WO2016013585A1 - 燃焼器用筒体、燃焼器及びガスタービン - Google Patents

燃焼器用筒体、燃焼器及びガスタービン Download PDF

Info

Publication number
WO2016013585A1
WO2016013585A1 PCT/JP2015/070854 JP2015070854W WO2016013585A1 WO 2016013585 A1 WO2016013585 A1 WO 2016013585A1 JP 2015070854 W JP2015070854 W JP 2015070854W WO 2016013585 A1 WO2016013585 A1 WO 2016013585A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
combustor
supply port
combustion gas
passage
Prior art date
Application number
PCT/JP2015/070854
Other languages
English (en)
French (fr)
Inventor
聡 水上
谷村 聡
哲 小西
真規 三谷
泰希 木下
佳昭 山口
貴昭 長谷
大志 牧ヶ野
光 黒崎
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US15/317,309 priority Critical patent/US10663169B2/en
Priority to KR1020167034653A priority patent/KR101829572B1/ko
Priority to CN201580030371.7A priority patent/CN106460670B/zh
Priority to DE112015003440.4T priority patent/DE112015003440T5/de
Priority to JP2016535954A priority patent/JP6175193B2/ja
Publication of WO2016013585A1 publication Critical patent/WO2016013585A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/204Heat transfer, e.g. cooling by the use of microcircuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a combustor cylinder, a combustor, and a gas turbine.
  • Patent Document 1 discloses a structure in which two types of cooling passages are formed in the wall portion of the transition piece in order to cool the wall portion of the transition piece.
  • the first cooling passage is formed in the upstream region of the transition piece located on the upstream side in the flow direction of the combustion gas flowing in the transition piece.
  • air in the interior space of the gas turbine in which the transition piece is arranged is introduced as first cooling air that cools the upstream region of the transition piece.
  • path has a supply port for opening in the outer peripheral surface of a tail cylinder and introducing 1st cooling air.
  • the second cooling passage is formed in the downstream region of the transition piece located downstream of the upstream region in the flow direction of the combustion gas.
  • a part of the compressed air compressed in the compressor of the gas turbine is introduced into the second cooling passage as second cooling air for cooling the downstream region of the tail tube.
  • the second cooling air introduced into the second cooling passage cools the downstream region, and is then discharged into the interior space of the gas turbine in which the transition piece is disposed.
  • path has the discharge port which opens on the outer peripheral surface of a transition piece, and discharges 2nd cooling air to vehicle interior space.
  • the discharge port of the second cooling passage is arranged downstream of the supply port of the first cooling passage in the flow direction of the combustion gas. The air discharged from the discharge port is high-temperature air heated by the above-described second cooling air cooling the tail cylinder.
  • Patent Document 1 the supply port of the first cooling passage and the second cooling are prevented so that the high-temperature air discharged from the discharge port of the second cooling passage into the vehicle interior space does not enter the first cooling passage from the supply port. It is disclosed that a partition wall protruding from the outer peripheral surface of the transition piece is provided between the outlet of the passage.
  • the high-temperature air discharged from the discharge port of the second cooling passage is more than the supply port. It may wrap around upstream in the direction of combustion gas flow. In this case, it is difficult for the high-temperature air discharged from the discharge port to enter the first cooling passage from the supply port and sufficiently lower the temperature of the air introduced into the first cooling passage. Cooling of the upstream region of the transition piece may be insufficient.
  • An object of the present invention is to provide a combustor cylinder that can more reliably prevent high-temperature air discharged from a second cooling passage from being introduced into the first cooling passage and improve cooling efficiency.
  • a combustor and a gas turbine are provided.
  • the combustor cylinder is a combustor cylinder in which the combustion gas flows and sends the combustion gas to the turbine.
  • the combustor cylinder includes a cylinder body extending along the axis.
  • the cylinder for the combustor is formed in an upstream region located on the upstream side in the flow direction of the combustion gas in the wall portion of the cylinder main body, and has a supply port that opens to the outer peripheral surface of the cylinder main body.
  • a first cooling passage is further provided for cooling the upstream region by introducing a first cooling fluid from the space outside the cylinder body through the supply port.
  • the cylinder for the combustor is formed in a downstream region that is continuously located downstream in the flow direction of the combustion gas with respect to the upstream region in the wall portion of the cylinder main body, and is supplied with the second cooling fluid.
  • the downstream region is cooled, and the second cooling fluid is opened outside the cylinder body by opening the outer peripheral surface of the cylinder body on the downstream side in the flow direction of the combustion gas from the supply port.
  • a second cooling passage having a discharge port for discharging.
  • the combustor cylinder includes a first wall portion extending in a direction away from the outer peripheral surface of the cylinder body between the supply port and the discharge port, and an upstream side in the flow direction of the combustion gas from the supply port And a supply port extending portion having a second wall portion extending in a direction away from the outer peripheral surface of the cylinder main body.
  • the first wall portion of the supply port extending portion is provided between the supply port and the discharge port. For this reason, in the space outside the cylinder main body, even if a fluid that partially functions as the first cooling fluid flows in the direction opposite to the flow direction of the combustion gas in the cylinder main body, the second cooling is performed by the first wall portion. It is possible to prevent the high-temperature fluid discharged from the passage outlet (second cooling fluid heated by cooling the wall portion of the cylinder body) from entering the first cooling passage from the supply port.
  • a second wall portion of the supply port extending portion is provided upstream of the supply port in the flow direction of the combustion gas.
  • the supply port extending portion including the first wall portion and the second wall portion opens into a space outside the cylinder body at a position spaced from the outer peripheral surface of the cylinder body. It is difficult for the high-temperature fluid discharged from the discharge port to reach the region separated from the outer peripheral surface of the cylinder body. For this reason, it becomes possible to introduce into the first cooling passage a lower temperature fluid existing in a region separated from the outer peripheral surface of the cylinder body as the first cooling fluid. Therefore, it is possible to efficiently cool the upstream region of the cylinder body.
  • the combustor cylinder is a space between the first wall portion and the second wall portion, from the space outside the tube body to the supply port.
  • a guide passage for guiding one cooling fluid may be formed, and an opening portion of the guide passage with respect to a space outside the cylinder body may be directed outward in the radial direction of the cylinder body.
  • the combustor cylinder includes the first cylinder from the space outside the cylinder body to the supply port between the first wall and the second wall.
  • a guide passage for guiding one cooling fluid is formed, and an opening of the guide passage with respect to a space outside the cylinder body is directed to the downstream side in the flow direction of the combustion gas, and the combustion gas flows more than the exhaust port. You may locate in the downstream of a distribution direction.
  • the cylinder for the combustor according to any one of the first to third aspects, the first wall part and the second wall part are the entire circumferential direction of the cylinder body.
  • An annular passage portion that is formed to communicate with the supply port may be configured.
  • the cylinder for the combustor includes a blocking portion that blocks the inflow of the first cooling fluid from the space outside the tube main body to the annular passage portion, A pair of the blocking portions may be provided at positions facing each other in the radial direction of the cylinder body.
  • the combustor cylinder may include a partition portion that divides the annular passage portion in the circumferential direction.
  • a pair of the partitioning portions may be provided at positions facing each other in the radial direction of the cylinder main body.
  • the cylinder for a combustor has a passage cross-sectional area perpendicular to the circumferential direction of the cylinder body in the annular passage portion in any one of the fourth to seventh aspects.
  • the opening area of the supply port may be 50 times or more.
  • the first wall portion and the second wall portion are formed in a cylindrical shape, and You may comprise the cylindrical channel
  • a plurality of the cylindrical passage portions may be arranged at intervals in the circumferential direction of the cylinder main body.
  • a plurality of the supply ports are arranged at intervals in the circumferential direction of the cylinder body.
  • the first wall portion and the second wall portion are formed in a cylindrical shape and arranged at intervals in the circumferential direction of the cylindrical main body, and constitute a plurality of cylindrical passage portions communicating with the supply ports. May be.
  • the circumferential position of the tubular passage portion is upstream of the combustion direction of the tubular body. You may correspond to the circumferential direction position of the center of the burner arranged in multiple numbers in the circumferential direction of the said cylinder main body in the edge part of the side.
  • the plurality of cylindrical passage portions may be arranged at equal intervals in the circumferential direction of the cylinder main body.
  • the supply port extending portion is a space outside the cylinder body, Communication that connects the first space on the downstream side in the flow direction of the combustion gas with respect to the first wall portion and the second space on the upstream side in the flow direction of the combustion gas with respect to the second wall portion. May be provided.
  • the supply port extending portion includes the first wall portion and the second wall. You may provide the heat insulation layer which reduces the heat conduction in a part.
  • the supply port extending portion is supported by the outer peripheral surface of the cylinder main body. Also good.
  • the combustor cylinder according to any one of the first to fifteenth aspects is configured such that the combustion gas flows more than the supply port extension portion of the cylinder body.
  • An acoustic liner may be provided on the upstream side in the direction, and the supply port extension may be supported by the acoustic liner.
  • the supply port extending portion is formed integrally with the cylinder main body. Good.
  • the combustor cylinder is a combustor cylinder in which the combustion gas flows and sends the combustion gas to the turbine.
  • the combustor cylinder includes a cylinder body extending along the axis.
  • the cylinder for the combustor is formed in an upstream region located on the upstream side in the flow direction of the combustion gas in the wall portion of the cylinder main body, and has a supply port that opens to the outer peripheral surface of the cylinder main body.
  • a first cooling passage is further provided for cooling the upstream region by introducing a first cooling fluid from the space outside the cylinder body through the supply port.
  • the cylinder for the combustor is formed in a downstream region that is continuously located downstream in the flow direction of the combustion gas with respect to the upstream region in the wall portion of the cylinder main body, and is supplied with the second cooling fluid.
  • the downstream region is cooled, and the second cooling fluid is opened outside the cylinder body by opening the outer peripheral surface of the cylinder body on the downstream side in the flow direction of the combustion gas from the supply port.
  • a second cooling passage having a discharge port for discharging.
  • the combustor cylinder is formed extending between the supply port and the discharge port in a direction away from the outer peripheral surface of the cylinder main body, and is opposite to the combustion gas flow direction in the space outside the cylinder main body.
  • a guide wall portion that guides the fluid flowing in the circumferential direction of the cylinder main body with respect to the supply port, and guides the fluid upstream of the supply port in the flow direction of the combustion gas.
  • the guide wall portion discharges the second cooling passage.
  • the high-temperature fluid discharged from the outlet (second cooling fluid heated by cooling the wall portion of the cylinder body) can be prevented from entering the first cooling passage from the supply port.
  • the fluid flowing in the direction opposite to the flow direction of the combustion gas in the space outside the cylinder main body is guided by the guide wall portion in the circumferential direction of the cylinder main body, and more than the supply port of the combustion gas. Guided upstream in the distribution direction.
  • a combustor includes the combustor cylinder according to any one of the first to nineteenth aspects, and a burner that injects fuel.
  • the gas turbine is rotated by the combustor according to the twentieth aspect, a compressor that generates compressed air sent to the combustor, and the combustion gas sent from the combustor. And a turbine including a rotor.
  • the high-temperature fluid discharged from the discharge port of the second cooling passage (the second cooling fluid heated by cooling the wall portion of the cylinder main body) It is possible to more reliably prevent entry into the first cooling passage and efficiently cool the upstream region of the cylinder body by the first cooling fluid introduced into the first cooling passage. That is, the cooling efficiency of the combustor cylinder can be improved.
  • FIG. 1 It is a schematic diagram showing the whole gas turbine composition concerning a first embodiment of the present invention. It is a figure which shows an example of the combustor of the gas turbine which concerns on 1st embodiment of this invention, and its peripheral structure. It is a schematic sectional drawing which shows the cylinder for combustors which concerns on 1st embodiment of this invention. It is sectional drawing which shows the principal part of the cylinder for combustors shown in FIG. It is the top view which looked at the principal part of the cylinder for combustors shown in Drawing 4 from the diameter direction outside of a tail cylinder. It is a partially broken perspective view which shows the principal part of the cylinder for combustors shown in FIG.
  • FIG. 11 It is the schematic sectional drawing which looked at the cylinder for combustors concerning a second embodiment of the present invention from the distribution direction upstream of fuel gas. It is a principal part expanded sectional view of the cylinder for combustors shown in FIG. It is sectional drawing which shows the principal part of the cylinder for combustors which concerns on 3rd embodiment of this invention. It is sectional drawing which shows the principal part of the cylinder for combustors which concerns on 4th embodiment of this invention. It is sectional drawing which shows the principal part of the cylinder for combustors which concerns on 5th embodiment of this invention. It is the top view which looked at the principal part of the cylinder for combustors shown in FIG. 11 from the radial direction outer side of the tail cylinder.
  • FIG. 25 is a cross-sectional view taken along line EE in FIG. 24.
  • the gas turbine GT of the present embodiment includes a compressor 1, a combustor 2, and a turbine 3.
  • the compressor 1 takes in air as a working fluid from an air intake and generates compressed air.
  • the combustor 2 is connected to the discharge port of the compressor 1.
  • the combustor 2 injects fuel into the compressed air discharged from the compressor 1 to generate high-temperature and high-pressure combustion gas.
  • the turbine 3 converts the thermal energy of the combustion gas sent out from the combustor 2 into rotational energy of the rotor 4 to generate a driving force.
  • the turbine 3 transmits the generated driving force to the generator Ge connected to the rotor 4.
  • the gas turbine GT of this embodiment is further provided with a booster 5 that extracts a part of the compressed air compressed by the compressor 1 and boosts the pressure to a pressure higher than that of the compressed air.
  • the pressure increasing device 5 is provided in a branch flow path 7 that branches from the compressed air supply flow path 6 that supplies compressed air from the compressor 1 to the combustor 2 and extracts a part of the compressed air.
  • the electric motor M Driven by. Extracted pressurized air boosted by the booster 5 is supplied to the combustor 2 through the pressurized air passage 8 and is used as air for cooling a tail cylinder 21 of the combustor 2 described later (hereinafter referred to as cooling air). used.
  • the cooling air after being used for cooling the tail cylinder 21 is returned to the compressed air supply flow path 6 through the return flow path 9, merged with the main flow of the compressed air flowing through the compressed air supply flow path 6, and then burned. It is reused as combustion air for burning fuel in the vessel 2.
  • the gas turbine GT of the present embodiment uses part of the compressed air supplied from the compressor 1 and used as combustion air in the combustor 2 as cooling air for cooling the tail cylinder 21 of the combustor 2.
  • a recovery type air cooling structure (closed cooling cycle structure) for recovering the cooling air and reusing it as the combustion air in the combustor 2 together with the main flow of the compressed air is provided.
  • a part of the compressed air extracted from the main flow is not limited to being used only for cooling the tail cylinder 21 of the combustor 2.
  • it may be used for cooling the stationary blades and moving blades of the turbine 3.
  • the combustor 2 has a substantially cylindrical appearance, and is disposed, for example, in a vehicle interior space 10A formed mainly in the vehicle interior 10 (casing) of the gas turbine GT as shown in FIG.
  • the interior space 10A in which the combustor 2 is arranged is filled with the compressed air compressed in the compressor 1.
  • the combustor 2 includes a combustor body 11 and a combustor cylinder 12.
  • the combustor main body 11 functions as a combustion chamber that reacts the supplied fuel and the compressed air discharged from the compressor 1.
  • the combustor cylinder 12 sends the combustion gas flowing in from the combustor body 11 to the turbine 3.
  • the combustor body 11 includes a cylindrical inner cylinder 13 and a burner 14 that is disposed in the inner cylinder 13 and injects fuel.
  • One opening of the inner cylinder 13 is an opening on the upstream side that introduces compressed air filled in the vehicle interior space 10 ⁇ / b> A into the inner cylinder 13.
  • the other opening of the inner cylinder 13 is a downstream opening, and a tail cylinder 21 described later is connected thereto.
  • the burner 14 includes a pilot burner 15 and a main burner 16.
  • the pilot burner 15 is provided along the central axis of the inner cylinder 13.
  • the pilot burner 15 injects fuel supplied from the outside and diffuses and burns the fuel.
  • a plurality of main burners 16 are provided in the inner cylinder 13.
  • the plurality of main burners 16 are arranged at intervals in the circumferential direction of the inner cylinder 13 so as to surround the pilot burner 15. Each main burner 16 extends so as to be parallel to the central axis of the inner cylinder 13.
  • the main burner 16 injects fuel, mixes the fuel and compressed air in advance to generate a premixed gas, and then injects the premixed gas to perform premixed combustion.
  • the combustor cylinder 12 includes a transition piece (cylinder main body) 21, a first cooling passage 22, a second cooling passage 23, and an acoustic liner 24.
  • the transition piece 21 extends along the axis, and introduces it into the turbine 3 at a higher flow rate of the combustion gas Cg flowing from the combustor body 11 into the tail cylinder 21.
  • One opening of the tail cylinder 21 is connected to the downstream opening of the inner cylinder 13 (see FIG. 2) of the combustor body 11 described above.
  • the other opening of the transition piece 21 is connected to the turbine 3.
  • the combustion gas Cg flowing from the combustor body 11 flows inside the tail cylinder 21.
  • the combustion gas Cg flows from the left side (upstream side) to the right side (downstream side) of the paper in the tail cylinder 21.
  • the combustion gas in the tail cylinder 21 so that the compressed air Ca discharged from the compressor 1 goes to the opening on the upstream side of the inner cylinder 13 described above. It flows in the direction opposite to the Cg flow direction.
  • the first cooling passage 22 is formed in an upstream region 21A located on the upstream side in the flow direction of the combustion gas Cg in the wall portion of the transition piece 21.
  • the first cooling passage 22 has a supply port 25 that opens to the outer peripheral surface 21 c of the transition piece 21.
  • the first cooling passage 22 introduces compressed air (fluid) Ca from the vehicle interior space 10A through the supply port 25 as first cooling air (first cooling fluid), so that the upstream region of the tail cylinder 21 Cool 21A.
  • the first cooling passage 22 of the present embodiment extends along the axial direction of the transition piece 21.
  • a plurality of first cooling passages 22 are arranged at intervals in the circumferential direction of the transition piece 21.
  • One supply port 25 of each first cooling passage 22 is provided on each side of the flow direction of the combustion gas Cg with respect to the acoustic liner 24 provided in the upstream region 21A of the transition piece 21.
  • a plurality of first cooling passage 22 supply ports 25 ⁇ / b> A (hereinafter referred to as downstream supply ports 25 ⁇ / b> A) positioned downstream of the acoustic liner 24 in the flow direction of the combustion gas Cg are arranged in a row in the circumferential direction of the transition piece 21. Are lined up.
  • Each first cooling passage 22 has an outlet 26 that opens to the outer peripheral surface 21 c of the tail cylinder 21 and discharges the first cooling air to the outside of the tail cylinder 21.
  • the discharge port 26 of the first cooling passage 22 opens inside the acoustic liner 24. That is, the first cooling air is discharged into the acoustic liner 24 after cooling the upstream region 21 ⁇ / b> A of the transition piece 21.
  • the second cooling passage 23 is formed in a downstream region 21 ⁇ / b> B that is continuously located downstream in the flow direction of the combustion gas Cg with respect to the upstream region 21 ⁇ / b> A of the tail tube 21 in the wall portion of the tail tube 21.
  • the second cooling passage 23 is configured such that the extracted air pressure increased by the above-described pressure increasing device 5 (see FIG. 1) is supplied to the second cooling passage 23 as the second cooling air (second cooling fluid).
  • the downstream region 21B of 21 is cooled.
  • the second cooling passage 23 has a discharge port 27 that opens on the downstream side of the downstream side supply port 25A in the outer peripheral surface 21c of the transition piece 21 and discharges the second cooling air to the vehicle interior space 10A.
  • the second cooling passage 23 of the present embodiment extends along the axial direction of the transition piece 21.
  • a plurality of second cooling passages 23 are arranged at intervals in the circumferential direction of the transition piece 21.
  • the discharge port 27 of each second cooling passage 23 is provided at a first end portion in the longitudinal direction of the second cooling passage 23 located upstream in the flow direction of the combustion gas Cg.
  • the outlets 27 of the plurality of second cooling passages 23 are arranged in a line in the circumferential direction of the transition piece 21.
  • Each second cooling passage 23 has a supply port 28 that opens to the outer peripheral surface 21 c of the transition piece 21 and introduces second cooling air into the second cooling passage 23.
