WO2016013424A1 - Cooling device and multi-chamber heat treatment device - Google Patents

Cooling device and multi-chamber heat treatment device Download PDF

Info

Publication number
WO2016013424A1
WO2016013424A1 PCT/JP2015/069889 JP2015069889W WO2016013424A1 WO 2016013424 A1 WO2016013424 A1 WO 2016013424A1 JP 2015069889 W JP2015069889 W JP 2015069889W WO 2016013424 A1 WO2016013424 A1 WO 2016013424A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
chamber
heating
coolant
treated
Prior art date
Application number
PCT/JP2015/069889
Other languages
French (fr)
Japanese (ja)
Inventor
勝俣 和彦
馨 磯本
喬裕 永田
公 中山
勇助 清水
玄 西谷
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Priority to CN201580022503.1A priority Critical patent/CN106460077A/en
Publication of WO2016013424A1 publication Critical patent/WO2016013424A1/en
Priority to US15/285,026 priority patent/US20170022579A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • C21D1/64Quenching devices for bath quenching with circulating liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Definitions

  • the present disclosure relates to a cooling device and a multi-chamber heat treatment apparatus.
  • Priority is claimed on Japanese Patent Application No. 2014-152048, filed July 25, 2014, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses a multi-chamber heat treatment apparatus including three heating devices and one cooling device.
  • the heating devices and the cooling device are connected via the intermediate transfer chamber, and for example, the object heated by the heating device is conveyed to the cooling device and cooled.
  • the coolant is stored in a cooling chamber, and the workpiece is cooled by immersing the object in the coolant in the cooling chamber.
  • the coolant heated by cooling the object flows upward of the cooling chamber.
  • the flow of the coolant supplied from the nozzle into the cooling chamber interferes with the flow of the heated coolant directed upward, and the flow of the coolant in the cooling chamber is disturbed, and the object to be treated is It is difficult to cool evenly.
  • the coolant supplied from the nozzles is heated before reaching the object to be treated, it is difficult to efficiently cool the object to be treated.
  • the present disclosure has been made in view of the above-described problems, and in a cooling device and a multi-chamber heat treatment apparatus that immerses and cools an object to be processed in a cooling liquid in a cooling chamber, the object is processed efficiently and uniformly.
  • the object is to form a flow of coolant that can be cooled in a cooling chamber.
  • the present disclosure adopts the following configuration as means for solving the above problems.
  • a first aspect of the present disclosure is a cooling device that cools an object to be treated by immersing in a cooling liquid, and a cooling chamber that accommodates the object to be treated and can store the cooling liquid therein; Supply nozzle that supplies the cooling fluid to the cooling chamber from below the object, a recovery pipe that recovers the cooling fluid stored in the cooling chamber from above the workpiece, and the coolant that is recovered by the recovery piping And a pump for pumping.
  • the supply nozzle includes a cylindrical body whose upper end is an open end from which the coolant is jetted and which has a through hole penetrating laterally.
  • a 3rd aspect of this invention is provided with the heat exchanger which cools the cooling fluid collect
  • a fourth aspect of the present invention is a multi-chamber heat treatment apparatus including a heating device for heating an object to be treated and the cooling device according to any one of the first to third aspects.
  • the cooling fluid in the cooling chamber, the cooling fluid is supplied from below the object by the supply nozzle, and the supplied cooling fluid is recovered from above the object by the recovery pipe, and the recovered coolant is recovered. It is pumped by the pump to the feed nozzle.
  • the flow from the lower side to the upper side is formed in the cooling chamber by the supply nozzle, the recovery pipe, and the pump.
  • Such a flow is directed in the same direction as the coolant which is heated by cooling the object to be treated, so that disturbance of the flow of the coolant in the cooling chamber can be suppressed. Therefore, according to the present disclosure, the object to be treated can be cooled uniformly.
  • the coolant supplied from the supply nozzle can be prevented from being heated before reaching the object to be treated, and the object to be treated can be efficiently cooled. That is, according to the present disclosure, in a cooling device and a multi-chamber heat treatment apparatus that immerses and cools an object in a cooling chamber in a cooling chamber, the flow of coolant that can cool the object efficiently and uniformly is cooled. It can be formed indoors.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a 1st longitudinal cross-sectional view which shows the whole structure of the cooling device which concerns on one Embodiment of this indication, and a multi-chamber heat processing apparatus.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the whole structure of the cooling device which concerns on one Embodiment of this indication. It is an AA arrow line view in FIG. It is a perspective view of a supply nozzle with which a cooling device concerning one embodiment of this indication is provided. It is explanatory drawing which shows the mode of immersion cooling. It is explanatory drawing which shows the mode of mist cooling.
  • the multi-chamber heat treatment apparatus including the cooling apparatus of the present embodiment is an apparatus in which a cooling apparatus R, an intermediate transfer apparatus H, and two heating apparatuses (heating apparatus K1 and heating apparatus K2) are combined. It is. In addition, it is also possible to set the number of heating devices to three.
  • the cooling device R is a device for cooling the object X, and as shown in FIG. 1, the cooling chamber 1, the plurality of cooling nozzles 2, the plurality of mist headers 3, the cooling pump 4 (pump), the cooling drainage pipe 5, a cooling water tank 6, a cooling circulation pipe 7 (collection pipe), a plurality of supply nozzles 8, a drain valve 9, and the like.
  • the cooling chamber 1 is a vertical cylindrical container (container whose central axis is in the vertical direction) that accommodates the object X, and the internal space is a cooling region RS.
  • the upper portion of the cooling chamber 1 is connected to the intermediate transfer device H, and the cooling chamber 1 is formed with an opening for communicating the cooling region RS with the internal space (transfer region HS) of the intermediate transfer device H.
  • the workpiece X is carried into or out of the cooling region RS through the opening.
  • the cooling chamber 1 is capable of storing a coolant.
  • the plurality of cooling nozzles 2 are discretely disposed around the workpiece X accommodated in the cooling region RS, as shown in FIGS. 1 to 3B. More specifically, the plurality of cooling nozzles 2 are in a state in which multiple stages (specifically, five stages) are formed in the vertical direction around the workpiece X, and the circumference of the cooling chamber 1 (cooling region RS) It is discretely arranged so as to surround the whole of the object to be processed X and to be preferably equidistant in distance from the object to be processed X with a predetermined interval in the direction.
  • the plurality of cooling nozzles 2 are grouped into a predetermined number. That is, the plurality of cooling nozzles 2 are grouped in stages in the vertical direction of the cooling region RS, and are also grouped into a plurality of groups in the circumferential direction of the cooling chamber 1 (cooling region RS). As shown in FIG. 2, mist headers 3 are individually provided in such a plurality of groups (nozzle groups).
  • the coolant jetted from the cooling nozzle 2 is a liquid having a viscosity lower than that of a cooling oil generally used for cooling of the heat treatment, and is, for example, water.
  • the shape of the injection hole of the cooling nozzle 2 is set so that the cooling liquid such as water becomes droplets of uniform and constant particle diameter at a predetermined spray angle. Further, as shown in FIGS. 1 to 5, the spray angle of each cooling nozzle 2 and the interval between the adjacent cooling nozzles 2 are positioned on the outer peripheral side among the droplets ejected from the cooling nozzle 2. It is set such that the droplet intersects or collides with the droplet positioned on the outer peripheral side ejected from the adjacent cooling nozzle 2.
  • such a plurality of cooling nozzles 2 are the objects to be treated of the cooling fluid so that the object to be treated X is entirely surrounded by the aggregate of droplets of the cooling fluid, that is, the mist of the cooling fluid (coolant mist). Spray towards X
  • the cooling device R of the present embodiment is capable of mist cooling in which the object X is cooled using such a coolant mist, and cooling (immersion cooling) in which the object X is immersed in the cooling liquid.
  • immersion cooling the object X in the cooling chamber 1 is immersed and cooled by the coolant supplied from the plurality of supply nozzles 8.
  • the cooling conditions such as the cooling temperature and the cooling time in the cooling device R are appropriately set in accordance with the purpose of the heat treatment of the object X, the material of the object X, and the like.
  • the cooling pump 4 pressure-feeds the coolant accumulated in the cooling water tank 6 to the mist header 3 or the supply nozzle 8.
  • an open / close valve 31 is provided upstream of the mist header 3, and an open / close valve 32 is provided upstream of the supply nozzle 8.
  • the on-off valve 31 is opened and the on-off valve 32 is closed, and the coolant is supplied from the cooling pump 4 to the cooling nozzle 2 provided on the mist header 3.
  • the on-off valve 31 is closed and the on-off valve 32 is opened, and the cooling liquid is supplied from the cooling pump 4 to the supply nozzle 8.
  • the cooling pump 4 is selected to have a time variation of the discharge pressure of the coolant preferably small.
  • a heat exchanger 30 is provided downstream of the cooling pump 4.
  • the heat exchanger 30 cools the cooling fluid discharged from the cooling pump 4 by heat exchange with a cooling medium.
  • the cooling fluid is cooled by the heat exchanger 30, so that the cooling fluid recovered from the cooling chamber 1 is cooled, and then supplied to the cooling chamber 1 from the cooling nozzle 2 or the supply nozzle 8 again.
  • the cooling drainage pipe 5 is a pipe which makes the lower part of the cooling chamber 1 and the cooling water tank 6 connect, and the drainage valve 9 is provided in the middle part.
  • the cooling water tank 6 is a liquid container for storing the cooling fluid drained from the cooling chamber 1 via the cooling drainage pipe 5 or the cooling circulation pipe 7.
  • the cooling circulation pipe 7 is a pipe for connecting the upper portion of the cooling chamber 1 and the upper portion of the cooling water tank 6 as shown in FIG.
  • the cooling circulation pipe 7 is for returning the coolant overflowed from the cooling chamber 1 to the cooling water tank 6 at the time of immersion cooling described above. That is, the cooling circulation pipe 7 recovers the cooling fluid stored in the cooling chamber 1 from above the object X stored in the cooling chamber 1.
  • FIG. 3A is a view on arrow AA of FIG.
  • the plurality of supply nozzles 8 are discretely disposed in the lower part of the cooling chamber 1, and the cooling fluid is injected into the cooling chamber 1 by injecting the cooling fluid upward during immersion cooling. Supply.
  • the plurality of supply nozzles 8 supply the cooling liquid to the cooling chamber 1 from the lower side to the upper side than the object X accommodated in the cooling chamber 1.
  • FIG. 3B is a perspective view of the supply nozzle 8.
  • the supply nozzle 8 is formed of a cylinder whose upper end is an open end 8a from which the coolant is jetted and which has a through hole 8b penetrating laterally.
  • the supply nozzle 8 ejects the cooling fluid supplied from the lower end from the opening end 8a at the upper end, the surrounding cooling fluid is taken in from the through hole 8b, and the flow rate several times of the cooling fluid supplied from the lower end The cooling fluid is spouted from the open end 8a.
  • the intermediate transfer device H includes the transfer chamber 10, the transfer chamber mounting table 11, the cooling chamber lift 12 and the cooling chamber lifting cylinder 13, the pair of transfer rails 14, and the pair of pusher cylinders (pusher cylinder 15 and pusher cylinder 16), heating chamber lift 17 and heating chamber lift cylinder 18 etc.
  • the transfer chamber 10 is a container provided between the cooling device R and the heating device K1 and the heating device K2, and the internal space of the transfer chamber 10 is the transfer area HS.
  • the to-be-processed object X is carried in by the external conveyance apparatus in the state accommodated in containers, such as a basket, or is carried in in the conveyance chamber 10 from a discharge port (not shown).
