WO2016013757A1 - Mit기술을 이용한 전류차단스위치 시스템 및 전류차단 방법 - Google Patents

Mit기술을 이용한 전류차단스위치 시스템 및 전류차단 방법 Download PDF

Info

Publication number
WO2016013757A1
WO2016013757A1 PCT/KR2015/004752 KR2015004752W WO2016013757A1 WO 2016013757 A1 WO2016013757 A1 WO 2016013757A1 KR 2015004752 W KR2015004752 W KR 2015004752W WO 2016013757 A1 WO2016013757 A1 WO 2016013757A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
current
cts
voltage
cut
Prior art date
Application number
PCT/KR2015/004752
Other languages
English (en)
French (fr)
Inventor
이동채
이영구
최충현
Original Assignee
주식회사 모브릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모브릭 filed Critical 주식회사 모브릭
Publication of WO2016013757A1 publication Critical patent/WO2016013757A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a current cutoff switch system and a current cutoff method using MIT (Metal-Insulator Transition) technology, wherein the drain and source of a field effective transistor (FET) in a current cutoff switch
  • MIT Metal-Insulator Transition
  • FET field effective transistor
  • the present invention relates to a system and a method for blocking current even when a short circuit failure occurs.
  • a battery protection circuit is implemented to prevent damage to the battery.
  • a secondary protection circuit composed of Bi-Metal, TCO, PTC, or Fuse is used to supplement the operation of the protection primary protection circuit and the primary protection circuit.
  • a semiconductor transistor typically represented by a three terminal electronic device, has a gate electrode as a first electrode, a second electrode and a third electrode, which is separated from the first electrode and the second electrode by a gate insulator. .
  • a gate electrode as a first electrode, a second electrode and a third electrode, which is separated from the first electrode and the second electrode by a gate insulator.
  • the transistor when a voltage is applied to the gate electrode, charge is induced, and the induced charge flows due to the potential difference between the first electrode and the second electrode, thereby generating a current flow. That is, the transistor performs an on-off operation of a current depending on whether a voltage is applied to the gate electrode.
  • Mort-Herbad MIT transistors using a jump-free continuous metal-insulator transistor (MIT), called mott transistors, and transistors using a discontinuous MIT where a jump occurs have a third electrode like the gate of the above semiconductor transistor. It has a structure separated from the first electrode and the second electrode.
  • MIT jump-free continuous metal-insulator transistor
  • Transistors that use discrete MITs are described as “H. T. Kim, B.G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, Y. S. Lim, New Journal Physics 6 (2004) 52 ".
  • the present invention provides a method for preparing a short circuit between a drain and a source in a FET inside a switch system in a current blocking switch at high temperature and high current based on MIT technology. It is to provide a switch system using.
  • a current blocking method includes a critical temperature switch (CTS) and a first field effective transistor (FET) using a metal-insulator transition (MIT) technology.
  • CTS critical temperature switch
  • FET field effective transistor
  • MIT metal-insulator transition
  • the current cut-off switch system according to an embodiment of the present invention, the CTS (Critical Temperature Switch) applying a metal-insulator transition (MIT) technology, the first FET (Field Effective Transistor) field effect transistor And a second FET, wherein the drain and the source of the first FET are short-circuited, and a current flows through the shorted first FET,
  • MIT metal-insulator transition
  • the first FET Field Effective Transistor field effect transistor
  • a second FET wherein the drain and the source of the first FET are short-circuited, and a current flows through the shorted first FET
  • the current cut-off switch system using the metal-insulator transition (MIT) technology and the current cut-off method, the drain and source of the FET in the switch system in the automatic high temperature and high current cut-off switch system applying the MIT technology Current can be cut off smoothly even if a short circuit occurs. Through this, even when an unexpected problem occurs in the current interruption system, it is possible to prevent the failure of the electronic device due to the overcurrent flow.
  • MIT metal-insulator transition
  • FIG. 1 is a diagram illustrating a configuration of a current cutoff switch using a metal-insulator transition (MIT) technique according to the prior art.
  • MIT metal-insulator transition
  • CTS critical temperature switch
  • FIG 3 is a graph illustrating a change in Vgs of a current cutoff switch according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration of a current cut-off switch system using the MIT technology according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating steps of a current blocking method using an MIT technique according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a configuration in which a current cutoff switch system according to the related art is applied to a battery protection circuit.
  • FIG. 7 to 8 are views illustrating a configuration in which a current cut-off switch system according to an embodiment of the present invention is applied to a battery protection circuit.
  • unit and device for components used in the following description are merely given in consideration of ease of preparation of the present specification, and the “unit” and “device” may be used interchangeably with each other. It can be designed in hardware or software.
  • FIG. 1 is a diagram illustrating a configuration of a current cutoff switch using a metal-insulator transition (MIT) technique according to the prior art.
  • MIT metal-insulator transition
  • MIT metal insulator transition
  • FET field effective transistor
  • the cutoff switch consists of a critical temperature switch (CTS) with MIT technology, a reference resistor (Rref) for setting the reference point, and an FET whose ON / OFF is determined by the voltages distributed by the CTS and Rref.
  • CTS critical temperature switch
  • Rref reference resistor
  • CTS critical temperature switch
  • CTS Critical Temperature Switch
  • the temperature / resistance dependency shown in this drawing is according to an embodiment, and the critical temperature may be changed according to the material included in the CTS.
  • FIG 3 is a graph illustrating a change in Vgs of a current cutoff switch according to an exemplary embodiment of the present invention.
  • Vgs which is a voltage applied to the CTS
  • Vgs also changes rapidly at a specific threshold temperature in response to the change in the resistance value of the CTS.
  • FIG. 4 is a diagram illustrating a configuration of a current cut-off switch system using the MIT technology according to an embodiment of the present invention.
  • the current cutoff switch system 100 may include a source voltage 101, a critical temperature switch (CTS) 102, a first field effective transistor (103), and a second FET.
  • FET 104, reference resistor Rref 105, and load 106 may include a source voltage 101, a critical temperature switch (CTS) 102, a first field effective transistor (103), and a second FET.