  • the supply port 28 of the second cooling passage 23 is provided at the second end portion in the longitudinal direction of the second cooling passage 23 and is located at the downstream end portion of the transition piece 21 located on the turbine 3 side.
  • the outer peripheral surface 21c of the downstream end portion of the transition piece 21 is formed over the entire circumferential direction of the transition piece 21 and covers the supply ports 28 of the plurality of second cooling passages 23 at the same time.
  • An annular passage portion 29 (manifold) that forms an introduction space that communicates with the supply port 28 is provided.
  • the annular passage portion 29 is formed so that the introduction space does not communicate with the vehicle interior space 10A.
  • the second cooling air (extracted pressurized air boosted by the booster 5) is supplied from the supply port 28 of each second cooling passage 23 to each second cooling passage 23 via the annular passage portion 29.
  • the second cooling air supplied to the second cooling passage 23 cools the downstream region 21B of the tail cylinder 21 and then is discharged into the vehicle interior space 10A. Since the second cooling air is heated by cooling the wall portion of the transition piece 21 in the second cooling passage 23, the second cooling air 23 is discharged when discharged from the discharge port 27 of the second cooling passage 23. It becomes high temperature air (high temperature fluid) higher than the temperature of the 2nd cooling air in the supply port 28, and the temperature of the compressed air Ca which fills the interior space 10A. The high temperature air (second cooling air) discharged into the vehicle interior space 10A is reused as combustion air by joining with the compressed air Ca filling the vehicle interior space 10A.
  • the acoustic liner 24 is provided on the outer periphery of the transition piece 21 in the upstream region 21A.
  • a part of the acoustic liner 24 is constituted by a wall portion of the tail cylinder 21.
  • the internal space of the acoustic liner 24 communicates with the inside of the tail cylinder 21 through a large number of acoustic holes 24A formed through the wall portion of the tail cylinder 21.
  • the first cooling passage 22 described above is provided at a position where it does not interfere with the acoustic hole 24A.
  • the acoustic liner 24 reduces combustion vibrations of the gas turbine GT (self-excited vibrations generated by feeding back pressure fluctuations, speed fluctuations, and heat generation rate fluctuations in the combustor 2).
  • the acoustic hole 24A is provided in the acoustic liner 24 as described above, the first cooling air discharged into the acoustic liner 24 from the discharge port 26 of the first cooling passage 22 described above is tailed through the acoustic hole 24A. It flows out into the tube 21.
  • the above-described combustor cylinder 12 includes a supply port extending portion 30 as shown in FIGS.
  • the supply port extending portion 30 is a first wall portion extending in a direction away from the outer peripheral surface 21c of the transition piece 21 between the downstream supply port 25A of the first cooling passage 22 and the discharge port 27 of the second cooling passage 23. 31 is provided.
  • the supply port extension portion 30 further includes a second wall portion 32 extending in a direction away from the outer peripheral surface 21c of the tail cylinder 21 on the upstream side in the flow direction of the combustion gas Cg from the downstream supply port 25A.
  • the second wall portion 32 is disposed between the downstream supply port 25 ⁇ / b> A of the first cooling passage 22 and the acoustic liner 24.
  • a guide passage 33 that guides the compressed air Ca serving as the first cooling air from the vehicle interior space 10A to the downstream supply port 25A of the first cooling passage 22.
  • the opening 33 ⁇ / b> A of the guide passage 33 with respect to the vehicle interior space 10 ⁇ / b> A is spaced from the outer peripheral surface 21 c of the tail cylinder 21 at least radially outward of the tail cylinder 21.
  • the opening 33 ⁇ / b> A of the guide passage 33 faces the outside in the radial direction of the tail cylinder 21. That is, in the present embodiment, the first wall portion 31 and the second wall portion 32 extend outward in the radial direction of the tail cylinder 21.
  • the height position of the opening 33A of the guide passage 33 with respect to the outer peripheral surface 21c of the transition piece 21 is not particularly limited, but may be positioned lower than the acoustic liner 24 as shown in FIG. It may be positioned higher than the liner 24.
  • the 1st wall part 31 and the 2nd wall part 32 are formed in the whole circumferential direction of the tail cylinder 21, and comprise the cyclic
  • the 1st wall part 31 and the 2nd wall part 32 are also formed in the cylindrical shape, and the cylindrical channel
  • portions of the annular passage portion 34 and the tubular passage portion 35 that are downstream of the downstream supply port 25A in the flow direction of the combustion gas Cg are configured by the first wall portion 31.
  • a portion on the upstream side in the flow direction of the combustion gas Cg with respect to the downstream supply port 25 ⁇ / b> A is constituted by the second wall portion 32.
  • the annular passage portion 34 and the cylindrical passage portion 35 form the guide passage 33 described above.
  • An opening of the cylindrical passage portion 35 with respect to the vehicle interior space 10 ⁇ / b> A is an opening portion 33 ⁇ / b> A of the guide passage 33.
  • the cylindrical passage portion 35 of the present embodiment extends linearly in the radial direction of the tail cylinder 21. As a result, the opening 33 ⁇ / b> A of the guide passage 33 faces radially outward of the transition piece 21.
  • the supply port extension portion 30 of the present embodiment combusts more than the first space 10A1 and the second wall portion 32 in the interior space 10A downstream of the first wall portion 31 in the flow direction of the combustion gas Cg.
  • a communication portion 36 is provided that communicates with the second space 10A2 on the upstream side in the flow direction of the gas Cg.
  • a plurality of cylindrical passage portions 35 are arranged at intervals in the circumferential direction of the transition piece 21 so that the gap between the cylindrical passage portions 35 adjacent to each other in the circumferential direction serves as the communication portion 36 described above. Function.
  • the circumferential positions of the cylindrical passage portions 35 arranged in the circumferential direction of the transition piece 21 are circumferential positions of the downstream supply ports 25 ⁇ / b> A arranged in the circumferential direction of the transition piece 21. For example, it may be shifted in the circumferential direction of the transition piece 21 with respect to the circumferential position of the downstream supply port 25A.
  • each cylindrical passage portion 35 may be provided so as to overlap in the radial direction of one downstream supply port 25 ⁇ / b> A and the tail cylinder 21, but for example, a plurality of downstream supply ports 25 ⁇ / b> A It may be provided so as to overlap the radial direction of the tail cylinder 21.
  • Each cylindrical passage part 35 may be provided so as not to overlap, for example, the downstream side supply port 25 ⁇ / b> A and the radial direction of the tail cylinder 21.
  • each cylindrical passage portion 35 may be formed in a circular cylindrical shape as viewed from the radially outer side of the tail cylinder 21, but may be formed in, for example, a square cylindrical shape. For example, it may be formed in an elliptical or rectangular cylinder extending in the circumferential direction of the tail cylinder 21.
  • the supply port extending portion 30 of the present embodiment is supported on the outer peripheral surface 21 c of the tail cylinder 21. If it demonstrates concretely, the supply port extension part 30 will be being fixed to the outer peripheral surface 21c of the tail tube 21 by welding, brazing, etc., for example. 4 to 6, the annular passage portion 34 of the supply port extending portion 30 is fixed to the outer peripheral surface 21 c of the tail cylinder 21.
  • the above-described supply port extending portion 30 is not limited to being provided only for the downstream supply port 25 ⁇ / b> A of the first cooling passage 22, and is provided for both the supply ports 25 of the first cooling passage 22, for example. Also good.
  • the supply port extending portion 30 is provided between the downstream supply port 25A of the first cooling passage 22 and the discharge port 27 of the second cooling passage 23.
  • a first wall portion 31 is provided.
  • the second wall portion 32 of the supply port extending portion 30 is provided upstream of the downstream supply port 25A of the first cooling passage 22 in the flow direction of the combustion gas Cg. ing.
  • the high-temperature air (second cooling air) discharged from the outlet 27 of the second cooling passage 23 is supplied downstream from the first cooling passage 22 by the flow of the compressed air Ca in the vehicle interior space 10A.
  • the second wall portion 32 can prevent the downstream side supply port 25A from being approached. Therefore, it is also possible to prevent the high-temperature air from entering the first cooling passage 22 from the downstream supply port 25A after flowing around the upstream side in the flow direction of the combustion gas Cg from the downstream supply port 25A.
  • the supply port extending portion 30 including the first wall portion 31 and the second wall portion 32 is located in the vehicle interior space 10 ⁇ / b> A at a position separated from the outer peripheral surface 21 c of the tail tube 21. Open. High-temperature air discharged from the discharge port 27 of the second cooling passage 23 does not easily reach the region separated from the outer peripheral surface 21 c of the tail cylinder 21. For this reason, it becomes possible to introduce into the first cooling passage 22 the compressed air Ca having a temperature lower than that of the high-temperature air existing in the region separated from the outer peripheral surface 21c of the tail cylinder 21 as the first cooling fluid.
  • the combustor 2 including this, and the gas turbine GT the high-temperature air discharged from the discharge port 27 of the second cooling passage 23 is the first cooling passage 22.
  • the upstream region 21A of the tail cylinder 21 can be efficiently cooled by the low-temperature first cooling fluid introduced into the first cooling passage 22 with more reliable prevention of entering. That is, the cooling efficiency of the combustor cylinder 12 can be improved.
  • the opening 33 ⁇ / b> A of the guide passage 33 of the supply port extending portion 30 that is located away from the outer peripheral surface 21 c of the tail cylinder 21 is the outer side in the radial direction of the tail cylinder 21. Therefore, high-temperature air (second cooling air) discharged from the outlet 27 of the second cooling passage 23 that opens to the outer peripheral surface 21c of the tail tube 21 can be suitably prevented from entering the guide passage 33. .
  • a structure in which the opening 33A of the guide passage 33 faces the radially outer side of the tail cylinder 21 can be easily created.
  • the supply port extension portion 30 can be easily created and installed. Therefore, the combustor cylinder 12 including the supply port extending portion 30 can be manufactured at low cost.
  • the supply port extending portion 30 is configured by successively connecting the annular passage portion 34 and the cylindrical passage portion 35 on the outer peripheral surface 21 c of the tail tube 21.
  • the cylindrical passage portion 35 constitutes an opening portion 33 ⁇ / b> A of the guide passage 33. That is, since the area of the opening 33A for introducing the compressed air Ca into the guide passage 33 is limited by the cylindrical passage portion 35, the high-temperature air (second cooling) discharged from the discharge port 27 of the second cooling passage 23 is limited. Air) can be suitably prevented from entering the guide passage 33.
  • the compressed air Ca (first cooling air) introduced from the vehicle interior space 10 ⁇ / b> A into the internal space of the tubular passage portion 35 is introduced into the internal space of the annular passage portion 34.
  • the entire circumference of the tail cylinder 21 is spread. For this reason, even if the cylindrical channel
  • the supply port extending portion 30 includes the first space 10A1 on the downstream side in the distribution direction of the combustion gas Cg with respect to the first wall portion 31 in the vehicle interior space 10A.
  • a communication portion 36 that communicates with the second space 10A2 upstream of the second wall portion 32 in the flow direction of the combustion gas Cg is provided.
  • the communication part 36 of the supply port extending part 30 is constituted by a gap between the cylindrical passage parts 35 adjacent in the circumferential direction. As described above, the cylindrical passage portion 35 that extends linearly can be easily created, and thus the communication portion 36 of the supply port extension portion 30 can be easily configured.
  • the supply port extension 30 is fixed to the outer peripheral surface 21c of the tail cylinder 21 by welding. For this reason, it can prevent reliably that a clearance gap produces between the supply port extension part 30 and the outer peripheral surface 21c of the transition piece 21.
  • FIG. Accordingly, the compressed air Ca introduced into the guide passage 33 of the supply port extension portion 30 from the vehicle interior space 10A is introduced into the vehicle interior space from the gap between the supply port extension portion 30 and the outer peripheral surface 21c of the tail tube 21.
  • the compressed air Ca can be efficiently introduced into the first cooling passage 22 while preventing leakage to 10A.
  • the combustor 2 of this embodiment includes a combustor body 11 (see FIG. 2) and a combustor cylinder 12 similar to those of the first embodiment.
  • the combustor main body 11 includes an inner cylinder 13 (see FIG. 2) similar to the first embodiment, and a burner 14 having a pilot burner 15 and a main burner (burner) 16.
  • the pilot burner 15 and the main burner 16 are arranged in the inner cylinder 13, that is, at the end of the tail cylinder 21 on the upstream side in the flow direction of the combustion gas Cg. Is done.
  • the pilot burner 15 is provided along the central axis of the inner cylinder 13. A plurality (eight in FIG.
  • main burners 16 are arranged in the circumferential direction of the inner cylinder 13 so as to surround the pilot burner 15.
  • the main burners 16 are arranged at equal intervals in the circumferential direction of the inner cylinder 13.
  • the number of main burners 16 may be arbitrary.
  • the combustor cylinder 12 of the present embodiment includes a supply port extending portion 30 having an annular passage portion 34 and a plurality of tubular passage portions 35 similar to those of the first embodiment.
  • the circumferential position of each cylindrical passage portion 35 coincides with the circumferential position of the center of the main burner 16.
  • a plurality of cylindrical passage portions 35 are arranged at equal intervals in the circumferential direction of the transition piece 21.
  • the number of cylindrical passage portions 35 matches the number of main burners 16 as shown in FIG. 7, but at least a plurality of cylindrical passage portions 35 are equally spaced in the circumferential direction of the tail cylinder 21. If arranged, it may be more or less than the number of main burners 16, for example.
  • the number of the cylindrical passage portions 35 is smaller than the number of the main burners 16, the number of the cylindrical passage portions 35 is, for example, 1/2, 1/3, 1/4,. It only has to be set.
  • the number of the cylindrical passage portions 35 is set to an integral multiple (2 times, 3 times, 4 times, ...) of the number of the main burners 16, for example. That's fine.
  • a part of the downstream supply ports 25 ⁇ / b> A of the first cooling passages 22 arranged in the circumferential direction of the transition piece 21 is the center of the main burner 16. It is good to correspond with the circumferential direction position of the cylindrical channel
  • the combustor 2 including the combustor 2, and the gas turbine GT the same effects as those of the first embodiment are achieved.
  • the upstream region 21A (see FIGS. 3 and 4) of the tail cylinder 21 can be cooled more efficiently.
  • the amount of heating of the wall portion of the upstream region 21A of the tail tube 21 by the main burner 16 is the largest in the circumferential portion of the tail tube 21 corresponding to the circumferential position of the center of the main burner 16, It is small in the circumferential direction portion of the transition piece 21 located between the main burners 16 adjacent in the circumferential direction.
  • the circumferential position of the cylindrical passage portion 35 coincides with the circumferential position of the center of the main burner 16. For this reason, the first cooling air introduced from the cylindrical passage portion 35 to the annular passage portion 34 reaches the portion of the wall portion of the tail cylinder 21 that is heated most greatly by the shortest distance. That is, the portion of the wall portion of the tail cylinder 21 that is heated most greatly by the main burner 16 can be efficiently cooled. Therefore, the wall portion of the tail cylinder 21 can be efficiently cooled by a small amount of the first cooling air.
  • the upstream region 21 ⁇ / b> A of the transition piece 21 by the first cooling fluid introduced into the annular passage portion 34 can be prevented from becoming uneven in the circumferential direction of the transition piece 21. Therefore, uniform cooling of the combustor cylinder 12 can be performed more effectively. Since uniform cooling of the combustor cylinder 12 can be achieved, the amount of the first cooling fluid required for cooling the combustor cylinder 12 can be reduced.
  • the combustor cylinder 12 of this embodiment includes a supply port extending portion 30 having an annular passage portion 34 and a cylindrical passage portion 35 similar to those of the first embodiment.
  • the portion on the downstream side in the flow direction of the combustion gas Cg from the downstream supply port 25 ⁇ / b> A is constituted by the first wall portion 31.
  • the annular passage portion 34 and the cylindrical passage portion 35 a portion on the upstream side in the flow direction of the combustion gas Cg from the downstream supply port 25 ⁇ / b> A is constituted by the second wall portion 32.
  • the supply port extending portion 30 includes a heat insulating layer 37 that reduces heat conduction in the first wall portion 31 and the second wall portion 32.
  • the heat insulating layer 37 is provided on the surface on the vehicle interior space 10A side of the first wall portion 31 and the second wall portion 32, but may be provided on the surface on the guide passage 33 side, for example.
  • the heat insulating layer 37 is made of, for example, a thermal spray material having a low thermal conductivity (for example, a ceramic material having a low thermal conductivity) on the surface of the first wall portion 31 and the second wall portion 32 (the surface or guide on the vehicle interior space 10A side). It is obtained by spraying on the surface of the passage 33 side.
  • the heat insulating layer 37 is formed by dividing the first wall portion 31 and the second wall portion 32 in the respective thickness directions, and is formed in a gap between the divided first wall portion 31 and second wall portion 32. It may be an air layer.
  • the same effects as those of the first embodiment can be obtained.
  • the heat of the high-temperature air discharged from the discharge port 27 of the second cooling passage 23 by the heat insulating layer 37 passes through the first wall portion 31 and the second wall portion 32.
  • the configuration of the third embodiment described above can also be applied to the combustor cylinder of the second embodiment described above.
  • the cylinder 12 for combustors of this embodiment is comprised similarly to 1st embodiment.
  • the supply port extension 30 of the combustor cylinder 12 is not supported by the outer peripheral surface 21 c of the tail cylinder 21.
  • the supply port extension portion 30 of this embodiment is supported by the acoustic liner 24.
  • the supply port extending portion 30 is fixed to the acoustic liner 24 via the support portion 38.
  • the support portion 38 is connected to the supply port extending portion 30 and the acoustic liner 24 by welding or brazing, for example.
  • the support portion 38 is connected to the annular passage portion 34, but may be connected to the cylindrical passage portion 35, for example.
  • the support portion 38 may be formed in a rod shape that extends from the acoustic liner 24 to the supply port extension portion 30, for example. In this case, a plurality of support portions 38 may be arranged in the circumferential direction of the transition piece 21.
  • the support portion 38 may be formed in, for example, an arc shape or an annular shape extending in the circumferential direction of the tail cylinder 21.
  • the combustor 2 including the combustor 2, and the gas turbine GT the same effects as those of the first embodiment are achieved.
  • the combustor cylinder 12 of the present embodiment since the supply port extension 30 is supported by the acoustic liner 24, it is not necessary to fix the supply port extension 30 to the outer peripheral surface 21 c of the tail cylinder 21. Therefore, as compared with the case where the supply port extending portion 30 is fixed to the tail tube 21 by welding or the like, it is possible to prevent the thermal stress of the tail tube 21 based on the fixing of the supply port extending portion 30 from increasing.
  • the combustor cylinder 12 of the present embodiment includes a supply port extending portion 30 having a first wall portion 31 and a second wall portion 32 similar to those of the first embodiment.
  • the guide path 33 which guides the compressed air Ca used as 1st cooling air from the vehicle interior space 10A to the downstream supply port 25A of the 1st cooling path 22 is provided. It is formed.
  • the opening 33A of the guide passage 33 with respect to the vehicle interior space 10A is located away from the outer peripheral surface 21c of the transition piece 21.
  • the opening 33A of the guide passage 33 faces the downstream side in the flow direction of the combustion gas Cg, and is located downstream of the discharge port 27 of the second cooling passage 23 in the flow direction of the combustion gas Cg. .
  • the first wall portion 31 and the second wall portion 32 of the present embodiment extend from the outer peripheral surface 21c of the tail tube 21 to the radially outer side of the tail tube 21, and then the discharge port 27 of the second cooling passage 23. It is curved or bent so as to extend to the downstream side in the flow direction of the combustion gas Cg.
  • the 2nd wall part 32 is on the diameter direction outside of tail pipe 21 rather than the 1st wall part 31.
  • the extending direction tip of the first wall portion 31 extending downstream in the flow direction of the combustion gas Cg is located downstream of the extending direction tip of the second wall portion 32 in the flow direction of the combustion gas Cg. It is sufficient that at least the second wall portion 32 is not located on the upstream side in the flow direction of the combustion gas Cg from the front end in the extending direction.
  • the first wall portion 31 and the second wall portion 32 constitute the same annular passage portion 34 as in the first embodiment.
  • the 1st wall part 31 and the 2nd wall part 32 also comprise the cylindrical channel
  • the cylindrical passage 35 is discharged from the annular passage 34 to the outlet of the second cooling passage 23. 27 extends linearly to the downstream side in the flow direction of the combustion gas Cg.
  • a plurality of cylindrical passage portions 35 are arranged at intervals in the circumferential direction of the tail cylinder 21. For example, as shown in FIG.
  • the circumferential positions of the cylindrical passage portions 35 arranged in the circumferential direction of the transition piece 21 are circumferential positions of the downstream supply ports 25 ⁇ / b> A arranged in the circumferential direction of the transition piece 21. For example, it may be shifted in the circumferential direction of the transition piece 21 with respect to the circumferential position of the downstream supply port 25A.
  • the opening 33A of the guide passage 33 of the supply port extension 30 positioned away from the outer peripheral surface 21c of the tail cylinder 21 is downstream in the flow direction of the combustion gas Cg. And located downstream of the discharge port 27 of the second cooling passage 23 in the flow direction of the combustion gas Cg. For this reason, the high temperature air (second cooling air) discharged from the discharge port 27 of the second cooling passage 23 opened in the outer peripheral surface 21 c of the tail cylinder 21 can be suitably prevented from entering the guide passage 33.
  • the opening 33A of the guide passage 33 faces the downstream side in the flow direction of the combustion gas Cg, and therefore the downstream side in the flow direction of the combustion gas Cg in the vehicle interior space 10A. Compressed air Ca flowing into the can be efficiently introduced.
  • the first wall 31 and the first It becomes possible to keep the length of a portion of the two wall portions 32 extending from the outer peripheral surface 21c of the tail tube 21 to the radially outer side of the tail tube 21 short.
  • the configuration of the fifth embodiment can be applied to the configurations of the second to fourth embodiments described above.
  • the combustor cylinder 12 of the present embodiment includes a supply port extending portion 30 having a first wall portion 31 and a second wall portion 32 similar to those of the first embodiment.
  • the guide path 33 which guides the compressed air Ca used as 1st cooling air from the vehicle interior space 10A to the downstream supply port 25A of the 1st cooling path 22 is provided. It is formed.
  • the opening 33A of the guide passage 33 with respect to the vehicle interior space 10A is located away from the outer peripheral surface 21c of the transition piece 21.
  • the opening 33 ⁇ / b> A of the guide passage 33 faces outward in the radial direction of the tail tube 21, and the first wall portion 31 and the second wall portion 32 extend outward in the radial direction of the tail tube 21.
  • the 1st wall part 31 and the 2nd wall part 32 are formed in the whole circumferential direction of the tail cylinder 21, and comprise only the cyclic
  • the supply port extending portion 30 illustrated in FIGS. 13 and 14 is the first space on the downstream side in the distribution direction of the combustion gas Cg from the first wall portion 31 in the vehicle interior space 10A, as in the first embodiment.
  • a communication portion 36A that communicates 10A1 and the second space 10A2 on the upstream side in the flow direction of the combustion gas Cg from the second wall portion 32 is provided.
  • the communication portion 36 ⁇ / b> A of the present embodiment is configured by a cylindrical member provided between the first wall portion 31 and the second wall portion 32. Both ends of the cylindrical member open to the first space 10A1 and the second space 10A2.
  • a plurality of cylindrical members are arranged at intervals in the circumferential direction of the tail cylinder 21, but the present invention is not limited to this.
  • the supply port extension part 30 illustrated in FIG. 15 does not include the communication part 36A (see FIGS. 13 and 14), and has only the first wall part 31 and the second wall part 32.
  • the combustor 2 including the combustor 2, and the gas turbine GT the same effects as those of the first embodiment are achieved.
  • the combustor cylinder 12 of the present embodiment since the first wall portion 31 and the second wall portion 32 of the supply port extending portion 30 constitute only the annular passage portion 34, the first wall portion having a simple shape.
  • the supply port extending portion 30 can be created using the 31 and the second wall portion 32. Therefore, the combustor cylinder 12 can be manufactured at low cost.
  • the configuration of the sixth embodiment described above can also be applied to the combustor cylinders of the third to fifth embodiments described above.
  • the combustor cylinder 12 of the present embodiment includes a supply port extending portion 30 having a first wall portion 31 and a second wall portion 32 similar to those of the first embodiment.
  • the guide path 33 which guides the compressed air Ca used as 1st cooling air from the vehicle interior space 10A to the downstream supply port 25A of the 1st cooling path 22 is provided. It is formed.
  • the opening 33A of the guide passage 33 with respect to the vehicle interior space 10A is located away from the outer peripheral surface 21c of the transition piece 21.
  • the supply port extending portion 30 of this embodiment is formed integrally with the tail cylinder 21. That is, the first wall portion 31 and the second wall portion 32 are formed integrally with the tail tube 21 so as to protrude from the outer peripheral surface of the tail tube 21.
  • the opening 33A of the guide passage 33 may be formed in the entire circumferential direction of the tail cylinder 21 as in the case of the sixth embodiment, for example, as in the case of the cylindrical passage portion 35 of the first embodiment, for example.
  • the first wall portion 31 and the second wall portion 32 may be formed in a cylindrical shape and divided into a plurality of portions in the circumferential direction of the tail tube 21.
  • the supply port extension portions 30 may be provided one by one with respect to the downstream supply ports 25 ⁇ / b> A of the plurality of first cooling passages 22, for example.
  • the supply port extension portion 30 is formed integrally with the tail tube 21, thereby fixing the supply port extension portion 30 to the tail tube 21 by welding or the like. In comparison, it is possible to prevent an increase in the thermal stress of the tail cylinder 21 based on the fixing of the supply port extending portion 30.
  • the configuration of the seventh embodiment described above can also be applied to the combustor cylinder of the second to sixth embodiments described above.
  • the combustor cylinder 12 of the present embodiment includes a blocking portion 39 that blocks the inflow of the compressed air Ca from the space outside the tail cylinder 21 to the annular passage portion 34.
  • a pair of blocking portions 39 are provided at positions facing each other in the radial direction of the transition piece 21.
  • each blocking portion 39 covers the opening 33 ⁇ / b> A of the guide passage 33 including the annular passage portion 34.
  • Each blocking portion 39 does not cover the entire opening 33A, but covers a portion of the opening 33A in the circumferential direction of the tail cylinder 21. That is, the cross-sectional view taken along the line BB in FIG. 17 has the cross-sectional shape illustrated in FIG.
  • the angle range ⁇ of each blocking portion 39 extending in the circumferential direction of the transition piece 21 may be set in a range from 60 ° to 90 °, for example.
  • the pair of blocking portions 39 are formed to have the same size.
  • the compressed air Ca is efficiently supplied from the downstream supply port 25A. It is possible to cool the upstream area 21 ⁇ / b> A of the transition piece 21 more efficiently by introducing it into the single cooling passage 22. Details will be described below.
  • the flow direction of the compressed air Ca in the vicinity of the tail tube 21 is perpendicular to the axial direction of the tail tube 21 (the direction from bottom to top in FIG. 17). ),
  • the compressed air Ca flows in the circumferential direction along the outer periphery of the tail cylinder 21.
  • the circumferential flow velocity distribution and static pressure distribution in the vicinity of the outer periphery of the transition piece 21 are as shown in the graphs of FIGS. In the graphs of FIGS.
  • the circumferential position on the downstream side in the flow direction of the compressed air Ca in the tail cylinder 21 is the reference position (0 °), and the circumferential position on the upstream side in the flow direction in the tail cylinder 21 is It is 180 °.
  • the intermediate circumferential position (intermediate circumferential position) between the upstream side and the downstream side in the flow direction of the transition piece 21 is 90 ° and ⁇ 90 °, respectively.
  • the flow velocity of the compressed air Ca in the vicinity of the outer periphery of the transition piece 21 increases from the upstream position in the flow direction of the transition piece 21 toward the intermediate circumferential position. It becomes late as it goes to the position of the flow direction downstream side. Accordingly, the static pressure of the compressed air Ca in the vicinity of the outer periphery of the transition piece 21 decreases from the upstream position in the flow direction of the transition piece 21 toward the intermediate circumferential position, and the downstream position in the flow direction from the intermediate circumferential position. It rises toward the position of.
  • the compressed air Ca is positioned at or near the intermediate circumferential position because the static pressure in the middle circumferential direction of the transition piece 21 in the guide passage 33 and in the vicinity thereof is low. It becomes difficult to be introduced into the first cooling passage 22 from the downstream supply port 25A.
  • the blocking portion 39 is disposed at a position with respect to the intermediate circumferential position of the transition piece 21, the intermediate circumferential position of the transition piece 21 in the guide passage 33 and its position A decrease in static pressure in the vicinity can be suppressed.
  • the compressed air Ca is efficiently introduced from the downstream supply port 25A located at or near the intermediate circumferential direction position to the first cooling passage 22 so that the upstream region 21A of the tail cylinder 21 is more efficient. Can be cooled to.
  • the configuration of the eighth embodiment described above can be applied to a combustor cylinder in which the first wall portion 31 and the second wall portion 32 constitute at least the annular passage portion 34. That is, the configuration of the eighth embodiment is also applicable to the combustor cylinder of the first to seventh embodiments having the annular passage portion 34.
  • the blocking portion 39 is provided on the guide passage 33 as in the eighth embodiment.
  • it may be provided in the opening 33 ⁇ / b> A, for example, it may be provided in the inside of the cylindrical passage portion 35 or at the boundary between the annular passage portion 34 and the cylindrical passage portion 35.
  • the combustor cylinder 12 of the present embodiment is similar to the second wall of the sixth embodiment shown in FIG. 15 and the eighth embodiment shown in FIGS. 17 and 18.
  • the part 31 and the second wall part 32 are formed in the entire circumferential direction of the transition piece 21 and constitute only the annular passage part 34 communicating with the downstream supply port 25A.
  • the opening 33 ⁇ / b> A of the guide passage 33 is formed in the entire circumferential direction of the transition piece 21.
  • a cross-sectional view taken along the line DD in FIG. 21 has the cross-sectional shape illustrated in FIG.
  • the combustor cylinder 12 of this embodiment includes a partition 300 that partitions the annular passage 34 in the circumferential direction of the tail cylinder 21.
  • a pair of partition portions 300 are formed at positions facing each other in the radial direction of the transition piece 21.
  • each partition part 300 is comprised by the some partition plate part 301 distribute
  • each partition 300 is composed of two partition plates 301.
  • the annular passage 34 is divided into even (four in the illustrated example) divided annular passages 34A, 34B, 34C, 34D arranged in the circumferential direction of the transition piece 21.
  • the interval in the circumferential direction of the two partition plate portions 301 in each partition portion 300 that is, the angular range ⁇ of the interval between the two partition plate portions 301 may be set in a range from 60 ° to 90 °, for example.
  • the compressed air Ca is efficiently supplied from the downstream supply port 25A. It is possible to cool the upstream area 21 ⁇ / b> A of the transition piece 21 more efficiently by introducing it into the single cooling passage 22. Details will be described below.
  • the flow direction (the direction from the bottom to the top in FIG. 21) perpendicular to the axial direction of the tail cylinder 21 in the direction of flow of the compressed air Ca in the interior space 10 ⁇ / b> A in the vicinity of the tail cylinder 21.
  • the compressed air Ca flows in the circumferential direction along the outer periphery of the tail cylinder 21 in the vehicle interior space 10A.
  • the circumferential flow velocity distribution and static pressure distribution in the vicinity of the outer periphery of the transition piece 21 are the same as the graphs of FIGS. 19 and 20 shown in the eighth embodiment.
  • the compressed air Ca flows from the intermediate circumferential direction position of the transition piece 21 (positions at 90 ° and ⁇ 90 ° in FIG. 21) and from the downstream supply port 25A located in the vicinity thereof. It becomes difficult to be introduced into the first cooling passage 22.
  • the compressed air Ca is efficiently introduced into the first cooling passage 22 from the downstream side supply port 25A located in the middle circumferential direction position of the transition piece 21 or in the vicinity thereof, and the upstream area 21A of the transition piece 21 is made to flow. Cooling can be performed more efficiently.
  • the configuration of the above-described ninth embodiment can be applied to a combustor cylinder in which the first wall portion 31 and the second wall portion 32 constitute at least the annular passage portion 34. That is, the configuration of the ninth embodiment is also applicable to the combustor cylinder of the first to eighth embodiments having the annular passage portion 34.
  • the combustor cylinder according to the present embodiment has the first wall portion 31 and the second wall portion 32 disposed on the entire circumferential direction of the tail tube 21.
  • the annular passage portion 34 is formed and communicates with the downstream supply port 25A.
  • the passage cross-sectional area perpendicular to the circumferential direction of the transition piece 21 in the annular passage portion 34 is, for example, 50 times or more the opening area of the downstream supply port 25 ⁇ / b> A with respect to the outer peripheral surface 21 c of the transition piece 21.
  • the annular passage portion 34 is introduced into the annular passage portion 34 from the vehicle interior space 10A by setting the passage cross-sectional area of the annular passage portion 34 to 50 times the opening area of the downstream supply port 25A. It is possible to suppress pressure loss when the first cooling air (compressed air Ca) flows through the annular passage portion 34 in the circumferential direction. That is, even if the first cooling air flows in the circumferential direction of the annular passage portion 34, the static pressure in the annular passage portion 34 can be suppressed from decreasing. It can be introduced into the cooling passage 22.
  • the resistance when the first cooling air is introduced into the first cooling passage 22 from the annular passage portion 34 through the downstream supply port 25A can be suppressed. Cooling air can be smoothly introduced into the first cooling passage 22.
  • a combustor cylinder 12A of the present embodiment includes a tail cylinder 21 (cylinder main body), a first cooling passage 22, a second cooling passage 23, and the same as in the first embodiment. And an acoustic liner 24.
  • the combustor cylinder 12A of the present embodiment does not include the supply port extension portion 30 (see FIGS. 4 and 5) of the first embodiment, but instead includes guide wall portions 40A and 40B.
  • the guide wall portions 40A and 40B are formed to extend in a direction away from the outer peripheral surface 21c of the tail cylinder 21 between the downstream supply port 25A of the first cooling passage 22 and the discharge port 27 of the second cooling passage 23. ing.
  • the guide wall portions 40 ⁇ / b> A and 40 ⁇ / b> B extend outward in the radial direction of the tail cylinder 21.
  • the guide walls 40A and 40B allow compressed air Ca (fluid) that flows from the downstream side in the flow direction of the combustion gas Cg to the upstream side in the interior space 10A of the interior of the tail cylinder 21 with respect to the downstream supply port 25A. And in the direction of flow of the combustion gas Cg from the downstream supply port 25A. 22 and 23 indicate the directions in which the compressed air Ca is guided by the guide wall portions 40A and 40B in the vehicle interior space 10A, respectively.
  • the guide wall portion 40A illustrated in FIG. 22 is upstream in the flow direction of the combustion gas Cg as it goes from the radially outer side of the transition piece 21 toward the both sides in the circumferential direction of the transition piece 21 with respect to the downstream supply port 25A. It is formed so as to be inclined.
  • the guide wall portion 40A illustrated in FIG. 22 is formed so as to sandwich the downstream supply port 25A from the circumferential direction when viewed from the radially outer side of the transition piece 21.
  • the guide wall portion 40A may be formed in a U shape (arc shape) as viewed from the outside in the radial direction of the tail cylinder 21 as shown in FIG. 22, but may be formed in a V shape, for example.
  • the guide wall portion 40B illustrated in FIG. 23 includes the tail tube 21 between the downstream supply port 25A of the first cooling passage 22 and the discharge port 27 of the second cooling passage 23 when viewed from the radially outer side of the tail tube 21.
  • a first plate-like wall portion 41 extending in the circumferential direction, and a second plate-like wall portion 42 extending from the first end portion 41A in the extending direction of the first plate-like wall portion 41 to the upstream side in the flow direction of the combustion gas Cg.
  • the third plate-like wall portion 43 extending from the second end portion 41B in the extending direction of the first plate-like wall portion 41 to the downstream side in the flow direction of the combustion gas Cg.
  • the first end 41 ⁇ / b> A and the second end 41 ⁇ / b> B of the first plate-like wall part 41 are mutually connected to the downstream side supply port 25 ⁇ / b> A of the first cooling passage 22 and the discharge port 27 of the second cooling passage 23. Is located on the opposite side of the circumferential direction. 41 A of 1st end parts of the 1st plate-shaped wall part 41 are located in the distribution direction upstream of the combustion gas Cg with respect to the 2nd end part 41B. That is, the first plate-like wall portion 41 extends in a direction inclined in the flow direction of the combustion gas Cg with respect to the circumferential direction of the tail tube 21 when viewed from the radially outer side of the tail tube 21.
  • the second plate-like wall portion 42 is positioned adjacent to one side in the circumferential direction of the transition piece 21 with respect to the downstream supply port 25 ⁇ / b> A of the first cooling passage 22.
  • the second plate-like wall portion 42 extends upstream in the flow direction of the combustion gas Cg from the downstream supply port 25A.
  • the third plate-like wall portion 43 is positioned adjacent to the other side in the circumferential direction of the transition piece 21 with respect to the discharge port 27 of the second cooling passage 23.
  • the third plate-like wall portion 43 extends further downstream in the flow direction of the combustion gas Cg than the downstream supply port 25A.
  • the walls 40A and 40B can prevent the high-temperature air discharged from the discharge port 27 of the second cooling passage 23 from entering the first cooling passage 22 from the downstream supply port 25A.
  • the compressed air Ca that flows in the direction opposite to the flow direction of the combustion gas Cg in the vehicle interior space 10A is guided in the circumferential direction of the tail cylinder 21 by the guide walls 40A and 40B, and combusts from the downstream supply port 25A.
  • the gas Cg is guided upstream in the flow direction. For this reason, even if high-temperature air circulates upstream in the flow direction of the combustion gas Cg from the downstream supply port 25A due to the flow of the compressed air Ca in the vehicle interior space 10A, it is supplied downstream by the guide walls 40A and 40B. It can prevent approaching the mouth 25A. Therefore, it is also possible to prevent the high-temperature air from entering the first cooling passage 22 from the downstream supply port 25A after having circulated to the upstream side in the flow direction of the combustion gas Cg from the downstream supply port 25A.
  • the high-temperature air discharged from the discharge port 27 of the second cooling passage 23 is the first cooling passage 22.
  • the upstream region 21A of the tail cylinder 21 can be efficiently cooled by the low-temperature first cooling fluid introduced into the first cooling passage 22 with more reliable prevention of entering. That is, the cooling efficiency of the combustor cylinder 12A can be improved.
  • the first wall portion 31 and the second wall portion 32 of the supply port extending portion 30 are formed in a cylindrical shape and have a tail tube as shown in FIGS. Only a plurality of cylindrical passage portions 35 arranged at intervals in the circumferential direction of 21 and communicating with the respective downstream supply ports 25A may be configured. That is, the supply port extension portion 30 includes a plurality of cylindrical passage portions 35, but may not include the annular passage portion 34. Even in this case, as in the case of the first embodiment, the gap between the cylindrical passage portions 35 adjacent in the circumferential direction functions as the communication portion 36.
  • the first wall portion 31 and the second wall portion 32 are, for example, downstream in the flow direction of the combustion gas Cg from the outer peripheral surface 21c of the tail tube 21 toward the radially outer side of the tail tube 21. You may extend in the direction which inclines.
  • the supply port extending portion 30 is not provided for the supply port 25 of the first cooling passage 22 but may be provided for the discharge port 27 of the second cooling passage 23. Good.
  • the high-temperature air discharged from the discharge port 27 of the second cooling passage 23 is discharged into the vehicle interior space 10 ⁇ / b> A at a position where the supply port extending portion 30 is separated from the outer peripheral surface 21 c of the tail tube 21. .
  • the opening 33A of the guide passage 33 may face in a direction other than the downstream side in the flow direction of the combustion gas Cg.
  • the opening 33A may be located upstream of the discharge port 27 of the second cooling passage 23 in the flow direction of the combustion gas Cg, or the position of the discharge port 27 in the flow direction of the combustion gas Cg. It may be located so as to match. More specifically, for example, when the opening 33A of the guide passage 33 is located downstream of the discharge port 27 of the second cooling passage 23 in the flow direction of the combustion gas Cg, the opening 33A is formed of the combustion gas Cg. You may face in arbitrary directions other than the flow direction downstream side.
  • the opening 33A of the guide passage 33 is directed in a direction inclined to the radially outer side of the transition piece 21 with respect to the downstream side in the flow direction of the combustion gas Cg, or when the opening 33A is directed toward the radially outer side of the transition piece 21
  • the portion 33A may be located upstream of the discharge port 27 of the second cooling passage 23 in the flow direction of the combustion gas Cg, or may be positioned to coincide with the position of the discharge port 27 in the flow direction of the combustion gas Cg. May be. Even in these cases, similarly to the case of the fifth embodiment, it is possible to suitably prevent the high-temperature air discharged from the discharge port 27 of the second cooling passage 23 from entering the guide passage 33.
  • the present invention can be applied to a combustor cylinder, a combustor, and a gas turbine, and can improve the cooling efficiency of the combustor cylinder.
  • GT Gas turbine 1 Compressor 2
  • Combustor 3 Turbine 10A Car interior space (space outside tail tube 21) 12, 12A
  • Combustor cylinder 14 Burner 15 Pilot burner 16 Main burner (burner) 21
  • Tail tube (tube body) 21A Upstream region 21B Downstream region 21c Outer peripheral surface 22
  • First cooling passage 23 Second cooling passage 24
  • Acoustic liner 25 Supply port 25A
  • Downstream supply port 27 Discharge port 30
  • Supply port extension portion 31 First wall portion
  • Second wall Part 33
  • Opening 34 Annular passage part 34A, 34B, 34C, 34D Split annular passage part 35 Cylindrical passage part 36, 36A Communication part 37
  • Heat insulation layer 38 Support part 39
  • Partition part 301 Partition plate Ca Compressed air (fluid) Cg combustion gas

Abstract

 燃焼器用筒体(12)は、筒本体(21)と、筒本体に形成される第一冷却通路(22)及び第二冷却通路(23)と、供給口延設部(30)と、を備える。第一冷却通路は、筒本体の外周面(21c)に開口する供給口(25A)を有する。第二冷却通路は、供給口よりも下流側において筒本体の外周面に開口する排出口(27)を有する。供給口延出部は、供給口と排出口との間において筒本体の外周面から延びる第一壁部(31)、及び、供給口よりも上流側において筒本体の外周面から延びる第二壁部(32)を有する。

Description

燃焼器用筒体、燃焼器及びガスタービン
 本発明は、燃焼器用筒体、燃焼器及びガスタービンに関する。
 本願は、2014年7月25日に、日本に出願された特願2014-151827号に基づき優先権を主張し、その内容をここに援用する。
ガスタービンの燃焼器は、高温の燃焼ガスをタービンに送る尾筒を備える。特許文献1には、尾筒の壁部を冷却するために、尾筒の壁部内に二種類の冷却通路を形成した構造が開示されている。
第一冷却通路は、尾筒内を流れる燃焼ガスの流通方向の上流側に位置する尾筒の上流側領域に形成されている。第一冷却通路には、尾筒を配置したガスタービンの車室内部空間内の空気が、尾筒の上流側領域を冷却する第一冷却空気として導入される。このため、第一冷却通路は、尾筒の外周面に開口して第一冷却空気を導入するための供給口を有する。
一方、第二冷却通路は、上記した上流側領域に対して燃焼ガスの流通方向の下流側に位置する尾筒の下流側領域に形成されている。第二冷却通路には、ガスタービンの圧縮機において圧縮された圧縮空気の一部が、尾筒の下流側領域を冷却する第二冷却空気として導入される。第二冷却通路に導入された第二冷却空気は下流側領域を冷却した後、尾筒を配置したガスタービンの車室内部空間に排出される。このため、第二冷却通路は、尾筒の外周面に開口して第二冷却空気を車室内部空間に排出する排出口を有する。第二冷却通路の排出口は、第一冷却通路の供給口よりも燃焼ガスの流通方向の下流側に配されている。この排出口から排出される空気は、上記した第二冷却空気が尾筒を冷却することで加熱された高温空気である。
特許文献1には、第二冷却通路の排出口から車室内部空間に排出された高温空気が、供給口から第一冷却通路に入り込まないように、第一冷却通路の供給口と第二冷却通路の排出口との間に、尾筒の外周面から突出する仕切壁を設けることが開示されている。
特開2012-77660号公報
ところで、尾筒が配置された車室内部空間においては、尾筒内における燃焼ガスの流通方向と逆向きの流れがあり、第二冷却通路の排出口から排出された高温空気が供給口よりも燃焼ガスの流通方向の上流側に回り込んでしまうことがある。この場合、排出口から排出された高温空気が供給口から第一冷却通路に入り込んで、第一冷却通路に導入される空気の温度を十分に低くすることが難しくなる。尾筒の上流側領域の冷却が不十分となる可能性がある。
本発明の目的は、第二冷却通路から排出された高温空気が第一冷却通路に導入されることをより確実に防いで、冷却効率の向上を図ることが可能な燃焼器用筒体、これを備える燃焼器及びガスタービンを提供することである。
本発明の第一態様によれば、燃焼器用筒体は、内部に燃焼ガスが流れて前記燃焼ガスをタービンに送る燃焼器用筒体である。燃焼器用筒体は、軸線に沿って延びる筒本体を備える。燃焼器用筒体は、前記筒本体の壁部内のうち前記燃焼ガスの流通方向の上流側に位置する上流側領域に形成されると共に、前記筒本体の外周面に開口する供給口を有し、前記筒本体の外側の空間から前記供給口を通じて第一冷却流体を導入して前記上流側領域を冷却する第一冷却通路をさらに備える。燃焼器用筒体は、前記筒本体の壁部内のうち前記上流側領域に対して前記燃焼ガスの流通方向の下流側に連続して位置する下流側領域に形成され、第二冷却流体が供給されることで前記下流側領域を冷却し、前記筒本体の外周面のうち前記供給口よりも前記燃焼ガスの流通方向の下流側において開口して前記第二冷却流体を前記筒本体の外側の空間に排出する排出口を有する第二冷却通路をさらに備える。燃焼器用筒体は、前記供給口と前記排出口との間において前記筒本体の外周面から離間する方向に延びる第一壁部、及び、前記供給口よりも前記燃焼ガスの流通方向の上流側において前記筒本体の外周面から離間する方向に延びる第二壁部を有する供給口延設部をさらに備える。
上記燃焼器用筒体では、供給口と排出口との間に供給口延設部の第一壁部が設けられる。このため、筒本体の外側の空間において、一部が第一冷却流体として機能する流体が、筒本体内における燃焼ガスの流通方向と逆向きに流れても、第一壁部によって、第二冷却通路の排出口から排出された高温流体(筒本体の壁部を冷却することで加熱された第二冷却流体)が、供給口から第一冷却通路に入り込むことを防止できる。
上記燃焼器用筒体において、供給口よりも燃焼ガスの流通方向上流側には、供給口延設部の第二壁部が設けられている。このため、仮に、排出口から排出された高温流体が、筒本体の外側の空間における流体の流れによって、供給口よりも燃焼ガスの流通方向上流側に回り込んだとしても、第二壁部によって供給口に近づくことを防止できる。したがって、高温流体が、供給口よりも燃焼ガスの流通方向上流側に回り込んだ後に、供給口から第一冷却通路に入り込むことも防止できる。
上記燃焼器用筒体では、第一壁部及び第二壁部からなる供給口延設部が筒本体の外周面から離間した位置において、筒本体の外側の空間に開口する。筒本体の外周面から離間した領域には、排出口から排出された高温流体が届きにくい。このため、筒本体の外周面から離間した領域に存在するより低温の流体を第一冷却流体として、第一冷却通路に導入することが可能となる。したがって、筒本体の上流側領域を効率よく冷却することが可能となる。
本発明の第二態様によれば、燃焼器用筒体は、第一態様において、前記第一壁部及び前記第二壁部の間に、前記筒本体の外側の空間から前記供給口まで前記第一冷却流体を案内する案内通路が形成され、前記筒本体の外側の空間に対する前記案内通路の開口部が、前記筒本体の径方向の外側に向いていてもよい。
本発明の第三態様によれば、燃焼器用筒体は、第一態様において、前記第一壁部及び前記第二壁部の間に、前記筒本体の外側の空間から前記供給口まで前記第一冷却流体を案内する案内通路が形成され、前記筒本体の外側の空間に対する前記案内通路の開口部が、前記燃焼ガスの流通方向の下流側に向くと共に、前記排出口よりも前記燃焼ガスの流通方向の下流側に位置してもよい。
本発明の第四態様によれば、燃焼器用筒体は、第一から第三態様のいずれか一つの態様において、前記第一壁部及び前記第二壁部が、前記筒本体の周方向全体に形成され、前記供給口に連通する環状通路部を構成してもよい。
本発明の第五態様によれば、燃焼器用筒体は、第四態様において、前記筒本体の外側の空間から前記環状通路部への前記第一冷却流体の流入を阻止する阻止部を備え、前記阻止部が、前記筒本体の径方向で互いに相対する位置に一対設けられてもよい。
本発明の第六態様によれば、燃焼器用筒体は、第四又は第五態様において、前記環状通路部を周方向に区画する仕切部を備えてもよい。
本発明の第七態様によれば、燃焼器用筒体は、第六態様において、前記仕切部が、前記筒本体の径方向で互いに相対する位置に一対設けられてもよい。
本発明の第八態様によれば、燃焼器用筒体は、第四から第七態様のいずれか一つの態様において、前記環状通路部のうち前記筒本体の周方向に直交する通路断面積が、前記供給口の開口面積の50倍以上であってもよい。
本発明の第九態様によれば、燃焼器用筒体は、第四から第八態様のいずれか一つの態様において、前記第一壁部及び前記第二壁部が、筒状に形成されて前記環状通路部と前記筒本体の外側の空間とを連通する筒状通路部を構成してもよい。
本発明の第十態様によれば、燃焼器用筒体は、第九態様において、前記筒状通路部が、前記筒本体の周方向に間隔をあけて複数配列されてもよい。
本発明の第十一態様によれば、燃焼器用筒体は、第一から第三態様のいずれか一つの態様において、前記供給口が、前記筒本体の周方向に間隔をあけて複数配列され、前記第一壁部及び前記第二壁部が、筒状に形成されると共に前記筒本体の周方向に間隔をあけて配列され、各供給口に連通する複数の筒状通路部を構成してもよい。
本発明の第十二態様によれば、燃焼器用筒体は、第十又は第十一態様において、前記筒状通路部の周方向位置が、前記筒本体のうち前記燃焼ガスの流通方向の上流側の端部において前記筒本体の周方向に複数配列されたバーナの中心の周方向位置に一致してもよい。
本発明の第十三態様によれば、燃焼器用筒体は、第十二態様において、複数の前記筒状通路部が、前記筒本体の周方向に等間隔に配列されてもよい。
本発明の第十四態様によれば、燃焼器用筒体は、第一から第十三態様のいずれか一つの態様において、前記供給口延設部が、前記筒本体の外側の空間のうち、前記第一壁部よりも前記燃焼ガスの流通方向の下流側の第一空間と、前記第二壁部よりも前記燃焼ガスの流通方向の上流側の第二空間と、を相互に連通する連通部を備えてもよい。
本発明の第十五態様によれば、燃焼器用筒体は、第一から第十四態様のいずれか一つの態様において、前記供給口延設部が、前記第一壁部及び前記第二壁部における熱伝導を低減する断熱層を備えてもよい。
本発明の第十六態様によれば、燃焼器用筒体は、第一から第十五態様のいずれか一つの態様において、前記供給口延設部が、前記筒本体の外周面に支持されてもよい。
本発明の第十七態様によれば、燃焼器用筒体は、第一から第十五態様のいずれか一つの態様において、前記筒本体のうち前記供給口延設部よりも前記燃焼ガスの流通方向の上流側に音響ライナが設けられ、前記供給口延設部が、前記音響ライナに支持されてもよい。
本発明の第十八態様によれば、燃焼器用筒体は、第一から第十五態様のいずれか一つの態様において、前記供給口延設部が、前記筒本体に一体に形成されてもよい。
本発明の第十九態様によれば、燃焼器用筒体は、内部に燃焼ガスが流れて該燃焼ガスをタービンに送る燃焼器用筒体である。燃焼器用筒体は、軸線に沿って延びる筒本体を備える。燃焼器用筒体は、前記筒本体の壁部内のうち前記燃焼ガスの流通方向の上流側に位置する上流側領域に形成されると共に、前記筒本体の外周面に開口する供給口を有し、前記筒本体の外側の空間から前記供給口を通じて第一冷却流体を導入して前記上流側領域を冷却する第一冷却通路をさらに備える。燃焼器用筒体は、前記筒本体の壁部内のうち前記上流側領域に対して前記燃焼ガスの流通方向の下流側に連続して位置する下流側領域に形成され、第二冷却流体が供給されることで前記下流側領域を冷却し、前記筒本体の外周面のうち前記供給口よりも前記燃焼ガスの流通方向の下流側において開口して前記第二冷却流体を前記筒本体の外側の空間に排出する排出口を有する第二冷却通路をさらに備える。燃焼器用筒体は、前記供給口と前記排出口との間において前記筒本体の外周面から離間する方向に延びて形成され、前記筒本体の外側の空間において前記燃焼ガスの流通方向と逆向きに流れる流体を、前記供給口に対して前記筒本体の周方向に案内すると共に、前記供給口よりも前記燃焼ガスの流通方向の上流側に案内する案内壁部をさらに備える。
上記燃焼機器筒体によれば、一部が第一冷却流体として機能する流体が、筒本体内における燃焼ガスの流通方向と逆向きに流れても、案内壁部によって、第二冷却通路の排出口から排出された高温流体(筒本体の壁部を冷却することで加熱された第二冷却流体)が、供給口から第一冷却通路に入り込むことを防止できる。
上記燃焼器用筒体では、筒本体の外側の空間において燃焼ガスの流通方向と逆向きに流れる流体は、案内壁部によって、筒本体の周方向に案内され、かつ、供給口よりも燃焼ガスの流通方向上流側に案内される。このため、高温流体が、筒本体の外側の空間における流体の流れによって供給口よりも燃焼ガスの流通方向上流側に回り込んでも、案内壁部によって供給口に近づくことを防止できる。したがって、高温流体が、供給口よりも燃焼ガスの流通方向上流側に回り込んだ後に、供給口から第一冷却通路に入り込むことも防止できる。
本発明の第二十態様によれば、燃焼器は、第一から第十九態様のいずれか一つの態様における前記燃焼器用筒体と、燃料を噴射するバーナと、を備える。
本発明の第二十一態様によれば、ガスタービンは、第二十態様における燃焼器と、前記燃焼器に送り出す圧縮空気を生成する圧縮機と、前記燃焼器から送り出された燃焼ガスにより回転するロータを備えるタービンと、を備える。
上述した燃焼器用筒体、燃焼器及びガスタービンによれば、第二冷却通路の排出口から排出された高温流体(筒本体の壁部を冷却することで加熱された第二冷却流体)が、第一冷却通路に入り込むことをより確実に防止して、第一冷却通路に導入される第一冷却流体によって筒本体の上流側領域を効率よく冷却することができる。すなわち、燃焼器用筒体の冷却効率の向上を図ることができる。
本発明の第一実施形態に係るガスタービンの全体構成を示す概略図である。 本発明の第一実施形態に係るガスタービンの燃焼器及びその周辺構造の一例を示す図である。 本発明の第一実施形態に係る燃焼器用筒体を示す概略断面図である。 図3に示す燃焼器用筒体の要部を示す断面図である。 図4に示す燃焼器用筒体の要部を尾筒の径方向外側から見た平面図である。 図4,5に示す燃焼器用筒体の要部を示す一部破断斜視図である。 本発明の第二実施形態に係る燃焼器用筒体を燃料ガスの流通方向上流側から見た概略断面図である。 図7に示す燃焼器用筒体の要部拡大断面図である。 本発明の第三実施形態に係る燃焼器用筒体の要部を示す断面図である。 本発明の第四実施形態に係る燃焼器用筒体の要部を示す断面図である。 本発明の第五実施形態に係る燃焼器用筒体の要部を示す断面図である。 図11に示す燃焼器用筒体の要部を尾筒の径方向外側から見た平面図である。 本発明の第六実施形態に係る燃焼器用筒体の第一例の要部を示す断面図である。 図13のA-A矢視断面図である。 本発明の第六実施形態に係る燃焼器用筒体の第二例の要部を示す断面図である。 本発明の第七実施形態に係る燃焼器用筒体の要部を示す断面図である。 本発明の第八実施形態に係る燃焼器用筒体を燃料ガスの流通方向上流側から見た概略断面図である。 図17のC-C矢視断面図である。 図17に示す尾筒の外周近傍における周方向の流速分布を示すグラフである。 図17に示す尾筒の外周近傍における周方向の静圧分布を示すグラフである。 本発明の第九実施形態に係る燃焼器用筒体を燃料ガスの流通方向上流側から見た概略断面図である。 本発明の第十一実施形態に係る燃焼器用筒体の第一例の要部を示す平面図である。 本発明の第十一実施形態に係る燃焼器用筒体の第二例の要部を示す平面図である。 本発明の他の実施形態に係る燃焼器用筒体の要部を示す断面図である。 図24のE-E矢視断面図である。
以下、添付図面を参照して、本発明による燃焼器用筒体、燃焼器、ガスタービンを実施するための形態を説明する。しかし、本発明はこれらの実施形態のみに限定されるものではない。
〔第一実施形態〕
はじめに、図1~6を参照して第一実施形態に係る燃焼器用筒体、燃焼器、ガスタービンについて説明する。
図1に示すように、本実施形態のガスタービンGTは、圧縮機1と、燃焼器2と、タービン3と、を備える。
圧縮機1は、空気を空気取込口から作動流体として取り込んで圧縮空気を生成する。
燃焼器2は、圧縮機1の吐出口に接続されている。燃焼器2は、圧縮機1から吐出された圧縮空気に燃料を噴射して高温・高圧の燃焼ガスを発生させる。
タービン3は、燃焼器2から送り出された燃焼ガスの熱エネルギをロータ4の回転エネルギに変換して駆動力を発生させる。タービン3は、発生させた駆動力をロータ4に連結された発電機Geに伝達する。
本実施形態のガスタービンGTには、圧縮機1で圧縮した圧縮空気の一部を抽気し、圧縮空気よりも高い圧力に昇圧する昇圧装置5がさらに設けられている。昇圧装置5は、圧縮空気を圧縮機1から燃焼器2に供給する圧縮空気供給流路6の途中から分岐して圧縮空気の一部を抽気する分岐流路7に設けられ、例えば電動モータMにより駆動される。
昇圧装置5で昇圧された抽気昇圧空気は、昇圧空気流路8を通って燃焼器2に供給され、後述する燃焼器2の尾筒21を冷却する空気(以下、冷却空気と呼ぶ。)として使用される。尾筒21の冷却に使用された後の冷却空気は、戻し流路9を通って圧縮空気供給流路6に戻され、圧縮空気供給流路6を流れる圧縮空気の主流と合流した後、燃焼器2において燃料を燃焼させるための燃焼用空気として再利用される。
すなわち、本実施形態のガスタービンGTは、圧縮機1から供給されて燃焼器2において燃焼用空気として使用される圧縮空気の一部を、燃焼器2の尾筒21を冷却する冷却空気として用いた後、この冷却空気を回収して圧縮空気の主流と共に燃焼器2における燃焼用空気として再利用する回収式空気冷却構造(クローズド冷却サイクル構造)を備える。主流(圧縮空気供給流路6)から抽気された圧縮空気の一部は、図1に示すように、燃焼器2の尾筒21の冷却のみに使用されることに限らず、例えば、燃焼器2の尾筒21の冷却に加えてタービン3の静翼や動翼などの冷却にも使用されてもよい。
燃焼器2は、略円筒形状の外観を有し、例えば図2に示すように、主にガスタービンGTの車室10(ケーシング)内に形成された車室内部空間10Aに配置される。燃焼器2を配した車室内部空間10Aには、圧縮機1において圧縮された圧縮空気が導入されて充満している。燃焼器2は、燃焼器本体11と、燃焼器用筒体12と、を備える。
燃焼器本体11は、供給された燃料と圧縮機1から吐出された圧縮空気とを反応させる燃焼室として機能する。燃焼器用筒体12は、燃焼器本体11から流入した燃焼ガスをタービン3に送る。
燃焼器本体11は、円筒状の内筒13と、内筒13内に配されて燃料を噴射するバーナ14と、を備える。
内筒13の一方の開口は、車室内部空間10Aに充満した圧縮空気を内筒13内に導入する上流側の開口である。内筒13の他方の開口は、下流側の開口であり、後述する尾筒21が連結される。
バーナ14には、パイロットバーナ15とメインバーナ16とがある。パイロットバーナ15は、内筒13の中心軸に沿って設けられる。パイロットバーナ15は、外部から供給される燃料を噴射し、燃料を拡散燃焼させる。メインバーナ16は、内筒13内に複数設けられる。複数のメインバーナ16は、パイロットバーナ15を囲むように内筒13の周方向に間隔をあけて配列される。各メインバーナ16は、内筒13の中心軸に平行するように延びている。メインバーナ16は、燃料を噴射し、この燃料と圧縮空気とを予め混合して予混合気を生成した上で、この予混合気を噴射して予混合燃焼させる。
燃焼器用筒体12は、図2~6に示すように、尾筒(筒本体)21と、第一冷却通路22と、第二冷却通路23と、音響ライナ24と、を備える。
尾筒21は、軸線に沿って延びており、内部に燃焼器本体11から流入した燃焼ガスCgの流速を速めてタービン3に導入する。尾筒21の一方の開口は、前述した燃焼器本体11の内筒13(図2参照)の下流側の開口に接続される。尾筒21の他方の開口は、タービン3に接続される。尾筒21の内部には、燃焼器本体11から流入した燃焼ガスCgが流れる。図3~6では、燃焼ガスCgが尾筒21の内部において紙面の左側(上流側)から右側(下流側)に流れる。尾筒21の外側の空間、すなわち車室内部空間10Aにおいては、圧縮機1から吐出された圧縮空気Caが前述した内筒13の上流側の開口に向かうように、尾筒21内における燃焼ガスCgの流通方向と逆向きに流れる。
第一冷却通路22は、尾筒21の壁部内のうち燃焼ガスCgの流通方向の上流側に位置する上流側領域21Aに形成される。第一冷却通路22は、尾筒21の外周面21cに開口する供給口25を有する。これにより、第一冷却通路22は、車室内部空間10Aから供給口25を通じて圧縮空気(流体)Caを第一冷却空気(第一冷却流体)として導入することで、尾筒21の上流側領域21Aを冷却する。
本実施形態の第一冷却通路22は、尾筒21の軸線方向に沿って延びている。第一冷却通路22は、尾筒21の周方向に間隔をあけて複数配列されている。
各第一冷却通路22の供給口25は、尾筒21の上流側領域21Aに設けられた音響ライナ24に対して燃焼ガスCgの流通方向の両側に一つずつ設けられている。音響ライナ24よりも燃焼ガスCgの流通方向の下流側に位置する複数の第一冷却通路22の供給口25A(以下、下流側供給口25Aと呼ぶ。)は、尾筒21の周方向に一列に並んでいる。
各第一冷却通路22は、尾筒21の外周面21cに開口して第一冷却空気を尾筒21の外部に排出する排出口26を有する。第一冷却通路22の排出口26は音響ライナ24の内部に開口する。すなわち、第一冷却空気は、尾筒21の上流側領域21Aを冷却した上で音響ライナ24内に排出される。
第二冷却通路23は、尾筒21の壁部内のうち尾筒21の上流側領域21Aに対して燃焼ガスCgの流通方向の下流側に連続して位置する下流側領域21Bに形成される。第二冷却通路23は、前述した昇圧装置5(図1参照)で昇圧された抽気昇圧空気が第二冷却空気(第二冷却流体)として第二冷却通路23に供給されることで、尾筒21の下流側領域21Bを冷却する。第二冷却通路23は、尾筒21の外周面21cのうち下流側供給口25Aよりも下流側において開口して第二冷却空気を車室内部空間10Aに排出する排出口27を有する。
本実施形態の第二冷却通路23は、尾筒21の軸線方向に沿って延びている。第二冷却通路23は、尾筒21の周方向に間隔をあけて複数配列されている。
各第二冷却通路23の排出口27は、燃焼ガスCgの流通方向上流側に位置する第二冷却通路23の長手方向の第一端部に設けられている。複数の第二冷却通路23の排出口27は、尾筒21の周方向に一列に並んでいる。
各第二冷却通路23は、尾筒21の外周面21cに開口して第二冷却空気を第二冷却通路23内に導入するための供給口28を有する。第二冷却通路23の供給口28は、第二冷却通路23の長手方向の第二端部に設けられ、タービン3側に位置する尾筒21の下流側端部に位置する。
尾筒21の下流側端部の外周面21cには、尾筒21の周方向全体に形成されて、複数の第二冷却通路23の供給口28を一括して覆うと共に、第二冷却通路23の供給口28に連通する導入空間を形成する環状通路部29(マニホールド)が設けられている。環状通路部29は、その導入空間が車室内部空間10Aに連通しないように形成されている。これにより、第二冷却空気(昇圧装置5で昇圧された抽気昇圧空気)は、環状通路部29内を介して、各第二冷却通路23の供給口28から各第二冷却通路23に供給される。
第二冷却通路23に供給された第二冷却空気は、尾筒21の下流側領域21Bを冷却した上で車室内部空間10Aに排出される。第二冷却空気は、第二冷却通路23において尾筒21の壁部を冷却することで加熱されるため、第二冷却通路23の排出口27から排出される際には、第二冷却通路23の供給口28における第二冷却空気の温度、及び、車室内部空間10Aに充満する圧縮空気Caの温度よりも高い高温空気(高温流体)となる。車室内部空間10Aに排出された高温空気(第二冷却空気)は、車室内部空間10A内に充満する圧縮空気Caと合流することで、燃焼用空気として再利用される。
音響ライナ24は、上流側領域21Aにおける尾筒21の外周に設けられている。音響ライナ24の一部は、尾筒21の壁部によって構成されている。音響ライナ24の内部空間は、尾筒21の壁部を貫通して形成された多数の音響穴24Aを介して尾筒21の内部に連通する。このため、前述した第一冷却通路22は、音響穴24Aと干渉しない位置に設けられる。音響ライナ24は、ガスタービンGTの燃焼振動(燃焼器2内の圧力変動、速度変動、発熱率変動がフィードバックすることで発生する自励振動)を低減する。
上記のように音響ライナ24に音響穴24Aが設けられることで、前述した第一冷却通路22の排出口26から音響ライナ24内に排出された第一冷却空気は、音響穴24Aを介して尾筒21の内部に流出する。
前述した燃焼器用筒体12は、図4~6に示すように、供給口延設部30を備える。
供給口延設部30は、第一冷却通路22の下流側供給口25Aと第二冷却通路23の排出口27との間において尾筒21の外周面21cから離間する方向に延びる第一壁部31を備える。供給口延設部30は、下流側供給口25Aよりも燃焼ガスCgの流通方向の上流側において尾筒21の外周面21cから離間する方向に延びる第二壁部32をさらに備える。本実施形態では、第二壁部32が第一冷却通路22の下流側供給口25Aと音響ライナ24との間に配される。
これら第一壁部31及び第二壁部32の間には、第一冷却空気となる圧縮空気Caを車室内部空間10Aから第一冷却通路22の下流側供給口25Aまで案内する案内通路33が形成される。車室内部空間10Aに対する案内通路33の開口部33Aは、尾筒21の外周面21cから少なくとも尾筒21の径方向外側に離間して位置する。本実施形態では、案内通路33の開口部33Aが、尾筒21の径方向の外側に向いている。すなわち、本実施形態では、第一壁部31及び第二壁部32が尾筒21の径方向外側に延びている。
尾筒21の外周面21cに対する案内通路33の開口部33Aの高さ位置は、特に限定されなくてよいが、例えば図4のように音響ライナ24よりも低く位置してもよいし、例えば音響ライナ24よりも高く位置してもよい。
本実施形態では、第一壁部31及び第二壁部32が、尾筒21の周方向全体に形成され、下流側供給口25Aに連通する環状通路部34を構成している。第一壁部31及び第二壁部32は、筒状に形成されて環状通路部34と車室内部空間10Aとを連通する筒状通路部35も構成している。
言い換えれば、環状通路部34及び筒状通路部35のうち下流側供給口25Aよりも燃焼ガスCgの流通方向下流側の部分が第一壁部31によって構成されている。環状通路部34及び筒状通路部35のうち下流側供給口25Aよりも燃焼ガスCgの流通方向上流側の部分が第二壁部32によって構成されている。
これら環状通路部34及び筒状通路部35によって前述した案内通路33が形成されている。車室内部空間10Aに対する筒状通路部35の開口が案内通路33の開口部33Aとなっている。本実施形態の筒状通路部35は、尾筒21の径方向に直線状に延びている。これによって、案内通路33の開口部33Aが尾筒21の径方向外側に向く。
本実施形態の供給口延設部30は、車室内部空間10Aのうち、第一壁部31よりも燃焼ガスCgの流通方向下流側の第一空間10A1と、第二壁部32よりも燃焼ガスCgの流通方向上流側の第二空間10A2と、を相互に連通する連通部36を備える。本実施形態では、筒状通路部35が尾筒21の周方向に間隔をあけて複数配列されることで、周方向に隣り合う筒状通路部35の間の隙間が上記した連通部36として機能する。
尾筒21の周方向に複数配列された筒状通路部35の周方向位置は、例えば図5に示すように、尾筒21の周方向に複数配列された下流側供給口25Aの周方向位置に一致してもよいが、例えば下流側供給口25Aの周方向位置に対して尾筒21の周方向にずれて位置してもよい。
各筒状通路部35は、例えば図5に示すように、一つの下流側供給口25Aと尾筒21の径方向に重なるように設けられてもよいが、例えば複数の下流側供給口25Aと尾筒21の径方向に重なるように設けられてもよい。各筒状通路部35は、例えば下流側供給口25Aと尾筒21の径方向に重ならないように設けられてもよい。
各筒状通路部35は、例えば図5に示すように、尾筒21の径方向外側から見て円形の筒状に形成されてもよいが、例えば正方形の筒状に形成されてもよいし、例えば尾筒21の周方向に延びる楕円形あるいは矩形の筒状に形成されてもよい。
本実施形態の供給口延設部30は、尾筒21の外周面21cに支持されている。具体的に説明すれば、供給口延設部30は、例えば溶接、ロー付けなどによって尾筒21の外周面21cに固定されている。図4~6においては、供給口延設部30の環状通路部34が、尾筒21の外周面21cに固定されている。
上記した供給口延設部30は、第一冷却通路22の下流側供給口25Aのみに対して設けられることに限らず、例えば第一冷却通路22の両方の供給口25に対して設けられてもよい。
以上のように構成される本実施形態の燃焼器用筒体12では、第一冷却通路22の下流側供給口25Aと第二冷却通路23の排出口27との間に供給口延設部30の第一壁部31が設けられる。このため、車室内部空間10Aにおいて圧縮空気Caが尾筒21内における燃焼ガスCgの流通方向と逆向きに流れても、第一壁部31によって、第二冷却通路23の排出口27から排出された高温空気(尾筒21の壁部を冷却することで加熱された第二冷却空気)が、下流側供給口25Aから第一冷却通路22に入り込むことを防止できる。
本実施形態の燃焼器用筒体12において、第一冷却通路22の下流側供給口25Aよりも燃焼ガスCgの流通方向上流側には、供給口延設部30の第二壁部32が設けられている。このため、仮に、第二冷却通路23の排出口27から排出された高温空気(第二冷却空気)が、車室内部空間10Aにおける圧縮空気Caの流れによって、第一冷却通路22の下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に回り込んだとしても、第二壁部32によって下流側供給口25Aに近づくことを防止できる。したがって、高温空気が、下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に回り込んだ後に、下流側供給口25Aから第一冷却通路22に入り込むことも防止できる。
本実施形態の燃焼器用筒体12では、第一壁部31及び第二壁部32からなる供給口延設部30が尾筒21の外周面21cから離間した位置において、車室内部空間10Aに開口する。尾筒21の外周面21cから離間した領域には、第二冷却通路23の排出口27から排出された高温空気が届きにくい。このため、尾筒21の外周面21cから離間した領域に存在する上記高温空気よりも低温の圧縮空気Caを第一冷却流体として、第一冷却通路22に導入することが可能となる。
以上のことから、本実施形態の燃焼器用筒体12、これを備える燃焼器2及びガスタービンGTによれば、第二冷却通路23の排出口27から排出された高温空気が第一冷却通路22に入り込むことをより確実に防止して、第一冷却通路22に導入される低温の第一冷却流体によって尾筒21の上流側領域21Aを効率よく冷却することができる。すなわち、燃焼器用筒体12の冷却効率の向上を図ることができる。
本実施形態の燃焼器用筒体12によれば、尾筒21の外周面21cから離間して位置する供給口延設部30の案内通路33の開口部33Aが、尾筒21の径方向の外側に向いているため、尾筒21の外周面21cに開口する第二冷却通路23の排出口27から排出された高温空気(第二冷却空気)が、案内通路33に入り込むことを好適に防止できる。
本実施形態の燃焼器用筒体12において、案内通路33の開口部33Aを尾筒21の径方向外側に向ける構造は、簡単に作成可能である。例えば、直線状に延びる環状通路部34や筒状通路部35を作成すること、及び、これら環状通路部34や筒状通路部35が尾筒21の径方向外側に延びるように設置することは容易である。すなわち、供給口延設部30の作成及び設置を容易に行うことができる。したがって、供給口延設部30を備える燃焼器用筒体12を安価に製造できる。
本実施形態の燃焼器用筒体12によれば、供給口延設部30が、尾筒21の外周面21c上において環状通路部34及び筒状通路部35を順次連ねることで構成される。筒状通路部35が案内通路33の開口部33Aを構成する。すなわち、筒状通路部35によって、圧縮空気Caを案内通路33内に導入する開口部33Aの領域が限定されるため、第二冷却通路23の排出口27から排出された高温空気(第二冷却空気)が、案内通路33に入り込むことを好適に防止できる。
本実施形態の燃焼器用筒体12において、車室内部空間10Aから筒状通路部35の内部空間に導入された圧縮空気Ca(第一冷却空気)は、環状通路部34の内部空間に導入されることで、尾筒21の周方向全体に行き渡る。このため、筒状通路部35が尾筒21の周方向の一部だけに設けられても、圧縮空気Caを周方向全体に配列された複数の第一冷却通路22に導入することができる。
本実施形態の燃焼器用筒体12によれば、供給口延設部30が、車室内部空間10Aのうち、第一壁部31よりも燃焼ガスCgの流通方向下流側の第一空間10A1と、第二壁部32よりも燃焼ガスCgの流通方向上流側の第二空間10A2と、を相互に連通する連通部36を備える。このため、車室内部空間10Aの圧縮空気Caの流れによって、第二冷却通路23の排出口27から排出された高温空気が、車室内部空間10Aの圧縮空気Caの流れに合流して、第一空間10A1から連通部36を通じて第二空間10A2に流れる。これにより、高温空気が径方向外側に流れることを防ぐことができる。したがって、尾筒21の外周面21cから径方向外側に延びる第一壁部31及び第二壁部32の長さを小さく抑えることができる。
本実施形態の燃焼器用筒体12では、供給口延設部30の連通部36が周方向に隣り合う筒状通路部35の間の隙間によって構成される。前述したように直線状に延びる筒状通路部35は簡単に作成できるため、供給口延設部30の連通部36を簡単に構成することが可能である。
本実施形態の燃焼器用筒体12によれば、供給口延設部30が溶接によって尾筒21の外周面21cに固定される。このため、供給口延設部30と尾筒21の外周面21cとの間に隙間が生じることを確実に防止できる。したがって、車室内部空間10Aから供給口延設部30の案内通路33に導入された圧縮空気Caが供給口延設部30と尾筒21の外周面21cとの間の隙間から車室内部空間10Aに漏れ出すことを防いで、圧縮空気Caを効率よく第一冷却通路22に導入することが可能となる。
〔第二実施形態〕
次に、図7,8を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第二実施形態について説明する。第二実施形態において、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図7,8に示すように、本実施形態の燃焼器2は、第一実施形態と同様の燃焼器本体11(図2参照)及び燃焼器用筒体12を備える。燃焼器本体11は、第一実施形態と同様の内筒13(図2参照)と、パイロットバーナ15及びメインバーナ(バーナ)16を有するバーナ14を備える。
パイロットバーナ15及びメインバーナ16は、第一実施形態においても説明したように、内筒13内に配される、すなわち、尾筒21のうち燃焼ガスCgの流通方向の上流側の端部に配される。パイロットバーナ15は内筒13の中心軸に沿って設けられる。複数(図7においては八つ)のメインバーナ16は、パイロットバーナ15を囲むように内筒13の周方向に配列される。本実施形態では、メインバーナ16が内筒13の周方向に等間隔で配列される。メインバーナ16の数は任意であってよい。
本実施形態の燃焼器用筒体12は、第一実施形態と同様の環状通路部34及び複数の筒状通路部35を有する供給口延設部30を備える。
本実施形態では、各筒状通路部35の周方向位置が、メインバーナ16の中心の周方向位置に一致している。その上で、本実施形態では、複数の筒状通路部35が尾筒21の周方向に等間隔に配列されている。
本実施形態では、筒状通路部35の数は、図7のようにメインバーナ16の数に一致しているが、少なくとも複数の筒状通路部35が尾筒21の周方向に等間隔に配列されれば、例えばメインバーナ16の数よりも多くても少なくてもよい。
筒状通路部35の数がメインバーナ16の数よりも少ない場合、筒状通路部35の数は例えばメインバーナ16の数の1/2、1/3、1/4、・・・などに設定されればよい。筒状通路部35の数がメインバーナ16の数よりも多い場合、筒状通路部35の数は例えばメインバーナ16の数の整数倍(2倍、3倍、4倍…)に設定されればよい。この場合、複数の筒状通路部35の一部の周方向位置が、メインバーナ16の中心の周方向位置に一致し、残りの筒状通路部35の周方向位置は、メインバーナ16の中心の周方向位置に対して尾筒21の周方向にずれて位置する。
本実施形態の尾筒21では、例えば図8に示すように、尾筒21の周方向に複数配列された第一冷却通路22の下流側供給口25Aの一部が、メインバーナ16の中心の周方向位置に一致するように配された筒状通路部35の周方向位置と一致するとよい。
以上のように構成される本実施形態の燃焼器用筒体12、これを備える燃焼器2及びガスタービンGTによれば、第一実施形態と同様の効果を奏する。
本実施形態の燃焼器用筒体12によれば、尾筒21の上流側領域21A(図3,4参照)をさらに効率よく冷却することが可能となる。具体的に説明すれば、メインバーナ16による尾筒21の上流側領域21Aの壁部の加熱量は、メインバーナ16の中心の周方向位置に対応する尾筒21の周方向部分において最も大きく、周方向に隣り合うメインバーナ16の間に位置する尾筒21の周方向部分において小さい。ここで、本実施形態の燃焼器用筒体12では、筒状通路部35の周方向位置がメインバーナ16の中心の周方向位置に一致している。このため、筒状通路部35から環状通路部34に導入された第一冷却空気は、最短距離で尾筒21の壁部のうちメインバーナ16によって最も大きく加熱される部分に到達する。すなわち、メインバーナ16によって最も大きく加熱される尾筒21の壁部の部分を効率よく冷却できる。したがって、少量の第一冷却空気によって尾筒21の壁部を効率よく冷却することが可能となる。
本実施形態では、複数の筒状通路部35が尾筒21の周方向に等間隔に配列されているため、環状通路部34に導入された第一冷却流体による尾筒21の上流側領域21Aの冷却が、尾筒21の周方向で不均等になることを抑制できる。したがって、燃焼器用筒体12の均一な冷却をより効果的に行うことができる。燃焼器用筒体12の均一な冷却を図ることができることで、燃焼器用筒体12の冷却に要する第一冷却流体の量を削減することが可能となる。
〔第三実施形態〕
次に、図9を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第三実施形態について説明する。第三実施形態において、第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図9に示すように、本実施形態の燃焼器用筒体12は、第一実施形態と同様の環状通路部34及び筒状通路部35を有する供給口延設部30を備える。環状通路部34及び筒状通路部35のうち下流側供給口25Aよりも燃焼ガスCgの流通方向下流側の部分は、第一壁部31によって構成されている。環状通路部34及び筒状通路部35のうち下流側供給口25Aよりも燃焼ガスCgの流通方向上流側の部分は、第二壁部32によって構成されている。
本実施形態では、供給口延設部30が第一壁部31及び第二壁部32における熱伝導を低減する断熱層37を備える。
図示例では、断熱層37が第一壁部31及び第二壁部32のうち車室内部空間10A側の面に設けられているが、例えば案内通路33側の面に設けられてもよい。この断熱層37は、例えば熱伝導率の小さい溶射材(例えば熱伝導率の小さいセラミックス系材料)を第一壁部31及び第二壁部32の表面(車室内部空間10A側の面や案内通路33側の面)に溶射することで得られる。
断熱層37は、例えば第一壁部31や第二壁部32をそれぞれの厚さ方向に分割して形成し、分割された第一壁部31や第二壁部32の隙間に形成される空気層であってもよい。
本実施形態の燃焼器用筒体12によれば、第一実施形態と同様の効果を奏する。
本実施形態の燃焼器用筒体12によれば、断熱層37によって、第二冷却通路23の排出口27から排出された高温空気の熱が、第一壁部31や第二壁部32を介して供給口延設部30の案内通路33に導入された第一冷却空気に伝わることを抑制できる。すなわち、案内通路33に導入された第一冷却空気が加熱されることを抑制できるため、第一冷却空気によって尾筒21の上流側領域21Aを効率よく冷却することができる。
上記した第三実施形態の構成は、前述した第二実施形態の燃焼器用筒体にも適用可能である。
〔第四実施形態〕
次に、図10を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第四実施形態について説明する。第四実施形態において、第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図10に示すように、本実施形態の燃焼器用筒体12は、第一実施形態と同様に構成されている。ただし、本実施形態において、燃焼器用筒体12の供給口延設部30は尾筒21の外周面21cに支持されていない。本実施形態の供給口延設部30は、音響ライナ24に支持されている。具体的に説明すれば、供給口延設部30は、支持部38を介して音響ライナ24に固定されている。支持部38は、例えば溶接やロー付けなどによって供給口延設部30及び音響ライナ24に対して接続される。図示例では、支持部38が、環状通路部34に接続されているが、例えば筒状通路部35に接続されてもよい。
支持部38は、例えば音響ライナ24から供給口延設部30まで延びる棒状に形成されてもよい。この場合、支持部38は尾筒21の周方向に複数配列されるとよい。支持部38は、例えば尾筒21の周方向に延びる円弧状あるいは円環状に形成されてもよい。
以上のように構成される本実施形態の燃焼器用筒体12、これを備える燃焼器2及びガスタービンGTによれば、第一実施形態と同様の効果を奏する。
本実施形態の燃焼器用筒体12によれば、供給口延設部30が音響ライナ24に支持されるため、供給口延設部30を尾筒21の外周面21cに固定する必要が無くなる。したがって、供給口延設部30を尾筒21に溶接等によって固定する場合と比較して、供給口延設部30の固定に基づく尾筒21の熱応力が増加することを防止できる。
上記した第四実施形態の構成は、前述した第二~第三実施形態の構成にも適用可能である。
〔第五実施形態〕
次に、図11,12を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第五実施形態について説明する。第五実施形態において、第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図11,12に示すように、本実施形態の燃焼器用筒体12は、第一実施形態と同様の第一壁部31及び第二壁部32を有する供給口延設部30を備える。第一壁部31及び第二壁部32の間には、第一冷却空気となる圧縮空気Caを車室内部空間10Aから第一冷却通路22の下流側供給口25Aまで案内する案内通路33が形成される。車室内部空間10Aに対する案内通路33の開口部33Aは、尾筒21の外周面21cから離間して位置する。
ただし、本実施形態では、案内通路33の開口部33Aが、燃焼ガスCgの流通方向下流側に向くと共に、第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向下流側に位置する。このため、本実施形態の第一壁部31及び第二壁部32は、尾筒21の外周面21cから尾筒21の径方向外側に延びた上で、第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向下流側まで延びるように湾曲している、あるいは、折り曲げられている。これにより、第一壁部31及び第二壁部32のうち燃焼ガスCgの流通方向下流側に延びる部分では、第二壁部32が第一壁部31よりも尾筒21の径方向外側に位置する。
図示例では、燃焼ガスCgの流通方向下流側に延びる第一壁部31の延出方向先端が、第二壁部32の延出方向先端よりも燃焼ガスCgの流通方向下流側に位置するが、少なくとも第二壁部32の延出方向先端よりも燃焼ガスCgの流通方向上流側に位置しなければよい。
本実施形態の燃焼器用筒体12では、第一壁部31及び第二壁部32が、第一実施形態と同様の環状通路部34を構成する。第一壁部31及び第二壁部32は、第二実施形態と同様の筒状通路部35も構成している。
ただし、本実施形態では、前述したように案内通路33の開口部33Aが燃焼ガスCgの流通方向下流側に向くため、筒状通路部35は環状通路部34から第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向下流側まで直線状に延びている。本実施形態では、複数の筒状通路部35が尾筒21の周方向に間隔をあけて配列されている。
尾筒21の周方向に複数配列された筒状通路部35の周方向位置は、例えば図12に示すように、尾筒21の周方向に複数配列された下流側供給口25Aの周方向位置に一致してもよいが、例えば下流側供給口25Aの周方向位置に対して尾筒21の周方向にずれて位置してもよい。
以上のように構成される本実施形態の燃焼器用筒体12、これを備える燃焼器2及びガスタービンGTによれば、第一実施形態と同様の効果を奏する。
本実施形態の燃焼器用筒体12によれば、尾筒21の外周面21cから離間して位置する供給口延設部30の案内通路33の開口部33Aが、燃焼ガスCgの流通方向下流側に向くと共に、第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向下流側に位置する。このため、尾筒21の外周面21cに開口する第二冷却通路23の排出口27から排出された高温空気(第二冷却空気)が、案内通路33に入り込むことを好適に防止できる。
本実施形態の燃焼器用筒体12によれば、案内通路33の開口部33Aが燃焼ガスCgの流通方向下流側に向くため、車室内部空間10Aにおいて燃焼ガスCgの流通方向下流側から上流側に流れる圧縮空気Caを効率よく導入することができる。
本実施形態の燃焼器用筒体12によれば、第一実施形態のように案内通路33の開口部33Aを尾筒21の径方向外側に向ける場合と比較して、第一壁部31及び第二壁部32のうち尾筒21の外周面21cから尾筒21の径方向外側に延びる部分の長さを短く抑えることが可能となる。
上記第五実施形態の構成は、前述した第二~第四実施形態の構成にも適用可能である。
〔第六実施形態〕
次に、図13~15を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第六実施形態について説明する。第六実施形態において、第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図13~15に示すように、本実施形態の燃焼器用筒体12は、第一実施形態と同様の第一壁部31及び第二壁部32を有する供給口延設部30を備える。第一壁部31及び第二壁部32の間には、第一冷却空気となる圧縮空気Caを車室内部空間10Aから第一冷却通路22の下流側供給口25Aまで案内する案内通路33が形成される。車室内部空間10Aに対する案内通路33の開口部33Aは、尾筒21の外周面21cから離間して位置する。案内通路33の開口部33Aは尾筒21の径方向の外側に向いており、第一壁部31及び第二壁部32が尾筒21の径方向外側に延びている。
ただし、本実施形態では、第一壁部31及び第二壁部32が、尾筒21の周方向全体に形成され、下流側供給口25Aに連通する環状通路部34のみを構成している。すなわち、本実施形態の燃焼器用筒体12は環状通路部34を備えるが、第一実施形態のような筒状通路部35は備えない。したがって、本実施形態における案内通路33の開口部33Aは、尾筒21の周方向全体に形成される。
図13,14に例示する供給口延設部30は、第一実施形態と同様に、車室内部空間10Aのうち、第一壁部31よりも燃焼ガスCgの流通方向下流側の第一空間10A1と、第二壁部32よりも燃焼ガスCgの流通方向上流側の第二空間10A2と、を相互に連通する連通部36Aを備える。
本実施形態の連通部36Aは、第一壁部31と第二壁部32との間に設けられた筒状部材によって構成される。筒状部材の両端は、上記した第一空間10A1及び第二空間10A2に開口する。図示例において、筒状部材は尾筒21の周方向に間隔をあけて複数配列されているが、これに限ることはない。
一方、図15に例示する供給口延設部30は、連通部36A(図13,14参照)を備えず、第一壁部31及び第二壁部32のみを有する。
以上のように構成される本実施形態の燃焼器用筒体12、これを備える燃焼器2及びガスタービンGTによれば、第一実施形態と同様の効果を奏する。
本実施形態の燃焼器用筒体12によれば、供給口延設部30の第一壁部31及び第二壁部32が環状通路部34のみを構成するため、単純な形状の第一壁部31及び第二壁部32を用いて供給口延設部30を作成することができる。したがって、燃焼器用筒体12を安価に製造できる。
上記した第六実施形態の構成は、前述した第三~第五実施形態の燃焼器用筒体にも適用可能である。
〔第七実施形態〕
次に、図16を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第七実施形態について説明する。第七実施形態において、第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図16に示すように、本実施形態の燃焼器用筒体12は、第一実施形態と同様の第一壁部31及び第二壁部32を有する供給口延設部30を備える。第一壁部31及び第二壁部32の間には、第一冷却空気となる圧縮空気Caを車室内部空間10Aから第一冷却通路22の下流側供給口25Aまで案内する案内通路33が形成される。車室内部空間10Aに対する案内通路33の開口部33Aは、尾筒21の外周面21cから離間して位置する。
ただし、本実施形態の供給口延設部30は、尾筒21に一体に形成されている。すなわち、第一壁部31及び第二壁部32が尾筒21の外周面から突出するように尾筒21に一体に形成されている。
案内通路33の開口部33Aは、例えば第六実施形態の場合と同様に尾筒21の周方向全体に形成されてもよいし、例えば第一実施形態の筒状通路部35の場合と同様に第一壁部31及び第二壁部32が筒状をなして尾筒21の周方向に複数に分割して形成されてもよい。複数の開口部33Aを形成する場合、供給口延設部30は、例えば複数の第一冷却通路22の下流側供給口25Aに対して一つずつ設けられてもよい。
本実施形態の燃焼器用筒体12によれば、第一実施形態と同様の効果を奏する。
本実施形態の燃焼器用筒体12によれば、供給口延設部30が尾筒21に一体に形成されることで、供給口延設部30を尾筒21に溶接等によって固定する場合と比較して、供給口延設部30の固定に基づく尾筒21の熱応力が増加することを防止できる。
上記した第七実施形態の構成は、前述した第二~第六実施形態の燃焼器用筒体にも適用可能である。
〔第八実施形態〕
次に、図17~20を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第八実施形態について説明する。第八実施形態において、上記した実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図17,18に示すように、本実施形態の燃焼器用筒体12では、図15に示した第六実施形態の第二例と同様に、第一壁部31及び第二壁部32が、尾筒21の周方向全体に形成され、下流側供給口25Aに連通する環状通路部34のみを構成している。このため、案内通路33の開口部33Aは、尾筒21の周方向全体に形成される。
本実施形態の燃焼器用筒体12は、尾筒21の外側の空間から環状通路部34への圧縮空気Caの流入を阻止する阻止部39を備える。阻止部39は、尾筒21の径方向で互いに相対する位置に一対設けられている。
本実施形態において、各阻止部39は、環状通路部34からなる案内通路33の開口部33Aを覆う。各阻止部39は、開口部33A全体を覆うのではなく、開口部33Aのうち尾筒21の周方向の一部を覆っている。すなわち、図17におけるB-B矢視断面図は、図15に例示した断面形状となる。尾筒21の周方向に延びる各阻止部39の角度範囲αは、例えば60°から90°までの範囲で設定されるとよい。一対の阻止部39は、互いに同じ大きさに形成されている。
本実施形態の燃焼器用筒体12によれば、圧縮空気Caが尾筒21に対してその軸線に交差する方向に流れる場合であっても、圧縮空気Caを効率よく下流側供給口25Aから第一冷却通路22に導入して、尾筒21の上流側領域21Aをより効率的に冷却することが可能となる。以下、詳細に説明する。
例えば図17に示すように、車室内部空間10Aのうち尾筒21の近傍における圧縮空気Caの流れ方向に、尾筒21の軸方向に直交する流れ方向(図17において下から上に向かう方向)の成分が含まれる場合、圧縮空気Caは尾筒21の外周に沿って周方向に流れる。この際、尾筒21の外周近傍における周方向の流速分布及び静圧分布は、図19,20に示すグラフのようになる。
図19,20のグラフにおいては、尾筒21のうち圧縮空気Caの流れ方向下流側の周方向位置を基準位置(0°)としており、尾筒21のうち流れ方向上流側の周方向位置が180°となっている。図19,20のグラフにおいては、尾筒21のうち流れ方向上流側と下流側の中間の周方向位置(中間周方向位置)がそれぞれ90°、-90°となっている。
図19,20のグラフによれば、尾筒21の外周近傍における圧縮空気Caの流速は、尾筒21の流れ方向上流側の位置から中間周方向位置に向かうにしたがって速くなり、中間周方向位置から流れ方向下流側の位置に向かうにしたがって遅くなる。これに伴い、尾筒21の外周近傍における圧縮空気Caの静圧は、尾筒21の流れ方向上流側の位置から中間周方向位置に向かうにしたがって低下し、中間周方向位置から流れ方向下流側の位置に向かうにしたがって上昇する。
このため、阻止部39を設けない場合には、案内通路33における尾筒21の中間周方向位置およびその近傍における静圧が低いことで、圧縮空気Caは、中間周方向位置やその近傍に位置する下流側供給口25Aから第一冷却通路22に導入され難くなる。
これに対し、図17のように、阻止部39が尾筒21の中間周方向位置を基準とした位置に配されている場合には、案内通路33における尾筒21の中間周方向位置およびその近傍における静圧の低下を抑えることができる。これにより、中間周方向位置やその近傍に位置する下流側供給口25Aから第一冷却通路22に対して、圧縮空気Caを効率よく導入して、尾筒21の上流側領域21Aをより効率的に冷却することができる。
上記した第八実施形態の構成は、第一壁部31及び第二壁部32が少なくとも環状通路部34を構成する燃焼器用筒体に適用可能である。すなわち、第八実施形態の構成は、環状通路部34を有する第一~第七実施形態の燃焼器用筒体にも適用可能である。
例えば図4のように第一壁部31及び第二壁部32が環状通路部34及び筒状通路部35を構成する場合、阻止部39は、上記第八実施形態のように案内通路33の開口部33Aに設けられてもよいが、例えば、筒状通路部35の内部や、環状通路部34と筒状通路部35との境界に設けられてもよい。
〔第九実施形態〕
次に、図21を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第九実施形態について説明する。第九実施形態において、上記した実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図21に示すように、本実施形態の燃焼器用筒体12は、図15に示した第六実施形態の第二例や図17,18に示した第八実施形態と同様に、第一壁部31及び第二壁部32が、尾筒21の周方向全体に形成され、下流側供給口25Aに連通する環状通路部34のみを構成している。このため、案内通路33の開口部33Aは、尾筒21の周方向全体に形成される。図21におけるD-D矢視断面図は、図15に例示した断面形状となる。
本実施形態の燃焼器用筒体12は、環状通路部34を尾筒21の周方向に区画する仕切部300を備える。本実施形態において、仕切部300は、尾筒21の径方向で互いに相対する位置に一対形成されている。
本実施形態において、各仕切部300は、尾筒21の周方向に間隔をあけて配された複数の仕切板部301によって構成されている。本実施形態では、各仕切部300が二つの仕切板部301によって構成されている。これにより、環状通路部34は、尾筒21の周方向に配列される偶数(図示例では四つ)の分割環状通路部34A,34B,34C,34Dに区画される。各仕切部300における二つの仕切板部301の周方向の間隔、すなわち、二つの仕切板部301の間隔の角度範囲βは、例えば60°から90°までの範囲で設定されるとよい。
本実施形態の燃焼器用筒体12によれば、圧縮空気Caが尾筒21に対してその軸線に交差する方向に流れる場合であっても、圧縮空気Caを効率よく下流側供給口25Aから第一冷却通路22に導入して、尾筒21の上流側領域21Aをより効率的に冷却することが可能となる。以下、詳細に説明する。
例えば図21に示すように、車室内部空間10Aのうち尾筒21の近傍における圧縮空気Caの流れ方向に、尾筒21の軸方向に直交する流れ方向(図21において下から上に向かう方向)の成分が含まれる場合、圧縮空気Caは車室内部空間10Aにおいて尾筒21の外周に沿って周方向に流れる。この際、尾筒21の外周近傍における周方向の流速分布及び静圧分布は、第八実施形態において示した図19,20のグラフと同様になる。
このため、仕切部300を設けない場合、圧縮空気Caは、尾筒21の中間周方向位置(図21において90°、-90°となる位置)やその近傍に位置する下流側供給口25Aから第一冷却通路22に導入され難くなる。
これに対し、図21のように、仕切部300が尾筒21の中間周方向位置を基準とした位置に配される場合、各分割環状通路部34A,34B,34C,34Dにおいては、圧縮空気Caの尾筒21の周方向の流れが仕切部300によって妨げられる。このため、各分割環状通路部34A,34B,34C,34Dにおける静圧低下を抑制することができる。特に、中間周方向位置に位置する分割環状通路部34C,34Dにおける静圧低下を抑制できる。したがって、尾筒21の中間周方向位置やその近傍に位置する下流側供給口25Aから第一冷却通路22に対して、圧縮空気Caを効率よく導入して、尾筒21の上流側領域21Aをより効率的に冷却することができる。
上記した第九実施形態の構成は、第一壁部31及び第二壁部32が少なくとも環状通路部34を構成する燃焼器用筒体に適用可能である。すなわち、第九実施形態の構成は、環状通路部34を有する第一~第八実施形態の燃焼器用筒体にも適用可能である。
〔第十実施形態〕
次に、本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第十実施形態について説明する。
本実施形態に係る燃焼器用筒体は、図1~21に例示した第一~第九実施形態と同様に、第一壁部31及び第二壁部32が、尾筒21の周方向全体に形成され、下流側供給口25Aに連通する環状通路部34を構成するものである。本実施形態では、環状通路部34のうち尾筒21の周方向に直交する通路断面積は、例えば尾筒21の外周面21cに対する下流側供給口25Aの開口面積の50倍以上である。
本実施形態の燃焼器用筒体によれば、環状通路部34の通路断面積を下流側供給口25Aの開口面積の50倍以上とすることで、車室内部空間10Aから環状通路部34に導入された第一冷却空気(圧縮空気Ca)が環状通路部34をその周方向に流れる際の圧力損失を抑制できる。すなわち、第一冷却空気が環状通路部34の周方向に流れても環状通路部34内の静圧が低下することを抑制できるため、環状通路部34内の第一冷却空気を効率よく第一冷却通路22に導入することができる。環状通路部34においてその周方向に圧力差が生じることを抑制できるため、周方向に配列された複数の第一冷却流路に導入される第一冷却空気の流量に差が生じることを抑制できる。
本実施形態の燃焼器用筒体によれば、第一冷却空気が環状通路部34から下流側供給口25Aを通して第一冷却通路22に導入される際の抵抗も小さく抑えることができるため、第一冷却空気をスムーズに第一冷却通路22に導入することができる。
〔第十一実施形態〕
次に、図22,23を参照して本発明に係る燃焼器用筒体、燃焼器、ガスタービンの第十一実施形態について説明する。第十一実施形態において、第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図22,23に示すように、本実施形態の燃焼器用筒体12Aは、第一実施形態と同様の尾筒21(筒本体)と、第一冷却通路22と、第二冷却通路23と、音響ライナ24と、を備える。ただし、本実施形態の燃焼器用筒体12Aは、第一実施形態の供給口延設部30(図4,5参照)を備えず、代わりに、案内壁部40A,40Bを備える。
案内壁部40A,40Bは、第一冷却通路22の下流側供給口25Aと第二冷却通路23の排出口27との間において、尾筒21の外周面21cから離間する方向に延びて形成されている。本実施形態において、案内壁部40A,40Bは、尾筒21の径方向外側に延びている。案内壁部40A,40Bは、車室内部空間10Aにおいて燃焼ガスCgの流通方向下流側から上流側に向けて流れる圧縮空気Ca(流体)を、下流側供給口25Aに対して尾筒21の周方向に案内すると共に、下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に案内する。図22,23における符号f1、f2は、それぞれ車室内部空間10Aにおいて圧縮空気Caが案内壁部40A,40Bによって案内される方向を示す。
図22に例示する案内壁部40Aは、尾筒21の径方向外側から見て、下流側供給口25Aに対して尾筒21の周方向両側に向かうにしたがって、燃焼ガスCgの流通方向上流側に傾斜するように形成されている。図22に例示する案内壁部40Aは、尾筒21の径方向外側から見て、下流側供給口25Aを周方向から挟み込むように形成されている。案内壁部40Aは、図22のように尾筒21の径方向外側から見てU字状(円弧状)に形成されてもよいが、例えばV字状に形成されてもよい。
図23に例示する案内壁部40Bは、尾筒21の径方向外側から見て、第一冷却通路22の下流側供給口25Aと第二冷却通路23の排出口27との間において尾筒21の周方向に延びる第一板状壁部41と、第一板状壁部41の延在方向の第一端部41Aから燃焼ガスCgの流通方向上流側に延びる第二板状壁部42と、第一板状壁部41の延在方向の第二端部41Bから燃焼ガスCgの流通方向下流側に延びる第三板状壁部43と、を備える。
第一板状壁部41の第一端部41A及び第二端部41Bは、第一冷却通路22の下流側供給口25A及び第二冷却通路23の排出口27に対して、互いに尾筒21の周方向逆側にずれて位置する。第一板状壁部41の第一端部41Aは第二端部41Bに対して燃焼ガスCgの流通方向上流側に位置する。すなわち、第一板状壁部41は、尾筒21の径方向外側から見て、尾筒21の周方向に対して燃焼ガスCgの流通方向に傾斜した方向に延びている。
第二板状壁部42は、第一冷却通路22の下流側供給口25Aに対して尾筒21の周方向の一方側に隣り合せて位置する。第二板状壁部42は、下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に延びている。
第三板状壁部43は、第二冷却通路23の排出口27に対して尾筒21の周方向の他方側に隣り合せて位置する。第三板状壁部43は、下流側供給口25Aよりも燃焼ガスCgの流通方向下流側に延びている。
以上のように構成される本実施形態の燃焼器用筒体12Aによれば、車室内部空間10Aにおいて圧縮空気Caが尾筒21内における燃焼ガスCgの流通方向と逆向きに流れても、案内壁部40A,40Bによって、第二冷却通路23の排出口27から排出された高温空気が、下流側供給口25Aから第一冷却通路22に入り込むことを防止できる。
車室内部空間10Aにおいて燃焼ガスCgの流通方向と逆向きに流れる圧縮空気Caは、案内壁部40A,40Bによって、尾筒21の周方向に案内され、かつ、下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に案内される。このため、高温空気が、車室内部空間10Aにおける圧縮空気Caの流れによって、下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に回り込んでも、案内壁部40A,40Bによって下流側供給口25Aに近づくことを防止できる。したがって、高温空気が、下流側供給口25Aよりも燃焼ガスCgの流通方向上流側に回り込んだ後に下流側供給口25Aから第一冷却通路22に入り込むことも防止できる。
以上のことから、本実施形態の燃焼器用筒体12A、これを備える燃焼器2及びガスタービンGTによれば、第二冷却通路23の排出口27から排出された高温空気が第一冷却通路22に入り込むことをより確実に防止して、第一冷却通路22に導入される低温の第一冷却流体によって尾筒21の上流側領域21Aを効率よく冷却することができる。すなわち、燃焼器用筒体12Aの冷却効率の向上を図ることができる。
以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
例えば、第一~第七実施形態において、供給口延設部30の第一壁部31及び第二壁部32は、例えば図24,25に示すように、筒状に形成されると共に尾筒21の周方向に間隔をあけて配列され、各下流側供給口25Aに連通する複数の筒状通路部35のみを構成してもよい。すなわち、供給口延設部30は、複数の筒状通路部35を備えるが、環状通路部34を備えなくてもよい。この場合でも、第一実施形態の場合と同様に、周方向に隣り合う筒状通路部35の間の隙間が連通部36として機能する。
第一~第九実施形態において、第一壁部31及び第二壁部32は、例えば尾筒21の外周面21cから尾筒21の径方向外側に向かうにしたがって燃焼ガスCgの流通方向下流側に傾斜する方向に延びてもよい。
第一~第九実施形態において、供給口延設部30は、第一冷却通路22の供給口25に対して設けられずに、第二冷却通路23の排出口27に対して設けられてもよい。この場合には、第二冷却通路23の排出口27から排出された高温空気が、供給口延設部30が尾筒21の外周面21cから離間した位置において車室内部空間10Aに排出される。このため、尾筒21の外周面21cにおいて車室内部空間10Aに直接開口する第一冷却通路22の供給口25に到達し難くなる。すなわち、高温空気が第一冷却通路22に入り込むことを防止できる。
第五実施形態において、案内通路33の開口部33Aは、燃焼ガスCgの流通方向下流側以外の方向に向いてもよい。第五実施形態において、開口部33Aは、第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向上流側に位置してもよいし、燃焼ガスCgの流通方向における排出口27の位置と一致するように位置してもよい。
より具体的に説明すれば、例えば、案内通路33の開口部33Aが第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向下流側に位置する場合、開口部33Aは燃焼ガスCgの流通方向下流側以外の任意の方向に向いていてもよい。
例えば、案内通路33の開口部33Aが燃焼ガスCgの流通方向下流側に対して尾筒21の径方向外側に傾けた方向に向く場合、あるいは、尾筒21の径方向外側に向く場合、開口部33Aは、第二冷却通路23の排出口27よりも燃焼ガスCgの流通方向上流側に位置してもよいし、燃焼ガスCgの流通方向における排出口27の位置と一致するように位置してもよい。
これらの場合でも、第五実施形態の場合と同様に、第二冷却通路23の排出口27から排出された高温空気が、案内通路33に入り込むことを好適に防止できる。
本発明は、燃焼器用筒体、燃焼器及びガスタービンに適用でき、燃焼器用筒体の冷却効率の向上を図ることができる。
GT ガスタービン
1 圧縮機
2 燃焼器
3 タービン
10A 車室内部空間(尾筒21の外側の空間)
12,12A 燃焼器用筒体
14 バーナ
15 パイロットバーナ
16 メインバーナ(バーナ)
21 尾筒(筒本体)
21A 上流側領域
21B 下流側領域
21c 外周面
22 第一冷却通路
23 第二冷却通路
24 音響ライナ
25 供給口
25A 下流側供給口
27 排出口
30 供給口延設部
31 第一壁部
32 第二壁部
33 案内通路
33A 開口部
34 環状通路部
34A,34B,34C,34D 分割環状通路部
35 筒状通路部
36,36A 連通部
37 断熱層
38 支持部
39 阻止部
40A,40B 案内壁部
300 仕切部
301 仕切板部
Ca 圧縮空気(流体)
Cg 燃焼ガス