  • the transfer chamber mounting table 11 is a support table for closing the delivery port between the cooling chamber 1 and the transfer chamber 10 when the object X is cooled by the cooling device R, and can be placed on the other object X ing.
  • the cooling chamber lift 12 is a support on which the object X is placed when the object X is cooled by the cooling device R, and the object X is preferably exposed so that the bottom of the object X is preferably widely exposed. To support.
  • the cooling chamber lifting platform 12 has a plurality of through holes 12 a (see FIG. 3A) opened in accordance with the supply nozzle 8, and is fixed to the tip of the movable rod of the cooling chamber lifting cylinder 13.
  • the cooling chamber raising and lowering cylinder 13 is an actuator for moving the cooling chamber raising and lowering base 12 up and down (raising and lowering). That is, the cooling chamber lift cylinder 13 and the cooling chamber lift 12 are dedicated transfer devices for the cooling device R, and transfer the object X placed on the cooling chamber lift 12 from the transfer region HS to the cooling region RS. And transport the cooling area RS to the transport area HS.
  • the pair of transfer rails 14 is laid on the floor in the transfer chamber 10 so as to extend in the horizontal direction.
  • the transport rails 14 are guide members for transporting the object X between the cooling device R and the heating device K1.
  • the pusher cylinder 15 is an actuator that presses the object X when the object X in the transfer chamber 10 is conveyed toward the heating device K1.
  • the pusher cylinder 16 is an actuator that presses the object X when the object X is transferred from the heating device K1 to the cooling device R.
  • the pair of transport rails 14, the pusher cylinder 15 and the pusher cylinder 16 are dedicated transport devices for transporting the object X between the heating device K 1 and the cooling device R.
  • FIG. 1 shows the pair of transport rails 14, the pusher cylinder 15, and the pusher cylinder 16
  • the actual intermediate transport device H includes a total of two pairs of transport rails 14, the pusher cylinder 15, and the pusher cylinder. It has sixteen. That is, the transport rail 14, the pusher cylinder 15, and the pusher cylinder 16 are provided not only for the heating device K1 but also for the heating device K2.
  • the third heating device is provided, a total of two pairs of transport rails 14, the pusher cylinder 15, and the pusher cylinder 16 are provided.
  • the heating chamber elevator 17 is a support on which the object X is placed when the object X is transferred from the intermediate transfer device H to the heating device K1. That is, the workpiece X is conveyed right above the heating chamber elevator 17 by being pressed in the right direction of FIG. 1 by the pusher cylinder 15.
  • the heating chamber elevating cylinder 18 is an actuator for moving the object X on the heating chamber elevating table 17 up and down (raising and lowering). That is, the heating chamber lift 17 and the heating chamber lift cylinder 18 are dedicated transfer devices for the heating device K1, and the object X placed on the heating chamber lift 17 is transferred from the transfer area HS to the inside of the heating device K1. While transporting to (heating area KS), it transfers from heating area KS to transportation area HS.
  • the heating device K1 includes a heating chamber 20, a heat insulating container 21, a plurality of heaters 22, a vacuum exhaust pipe 23, a vacuum pump 24, a stirring blade 25, a stirring motor 26, and the like.
  • the heating chamber 20 is a container provided on the transfer chamber 10, and the internal space of the heating chamber 20 is a heating area KS.
  • the heating chamber 20 is a vertical cylindrical container (container whose central axis is in the vertical direction) as in the cooling chamber 1 described above, but is smaller than the cooling chamber 1.
  • the heat insulation container 21 is a vertical cylindrical container provided in the heating chamber 20, and is formed of a heat insulating material having a predetermined heat insulation performance.
  • the plurality of heaters 22 are rod-shaped heating elements, and are provided in the vertical posture at predetermined intervals in the circumferential direction of the heat insulating container 21.
  • the plurality of heaters 22 heat the object X accommodated in the heating area KS to a desired temperature (heating temperature).
  • the heating conditions such as the heating temperature and the heating time are appropriately set according to the purpose of the heat treatment on the object X, the material of the object X, and the like.
  • the degree of vacuum (pressure) in the heating area KS (heating chamber 20) is included in the heating condition.
  • the vacuum exhaust pipe 23 is a pipe communicating with the heating area KS, one end thereof is connected to the upper portion of the heat insulation container 21, and the other end is connected to the vacuum pump 24.
  • the vacuum pump 24 is an exhaust pump that sucks the air in the heating area KS via such a vacuum exhaust pipe 23.
  • the degree of vacuum in the heating area KS is determined by the displacement of air by the vacuum pump 24.
  • the stirring blade 25 is a rotary blade provided in the upper part in the heat insulation container 21 in a posture in which the direction of the rotation axis is the vertical direction (vertical direction).
  • the stirring blade 25 is driven by the stirring motor 26 to stir the air in the heating area KS.
  • the stirring motor 26 is a rotational drive source provided on the heating chamber 20 such that the output shaft is in the vertical direction (vertical direction).
  • the output shaft of the agitating motor 26 located on the heating chamber 20 is axially coupled with the rotation shaft of the agitating blade 25 located in the heating chamber 20 so as not to impair the airtightness (sealability) of the heating chamber 20 .
  • the multi-chamber heat treatment apparatus includes a control panel (control device) (not shown).
  • the control panel has an operation unit through which the user sets and inputs various conditions in heat treatment, and drive units such as the cooling pump 4, the heater 22, various cylinders, and the vacuum pump 24 based on a control program stored in advance.
  • a controller configured to execute a heat treatment according to the information related to the various conditions set and input as described above for the object X.
  • the operation of the multi-chamber heat treatment apparatus is mainly performed by the control panel based on the setting information.
  • heat treatment includes various treatments depending on the purpose. Below, operation
  • Quenching is completed, for example, by heating the object X to a temperature T1 and then rapidly cooling it to a temperature T2, holding it at a temperature T2 for a certain period of time, and then slowly cooling it.
  • the object X accommodated in the intermediate transfer device H from the loading / unloading port by the external transfer device is transferred onto the heating chamber lift 17 by operating the pusher cylinder 15, for example, and further the heating chamber lifting cylinder 18 is accommodated in the heating area KS.
  • the heating heater 22 is energized for a certain period of time and the object X is heated to the temperature T1
  • the heating chamber elevating cylinder 18 and the pusher cylinder 16 are transported to the cooling chamber elevator 12 by operating. Further, the cooling chamber elevating cylinder 13 is transported to the cooling area RS by operating.
  • the on-off valve 32 located on the upstream side of the supply nozzle 8 is opened and the on-off valve 31 of the mist header 3 is closed. It is closed.
  • the cooling pump 4 is operated in advance and the cooling fluid is supplied from the plurality of supply nozzles 8, whereby the inside of the cooling region RS is filled with the cooling fluid W.
  • the cooling fluid W is continuously supplied from the supply nozzle 8 to the inside of the cooling chamber 1.
  • the cooling fluid W continuously supplied from the supply nozzle 8 cools the processing object X and ascends the inside of the cooling chamber 1, and the overflowing cooling fluid W is recovered by the cooling circulation pipe 7 to obtain a cooling water tank.
  • the cooling fluid W stored in the cooling water tank 6 is again supplied into the cooling chamber 1 from the supply nozzle 8 by the cooling pump 4. At this time, the coolant W is cooled by the heat exchanger 30.
  • the on-off valve 32 located upstream of the supply nozzle 8 is closed and the on-off valve 31 of the mist header 3 is opened, and the drainage valve 9 is opened. Ru.
  • the coolant W is sprayed from the cooling nozzle 2 toward the object X through the mist header 3.
  • the object X is mist-cooled by the droplets of the cooling fluid W jetted from the cooling nozzle 2.
  • the cooling fluid W dropped to the bottom of the cooling chamber 1 is stored in the cooling water tank 6 through the cooling drainage pipe 5.
  • the cooling fluid W stored in the cooling water tank 6 is sprayed again into the cooling chamber 1 from the cooling nozzle 2 of the mist header 3 by the cooling pump 4. At this time, the coolant W is cooled by the heat exchanger 30.
  • the cooling fluid W is supplied from below the object X by the supply nozzle 8 in the cooling chamber 1, and the supplied cooling fluid W is recovered from above the object X by the cooling circulation pipe 7, and the recovered coolant W is pressure-fed by the cooling pump 4 to the supply nozzle 8. Therefore, according to the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, a flow from the lower side to the upper side is formed in the cooling chamber 1 by the supply nozzle 8, the cooling circulation pipe 7 and the cooling pump 4. . Such a flow is directed in the same direction as the coolant W heated by cooling the object X, and therefore, the occurrence of disturbance in the flow of the coolant W in the cooling chamber 1 can be suppressed.
  • the object X can be cooled uniformly.
  • the coolant W supplied from the supply nozzle 8 can be prevented from being heated before reaching the object to be treated X, and the object to be treated X can be efficiently cooled. Therefore, according to the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, it is possible to form a flow of the cooling liquid W capable of cooling the object X efficiently and uniformly in the cooling chamber 1 .
  • the supply nozzle 8 has a cylindrical body having an open end 8 a whose upper end ejects the cooling fluid W and a through hole 8 b penetrating laterally. It is. For this reason, the supply nozzle 8 can take in the surrounding coolant from the through hole 8b, and can eject the coolant W from the open end 8a at a flow rate several times that of the coolant W supplied from the lower end. Therefore, the flow velocity of the cooling fluid W in the cooling chamber 1 can be increased to perform more efficient cooling.
  • the heat exchanger 30 for cooling the cooling fluid W collected by the cooling circulation pipe 7 is provided. For this reason, compared with the case where the coolant W is simply circulated, it is possible to cool the object X in a shorter time.
  • the multi-chamber heat treatment apparatus including the cooling device R, the intermediate conveyance device H, and the two heating devices is described in the above embodiment, the present disclosure is not limited thereto.
  • the present disclosure is also applicable to, for example, a multi-chamber heat treatment apparatus of a type in which a cooling device R and a single heating chamber are adjacent via a door.
  • cooling device R of the said embodiment accommodates the to-be-processed object X in cooling region RS from upper direction, this indication is not limited to this.
  • the present disclosure is also applicable to one that accommodates the object X from the side (horizontal direction) or from below into the cooling region RS.
  • the cooling device R of the said embodiment demonstrated that mist cooling was possible.
  • the present disclosure is not limited thereto, and may be applied to a cooling device that does not perform mist cooling.
  • the cooling device and the multi-chamber heat treatment apparatus which cools the object to be treated by immersing the object in the cooling chamber, the flow of the coolant that can cool the object efficiently and uniformly into the cooling chamber. It becomes possible to form.
  • cooling chamber 2 cooling nozzle 3 mist header 4 cooling pump (pump) 5 Cooling drainage pipe 6 Cooling water tank 7 Cooling circulation pipe (collection piping) 8 supply nozzle 8a opening end 8b through hole 9 drainage valve 10 transfer chamber 11 transfer chamber mounting table 12 cooling chamber lift 12a through hole 13 cooling chamber lift cylinder 14 transfer rail 15 pusher cylinder 16 pusher cylinder 16 pusher cylinder 17 heating chamber lift 18 heating chamber Lifting cylinder 20 Heating chamber 21 Heat insulation container 22 Heating heater 23 Vacuum exhaust pipe 24 Vacuum pump 25 Stirring blade 26 Stirring motor 30 Heat exchanger 31 Opening and closing valve 32 Opening and closing valve H Intermediate conveyance device HS Transportation region K1 Heating device K2 Heating device KS Heating region R Cooling device RS Cooling area W Coolant X Object to be treated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Details (AREA)