  • FET 104, reference resistor Rref 105, and load 106 may include a source voltage 101, a critical temperature switch (CTS) 102, a first field effective transistor (103), and a second FET.
  • FET 104 reference resistor Rref 105, and load 106.
  • the second FET when the drain and the source of the first FET are shorted, the second FET causes a current to flow through the shorted first FET. do.
  • heat is generated in the first FET due to the flowing current.
  • the heat generated reduces the resistance of the CTS.
  • Vgs the voltage applied to the CTS and the FETs, is reduced.
  • the magnitude of the voltage applied to the second FET becomes smaller than the threshold voltage of the second FET, and as a result, the second FET is turned off. As a result, the flow of current is interrupted.
  • the second FETs can complement each other to cut off the current, thereby preventing further failure.
  • a current flows through the shorted second FET.
  • heat is generated in the second FET due to the flowing current.
  • the heat generated reduces the resistance of the CTS.
  • Vgs the voltage applied to the CTS and the FETs, is reduced.
  • the magnitude of the voltage applied to the first FET becomes smaller than the threshold voltage of the first FET, and as a result, the first FET is turned off. As a result, the flow of current is interrupted.
  • the first FET can complement each other to cut off the current, thereby preventing further failure.
  • the first FET and the second FET may be N-channel MOSFETs (Metal Oxide Silicon Field Effect Transistors).
  • the N-channel MOSFET is turned on when a voltage (Vgs below) between the gate and the source is applied to a certain voltage (hereinafter Vth), for example, 0.6V to 1.5V or more, and a closed circuit is formed between the voltage source (Vsource) and the load (Load).
  • Vth voltage
  • the signal is turned off to serve to separate the load from the voltage source.
  • Vgs applied between the gate and the source of the NMOSFET can be summarized as follows.
  • Vgs Vsource * Rcts / (Rref + Rcts)
  • Vgs denotes a voltage applied between the gate and the source of the NMOSFET
  • Vsource denotes the voltage of the voltage source
  • Rcts denotes the resistance of CTS
  • Rref denotes the resistance of the reference resistor Rref.
  • the value of Rcts is equal to Rref at room temperature and below a specific temperature (for example, 72 ° C.) as shown in FIG. Since the Vsource voltage is much larger than that of Rcts, the Vgs value becomes higher than Vth, so that the first FET and the second FET remain ON.
  • the resistance value of the CTS has a low resistance value of 100 (Ohm) or less through a rapid transition, and as a result, the Vgs value becomes lower than Vth so that the first FET and the second FET Is turned OFF.
  • Vgs Vsource * Rcts / (Rref + Rcts)> Vth? NMOS ON
  • Vgs Vsource * Rcts / (Rref + Rcts) ⁇ VTH? NMOS OFF
  • the FETs are turned on, and when the temperature is high, the FETs are turned off to automatically turn on / off the temperature according to the temperature.
  • the power cut-off switch system includes a plurality of FETs, as described above, the FETs complementarily operate to generate a short circuit between the drain and the source of one FET. Even current can be cut off. The short circuit may occur due to excessive current, and as a result, heat is generated when current flows through any one of the FETs, and the resistance of the CTS decreases rapidly due to the generated heat. The size of Vgs becomes smaller than Vth, so the second FET is turned off to cut off the current. That is, it is possible to have a two-stage safety device.
  • the reference resistance (Rref) for setting the reference point may have a specific size, through which, the voltage applied to the first FET and the second FET may be determined according to the voltage distributed between the Rref and the CTS. .
  • FIG. 5 is a flowchart illustrating steps of a current blocking method using an MIT technique according to an embodiment of the present invention.
  • Current cut-off switch system including Critical Temperature Switch (CTS) with Metal-Insulator Transition (MIT) technology, Field Effective Transistor (FET), and Second FET
  • CTS Critical Temperature Switch
  • MIT Metal-Insulator Transition
  • FET Field Effective Transistor
  • Second FET Second FET
  • a drain and a source of the first FET are shorted (S101).
  • the magnitude of the voltage applied to the second FET becomes smaller than the threshold voltage of the second FET (S105).
  • the second FET is turned off to cut off the current (S106).
  • the current may be cut off.
  • the short circuit may occur due to excessive current or the like, whereby heat is generated when current flows in the first FET, and the resistance of the CTS rapidly decreases as a result of the Vgs.
  • the size becomes smaller than Vth, and the second FET is turned off to cut off the current. That is, it is possible to include a two-step safety current blocking step, it is possible to perform a more reliable electronic equipment protection.
  • the drain and the source of the second FET is short-circuited, the current flows through the shorted second FET, heat flowing in the second FET due to the flowing current Is generated, the resistance value of the CTS is decreased due to the generated heat, the magnitude of the voltage applied to the first FET is smaller than the threshold voltage of the first FET, and the first FET is turned off. It may further comprise the step of blocking the current. Therefore, even when a problem occurs in the second FET, the current can be interrupted due to the operation of the first FET. That is, the complementary operation of the FETs can more reliably prevent malfunctions.
  • FIG. 6 is a diagram illustrating a configuration in which a current cutoff switch system according to the related art is applied to a battery protection circuit.
  • FIG. 7 to 8 are views illustrating a configuration in which a current cut-off switch system according to an embodiment of the present invention is applied to a battery protection circuit.
  • a current cut-off switch system according to the related art as shown in FIG. 1 may be applied to a battery protection circuit system. In this case, if a short circuit occurs in FET1 or a short circuit occurs in FET2, current interruption does not occur smoothly.
  • Figure 7 is a diagram showing the application of the current cut-off switch system as shown in Figure 4 to the battery protection circuit.
  • FET3 is added to FET2 side.
  • the current in the charging direction can be cut off in two stages. Therefore, even if a short circuit occurs in the FET2 or the FET3, the FET2 and the FET3 operate complementarily according to the embodiment of the present invention, thereby enabling current interruption.
  • FIG. 8 is another diagram showing the application of the current cut-off switch system as shown in FIG. 4 to the battery protection circuit.
  • FET3 is added to FET1 side.
  • the current in the discharge direction can be cut off in two stages. Therefore, even if a short circuit occurs in FET1 or FET3, the current can be interrupted by FET1 and FET3 complementary to each other according to an embodiment of the present invention.
  • the present invention relates to a system and method for blocking current even when a short circuit between a drain and a source of a field effective transistor (FET) in a current interrupt switch occurs. Possible use.
  • FET field effective transistor