Claims (21)

  1. 内部に燃焼ガスが流れて前記燃焼ガスをタービンに送る燃焼器用筒体であって、
    軸線に沿って延びる筒本体と、
    前記筒本体の壁部内のうち前記燃焼ガスの流通方向の上流側に位置する上流側領域に形成されると共に、前記筒本体の外周面に開口する供給口を有し、前記筒本体の外側の空間から前記供給口を通じて第一冷却流体を導入して前記上流側領域を冷却する第一冷却通路と、
    前記筒本体の壁部内のうち前記上流側領域に対して前記燃焼ガスの流通方向の下流側に連続して位置する下流側領域に形成され、第二冷却流体が供給されることで前記下流側領域を冷却し、前記筒本体の外周面のうち前記供給口よりも前記燃焼ガスの流通方向の下流側において開口して前記第二冷却流体を前記筒本体の外側の空間に排出する排出口を有する第二冷却通路と、
    前記供給口と前記排出口との間において前記筒本体の外周面から離間する方向に延びる第一壁部、及び、前記供給口よりも前記燃焼ガスの流通方向の上流側において前記筒本体の外周面から離間する方向に延びる第二壁部を有する供給口延設部と、を備える燃焼器用筒体。
  2. 前記第一壁部及び前記第二壁部の間に、前記筒本体の外側の空間から前記供給口まで前記第一冷却流体を案内する案内通路が形成され、
    前記筒本体の外側の空間に対する前記案内通路の開口部が、前記筒本体の径方向の外側に向いている請求項1に記載の燃焼器用筒体。
  3. 前記第一壁部及び前記第二壁部の間に、前記筒本体の外側の空間から前記供給口まで前記第一冷却流体を案内する案内通路が形成され、
    前記筒本体の外側の空間に対する前記案内通路の開口部が、前記燃焼ガスの流通方向の下流側に向くと共に、前記排出口よりも前記燃焼ガスの流通方向の下流側に位置する請求項1に記載の燃焼器用筒体。
  4. 前記第一壁部及び前記第二壁部が、前記筒本体の周方向全体に形成され、前記供給口に連通する環状通路部を構成する請求項1から請求項3のいずれか一項に記載の燃焼器用筒体。
  5. 前記筒本体の外側の空間から前記環状通路部への前記第一冷却流体の流入を阻止する阻止部を備え、
    前記阻止部が、前記筒本体の径方向で互いに相対する位置に一対設けられる請求項4に記載の燃焼器用筒体。
  6. 前記環状通路部を周方向に区画する仕切部を備える請求項4又は請求項5に記載の燃焼器用筒体。
  7. 前記仕切部が、前記筒本体の径方向で互いに相対する位置に一対設けられる請求項6に記載の燃焼器用筒体。
  8. 前記環状通路部のうち前記筒本体の周方向に直交する通路断面積が、前記供給口の開口面積の50倍以上である請求項4から請求項7のいずれか一項に記載の燃焼器用筒体。
  9. 前記第一壁部及び前記第二壁部が、筒状に形成されて前記環状通路部と前記筒本体の外側の空間とを連通する筒状通路部を構成する請求項4から請求項8のいずれか一項に記載の燃焼器用筒体。
  10. 前記筒状通路部が、前記筒本体の周方向に間隔をあけて複数配列されている請求項9に記載の燃焼器用筒体。
  11. 前記供給口が、前記筒本体の周方向に間隔をあけて複数配列され、
    前記第一壁部及び前記第二壁部が、筒状に形成されると共に前記筒本体の周方向に間隔をあけて配列され、各供給口に連通する複数の筒状通路部を構成する請求項1から請求項3のいずれか一項に記載の燃焼器用筒体。
  12. 前記筒状通路部の周方向位置が、前記筒本体のうち前記燃焼ガスの流通方向の上流側の端部において前記筒本体の周方向に複数配列されたバーナの中心の周方向位置に一致する請求項10又は請求項11に記載の燃焼器用筒体。
  13. 複数の前記筒状通路部が、前記筒本体の周方向に等間隔に配列されている請求項12に記載の燃焼器用筒体。
  14. 前記供給口延設部が、前記筒本体の外側の空間のうち、前記第一壁部よりも前記燃焼ガスの流通方向の下流側の第一空間と、前記第二壁部よりも前記燃焼ガスの流通方向の上流側の第二空間と、を相互に連通する連通部を備える請求項1から請求項13のいずれか一項に記載の燃焼器用筒体。
  15. 前記供給口延設部が、前記第一壁部及び前記第二壁部における熱伝導を低減する断熱層を備える請求項1から請求項14のいずれか一項に記載の燃焼器用筒体。
  16. 前記供給口延設部が、前記筒本体の外周面に支持される請求項1から請求項15のいずれか一項に記載の燃焼器用筒体。
  17. 前記筒本体のうち前記供給口延設部よりも前記燃焼ガスの流通方向の上流側に音響ライナが設けられ、
    前記供給口延設部が、前記音響ライナに支持されている請求項1から請求項15のいずれか一項に記載の燃焼器用筒体。
  18. 前記供給口延設部が、前記筒本体に一体に形成される請求項1から請求項15のいずれか一項に記載の燃焼器用筒体。
  19. 内部に燃焼ガスが流れて該燃焼ガスをタービンに送る燃焼器用筒体であって、
    軸線に沿って延びる筒本体と、
    前記筒本体の壁部内のうち前記燃焼ガスの流通方向の上流側に位置する上流側領域に形成されると共に、前記筒本体の外周面に開口する供給口を有し、前記筒本体の外側の空間から前記供給口を通じて第一冷却流体を導入して前記上流側領域を冷却する第一冷却通路と、
    前記筒本体の壁部内のうち前記上流側領域に対して前記燃焼ガスの流通方向の下流側に連続して位置する下流側領域に形成され、第二冷却流体が供給されることで前記下流側領域を冷却し、前記筒本体の外周面のうち前記供給口よりも前記燃焼ガスの流通方向の下流側において開口して前記第二冷却流体を前記筒本体の外側の空間に排出する排出口を有する第二冷却通路と、
    前記供給口と前記排出口との間において前記筒本体の外周面から離間する方向に延びて形成され、前記筒本体の外側の空間において前記燃焼ガスの流通方向と逆向きに流れる流体を、前記供給口に対して前記筒本体の周方向に案内すると共に、前記供給口よりも前記燃焼ガスの流通方向の上流側に案内する案内壁部と、を備える燃焼器用筒体。
  20. 請求項1から請求項19のいずれか一項に記載の燃焼器用筒体と、
    燃料を噴射するバーナと、を備える燃焼器。
  21. 請求項20に記載の燃焼器と、
    前記燃焼器に送り出す圧縮空気を生成する圧縮機と、
    前記燃焼器から送り出された燃焼ガスにより回転するロータを備えるタービンと、を備えるガスタービン。
PCT/JP2015/070854 2014-07-25 2015-07-22 燃焼器用筒体、燃焼器及びガスタービン WO2016013585A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/317,309 US10663169B2 (en) 2014-07-25 2015-07-22 Cylinder for combustor, combustor, and gas turbine
KR1020167034653A KR101829572B1 (ko) 2014-07-25 2015-07-22 연소기용 통체, 연소기 및 가스 터빈
CN201580030371.7A CN106460670B (zh) 2014-07-25 2015-07-22 燃烧器用筒体、燃烧器以及燃气轮机
DE112015003440.4T DE112015003440T5 (de) 2014-07-25 2015-07-22 Zylinder für Brennkammer, Brennkammer und Gasturbine
JP2016535954A JP6175193B2 (ja) 2014-07-25 2015-07-22 燃焼器用筒体、燃焼器及びガスタービン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014151827 2014-07-25
JP2014-151827 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013585A1 true WO2016013585A1 (ja) 2016-01-28

Family

ID=55163109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070854 WO2016013585A1 (ja) 2014-07-25 2015-07-22 燃焼器用筒体、燃焼器及びガスタービン

Country Status (6)

Country Link
US (1) US10663169B2 (ja)
JP (1) JP6175193B2 (ja)
KR (1) KR101829572B1 (ja)
CN (1) CN106460670B (ja)
DE (1) DE112015003440T5 (ja)
WO (1) WO2016013585A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183078A1 (en) * 2017-03-30 2018-10-04 Siemens Aktiengesellschaft System with conduit arrangement for dual utilization of cooling fluid in a combustor section of a gas turbine engine
CN113574254A (zh) * 2019-03-25 2021-10-29 Tvs电机股份有限公司 用于机动车辆的动力单元
JP7324381B1 (ja) 2023-02-22 2023-08-09 三菱重工業株式会社 燃焼器用筒体、燃焼器及びガスタービン
JP7393262B2 (ja) 2020-03-23 2023-12-06 三菱重工業株式会社 燃焼器、及びこれを備えるガスタービン

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164444A (zh) * 2014-04-25 2016-11-23 三菱日立电力系统株式会社 燃气涡轮机燃烧器和具备该燃烧器的燃气涡轮机
US10253690B2 (en) * 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) * 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10774746B2 (en) * 2017-07-10 2020-09-15 Dresser-Rand Company Systems and methods for cooling components of a gas turbine
KR101954535B1 (ko) 2017-10-31 2019-03-05 두산중공업 주식회사 연소기 및 이를 포함하는 가스 터빈
EP3486431B1 (en) * 2017-11-15 2023-01-04 Ansaldo Energia Switzerland AG Hot gas path component for a gas turbine engine and a gas turbine engine comprising the same
WO2021166092A1 (ja) * 2020-02-19 2021-08-26 三菱重工エンジン&ターボチャージャ株式会社 燃焼器及びガスタービン
US20240003543A1 (en) * 2022-06-29 2024-01-04 General Electric Company Acoustic liner for a gas turbine engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079483A (ja) * 2007-09-25 2009-04-16 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2012077660A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 回収式空気冷却ガスタービン燃焼器冷却構造
US20120198855A1 (en) * 2011-02-03 2012-08-09 General Electric Company Method and apparatus for cooling combustor liner in combustor
JP2013256950A (ja) * 2012-06-13 2013-12-26 General Electric Co <Ge> ガスタービンシステム用燃焼器ライナ冷却組立体
JP2014098352A (ja) * 2012-11-15 2014-05-29 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及び該燃焼器を備えたガスタービン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674317B1 (fr) * 1991-03-20 1993-05-28 Snecma Chambre de combustion de turbomachine comportant un reglage du debit de comburant.
US5906093A (en) * 1997-02-21 1999-05-25 Siemens Westinghouse Power Corporation Gas turbine combustor transition
US6074706A (en) * 1998-12-15 2000-06-13 General Electric Company Adhesion of a ceramic layer deposited on an article by casting features in the article surface
JP2005076982A (ja) * 2003-08-29 2005-03-24 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP4823186B2 (ja) * 2007-09-25 2011-11-24 三菱重工業株式会社 ガスタービン燃焼器
US8720204B2 (en) * 2011-02-09 2014-05-13 Siemens Energy, Inc. Resonator system with enhanced combustor liner cooling
US9243506B2 (en) * 2012-01-03 2016-01-26 General Electric Company Methods and systems for cooling a transition nozzle
US9188336B2 (en) * 2012-10-31 2015-11-17 General Electric Company Assemblies and apparatus related to combustor cooling in turbine engines
EP2960436B1 (en) * 2014-06-27 2017-08-09 Ansaldo Energia Switzerland AG Cooling structure for a transition piece of a gas turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079483A (ja) * 2007-09-25 2009-04-16 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2012077660A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 回収式空気冷却ガスタービン燃焼器冷却構造
US20120198855A1 (en) * 2011-02-03 2012-08-09 General Electric Company Method and apparatus for cooling combustor liner in combustor
JP2013256950A (ja) * 2012-06-13 2013-12-26 General Electric Co <Ge> ガスタービンシステム用燃焼器ライナ冷却組立体
JP2014098352A (ja) * 2012-11-15 2014-05-29 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及び該燃焼器を備えたガスタービン

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183078A1 (en) * 2017-03-30 2018-10-04 Siemens Aktiengesellschaft System with conduit arrangement for dual utilization of cooling fluid in a combustor section of a gas turbine engine
CN110446829A (zh) * 2017-03-30 2019-11-12 西门子股份公司 具有用于双重利用燃气涡轮发动机的燃烧器部段中的冷却流体的导管布置结构的系统
JP2020515798A (ja) * 2017-03-30 2020-05-28 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンの燃焼器セクションにおける冷却流体の二重利用のための導管配置を備えたシステム
CN110446829B (zh) * 2017-03-30 2021-07-06 西门子股份公司 具有用于双重利用燃气涡轮发动机的燃烧器部段中的冷却流体的导管布置结构的系统
US11204164B2 (en) 2017-03-30 2021-12-21 Siemens Energy Global GmbH & Co. KG System with conduit arrangement for dual utilization of cooling fluid in a combustor section of a gas turbine engine
JP7008722B2 (ja) 2017-03-30 2022-01-25 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンの燃焼器セクションにおける冷却流体の二重利用のための導管配置を備えたシステム
CN113574254A (zh) * 2019-03-25 2021-10-29 Tvs电机股份有限公司 用于机动车辆的动力单元
JP7393262B2 (ja) 2020-03-23 2023-12-06 三菱重工業株式会社 燃焼器、及びこれを備えるガスタービン
JP7324381B1 (ja) 2023-02-22 2023-08-09 三菱重工業株式会社 燃焼器用筒体、燃焼器及びガスタービン

Also Published As

Publication number Publication date
US10663169B2 (en) 2020-05-26
JPWO2016013585A1 (ja) 2017-04-27
CN106460670A (zh) 2017-02-22
DE112015003440T5 (de) 2017-04-13
KR20170002624A (ko) 2017-01-06
JP6175193B2 (ja) 2017-08-02
KR101829572B1 (ko) 2018-02-14
CN106460670B (zh) 2018-06-26
US20170108221A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6175193B2 (ja) 燃焼器用筒体、燃焼器及びガスタービン
KR102334882B1 (ko) 패널 연료 분사기를 갖는 연소 시스템
EP3343108B1 (en) System for dissipating fuel egress in fuel supply conduit assemblies
JP6030919B2 (ja) タービンエンジンで使用する燃焼器アセンブリ及びその組立方法
JP5391225B2 (ja) トランジションダクト界面における燃焼器ライナ冷却及びその関連する方法
RU2632073C2 (ru) Узел впрыска топлива и установка, содержащая узел впрыска топлива
JP6669424B2 (ja) 移行ノズルを冷却する方法及びシステム
KR102161961B1 (ko) 연소기용 패널, 연소기, 연소 장치, 가스 터빈, 및 연소기용 패널의 냉각 방법
JP2017110903A (ja) 同一線上にない冷却通路を有する点火装置スタック又はボアスコープマウントを備えたガスタービンエンジン
JP2015025447A (ja) 燃焼器に燃料を供給するシステム
JP2010008038A (ja) タービン燃料ノズル用の可変オリフィスプラグ
JP2012057929A (ja) ガスタービンノズル内で燃料を混合する装置及び方法
JP2015114097A (ja) タービンシステム用の伴流低減構造体
WO2019187559A1 (ja) 燃焼器及びそれを備えるガスタービン
JP2017116250A (ja) ガスタービンにおける燃料噴射器および段階的燃料噴射システム
KR101669373B1 (ko) 연소기 노즐 조립체, 이것을 구비하고 있는 연소기 및 가스 터빈
JP6001854B2 (ja) タービンエンジン用燃焼器組立体及びその組み立て方法
JP2016042014A (ja) ガスタービン燃焼器に関連するシステム及び装置
US10648667B2 (en) Combustion chamber with double wall
JP7008722B2 (ja) ガスタービンエンジンの燃焼器セクションにおける冷却流体の二重利用のための導管配置を備えたシステム
JP6134510B2 (ja) ターボ機械の燃焼器
JP7324381B1 (ja) 燃焼器用筒体、燃焼器及びガスタービン
US11841140B2 (en) Pre-vaporization tube for a turbine engine combustion chamber
JP7339986B2 (ja) 一体化されたバッフルを有する燃焼室部と、燃焼室部を製造する方法
JP6116464B2 (ja) 燃焼器及び回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15317309

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167034653

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003440

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824696

Country of ref document: EP

Kind code of ref document: A1