Abstract

This cooling device (R) cools a material to be treated (X) by immersion in a coolant (W), and is provided with: a cooling chamber (1) which accommodates the material to be treated (X) and can internally store the coolant (W); supply nozzles (8) which supply the coolant (W) into the cooling chamber (1) from below the material to be treated (X); a recovery tube (7) which recovers the coolant (W) stored in the cooling chamber (1) from above the material to be treated (X); and a pump (4) which feeds the coolant (W) recovered by the recovery tube (7) to the supply nozzle.

Description

冷却装置及び多室型熱処理装置Cooling device and multi-chamber heat treatment apparatus
 本開示は、冷却装置及び多室型熱処理装置に関する。本願は、2014年7月25日に日本に出願された特願2014-152048号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to a cooling device and a multi-chamber heat treatment apparatus. Priority is claimed on Japanese Patent Application No. 2014-152048, filed July 25, 2014, the content of which is incorporated herein by reference.
 例えば、特許文献1には、3つの加熱装置と1つの冷却装置とを備える多室型熱処理装置が開示されている。この多室型熱処理装置では、中間搬送室を介して加熱装置同士及び冷却装置が接続されており、例えば加熱装置で加熱した被処理物を冷却装置に搬送して冷却する。このような冷却装置では、例えば、冷却室内に冷却液を貯留し、この冷却室内で被処理物を冷却液に浸漬することで被処理物の冷却を行っている。また、下記特許文献2及び3にも、背景技術が開示されている。 For example, Patent Document 1 discloses a multi-chamber heat treatment apparatus including three heating devices and one cooling device. In this multi-chamber heat treatment apparatus, the heating devices and the cooling device are connected via the intermediate transfer chamber, and for example, the object heated by the heating device is conveyed to the cooling device and cooled. In such a cooling device, for example, the coolant is stored in a cooling chamber, and the workpiece is cooled by immersing the object in the coolant in the cooling chamber. The background art is also disclosed in the following Patent Documents 2 and 3.
日本国特開2014-051695号公報Japanese Patent Application Laid-Open No. 2014-051695 日本国特開2005-076101号公報Japanese Patent Application Laid-Open No. 2005-076101 日本国特開平07-208400号公報Japanese Patent Application Laid-Open No. 07-208400
 ところで、被処理物の冷却速度を向上させるためには、被処理物の冷却中に、冷却室内に貯留された冷却液を循環させて冷却液の流れを冷却室内に形成することが考えられる。この場合、特許文献1では、下方に設けられた排水配管で冷却室から冷却液を抜きながら、被処理物の側方に配置されたノズルから冷却室に冷却液を供給することで、冷却液の流れを形成することが考えられる。 By the way, in order to improve the cooling rate of the object to be treated, it is conceivable to circulate the cooling fluid stored in the cooling chamber to form the flow of the cooling fluid in the cooling chamber while the object to be treated is being cooled. In this case, in Patent Document 1, the coolant is supplied to the cooling chamber from the nozzles arranged on the side of the object while the coolant is being drained from the cooling chamber by the drainage pipe provided below, It is conceivable to form the flow of
 しかしながら、被処理物を冷却することで熱せられた冷却液は、冷却室の上方に向けて流れる。このため、上述の方法では、ノズルから冷却室内に供給される冷却液の流れと、熱せられて上方に向かう冷却液の流れとが干渉し、冷却室内における冷却液の流れが乱れ、被処理物を均一に冷却することが困難である。また、ノズルから供給された冷却液が被処理物に到達する前に熱せられることから、被処理物を効率的に冷却することが難しい。 However, the coolant heated by cooling the object flows upward of the cooling chamber. For this reason, in the above-described method, the flow of the coolant supplied from the nozzle into the cooling chamber interferes with the flow of the heated coolant directed upward, and the flow of the coolant in the cooling chamber is disturbed, and the object to be treated is It is difficult to cool evenly. In addition, since the coolant supplied from the nozzles is heated before reaching the object to be treated, it is difficult to efficiently cool the object to be treated.
 本開示は、上述する問題点に鑑みてなされたもので、冷却室内において被処理物を冷却液に浸漬して冷却する冷却装置及び多室型熱処理装置において、効率的かつ均一に被処理物を冷却できる冷却液の流れを冷却室内に形成することを目的とする。 The present disclosure has been made in view of the above-described problems, and in a cooling device and a multi-chamber heat treatment apparatus that immerses and cools an object to be processed in a cooling liquid in a cooling chamber, the object is processed efficiently and uniformly. The object is to form a flow of coolant that can be cooled in a cooling chamber.
 本開示は、上記課題を解決するための手段として、以下の構成を採用する。 The present disclosure adopts the following configuration as means for solving the above problems.
 本開示の第1の態様は、冷却液に浸漬することにより被処理物の冷却を行う冷却装置であって、被処理物を収容すると共に内部に冷却液を貯留可能な冷却室と、被処理物よりも下方から冷却室に冷却液を供給する供給ノズルと、被処理物よりも上方から冷却室に貯留された冷却液を回収する回収配管と、回収配管によって回収した冷却液を供給ノズルに圧送するポンプとを備える。 A first aspect of the present disclosure is a cooling device that cools an object to be treated by immersing in a cooling liquid, and a cooling chamber that accommodates the object to be treated and can store the cooling liquid therein; Supply nozzle that supplies the cooling fluid to the cooling chamber from below the object, a recovery pipe that recovers the cooling fluid stored in the cooling chamber from above the workpiece, and the coolant that is recovered by the recovery piping And a pump for pumping.
 本開示の第2の態様は、上記第1の態様において、供給ノズルが、上端が冷却液を噴出する開口端とされると共に側方に貫通する貫通孔を有する筒体からなる。 According to a second aspect of the present disclosure, in the first aspect, the supply nozzle includes a cylindrical body whose upper end is an open end from which the coolant is jetted and which has a through hole penetrating laterally.
 本発明の第3の態様は、上記第1または第2の態様において、回収配管で回収した冷却液を冷却する熱交換器を備える。 A 3rd aspect of this invention is provided with the heat exchanger which cools the cooling fluid collect | recovered by collection piping in the said 1st or 2nd aspect.
 本発明の第4の態様は、被処理物を加熱する加熱装置と、上記第1~第3いずれかの態様である冷却装置とを備える多室型熱処理装置である。 A fourth aspect of the present invention is a multi-chamber heat treatment apparatus including a heating device for heating an object to be treated and the cooling device according to any one of the first to third aspects.
 本開示によれば、冷却室において、供給ノズルによって被処理物の下方から冷却液が供給され、この供給された冷却液が回収配管によって被処理物の上方から回収され、回収された冷却液がポンプによって供給ノズルに圧送される。このため、本開示によれば、供給ノズル、回収配管、及びポンプによって、冷却室内に下方から上方に向かう流れが形成される。このような流れは、被処理物を冷却することで熱せられた冷却液と同一方向に向かうことから、冷却室内における冷却液の流れの乱れを抑制することができる。したがって、本開示によれば、被処理物を均一に冷却することができる。また、供給ノズルから供給された冷却液が、被処理物に到達する前に熱せられることを防止し、被処理物を効率的に冷却することができる。すなわち、本開示によれば、冷却室内において被処理物を冷却液に浸漬して冷却する冷却装置及び多室型熱処理装置において、効率的かつ均一に被処理物を冷却できる冷却液の流れを冷却室内に形成することが可能となる。 According to the present disclosure, in the cooling chamber, the cooling fluid is supplied from below the object by the supply nozzle, and the supplied cooling fluid is recovered from above the object by the recovery pipe, and the recovered coolant is recovered. It is pumped by the pump to the feed nozzle. For this reason, according to the present disclosure, the flow from the lower side to the upper side is formed in the cooling chamber by the supply nozzle, the recovery pipe, and the pump. Such a flow is directed in the same direction as the coolant which is heated by cooling the object to be treated, so that disturbance of the flow of the coolant in the cooling chamber can be suppressed. Therefore, according to the present disclosure, the object to be treated can be cooled uniformly. Further, the coolant supplied from the supply nozzle can be prevented from being heated before reaching the object to be treated, and the object to be treated can be efficiently cooled. That is, according to the present disclosure, in a cooling device and a multi-chamber heat treatment apparatus that immerses and cools an object in a cooling chamber in a cooling chamber, the flow of coolant that can cool the object efficiently and uniformly is cooled. It can be formed indoors.
本開示の一実施形態に係る冷却装置及び多室型熱処理装置の全体構成を示す第1の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a 1st longitudinal cross-sectional view which shows the whole structure of the cooling device which concerns on one Embodiment of this indication, and a multi-chamber heat processing apparatus. 本開示の一実施形態に係る冷却装置の全体構成を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the whole structure of the cooling device which concerns on one Embodiment of this indication. 図2におけるA-A線矢視図である。It is an AA arrow line view in FIG. 本開示の一実施形態に係る冷却装置の備える供給ノズルの斜視図である。It is a perspective view of a supply nozzle with which a cooling device concerning one embodiment of this indication is provided. 浸漬冷却の様子を示す説明図である。It is explanatory drawing which shows the mode of immersion cooling. ミスト冷却の様子を示す説明図である。It is explanatory drawing which shows the mode of mist cooling.
 以下、図面を参照して、本開示に係る冷却装置及び多室型熱処理装置の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。 Hereinafter, an embodiment of a cooling device and a multi-chamber heat treatment apparatus according to the present disclosure will be described with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member a recognizable size.
 本実施形態の冷却装置を備える多室型熱処理装置は、図1に示すように、冷却装置R、中間搬送装置H、及び2つの加熱装置(加熱装置K1及び加熱装置K2)を合体させた装置である。なお、加熱装置の数を3つとすることも可能である。 As shown in FIG. 1, the multi-chamber heat treatment apparatus including the cooling apparatus of the present embodiment is an apparatus in which a cooling apparatus R, an intermediate transfer apparatus H, and two heating apparatuses (heating apparatus K1 and heating apparatus K2) are combined. It is. In addition, it is also possible to set the number of heating devices to three.
 冷却装置Rは、被処理物Xを冷却処理する装置であり、図1に示すように、冷却室1、複数の冷却ノズル2、複数のミストヘッダー3、冷却ポンプ4(ポンプ)、冷却排水管5、冷却水槽6、冷却循環管7(回収配管)、複数の供給ノズル8、及び排水弁9、等を備えている。 The cooling device R is a device for cooling the object X, and as shown in FIG. 1, the cooling chamber 1, the plurality of cooling nozzles 2, the plurality of mist headers 3, the cooling pump 4 (pump), the cooling drainage pipe 5, a cooling water tank 6, a cooling circulation pipe 7 (collection pipe), a plurality of supply nozzles 8, a drain valve 9, and the like.