Abstract

본 발명은 MIT(Metal-Insulator Transition)기술을 이용한 전류차단스위치 시스템 및 전류차단 방법에 관한 것으로서, 전류차단스위치 내의 FET의 드레인(Drain)과 소스(Source)의 단락 불량이 발생하는 경우에도 전류를 차단할 수 있도록 하는 시스템 및 방법에 관한 것으로, MIT (Metal-Insulator Transition: 금속-절연체 전이) 기술을 적용한 CTS (Critical Temperature Switch: 임계온도 스위치), 제1 FET(Field Effective Transistor: 전계효과트랜지스터), 및 제2 FET를 포함하는 전류차단스위치 시스템에서, 상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락되는 단계, 상기 단락된 제1 FET를 통하여 전류가 흐르는 단계, 상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생하는 단계, 상기 발생하는 열로 인하여 CTS의 저항값이 감소하는 단계, 상기 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아지는 단계, 및 상기 제2 FET가 오프(off)되어 전류가 차단되는 단계를 포함한다.

Description

MIT기술을 이용한 전류차단스위치 시스템 및 전류차단 방법
본 발명은 MIT(Metal-Insulator Transition)기술을 이용한 전류차단스위치 시스템 및 전류차단 방법에 관한 것으로서, 전류차단스위치 내의 FET(Field Effective Transistor: 전계효과트랜지스터)의 드레인(Drain)과 소스(Source)의 단락 불량이 발생하는 경우에도 전류를 차단할 수 있도록 하는 시스템 및 방법에 관한 발명이다.
스마트폰, 태블릿PC와 같은 다양한 전자디바이스들이 사용자에게 보급되면서, 그러한 전자디바이스들을 관리하는 방법에 대한 기술도 많이 발전되고 있다. 그 러한 기술들 중, 전자 디바이스에 주로 사용되는 배터리는 과온도에 의한 파손이나 발화 문제가 발생되지 않아야 한다. 특히, 스마트폰, 태블릿PC와 같은 전자디바이스의 경우에는 사람이 직접 휴대하고 있는 경우가 많기 때문에, 더욱 파손이나 발화 문제에 주의를 기울여야 한다. 따라서, 이를 해결하기 위해 배터리 보호 회로를 구현하여 배터리의 파손 등을 방지하고 있다. 이러한 배터리 보호 회로로는, 프로텍션(Protection) 1차 보호 회로와 1차 보호 회로의 동작을 보완하기 위해 바이 메탈(Bi-Metal), TCO, PTC 또는 Fuse 등으로 구성된 2차 보호 회로가 사용되고 있다.
그러나, 이러한 기존의 배터리 보호 회로들로는 두 개의 보호 회로로 구성되므로 제조 비용이 증대될 뿐만 아니라 전자 디바이스의 소형화 추세에 부합하지 못하는 문제가 있다.
한편, 상기와 같은 비용증대 및 소형화문제를 해결하기 위해 MIT 기술을 적용한 트랜지스터를 이용한, 전류차단 스위치가 고안된 적이 있다.
일반적으로 3 단자 전자소자로 대표되는 반도체 트랜지스터(transistor)는 제1 전극, 제2 전극 및 제3 전극으로서 게이트 전극을 갖는데, 이러한 게이트 전극은 게이트 절연체에 의해 제1전극 제2전극과 분리되어 있다. 이러한 트랜지스터는 게이트 전극으로 전압이 인가되면 전하가 유기되고, 유기된 전하가 제1 전극과 제2 전극의 전위차에 의해 흐름으로써 전류의 흐름이 발생한다. 즉, 트랜지스터는 게이트 전극으로 전압 인가 여부에 따라 전류의 온-오프(On-Off) 동작이 수행된다.
모트 트랜지스터라고 하는 점프가 없는 연속 금속-절연체 전이(Metal-Insulator Transistor: MIT)를 이용하는 모트-허바드 MIT 트랜지스터와, 점프가 발생하는 불연속 MIT를 이용하는 트랜지스터는 위 반도체 트랜지스터의 게이트와 같이 제3 전극이 제1 전극 및 제2 전극과 분리된 구조를 갖는다. 모트-허바드 MIT 트랜지스터와 관련된 내용은 "D. M. Newns, J. A. Misewich, C. C. Tsuei, A. Gupta, B. A. Scott, and A. Schrott, Applied Physics Letter Vol. 73, 780 (1998)"에 기재되어 있다. 불연속 MIT를 이용하는 트랜지스터는 “H. T. Kim, B.G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, Y. S. Lim, New Journal Physics 6 (2004) 52"에 발표된 바 있다.
허나, 이러한 MIT기술 이용 스위치에서는, 이러한 트랜지스터들에서는 절연특성이 뛰어난 게이트 절연막을 만드는 것이 쉽지 않다. 따라서, 스위치 내의 FET의 드레인(Drain)과 소스(Source)가 어떤 이유에서든 서로 단락이 발생할 경우 스위치가 동작하지 않는 문제점이 있다.
본 발명은, 상기와 같은 문제점들을 해소하기 위하여,MIT 기술을 기반으로 하는 고온 및 고전류 시의 전류 차단 스위치에서, 스위치 시스템 내부의 FET에서 Drain과 Source간에 단락이 발생할 경우를 대비하는 방법 및 이러한 방법을 사용하는 스위치 시스템을 제공하는 것이다.
