and system for removing particulate matter and harmful compounds from flue gas using ceramic filter with SCR catalyst
JPWO2004096436A1 (en) Catalyst material made of transition metal oxide
WO2024005612A1 (en) Catalyst for removing nitrogen oxide generated at on/off and during normal operation in gas turbine combined cycle power plant
WO2023085497A1 (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using same
KR102425528B1 (en) Preparation method of deNOx catalysts having enhanced low-temperature activity by using chemical vapor deposition and deNOx catalyst therefrom
JP3638813B2 (en) Method for producing catalyst for combustion of methane fuel
KR102223431B1 (en) Ir-based catalyst improved in nox reduction performance by the hydrogen gas and oxygen gas treatment, nox reduction apparatus and reduction method improved in performance by treatment of hydrogen gas and oxygen gas
JPH05146642A (en) Method and apparatus for treating nitrogen oxide
WO2021107611A1 (en) Catalyst for simultaneously inhibiting emission of ammonia and nitrogen dioxide
JPS63296842A (en) Oxidizing palladium catalyst
JP2009154077A (en) Ceramic catalyst material and exhaust purifying method using the same
WO2021054538A1 (en) System and method for injecting reducing agent in selective catalytic reduction reaction
SU793632A1 (en) Flue gas cleaning method
KR20230062088A (en) Simultaneous process of removing nitrogen oxides in flue gas and producing high-purity hydrogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827291

Country of ref document: EP

Kind code of ref document: A1