 冷却室1は、被処理物Xを収容する縦型円筒形の容器(中心軸線が鉛直方向となる容器)であり、内部空間が冷却領域RSである。この冷却室1の上部は中間搬送装置Hに接続されており、冷却室1には冷却領域RSを中間搬送装置Hの内部空間(搬送領域HS)に連通させる開口が形成されている。この開口を介して、被処理物Xが、冷却領域RSに搬入される、あるいは、冷却領域RSから搬出される。冷却室1は、冷却液を貯留可能とされている。 The cooling chamber 1 is a vertical cylindrical container (container whose central axis is in the vertical direction) that accommodates the object X, and the internal space is a cooling region RS. The upper portion of the cooling chamber 1 is connected to the intermediate transfer device H, and the cooling chamber 1 is formed with an opening for communicating the cooling region RS with the internal space (transfer region HS) of the intermediate transfer device H. The workpiece X is carried into or out of the cooling region RS through the opening. The cooling chamber 1 is capable of storing a coolant.
 複数の冷却ノズル2は、図1~図3Bに示されているように、冷却領域RS内に収容された被処理物Xの周囲に離散して配置されている。より具体的には、複数の冷却ノズル2は、被処理物Xの周囲において、鉛直方向に多段(具体的には5段)を形成した状態、かつ、冷却室1(冷却領域RS)の周方向に一定間隔を隔てた状態で、被処理物Xの全体を取り囲むように、かつ、被処理物Xとの距離が好ましくは等距離となるように離散して配置されている。 The plurality of cooling nozzles 2 are discretely disposed around the workpiece X accommodated in the cooling region RS, as shown in FIGS. 1 to 3B. More specifically, the plurality of cooling nozzles 2 are in a state in which multiple stages (specifically, five stages) are formed in the vertical direction around the workpiece X, and the circumference of the cooling chamber 1 (cooling region RS) It is discretely arranged so as to surround the whole of the object to be processed X and to be preferably equidistant in distance from the object to be processed X with a predetermined interval in the direction.
 また、複数の冷却ノズル2は、所定数にグループ分けされている。すなわち、複数の冷却ノズル2は、冷却領域RSの鉛直方向における段毎にグループ化され、冷却室1(冷却領域RS)の周方向においても複数のグループにグループ分けされている。このような複数のグループ(ノズルグループ)には、図2に示すように、ミストヘッダー3が個別に設けられている。 Further, the plurality of cooling nozzles 2 are grouped into a predetermined number. That is, the plurality of cooling nozzles 2 are grouped in stages in the vertical direction of the cooling region RS, and are also grouped into a plurality of groups in the circumferential direction of the cooling chamber 1 (cooling region RS). As shown in FIG. 2, mist headers 3 are individually provided in such a plurality of groups (nozzle groups).
 ここで、冷却ノズル2から噴出される冷却液は、熱処理の冷却用に一般的に用いられる冷却油よりも粘性が低い液体であり、例えば水である。上記冷却ノズル2の噴射孔の形状は、水等の冷却液が所定の噴霧角で均一かつ一定粒径の液滴となるように設定されている。また、各冷却ノズル2の噴霧角及び互いに隣り合う冷却ノズル2の間隔は、図1~図5に示されているように、冷却ノズル2から噴き出た液滴のうち、外周側に位置する液滴が隣接する冷却ノズル2から噴き出た外周側に位置する液滴と交差あるいは衝突するように、設定されている。 Here, the coolant jetted from the cooling nozzle 2 is a liquid having a viscosity lower than that of a cooling oil generally used for cooling of the heat treatment, and is, for example, water. The shape of the injection hole of the cooling nozzle 2 is set so that the cooling liquid such as water becomes droplets of uniform and constant particle diameter at a predetermined spray angle. Further, as shown in FIGS. 1 to 5, the spray angle of each cooling nozzle 2 and the interval between the adjacent cooling nozzles 2 are positioned on the outer peripheral side among the droplets ejected from the cooling nozzle 2. It is set such that the droplet intersects or collides with the droplet positioned on the outer peripheral side ejected from the adjacent cooling nozzle 2.
 すなわち、このような複数の冷却ノズル2は、冷却液の液滴の集合体つまり冷却液のミスト(冷却液ミスト)で被処理物Xを全体的に包囲するように、冷却液を被処理物Xに向けて噴霧する。 That is, such a plurality of cooling nozzles 2 are the objects to be treated of the cooling fluid so that the object to be treated X is entirely surrounded by the aggregate of droplets of the cooling fluid, that is, the mist of the cooling fluid (coolant mist). Spray towards X
 本実施形態の冷却装置Rは、このような冷却液ミストを用いて被処理物Xを冷却するミスト冷却と、被処理物Xを冷却液に浸漬させる冷却(浸漬冷却)とが可能である。浸漬冷却では、複数の供給ノズル8から供給された冷却液によって冷却室1内の被処理物Xを浸漬状態にして冷却する。なお、この冷却装置Rにおける冷却温度や冷却時間等の冷却条件は、被処理物Xにおける熱処理の目的や被処理物Xの材質等に応じて適宜設定される。 The cooling device R of the present embodiment is capable of mist cooling in which the object X is cooled using such a coolant mist, and cooling (immersion cooling) in which the object X is immersed in the cooling liquid. In immersion cooling, the object X in the cooling chamber 1 is immersed and cooled by the coolant supplied from the plurality of supply nozzles 8. The cooling conditions such as the cooling temperature and the cooling time in the cooling device R are appropriately set in accordance with the purpose of the heat treatment of the object X, the material of the object X, and the like.
 冷却ポンプ4は、冷却水槽6に溜った冷却液をミストヘッダー3あるいは供給ノズル8に圧送する。ここで、ミストヘッダー3の上流には開閉バルブ31が設けられ、供給ノズル8の上流には開閉バルブ32が設けられている。ミスト冷却を行う場合には、開閉バルブ31が開放されると共に開閉バルブ32が閉じられ、冷却ポンプ4からミストヘッダー3に設けられた冷却ノズル2に対して冷却液が供給される。一方、浸漬冷却を行う場合には、開閉バルブ31が閉じられると共に開閉バルブ32が開放され、冷却ポンプ4から供給ノズル8に対して冷却液が供給される。なお、この冷却ポンプ4については、冷却液の吐出圧の時間変動が好ましくは少ないものが選定される。また、冷却ポンプ4の下流には、熱交換器30が設けられている。この熱交換器30は、冷却ポンプ4から吐出された冷却液を冷却媒体との熱交換により冷却する。この熱交換器30によって冷却液が冷却されることによって、冷却室1から回収された冷却液が冷却された後に、再び、冷却ノズル2あるいは供給ノズル8から冷却室1に供給される。 The cooling pump 4 pressure-feeds the coolant accumulated in the cooling water tank 6 to the mist header 3 or the supply nozzle 8. Here, an open / close valve 31 is provided upstream of the mist header 3, and an open / close valve 32 is provided upstream of the supply nozzle 8. In the case of performing mist cooling, the on-off valve 31 is opened and the on-off valve 32 is closed, and the coolant is supplied from the cooling pump 4 to the cooling nozzle 2 provided on the mist header 3. On the other hand, when the immersion cooling is performed, the on-off valve 31 is closed and the on-off valve 32 is opened, and the cooling liquid is supplied from the cooling pump 4 to the supply nozzle 8. The cooling pump 4 is selected to have a time variation of the discharge pressure of the coolant preferably small. Further, a heat exchanger 30 is provided downstream of the cooling pump 4. The heat exchanger 30 cools the cooling fluid discharged from the cooling pump 4 by heat exchange with a cooling medium. The cooling fluid is cooled by the heat exchanger 30, so that the cooling fluid recovered from the cooling chamber 1 is cooled, and then supplied to the cooling chamber 1 from the cooling nozzle 2 or the supply nozzle 8 again.
 冷却排水管5は、冷却室1の下部と冷却水槽6とを連通させる配管であり、途中部位に排水弁9が設けられている。冷却水槽6は、冷却排水管5あるいは冷却循環管7を介して冷却室1から排水された冷却液を貯留する液体容器である。冷却循環管7は、図2に示すように、冷却室1の上部と冷却水槽6の上部とを連通させる配管である。この冷却循環管7は、上述した浸漬冷却時において冷却室1からオーバーフローした冷却液を冷却水槽6に戻すためのものである。すなわち、冷却循環管7は、冷却室1に収容される被処理物Xよりも上方から冷却室1に貯留された冷却液を回収する。 The cooling drainage pipe 5 is a pipe which makes the lower part of the cooling chamber 1 and the cooling water tank 6 connect, and the drainage valve 9 is provided in the middle part. The cooling water tank 6 is a liquid container for storing the cooling fluid drained from the cooling chamber 1 via the cooling drainage pipe 5 or the cooling circulation pipe 7. The cooling circulation pipe 7 is a pipe for connecting the upper portion of the cooling chamber 1 and the upper portion of the cooling water tank 6 as shown in FIG. The cooling circulation pipe 7 is for returning the coolant overflowed from the cooling chamber 1 to the cooling water tank 6 at the time of immersion cooling described above. That is, the cooling circulation pipe 7 recovers the cooling fluid stored in the cooling chamber 1 from above the object X stored in the cooling chamber 1.
 図3Aは、図2のA-A線矢視図である。この図に示すように、複数の供給ノズル8は、冷却室1の下部に離散して配置されており、浸漬冷却時において冷却液を上方に向けて噴射することにより冷却室1内に冷却液を供給する。このような複数の供給ノズル8は、冷却室1に収容される被処理物Xよりも下方から上方に向けて冷却室1に冷却液を供給する。 FIG. 3A is a view on arrow AA of FIG. As shown in this figure, the plurality of supply nozzles 8 are discretely disposed in the lower part of the cooling chamber 1, and the cooling fluid is injected into the cooling chamber 1 by injecting the cooling fluid upward during immersion cooling. Supply. The plurality of supply nozzles 8 supply the cooling liquid to the cooling chamber 1 from the lower side to the upper side than the object X accommodated in the cooling chamber 1.
 図3Bは、供給ノズル8の斜視図である。供給ノズル8は、この図に示すように、上端が冷却液を噴出する開口端8aとされると共に側方に貫通する貫通孔8bを有する筒体からなる。このような供給ノズル8は、下端から供給された冷却液を上端の開口端8aから噴出するときに、貫通孔8bから周囲の冷却液を取り込み、下端から供給された冷却液の数倍の流量で開口端8aから冷却液を噴出する。 FIG. 3B is a perspective view of the supply nozzle 8. As shown in this figure, the supply nozzle 8 is formed of a cylinder whose upper end is an open end 8a from which the coolant is jetted and which has a through hole 8b penetrating laterally. When such a supply nozzle 8 ejects the cooling fluid supplied from the lower end from the opening end 8a at the upper end, the surrounding cooling fluid is taken in from the through hole 8b, and the flow rate several times of the cooling fluid supplied from the lower end The cooling fluid is spouted from the open end 8a.
 図1に戻り、中間搬送装置Hは、搬送室10、搬送室載置台11、冷却室昇降台12、冷却室昇降シリンダー13、一対の搬送レール14、一対のプッシャーシリンダー(プッシャーシリンダー15及びプッシャーシリンダー16)、加熱室昇降台17、及び加熱室昇降シリンダー18、等を備えている。搬送室10は、冷却装置Rと加熱装置K1及び加熱装置K2との間に設けられた容器であり、搬送室10の内部空間が搬送領域HSである。被処理物Xは、バスケット等の容器内に収容された状態で、外部の搬送装置によって搬入される、あるいは、搬出口(図示略)から搬送室10内に搬入される。 Returning to FIG. 1, the intermediate transfer device H includes the transfer chamber 10, the transfer chamber mounting table 11, the cooling chamber lift 12 and the cooling chamber lifting cylinder 13, the pair of transfer rails 14, and the pair of pusher cylinders (pusher cylinder 15 and pusher cylinder 16), heating chamber lift 17 and heating chamber lift cylinder 18 etc. The transfer chamber 10 is a container provided between the cooling device R and the heating device K1 and the heating device K2, and the internal space of the transfer chamber 10 is the transfer area HS. The to-be-processed object X is carried in by the external conveyance apparatus in the state accommodated in containers, such as a basket, or is carried in in the conveyance chamber 10 from a discharge port (not shown).
 搬送室載置台11は、冷却装置Rで被処理物Xを冷却する際に冷却室1と搬送室10との受渡口を塞ぐ支持台であり、他の被処理物Xを載置可能とされている。冷却室昇降台12は、冷却装置Rで被処理物Xを冷却する際に被処理物Xを載せる支持台であり、被処理物Xの底部が好ましくは広く露出するように被処理物Xを支持する。この冷却室昇降台12は、供給ノズル8に合わせて開口された複数の貫通孔12a(図3Aを参照)を有しており、冷却室昇降シリンダー13の可動ロッドの先端に固定されている。 The transfer chamber mounting table 11 is a support table for closing the delivery port between the cooling chamber 1 and the transfer chamber 10 when the object X is cooled by the cooling device R, and can be placed on the other object X ing. The cooling chamber lift 12 is a support on which the object X is placed when the object X is cooled by the cooling device R, and the object X is preferably exposed so that the bottom of the object X is preferably widely exposed. To support. The cooling chamber lifting platform 12 has a plurality of through holes 12 a (see FIG. 3A) opened in accordance with the supply nozzle 8, and is fixed to the tip of the movable rod of the cooling chamber lifting cylinder 13.