본 발명의 실시 예에 따른 전류차단 방법은, MIT (Metal-Insulator Transition: 금속-절연체 전이) 기술을 적용한 CTS (Critical Temperature Switch: 임계온도 스위치), 제1 FET(Field Effective Transistor: 전계효과트랜지스터), 및 제2 FET를 포함하는 전류차단스위치 시스템을 이용하여, 상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락되는 단계, 상기 단락된 제1 FET를 통하여 전류가 흐르는 단계, 상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생하는 단계, 상기 발생하는 열로 인하여 CTS의 저항값이 감소하는 단계, 상기 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아지는 단계 및 상기 제2 FET가 오프(off)되어 전류가 차단되는 단계를 포함한다.
본 발명의 실시 예에 따른 전류차단스위치 시스템은, MIT (Metal-Insulator Transition: 금속-절연체 전이) 기술을 적용한 CTS (Critical Temperature Switch: 임계온도 스위치), 제1 FET(Field Effective Transistor: 전계효과트랜지스터), 및 제2 FET를 포함하고, 상기 제2 FET는, 상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락되고, 상기 단락된 제1 FET를 통하여 전류가 흐르고, 상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생하면, 상기 발생하는 열로 인하여 감소된 CTS의 저항값에따라, 상기 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아져서 오프(off)됨으로써, 전류의 흐름을 차단한다.
본 발명의 실시예에 따른, MIT(Metal-Insulator Transition)기술을 이용한 전류차단스위치 시스템 및 전류차단 방법에 의해서, MIT 기술을 적용한 자동 고온 및 고전류 차단 스위치 시스템에서 스위치 시스템 내의 FET의 Drain과 Source의 단락 불량이 발생할 경우에도 전류를 원활하게 차단할 수 있다. 이를 통하여, 전류차단시스템에 예상치 못한 문제가 발생하는 경우에도, 과전류가 흐름으로인한 전자디바이스의 고장을 방지할 수 있게되는 효과가 있다.
도 1은 종래 기술에 따른 MIT(Metal-Insulator Transition)기술을 이용한 전류차단스위치의 구성을 도시한 도면이다.
도 2는 본 발명의 실시 예에 따른 CTS(Critical Temperature Switch: 임계온도 스위치)의 온도/저항 의존성에 대한 그래프이다.
도 3은 본 발명의 실시 예에 따른 전류차단스위치의 Vgs 변화를 도시한 그래프이다.
도 4는 본 발명의 실시 예에 따른 MIT기술을 이용한 전류차단스위치 시스템의 구성을 도시한 도면이다.
도 5는 본 발명의 실시 예에 따른 MIT기술을 이용한 전류차단방법의 단계들을 도시한 순서도이다.
도 6은 종래기술에 따른 전류차단스위치 시스템이 배터리 보호회로에 적용된 구성을 도시한 도면이다.
도 7 내지 도 8은 본 발명의 실시 예에 따른 전류차단스위치 시스템이 배터리 보호회로에 적용된 구성을 도시한 도면들이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 여러 가지 실시 예들을 보다 상세히 설명하도록 하겠다. 나아가, 이하의 설명에서 사용되는 구성요소에 대한 접미사 "부", 및 "장치"는 단순히 본 명세서 작성의 용이함을 고려하여 부여되는 것으로서, 상기 "부", 및 "장치"는 서로 혼용되어 사용될 수 있으며, 하드웨어 또는 소프트웨어로 설계 가능하다.
나아가, 이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시 예를 상세하게 설명하지만, 본 발명이 실시 예들에 의해 제한되거나 한정되는 것은 아니다.
도 1은 종래 기술에 따른 MIT(Metal-Insulator Transition)기술을 이용한 전류차단스위치의 구성을 도시한 도면이다.
종래기술에 따르면, 특정 온도에서 부도체에서 금속으로 급격히 전이되는 MIT(Metal Insulator Transition) 기술과 전자 회로에서 스위치로 주로 사용되는 FET(Field Effective Transistor: 전계효과트랜지스터)를 이용하여, 특정 온도 이상이 되면 자동으로 회로를 차단하는 고온차단스위치가 존재한다.
이러한 차단스위치는 MIT기술이 적용된 Critical Temperature Switch(CTS)와 기준점 설정을 위한 레퍼런스 저항(Rref) 및 이들 CTS와 Rref에 의해 분배된 전압에 따라 ON/OFF가 결정되는 FET로 구성된다.
허나, 이러한 종래기술의 전류차단스위치의 경우에, 과도한 전류 등의 원인에 의해 FET가 충격을 받을 경우 드레인(Drain)과 소스(Source)가 단락되게 되면, 발생하는 열에 의해 CTS의 저항값이 작아져서, Vgs의 크기가 FET의 문턱 전압인 Vth에 비해 작아지더라도 전류는 계속 흐르게 된다. 즉, 전류차단스위치가 제대로 동작하지 않게 되는 문제점이 있다.
도 2는 본 발명의 실시 예에 따른 CTS(Critical Temperature Switch: 임계온도 스위치)의 온도/저항 의존성에 대한 그래프이다.
MIT 기술이 적용된 CTS(Critical Temperature Switch)는 본 도면에 도시된 바와 같은 온도/저항 의존성을 가진다. 즉, 온도가 상승함에 따라 완만하게 감소하던 저항 값은 특정 임계온도(60℃~90℃, 증착조건에 따라서 결정)가 되면 10-4의 비율로 급격히 감소하는 특성을 가질 수 있다.