 冷却室昇降シリンダー13は、冷却室昇降台12を上下動(昇降)させるアクチュエータである。すなわち、冷却室昇降シリンダー13及び冷却室昇降台12は、冷却装置Rの専用搬送装置であり、冷却室昇降台12上に載置された被処理物Xを搬送領域HSから冷却領域RSに搬送すると共に冷却領域RSから搬送領域HSに搬送する。 The cooling chamber raising and lowering cylinder 13 is an actuator for moving the cooling chamber raising and lowering base 12 up and down (raising and lowering). That is, the cooling chamber lift cylinder 13 and the cooling chamber lift 12 are dedicated transfer devices for the cooling device R, and transfer the object X placed on the cooling chamber lift 12 from the transfer region HS to the cooling region RS. And transport the cooling area RS to the transport area HS.
 一対の搬送レール14は、搬送室10内の床部に水平方向に延在するように敷設されている。これら搬送レール14は、冷却装置Rと加熱装置K1との間で被処理物Xを搬送させる際のガイド部材である。プッシャーシリンダー15は、搬送室10内の被処理物Xを加熱装置K1に向けて搬送する際に、被処理物Xを押圧するアクチュエータである。プッシャーシリンダー16は、被処理物Xを加熱装置K1から冷却装置Rに搬送する際に、被処理物Xを押圧するアクチュエータである。 The pair of transfer rails 14 is laid on the floor in the transfer chamber 10 so as to extend in the horizontal direction. The transport rails 14 are guide members for transporting the object X between the cooling device R and the heating device K1. The pusher cylinder 15 is an actuator that presses the object X when the object X in the transfer chamber 10 is conveyed toward the heating device K1. The pusher cylinder 16 is an actuator that presses the object X when the object X is transferred from the heating device K1 to the cooling device R.
 すなわち、一対の搬送レール14、プッシャーシリンダー15及びプッシャーシリンダー16は、被処理物Xを加熱装置K1と冷却装置Rとの間に搬送する専用搬送装置である。なお、図1には一対の搬送レール14、プッシャーシリンダー15、及びプッシャーシリンダー16が示されているが、実際の中間搬送装置Hは、合計二対の搬送レール14、プッシャーシリンダー15、及びプッシャーシリンダー16を備えている。すなわち、搬送レール14、プッシャーシリンダー15、及びプッシャーシリンダー16は、加熱装置K1用だけではなく、加熱装置K2用にも設けられている。なお、3つ目の加熱装置を設ける場合には、合計二対の搬送レール14、プッシャーシリンダー15、及びプッシャーシリンダー16が設けられている。 That is, the pair of transport rails 14, the pusher cylinder 15 and the pusher cylinder 16 are dedicated transport devices for transporting the object X between the heating device K 1 and the cooling device R. Although FIG. 1 shows the pair of transport rails 14, the pusher cylinder 15, and the pusher cylinder 16, the actual intermediate transport device H includes a total of two pairs of transport rails 14, the pusher cylinder 15, and the pusher cylinder. It has sixteen. That is, the transport rail 14, the pusher cylinder 15, and the pusher cylinder 16 are provided not only for the heating device K1 but also for the heating device K2. When the third heating device is provided, a total of two pairs of transport rails 14, the pusher cylinder 15, and the pusher cylinder 16 are provided.
 加熱室昇降台17は、被処理物Xを中間搬送装置Hから加熱装置K1に搬送する際に被処理物Xが載置される支持台である。すなわち、被処理物Xは、プッシャーシリンダー15によって図1の右方向に押圧されることにより、加熱室昇降台17の直上に搬送される。加熱室昇降シリンダー18は、加熱室昇降台17上の被処理物Xを上下動(昇降)させるアクチュエータである。すなわち、加熱室昇降台17及び加熱室昇降シリンダー18は、加熱装置K1の専用搬送装置であり、加熱室昇降台17上に載置された被処理物Xを搬送領域HSから加熱装置K1の内部(加熱領域KS)に搬送すると共に加熱領域KSから搬送領域HSに搬送する。 The heating chamber elevator 17 is a support on which the object X is placed when the object X is transferred from the intermediate transfer device H to the heating device K1. That is, the workpiece X is conveyed right above the heating chamber elevator 17 by being pressed in the right direction of FIG. 1 by the pusher cylinder 15. The heating chamber elevating cylinder 18 is an actuator for moving the object X on the heating chamber elevating table 17 up and down (raising and lowering). That is, the heating chamber lift 17 and the heating chamber lift cylinder 18 are dedicated transfer devices for the heating device K1, and the object X placed on the heating chamber lift 17 is transferred from the transfer area HS to the inside of the heating device K1. While transporting to (heating area KS), it transfers from heating area KS to transportation area HS.
 加熱装置K1及び加熱装置K2は基本的に同一構成を有するので、以下では代表して加熱装置K1の構成を説明する。加熱装置K1は、加熱室20、断熱容器21、複数の加熱ヒータ22、真空排気管23、真空ポンプ24、攪拌翼25、及び攪拌モータ26、等を備えている。 Since the heating device K1 and the heating device K2 basically have the same configuration, the configuration of the heating device K1 will be described representatively below. The heating device K1 includes a heating chamber 20, a heat insulating container 21, a plurality of heaters 22, a vacuum exhaust pipe 23, a vacuum pump 24, a stirring blade 25, a stirring motor 26, and the like.
 加熱室20は、搬送室10上に設けられた容器であり、加熱室20の内部空間が、加熱領域KSである。この加熱室20は、上述した冷却室1と同様に縦型円筒形の容器(中心軸線が鉛直方向となる容器)であるが、冷却室1よりも小型に形成されている。断熱容器21は、上記加熱室20内に設けられた縦型円筒形の容器であり、所定の断熱性能を有する断熱材から形成されている。 The heating chamber 20 is a container provided on the transfer chamber 10, and the internal space of the heating chamber 20 is a heating area KS. The heating chamber 20 is a vertical cylindrical container (container whose central axis is in the vertical direction) as in the cooling chamber 1 described above, but is smaller than the cooling chamber 1. The heat insulation container 21 is a vertical cylindrical container provided in the heating chamber 20, and is formed of a heat insulating material having a predetermined heat insulation performance.
 複数の加熱ヒータ22は、棒状の発熱体であり、垂直姿勢で断熱容器21の内側かつ周方向に所定間隔を空けて設けられている。これら複数の加熱ヒータ22は、加熱領域KS内に収容された被処理物Xを所望温度(加熱温度)まで加熱する。なお、この加熱温度や加熱時間等の加熱条件は、被処理物Xに関する熱処理の目的や被処理物Xの材質等に応じて適宜設定される。 The plurality of heaters 22 are rod-shaped heating elements, and are provided in the vertical posture at predetermined intervals in the circumferential direction of the heat insulating container 21. The plurality of heaters 22 heat the object X accommodated in the heating area KS to a desired temperature (heating temperature). The heating conditions such as the heating temperature and the heating time are appropriately set according to the purpose of the heat treatment on the object X, the material of the object X, and the like.
 ここで、上記加熱条件には加熱領域KS(加熱室20)内の真空度(圧力)が含まれる。真空排気管23は、加熱領域KSに連通する配管であり、一端が断熱容器21の上部に接続され、他端が真空ポンプ24に接続されている。真空ポンプ24は、このような真空排気管23を介して加熱領域KS内の空気を吸引する排気ポンプである。加熱領域KS内の真空度は、真空ポンプ24による空気の排気量によって決定される。 Here, the degree of vacuum (pressure) in the heating area KS (heating chamber 20) is included in the heating condition. The vacuum exhaust pipe 23 is a pipe communicating with the heating area KS, one end thereof is connected to the upper portion of the heat insulation container 21, and the other end is connected to the vacuum pump 24. The vacuum pump 24 is an exhaust pump that sucks the air in the heating area KS via such a vacuum exhaust pipe 23. The degree of vacuum in the heating area KS is determined by the displacement of air by the vacuum pump 24.
 攪拌翼25は、断熱容器21内の上部に、回転軸の方向が鉛直方向(上下方向)となる姿勢で設けられた回転翼である。この攪拌翼25は、攪拌モータ26によって駆動されることによって、加熱領域KS内の空気を攪拌する。攪拌モータ26は、出力軸が鉛直方向(上下方向)となるように加熱室20上に設けられた回転駆動源である。加熱室20上に位置する攪拌モータ26の出力軸は、加熱室20内に位置する攪拌翼25の回転軸と、加熱室20の気密性(シール性)を損なわないように軸結合している。 The stirring blade 25 is a rotary blade provided in the upper part in the heat insulation container 21 in a posture in which the direction of the rotation axis is the vertical direction (vertical direction). The stirring blade 25 is driven by the stirring motor 26 to stir the air in the heating area KS. The stirring motor 26 is a rotational drive source provided on the heating chamber 20 such that the output shaft is in the vertical direction (vertical direction). The output shaft of the agitating motor 26 located on the heating chamber 20 is axially coupled with the rotation shaft of the agitating blade 25 located in the heating chamber 20 so as not to impair the airtightness (sealability) of the heating chamber 20 .
 なお、本実施形態に係る多室型熱処理装置は、不図示の制御盤(制御装置)を備えている。この制御盤は、ユーザが熱処理における各種条件を設定入力する操作部と、内部に予め記憶された制御プログラムに基づいて上記冷却ポンプ4、加熱ヒータ22、各種シリンダー、真空ポンプ24等の各駆動部を制御することにより、被処理物Xに対して上記のように設定入力された各種条件に係る情報に従った熱処理を実行させる制御部と、を備えている。 The multi-chamber heat treatment apparatus according to the present embodiment includes a control panel (control device) (not shown). The control panel has an operation unit through which the user sets and inputs various conditions in heat treatment, and drive units such as the cooling pump 4, the heater 22, various cylinders, and the vacuum pump 24 based on a control program stored in advance. And a controller configured to execute a heat treatment according to the information related to the various conditions set and input as described above for the object X.
 次に、このように構成された多室型熱処理装置の動作、特に冷却装置Rの動作について詳しく説明する。この多室型熱処理装置の動作は、上記制御盤が設定情報に基づいて主体的に実行する。なお、周知のように熱処理には目的に応じて種々の処理がある。以下では、熱処理の一例として被処理物Xを焼入れする場合の動作について説明する。 Next, the operation of the multi-chamber heat treatment apparatus configured as described above, in particular, the operation of the cooling device R will be described in detail. The operation of the multi-chamber heat treatment apparatus is mainly performed by the control panel based on the setting information. As is well known, heat treatment includes various treatments depending on the purpose. Below, operation | movement in the case of quenching the to-be-processed object X is demonstrated as an example of heat processing.
 焼入れは、例えば、被処理物Xを温度T1に加熱した後に温度T2まで急速冷却し、温度T2で一定時間保持した後に緩やかに冷却することにより、完了する。外部の搬送装置によって搬入あるいは搬出口から中間搬送装置H内に収容された被処理物Xは、例えば、プッシャーシリンダー15が作動することによって加熱室昇降台17上に搬送され、さらに加熱室昇降シリンダー18が作動することによって加熱領域KS内に収容される。 Quenching is completed, for example, by heating the object X to a temperature T1 and then rapidly cooling it to a temperature T2, holding it at a temperature T2 for a certain period of time, and then slowly cooling it. The object X accommodated in the intermediate transfer device H from the loading / unloading port by the external transfer device is transferred onto the heating chamber lift 17 by operating the pusher cylinder 15, for example, and further the heating chamber lifting cylinder 18 is accommodated in the heating area KS.