다만, 본 도면에 도시된 온도/저항 의존성은 일 실시 예에 따른 것이며, 상기 CTS에 포함되는 물질에 따라, 상기 임계온도는 변경될 수 있다.
따라서, 이와 같은 특성을 갖는 CTS와 고정저항(Rref), 제1 FET, 및 제2 FET를 이용하여 이하 도 4와 같은 회로를 구성하여, 특정 온도 이상에서 자동으로 차단되는 전류차단스위치를 구성할 수 있게된다.
도 3은 본 발명의 실시 예에 따른 전류차단스위치의 Vgs 변화를 도시한 그래프이다.
상기 도 2에서 설명한 바와 같이, CTS의 저항값은 특정온도에서 급격히 변화하기 때문에, 상기 CTS에 인가되는 전압인 Vgs의 크기도 상기 CTS의 저항값의 변화에 대응하여 특정 임계온도에서 급격하게 변하게 된다.
도 4는 본 발명의 실시 예에 따른 MIT기술을 이용한 전류차단스위치 시스템의 구성을 도시한 도면이다.
실시 예에 따라, 전류차단스위치 시스템(100)은, 소스전압(101), CTS (Critical Temperature Switch: 임계온도 스위치: 102), 제1 FET (Field Effective Transistor: 전계효과트랜지스터: 103), 제2 FET(104), 기준 저항 (Rref: 105), 및 부하(Load: 106)을 포함하여 구성될 수 있다.
실시 예에 따라, 상기와 같은 구성을 구비한 상태에서, 상기 제2 FET는, 상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락되면, 상기 단락된 제1 FET를 통하여 전류가 흐르게 된다. 그리고, 상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생하게 된다. 열이 발생하면, 발생한 열로 인하여 CTS의 저항값이 감소된다. 따라서, CTS및 FET들에 인가되는 전압인 Vgs가 감소된다. 이로인하여, 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아지게 되고, 결과적으로 제2 FET가 오프(off)되게 된다. 결과적으로, 전류의 흐름이 차단된다.
따라서, 제1 FET가 소스 및 드레인의 단락으로 인한 고장이 나더라도, 제2 FET가 상호보완적으로 동작하여, 전류를 차단시킬 수 있게 되므로, 추가적인 고장을 방지할 수 있다.
또한, 다른 실시 예에 따라, 상기 제2 FET의 드레인(Drain)과 소스(Source)가 단락되면, 상기 단락된 제2 FET를 통하여 전류가 흐르게 된다. 그리고, 상기 흐르는 전류로 인하여 상기 제2 FET에 열이 발생하게 된다. 열이 발생하면, 발생한 열로 인하여 CTS의 저항값이 감소된다. 따라서, CTS및 FET들에 인가되는 전압인 Vgs가 감소된다. 이로인하여, 제1 FET에 걸린 전압의 크기가 상기 제1 FET의 문턱전압보다 작아지게 되고, 결과적으로 제1 FET가 오프(off)되게 된다. 결과적으로, 전류의 흐름이 차단된다.
따라서, 제2 FET가 소스 및 드레인의 단락으로 인한 고장이 나더라도, 제1 FET가 상호보완적으로 동작하여, 전류를 차단시킬 수 있게 되므로, 추가적인 고장을 방지할 수 있다.
실시 예에 따라, 상기 제1 FET 및 상기 제2 FET는, N-채널 MOSFET(Metal Oxide Silicon Field Effect Transistor)일 수 있다. N-channel MOSFET은 Gate와 Source 사이에 걸리는 전압(이하 Vgs)이 일정 전압(이하 Vth), 예를 들면 0.6V~1.5V 이상 인가되면 ON되어 전압원(Vsource)과 부하(Load) 간에 폐회로가 구성되고 그 Vth보다 낮은 전압이 인가될 경우에는 OFF되어 전압원으로부터 부하를 분리시키는 역할을 하게 된다.
상기 도1의 특성을 갖는 CTS 소자를 사용하고, Rref에 고정저항을 사용할 경우, NMOSFET의 Gate와 Source 사이에 인가되는 전압(Vgs)은 아래와 같은 수식으로 정리할 수 있다.
Vgs = Vsource * Rcts/(Rref + Rcts)
여기서, Vgs는, NMOSFET의 Gate와 Source 사이에 인가되는 전압, Vsource는 전압원의 전압, Rcts는, CTS의 저항값, Rref는, 기준저항(Rref)의 저항값을 의미한다.
실시 예에 따라, Vsource=5(V), Rref=100(kOhm)을 사용한다고 가정할 경우, 상온 및 특정온도(예를 들면 72℃) 이하에서는 도1에서 볼 수 있듯이 Rcts의 값이 Rref에 비해서 훨씬 크기 때문에 Vsource전압의 대부분은 Rcts양단에 걸리게 되고, 결과적으로 Vgs값은 Vth보다 높아지게 되어, 제1 FET 및 제2 FET는 ON 상태를 유지하게 된다.
한편, 특정온도 이상의 고온 환경이 될 경우에는 CTS의 저항값이 급격한 전이를 통하여 100 (Ohm) 이하의 낮은 저항값을 갖게 되고, 결과적으로 Vgs값은 Vth보다 낮아지게 되어 제1 FET 및 제2 FET가 OFF 상태가 된다. 이는 아래와 같은 수식으로 정리될 수 있다, ,
상온에서는 Rcts ≥ 1㏁이기 때문에
Vgs = Vsource * Rcts/(Rref + Rcts) > Vth ? NMOS ON
고온에서는 Rcts < 100Ω이기 때문에
Vgs = Vsource * Rcts/(Rref + Rcts) < VTH ? NMOS OFF