 そして、被処理物Xは、加熱ヒータ22が一定時間通電されることによって温度T1に加熱されると、加熱室昇降シリンダー18及びプッシャーシリンダー16が作動することによって冷却室昇降台12上に搬送され、さらに冷却室昇降シリンダー13が作動することによって冷却領域RSに搬送される。  Then, when the heating heater 22 is energized for a certain period of time and the object X is heated to the temperature T1, the heating chamber elevating cylinder 18 and the pusher cylinder 16 are transported to the cooling chamber elevator 12 by operating. Further, the cooling chamber elevating cylinder 13 is transported to the cooling area RS by operating.
 ここで、浸漬冷却を行う場合には、図4Aに示すように、供給ノズル8の上流に位置する開閉バルブ32が開放されると共にミストヘッダー3の開閉バルブ31が閉じられ、さらに排水弁9も閉じられる。そして、冷却ポンプ4が予め作動して複数の供給ノズル8から冷却液が供給されることにより、冷却領域RS内は冷却液Wで満たされた状態となる。被処理物Xが浸漬されている状態においても、供給ノズル8から連続的に冷却液Wを冷却室1の内部に供給する。そして、供給ノズル8から連続的に供給される冷却液Wは、被処理物Xを冷却して冷却室1の内部を上昇し、オーバーフローする冷却液Wを冷却循環管7で回収して冷却水槽6に貯留する。また、冷却水槽6で貯留された冷却液Wは、冷却ポンプ4によって再び供給ノズル8から冷却室1内に供給される。このとき、冷却液Wは熱交換器30によって冷却される。 Here, when performing immersion cooling, as shown in FIG. 4A, the on-off valve 32 located on the upstream side of the supply nozzle 8 is opened and the on-off valve 31 of the mist header 3 is closed. It is closed. Then, the cooling pump 4 is operated in advance and the cooling fluid is supplied from the plurality of supply nozzles 8, whereby the inside of the cooling region RS is filled with the cooling fluid W. Even in the state where the object X is immersed, the cooling fluid W is continuously supplied from the supply nozzle 8 to the inside of the cooling chamber 1. Then, the cooling fluid W continuously supplied from the supply nozzle 8 cools the processing object X and ascends the inside of the cooling chamber 1, and the overflowing cooling fluid W is recovered by the cooling circulation pipe 7 to obtain a cooling water tank. Store in 6 Further, the cooling fluid W stored in the cooling water tank 6 is again supplied into the cooling chamber 1 from the supply nozzle 8 by the cooling pump 4. At this time, the coolant W is cooled by the heat exchanger 30.
 一方、ミスト冷却を行う場合には、図4Bに示すように、供給ノズル8の上流に位置する開閉バルブ32が閉じされると共にミストヘッダー3の開閉バルブ31が開放され、排水弁9が開放される。そして、ミストヘッダー3を通じて冷却ノズル2から被処理物Xに向けて冷却液Wが噴霧される。これによって、被処理物Xは、冷却ノズル2から噴射される冷却液Wの液滴によってミスト冷却される。また、冷却室1の底部に落下した冷却液Wは、冷却排水管5を通じて冷却水槽6に貯留される。また、冷却水槽6で貯留された冷却液Wは、冷却ポンプ4によって再びミストヘッダー3の冷却ノズル2から冷却室1内に噴霧される。このとき、冷却液Wは、熱交換器30によって冷却される。 On the other hand, when performing mist cooling, as shown in FIG. 4B, the on-off valve 32 located upstream of the supply nozzle 8 is closed and the on-off valve 31 of the mist header 3 is opened, and the drainage valve 9 is opened. Ru. Then, the coolant W is sprayed from the cooling nozzle 2 toward the object X through the mist header 3. As a result, the object X is mist-cooled by the droplets of the cooling fluid W jetted from the cooling nozzle 2. Further, the cooling fluid W dropped to the bottom of the cooling chamber 1 is stored in the cooling water tank 6 through the cooling drainage pipe 5. Further, the cooling fluid W stored in the cooling water tank 6 is sprayed again into the cooling chamber 1 from the cooling nozzle 2 of the mist header 3 by the cooling pump 4. At this time, the coolant W is cooled by the heat exchanger 30.
 このような本実施形態の冷却装置Rを備える多室型熱処理装置によれば、冷却室1において、供給ノズル8によって被処理物Xの下方から冷却液Wが供給され、この供給された冷却液Wが冷却循環管7によって被処理物Xの上方から回収され、回収された冷却液Wが冷却ポンプ4によって供給ノズル8に圧送される。このため、本実施形態の冷却装置Rを備える多室型熱処理装置によれば、供給ノズル8、冷却循環管7及び冷却ポンプ4によって、冷却室1内に下方から上方に向かう流れが形成される。このような流れは、被処理物Xを冷却することで熱せられた冷却液Wと同一方向に向かうことから、冷却室1内における冷却液Wの流れの乱れが生じるのを抑制することができる。したがって、本実施形態の冷却装置Rを備える多室型熱処理装置によれば、被処理物Xを均一に冷却することができる。また、供給ノズル8から供給された冷却液Wが、被処理物Xに到達する前に熱せられることを防止し、被処理物Xを効率的に冷却することができる。よって、本実施形態の冷却装置Rを備える多室型熱処理装置によれば、効率的かつ均一に被処理物Xを冷却できる冷却液Wの流れを冷却室1内に形成することが可能となる。 According to the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, the cooling fluid W is supplied from below the object X by the supply nozzle 8 in the cooling chamber 1, and the supplied cooling fluid W is recovered from above the object X by the cooling circulation pipe 7, and the recovered coolant W is pressure-fed by the cooling pump 4 to the supply nozzle 8. Therefore, according to the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, a flow from the lower side to the upper side is formed in the cooling chamber 1 by the supply nozzle 8, the cooling circulation pipe 7 and the cooling pump 4. . Such a flow is directed in the same direction as the coolant W heated by cooling the object X, and therefore, the occurrence of disturbance in the flow of the coolant W in the cooling chamber 1 can be suppressed. . Therefore, according to the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, the object X can be cooled uniformly. In addition, the coolant W supplied from the supply nozzle 8 can be prevented from being heated before reaching the object to be treated X, and the object to be treated X can be efficiently cooled. Therefore, according to the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, it is possible to form a flow of the cooling liquid W capable of cooling the object X efficiently and uniformly in the cooling chamber 1 .
 また、本実施形態の冷却装置Rを備える多室型熱処理装置においては、供給ノズル8が、上端が冷却液Wを噴出する開口端8aと、側方に貫通する貫通孔8bとを有する筒体である。このため、供給ノズル8が貫通孔8bから周囲の冷却液を取り込み、下端から供給される冷却液Wの数倍の流量で開口端8aから冷却液Wを噴出することができる。したがって、冷却室1における冷却液Wの流速を増加させ、より効率的な冷却を行うことが可能となる。 Further, in the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, the supply nozzle 8 has a cylindrical body having an open end 8 a whose upper end ejects the cooling fluid W and a through hole 8 b penetrating laterally. It is. For this reason, the supply nozzle 8 can take in the surrounding coolant from the through hole 8b, and can eject the coolant W from the open end 8a at a flow rate several times that of the coolant W supplied from the lower end. Therefore, the flow velocity of the cooling fluid W in the cooling chamber 1 can be increased to perform more efficient cooling.
 また、本実施形態の冷却装置Rを備える多室型熱処理装置においては、冷却循環管7で回収した冷却液Wを冷却する熱交換器30を備える。このため、冷却液Wを単に循環させる場合と比較して、より短時間で被処理物Xの冷却を行うことが可能となる。 Further, in the multi-chamber heat treatment apparatus including the cooling device R of the present embodiment, the heat exchanger 30 for cooling the cooling fluid W collected by the cooling circulation pipe 7 is provided. For this reason, compared with the case where the coolant W is simply circulated, it is possible to cool the object X in a shorter time.
 以上、図面を参照しながら好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As mentioned above, although a suitable embodiment was described, referring to drawings, this indication is not limited to the above-mentioned embodiment. The shapes, combinations, and the like of the constituent members shown in the above-described embodiment are merely examples, and various changes can be made based on design requirements and the like without departing from the spirit of the present disclosure.
 例えば、上記実施形態では、冷却装置R、中間搬送装置H、及び2つの加熱装置を備える多室型熱処理装置について説明したが、本開示はこれに限定されない。本開示は、例えば、冷却装置Rと単一の加熱室とが開閉扉を介して隣り合うタイプの多室型熱処理装置にも適用可能である。 For example, although the multi-chamber heat treatment apparatus including the cooling device R, the intermediate conveyance device H, and the two heating devices is described in the above embodiment, the present disclosure is not limited thereto. The present disclosure is also applicable to, for example, a multi-chamber heat treatment apparatus of a type in which a cooling device R and a single heating chamber are adjacent via a door.
 また、上記実施形態の冷却装置Rは、被処理物Xを上方から冷却領域RS内に収容するものであるが、本開示はこれに限定されない。本開示は、被処理物Xを側方(水平方向)あるいは下方から冷却領域RS内に収容するものにも適用可能である。 Moreover, although the cooling device R of the said embodiment accommodates the to-be-processed object X in cooling region RS from upper direction, this indication is not limited to this. The present disclosure is also applicable to one that accommodates the object X from the side (horizontal direction) or from below into the cooling region RS.
 また、上記実施形態の冷却装置Rは、ミスト冷却が可能なものであるとして説明した。しかしながら、本開示はこれに限定されるものではなく、ミスト冷却を行わない冷却装置に適用することも可能である。 Moreover, the cooling device R of the said embodiment demonstrated that mist cooling was possible. However, the present disclosure is not limited thereto, and may be applied to a cooling device that does not perform mist cooling.
 本開示によれば、冷却室内において被処理物を冷却液に浸漬して冷却する冷却装置及び多室型熱処理装置において、効率的かつ均一に被処理物を冷却できる冷却液の流れを冷却室内に形成することが可能となる。 According to the present disclosure, in the cooling device and the multi-chamber heat treatment apparatus, which cools the object to be treated by immersing the object in the cooling chamber, the flow of the coolant that can cool the object efficiently and uniformly into the cooling chamber. It becomes possible to form.
1   冷却室
2   冷却ノズル
3   ミストヘッダー
4   冷却ポンプ(ポンプ)
5   冷却排水管
6   冷却水槽
7   冷却循環管(回収配管)
8   供給ノズル
8a  開口端
8b  貫通孔
9   排水弁
10  搬送室
11  搬送室載置台
12  冷却室昇降台
12a 貫通孔
13  冷却室昇降シリンダー
14  搬送レール
15  プッシャーシリンダー
16  プッシャーシリンダー
17  加熱室昇降台
18  加熱室昇降シリンダー
20  加熱室
21  断熱容器
22  加熱ヒータ
23  真空排気管
24  真空ポンプ
25  攪拌翼
26  攪拌モータ
30  熱交換器
31  開閉バルブ
32  開閉バルブ
H   中間搬送装置
HS  搬送領域
K1  加熱装置
K2  加熱装置
KS  加熱領域
R   冷却装置
RS  冷却領域
W   冷却液
X   被処理物
1 cooling chamber 2 cooling nozzle 3 mist header 4 cooling pump (pump)
5 Cooling drainage pipe 6 Cooling water tank 7 Cooling circulation pipe (collection piping)
8 supply nozzle 8a opening end 8b through hole 9 drainage valve 10 transfer chamber 11 transfer chamber mounting table 12 cooling chamber lift 12a through hole 13 cooling chamber lift cylinder 14 transfer rail 15 pusher cylinder 16 pusher cylinder 16 pusher cylinder 17 heating chamber lift 18 heating chamber Lifting cylinder 20 Heating chamber 21 Heat insulation container 22 Heating heater 23 Vacuum exhaust pipe 24 Vacuum pump 25 Stirring blade 26 Stirring motor 30 Heat exchanger 31 Opening and closing valve 32 Opening and closing valve H Intermediate conveyance device HS Transportation region K1 Heating device K2 Heating device KS Heating region R Cooling device RS Cooling area W Coolant X Object to be treated

Claims (5)

  1.  冷却液に浸漬することにより被処理物の冷却を行う冷却装置であって、
     前記被処理物を収容すると共に内部に前記冷却液を貯留可能な冷却室と、
     前記被処理物よりも下方から前記冷却室に前記冷却液を供給する供給ノズルと、
     前記被処理物よりも上方から前記冷却室に貯留された前記冷却液を回収する回収配管と、
     前記回収配管によって回収した前記冷却液を前記供給ノズルに圧送するポンプと
     を備える冷却装置。
    A cooling device that cools an object by immersing in a coolant,
    A cooling chamber which accommodates the object to be treated and can store the cooling fluid therein;
    A supply nozzle for supplying the cooling fluid to the cooling chamber from below the object to be treated;
    A recovery pipe for recovering the coolant stored in the cooling chamber from above the object to be treated;
    A pump for pressure-feeding the coolant recovered by the recovery pipe to the supply nozzle.
  2.  前記供給ノズルは、上端が前記冷却液を噴出する開口端とされると共に側方に貫通する貫通孔を有する筒体からなる請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the supply nozzle comprises a cylinder whose upper end is an open end for spouting the cooling liquid and which has a through hole which penetrates laterally.
  3.  前記回収配管で回収した前記冷却液を冷却する熱交換器を備える請求項1記載の冷却装置。 The cooling device according to claim 1, further comprising a heat exchanger for cooling the cooling fluid recovered by the recovery pipe.
  4.  前記回収配管で回収した前記冷却液を冷却する熱交換器を備える請求項2記載の冷却装置。 The cooling device according to claim 2, further comprising a heat exchanger for cooling the cooling fluid recovered by the recovery pipe.
  5.  被処理物を加熱する加熱装置と、
     請求項1~4のいずれか一項に記載の冷却装置と
     を備える多室型熱処理装置。
    A heating device for heating an object to be treated;
    A multi-chamber heat treatment apparatus comprising the cooling device according to any one of claims 1 to 4.
PCT/JP2015/069889 2014-07-25 2015-07-10 Cooling device and multi-chamber heat treatment device WO2016013424A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580022503.1A CN106460077A (en) 2014-07-25 2015-07-10 Cooling device and multi-chamber heat treatment device
US15/285,026 US20170022579A1 (en) 2014-07-25 2016-10-04 Cooling device and multi-chamber heat treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152048 2014-07-25
JP2014152048A JP2016030836A (en) 2014-07-25 2014-07-25 Cooling apparatus and multi-chamber heat treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/285,026 Continuation US20170022579A1 (en) 2014-07-25 2016-10-04 Cooling device and multi-chamber heat treatment device