결과적으로 특정 온도를 기준으로 그 온도보다 낮을 경우에는 FET들이 ON되고, 높을 경우에는 FET들이 OFF되어 온도에 따라 자동으로 ON/OFF되는 고온차단스위치가 구현되는 것이다.
나아가, 본 발명의 실시 예에 따른 전원차단스위치 시스템은, 복수개의 FET들을 포함하고 있기 때문에, 앞서 설명한 바와 같이 FET들이 상호보완적으로 동작하여, 어느 하나의 FET의 Drain과 Source간의 단락이 발생한 경우에도 전류가 차단될 수 있다. 상기 단락은, 과도한 전류등의 원인에 의해 발생할 수 있고, 이로인하여, 상기 어느 하나의 FET에 전류가 흐르게 될 경우 열이 발생하게 되고, 이 발생한 열에 의해 CTS의 저항값이 급격히 감소하게 되어 결과적으로 Vgs의 크기가 Vth보다 작아지게 되어 제2 FET가 OFF되어 전류를 차단하게 된다. 즉, 2단의 안전 장치를 가질수 있게 되는 것이다.
한편, 기준점 설정을 위한 기준저항(Rref)은, 특정 크기를 가질 수 있고, 이를 통하여, 상기 제1 FET 및 상기 제2 FET에 걸린 전압은 상기 Rref와 상기 CTS에 분배된 전압에 따라 결정될 수 있다.
도 5는 본 발명의 실시 예에 따른 MIT기술을 이용한 전류차단방법의 단계들을 도시한 순서도이다.
MIT (Metal-Insulator Transition: 금속-절연체 전이) 기술을 적용한 CTS (Critical Temperature Switch: 임계온도 스위치), 제1 FET(Field Effective Transistor: 전계효과트랜지스터), 및 제2 FET를 포함하는 전류차단스위치 시스템에서 본 발명의 실시 예에 따른 전류차단방법이 수행될 수 있다.
먼저, 상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락된다(S101).
다음으로, 상기 단락된 제1 FET를 통하여 전류가 흐른다(S102).
다음으로, 상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생한다(S103).
다음으로, 상기 발생하는 열로 인하여 CTS의 저항값이 감소한다(S104).
다음으로, 상기 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아진다(S105).
다음으로, 상기 제2 FET가 오프(off)되어 전류가 차단된다(S106).
따라서, 제1 FET의 Drain과 Source간의 단락이 발생한 경우에도 전류가 차단될 수 있다. 상기 단락은, 과도한 전류등의 원인에 의해 발생할 수 있고, 이로인하여, 제1 FET에 전류가 흐르게 될 경우 열이 발생하게 되고, 이 발생한 열에 의해 CTS의 저항값이 급격히 감소하게 되어 결과적으로 Vgs의 크기가 Vth보다 작아지게 되어 제2 FET가 OFF되어 전류를 차단하게 된다. 즉, 2단의 안전 전류차단 단계를 구비할 수 있게 되어, 더욱 확실한 전자장비 보호를 수행할 수 있다.
추가적으로, 실시 예에 따라, 상기 제2 FET의 드레인(Drain)과 소스(Source)가 단락되는 단계, 상기 단락된 제2 FET를 통하여 전류가 흐르는 단계, 상기 흐르는 전류로 인하여 상기 제2 FET에 열이 발생하는 단계, 상기 발생하는 열로 인하여 CTS의 저항값이 감소하는 단계, 상기 제1 FET에 걸린 전압의 크기가 상기 제1 FET의 문턱전압보다 작아지는 단계 및 상기 제1 FET가 오프(off)되어 전류가 차단되는 단계를 더 포함할 수 있다. 따라서, 제2 FET에 문제가 발생하는 경우에도, 제1 FET의 동작으로 인하여 전류를 차단할 수 있다. 즉, FET들의 상호보완적인 동작으로 오작동을 더욱 확실하게 방지할 수 있다.
도 6은 종래기술에 따른 전류차단스위치 시스템이 배터리 보호회로에 적용된 구성을 도시한 도면이다.
도 7 내지 도 8은 본 발명의 실시 예에 따른 전류차단스위치 시스템이 배터리 보호회로에 적용된 구성을 도시한 도면들이다.
실시 예에 따라, 도 6에 도시된 바와 같이, 상기 도 1에 도시된바와 같은 종래기술에 따른 전류차단스위치 시스템이 배터리 보호용 회로 시스템에 적용될 수 있다. 이러한 경우, FET1에 단락이 발생하거나, FET2에 단락이 발생하면, 전류차단이 원활하게 발생하지 않는다.
반면에, 도 7은, 상기 도 4에 도시된 바와 같은 전류차단스위치 시스템을 배터리 보호용 회로에 적용한 것을 도시한 도면이다. 따라서, FET3이 FET2쪽에 추가된다. 이러한 경우, 충전방향으로의 전류를 2단으로 차단할 수 있다. 따라서, FET2 또는 FET3에 단락이 발생하더라도, FET2와 FET3가 본 발명의 실시 예에 따라 상호보완적으로 동작함으로써, 전류차단이 가능하게 된다.
또한, 도 8은, 상기 도 4에 도시된 바와 같은 전류차단스위치 시스템을 배터리 보호용 회로에 적용한 것을 도시한 다른 도면이다. 따라서, FET3이 FET1쪽에 추가된다. 이러한 경우, 방전방향으로의 전류를 2단으로 차단할 수 있다. 따라서, FET1 또는 FET3에 단락이 발생하더라도, FET1와 FET3가 본 발명의 실시 예에 따라 상호보완적으로 동작함으로써, 전류차단이 가능하게 된다.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
본 발명은 전류차단스위치 내의 FET(Field Effective Transistor: 전계효과트랜지스터)의 드레인(Drain)과 소스(Source)의 단락 불량이 발생하는 경우에도 전류를 차단할 수 있도록 하는 시스템 및 방법에 관한 것으로서, 산업상 이용 가능성이 있음.

Claims (12)

  1. MIT (Metal-Insulator Transition: 금속-절연체 전이) 기술을 적용한 CTS (Critical Temperature Switch: 임계온도 스위치), 제1 FET(Field Effective Transistor: 전계효과트랜지스터), 및 제2 FET를 포함하는 전류차단스위치 시스템에서의 전류차단방법에 있어서,
    상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락되는 단계;
    상기 단락된 제1 FET를 통하여 전류가 흐르는 단계;
    상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생하는 단계;
    상기 발생하는 열로 인하여 CTS의 저항값이 감소하는 단계;
    상기 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아지는 단계; 및
    상기 제2 FET가 오프(off)되어 전류가 차단되는 단계를 포함하는 것을 특징으로 하는 전류차단 방법.
  2. 제1항에 있어서,
    상기 제2 FET의 드레인(Drain)과 소스(Source)가 단락되는 단계;
    상기 단락된 제2 FET를 통하여 전류가 흐르는 단계;
    상기 흐르는 전류로 인하여 상기 제2 FET에 열이 발생하는 단계;
    상기 발생하는 열로 인하여 CTS의 저항값이 감소하는 단계;
    상기 제1 FET에 걸린 전압의 크기가 상기 제1 FET의 문턱전압보다 작아지는 단계; 및
    상기 제1 FET가 오프(off)되어 전류가 차단되는 단계를 더 포함하는 것을 특징으로 하는 전류차단 방법.
  3. 제1항에 있어서,
    상기 CTS는 임계 온도가 되면 저항 값이 급격히 감소하는 소자인 것을 특징으로 하는 전류차단 방법.
  4. 제3항에 있어서,
    상기 CTS는,
    상기 CTS에 포함되는 물질에 따라, 상기 임계온도가 변경되는 소자인 것을 특징으로 하는 전류차단 방법.
  5. 제1항에 있어서,
    상기 제1 FET 및 상기 제2 FET는,
    N-채널 MOSFET(Metal Oxide Silicon Field Effect Transistor)인 것을 특징으로 하는 전류차단 방법.
  6. 제1항에 있어서,
    상기 전류차단스위치 시스템은,
    전류를 차단시키기 위한 기준점 설정을 위한 기준저항(Rref)를 더 포함하고,
    상기 제1 FET 및 상기 제2 FET에 걸린 전압은 상기 Rref와 상기 CTS에 분배된 전압에 따라 결정되는 것을 특징으로 하는 전류차단 방법.
  7. 전류차단스위치 시스템에 있어서,
    MIT (Metal-Insulator Transition: 금속-절연체 전이) 기술을 적용한 CTS (Critical Temperature Switch: 임계온도 스위치);
    제1 FET(Field Effective Transistor: 전계효과트랜지스터), 및
    제2 FET를 포함하고,
    상기 제2 FET는,
    상기 제1 FET의 드레인(Drain)과 소스(Source)가 단락되고, 상기 단락된 제1 FET를 통하여 전류가 흐르고, 상기 흐르는 전류로 인하여 상기 제1 FET에 열이 발생하면, 상기 발생하는 열로 인하여 감소된 CTS의 저항값에따라, 상기 제2 FET에 걸린 전압의 크기가 상기 제2 FET의 문턱전압보다 작아져서 오프(off)됨으로써, 전류의 흐름을 차단하는 것을 특징으로 하는 차단 스위치 시스템.
  8. 제7항에 있어서,
    상기 제1 FET는,
    상기 제2 FET의 드레인(Drain)과 소스(Source)가 단락되고, 상기 단락된 제2 FET를 통하여 전류가 흐르고, 상기 흐르는 전류로 인하여 상기 제2 FET에 열이 발생하면, 상기 발생하는 열로 인하여 감소된 CTS의 저항값에따라, 상기 제1 FET에 걸린 전압의 크기가 상기 제1 FET의 문턱전압보다 작아져서 오프(off)됨으로써, 전류의 흐름을 차단하는 것을 특징으로 하는 차단 스위치 시스템.
  9. 제7항에 있어서,
    상기 CTS는 임계 온도가 되면 저항 값이 급격히 감소하는 소자인 것을 특징으로 하는 차단 스위치 시스템.
  10. 제9항에 있어서,
    상기 CTS는,
    상기 CTS에 포함되는 물질에 따라, 상기 임계온도가 변경되는 소자인 것을 특징으로 하는 차단 스위치 시스템.
  11. 제7항에 있어서,
    상기 제1 FET 및 상기 제2 FET는,
    N-채널 MOSFET(Metal Oxide Silicon Field Effect Transistor)인 것을 특징으로 하는 차단 스위치 시스템.
  12. 제7항에 있어서,
    상기 차단 스위치 시스템은,
    전류를 차단시키기 위한 기준점 설정을 위한 기준저항(Rref)를 더 포함하고,
    상기 제1 FET 및 상기 제2 FET에 걸린 전압은 상기 Rref와 상기 CTS에 분배된 전압에 따라 결정되는 것을 특징으로 하는 차단 스위치 시스템.
PCT/KR2015/004752 2014-07-22 2015-05-12 Mit기술을 이용한 전류차단스위치 시스템 및 전류차단 방법 WO2016013757A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0092510 2014-07-22
KR1020140092510A KR20160011743A (ko) 2014-07-22 2014-07-22 MIT(Metal-Insulator Transition)기술을 이용한 전류차단스위치 시스템 및 전류차단 방법

Publications (1)

Publication Number Publication Date
WO2016013757A1 true WO2016013757A1 (ko) 2016-01-28

Family

ID=55163262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004752 WO2016013757A1 (ko) 2014-07-22 2015-05-12 Mit기술을 이용한 전류차단스위치 시스템 및 전류차단 방법

Country Status (2)

Country Link
KR (1) KR20160011743A (ko)
WO (1) WO2016013757A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101907604B1 (ko) * 2016-07-20 2018-10-12 주식회사 모브릭 Mit 기술 기반 자동 시스템 복귀가 가능한 고온 및 고전류 차단방법 및 이러한 방법을 사용하는 스위치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221082A (ja) * 2006-01-20 2007-08-30 Central Japan Railway Co 永久電流スイッチシステム
US20100134936A1 (en) * 2005-02-21 2010-06-03 Electronics And Telecommunications Research Instit Circuit for protecting electrical and/or electronic system by using abrupt metal-insulator transition device and electrical and/or electronic system comprising the circuit
KR100964186B1 (ko) * 2007-11-12 2010-06-17 한국전자통신연구원 금속-절연체 전이(mit) 소자를 이용한 트랜지스터발열제어 회로 및 그 발열제어 방법
US20110169470A1 (en) * 2008-09-22 2011-07-14 Fujitsu Limited Power supply control circuit, power supply device, power supply system, and method of controlling power supply control device
KR20110107529A (ko) * 2010-03-25 2011-10-04 주식회사 엘지화학 과열방지회로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134936A1 (en) * 2005-02-21 2010-06-03 Electronics And Telecommunications Research Instit Circuit for protecting electrical and/or electronic system by using abrupt metal-insulator transition device and electrical and/or electronic system comprising the circuit
JP2007221082A (ja) * 2006-01-20 2007-08-30 Central Japan Railway Co 永久電流スイッチシステム
KR100964186B1 (ko) * 2007-11-12 2010-06-17 한국전자통신연구원 금속-절연체 전이(mit) 소자를 이용한 트랜지스터발열제어 회로 및 그 발열제어 방법
US20110169470A1 (en) * 2008-09-22 2011-07-14 Fujitsu Limited Power supply control circuit, power supply device, power supply system, and method of controlling power supply control device
KR20110107529A (ko) * 2010-03-25 2011-10-04 주식회사 엘지화학 과열방지회로

Also Published As

Publication number Publication date
KR20160011743A (ko) 2016-02-02

Similar Documents

Publication Publication Date Title
KR102379554B1 (ko) 보호 회로
EP3035471B1 (en) High voltage dc breaker
US7830120B2 (en) Low side N-channel FET protection circuit
JPH09121444A (ja) 保護エレメントおよび回路を保護する方法
KR101489563B1 (ko) 역접속 보호 장치 및 이를 포함하는 예비 전원 공급장치
WO2015088111A1 (ko) Mit 기술을 적용한 자동 고온/고전류 차단 방법 및 이러한 방법을 사용하는 스위치
WO2016108530A1 (ko) Dc 차단기
US20140217988A1 (en) Charge/discharge control circuit and battery device
US7145313B2 (en) Battery protection circuit for simulating an overcurrent condition based on battery current flow
US7763993B2 (en) DC UPS with auto-ranging backup voltage capability
WO2016108528A1 (ko) Dc 차단기
JPS63501330A (ja) 電話加入者ル−プ過電圧保護回路
WO2023160235A1 (zh) 过放保护电路、电池保护板和电子设备
TWI673932B (zh) 電池裝置
KR20020017931A (ko) 전지 팩
US20060250736A1 (en) Transient blocking apparatus with electrostatic discharge protection
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
WO2016013757A1 (ko) Mit기술을 이용한 전류차단스위치 시스템 및 전류차단 방법
EP3579497B1 (en) Power sourcing equipment and power over ethernet system
WO2017034322A1 (ko) Dc 차단기
KR20150068310A (ko) 배터리 상태 감시 회로 및 배터리 장치
KR101533881B1 (ko) 배터리의 충방전 제어회로
US7821755B2 (en) Resettable short-circuit protection configuration
US10903022B2 (en) Electrical circuit breaker assembly
WO2022211605A1 (ko) 반도체를 이용한 회로 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824356

Country of ref document: EP

Kind code of ref document: A1