Publications (1)

Publication Number Publication Date
WO2016013424A1 true WO2016013424A1 (en) 2016-01-28

Family

ID=55162953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069889 WO2016013424A1 (en) 2014-07-25 2015-07-10 Cooling device and multi-chamber heat treatment device

Country Status (4)

Country Link
US (1) US20170022579A1 (en)
JP (1) JP2016030836A (en)
CN (1) CN106460077A (en)
WO (1) WO2016013424A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405463B2 (en) * 2017-06-16 2019-09-03 Qualcomm Incorporated Multi-rotor aerial drone with vapor chamber
CN108844889B (en) * 2018-08-17 2024-04-09 北京科技大学 High-temperature flowing water vapor-cooling circulation environment simulation experiment system
CN112789357B (en) * 2018-09-27 2023-03-10 株式会社Ihi Cooling device
CN115679055B (en) * 2022-11-18 2023-09-01 河北鑫泰轴承锻造有限公司 Bearing forming die quenching equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292810A (en) * 1976-01-30 1977-08-04 Koyo Netsu Shiyori Kk Quenching process
JPS5759859U (en) * 1980-09-29 1982-04-08
JPS61526A (en) * 1984-06-13 1986-01-06 Sumitomo Electric Ind Ltd Method and apparatus for heat treating metal or the like
JPH02294424A (en) * 1989-05-10 1990-12-05 Toyota Motor Corp Method and apparatus for quenching casting
JPH0389152U (en) * 1989-12-28 1991-09-11
JPH051326A (en) * 1991-06-24 1993-01-08 Fuji Denshi Kogyo Kk Induction hardening method for gear
JPH06220529A (en) * 1993-01-27 1994-08-09 Dowa Mining Co Ltd Method for quenching steel and apparatus therefor
JP2003144882A (en) * 2001-11-12 2003-05-20 Ikeuchi:Kk Submersible jet nozzle and water current generating apparatus having the same
JP2003213325A (en) * 2002-01-15 2003-07-30 Daido Steel Co Ltd Quenching vessel
JP2006225755A (en) * 2005-01-20 2006-08-31 Fujino Gijutsu Consultant:Kk Apparatus for producing aluminum wheel
JP2007051332A (en) * 2005-08-18 2007-03-01 Koyo Thermo System Kk Hardening device, and method for recovering exhaust heat of coolant
JP2011127187A (en) * 2009-12-18 2011-06-30 Daido Steel Co Ltd Heat-treatment method and rapid cooling device for bar steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330862B1 (en) * 1993-01-27 2002-07-27 도와 고교 가부시키가이샤 Heat treatment hardening method of steel and its apparatus
JP6043551B2 (en) * 2012-09-05 2016-12-14 株式会社Ihi Heat treatment method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292810A (en) * 1976-01-30 1977-08-04 Koyo Netsu Shiyori Kk Quenching process
JPS5759859U (en) * 1980-09-29 1982-04-08
JPS61526A (en) * 1984-06-13 1986-01-06 Sumitomo Electric Ind Ltd Method and apparatus for heat treating metal or the like
JPH02294424A (en) * 1989-05-10 1990-12-05 Toyota Motor Corp Method and apparatus for quenching casting
JPH0389152U (en) * 1989-12-28 1991-09-11
JPH051326A (en) * 1991-06-24 1993-01-08 Fuji Denshi Kogyo Kk Induction hardening method for gear
JPH06220529A (en) * 1993-01-27 1994-08-09 Dowa Mining Co Ltd Method for quenching steel and apparatus therefor
JP2003144882A (en) * 2001-11-12 2003-05-20 Ikeuchi:Kk Submersible jet nozzle and water current generating apparatus having the same
JP2003213325A (en) * 2002-01-15 2003-07-30 Daido Steel Co Ltd Quenching vessel
JP2006225755A (en) * 2005-01-20 2006-08-31 Fujino Gijutsu Consultant:Kk Apparatus for producing aluminum wheel
JP2007051332A (en) * 2005-08-18 2007-03-01 Koyo Thermo System Kk Hardening device, and method for recovering exhaust heat of coolant
JP2011127187A (en) * 2009-12-18 2011-06-30 Daido Steel Co Ltd Heat-treatment method and rapid cooling device for bar steel

Also Published As

Publication number Publication date
CN106460077A (en) 2017-02-22
US20170022579A1 (en) 2017-01-26
JP2016030836A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP6238498B2 (en) Heat treatment device and cooling device
WO2016013424A1 (en) Cooling device and multi-chamber heat treatment device
JP6515370B2 (en) Cooling device and multi-chamber heat treatment apparatus
JP6742399B2 (en) Cooling device and heat treatment device
JP6043551B2 (en) Heat treatment method
WO2018123246A1 (en) Heat treatment apparatus
JP6418830B2 (en) Cooling device and multi-chamber heat treatment device
JP6776214B2 (en) Heat treatment equipment
JP6414959B2 (en) Heat treatment equipment
JP4832205B2 (en) Continuous dipping processing equipment
KR20160032966A (en) Apparatus for removing polluter
KR20050096050A (en) Ultrasonic cleaning system
KR101292678B1 (en) A apparatus for lubricant film in forging
KR101661670B1 (en) Intensive quenching apparatus for heat treatment
JP2005281754A (en) Cooling system
JPH10201695A (en) Dish washing device
JP2006205043A (en) Immersion treatment plant
JP4972045B2 (en) Retort sterilizer
JP2017214620A (en) Hardening device of aviation component and heat treating system
TWI643682B (en) Coating film forming and drying device, and method thereof
JP2012105550A (en) Retort apparatus
JP2017213166A (en) Heat treatment device
JP2022142202A (en) Sterilization device
US3727896A (en) Heat treatment apparatus
JP2017176125A (en) Retort apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823954

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015823954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015823954

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE