WO2016013234A1 - Electrolysis device - Google Patents

Electrolysis device Download PDF

Info

Publication number
WO2016013234A1
WO2016013234A1 PCT/JP2015/052357 JP2015052357W WO2016013234A1 WO 2016013234 A1 WO2016013234 A1 WO 2016013234A1 JP 2015052357 W JP2015052357 W JP 2015052357W WO 2016013234 A1 WO2016013234 A1 WO 2016013234A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolysis
flow path
lower electrode
upper electrode
Prior art date
Application number
PCT/JP2015/052357
Other languages
French (fr)
Japanese (ja)
Inventor
洗 暢俊
坂本 泰宏
信広 林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580041222.0A priority Critical patent/CN106661742A/en
Priority to US15/325,817 priority patent/US20170145571A1/en
Publication of WO2016013234A1 publication Critical patent/WO2016013234A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent

Definitions

  • the present invention relates to an electrolytic device, and more particularly to a diaphragmless electrolytic device.
  • Electrolysis is practically used for the production of chemical materials.
  • basic chemical raw materials such as sodium hydroxide (caustic soda), chlorine gas, hydrogen gas, and sodium carbonate (soda ash) are produced by the electrolytic soda method.
  • electrolytic soda sodium hydroxide
  • chlorine gas chlorine gas
  • hydrogen gas hydrogen gas
  • sodium carbonate sodium carbonate
  • electrolytic soda method In addition to industrial applications, there are products that use electrolysis technology in household equipment such as alkali ion water conditioners.
  • An advantage of using the electrolytic technique is that an active substance can be generated from a material that is hardly active and harmless.
  • hypochlorites represented by sodium hypochlorite are used as bleaching agents and disinfectants for treating water and sewage, for treating wastewater, for household kitchens and for laundry.
  • Hypochlorite can be produced by reacting alkali hydroxide obtained by electrolysis of an aqueous solution of an alkali metal chloride such as saline and chlorine gas, or by using an alkali metal chloride in a diaphragm electrolyzer. This is performed by a method of electrolyzing an aqueous solution of the above and producing a hypochlorite aqueous solution in an electrolytic cell.
  • alkali hydroxide obtained by electrolysis of an aqueous solution of an alkali metal chloride such as saline and chlorine gas, or by using an alkali metal chloride in a diaphragm electrolyzer. This is performed by a method of electrolyzing an aqueous solution of the above and producing a hypochlorite aqueous solution in an electrolytic cell.
  • the method of reacting alkali hydroxide with chlorine gas can obtain a highly concentrated hypochlorite aqueous solution, so this method is used when manufacturing for the purpose of selling a hypochlorite aqueous solution. Yes.
  • an electrolytic facility for producing alkali hydroxide and chlorine gas is required, it is carried out in association with production of alkali hydroxide or chlorine gas in a large-scale alkali chloride electrolytic factory such as salt.
  • a method of electrolyzing an aqueous solution such as saline in a diaphragm electrolyzer is a hypochlorite aqueous solution having a concentration that can be directly used for water purification and sterilization using a simple electrolytic facility. Can be generated.
  • hypochlorite aqueous solution uses hypochlorite aqueous solution.
  • electrolytic production of hypochlorite aqueous solution can adjust the current to be applied according to the required amount of hypochlorite aqueous solution, and all the chlorine content effective for sterilization is dissolved in water. It has the feature of being. Therefore, the method of producing a hypochlorous acid aqueous solution by electrolysis has the merit that it is not necessary to store or transport hypochlorite.
  • an anodic reaction such as chemical reaction formulas (1) to (3) proceeds, and a cathode such as chemical reaction formula (4).
  • the reaction is considered to be progressing.
  • 2Cl ⁇ ⁇ Cl 2 + 2e ⁇ (1) Cl 2 + H 2 O ⁇ HCl + HClO (2) H 2 O ⁇ 1 / 2O 2 + 2H + + 2e ⁇ (3) 2H 2 O + 2e ⁇ ⁇ H 2 + 2OH ⁇ (4)
  • aqueous solution becomes strong acidity (pH is 3 or less) the reaction rate of chemical reaction formula (2) will become slow, and chlorine gas may be produced
  • the concentration of the hypochlorite aqueous solution produced by electrolysis is low, the concentration of organic matter contained in the water to be treated will be high, or the sterilization target with a relatively large amount of organic matter will be sufficiently removed. There are cases where disinfection is not possible.
  • a method for producing a high concentration hypochlorite aqueous solution a method of lengthening the time during which the electrolyte stays between the anode and the cathode, and a plurality of electrolytic cells equipped with the anode and the cathode through the partition plate A method using an electrolysis unit installed in a multistage manner is conceivable.
  • FIG. 15 is a diagram schematically showing a conventional electrolysis apparatus 100 that is generally used for products using electrolysis technology.
  • An electrode pair including a first electrode 103 and a second electrode 104 is provided inside a resin casing 101.
  • a wiring 106 (pin) for applying a voltage is connected to the first electrode 103, and a wiring 107 (pin) for applying a voltage is connected to the second electrode 104.
  • one of the pins is welded to the electrode, and the other is threaded so that wiring from the power source can be connected.
  • the shape of the housing 101 can be devised so that liquid leakage can be prevented by using an O ring or the like, but it is omitted because it is not directly related to the present invention.
  • a supply port 108 for supplying the liquid to be processed between the electrodes and a discharge port 109 for discharging the electrolyzed liquid are provided.
  • the electrode pair is installed vertically and the liquid to be treated is supplied from below.
  • the casing 111 includes a water supply port 112 that can be connected to a pipe that can supply water pumped from a water supply or other water source, and a discharge port 113 that discharges electrolytic water.
  • a piping for supplying electrolytic water to the supply destination can be connected to the discharge port 113.
  • a switch 114 for turning on / off the apparatus is provided.
  • an indicator for displaying the operation status and other switches for performing various operations can be provided as appropriate, but they are omitted because they are not directly related to the present invention.
  • FIG. 17 is a diagram schematically showing the internal structure of the electrolyzed water generator 120 of FIG.
  • the water supply port 112 and the discharge port 113 are connected by a pipe 115, and an electromagnetic valve 116 that can be turned ON / OFF as necessary is provided between them.
  • an electromagnetic valve 116 that can be turned ON / OFF as necessary is provided between them.
  • In the middle of the pipe 115 there is a place spatially connected to the outlet of the electrolysis apparatus 100.
  • the inlet of the electrolyzer 100 is spatially connected to the stock solution tank 117 via a tube or the like, and a pump 118 for feeding the stock solution by a specified amount is provided between them.
  • the switch 114 When the switch 114 is turned on, the electromagnetic valve 116 is opened and water is supplied into the generator 120 from the water supply port 112 and discharged from the discharge port 113 through the pipe 115.
  • the pump 118 operates and the stock solution stored in the stock solution tank 117 is supplied to the electrolysis apparatus 100. Electric power is supplied to the electrolyzer 100 from a power source (not shown), and the stock solution is electrolyzed. High-concentration electrolyzed water generated by electrolysis is diluted to an appropriate concentration by water supplied to the pipe 115 and flowing through the pipe 115.
  • the diluted electrolyzed water is sent to the electrolyzed water supply point through a pipe such as a hose connected as appropriate from the discharge port 113.
  • a pipe such as a hose connected as appropriate from the discharge port 113.
  • An electrolyzer for producing hypochlorite having a plurality of bipolar unit electrolyzers wherein an electrolyzer for producing hypochlorite is provided with a cooling chamber at the inflow portion or the outflow portion of the electrolyte of the unit electrolyzer.
  • the electrolysis apparatus described in Patent Document 1 includes a plurality of electrode plates perpendicular to a horizontal plane, and is used so that the liquid to be treated is supplied from below and flows upward. .
  • a molten salt electrolytic cell in which an anode and a cathode are inclined in an electrolytic cell, a generated chlorine gas is transferred upward, and a generated zinc is transferred downward (see Patent Document 2).
  • the conventional electrolysis apparatus has a problem that the production efficiency of the electrolysis product is not sufficiently high.
  • This invention is made
  • the present invention includes an electrolysis unit, and the electrolysis unit includes a fluid flow path to be processed, at least one pair of electrolysis electrodes, an inflow port, and an outflow port, and the electrolysis electrode pair has a vertical direction.
  • An electrolysis apparatus is provided, wherein the electrolysis apparatus is provided so as to flow in a flow path between electrodes from a lower side toward an upper side and to flow out from the outflow port.
  • an electrolysis unit includes a fluid flow path to be processed, at least one pair of electrolysis electrodes, an inflow port, and an outflow port, and the electrolysis electrode pair includes: An upper electrode and a lower electrode arranged so as to face each other, and the fluid flow path to be treated flows through the inter-electrode flow path between the upper electrode and the lower electrode. Since it is provided so as to flow out from the outflow port, it is possible to generate an electrolysis product by electrolyzing the fluid by flowing the fluid through the fluid flow path and applying a voltage to the electrode pair for electrolysis. A fluid containing the product can be produced continuously.
  • the electrode pair for electrolysis is disposed so as to be inclined with respect to the vertical direction, and the fluid flow path to be treated is provided so that the fluid flows through the inter-electrode flow path from the lower side to the upper side. Therefore, the electrolytic product can be efficiently generated. This was verified by experiments conducted by the inventors. The reason why the electrolytic product can be generated efficiently is considered as follows.
  • gas is generated by the electrode reaction in the lower electrode, so that bubbles are generated on the lower electrode, and the bubbles can be floated toward the upper electrode so as to cross the fluid flow direction.
  • the fluid in the vicinity of the lower electrode and the fluid in the vicinity of the upper electrode can be stirred and mixed, and the electrode reaction in the upper electrode can be promoted. Further, since the fluid in the vicinity of the upstream of the lower electrode is promoted to move toward the upper electrode along with the movement of the bubbles, the ratio of the liquid component that has been subjected to the electrolytic treatment is reduced in the fluid in the vicinity of the downstream of the lower electrode. For this reason, the production
  • (A) (b) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention, (c) demonstrates the overlap of the upper electrode and lower electrode when the electrolyzer is seen from the perpendicular direction A.
  • (D) is a figure for demonstrating the overlap of an upper electrode and a lower electrode at the time of seeing an electrolysis apparatus from the direction B perpendicular
  • (A) (b) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention, (c) demonstrates the overlap of the upper electrode and lower electrode when the electrolyzer is seen from the perpendicular direction A.
  • (D) is a figure for demonstrating the overlap of an upper electrode and a lower electrode at the time of seeing an electrolysis apparatus from the direction B perpendicular
  • (A) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention
  • (b) is a figure for demonstrating the overlap of the upper electrode and lower electrode when the electrolyzer is seen from the perpendicular direction A.
  • (C) is a figure for demonstrating the overlap of an upper electrode and a lower electrode at the time of seeing an electrolysis apparatus from the direction B perpendicular
  • FIG. 1 It is a schematic sectional drawing of the electrolysis apparatus produced by the electrolysis experiment.
  • (A) is a schematic cross-sectional view of an electrolyzer according to an embodiment of the present invention, and (b) to (d) are schematic cross-sectional views of components of the electrolyzer.
  • (A) (b) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention. It is a schematic sectional drawing of the electrolysis apparatus of one Embodiment of this invention.
  • (A) is a schematic cross-sectional view of an electrolyzer according to an embodiment of the present invention, and (b) to (f) are schematic cross-sectional views of components of the electrolyzer.
  • (A) (b) is a schematic block diagram of the electrolyzer of one Embodiment of this invention. It is a schematic block diagram of the electrolysis apparatus of one Embodiment of this invention. It is a graph which shows the measurement result of an electrolysis experiment. It is a figure for demonstrating the flow of the fluid and bubble in a flow path between electrodes.
  • (A)-(c) is a schematic sectional drawing of the electrolysis apparatus produced by the electrolysis experiment.
  • (A) (b) is a schematic sectional drawing of the conventional electrolysis apparatus. It is a schematic perspective view of the conventional electrolyzed water generator. It is the figure which showed typically the internal structure of the conventional electrolyzed water generator. It is a graph which shows the measurement result of an electrolysis experiment. It is a schematic block diagram of the electrolysis apparatus produced by the electrolysis experiment.
  • (A)-(c) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention.
  • the electrolysis apparatus of the present invention includes an electrolysis unit, and the electrolysis unit includes a fluid flow path to be processed, at least one pair of electrolysis electrodes, an inflow port, and an outflow port, and the electrolysis electrode pair includes: And an upper electrode and a lower electrode that are disposed so as to be inclined with respect to the vertical direction and are opposed to each other, and the fluid flow path includes a fluid that has flowed in from the inflow port.
  • An inter-electrode flow path between the electrode and the lower electrode is provided so as to flow from the lower side to the upper side and to flow out from the outflow port.
  • the electrode pair for electrolysis is preferably arranged so that the inclination angle with respect to the vertical direction is larger than 0 degree and smaller than 50 degrees. According to such a configuration, the electrolysis efficiency of the electrolysis unit can be improved. This was verified by an electrolysis experiment conducted by the present inventors.
  • the fluid flow path to be processed is an upstream bent flow path close to the upstream end of the interelectrode flow path or a downstream bent flow path close to the downstream end of the interelectrode flow path. It is preferable to have.
  • the fluid flow path to be processed has an upstream bent flow path or a downstream bent flow path
  • the gas generated by the electrolytic reaction can be efficiently discharged from the inter-electrode flow path, so that the electrolytic efficiency is reduced due to gas retention. Can be suppressed.
  • the fluid flow path to be treated has the upstream bent flow path, the liquid flow in the fluid flow path to be treated can be disturbed.
  • the upper electrode is provided so as to be an anode and the lower electrode is provided so as to be a cathode. According to such a configuration, bubbles can be generated by the cathodic reaction at the lower electrode, and the electrolysis efficiency can be improved by the stirring / mixing effect of the bubbles.
  • the lower electrode preferably has an electrode surface having a larger area than the electrode surface of the upper electrode.
  • the aqueous solution of the substance having chlorine atoms is electrolyzed to produce hypochlorous acid, and the electrode surface of the upper electrode and the electrode surface of the lower electrode are approximately the same area,
  • chlorine gas bubbles are dissolved / reduced due to the agitation / mixing effect due to bubbles, and the reduction of the electrode effective area due to the bubbles is suppressed.
  • the effective area may be reduced. For this reason, the electrode effective area of the lower electrode becomes relatively small, which becomes a rate-determining factor for the electrolytic reaction, and the area of the upper electrode may not be effectively utilized.
  • the above phenomenon can be mitigated, the electrode area can be used effectively, and the electrolytic efficiency per unit area of the upper electrode can be improved.
  • electrolysis is already performed on the upstream side of the upper electrode in the vicinity.
  • chlorine gas can be efficiently converted into hypochlorous acid.
  • the hydrogen gas generated at the lower electrode can approach the vicinity of the upper electrode even if it floats from the vertical upward direction to the downstream side by the liquid flow rate.
  • the rate of conversion to chlorous acid increases.
  • the electric field wraps around the electrode projecting to the downstream side, or the oxidation of the bubbles directly contacting the electrode causes a slight reduction.
  • An increase in the proportion of chlorine gas converted to chloric acids can be expected.
  • the electrolysis apparatus of the present invention further includes a diluting section, wherein the fluid is an aqueous solution, and the electrode pair for electrolysis is such that hypochlorite ions are generated electrochemically from a chlorine-containing compound contained in the aqueous solution.
  • the aqueous solution at the outlet includes a hypochlorite ion of 4000 ppm or more by weight, and the dilution unit is provided to generate a diluted solution of the aqueous solution including the hypochlorite ion discharged from the outlet.
  • the diluted solution preferably has a pH of 7.5 or less.
  • the electrolysis unit is provided so that hypochlorite ions are generated electrochemically from the chlorine-containing compound, the upper electrode is provided as an anode, and the lower electrode is provided as a cathode. It is preferable to be provided. According to such a configuration, since the hydrogen gas bubbles generated by the cathode reaction at the lower electrode try to move near the upper electrode so as to cross the flow velocity direction, the liquid near the anode and the liquid near the cathode in the electrolysis unit. And stirring can be promoted.
  • D is the surface including the upper electrode
  • E is the surface including the lower electrode
  • the surface C is at the top
  • the surface E is at the bottom
  • the surface D is between the surfaces C and E.
  • the upper electrode and the lower electrode are disposed so as to be positioned. According to such a configuration, bubbles generated in the lower electrode can approach the vicinity of the upper electrode even if the bubbles are caused to flow from the vertically upward direction to the outlet side due to the flow velocity.
  • hypochlorous acid when hypochlorous acid is produced by electrolyzing an aqueous solution of a substance having a chlorine atom, hydrogen gas generated on the downstream side of the lower electrode floats from the vertical upward direction to the downstream side by the liquid flow rate. Since it can approach the upper electrode vicinity which is an anode, the ratio which can convert chlorine gas into hypochlorous acid increases.
  • the upper electrode is curved convexly toward the lower electrode, and the lower electrode is curved concavely toward the upper electrode. Furthermore, the curvature of the upper electrode is preferably smaller than the curvature of the lower electrode. According to such a configuration, bubbles such as chlorine gas generated in the upper electrode as the anode can be discharged from the center portion of the electrode to the end portion, and the reduction of the effective area of the electrode due to the bubbles can be suppressed and the center portion can be suppressed. Electrolytic efficiency can be improved.
  • bubbles such as hydrogen gas generated at the lower electrode which is the cathode
  • the agitation / mixing effect by the bubbles generated at the lower electrode is increased. be able to.
  • hypochlorous acid is produced by electrolysis
  • the conversion of chlorine gas to hypochlorous acid can be promoted by the stirring and mixing effect of the bubbles.
  • the bubbles of chlorine gas can be reduced, so that the reduction of the effective area of the electrode can be further suppressed, and the electrolysis efficiency can be further improved.
  • the bubble moves from the center to the end of the upper electrode to generate a flow velocity vector from the center to the end, and the flow speed at the center is faster than the conventional electrode unit structure. It is possible to suppress variation in the degree of electrolysis between the electrolytic solution flowing in the center and the electrolytic solution flowing in the end due to the slow flow rate. Furthermore, since air bubbles can be reduced in the central portion of the upper electrode compared to the end portion, the electrolytic efficiency is increased in the central portion where the flow velocity tends to be relatively fast. It is possible to suppress variation in the degree of electrolysis of the electrolyte flowing through the.
  • the electrolytic apparatus of the present invention it is preferable that at least a part of the upper electrode is a mesh electrode, and a space is provided on the side opposite to the lower electrode (hereinafter referred to as the back side) of the upper electrode. Furthermore, the electrolysis apparatus of the present invention preferably includes an electrode electrically connected to the upper electrode on at least a part of the wall surface of the space. According to such a configuration, since the bubbles on the upper electrode can be discharged to the back side, the surface of the upper electrode facing the lower electrode can be prevented from being covered with bubbles and the electrode effective area can be suppressed from being reduced. Efficiency can be improved.
  • hypochlorous acid when hypochlorous acid is generated by electrolysis, the hydrogen gas bubbles rising from the lower electrode are relatively less likely to be hindered by the chlorine gas bubbles, and the pH generated easily in the vicinity of the upper electrode is relatively low. Since it can contact a high aqueous solution, chlorine gas can be efficiently converted into hypochlorous acid.
  • it is possible to perform the electrolysis even with the electrode installed on the wall surface via the mesh gap. This can further increase the electrode effective area.
  • the lower electrode is preferably a mesh electrode. According to such a configuration, it is considered that a part of bubbles generated on the surface of the lower electrode grows so as to cover the mesh void as viewed from the upper electrode. As a result, the ratio of the electrode area that is covered with bubbles and becomes ineffective can be reduced as compared with an electrode having a smooth electrode surface. Further, by using a mesh electrode for at least one or both of the upper electrode and the lower electrode, the unevenness of the electrode surface becomes large, and it becomes difficult to make a laminar flow in the channel between the electrodes. As a result, vortex flow and turbulent flow are easily formed in the interelectrode flow path, and separation of bubbles from the electrode can be promoted.
  • hypochlorous acid when hypochlorous acid is generated by electrolysis, chlorine gas microbubbles with a large specific surface area before the bubbles grow large can be detached from the electrode and come into contact with an aqueous solution having a relatively low pH near the upper electrode.
  • the chlorine gas dissolves quickly and can be converted into hypochlorous acid.
  • the stirring of the electrolytic solution is promoted, the chlorine gas is dissolved and converted into hypochlorous acid in the electrolytic unit more efficiently.
  • the bubble guide is preferably a plate-like member separated from the upper electrode and the lower electrode, and the plate-like member is preferably inclined from a position parallel to the upper electrode and the lower electrode.
  • the plate-like member is preferably installed so as to be substantially perpendicular to the upper electrode and the lower electrode.
  • the bubble guide can prevent the bubbles from being combined and becoming larger, so that the solubility of the bubbles is improved.
  • This increases the probability that bubbles generated at the lower electrode come into contact with the electrolyzed liquid in the vicinity of the upper electrode, compared to when there is no bubble guide. Since not only the bubbles but also the electrolyzed water near the upper electrode or the lower electrode is affected by the turbulent flow generated by the bubble guide, the electrolyzed water near the upper electrode or the lower electrode is stirred as well. As a result, the diffusion rate control in the electrolytic reaction is greatly improved, and the dissolution of the bubbles is promoted by mixing and stirring the bubbles. As a result, the electrolytic reaction is comprehensively promoted, so that the electrolytic efficiency is improved.
  • the bubble guide is a columnar member separated from the upper electrode and the lower electrode, and the axis of the column of this member is preferably installed substantially parallel to the upper electrode and the lower electrode. . According to such a configuration, it is possible not to obstruct the movement of the bubbles and the flow of the liquid more than necessary, and it is possible to bring out the stirring effect of the bubbles and the liquid while minimizing the reduction of the effective electrode area. .
  • the electrolysis unit includes a first electrode holder to which the lower electrode is fixed, a second electrode holder to which the upper electrode is fixed, a spacer disposed between the first and second electrode holders,
  • the spacer is preferably provided so that at least a part of the spacer overlaps the upper electrode and the lower electrode when viewed from the direction in which the upper electrode and the lower electrode overlap.
  • the first or second electrode holder has a concave shape at least at the portion for fixing the electrode, and the distance (depth of the concave portion) between the surface for fixing the electrode and the surface of the spacer is larger than the thickness of the electrode for fixing. Things are preferable.
  • the agitation effect of bubbles and liquid can be brought out, and even if the electrode warps or the electrode is loosened for some reason, the possibility of contact between both electrodes is reduced. Can do. Thereby, both the efficiency and safety
  • the distance between the electrodes can be easily changed by changing the thickness of the spacer, it can be easily changed to various specifications according to the purpose, making it easy to share parts such as electrode holders. .
  • a projection is provided which protrudes from a part of the fluid flow path to be processed and from a plane parallel to the surface of the upper electrode or the lower electrode. It is preferable that it exists on the symmetry plane of the structure to form.
  • the flow velocity in the vicinity of the center of the channel between the electrodes, that is, in the vicinity of the center of the electrode is relatively high, so that the time for electrolysis of the electrolyte flowing through that portion is shortened. Since the flow velocity is relatively slow at the other end, the time for electrolysis of the electrolyte flowing through that portion becomes longer. As a result, the electrolytic solution is not electrolyzed uniformly, which causes a concentration unevenness.
  • the electrolysis conditions suitable for the electrolyte flowing through the central portion are set, the electrolyte flowing through the end portion may be electrolyzed more than necessary from the middle, or may not be electrolyzed at all and the area of the electrode may become invalid. If the electrolysis condition is set to an electrolysis condition suitable for the electrolyte flowing through the end portion, the electrolyte flowing through the center becomes insufficiently electrolyzed. In any case, it was not possible to perform electrolysis efficiently, but by providing a protrusion, it was possible to reduce the flow rate at the center and increase the flow rate at the end with a very simple structure. There is an advantage that it is possible to suppress or improve the efficiency of electrolysis.
  • the shape of the fluid flow path to be processed is such that the upper electrode, the lower electrode, the inlet, the outlet, and the upper electrode, the lower electrode, the inlet, the outlet, and the normal direction with respect to the cross section cut by a plane parallel to the electrode surface of the upper electrode or the lower electrode
  • the widths of the upper electrode and the lower electrode are relatively wide, and the widths of the inlet, the outlet, and the projection are relatively narrow. According to such a configuration, the uniformity of the flow rate can be improved, the concentration unevenness can be suppressed, and the electrolysis efficiency can be improved.
  • the cross-sectional area of the flow path near the outflow port is larger than the cross-sectional area of the inter-electrode flow path. According to such a configuration, it is possible to suppress variations in the flow velocity in the vicinity of the outlet and to easily discharge bubbles.
  • a stirring effect and a retention effect can be expected at a location where the cross-sectional area of the flow path becomes large, thereby reducing the chlorine gas to hypochlorous acid. Can be expected to promote conversion. Therefore, improvement in efficiency can be expected.
  • the electrolysis apparatus of the present invention it is preferable to have protrusions on both the upstream side and the downstream side of the interelectrode flow path.
  • the size of the upper and lower electrodes is particularly long in the direction of flow rate, for example, if there is a protrusion on the upstream side and not on the downstream side, the flow rate near the center is high again on the downstream side, and the flow rate is slow at the end A trend arises.
  • by providing protrusions on both the upstream side and the downstream side it is possible to suppress an increase in flow velocity variation.
  • the electrolysis unit includes an upper electrode and a lower electrode, an electrode holder that forms a flow path other than the flow path between the electrodes, and a protrusion, and at least a part of the protrusion includes an upper electrode, It is preferable that it is bonded to the lower electrode, the base material of these electrodes, or a member physically bonded to these electrodes, and also bonded to the electrode holder. According to such a configuration, since the upper electrode or the lower electrode can be fixed to the electrode holder by providing the protrusion, it is not necessary to fix the electrode separately. Therefore, the electrolysis apparatus of the present invention can be realized without complicating the configuration and structure.
  • the protrusion or the member including the protrusion is made of a conductive material, and at least a part of the member made of the conductive material is electrically connected to the upper electrode or the lower electrode. It is preferable.
  • the member made of the conductive material can fix the upper electrode or the lower electrode to the electrode holder or apply a voltage to the upper electrode or the lower electrode. This eliminates the need for a drawing line. Therefore, the configuration and structure are not complicated. Further, there is no need to retrofit electrode terminal lead-out components such as pins as in the conventional electrolysis electrode pair, and the number of components (pins) can be reduced and the number of man-hours for pin mounting can be reduced.
  • the electrolytic device of the present invention since there is no welding process, there is no failure in welding, and repair can be easily performed even if a failure occurs in the electrode terminal parts. If it is welded, it is necessary to peel off the weld and weld a new rod again or replace the entire electrode.
  • it is preferable that at least a portion of the surface of the protruding portion closest to the counter electrode is a nonconductor. According to such a structure, it can suppress that an electrochemical reaction advances on the surface of a projection part.
  • the member having the protrusion is preferably arranged in parallel to the normal direction to the main surface constituting the inter-electrode flow path in the electrode surface, and the electrode holder and the electrode are preferably connected by this member.
  • the first electrode holder to which the lower electrode is fixed and the second electrode holder to which the upper electrode is fixed have substantially the same shape and are arranged so as to be point-symmetric with each other.
  • a spacer is disposed between the first and second electrode holders, and at least a part of the spacer overlaps with the upper electrode and the lower electrode when viewed from the direction in which the upper electrode and the lower electrode overlap. According to such a configuration, even if the electrode warps or the electrode is loosened due to some cause, the possibility of contact of both electrodes can be reduced. Thereby, the safety
  • the spacer overlaps the edge portions of the upper electrode and the lower electrode when viewed from the direction in which the upper electrode and the lower electrode overlap. According to such a configuration, it is possible to suppress the occurrence of electrolysis at the electrode edge where electric field concentration is likely to occur and deterioration is likely to occur. As a result, the electrolysis can be stabilized and electrode wear can be suppressed to extend the life.
  • the electrolysis unit electrolyzes an aqueous solution of a compound containing chlorine atoms to generate hypochlorite ions and / or chlorine molecules corresponding to a concentration of 4000 ppm or more, and dilutes them to adjust pH7. It is preferable to provide the following hypochlorous acid water. In this case, the production efficiency of hypochlorous acid water can be remarkably improved by using the above means.
  • FIGS. 1A and 1B are schematic cross-sectional views of an electrolysis apparatus according to the first embodiment, respectively.
  • FIG. 1C shows the electrolysis apparatus shown in FIG.
  • FIG. 1D is a view of the electrolysis apparatus shown in FIG. 1A viewed from a direction B perpendicular to the main surface of the lower electrode. It is a figure for demonstrating the overlap of the upper electrode and lower electrode at the time.
  • the electrolysis apparatus 15 of the first embodiment includes an electrolysis unit 10, and the electrolysis unit 10 includes a fluid flow path 7 to be processed, at least one pair of electrodes for electrolysis 5, an inflow port 8, and an outflow port 9.
  • the electrode pair 5 for electrolysis is disposed so as to be inclined with respect to the vertical direction and includes an upper electrode 3 and a lower electrode 4 disposed so as to face each other.
  • the fluid flow path 7 to be processed is provided so that the generated electrode reaction proceeds, and the fluid flowing in from the inflow port 8 moves the interelectrode flow path 6 between the upper electrode 3 and the lower electrode 4 upward from the lower side. It is provided so that it may flow out of the flow outlet 9 toward the direction.
  • the plate-like upper electrode 3 and the plate-like lower electrode 4 are fixed to the housing 1 so as to face each other, and the upper electrode 3 and the lower electrode 4 are An interelectrode flow path 6 is formed therebetween.
  • the electrode pair 5 for electrolysis is arranged so as to be inclined with respect to the vertical direction, the upper electrode is the upper electrode 3 and the lower electrode is the lower electrode 4.
  • the electrolysis unit 10 is a device having the fluid flow path 7 to be processed and is a constituent unit of the electrolysis device 15.
  • the electrolysis apparatus 15 is configured by one electrolysis unit 10, but the electrolysis apparatus 15 may be configured by a plurality of electrolysis units 10.
  • the plurality of electrolysis units 10 may be combined so that the fluid flow paths 7 to be processed are in parallel, or may be combined so that the fluid flow paths 7 to be processed are in series.
  • the housing 1 is provided so that the fluid flow path 7 to be processed can be formed together with the upper electrode 3 and the lower electrode 4.
  • a material that is resistant to a fluid flowing in the fluid flow path 7 to be processed and a gas generated secondary by electrolysis can be used.
  • a resin such as a fluororesin, a vinyl chloride resin, a polypropylene resin, or an acrylic resin can be used as the material of the housing 1 in consideration of durability.
  • the housing 1 may have a tubular structure, or may have a structure in which a fluid flow path 7 to be processed is formed by combining a plurality of members. When the housing 1 has a tubular structure, the upper electrode 3 and the lower electrode 4 can be fixed on the inner wall surface of the tubular structure.
  • the fluid flow path 7 to be processed is formed by combining the first member to which the upper electrode 3 is fixed and the second member to which the lower electrode 4 is fixed. Also good.
  • the third member may be sandwiched between the first member and the second member.
  • the member constituting the housing 1 or the housing 1 may be an electrode holder for fixing the upper electrode 3 or the lower electrode 4.
  • the to-be-processed fluid flow path 7 is provided so that the fluid flowing in from the inflow port 8 flows through the interelectrode flow path 6 between the upper electrode 3 and the lower electrode 4 from the lower side to the upper side and flows out from the outflow port 9. It is done.
  • the inflow port 8 can be connected to a tank of electrolytic stock solution via a pump. As a result, the stock electrolyte solution in the tank can be flowed to the fluid flow path 7 to be treated, and electrolytic treatment can be performed.
  • the outflow port 9 can be connected to a tank for storing the fluid after the electrolytic treatment, a liquid feeding pipe to be sent to a location where the fluid after the electrolytic treatment is used, a dilution unit, and the like.
  • the gas generated in the upper electrode 3 or the lower electrode 4 can be efficiently discharged from the interelectrode flow path 6, and the gas is retained. It is possible to suppress a decrease in electrolysis efficiency due to.
  • the inflow port 8 can be provided below the lower end of the interelectrode flow path 6, and the outflow port 9 can be provided above the upper end of the interelectrode flow path 6. As a result, the gas generated in the upper electrode 3 or the lower electrode 4 can be efficiently discharged from the inter-electrode flow path 6, and a reduction in electrolytic efficiency due to gas retention can be suppressed.
  • the to-be-processed fluid flow path 7 includes a part of the housing 1 and the inter-electrode flow path 6. It is desirable that the inner wall surface of the fluid flow path 7 to be processed is composed of the surface of the electrode pair 5 for electrolysis as wide as possible and the surface of the casing 1 as narrow as possible. With such a configuration, the surface of the electrode on which the electrolytic reaction proceeds included in the inner wall surface of the fluid flow path 7 can be widened, and the surface that does not contribute to electrolysis can be reduced as much as possible. If the electrode surface is widened, a sufficient electrolytic reaction can proceed at a low current density, so that the electrode life of the electrode pair 5 for electrolysis can be extended and the electrolysis efficiency can be improved.
  • the internal volume of the electrolysis unit 10 can be reduced even with the same electrolysis capability, so that the starting characteristics of the electrolysis apparatus 15 can be improved.
  • the rise of the electrolyzed water concentration can be improved.
  • the electrode pair 5 for electrolysis is composed of an upper electrode 3 and a lower electrode 4.
  • the electrolysis unit 10 shown in FIG. 1 has one set of electrode pairs 5 for electrolysis, but may have a plurality of electrode pairs 5 for electrolysis.
  • the upper electrode 3 and the lower electrode 4 are disposed so that the main surface (electrode surface) of the upper electrode 3 and the main surface (electrode surface) of the lower electrode 4 face each other. Further, the upper electrode 3 and the lower electrode 4 are provided such that an interelectrode flow path 6 is formed between the main surface of the upper electrode 3 and the main surface of the lower electrode 4.
  • the upper electrode 3 and the lower electrode 4 can be provided so that the main surface of the upper electrode 3 and the main surface of the lower electrode 4 are substantially parallel.
  • the interelectrode flow path 6 becomes a part of the fluid flow path 7 to be processed.
  • the fluid flowing through the interelectrode flow path 6 can be subjected to electrolytic treatment, and a fluid containing an electrolytic product is generated.
  • the upper electrode 3 may be curved in a convex shape toward the lower electrode 4
  • the lower electrode 4 may be curved in a concave shape toward the upper electrode 3.
  • the curvature of the upper electrode 3 may be smaller than the curvature of the lower electrode 4.
  • the upper electrode 3 and the lower electrode 4 are connected to a wiring for applying a potential difference between the electrodes, and this wiring is connected to a power supply device.
  • This wiring may be a conductive member for fixing the upper electrode 3 or the lower electrode 4 to the housing 1.
  • the upper electrode 3 and the lower electrode 4 may be provided so that the upper electrode 3 serves as an anode and the lower electrode 4 serves as a cathode, or may be provided so that the upper electrode 3 serves as a cathode and the lower electrode 4 serves as an anode. .
  • the upper electrode 3 and the lower electrode 4 are provided so that an electrode reaction in which gas is generated in the lower electrode 4 proceeds. Thereby, an electrolysis product can be generated efficiently. Further, when an electrode reaction in which gas is generated in both the upper electrode 3 and the lower electrode 4 proceeds, the upper electrode 3 and the lower electrode 4 can be provided so that the amount of bubbles generated in the lower electrode 4 is increased.
  • the upper electrode 3 and the lower electrode 4 can be fixed to the housing 1.
  • the upper electrode 3 or the lower electrode 4 may be fixed to the housing 1 with a screw member, or may be fixed to the housing 1 with an adhesive. Further, the upper electrode 3 or the lower electrode 4 may be fixed on a plane or a curved surface of the housing 1 or may be fixed in a groove of the housing 1. In the electrolysis apparatus 10 shown in FIG. 1, the upper electrode 3 and the lower electrode 4 are provided in the groove of the housing 1 and are provided so as not to cause a step in the fluid flow path 7 to be processed.
  • the shape of the upper electrode 3 and the lower electrode 4 may be a flat plate shape or a curved plate shape. Further, the upper electrode 3 and the lower electrode 4 may be square or circular. Further, the upper electrode 3 and the lower electrode 4 may have substantially the same shape or different shapes.
  • the upper electrode 3 and the lower electrode 4 included in the electrolysis unit 10 shown in FIG. 1 are plate-shaped and rectangular, and have substantially the same shape. Moreover, the magnitude
  • the upper electrode 3 and the lower electrode 4 may have a mesh structure, a perforated structure, or a porous structure.
  • a space may be provided on the side (back side) opposite to the lower electrode 4 of the upper electrode 3.
  • An auxiliary electrode electrically connected to the upper electrode 3 may be provided on the wall surface of this space. Thereby, bubbles on the electrode surface of the upper electrode 3 can be discharged to the back surface side, and a reduction in effective electrode area can be suppressed. In addition, the electrode reaction can proceed on the auxiliary electrode, and the effective electrode area can be increased.
  • the upper electrode 3 and the lower electrode 4 are formed from a conductive material such as a metal material. Further, insoluble electrodes can be used for the upper electrode 3 and the lower electrode 4.
  • the upper electrode 3 and the lower electrode 4 may have a structure in which a catalyst such as Pt, Pd, Ir, or Ru is supported or coated on the surface thereof. This allows the electrolytic reaction to proceed efficiently.
  • the electrode serving as the cathode is an electrode containing Ti, Pt or other metal
  • the electrode serving as the anode among the upper electrode 3 or the lower electrode 4 is an electrode containing Ir or Ru, Pt or the like Insoluble electrode.
  • the upper electrode 3 and the lower electrode 4 are disposed so as to be inclined with respect to the vertical direction.
  • the upper electrode 3 and the lower electrode 4 are provided so that at least a part of the upper electrode 3 is positioned vertically above the lower electrode 4.
  • the upper electrode 3 and the lower electrode 4 can be arranged such that the inclination angle with respect to the vertical direction is larger than 0 degree and smaller than 50 degrees.
  • this inclination angle can be set to 5 degrees or more and 45 degrees or less, and can be set to 15 degrees or more and 32 degrees or less.
  • the tilt angle is the tilt angle of the surface (main surface, electrode surface) facing the lower electrode 4 of the upper electrode 3 or the tilt angle of the surface (main surface, electrode surface) facing the upper electrode 3 of the lower electrode 4. It is. It is preferable that the inclination angle of the upper electrode 3 and the inclination angle of the lower electrode 4 are substantially the same. As a result, the distance between the electrodes can be made substantially constant, and current concentration can be suppressed from occurring. Thus, by arrange
  • the upper electrode 3 and the lower electrode 4 are arranged so that the inclination angle is ⁇ . Further, as shown in FIG. 1D, the upper electrode 3 and the lower electrode 4 having substantially the same size are substantially overlapped on the entire surface when viewed from the direction B perpendicular to the main surface of the lower electrode 4. The upper electrode 3 and the lower electrode 4 are disposed. Further, as shown in FIG. 1C, the upper electrode 3 and the lower electrode 4 are arranged so that the upper electrode 3 and the lower electrode 4 overlap in the overlapping region 16 when viewed from the vertical direction A.
  • the electrolysis unit 10 is provided so that the fluid to be treated flows from the lower side to the upper side of the interelectrode flow path 6 so that an electrode reaction in which gas (bubbles 11) is generated in the lower electrode 4 proceeds. It has been.
  • bubbles 11 are generated on the lower electrode 4 by the electrode reaction in the lower electrode 4, and the bubbles 11 are formed on the upper electrode 3 so as to cross the fluid flow direction. Can be lifted up.
  • the fluid flow generated by the rising of the bubbles 11 can stir and mix the fluid in the vicinity of the lower electrode 4 and the fluid in the vicinity of the upper electrode 3, and promote the electrode reaction in the upper electrode 3.
  • the fluid near the upstream of the lower electrode 4 is promoted to move toward the upper electrode 3 along with the movement of the bubbles 11, the fluid near the downstream of the lower electrode 4 has a reduced proportion of liquid components that have been subjected to electrolytic treatment. To do. For this reason, the production
  • the electrolytic product produced by the electrode pair 5 for electrolysis can be hypochlorous acid, for example.
  • an aqueous solution of an alkali metal chloride is supplied from the inlet 8 to the fluid flow path 7 (interelectrode flow path 6), and a voltage is applied between the upper electrode 3 and the lower electrode 4 to Electrolytic reactions such as chemical reaction formulas (1) to (4) can be advanced, and a hypochlorite aqueous solution (electrolyzed water) can be produced.
  • a voltage can be applied so that the upper electrode 3 serves as an anode and the lower electrode 4 serves as a cathode.
  • FIGS. 2 (a) and 2 (b) are schematic sectional views of the electrolysis apparatus of the second embodiment, respectively.
  • FIG. 2 (c) is a view of the electrolysis apparatus shown in FIG.
  • FIG. 2D is a diagram for explaining the overlap between the upper electrode and the lower electrode when viewed from the direction B perpendicular to the main surface of the lower electrode. It is a figure for demonstrating the overlap of the upper electrode and lower electrode at the time.
  • the upper electrode 3 and the lower electrode 4 are disposed so that the upper electrode 3 and the lower electrode 4 substantially overlap each other when viewed from the direction B.
  • the upper electrode 3 is disposed so as to be positioned further upward.
  • the upper electrode 3 and the lower electrode 4 overlap in the overlapping region 17 when viewed from the direction B perpendicular to the main surface of the lower electrode 4, but are included in the upper electrode 3.
  • the upper region that does not overlap the lower electrode 4 does not overlap the lower region included in the lower electrode 4.
  • it is the cross section of the electrolysis unit 10 in the direction where the flow-path cross-sectional area of the flow path 6 between electrodes becomes the smallest, Comprising: The surface which does not contain the lower electrode 4 including the upper electrode 3.
  • the electrolyzer 15 of the second embodiment uses the lower electrode 4 as an anode and the upper electrode 3 as a cathode to electrolyze an aqueous solution of a substance having chlorine atoms to generate hypochlorous acid, it is generated at the lower electrode 4 Even if the chlorine gas that floats from the vertical upward direction to the downstream side by the liquid flow rate can approach the vicinity of the upper electrode 3 that is the cathode, the ratio that can be converted to hypochlorous acid increases.
  • FIG. 3A is a schematic cross-sectional view of an electrolysis apparatus according to a third embodiment
  • FIG. 3B is an upper view of the electrolysis apparatus shown in FIG.
  • FIG. 3C is a diagram for explaining the overlap between the electrode and the lower electrode
  • FIG. 3C is an upper electrode when the electrolysis apparatus shown in FIG. 3A is viewed from a direction B perpendicular to the electrode surface of the lower electrode. It is a figure for demonstrating the overlap with a lower electrode. 1 and 2, the electrode surface of the upper electrode 3 and the electrode surface of the lower electrode 4 have substantially the same size, but in the electrolysis device 15 of the third embodiment, The electrode surface of the lower electrode 4 is wider than the electrode surface of the upper electrode 3. Further, as shown in FIG.
  • the upper electrode 3 and the lower electrode 4 have a protrusion length D on the downstream side when the electrolysis apparatus 15 is viewed from the direction B perpendicular to the electrode surface of the lower electrode 4, and an upstream side.
  • the protrusion length is U
  • the lateral protrusion length is S
  • the upper electrode 3 and the lower electrode 4 can be provided so that the entire surface of the upper electrode 3 overlaps the lower electrode 4 when the electrolyzer 15 is viewed from the vertical direction A.
  • the electrode surface of the upper electrode 3 and the electrode surface of the lower electrode 4 are almost the same.
  • the area is the same, in the vicinity of the upper electrode 3, chlorine gas bubbles are dissolved / reduced by the agitation / mixing effect due to the bubbles, and the reduction of the electrode effective area due to the bubbles is suppressed.
  • the effective area of the electrode may be reduced by hydrogen gas bubbles.
  • the electrode effective area of the lower electrode 4 becomes relatively small, which becomes a rate-determining factor for the electrolytic reaction, and the area of the upper electrode 3 may not be used effectively.
  • the above phenomenon can be alleviated, the electrode area can be used effectively, and the electrolytic efficiency per unit area of the upper electrode 3 is improved. be able to.
  • the upstream side of the upper electrode 3 is already present.
  • the chlorine gas can be efficiently converted into hypochlorous acid.
  • the hydrogen gas generated in the lower electrode 4 can approach the vicinity of the upper electrode 3 even if it floats from the vertical upward direction to the downstream side by the amount of the liquid flow velocity.
  • the rate at which can be converted to hypochlorous acid increases.
  • the electric field wraps around the electrode projecting to the downstream side, or oxidation of the bubbles directly contacting the electrode causes An increase in the proportion of chlorine gas converted to chlorous acid can be expected.
  • FIG. 4 is a schematic sectional view of an electrolyzer according to a fourth embodiment.
  • the electrolysis apparatus 15 shown in FIGS. 1 to 3 has the straight fluid flow path 7 to be treated, but in the electrolysis apparatus 15 of the fourth embodiment, the fluid flow path 7 to be treated is an interelectrode flow path. 6 has an upstream bent flow path 25 close to the upstream end, or a downstream bent flow path 26 close to the downstream end of the interelectrode flow path 6.
  • the electrolyzer 15 may have both the upstream bent flow path 25 and the downstream bent flow path 26, or may have either one.
  • At least one of the inflow port 8 or the outflow port 9 can be provided so that the direction of the flow path near the inflow port 8 or the outflow port 9 is non-parallel to the direction of the interelectrode flow path 6.
  • the upstream bent flow path 25 or the downstream bent flow path 26 can be provided. With such a configuration, the liquid flow in the fluid flow path 7 to be processed can be disturbed.
  • the upstream bent flow path 25 in the vicinity of the electrode 5 for electrolysis, the influence of the turbulent flow generated in the bent flow path can be exerted on the interelectrode flow path 6.
  • the downstream bent flow path 26 is preferably provided so that bubbles generated by the electrode pair 5 for electrolysis can float to the outlet 9 by its buoyancy. As a result, the bubbles can be quickly discharged from the fluid flow path 7 to be treated, and a reduction in electrolytic efficiency due to the bubbles remaining can be suppressed.
  • FIG. 6A is a schematic cross-sectional view of an electrolyzer according to a fifth embodiment.
  • FIGS. 6B to 6D are schematic cross-sectional views of components of the electrolysis apparatus according to the fifth embodiment.
  • the electrolysis apparatus 15 of the fifth embodiment has an assembly-type electrolysis unit 10.
  • the electrolysis unit 10 is composed of three parts, two of which are the first electrode holder 31 to which the lower electrode 4 shown in FIG. 6B is fixed and the upper electrode shown in FIG. 6D. 2 is a second electrode holder 32 to which 3 is fixed, and the remaining one is arranged as a spacer 33 between the first and second electrode holders 31 and 32.
  • the spacer 33 overlaps the electrolysis electrode pair 5.
  • Protrusions 35 are provided on the upstream side and the downstream side of the interelectrode flow path 6, respectively.
  • an upstream bent flow path 25 and a downstream bent flow path 26 are provided.
  • the spacer 33 is provided so that the interelectrode flow path 6 is formed between the upper electrode 3 and the lower electrode 4.
  • the first and second electrode holders 31 and 32 have at least a concave portion for fixing the upper electrode 3 or the lower electrode 4, and a surface that fixes the upper electrode 3 or the lower electrode 4 and a surface that contacts the spacer 33.
  • the distance (the depth of the recess) is preferably larger than the thickness of the electrode to be fixed.
  • the stirring effect of bubbles and liquid can be extracted, and the possibility that the upper electrode 3 and the lower electrode 4 will come into contact with each other even if the electrode warps or the electrode is loosened due to any cause is reduced. Can do.
  • security of the electrolyzer 15 can be improved.
  • the material of the metal holders 31 and 32 can be, for example, a resin such as an acrylic resin or a vinyl chloride resin.
  • the bolt 41 for fixing the upper electrode 3 and the bolt 41 for fixing the lower electrode 4 are electrode terminals 45.
  • the material of the bolt 41 can be a metal material, for example, metal titanium.
  • FIG. 7 (a) and 7 (b) are schematic cross-sectional views for explaining the flow of fluid in the electrolysis device 15 as shown in FIG. 6 (a).
  • FIG. 7B is a schematic cross-sectional view of the electrolysis apparatus 15 taken along one-dot chain line FF in FIG.
  • the average velocity V1 at the center is high and the average velocity V2 near the end is low in the flow velocity in the flow path.
  • the amount of chemical change per unit volume due to electrolysis that is, the concentration k of the desired component generated by electrolysis, is substantially proportional to the time t during electrolysis and becomes k ⁇ t if other conditions are constant.
  • the density variation k1 ⁇ k2 L (1 / (V1 ⁇ v) ⁇ 1 / (V2 ⁇ v)), and the density variation becomes small as long as v satisfies V1 ⁇ V2> v.
  • FIG. 8 is a schematic cross-sectional view of an electrolyzer according to a sixth embodiment.
  • the electrolysis unit 10 included in the electrolysis apparatus 15 illustrated in FIG. 8 includes at least an electrode pair 5 for electrolysis and an electrode holder 30 that constitutes a flow path other than the inter-electrode flow path 6 and has a protrusion 35 (see FIG. 8).
  • at least a part of the electrode terminal 45) is bonded to the electrode pair 5 for electrolysis, the base material of the electrode pair 5 for electrolysis, or a member physically bonded to the electrode pair 5 for electrolysis,
  • the electrode holder 30 is also coupled. Such a coupling structure makes it possible to fix the electrode pair 5 for electrolysis to the electrode holder 30.
  • the configuration and structure are not complicated.
  • the above-described coupling structure can reinforce the fixation of the electrolysis electrode pair 5 to the electrode holder 30. Thereby, the reliability of the electrolysis unit 10 can be improved.
  • at least a part of the protrusion 35 or the member (electrode terminal 45 in FIG. 8) coupled to the protrusion 35 is made of a conductive material, and at least a part of the member is electrically connected to the electrode pair 5 for electrolysis. Can be connected.
  • the member having the protrusion 35 can be disposed in the normal direction of the main surface of the surface of the electrode pair 5 for electrolysis that constitutes the fluid flow path 7 to be treated, and can be connected to the electrode holder and the electrode.
  • the protrusion 35 and the electrode terminal 45 can be an integral member.
  • the electrode holder 30 and the electrode pair 5 for electrolysis have a hole suitable for the size of the electrode terminal 45 at a predetermined position.
  • a groove is cut at least at an appropriate position on the opposite side to the protruding portion 35.
  • the electrolysis electrode pair 5 can be fixed to the electrode holder 30 using a nut 42 suitable for this groove, and a voltage can be applied to the electrolysis electrode pair 5 from the outside of the electrode holder 30 through the electrode terminal 45.
  • the occurrence of liquid leakage can be suppressed by using an O-ring 47, a washer 48, and a spring washer 49 as necessary.
  • the metal holder 30 and the electrode terminal are combined. 45 may be joined.
  • the electrode pair 5 for electrolysis can be fixed to the electrode holder 30 without using a nut.
  • the electrode holder 30 and the electrode terminal 45 can be integrally formed.
  • the electrode pair 5 for electrolysis can be fixed to the electrode holder 30 and a voltage can be applied to the electrode pair 5 for electrolysis, so that a separate drawing line for applying a voltage to the electrode pair 5 for electrolysis is necessary. Disappears. Therefore, the configuration and structure are not complicated.
  • the electrolysis electrode pair 5 can be fixed to the electrode holder 30 or a voltage can be applied to the electrolysis electrode pair 5 by a very simple method.
  • the surface of the protrusion 35 at least the portion closest to the counter electrode can be made non-conductive.
  • a nonconductive film can be formed by oxidizing the surface of the protrusion 35.
  • the surface of the protrusion 35 may be coated with a resin or the like.
  • FIG. 9A is a schematic cross-sectional view of an electrolyzer according to a seventh embodiment.
  • FIGS. 9B to 9F are schematic sectional views of components of the electrolysis apparatus according to the seventh embodiment.
  • FIG. 9D is a schematic cross-sectional view of the spacer 33 taken along one-dot chain line GG in FIG. 9C
  • FIG. 9E is a spacer taken along one-dot chain line HH in FIG.
  • the electrolysis device 15 of the seventh embodiment has an assembly-type electrolysis unit 10.
  • the electrolysis unit 10 is composed of three parts, two of which are the first electrode holder 31 to which the lower electrode 4 shown in FIG. 9B is fixed and the upper electrode shown in FIG. 9F.
  • the electrolysis apparatus 15 shown in FIG. 9 the opening 36 of the spacer between electrodes is formed narrower than the electrolysis apparatus 15 shown in FIG.
  • the spacer 33 is disposed so that the spacer 33 overlaps the edge portion of the upper electrode 3 and the edge portion of the lower electrode 4 when viewed from the direction perpendicular to the electrode surface of the lower electrode 4.
  • FIGS. 10A and 10B are schematic configuration diagrams of an electrolysis apparatus according to an eighth embodiment, respectively.
  • the electrolysis apparatus 15 of the eighth embodiment includes the electrolysis unit 10 of the first to seventh embodiments, a stock solution tank 51, and a dilution unit 53.
  • the pipe 57 is indicated by an arrow including the direction in which the fluid in the pipe flows.
  • the electrolyzer 15 shown in FIG. 10A has a configuration that generates a dilute solution by injecting a solution electrolyzed by the electrolysis unit 10 into a pooled water 55 accumulated in a dilution tank 54 that is a dilution unit 53. Yes.
  • 10B has a configuration in which a solution electrolyzed by the electrolysis unit 10 and running water are mixed in the mixing unit 59 that is the dilution unit 53 to generate a diluted solution.
  • 10 (a) and 10 (b) wiring for supplying power to the electrode pair 5 for electrolysis in the electrolysis unit 10 and a liquid feed pump provided as necessary are not shown. According to such a structure, the dilution liquid containing an electrolysis product can be manufactured. Moreover, when producing
  • FIG. 11 is a schematic configuration diagram of an electrolyzer according to a ninth embodiment.
  • the electrolysis apparatus 15 of the ninth embodiment uses the conventional electrolyzed water shown in FIGS. 16 and 17 except that the electrolysis unit 10 is arranged so that the electrode pair 5 for electrolysis is inclined with respect to the vertical direction.
  • the configuration is the same as that of the generator 120.
  • the basic operation of the electrolyzer 15 of the ninth embodiment is the same as that of the conventional electrolyzed water generator 120.
  • the electromagnetic valve 66, the electrolysis unit 10, and the pump 68 are not operated at the same time as the switch 64 is turned on, but the electromagnetic valve 66 is opened at an appropriate timing and water is supplied from the water supply port 62 to the electrolyzer 15.
  • the liquid feed pump 68 is operated at an appropriate timing, and the electrolytic stock solution stored in the stock solution tank 67 is supplied to the electrolysis unit 10. Electric power is supplied to the electrolysis unit 10 from a power source (not shown) at an appropriate timing, and the stock solution is electrolyzed. High-concentration electrolyzed water generated by electrolysis is diluted to an appropriate concentration by water supplied to the pipe 65 and flowing through the pipe 65. The diluted electrolyzed water is sent to the electrolyzed water supply point through a pipe such as a hose connected as appropriate from the discharge port 63.
  • the electromagnetic valve 66 when it is desired to suppress the possibility that high-concentration electrolyzed water is discharged first, it is preferable to turn on the electromagnetic valve 66, the liquid feed pump 68, and the electrolysis unit 10 in this order.
  • a method such as turning on the electrolysis unit 10, the liquid feed pump 68, and the electromagnetic valve 66 in this order can be used. Even when the operation is stopped, when it is desired to rinse with electrolyzed water after using electrolyzed water, the electrolysis unit 10 and the liquid feed pump 68 are turned off, and the electromagnetic valve 66 is turned on for a specified time. It becomes possible to rinse.
  • the liquid feed pump 68 is turned on for a while after the electrolysis unit 10 is turned off to electrolyze the high concentration electrolyzed water in the electrolysis unit 10. It is also possible to dilute or almost replace with the stock solution. In this case, it is desirable that the electromagnetic valve 66 is also turned on. Needless to say, since the undiluted solution and water are necessary, it is of course desirable to design so as not to perform such an operation when frequently used repeatedly.
  • Experimental example 1 An electrolysis apparatus as shown in FIG. 1 was produced, and an electrolysis experiment was performed by changing the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction.
  • iridium oxide is sintered to an electrode made of a 1 mm thick titanium plate having a long side of 8 cm and a short side of 3 cm (referred to as a Ti electrode) and a 1 mm thick titanium plate having a long side of 8 cm and a short side of 3 cm.
  • An electrode coated by the method (referred to as an Ir-coated Ti electrode) was used.
  • the electrolytic electrode pair 5 was fixed to the acrylic resin casing 1 so that the Ti electrode and the Ir-coated Ti electrode were substantially parallel and the distance between the electrodes was in the range of 1 mm to 5 mm, thereby producing an electrolytic device. Further, the power supply device and the electrode pair 5 for electrolysis were connected so that the Ti electrode became a cathode and the Ir-coated Ti electrode became an anode. An electrolyzer produced by changing the installation angle so that the inclination angle of the electrode pair 5 for electrolysis with respect to the vertical direction is about ⁇ 50 degrees to about +50 degrees is installed, and 3 to 4% A sodium chloride aqueous solution was supplied from the lower side at a constant flow rate.
  • the tilt angle is 0 degree, and when the electrode pair for electrolysis is tilted so that the Ir-coated Ti electrode (anode) is on the upper side, the tilt angle is a positive angle, When the electrode pair for electrolysis is tilted so that the Ir-coated Ti electrode is on the lower side, the tilt angle is a negative angle. Then, a constant current of 5 A was supplied to the electrode pair 5 for electrolysis by the power supply device, and the sodium chloride aqueous solution was subjected to electrolytic treatment. The applied voltage was between about 4 and 5V. Moreover, the effective chlorine concentration (mg / L) of the aqueous solution after electrolytic treatment was measured.
  • the measurement result of the effective chlorine concentration is shown in FIG. According to this result, it was possible to increase the effective chlorine concentration of the aqueous solution after the electrolytic treatment by tilting the electrode pair 5 for electrolysis so that the Ir-coated Ti electrode as the anode is on the upper side. Specifically, when the electrode pair 5 for electrolysis is tilted in a range from about 5 degrees to about 45 degrees, the effective chlorine concentration is improved by about 5% compared to when the electrode pair 5 for electrolysis is set to be vertical. Moreover, when the electrode pair 5 for electrolysis was tilted in the range of about 15 degrees to about 32 degrees, the effective chlorine concentration was improved by about 10% compared to when the electrode pair 5 for electrolysis was made vertical.
  • the electrolyzer When the inclination of the electrode pair 5 for electrolysis was too large, the effective chlorine concentration was reduced to about the same as the effective chlorine concentration at the vertical (0 degree) at about 50 degrees. Therefore, it is preferable to install the electrolyzer so that the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction is larger than 0 degree and smaller than 50 degrees, and the inclination angle of the electrolysis electrode pair 5 is preferably 5 degrees to It is preferable to install the electrolyzer so as to be 45 degrees (about 5% improvement), more preferably 15 degrees to 32 degrees.
  • the effective chlorine concentration of the aqueous solution after the electrolytic treatment is increased by arranging the electrode pair 5 for electrolysis so that a part of the Ir-coated Ti electrode serving as the anode is positioned vertically above the Ti electrode serving as the cathode. It was found that the electrolysis efficiency could be improved.
  • the vertical (0 degree) may be the best angle depending on the electrolysis conditions
  • it is preferable that the anode is tilted to some extent so that the anode is upward.
  • the tilt is set in advance so that the effective chlorine concentration decreases little or increases when tilted to the same degree from the vertical (0 degree) to the anode side and the cathode side.
  • the optimum inclination changes depending on the structure of the electrolyzer, the composition of the aqueous solution to be electrolyzed, the amount of liquid to be fed, the electrolysis conditions, and the like, but as described above, vibration, vibration, inclination, etc. occur in a practical environment.
  • vibration, vibration, inclination, etc. occur in a practical environment.
  • a highly transparent acrylic resin was used for the casing 1 in order to observe the state of bubbles.
  • various aqueous solutions supplied to the electrolysis apparatus various electrolyzed substances generated by electrolysis, and generated gases
  • various materials can be used for the housing 1 if it is resistant to the above, and polypropylene or the like can also be used if the desired reliability can be ensured.
  • a vinyl chloride resin is generally the most preferable material for the housing 1 in terms of high resistance, workability, and low cost.
  • the aqueous solution near the cathode is promoted to move toward the anode along with the movement of the bubbles, so the aqueous solution near the cathode is effective for electrolysis because the proportion of the liquid component that has undergone electrolysis decreases.
  • FIG. 13 is a schematic diagram of the interelectrode flow path when the inclination angle of the electrode pair for electrolysis is 0 degree.
  • the direction of the aqueous solution flowing from the bottom to the top in the interelectrode flow path coincides with the direction in which bubbles generated by the electrolytic reaction on the electrode surface rise from the bottom to the top. . Therefore, as indicated by the arrows in FIG. 13, the aqueous solution and bubbles closer to the cathode and the aqueous solution and bubbles closer to the anode flow through the inter-electrode flow path in a relatively difficult state to be mixed.
  • the bubbles generated in the inclined inter-electrode flow path that is, in the aqueous solution having the slanting flux, act as a force to move upward by buoyancy.
  • the moving direction of the bubbles is not parallel to the direction in which the aqueous solution flows, and moves in the direction from the lower electrode (cathode) to the upper electrode (anode) in the upward direction from the direction of the aqueous solution flow.
  • the aqueous solution is also moved in the direction from the lower electrode (cathode) to the upper electrode (anode) as the bubble moves. This causes a flow in which the aqueous solution near the cathode moves to the vicinity of the anode.
  • the anode side product and the cathode side product are well mixed.
  • Bubbles generated at the anode, which is the lower electrode are chlorine gas and oxygen gas as in the chemical reaction formulas (1) and (3), but the chlorine gas is converted into water as in the chemical reaction formula (2). Almost dissolves to produce hypochlorous acid. Therefore, the amount of bubbles generated at the cathode as the lower electrode is smaller than the bubbles of H 2 gas generated at the cathode as the upper electrode. For this reason, the stirring effect by the bubble which generate
  • the inclination angle of the electrode pair for electrolysis is set to 0 degree, and the upper end of the Ir-coated Ti electrode as the anode 21 is set to the upper end of the Ti electrode as the cathode 22 as shown in FIG.
  • a sodium chloride aqueous solution was supplied from the lower side to the fluid flow path 7 to be treated of these electrolyzers, and a constant current of 5 A was supplied between the cathode 22 and the anode 21 to conduct an electrolysis experiment.
  • FIG. 14A when no bubbles are generated, the stirring and mixing effect due to the bubbles cannot be expected. Also, when bubbles are generated, if the amount of bubbles is the same on both sides, it can be considered that which electrode is placed upward is almost equivalent in terms of the effect of the bubbles.
  • the appearance is different. In the case of this experiment, the chlorine gas mainly generated from the anode 21 dissolves well in the aqueous solution, so the amount of bubbles is small, and the amount of bubbles in the cathode 22 where hydrogen gas is generated is larger.
  • FIGS. 14B and 14C schematically show this state.
  • Experimental example 2 As shown in FIG. 1, a “vertical” type electrolysis unit 10 having an inflow port 8 and an outflow port 9 in the flow direction of the inter-electrode flow channel 6 and upstream so that the outflow port 9 faces upward as shown in FIG.
  • the “lateral (up)” type electrolysis unit 10 provided with the side bent flow path 25 and the downstream bent flow path 26, and the upstream bent flow path 25 so that the outlet 9 faces downward as shown in FIG.
  • a “side-out (lower)” type electrolysis unit 10 provided with a downstream-side bent flow path 26 was produced, and an electrolysis experiment was conducted.
  • the electrolysis apparatus 15 was installed so that the inclination angle of the electrode pair 5 for electrolysis with respect to the vertical direction was about 23 degrees and about 45 degrees, and 3-4% sodium chloride aqueous solution was added to the fluid flow path 7 to be treated. Supplying at a constant flow rate from the lower side, electrolytic treatment was performed by the electrode pair 5 for electrolysis. Moreover, the effective chlorine concentration (ppm) of the aqueous solution after electrolytic treatment was measured. The other conditions are the same as in Experimental Example 1. The results of the electrolysis experiment are shown in Table 1. From Table 1, it is apparent that the electrolysis efficiency of the “horizontal (up)” type electrolyzer is high.
  • the reason for this is not clear, but it is more likely that the upstream flow path close to the upstream end of the interelectrode flow path is bent to some extent or the downstream flow path close to the downstream end is bent to some extent. Or the flow of bubbles may be randomized to improve electrolysis efficiency. If it is preferable that the flow of bubbles after the fluid bends be smooth, it is conceivable that the outlet-side channel, particularly the outlet-side channel, is in the vertical direction as shown in FIG. Considering the ease of mass production, a modification example in which the pipe portion 70 is set in the vertical direction as shown in FIGS. 20B and 20C is also conceivable.
  • FIG. 6A An electrolysis unit 10 as shown in FIG. 6A was prepared and an electrolysis experiment was conducted.
  • the produced electrolysis unit 10 is composed of three parts as shown in FIGS. 6B to 6D, and two of them are electrode holders 31 and 32 having the same shape and arranged so as to be point-symmetric with each other. The remaining one is a spacer 33, which is disposed between the two electrode holders, and at least a part of the spacer 33 overlaps the electrolysis electrode pair 5 when viewed from the direction in which the electrolysis electrode pair 5 overlaps. Further, in the produced electrolytic unit 10, a titanium bolt 41 having a protrusion 35 was used.
  • the electrode holders 31 and 32 and the spacer 33 were made of acrylic resin.
  • the upper electrode 3 serving as an anode an insoluble electrode for producing sodium hypochlorite manufactured by Daiso Engineering was used.
  • the lower electrode 4 serving as the cathode a Nilaco titanium plate was used.
  • the thickness of the spacer 33 was adjusted, and three members were assembled so that the distance between the electrodes was in the range of 1 mm to 5 mm.
  • the electrode holder or the like made of acrylic resin since the electrode holder or the like made of acrylic resin is used, the inside of the electrolysis unit 10 can be observed. However, it was made of acrylic that does not transmit short-wavelength light, especially UV. This is to minimize the influence of light. Therefore, it is preferable to use a material that does not transmit light at all in an actual product.
  • the electrode holders 31 and 32 and the spacer 33 were fixed using bolts 41 and nuts 42, and a washer, a spring washer and an O-ring (not shown). Although it can be disassembled in this experimental example, from the viewpoint of long-term reliability, it is preferable to prevent the electrolytic solution from leaking from the adhesive surface of the electrolytic unit 10 with a strong adhesive or the like. Further, by using a gasket having high chemical resistance and high airtightness as the spacer 33, it is possible to perform both thickness adjustment and sealing. Furthermore, in order to reduce the cost by mass production, the electrolytic unit 10 can be produced at a time by integral molding. For comparison, an electrolysis unit not provided with the protrusion 35 was also produced and an electrolysis experiment was conducted. Other configurations are the same as those of the electrolysis unit 10 described above.
  • Electrolysis was carried out while feeding a 3 to 4% NaCl aqueous solution at a rate of 5 to 80 ml / min to the fluid flow path 7 of the produced electrolysis unit 10, and the electrolysis unit 10 provided with the protrusions 35 was The electrolytic treatment could be performed with higher electrolysis efficiency than the electrolysis unit not provided with the protrusion 35.
  • Experimental Example 4 An electrolysis unit 10 as shown in FIG. 9A was prepared and an electrolysis experiment was conducted.
  • the produced electrolysis unit 10 is composed of components as shown in FIGS. 9B to 9F, and the size of the opening of the spacer 33 is narrower than that of the electrolysis unit 10 shown in FIG.
  • the spacer 33 is arranged so that the spacer 33 overlaps the edge portion of the upper electrode 3 and the edge portion of the lower electrode 4.
  • the electrolysis efficiency was not so different from that of Experimental Example 3.
  • the electrolysis unit 10 having the configuration of FIG.
  • the concentration of hypochlorous acid produced was high and the concentration fluctuation was small. Accordingly, the configuration shown in FIG. 9 dramatically improves the electrolysis efficiency and the stability of the generated substance concentration.
  • the reason for this is considered to be that, by adopting the configuration as shown in FIG. 9, the electrolytic reaction proceeds relatively uniformly in the electrode pair 5 for electrolysis and stirring is performed relatively uniformly.
  • the fluid flow path 7 to be treated is configured as shown in FIG. 9, the effect of stirring and uniformizing the fluid to be treated can be obtained even in a place other than the inter-electrode flow path 6. It is thought that the nature improved.
  • the manufactured diluted solution has a pH in the region of 6 to 8, and the hypochlorous acid concentration is 1000 ppm.
  • the chlorine gas concentration near the surface of the diluted solution was 0.5 ppm or less. Therefore, in the electrolysis apparatus 15 of this experimental example, the release of chlorine gas could be significantly suppressed as compared with the comparative example.
  • the chlorine gas generated by electrolysis can be efficiently dissolved in the aqueous solution in the electrolysis apparatus 15 of this experimental example, the time required for the hypochlorous acid concentration of the diluted solution to exceed 1000 ppm is significantly shortened.
  • Experimental Example 6 An electrolysis apparatus as shown in FIG. 19 was prepared, and an electrolysis experiment was performed by changing the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction in the same manner as in Experimental Example 1.
  • iridium oxide is sintered to an electrode made of a 1 mm thick titanium plate having a long side of 5 cm and a short side of 1 cm (referred to as a Ti electrode), and a 1 mm thick titanium plate having a long side of 5 cm and a short side of 1 cm.
  • An electrode coated by the method (referred to as an Ir-coated Ti electrode) was used.
  • the electrolytic electrode pair 5 was fixed to the acrylic resin casing 1 so that the Ti electrode and the Ir-coated Ti electrode were substantially parallel and the distance between the electrodes was in the range of 1 mm to 5 mm, thereby producing an electrolytic device. Further, the power supply device 72 and the electrode pair 5 for electrolysis were connected so that the Ti electrode became a cathode and the Ir-coated Ti electrode became an anode.
  • the electrode as in Experimental Example 1 forms a part of the flow path, and is not in the form of a closed flow path electrolysis unit in which the fluid to be processed is supplied in a substantially constant direction.
  • the so-called electrolytic cell 74 was installed with the installation angle changed so that the inclination angle of the electrode pair 5 for electrolysis with respect to the vertical direction was about ⁇ 60 degrees to about +60 degrees.
  • the electrolytic cell 74 was charged with 3 to 4% sodium chloride aqueous solution.
  • the tilt angle is 0 degree
  • the electrode pair 5 for electrolysis is tilted so that the Ir-coated Ti electrode (anode) is on the upper side, the tilt angle is a positive angle.
  • the tilt angle is a negative angle.
  • a constant current of 1 A was supplied to the electrode pair 5 for electrolysis by the power supply device 72 to electrolyze the sodium chloride aqueous solution.
  • the applied voltage was between about 4 and 5V.
  • the effective chlorine concentration (mg / L) of the aqueous solution after electrolytic treatment was measured.
  • the effective chlorine concentration of the aqueous solution after the electrolytic treatment could be increased by inclining the electrode pair 5 for electrolysis so that the Ir-covered Ti electrode as the anode was on the lower side, contrary to Experimental Example 1.
  • the electrolysis electrode pair 5 is tilted within a range of at least about ⁇ 60 degrees, the effective chlorine concentration is improved as compared with the case where the electrolysis electrode pair 5 is vertical.
  • the electrolysis electrode pair 5 is tilted in the range of about ⁇ 20 degrees to about ⁇ 45 degrees, the effective chlorine concentration is improved by about 5% compared to the case where the electrolysis electrode pair 5 is vertical.
  • the electrolysis electrode pair 5 is preferably installed so that the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction is larger than 0 degree and smaller than 60 degrees, and the inclination angle of the electrolysis electrode pair 5 is preferably It is preferable to install the electrode pair 5 for electrolysis in the electrolytic cell 74 so as to be 20 to 45 degrees (about 5% improvement).
  • the effective chlorine concentration of the aqueous solution after the electrolytic treatment is increased by arranging the electrode pair 5 for electrolysis so that a part of the Ir-coated Ti electrode serving as the anode is positioned vertically below the Ti electrode serving as the cathode. It was found that the electrolysis efficiency could be improved. There are cases where the short side is horizontal and the long side is horizontal as the direction of the electrode pair 5 for electrolysis. In both cases, the electrolysis efficiency is better when the electrode pair 5 is inclined so that the cathode side is up. Was good.
  • the electrolysis electrode pair 5 is inclined and disposed so that a part of the electrode anode is positioned vertically below the cathode. Efficiency is improved. The reason for this difference is not clear, but the following hypothesis can be considered.
  • H 2 is generated as in Experimental Example 1. Since the generated H 2 is relatively difficult to dissolve, most of it becomes bubbles.
  • the open area of the batch-type electrolytic cell 74 is large, particularly including the side surface, since the confinement effect is small, the average time for the presence of H 2 bubbles between the electrodes is shortened.
  • the efficiency of electrolysis is improved because the fresh electrolyte is naturally supplied by replacing the bubbles of 2 . Further, since the amount of the electrolyte to be naturally supplied is not particularly limited, the electrolyzed concentration between the electrodes, here, the concentration of hypochlorous acid is kept at a relatively low concentration. Chlorine gas generated at the anode and not converted into hypochlorous acid rises by buoyancy and moves to the cathode side. At this time, the alkali solution near the cathode is slower in moving speed than H 2 and chlorine gas bubbles, so the chance of contact with the chlorine gas moving from the anode side increases, and the chlorine gas hypochlorous acid. Conversion to etc. is promoted.
  • the generated H 2 bubbles move toward the anode side due to the buoyancy, and the H 2 bubbles are filled between the electrodes, and in some cases, adhere to and stay on the anode side, and the anode becomes the electrolyte.
  • the contact area is significantly reduced.
  • the angle was 80 degrees or more, most of the anode surface was covered with H 2 bubbles, and the electrolytic efficiency was remarkably reduced. As described above, it is considered that the electrolytic efficiency is lowered due to a decrease in the amount of the electrolyte between the electrodes, a reduction in the effective electrode area due to bubbles, an inhibition of the inflow of fresh electrolyte, and the like.
  • the aqueous solution near the anode and the chlorine gas generated at the anode flow out from between the electrodes to the open surface such as the side surface so as to be pushed out by H 2 bubbles, the aqueous solution near the cathode Stirring with the aqueous solution in the vicinity of the anode is not promoted, and conversion of chlorine gas to hypochlorous acid is not promoted. In some cases, chlorine gas is released from the electrolyte as it is into the space. Conceivable.
  • the difference is that the bubbles of H 2 are held between the electrodes regardless of the inclination, and the supply amount of the electrolyte is limited.
  • the closed electrolysis unit in such a state when the cathode side is turned up, the desorption of H 2 from the cathode is delayed, so that the effective electrode area of the cathode is reduced due to the coating effect of H 2 and the electrolyte near the cathode surface approaches. It is thought that the electrolysis efficiency is lowered because it is hindered.
  • the concentration of the electrolyzed substance that is, the concentration of hypochlorous acid in this experimental example
  • the electrolysis efficiency decreases.
  • at least part of the chlorine gas generated at the anode is not converted into hypochlorous acid in the electrolysis unit, but is discharged from the outlet, and even converted into hypochlorous acid by contact with water after the dilution section.
  • the increase in the concentration of hypochlorous acid in the electrolysis unit is suppressed and the electrolysis efficiency is improved.
  • the conditions for improving the electrolytic efficiency differ depending on the case.
  • the electrolysis unit includes an inlet of the substance to be electrolyzed and an outlet of the substance generated by electrolysis and the unelectrolyzed substance, and (iii) means for forcibly supplying the substance to be electrolyzed from the inlet or forced from the outlet
  • it is considered to be a structure having a means for sucking a substance generated by electrolysis and a non-electrolytic substance, or both.
  • the pump is pumped into the inlet, or the pump is sucked from the outlet, or the dilution part and its surroundings are sucked from the outlet as a structure in which a venturi effect is generated, or a tank is provided. It is possible to use a method such as providing it above and feeding it by gravity. It is preferable to provide a pump that can realize liquid feeding most stably. If a certain degree of variation is allowed, it is preferable to provide a structure that uses the Venturi effect or gravity without using a pump, because the energy for operating the pump becomes unnecessary, which saves energy and reduces pump costs. Of course, any combination or all of the pump, the venturi effect and gravity can be used. For example, in Experimental Example 1, a structure in which a tube pump is used to supply a constant amount as much as possible is employed.
  • the electrode pair for electrolysis When the electrode pair for electrolysis is provided in an electrolyzed material that is substantially stored, and there is no means for forcibly supplying or sucking the electrolyzed material between the electrodes, the anode is positioned below the cathode. Thus, it is considered that the electrode pair is preferably inclined. In the case of this structure, the electrolyte is passively supplied as the bubbles rise. In addition, chlorine gas that has not been converted to hypochlorous acid is easily released into the gas phase in a shorter time than a closed electrolysis unit. The closed-system electrolysis unit suppresses the release to the gas phase because the amount of the supplied electrolyte is limited, so that it is reduced to hypochlorous acid by the confinement effect in the electrolysis unit and the stirring effect by H 2 bubbles.
  • Electrode holder 31 First electrode holder 32: Second electrode holder 33: Spacer 35: Projection 36: Opening of spacer 37: Groove of electrode holder 41: Bolt 42: Nut 43: Bolt hole 45: Electrode terminal 47: O Ring 48: Washer 49: Spring washer 51: Electrolysis stock solution tank 52: Electrolysis stock solution 53: Dilution section 54: Dilution tank 55: Reservoir water 57: Piping 9: Mixing unit 61: Housing 62: Water supply port 63: Discharge port 64: Switch 65: Piping 66: Solenoi

Abstract

This electrolysis device is characterized in that: the device is provided with an electrolysis unit; the electrolysis unit is provided with a flow path for a fluid to be processed, at least one electrolysis electrode pair, an inflow opening, and an outflow opening; the electrolysis electrode pair is disposed so as to be inclined to the vertical direction and includes an upper electrode and a lower electrode disposed so as to face each other; and the flow path for the fluid to be processed is provided such that fluid flowing in from the inflow opening flows from a lower side to an upper side of an inter-electrode flow path between the upper electrode and lower electrode and flows out of the outflow opening.

Description

電解装置Electrolyzer
 本発明は、電解装置に関し、特に無隔膜電解装置に関する。 The present invention relates to an electrolytic device, and more particularly to a diaphragmless electrolytic device.
 電気分解は化学材料の製造等に実用的に利用されている。例えば電解ソーダ法により水酸化ナトリウム(苛性ソーダ)、塩素ガス、水素ガス、炭酸ナトリウム(ソーダ灰)などの基礎化学原料が製造されている。また、工業用途に限らず、アルカリイオン整水器等の家庭用機器にも電解技術を用いた製品がある。
 電解技術を用いる利点として、ほとんど活性がなく無害な材料から、活性な物質を生成できるという点である。例えば、次亜塩素酸ナトリウムに代表される次亜塩素酸塩類は、上下水の処理用、排水の処理用、家庭の台所用あるいは洗濯用等の漂白剤、殺菌剤としてとして用いられている。次亜塩素酸塩の製造は、食塩水等のアルカリ金属塩化物の水溶液の電気分解によって得られた水酸化アルカリと塩素ガスを反応させて製造する方法あるいは、無隔膜電解槽においてアルカリ金属塩化物の水溶液を電気分解し、電解槽中で次亜塩素酸塩水溶液を製造する方法で行われている。
Electrolysis is practically used for the production of chemical materials. For example, basic chemical raw materials such as sodium hydroxide (caustic soda), chlorine gas, hydrogen gas, and sodium carbonate (soda ash) are produced by the electrolytic soda method. In addition to industrial applications, there are products that use electrolysis technology in household equipment such as alkali ion water conditioners.
An advantage of using the electrolytic technique is that an active substance can be generated from a material that is hardly active and harmless. For example, hypochlorites represented by sodium hypochlorite are used as bleaching agents and disinfectants for treating water and sewage, for treating wastewater, for household kitchens and for laundry. Hypochlorite can be produced by reacting alkali hydroxide obtained by electrolysis of an aqueous solution of an alkali metal chloride such as saline and chlorine gas, or by using an alkali metal chloride in a diaphragm electrolyzer. This is performed by a method of electrolyzing an aqueous solution of the above and producing a hypochlorite aqueous solution in an electrolytic cell.
 水酸化アルカリと塩素ガスを反応させる方法は、高濃度の次亜塩素酸塩水溶液を得ることができるので、次亜塩素酸塩水溶液を販売する目的で製造する場合にはこの方法で行われている。しかし、水酸化アルカリと塩素ガスを製造する電解設備が必要となるので、大規模な食塩などの塩化アルカリの電解工場において水酸化アルカリあるいは塩素ガスの製造に付随して行われている。
 これに対して、食塩水などの水溶液を無隔膜電解槽において電気分解する方法は、簡単な電解設備を用いて水の浄化や殺菌に直接利用することが可能な濃度の次亜塩素酸塩水溶液を生成することができる。このため、この方法は、次亜塩素酸塩水溶液を使用する現場において利用されている。しかも、次亜塩素酸塩水溶液の電解製造は、次亜塩素酸塩水溶液の必要量に応じて通電する電流を加減することが可能であり、殺菌などに有効な塩素分がすべて水中に溶解しているという特徴を有している。したがって、電気分解により次亜塩素酸水溶液を製造する方法は、次亜塩素酸塩の貯蔵や運搬の必要がないというメリットを有している。このため、これまで液体塩素の貯蔵設備を設けて塩素ガスを使用していた工場あるいは濃厚な次亜塩素酸塩水溶液を貯蔵して次亜塩素酸塩水溶液を使用していた工場においても、電気分解による次亜塩素酸塩水溶液の製造が行われるようになっている。
The method of reacting alkali hydroxide with chlorine gas can obtain a highly concentrated hypochlorite aqueous solution, so this method is used when manufacturing for the purpose of selling a hypochlorite aqueous solution. Yes. However, since an electrolytic facility for producing alkali hydroxide and chlorine gas is required, it is carried out in association with production of alkali hydroxide or chlorine gas in a large-scale alkali chloride electrolytic factory such as salt.
In contrast, a method of electrolyzing an aqueous solution such as saline in a diaphragm electrolyzer is a hypochlorite aqueous solution having a concentration that can be directly used for water purification and sterilization using a simple electrolytic facility. Can be generated. For this reason, this method is utilized in the field which uses hypochlorite aqueous solution. Moreover, the electrolytic production of hypochlorite aqueous solution can adjust the current to be applied according to the required amount of hypochlorite aqueous solution, and all the chlorine content effective for sterilization is dissolved in water. It has the feature of being. Therefore, the method of producing a hypochlorous acid aqueous solution by electrolysis has the merit that it is not necessary to store or transport hypochlorite. For this reason, even in factories where liquid chlorine storage facilities have been used so far and chlorine gas has been used, or in the factories where concentrated hypochlorite aqueous solutions have been stored and hypochlorite aqueous solutions have been used, Production of hypochlorite aqueous solution by decomposition is performed.
 アルカリ金属塩化物の水溶液の電気分解により次亜塩素酸塩を製造する方法では、化学反応式(1)~(3)のような陽極反応が進行し、化学反応式(4)のような陰極反応が進行していると考えられる。
 2Cl-→Cl2+2e-・・・(1)
 Cl2+H2O→HCl+HClO・・・(2)
 H2O→1/2O2+2H++2e-・・・(3)
 2H2O+2e-→H2+2OH-・・・(4)
 なお、水溶液が強酸性(pHが3以下)になると、化学反応式(2)の反応速度が遅くなり、逆反応により塩素ガスが生成する場合がある。
In the method of producing hypochlorite by electrolysis of an aqueous solution of alkali metal chloride, an anodic reaction such as chemical reaction formulas (1) to (3) proceeds, and a cathode such as chemical reaction formula (4). The reaction is considered to be progressing.
2Cl → Cl 2 + 2e (1)
Cl 2 + H 2 O → HCl + HClO (2)
H 2 O → 1 / 2O 2 + 2H + + 2e (3)
2H 2 O + 2e → H 2 + 2OH (4)
In addition, when aqueous solution becomes strong acidity (pH is 3 or less), the reaction rate of chemical reaction formula (2) will become slow, and chlorine gas may be produced | generated by a reverse reaction.
 しかし、電気分解によって製造する次亜塩素酸塩水溶液の濃度が低いと、被処理水に含まれる有機物の濃度が高くなる場合や、有機物が比較的多く付着している除菌対象物を十分に除菌ができない場合などがある。高い濃度の次亜塩素酸塩水溶液を製造する方法としては、陽極と陰極との間に電解液が滞留する時間を長くする方法、陽極と陰極を備えた複数の電解槽を仕切板を介して多段式に設置した電解ユニットを用いる方法が考えられる。しかし、滞留時間を長くすると単位時間当たり生成量が少なくなり、多段式の電極を用いると生産性が悪くなり価格が高くなるという欠点がある。また、これらの方法では、大量の水素ガスが発生し気泡の付着による電解液と電極との接触面積の減少や、電界の遮蔽等によって電解生成物の生成効率の低下や次亜塩素酸塩水溶液の濃度ばらつきが生じる等の問題がある。
 なお、水素イオン指数(pH)の小さい酸性水溶液は除菌性を有するため、次亜塩素酸塩濃度が比較的低くpHの小さい次亜塩素酸塩水溶液を製造することが考えられる。このことにより、十分な除菌性を有する次亜塩素酸塩水溶液を必要な電力消費を抑えて製造することができる。しかし、酸性の次亜塩素酸塩水溶液は、水素ガスに加えて塩素ガスが発生しやすくなるという欠点がある。
However, if the concentration of the hypochlorite aqueous solution produced by electrolysis is low, the concentration of organic matter contained in the water to be treated will be high, or the sterilization target with a relatively large amount of organic matter will be sufficiently removed. There are cases where disinfection is not possible. As a method for producing a high concentration hypochlorite aqueous solution, a method of lengthening the time during which the electrolyte stays between the anode and the cathode, and a plurality of electrolytic cells equipped with the anode and the cathode through the partition plate A method using an electrolysis unit installed in a multistage manner is conceivable. However, if the residence time is lengthened, the production amount per unit time is reduced, and if a multistage electrode is used, the productivity is lowered and the price is increased. Also, in these methods, a large amount of hydrogen gas is generated and the contact area between the electrolyte and the electrode is reduced due to the adhesion of bubbles, the production efficiency of the electrolytic product is reduced by shielding the electric field, etc. There is a problem such as a variation in the density.
Since an acidic aqueous solution having a small hydrogen ion index (pH) has sterilizing properties, it is conceivable to produce a hypochlorite aqueous solution having a relatively low hypochlorite concentration and a low pH. This makes it possible to produce a hypochlorite aqueous solution having sufficient sterilization properties while suppressing necessary power consumption. However, an acidic hypochlorite aqueous solution has a drawback that chlorine gas is easily generated in addition to hydrogen gas.
 図15~17を用いて従来の電気分解による次亜塩素酸塩水溶液の製造装置について説明する。
 図15は、電解技術を用いた製品に一般的に用いられる従来の電解装置100を模式的に示した図である。樹脂製の筐体101の内部に、第1電極103と第2電極104からなる電極対を備える。第1電極103には電圧を印加するための配線106(ピン)が接続されており、第2電極104には電圧を印加するための配線107(ピン)が接続されている。典型的にはピンの一方が電極に溶接され、他方はネジが切ってあって電源からの配線が接続できるようになっている。適宜、Оリング等を使用して液漏れが防止できるよう筐体101の形状を工夫する事ができるが本発明には直接関係しないので省略している。電極間に被処理液を供給するための供給口108と、電解された液が放出される放出口109を備える。通常、電極対は鉛直になるように設置され、 被処理液は下方から供給される。
A conventional apparatus for producing a hypochlorite aqueous solution by electrolysis will be described with reference to FIGS.
FIG. 15 is a diagram schematically showing a conventional electrolysis apparatus 100 that is generally used for products using electrolysis technology. An electrode pair including a first electrode 103 and a second electrode 104 is provided inside a resin casing 101. A wiring 106 (pin) for applying a voltage is connected to the first electrode 103, and a wiring 107 (pin) for applying a voltage is connected to the second electrode 104. Typically, one of the pins is welded to the electrode, and the other is threaded so that wiring from the power source can be connected. As appropriate, the shape of the housing 101 can be devised so that liquid leakage can be prevented by using an O ring or the like, but it is omitted because it is not directly related to the present invention. A supply port 108 for supplying the liquid to be processed between the electrodes and a discharge port 109 for discharging the electrolyzed liquid are provided. Usually, the electrode pair is installed vertically and the liquid to be treated is supplied from below.
 このような構成とすると、電解反応により気体が生成し電極表面上に気泡が生じた場合に、気泡の浮力及び被処理液の流れにより電極表面から容易に気泡を除去することができ、電解反応が進行する電極表面の減少を抑制することができる。ただし、このような構成では、電極間流路の中央付近における電解液の流速は速く、端部付近における電解液の流速が遅くなる。このため、流れる経路によって電解を受ける時間のばらつきが生じ、電解生成物の生成効率が低下するという問題がある。 With such a configuration, when gas is generated by the electrolytic reaction and bubbles are generated on the electrode surface, the bubbles can be easily removed from the electrode surface by the buoyancy of the bubbles and the flow of the liquid to be processed. It is possible to suppress a decrease in the electrode surface where the progress of. However, in such a configuration, the flow rate of the electrolyte near the center of the inter-electrode flow path is high, and the flow rate of the electrolyte near the end is slow. For this reason, there is a problem in that the time for electrolysis varies depending on the flow path, and the production efficiency of the electrolysis product decreases.
 電解装置の応用製品の一例としては、できるだけコンパクトにして図16のような電解水生成器120に組んで使える事が望まれている。筐体111には、水道またはその他の水源から圧送される水を供給する事ができる配管と接続できる給水口112と、電解水を吐出する吐出口113を備える。吐出口113には電解水を供給先まで送水する配管を接続することができる。この装置をON/OFFするスイッチ114を備える。その他、動作状況を表示するインジケーターや、様々な動作をさせる他のスイッチが適宜備える事ができるが、本発明には直接関係しないので省略している。 As an example of the applied product of the electrolysis apparatus, it is desired that the electrolysis apparatus is made as compact as possible and used in the electrolyzed water generator 120 as shown in FIG. The casing 111 includes a water supply port 112 that can be connected to a pipe that can supply water pumped from a water supply or other water source, and a discharge port 113 that discharges electrolytic water. A piping for supplying electrolytic water to the supply destination can be connected to the discharge port 113. A switch 114 for turning on / off the apparatus is provided. In addition, an indicator for displaying the operation status and other switches for performing various operations can be provided as appropriate, but they are omitted because they are not directly related to the present invention.
 図17は図16の電解水生成器120の内部構造を模式的に示した図である。給水口112と吐出口113までは、配管115で接続されており、かつその間には必要に応じてON/OFFする事ができる電磁弁116を備える。配管115の途中には電解装置100の出口と空間的に接続されている箇所を有する。電解装置100の入口はチューブ等の配管を介して空間的に原液タンク117と接続されており、その間には規定量だけ原液を送液するためのポンプ118を備える。 FIG. 17 is a diagram schematically showing the internal structure of the electrolyzed water generator 120 of FIG. The water supply port 112 and the discharge port 113 are connected by a pipe 115, and an electromagnetic valve 116 that can be turned ON / OFF as necessary is provided between them. In the middle of the pipe 115, there is a place spatially connected to the outlet of the electrolysis apparatus 100. The inlet of the electrolyzer 100 is spatially connected to the stock solution tank 117 via a tube or the like, and a pump 118 for feeding the stock solution by a specified amount is provided between them.
 次にこの電解水生成器120の基本動作を説明する。スイッチ114をONにすると、電磁弁116が開き水が給水口112から生成器120内に供給されて配管115を通って吐出口113から吐出する。またポンプ118が作動し原液タンク117に貯蔵されている原液が電解装置100に供給される。電解装置100には電源(図示せず)から電力が供給され、原液が電気分解される。電気分解により生成された高濃度電解水は、配管115へ供給され配管115を流れる水によって適切な濃度に希釈される。希釈後の電解水は、吐出口113から適宜接続されるホース等の配管を通って電解水供給ポイントまで送られる。スイッチ114をOFFにすると、電磁弁116、ポンプ118、電解装置100への電力供給が遮断されて動作停止する。 Next, the basic operation of the electrolyzed water generator 120 will be described. When the switch 114 is turned on, the electromagnetic valve 116 is opened and water is supplied into the generator 120 from the water supply port 112 and discharged from the discharge port 113 through the pipe 115. In addition, the pump 118 operates and the stock solution stored in the stock solution tank 117 is supplied to the electrolysis apparatus 100. Electric power is supplied to the electrolyzer 100 from a power source (not shown), and the stock solution is electrolyzed. High-concentration electrolyzed water generated by electrolysis is diluted to an appropriate concentration by water supplied to the pipe 115 and flowing through the pipe 115. The diluted electrolyzed water is sent to the electrolyzed water supply point through a pipe such as a hose connected as appropriate from the discharge port 113. When the switch 114 is turned off, the power supply to the solenoid valve 116, the pump 118, and the electrolyzer 100 is cut off and the operation is stopped.
 また、複極式の単位電解槽を複数有する次亜塩素酸塩製造用電解槽において、単位電解槽の電解液の流入部もしくは流出部に冷却室を設けた次亜塩素酸塩製造用電解槽が知られている(特許文献1参照)。この方法では、発生した気泡が上昇して電解ユニット上部に蓄積して電極上部が電解液に浸からず電極有効面積が減少することが防止できる。なお、特許文献1に記載の電解装置(特許文献1では電解槽と呼称)は、水平面に対して垂直な電極板を複数枚備え、被処理液は下方から供給され上方へ流れるように用いられる。
 また、電解槽中に陽極及び陰極を傾斜させて設置し、生成した塩素ガスを上方に移行させ、生成亜鉛を下方に移行させる溶融塩電解槽が知られている(特許文献2参照)。
An electrolyzer for producing hypochlorite having a plurality of bipolar unit electrolyzers, wherein an electrolyzer for producing hypochlorite is provided with a cooling chamber at the inflow portion or the outflow portion of the electrolyte of the unit electrolyzer. Is known (see Patent Document 1). In this method, it is possible to prevent the generated bubbles from rising and accumulating in the upper part of the electrolysis unit and the electrode upper area from being immersed in the electrolytic solution, thereby reducing the electrode effective area. The electrolysis apparatus described in Patent Document 1 (referred to as an electrolytic cell in Patent Document 1) includes a plurality of electrode plates perpendicular to a horizontal plane, and is used so that the liquid to be treated is supplied from below and flows upward. .
There is also known a molten salt electrolytic cell in which an anode and a cathode are inclined in an electrolytic cell, a generated chlorine gas is transferred upward, and a generated zinc is transferred downward (see Patent Document 2).
特開平6-200393号公報Japanese Patent Laid-Open No. 6-200393 特開2003-328173号公報JP 2003-328173 A
 しかし、従来の電解装置では、電解生成物の生成効率が十分に高くないという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、電解生成物を効率よく生成することができる電解装置を提供する。
However, the conventional electrolysis apparatus has a problem that the production efficiency of the electrolysis product is not sufficiently high.
This invention is made | formed in view of such a situation, and provides the electrolyzer which can produce | generate an electrolysis product efficiently.
 本発明は、電解ユニットを備え、前記電解ユニットは、被処理流体流路と、少なくとも一組の電解用電極対と、流入口と、流出口とを備え、前記電解用電極対は、鉛直方向に対して傾斜するように配置され、かつ、互いに対向するように配置された上部電極と下部電極とを含み、前記被処理流体流路は、前記流入口から流入した流体が前記上部電極と前記下部電極との間の電極間流路を下側から上側に向かって流れ前記流出口から流出するように設けられたことを特徴とする電解装置を提供する。 The present invention includes an electrolysis unit, and the electrolysis unit includes a fluid flow path to be processed, at least one pair of electrolysis electrodes, an inflow port, and an outflow port, and the electrolysis electrode pair has a vertical direction. An upper electrode and a lower electrode arranged so as to be inclined with respect to each other, and the fluid flow path to be treated includes a fluid that flows in from the inlet and the upper electrode and the lower electrode. An electrolysis apparatus is provided, wherein the electrolysis apparatus is provided so as to flow in a flow path between electrodes from a lower side toward an upper side and to flow out from the outflow port.
 本発明によれば、電解ユニットを備え、前記電解ユニットは、被処理流体流路と、少なくとも一組の電解用電極対と、流入口と、流出口とを備え、前記電解用電極対は、互いに対向するように配置された上部電極と下部電極とを含み、前記被処理流体流路は、前記流入口から流入した流体が前記上部電極と前記下部電極との間の電極間流路を流れ前記流出口から流出するように設けられるため、被処理流体流路に流体を流通させ電解用電極対に電圧を印加することにより流体を電解処理し電解生成物を生成することができ、この電解生成物を含む流体を連続して製造することができる。
 本発明によれば、電解用電極対は、鉛直方向に対して傾斜するように配置され、被処理流体流路は、流体が電極間流路を下側から上側に向かって流れるように設けられるため、電解生成物を効率よく生成することができる。このことは、本発明者等が行った実験により実証された。
 電解生成物を効率よく生成することができる理由は、次のように考えられる。
 本発明の電解装置では、下部電極における電極反応により気体が生成するため、下部電極上に気泡が生じ、この気泡を流体の流れ方向を横切るように上部電極に向かって浮上させることができる。この気泡の浮上により生じる流体の流れにより、下部電極付近の流体と上部電極付近の流体とを攪拌・混合することができ、上部電極における電極反応を促進することができる。また、下部電極の上流付近の流体は気泡の移動に伴って上部電極方向への移動が促進されるため、下部電極の下流付近の流体は電解処理済みの液成分の割合が減少する。このため電解生成物の生成効率を高くすることができる。
According to the present invention, an electrolysis unit is provided, and the electrolysis unit includes a fluid flow path to be processed, at least one pair of electrolysis electrodes, an inflow port, and an outflow port, and the electrolysis electrode pair includes: An upper electrode and a lower electrode arranged so as to face each other, and the fluid flow path to be treated flows through the inter-electrode flow path between the upper electrode and the lower electrode. Since it is provided so as to flow out from the outflow port, it is possible to generate an electrolysis product by electrolyzing the fluid by flowing the fluid through the fluid flow path and applying a voltage to the electrode pair for electrolysis. A fluid containing the product can be produced continuously.
According to the present invention, the electrode pair for electrolysis is disposed so as to be inclined with respect to the vertical direction, and the fluid flow path to be treated is provided so that the fluid flows through the inter-electrode flow path from the lower side to the upper side. Therefore, the electrolytic product can be efficiently generated. This was verified by experiments conducted by the inventors.
The reason why the electrolytic product can be generated efficiently is considered as follows.
In the electrolysis apparatus of the present invention, gas is generated by the electrode reaction in the lower electrode, so that bubbles are generated on the lower electrode, and the bubbles can be floated toward the upper electrode so as to cross the fluid flow direction. By the fluid flow generated by the rising of the bubbles, the fluid in the vicinity of the lower electrode and the fluid in the vicinity of the upper electrode can be stirred and mixed, and the electrode reaction in the upper electrode can be promoted. Further, since the fluid in the vicinity of the upstream of the lower electrode is promoted to move toward the upper electrode along with the movement of the bubbles, the ratio of the liquid component that has been subjected to the electrolytic treatment is reduced in the fluid in the vicinity of the downstream of the lower electrode. For this reason, the production | generation efficiency of an electrolysis product can be made high.
(a)(b)は、本発明の一実施形態の電解装置の概略断面図であり、(c)は電解装置を鉛直方向Aから見た際の上部電極と下部電極との重なりを説明するための図であり、(d)は電解装置を下部電極の主要面に垂直な方向Bから見た際の上部電極と下部電極との重なりを説明するための図である。(A) (b) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention, (c) demonstrates the overlap of the upper electrode and lower electrode when the electrolyzer is seen from the perpendicular direction A. (D) is a figure for demonstrating the overlap of an upper electrode and a lower electrode at the time of seeing an electrolysis apparatus from the direction B perpendicular | vertical to the main surface of a lower electrode. (a)(b)は、本発明の一実施形態の電解装置の概略断面図であり、(c)は電解装置を鉛直方向Aから見た際の上部電極と下部電極との重なりを説明するための図であり、(d)は電解装置を下部電極の主要面に垂直な方向Bから見た際の上部電極と下部電極との重なりを説明するための図である。(A) (b) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention, (c) demonstrates the overlap of the upper electrode and lower electrode when the electrolyzer is seen from the perpendicular direction A. (D) is a figure for demonstrating the overlap of an upper electrode and a lower electrode at the time of seeing an electrolysis apparatus from the direction B perpendicular | vertical to the main surface of a lower electrode. (a)は、本発明の一実施形態の電解装置の概略断面図であり、(b)は電解装置を鉛直方向Aから見た際の上部電極と下部電極との重なりを説明するための図であり、(c)は電解装置を下部電極の主要面に垂直な方向Bから見た際の上部電極と下部電極との重なりを説明するための図である。(A) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention, (b) is a figure for demonstrating the overlap of the upper electrode and lower electrode when the electrolyzer is seen from the perpendicular direction A. (C) is a figure for demonstrating the overlap of an upper electrode and a lower electrode at the time of seeing an electrolysis apparatus from the direction B perpendicular | vertical to the main surface of a lower electrode. 本発明の一実施形態の電解装置の概略断面図である。It is a schematic sectional drawing of the electrolysis apparatus of one Embodiment of this invention. 電解実験で作製した電解装置の概略断面図である。It is a schematic sectional drawing of the electrolysis apparatus produced by the electrolysis experiment. (a)は、本発明の一実施形態の電解装置の概略断面図であり、(b)~(d)はこの電解装置の構成部品の概略断面図である。(A) is a schematic cross-sectional view of an electrolyzer according to an embodiment of the present invention, and (b) to (d) are schematic cross-sectional views of components of the electrolyzer. (a)(b)は本発明の一実施形態の電解装置の概略断面図である。(A) (b) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention. 本発明の一実施形態の電解装置の概略断面図である。It is a schematic sectional drawing of the electrolysis apparatus of one Embodiment of this invention. (a)は、本発明の一実施形態の電解装置の概略断面図であり、(b)~(f)はこの電解装置の構成部品の概略断面図である。(A) is a schematic cross-sectional view of an electrolyzer according to an embodiment of the present invention, and (b) to (f) are schematic cross-sectional views of components of the electrolyzer. (a)(b)は本発明の一実施形態の電解装置の概略構成図である。(A) (b) is a schematic block diagram of the electrolyzer of one Embodiment of this invention. 本発明の一実施形態の電解装置の概略構成図である。It is a schematic block diagram of the electrolysis apparatus of one Embodiment of this invention. 電解実験の測定結果を示すグラフである。It is a graph which shows the measurement result of an electrolysis experiment. 電極間流路における流体及び気泡の流れを説明するための図である。It is a figure for demonstrating the flow of the fluid and bubble in a flow path between electrodes. (a)~(c)は電解実験で作製した電解装置の概略断面図である。(A)-(c) is a schematic sectional drawing of the electrolysis apparatus produced by the electrolysis experiment. (a)(b)は従来の電解装置の概略断面図である。(A) (b) is a schematic sectional drawing of the conventional electrolysis apparatus. 従来の電解水生成器の概略斜視図である。It is a schematic perspective view of the conventional electrolyzed water generator. 従来の電解水生成器の内部構造を模式的に示した図である。It is the figure which showed typically the internal structure of the conventional electrolyzed water generator. 電解実験の測定結果を示すグラフである。It is a graph which shows the measurement result of an electrolysis experiment. 電解実験で作製した電解装置の概略構成図である。It is a schematic block diagram of the electrolysis apparatus produced by the electrolysis experiment. (a)~(c)は、本発明の一実施形態の電解装置の概略断面図である。(A)-(c) is a schematic sectional drawing of the electrolyzer of one Embodiment of this invention.
 本発明の電解装置は、電解ユニットを備え、前記電解ユニットは、被処理流体流路と、少なくとも一組の電解用電極対と、流入口と、流出口とを備え、前記電解用電極対は、鉛直方向に対して傾斜するように配置され、かつ、互いに対向するように配置された上部電極と下部電極とを含み、前記被処理流体流路は、前記流入口から流入した流体が前記上部電極と前記下部電極との間の電極間流路を下側から上側に向かって流れ前記流出口から流出するように設けられたことを特徴とする。 The electrolysis apparatus of the present invention includes an electrolysis unit, and the electrolysis unit includes a fluid flow path to be processed, at least one pair of electrolysis electrodes, an inflow port, and an outflow port, and the electrolysis electrode pair includes: And an upper electrode and a lower electrode that are disposed so as to be inclined with respect to the vertical direction and are opposed to each other, and the fluid flow path includes a fluid that has flowed in from the inflow port. An inter-electrode flow path between the electrode and the lower electrode is provided so as to flow from the lower side to the upper side and to flow out from the outflow port.
 本発明の電解装置において、電解用電極対は、鉛直方向に対する傾斜角度が0度より大きく50度より小さくなるように配置されたことが好ましい。
 このような構成によれば、電解ユニットの電解効率を向上させることができる。このことは、本発明者等行った電解実験により実証された。
 本発明の電解装置において、被処理流体流路は、電極間流路の上流側の端に近接した上流側屈曲流路または電極間流路の下流側の端に近接した下流側屈曲流路を有することが好ましい。
 被処理流体流路が上流側屈曲流路又は下流側屈曲流路を有することにより、電解反応により生じたガスを効率良く電極間流路から排出できるので、ガスが滞留することによる電解効率の低下を抑制することができる。
 また、被処理流体流路が上流側屈曲流路を有することにより、被処理流体流路中の液体の流れに乱れを生じさせることができる。電極の近くに屈曲流路を設けることにより、屈曲流路で生じる乱流の影響は電極間流路にまで及ぶ。これにより気泡があまり生じていない電極間流路の入口付近から十分攪拌効果を与えることができるので、電極表面付近の物質の拡散を促進することができ電解効率を向上させることができる。
 また、被処理流体流路が下流側屈曲流路を有することにより、電極間流路で十分に溶解できながったガスがあったとしても、再度屈曲流路で攪拌を行うことができる。例えば、塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、条件によっては塩素ガスが十分に水溶液に溶解せず次亜塩素酸類の生成効率が落ちる場合があるが、このような構成にすることにより塩素ガスの水溶液への溶解及び次亜塩素酸類への変換を促進できるので、実質的な電解効率を向上させることができる。
In the electrolysis apparatus of the present invention, the electrode pair for electrolysis is preferably arranged so that the inclination angle with respect to the vertical direction is larger than 0 degree and smaller than 50 degrees.
According to such a configuration, the electrolysis efficiency of the electrolysis unit can be improved. This was verified by an electrolysis experiment conducted by the present inventors.
In the electrolysis apparatus of the present invention, the fluid flow path to be processed is an upstream bent flow path close to the upstream end of the interelectrode flow path or a downstream bent flow path close to the downstream end of the interelectrode flow path. It is preferable to have.
Since the fluid flow path to be processed has an upstream bent flow path or a downstream bent flow path, the gas generated by the electrolytic reaction can be efficiently discharged from the inter-electrode flow path, so that the electrolytic efficiency is reduced due to gas retention. Can be suppressed.
In addition, since the fluid flow path to be treated has the upstream bent flow path, the liquid flow in the fluid flow path to be treated can be disturbed. By providing the bent channel near the electrodes, the influence of the turbulent flow generated in the bent channel extends to the inter-electrode channel. As a result, a sufficient stirring effect can be provided from the vicinity of the inlet of the inter-electrode flow path where there are not so many bubbles, so that the diffusion of the substance near the electrode surface can be promoted and the electrolysis efficiency can be improved.
In addition, since the fluid flow path to be processed has the downstream bent flow path, even if there is a gas that cannot be sufficiently dissolved in the inter-electrode flow path, stirring can be performed again in the bent flow path. For example, when electrolyzing an aqueous solution of a substance having a chlorine atom to produce hypochlorous acid, depending on conditions, chlorine gas may not be sufficiently dissolved in the aqueous solution, and the production efficiency of hypochlorous acid may be reduced. With such a configuration, dissolution of chlorine gas in an aqueous solution and conversion to hypochlorous acid can be promoted, so that substantial electrolytic efficiency can be improved.
 本発明の電解装置において、上部電極は、陽極となるように設けられ、下部電極は、陰極となるように設けられたことが好ましい。
 このような構成によれば、下部電極における陰極反応により気泡を発生させることができ、気泡による攪拌・混合効果により電解効率を向上させることができる。
 本発明の電解装置において、下部電極は、上部電極の電極面よりも面積の広い電極面を有することが好ましい。
 下部電極を陰極とし上部電極を陽極として塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、上部電極の電極面と下部電極の電極面とがほぼ同じ面積であると、上部電極付近は気泡による攪拌・混合効果により塩素ガスの気泡が溶解・減少して気泡による電極有効面積の減少が抑制されるが、下部電極ではそのような効果がなく、水素ガスの気泡により電極の有効面積が減少する場合がある。このため、下部電極の電極有効面積が比較的小さくなり電解反応の律速要因となり上部電極の面積が有効に活かせない場合がある。
 下部電極の電極面の面積を上部電極に比べて大きくすることで、上記現象を緩和する事ができ電極面積を有効に使う事ができ上部電極の単位面積当たりの電解効率を向上することができる。
 更に上記の構成にすることで、下部電極の上流側で発生する水素ガスの気泡が鉛直上方の陽極として働いている上部電極近傍に達した時に、その近傍では既に上部電極の上流側で電解されたpHが下降した水溶液に接する事ができるので、効率良く塩素ガスを次亜塩素酸類に変換する事ができる。
 更に上記の構成にすることで、下部電極で発生する水素ガスが、液体の流速の分だけ鉛直上方向から下流側に浮上しても上部電極近傍に接近することができるので、塩素ガスを次亜塩素酸類に変換できる割合が増加する。特に水素ガスの発生が多い場合は上部電極の下流側が気泡で電界が遮蔽されても下流側に張り出した電極への電界の回り込みや、直接電極に接した気泡の酸化等により多少なりとも次亜塩素酸類に変換される塩素ガスの割合の増加が期待できる。
In the electrolysis apparatus of the present invention, it is preferable that the upper electrode is provided so as to be an anode and the lower electrode is provided so as to be a cathode.
According to such a configuration, bubbles can be generated by the cathodic reaction at the lower electrode, and the electrolysis efficiency can be improved by the stirring / mixing effect of the bubbles.
In the electrolytic apparatus of the present invention, the lower electrode preferably has an electrode surface having a larger area than the electrode surface of the upper electrode.
When the lower electrode is the cathode and the upper electrode is the anode, the aqueous solution of the substance having chlorine atoms is electrolyzed to produce hypochlorous acid, and the electrode surface of the upper electrode and the electrode surface of the lower electrode are approximately the same area, In the vicinity of the upper electrode, chlorine gas bubbles are dissolved / reduced due to the agitation / mixing effect due to bubbles, and the reduction of the electrode effective area due to the bubbles is suppressed. The effective area may be reduced. For this reason, the electrode effective area of the lower electrode becomes relatively small, which becomes a rate-determining factor for the electrolytic reaction, and the area of the upper electrode may not be effectively utilized.
By increasing the area of the electrode surface of the lower electrode compared to the upper electrode, the above phenomenon can be mitigated, the electrode area can be used effectively, and the electrolytic efficiency per unit area of the upper electrode can be improved. .
Further, with the above configuration, when hydrogen gas bubbles generated upstream of the lower electrode reach the vicinity of the upper electrode that works as a vertically upward anode, electrolysis is already performed on the upstream side of the upper electrode in the vicinity. In addition, since it can come into contact with an aqueous solution having a lowered pH, chlorine gas can be efficiently converted into hypochlorous acid.
Further, with the above configuration, the hydrogen gas generated at the lower electrode can approach the vicinity of the upper electrode even if it floats from the vertical upward direction to the downstream side by the liquid flow rate. The rate of conversion to chlorous acid increases. In particular, when hydrogen gas is generated frequently, even if the downstream side of the upper electrode is blocked by air bubbles and the electric field is shielded, the electric field wraps around the electrode projecting to the downstream side, or the oxidation of the bubbles directly contacting the electrode causes a slight reduction. An increase in the proportion of chlorine gas converted to chloric acids can be expected.
 本発明の電解装置において、希釈部をさらに備え、前記流体は、水溶液であり、電解用電極対は、前記水溶液に含まれる塩素含有化合物から次亜塩素酸イオンが電気化学的に生成するように設けられ、流出口における水溶液は、重量比で4000ppm以上の次亜塩素酸イオンを含み、希釈部は、流出口から排出された次亜塩素酸イオンを含む水溶液の希釈液を生成するように設けられ、希釈液は、pH7.5以下であることが好ましい。
 このような構成によれば、次亜塩素酸イオンを含み、かつ、塩素ガスの放出が抑制され、かつ、pHが7.5以下である電解水を電解効率よく製造することができる。
 本発明の電解装置において、電解ユニットは、塩素含有化合物から次亜塩素酸イオンが電気化学的に生成するように設けられ、上部電極は、陽極となるように設けられ、下部電極は、陰極となるように設けられたことが好ましい。
 このような構成によれば、下部電極における陰極反応により生じた水素ガスの気泡が流速方向を横切るように上部電極付近に移動しようとするので、電解ユニット内で陽極付近の液体と陰極付近の液体との攪拌を促進することができる。また、水素ガスの気泡が陽極付近に移動するのに伴い、陰極付近のアルカリ性の水が陽極近辺に運ばれ、陽極反応により生じた塩素ガスがアルカリ寄りの水溶液に接するため、塩素ガスの次亜塩素酸類等への変換を促進することができる。
The electrolysis apparatus of the present invention further includes a diluting section, wherein the fluid is an aqueous solution, and the electrode pair for electrolysis is such that hypochlorite ions are generated electrochemically from a chlorine-containing compound contained in the aqueous solution. The aqueous solution at the outlet includes a hypochlorite ion of 4000 ppm or more by weight, and the dilution unit is provided to generate a diluted solution of the aqueous solution including the hypochlorite ion discharged from the outlet. The diluted solution preferably has a pH of 7.5 or less.
According to such a configuration, electrolyzed water containing hypochlorite ions, suppressing release of chlorine gas, and having a pH of 7.5 or less can be produced with high electrolysis efficiency.
In the electrolysis apparatus of the present invention, the electrolysis unit is provided so that hypochlorite ions are generated electrochemically from the chlorine-containing compound, the upper electrode is provided as an anode, and the lower electrode is provided as a cathode. It is preferable to be provided.
According to such a configuration, since the hydrogen gas bubbles generated by the cathode reaction at the lower electrode try to move near the upper electrode so as to cross the flow velocity direction, the liquid near the anode and the liquid near the cathode in the electrolysis unit. And stirring can be promoted. In addition, as the hydrogen gas bubbles move to the vicinity of the anode, alkaline water near the cathode is carried to the vicinity of the anode, and the chlorine gas generated by the anodic reaction comes into contact with the aqueous solution close to the alkali. Conversion to chloric acids and the like can be promoted.
 本発明の電解装置において、電極間流路の流路断面積が最も小さくなる方向における電解ユニットの断面であって、上部電極を含み下部電極を含まない面をC、上部電極及び下部電極の両方を含む面をD、上部電極を含まず下部電極を含む面をEとしたとき、面Cが一番上になり面Eが一番下になり面Dが面Cと面Eとの間に位置するように、上部電極及び下部電極が配置されることが好ましい。
 このような構成によれば、下部電極で発生する気泡が、流速により鉛直上方より流出口側に流されても上部電極付近に接近できる。例えば、塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、下部電極の下流側で発生する水素ガスが、液体の流速の分だけ鉛直上方向から下流側に浮上しても陽極である上部電極近傍に接近することができるので、塩素ガスを次亜塩素酸類に変換できる割合が増加する。
In the electrolysis apparatus of the present invention, the cross section of the electrolysis unit in the direction in which the cross-sectional area of the inter-electrode flow path becomes the smallest, and the surface including the upper electrode and not including the lower electrode is defined as C, both the upper electrode and the lower electrode. Where D is the surface including the upper electrode, and E is the surface including the lower electrode, the surface C is at the top, the surface E is at the bottom, and the surface D is between the surfaces C and E. It is preferable that the upper electrode and the lower electrode are disposed so as to be positioned.
According to such a configuration, bubbles generated in the lower electrode can approach the vicinity of the upper electrode even if the bubbles are caused to flow from the vertically upward direction to the outlet side due to the flow velocity. For example, when hypochlorous acid is produced by electrolyzing an aqueous solution of a substance having a chlorine atom, hydrogen gas generated on the downstream side of the lower electrode floats from the vertical upward direction to the downstream side by the liquid flow rate. Since it can approach the upper electrode vicinity which is an anode, the ratio which can convert chlorine gas into hypochlorous acid increases.
 本発明の電解装置において、上部電極は下部電極に向かって凸状に湾曲しており、下部電極は上部電極に向かって凹状に湾曲していることが好ましい。 更に上部電極の曲率は、下部電極の曲率に比べて小さいことが好ましい。
 このような構成によれば、陽極である上部電極で発生する塩素ガスなどの気泡を電極中央部より端部に排出することができ、気泡による電極の有効面積の減少を抑制できるとともに中央部の電解効率を向上させることができる。また、陰極である下部電極で発生する水素ガスなどの気泡が塩素ガスなどの気泡に邪魔されることなく速やかに上部電極近傍へ移動できるため下部電極で発生した気泡による攪拌・混合効果を大きくすることができる。電解により次亜塩素酸類を生成する場合、この気泡による攪拌・混合効果により塩素ガスの次亜塩素酸類への変換を促進することができる。これにより塩素ガスの気泡も減少させる事ができるので、電極の有効面積の減少を更に抑制することができ、電解効率をなお一層向上させることができる。
 また、気泡が上部電極の中央部から端部に移動することによって中央部から端部方向への流速ベクトルを生成し、従来の電極ユニット構造に比べて、中央部の流速が速くなり端部では流速が遅くなって中央部を流れる電解液と端部を流れる電解液とで電解の程度がばらつくのを抑制することができる。
 更に上部電極の中央部では端部に比べて気泡を少なくする事ができるので、流速の比較的速くなりがちな中央部では電解効率が上がるので、より一層中央部を流れる電解液と、端部を流れる電解液の電解の程度のばらつきを抑制する事ができる。
In the electrolysis apparatus of the present invention, it is preferable that the upper electrode is curved convexly toward the lower electrode, and the lower electrode is curved concavely toward the upper electrode. Furthermore, the curvature of the upper electrode is preferably smaller than the curvature of the lower electrode.
According to such a configuration, bubbles such as chlorine gas generated in the upper electrode as the anode can be discharged from the center portion of the electrode to the end portion, and the reduction of the effective area of the electrode due to the bubbles can be suppressed and the center portion can be suppressed. Electrolytic efficiency can be improved. In addition, since bubbles such as hydrogen gas generated at the lower electrode, which is the cathode, can quickly move to the vicinity of the upper electrode without being obstructed by bubbles such as chlorine gas, the agitation / mixing effect by the bubbles generated at the lower electrode is increased. be able to. When hypochlorous acid is produced by electrolysis, the conversion of chlorine gas to hypochlorous acid can be promoted by the stirring and mixing effect of the bubbles. As a result, the bubbles of chlorine gas can be reduced, so that the reduction of the effective area of the electrode can be further suppressed, and the electrolysis efficiency can be further improved.
In addition, the bubble moves from the center to the end of the upper electrode to generate a flow velocity vector from the center to the end, and the flow speed at the center is faster than the conventional electrode unit structure. It is possible to suppress variation in the degree of electrolysis between the electrolytic solution flowing in the center and the electrolytic solution flowing in the end due to the slow flow rate.
Furthermore, since air bubbles can be reduced in the central portion of the upper electrode compared to the end portion, the electrolytic efficiency is increased in the central portion where the flow velocity tends to be relatively fast. It is possible to suppress variation in the degree of electrolysis of the electrolyte flowing through the.
 本発明の電解装置において、上部電極の少なくとも一部はメッシュ状の電極であり、 上部電極の下部電極と反対側(以下背面側)に空間が設けられることが好ましい。更に、本発明の電解装置は、前記空間の壁面の少なくとも一部に上部電極と電気的に接続された電極を備えることが好ましい。
 このような構成によれば、上部電極上の気泡を背面側に排出できるため、上部電極の下部電極に面する側の面が気泡で覆われて電極有効面積が減少することを抑制でき、電解効率を向上させることができる。また、電解により次亜塩素酸類を生成する場合、下部電極から上昇してきた水素ガスの気泡は塩素ガスの気泡に妨げられる事が比較的少なく容易に上部電極の近傍に生成されたpHの比較的高い水溶液に接触することができるので効率よく塩素ガスを次亜塩素酸類に変換することができる。また、上記の構成にすることで、壁面に設置した電極でもメッシュの隙間部分を介して電解を行うことができる。これによって更に電極有効面積を増大することができる。
In the electrolytic apparatus of the present invention, it is preferable that at least a part of the upper electrode is a mesh electrode, and a space is provided on the side opposite to the lower electrode (hereinafter referred to as the back side) of the upper electrode. Furthermore, the electrolysis apparatus of the present invention preferably includes an electrode electrically connected to the upper electrode on at least a part of the wall surface of the space.
According to such a configuration, since the bubbles on the upper electrode can be discharged to the back side, the surface of the upper electrode facing the lower electrode can be prevented from being covered with bubbles and the electrode effective area can be suppressed from being reduced. Efficiency can be improved. In addition, when hypochlorous acid is generated by electrolysis, the hydrogen gas bubbles rising from the lower electrode are relatively less likely to be hindered by the chlorine gas bubbles, and the pH generated easily in the vicinity of the upper electrode is relatively low. Since it can contact a high aqueous solution, chlorine gas can be efficiently converted into hypochlorous acid. In addition, by adopting the above-described configuration, it is possible to perform the electrolysis even with the electrode installed on the wall surface via the mesh gap. This can further increase the electrode effective area.
 本発明の電解装置において、下部電極はメッシュ状の電極であることが好ましい。
 このような構成によれば、下部電極の表面で発生した気泡の一部は、上部電極からみてメッシュの空隙部分を覆うように成長すると考えられる。これにより滑面状の電極面を有する電極の場合に比べて気泡で覆われ無効になる電極面積の割合を減らす事ができる。
 また上部電極または下部電極の少なくとも一方または両方にメッシュ電極を用いることで、電極表面の凸凹が大きくなり、電極間流路に層流ができにくくなる。これによって電極間流路に攪渦流、乱流が形成されやすくなり、気泡の電極からの剥離を促進することができる。また、電解により次亜塩素酸類を生成する場合、気泡が大きく成長するまえの比表面積の大きい塩素ガスの微小気泡が電極から剥離し上部電極付近の比較的pHの低い水溶液に接する事ができるので、迅速に塩素ガスが溶解し次亜塩素酸類へ変換することができる。また電解液の攪拌も促進されるので、電解ユニット内での塩素ガスの溶解と次亜塩素酸類への変換がより効率的に行われる。
In the electrolysis apparatus of the present invention, the lower electrode is preferably a mesh electrode.
According to such a configuration, it is considered that a part of bubbles generated on the surface of the lower electrode grows so as to cover the mesh void as viewed from the upper electrode. As a result, the ratio of the electrode area that is covered with bubbles and becomes ineffective can be reduced as compared with an electrode having a smooth electrode surface.
Further, by using a mesh electrode for at least one or both of the upper electrode and the lower electrode, the unevenness of the electrode surface becomes large, and it becomes difficult to make a laminar flow in the channel between the electrodes. As a result, vortex flow and turbulent flow are easily formed in the interelectrode flow path, and separation of bubbles from the electrode can be promoted. In addition, when hypochlorous acid is generated by electrolysis, chlorine gas microbubbles with a large specific surface area before the bubbles grow large can be detached from the electrode and come into contact with an aqueous solution having a relatively low pH near the upper electrode. The chlorine gas dissolves quickly and can be converted into hypochlorous acid. In addition, since the stirring of the electrolytic solution is promoted, the chlorine gas is dissolved and converted into hypochlorous acid in the electrolytic unit more efficiently.
 本発明の電解装置において、上部電極と下部電極との間に気泡ガイドを備えることが好ましい。この気泡ガイドは、上部電極及び下部電極から離れた板状の部材あって、この板状の部材は上部電極及び下部電極と平行な位置から傾いて設置されることが好ましい。また、この板状の部材は上部電極及び下部電極と実質的に垂直となるように設置されていることが好ましい。
 このような構成によれば、下部電極の表面で発生した気泡の一部は中ほどまで上昇した後、気泡ガイドにより直接的あるいは気泡ガイドによって変えられた液流に乗って間接的に、進路が変更される。これによって気泡ガイドが無いときに比べて気泡の軌道は複雑化する。また気泡ガイド後方に発生する乱流により電解液が攪拌される。また気泡ガイドによって気泡同士が合体して大きくなることも抑制できるので、気泡の溶解性が良くなる。これにより気泡ガイドが無いときに比べて、下部電極で発生した気泡がより上部電極付近で電解された液と接触する確率が増大する。気泡のみならず上部電極あるいは下部電極付近の電解水も気泡ガイドが生じさせる乱流の影響を受けるので、気泡のみならず上部電極あるいは下部電極付近の電解水も攪拌される。これにより電解反応における拡散律速が大幅に改善されるとともに、気泡の混合攪拌により気泡の溶解が促進される。これによって、総合的に電解反応が促進されるので電解効率が向上する。
In the electrolysis apparatus of the present invention, it is preferable to provide a bubble guide between the upper electrode and the lower electrode. The bubble guide is preferably a plate-like member separated from the upper electrode and the lower electrode, and the plate-like member is preferably inclined from a position parallel to the upper electrode and the lower electrode. The plate-like member is preferably installed so as to be substantially perpendicular to the upper electrode and the lower electrode.
According to such a configuration, after a part of the bubbles generated on the surface of the lower electrode rises to the middle, the path is directly or indirectly on the liquid flow changed by the bubble guide or indirectly by the bubble guide. Be changed. This makes the bubble trajectory more complex than when there is no bubble guide. Further, the electrolyte solution is stirred by the turbulent flow generated behind the bubble guide. In addition, the bubble guide can prevent the bubbles from being combined and becoming larger, so that the solubility of the bubbles is improved. This increases the probability that bubbles generated at the lower electrode come into contact with the electrolyzed liquid in the vicinity of the upper electrode, compared to when there is no bubble guide. Since not only the bubbles but also the electrolyzed water near the upper electrode or the lower electrode is affected by the turbulent flow generated by the bubble guide, the electrolyzed water near the upper electrode or the lower electrode is stirred as well. As a result, the diffusion rate control in the electrolytic reaction is greatly improved, and the dissolution of the bubbles is promoted by mixing and stirring the bubbles. As a result, the electrolytic reaction is comprehensively promoted, so that the electrolytic efficiency is improved.
 本発明の電解装置において、気泡ガイドは上部電極及び下部電極から離れた柱状の部材であって、この部材の柱の軸は上部電極及び下部電極と実質的に平行に設置されていることが好ましい。
 このような構成によれば、気泡の移動と液体の流れを必要以上に妨げないようにすることができるとともに、有効電極面積の減少を最小限にしながら気泡や液体の攪拌効果を引き出す事ができる。
 本発明の電解装置において、電解ユニットは、下部電極が固定された第1電極ホルダーと、上部電極が固定された第2電極ホルダーと、第1及び第2電極ホルダーの間に配置されたスペーサーとを備え、スペーサーは、上部電極及び下部電極が重なり合う方向から見てスペーサーの少なくとも一部が上部電極及び下部電極と重なるように設けられることが好ましい。更に第1又は第2電極ホルダーは少なくとも電極を固定する部分は凹状になっており、電極を固定する面とスペーサーの面との距離(凹部の深さ)は、固定する電極の厚さよりも大きい事が好ましい。
 このような構成によれば、気泡や液体の攪拌効果を引き出すことができるとともに、何らかの原因により電極の反りや、電極の固定に緩みが生じても、両電極の接触する可能性を低くする事ができる。これにより電解装置の効率と安全性の両方を向上することができる。またスペーサーの厚みを変える事で電極間の距離を容易に変える事ができるので、目的にあった種々の仕様に容易に変更することができるので、電極ホルダー等の部品の共通化が容易になる。
In the electrolytic apparatus of the present invention, the bubble guide is a columnar member separated from the upper electrode and the lower electrode, and the axis of the column of this member is preferably installed substantially parallel to the upper electrode and the lower electrode. .
According to such a configuration, it is possible not to obstruct the movement of the bubbles and the flow of the liquid more than necessary, and it is possible to bring out the stirring effect of the bubbles and the liquid while minimizing the reduction of the effective electrode area. .
In the electrolysis apparatus according to the present invention, the electrolysis unit includes a first electrode holder to which the lower electrode is fixed, a second electrode holder to which the upper electrode is fixed, a spacer disposed between the first and second electrode holders, The spacer is preferably provided so that at least a part of the spacer overlaps the upper electrode and the lower electrode when viewed from the direction in which the upper electrode and the lower electrode overlap. Further, the first or second electrode holder has a concave shape at least at the portion for fixing the electrode, and the distance (depth of the concave portion) between the surface for fixing the electrode and the surface of the spacer is larger than the thickness of the electrode for fixing. Things are preferable.
According to such a configuration, the agitation effect of bubbles and liquid can be brought out, and even if the electrode warps or the electrode is loosened for some reason, the possibility of contact between both electrodes is reduced. Can do. Thereby, both the efficiency and safety | security of an electrolyzer can be improved. In addition, since the distance between the electrodes can be easily changed by changing the thickness of the spacer, it can be easily changed to various specifications according to the purpose, making it easy to share parts such as electrode holders. .
 本発明の電解装置において、被処理流体流路の一部かつ上部電極又は下部電極の表面と平行な面内から飛び出した突起部を備え、突起部の少なくとも一部は、被処理流体流路を形成する構造の対称面上にあることが好ましい。
 従来の構造では電極間流路の中央付近つまり電極中央付近の流速が比較的に速くなるため、その部分を流れる電解液は電解される時間が短くなる。それ以外の端部では流速が比較的遅くなるので、その部分を流れる電解液は電解される時間が長くなる。これにより電解液は均一に電解されないので、濃度むらが生じる要因となる。
 また、中央部を流れる電解液に適した電解条件に設定すると、端部を流れる電解液は途中から必要以上に電解されるか、全く電解されず電極の面積が無効になるかする。端部を流れる電解液に適した電解条件に電解条件に設定すると、中央部を流れる電解液は電解不十分になる。いずれにしても効率よく電解できていなかったが、突起部を設けることにより非常にシンプルな構造で、中央部の流速を減速するとともに端部の流速を挙げることができるので、濃度むらの発生を抑制したり、電解の効率を良くしたりすることが可能となる利点がある。
In the electrolysis apparatus of the present invention, a projection is provided which protrudes from a part of the fluid flow path to be processed and from a plane parallel to the surface of the upper electrode or the lower electrode. It is preferable that it exists on the symmetry plane of the structure to form.
In the conventional structure, the flow velocity in the vicinity of the center of the channel between the electrodes, that is, in the vicinity of the center of the electrode is relatively high, so that the time for electrolysis of the electrolyte flowing through that portion is shortened. Since the flow velocity is relatively slow at the other end, the time for electrolysis of the electrolyte flowing through that portion becomes longer. As a result, the electrolytic solution is not electrolyzed uniformly, which causes a concentration unevenness.
Also, if the electrolysis conditions suitable for the electrolyte flowing through the central portion are set, the electrolyte flowing through the end portion may be electrolyzed more than necessary from the middle, or may not be electrolyzed at all and the area of the electrode may become invalid. If the electrolysis condition is set to an electrolysis condition suitable for the electrolyte flowing through the end portion, the electrolyte flowing through the center becomes insufficiently electrolyzed. In any case, it was not possible to perform electrolysis efficiently, but by providing a protrusion, it was possible to reduce the flow rate at the center and increase the flow rate at the end with a very simple structure. There is an advantage that it is possible to suppress or improve the efficiency of electrolysis.
 本発明の電解装置において、被処理流体流路の形状は、上部電極又は下部電極の電極面に平行な面で切った断面に対する法線方向に上部電極、下部電極、流入口、流出口、及び突起部を投影した場合、上部電極及び下部電極の幅が比較的広く、流入口、流出口及び突起部の幅が比較的狭くなっていることが好ましい。
 このような構成によれば、流速の均一性を向上させることができ、濃度むらを抑制でき電解効率を向上することができる。
 本発明の電解装置において、被処理流体流路は、流出口に近い流路の断面積が電極間流路の断面積よりも大きいことが好ましい。
 このような構成によれば、流出口付近の流速のバラつきを抑える事ができるとともに、気泡の排出が容易になる。また例えば次亜塩素酸類の生成において、未変換の塩素ガスが生じても、流路の断面積が大きくなった箇所で攪拌効果と滞留効果が期待でき、それによって塩素ガスの次亜塩素酸類への変換促進が期待できる。したがって効率の向上が期待できる。
In the electrolytic apparatus of the present invention, the shape of the fluid flow path to be processed is such that the upper electrode, the lower electrode, the inlet, the outlet, and the upper electrode, the lower electrode, the inlet, the outlet, and the normal direction with respect to the cross section cut by a plane parallel to the electrode surface of the upper electrode or the lower electrode When the projections are projected, it is preferable that the widths of the upper electrode and the lower electrode are relatively wide, and the widths of the inlet, the outlet, and the projection are relatively narrow.
According to such a configuration, the uniformity of the flow rate can be improved, the concentration unevenness can be suppressed, and the electrolysis efficiency can be improved.
In the electrolysis apparatus of the present invention, it is preferable that the cross-sectional area of the flow path near the outflow port is larger than the cross-sectional area of the inter-electrode flow path.
According to such a configuration, it is possible to suppress variations in the flow velocity in the vicinity of the outlet and to easily discharge bubbles. In addition, for example, in the production of hypochlorous acid, even if unconverted chlorine gas is generated, a stirring effect and a retention effect can be expected at a location where the cross-sectional area of the flow path becomes large, thereby reducing the chlorine gas to hypochlorous acid. Can be expected to promote conversion. Therefore, improvement in efficiency can be expected.
 本発明の電解装置において、電極間流路の上流側及び下流側の両方にそれぞれ突起部を有することが好ましい。
 上部電極及び下部電極の大きさが特に流速方向長くなった場合に、例えば上流側に突起部があり下流側にない場合、下流側で再び中央付近の流速が速く、端部で流速が遅くなる傾向が生じる。このような場合に、上流側と下流側の両方に突起部を設けることで、流速ばらつきが大きくなる事を抑制することができる。
 本発明の電解装置において、電解ユニットは、上部電極及び下部電極と、電極間流路以外の流路を構成する電極ホルダーと、突起部とを備え、突起部の少なくとも一部は、上部電極、下部電極、これらの電極の基材、又はこれらの電極と物理的に結合している部材に結合しており、かつ、電極ホルダーとも結合していることが好ましい。
 このような構成によれば、突起部を設けることにより上部電極又は下部電極を電極ホルダーに固定することができるため、 別途電極を固定する必要がなくなる。したがって、構成や構造を複雑化することなく本発明の電解装置を実現することができる。
In the electrolysis apparatus of the present invention, it is preferable to have protrusions on both the upstream side and the downstream side of the interelectrode flow path.
When the size of the upper and lower electrodes is particularly long in the direction of flow rate, for example, if there is a protrusion on the upstream side and not on the downstream side, the flow rate near the center is high again on the downstream side, and the flow rate is slow at the end A trend arises. In such a case, by providing protrusions on both the upstream side and the downstream side, it is possible to suppress an increase in flow velocity variation.
In the electrolysis apparatus of the present invention, the electrolysis unit includes an upper electrode and a lower electrode, an electrode holder that forms a flow path other than the flow path between the electrodes, and a protrusion, and at least a part of the protrusion includes an upper electrode, It is preferable that it is bonded to the lower electrode, the base material of these electrodes, or a member physically bonded to these electrodes, and also bonded to the electrode holder.
According to such a configuration, since the upper electrode or the lower electrode can be fixed to the electrode holder by providing the protrusion, it is not necessary to fix the electrode separately. Therefore, the electrolysis apparatus of the present invention can be realized without complicating the configuration and structure.
 本発明の電解装置において、突起部または突起部を含む部材は少なくとも一部は導電性材料からなり、この導電性材料からなる部材の少なくとも一部は、上部電極又は下部電極と電気的に接続されていることが好ましい。
 このような構成によれば、この導電性材料からなる部材により、上部電極又は下部電極の電極ホルダーへの固定や上部電極又は下部電極へ電圧印加を行うことができるので、別途電極へ電圧印加するための引き出しラインの必要がなくなる。したがって、構成や構造を複雑化することがなくなる。また、従来の電解用電極対のようにピン等の電極端子引き出し用部品を後付けする必要がなく部品点数(ピン)の削減、ピン取付工数の削減が可能となる。また、他の電極端子の引き出し方として電極に予め端子用の耳を付ける方法があるが、打ち抜きでは無駄になる材料が発生、後付けでは後付け工程が発生する。また引き出し部からの電解液の漏れのシールに安価なOリングを使うのが難しいが、本発明によればそのような無駄や工程が発生しない。更に電極の背面側に電極端子を引き出す方法があるが、従来の電極では背面にロッドを溶接していた。本発明においても溶接を採用することは可能であるが、溶接を用いずとも電極の固定及び電極端子の引き出しが可能である。したがって、溶接工程がないので溶接の失敗がなく、万が一、電極端子の部品に不具合が発生しても容易に補修ができる。溶接していると、溶接を剥がして再度新しいロッドを溶接するか、電極ごと交換する必要がある。
 本発明の電解装置において、突起部の表面のうち少なくとも対向電極に最も近い部位は不導体であることが好ましい。
 このような構成によれば、突起部の表面で電気化学反応が進行することを抑制することができる。
 本発明の電解装置において、突起部を有する部材は電極表面のうち電極間流路を構成する主たる面に対する法線方向と平行に配置され、この部材により電極ホルダーと電極と接続することが好ましい。
 これにより、非常に簡単な方法で上部電極又は下部電極の電極ホルダーへの固定や上部電極及び下部電極へ電圧印加を行うことができる。
In the electrolytic device of the present invention, at least a part of the protrusion or the member including the protrusion is made of a conductive material, and at least a part of the member made of the conductive material is electrically connected to the upper electrode or the lower electrode. It is preferable.
According to such a configuration, the member made of the conductive material can fix the upper electrode or the lower electrode to the electrode holder or apply a voltage to the upper electrode or the lower electrode. This eliminates the need for a drawing line. Therefore, the configuration and structure are not complicated. Further, there is no need to retrofit electrode terminal lead-out components such as pins as in the conventional electrolysis electrode pair, and the number of components (pins) can be reduced and the number of man-hours for pin mounting can be reduced. As another method of drawing out the electrode terminals, there is a method in which ears for terminals are attached to the electrodes in advance. However, a wasteful material is generated in the punching, and a retrofitting process is generated in the retrofitting. In addition, it is difficult to use an inexpensive O-ring for sealing the leakage of the electrolyte from the drawer, but according to the present invention, such waste and processes do not occur. Furthermore, there is a method of drawing out the electrode terminal on the back side of the electrode, but in the conventional electrode, a rod is welded on the back side. Although it is possible to employ welding in the present invention, the electrodes can be fixed and the electrode terminals can be pulled out without using welding. Accordingly, since there is no welding process, there is no failure in welding, and repair can be easily performed even if a failure occurs in the electrode terminal parts. If it is welded, it is necessary to peel off the weld and weld a new rod again or replace the entire electrode.
In the electrolytic device of the present invention, it is preferable that at least a portion of the surface of the protruding portion closest to the counter electrode is a nonconductor.
According to such a structure, it can suppress that an electrochemical reaction advances on the surface of a projection part.
In the electrolysis apparatus of the present invention, the member having the protrusion is preferably arranged in parallel to the normal direction to the main surface constituting the inter-electrode flow path in the electrode surface, and the electrode holder and the electrode are preferably connected by this member.
Thereby, it is possible to fix the upper electrode or the lower electrode to the electrode holder and to apply a voltage to the upper electrode and the lower electrode by a very simple method.
 本発明の電解装置において、下部電極が固定された第1電極ホルダーと、上部電極が固定された第2電極ホルダーとは、実質的に同じ形状であり、かつ、互いに点対称となるように配置され、第1及び第2電極ホルダー間にスペーサーが配置され、上部電極及び下部電極が重なり合う方向から見てスペーサーの少なくとも一部は、上部電極及び下部電極と重なることが好ましい。
 このような構成によれば、何らかの原因により電極の反りや、電極の固定に緩みが生じても、両電極の接触する可能性を低くする事ができる。これにより電解装置の安全性を向上することができる。またスペーサーの厚みを変える事で電極間の距離を容易に変える事ができるので、目的にあった種々の仕様に容易に変更することができるので、電極ホルダー等の部品の共通化が容易になる。
 本発明の電解装置において、上部電極及び下部電極が重なり合う方向から見てスペーサーは上部電極及び下部電極のエッジ部分と重なることが好ましい。
 このような構成によれば、電界集中が起こり易く劣化が起こりやすい電極エッジで電解を起こることを抑制できる。これにより電解を安定させるとともに、電極損耗を抑制し長寿命化が可能となる。
 本発明の電解装置において、電解ユニットは、塩素原子を含む化合物の水溶液を電解して4000ppm以上の濃度相当の次亜塩素酸イオンまたは塩素分子またはその両方を生成し、それらを希釈することでpH7以下の次亜塩素酸水を生成するように設けることが好ましい。
 この場合、上記の手段を用いる事で次亜塩素酸水の生成効率を顕著に向上させることができる。
In the electrolysis apparatus of the present invention, the first electrode holder to which the lower electrode is fixed and the second electrode holder to which the upper electrode is fixed have substantially the same shape and are arranged so as to be point-symmetric with each other. Preferably, a spacer is disposed between the first and second electrode holders, and at least a part of the spacer overlaps with the upper electrode and the lower electrode when viewed from the direction in which the upper electrode and the lower electrode overlap.
According to such a configuration, even if the electrode warps or the electrode is loosened due to some cause, the possibility of contact of both electrodes can be reduced. Thereby, the safety | security of an electrolysis apparatus can be improved. In addition, since the distance between the electrodes can be easily changed by changing the thickness of the spacer, it can be easily changed to various specifications according to the purpose, making it easy to share parts such as electrode holders. .
In the electrolysis apparatus of the present invention, it is preferable that the spacer overlaps the edge portions of the upper electrode and the lower electrode when viewed from the direction in which the upper electrode and the lower electrode overlap.
According to such a configuration, it is possible to suppress the occurrence of electrolysis at the electrode edge where electric field concentration is likely to occur and deterioration is likely to occur. As a result, the electrolysis can be stabilized and electrode wear can be suppressed to extend the life.
In the electrolysis apparatus of the present invention, the electrolysis unit electrolyzes an aqueous solution of a compound containing chlorine atoms to generate hypochlorite ions and / or chlorine molecules corresponding to a concentration of 4000 ppm or more, and dilutes them to adjust pH7. It is preferable to provide the following hypochlorous acid water.
In this case, the production efficiency of hypochlorous acid water can be remarkably improved by using the above means.
 以下、図面を用いて本発明の一実施形態を説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The configurations shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.
第1実施形態
 図1(a)(b)はそれぞれ第1実施形態の電解装置の概略断面図であり、図1(c)は図1(a)に示した電解装置を鉛直方向Aから見た際の上部電極と下部電極との重なりを説明するための図であり、図1(d)は図1(a)に示した電解装置を下部電極の主要面に垂直な方向Bから見た際の上部電極と下部電極との重なりを説明するための図である。
 第1実施形態の電解装置15は、電解ユニット10を備え、電解ユニット10は、被処理流体流路7と、少なくとも一組の電解用電極対5と、流入口8と、流出口9とを備え、電解用電極対5は、鉛直方向に対して傾斜するように配置され、かつ、互いに対向するように配置された上部電極3と下部電極4とを含み、かつ、下部電極4において気体が生成される電極反応が進行するように設けられ、被処理流体流路7は、流入口8から流入した流体が上部電極3と下部電極4との間の電極間流路6を下側から上側に向かって流れ流出口9から流出するように設けられたことを特徴とする。
First Embodiment FIGS. 1A and 1B are schematic cross-sectional views of an electrolysis apparatus according to the first embodiment, respectively. FIG. 1C shows the electrolysis apparatus shown in FIG. FIG. 1D is a view of the electrolysis apparatus shown in FIG. 1A viewed from a direction B perpendicular to the main surface of the lower electrode. It is a figure for demonstrating the overlap of the upper electrode and lower electrode at the time.
The electrolysis apparatus 15 of the first embodiment includes an electrolysis unit 10, and the electrolysis unit 10 includes a fluid flow path 7 to be processed, at least one pair of electrodes for electrolysis 5, an inflow port 8, and an outflow port 9. The electrode pair 5 for electrolysis is disposed so as to be inclined with respect to the vertical direction and includes an upper electrode 3 and a lower electrode 4 disposed so as to face each other. The fluid flow path 7 to be processed is provided so that the generated electrode reaction proceeds, and the fluid flowing in from the inflow port 8 moves the interelectrode flow path 6 between the upper electrode 3 and the lower electrode 4 upward from the lower side. It is provided so that it may flow out of the flow outlet 9 toward the direction.
 第1実施形態の電解装置15(電解ユニット10)では、板状の上部電極3と板状の下部電極4とが対向するように筐体1に固定され、上部電極3と下部電極4との間に電極間流路6が形成されている。なお、電解用電極対5を鉛直方向に対して傾斜するように配置した際に、上に位置する電極が上部電極3であり、下に位置する電極が下部電極4である。
 電解ユニット10は、被処理流体流路7を有する装置であり、電解装置15の構成単位である。図1では、1つの電解ユニット10により電解装置15が構成されているが、複数の電解ユニット10により電解装置15を構成してもよい。複数の電解ユニット10は、被処理流体流路7が並列となるように組み合わされてもよく、被処理流体流路7が直列となるように組み合わされてもよい。
In the electrolysis apparatus 15 (electrolysis unit 10) of the first embodiment, the plate-like upper electrode 3 and the plate-like lower electrode 4 are fixed to the housing 1 so as to face each other, and the upper electrode 3 and the lower electrode 4 are An interelectrode flow path 6 is formed therebetween. When the electrode pair 5 for electrolysis is arranged so as to be inclined with respect to the vertical direction, the upper electrode is the upper electrode 3 and the lower electrode is the lower electrode 4.
The electrolysis unit 10 is a device having the fluid flow path 7 to be processed and is a constituent unit of the electrolysis device 15. In FIG. 1, the electrolysis apparatus 15 is configured by one electrolysis unit 10, but the electrolysis apparatus 15 may be configured by a plurality of electrolysis units 10. The plurality of electrolysis units 10 may be combined so that the fluid flow paths 7 to be processed are in parallel, or may be combined so that the fluid flow paths 7 to be processed are in series.
 筐体1は、上部電極3及び下部電極4と共に被処理流体流路7を形成することができるように設けられる。筐体1の材料は、被処理流体流路7を流れる流体及び電解により副次的に生成されるガスに対して耐性のある材料を用いることができる。具体的には、筐体1の材料には、フッ素樹脂、塩化ビニール樹脂、ポリプロピレン樹脂、アクリル樹脂等の樹脂を、耐久性を考慮して用いることができる。
 筐体1は、管状構造を有してもよく、複数の部材を組み合わせて被処理流体流路7を形成する構造を有してもよい。筐体1が管状構造を有する場合、管状構造の内壁面上に上部電極3及び下部電極4を固定することができる。筐体1が複数の部材を組み合わせた構造を有する場合、上部電極3を固定した第1部材と、下部電極4を固定した第2部材とを組み合わせることにより被処理流体流路7を形成してもよい。この場合、第1部材と第2部材との間に第3部材を挟んでもよい。また、筐体1を構成する部材又は筐体1は、上部電極3又は下部電極4を固定する電極ホルダーであってもよい。
The housing 1 is provided so that the fluid flow path 7 to be processed can be formed together with the upper electrode 3 and the lower electrode 4. As the material of the housing 1, a material that is resistant to a fluid flowing in the fluid flow path 7 to be processed and a gas generated secondary by electrolysis can be used. Specifically, a resin such as a fluororesin, a vinyl chloride resin, a polypropylene resin, or an acrylic resin can be used as the material of the housing 1 in consideration of durability.
The housing 1 may have a tubular structure, or may have a structure in which a fluid flow path 7 to be processed is formed by combining a plurality of members. When the housing 1 has a tubular structure, the upper electrode 3 and the lower electrode 4 can be fixed on the inner wall surface of the tubular structure. When the housing 1 has a structure in which a plurality of members are combined, the fluid flow path 7 to be processed is formed by combining the first member to which the upper electrode 3 is fixed and the second member to which the lower electrode 4 is fixed. Also good. In this case, the third member may be sandwiched between the first member and the second member. Further, the member constituting the housing 1 or the housing 1 may be an electrode holder for fixing the upper electrode 3 or the lower electrode 4.
 被処理流体流路7は、流入口8から流入した流体が上部電極3と下部電極4との間の電極間流路6を下側から上側に向かって流れ流出口9から流出するように設けられる。流入口8は、ポンプを介して電解原液のタンクと接続することができる。このことにより、タンク内の電解原液を被処理流体流路7に流すことができ、電解処理することができる。また、流出口9は、電解処理後の流体を溜めるタンク、電解処理後の流体を利用する箇所へ送る送液管、希釈部などに接続することができる。
 また、流体が電極間流路6の下側から上側に向かって流れることにより、上部電極3又は下部電極4で発生したガスを効率よく電極間流路6から排出することができ、ガスの滞留による電解効率の低下を抑制することができる。また、電極間流路6の下端よりも下側に流入口8を設け、電極間流路6の上端よりも上側に流出口9を設けることができる。このことにより、上部電極3又は下部電極4で発生したガスを効率よく電極間流路6から排出することができ、ガスの滞留による電解効率の低下を抑制することができる。
The to-be-processed fluid flow path 7 is provided so that the fluid flowing in from the inflow port 8 flows through the interelectrode flow path 6 between the upper electrode 3 and the lower electrode 4 from the lower side to the upper side and flows out from the outflow port 9. It is done. The inflow port 8 can be connected to a tank of electrolytic stock solution via a pump. As a result, the stock electrolyte solution in the tank can be flowed to the fluid flow path 7 to be treated, and electrolytic treatment can be performed. Moreover, the outflow port 9 can be connected to a tank for storing the fluid after the electrolytic treatment, a liquid feeding pipe to be sent to a location where the fluid after the electrolytic treatment is used, a dilution unit, and the like.
Further, since the fluid flows from the lower side to the upper side of the interelectrode flow path 6, the gas generated in the upper electrode 3 or the lower electrode 4 can be efficiently discharged from the interelectrode flow path 6, and the gas is retained. It is possible to suppress a decrease in electrolysis efficiency due to. Further, the inflow port 8 can be provided below the lower end of the interelectrode flow path 6, and the outflow port 9 can be provided above the upper end of the interelectrode flow path 6. As a result, the gas generated in the upper electrode 3 or the lower electrode 4 can be efficiently discharged from the inter-electrode flow path 6, and a reduction in electrolytic efficiency due to gas retention can be suppressed.
 被処理流体流路7は、筐体1の一部と、電極間流路6とにより構成される。被処理流体流路7の内壁面は、できるだけ広い電解用電極対5の表面と、できるだけ狭い筐体1の表面で構成されることが望ましい。このような構成にすれば、被処理流体流路7の内壁面に含まれる電解反応が進行する電極表面を広くすることができ、電解に寄与しない表面を極力少なくすることができる。電極表面を広くすれば低い電流密度で十分な電解反応を進行させることができるため、電解用電極対5の電極寿命を延ばすことができ、また、電解効率も向上させることができる。また、電解に寄与しない表面を狭くすれば、同一電解能力でも電解ユニット10の内容積を少なくする事ができるので電解装置15の起動特性を向上させることができる。電解装置15により電解水を製造する場合には、電解水濃度の立ち上がりをよくすることができる。 The to-be-processed fluid flow path 7 includes a part of the housing 1 and the inter-electrode flow path 6. It is desirable that the inner wall surface of the fluid flow path 7 to be processed is composed of the surface of the electrode pair 5 for electrolysis as wide as possible and the surface of the casing 1 as narrow as possible. With such a configuration, the surface of the electrode on which the electrolytic reaction proceeds included in the inner wall surface of the fluid flow path 7 can be widened, and the surface that does not contribute to electrolysis can be reduced as much as possible. If the electrode surface is widened, a sufficient electrolytic reaction can proceed at a low current density, so that the electrode life of the electrode pair 5 for electrolysis can be extended and the electrolysis efficiency can be improved. Further, if the surface that does not contribute to electrolysis is narrowed, the internal volume of the electrolysis unit 10 can be reduced even with the same electrolysis capability, so that the starting characteristics of the electrolysis apparatus 15 can be improved. When producing electrolyzed water by the electrolyzer 15, the rise of the electrolyzed water concentration can be improved.
 電解用電極対5は、上部電極3と下部電極4とから構成される。図1に示した電解ユニット10は、一組の電解用電極対5を有しているが、複数の電解用電極対5を有してもよい。
 上部電極3及び下部電極4は、上部電極3の主要面(電極面)と下部電極4の主要面(電極面)とが対向するように配置される。また、上部電極3及び下部電極4は、上部電極3の主要面と下部電極4の主要面との間に電極間流路6が形成されるように設けられる。また、上部電極3及び下部電極4は、上部電極3の主要面と下部電極4の主要面とが略平行となるように設けることができる。この電極間流路6は、被処理流体流路7の一部となる。このような構成とすると、上部電極3と下部電極4との間に電圧を印加することにより電極間流路6を流れる流体を電解処理することができ、電解生成物を含む流体を生成することができる。
 また、上部電極3が下部電極4に向かって凸状に湾曲し、下部電極4が上部電極3に向かって凹状に湾曲していてもよい。更に上部電極3の曲率は、下部電極4の曲率に比べて小さくてもよい。
 なお、上部電極3及び下部電極4には、電極間に電位差を与えるための配線が接続され、この配線は電源装置に接続される。この配線は、上部電極3又は下部電極4を筐体1に固定するための導電性部材であってもよい。
The electrode pair 5 for electrolysis is composed of an upper electrode 3 and a lower electrode 4. The electrolysis unit 10 shown in FIG. 1 has one set of electrode pairs 5 for electrolysis, but may have a plurality of electrode pairs 5 for electrolysis.
The upper electrode 3 and the lower electrode 4 are disposed so that the main surface (electrode surface) of the upper electrode 3 and the main surface (electrode surface) of the lower electrode 4 face each other. Further, the upper electrode 3 and the lower electrode 4 are provided such that an interelectrode flow path 6 is formed between the main surface of the upper electrode 3 and the main surface of the lower electrode 4. The upper electrode 3 and the lower electrode 4 can be provided so that the main surface of the upper electrode 3 and the main surface of the lower electrode 4 are substantially parallel. The interelectrode flow path 6 becomes a part of the fluid flow path 7 to be processed. With such a configuration, by applying a voltage between the upper electrode 3 and the lower electrode 4, the fluid flowing through the interelectrode flow path 6 can be subjected to electrolytic treatment, and a fluid containing an electrolytic product is generated. Can do.
Further, the upper electrode 3 may be curved in a convex shape toward the lower electrode 4, and the lower electrode 4 may be curved in a concave shape toward the upper electrode 3. Furthermore, the curvature of the upper electrode 3 may be smaller than the curvature of the lower electrode 4.
The upper electrode 3 and the lower electrode 4 are connected to a wiring for applying a potential difference between the electrodes, and this wiring is connected to a power supply device. This wiring may be a conductive member for fixing the upper electrode 3 or the lower electrode 4 to the housing 1.
 上部電極3及び下部電極4は、上部電極3が陽極となり下部電極4が陰極となるように設けられてもよく、上部電極3が陰極となり下部電極4が陽極となるように設けられてもよい。
 また、上部電極3及び下部電極4は、下部電極4において気体が発生する電極反応が進行するように設けられる。このことにより、電解生成物を効率よく生成することができる。また、上部電極3及び下部電極4の両方で気体が発生する電極反応が進行する場合、上部電極3及び下部電極4は、下部電極4において気泡の発生量が多くなるように設けることができる。
 上部電極3及び下部電極4は、筐体1に固定することができる。上部電極3又は下部電極4は、ねじ部材により筐体1に固定されてもよく、接着剤により筐体1に固定されてもよい。また、上部電極3又は下部電極4は、筐体1の平面上又は曲面上に固定されてもよく、筐体1の溝中に固定されてもよい。図1に示した電解装置10では、上部電極3及び下部電極4は筐体1の溝中に設けられ、被処理流体流路7に段差が生じないように設けられている。
The upper electrode 3 and the lower electrode 4 may be provided so that the upper electrode 3 serves as an anode and the lower electrode 4 serves as a cathode, or may be provided so that the upper electrode 3 serves as a cathode and the lower electrode 4 serves as an anode. .
The upper electrode 3 and the lower electrode 4 are provided so that an electrode reaction in which gas is generated in the lower electrode 4 proceeds. Thereby, an electrolysis product can be generated efficiently. Further, when an electrode reaction in which gas is generated in both the upper electrode 3 and the lower electrode 4 proceeds, the upper electrode 3 and the lower electrode 4 can be provided so that the amount of bubbles generated in the lower electrode 4 is increased.
The upper electrode 3 and the lower electrode 4 can be fixed to the housing 1. The upper electrode 3 or the lower electrode 4 may be fixed to the housing 1 with a screw member, or may be fixed to the housing 1 with an adhesive. Further, the upper electrode 3 or the lower electrode 4 may be fixed on a plane or a curved surface of the housing 1 or may be fixed in a groove of the housing 1. In the electrolysis apparatus 10 shown in FIG. 1, the upper electrode 3 and the lower electrode 4 are provided in the groove of the housing 1 and are provided so as not to cause a step in the fluid flow path 7 to be processed.
 上部電極3及び下部電極4の形状は、平面板状であってもよく、曲面板状であってもよい。また、上部電極3及び下部電極4は、方形状であってもよく、円形状であってもよい。また、上部電極3と下部電極4は、実質的に同じ形状であってもよく、異なる形状であってもよい。図1に示した電解ユニット10に含まれる上部電極3及び下部電極4は、板状で方形状であり、実質的に同じ形状を有している。また、上部電極3及び下部電極4の大きさは、例えば長辺8cm短辺3cmとすることができる。
 また、上部電極3及び下部電極4は、メッシュ構造を有してもよく、穴あき構造を有してもよく、多孔質構造を有してもよい。
 また、上部電極3の少なくとも一部がメッシュ構造又は穴あき構造を有する場合、上部電極3の下部電極4と反対側(背面側)に空間が設けられてもよい。また、この空間の壁面上に、上部電極3と電気的に接続した補助電極を設けてもよい。このことにより、上部電極3の電極面上の気泡を背面側に排出することができ、有効電極面積が減少することを抑制することができる。また、補助電極上において電極反応を進行させることができ、有効電極面積を広くすることができる。
 上部電極3及び下部電極4は、金属材料などの導電性材料から形成される。また、上部電極3及び下部電極4には、不溶性電極を用いることができる。また、上部電極3及び下部電極4は、その表面上にPt、Pd、Ir、Ruなどの触媒が担持又はコーティングされた構造を有してもよい。このことにより、電解反応を効率よく進行させることができる。
 例えば、上部電極3及び下部電極4のうち陰極となる電極をTiやPtその他の金属を含む電極とし、上部電極3及び下部電極4のうち陽極となる電極をIrやRuを含む電極やPt等の不溶性電極とすることができる。
The shape of the upper electrode 3 and the lower electrode 4 may be a flat plate shape or a curved plate shape. Further, the upper electrode 3 and the lower electrode 4 may be square or circular. Further, the upper electrode 3 and the lower electrode 4 may have substantially the same shape or different shapes. The upper electrode 3 and the lower electrode 4 included in the electrolysis unit 10 shown in FIG. 1 are plate-shaped and rectangular, and have substantially the same shape. Moreover, the magnitude | size of the upper electrode 3 and the lower electrode 4 can be made into 8 cm of long sides, and 3 cm of short sides, for example.
The upper electrode 3 and the lower electrode 4 may have a mesh structure, a perforated structure, or a porous structure.
Further, when at least a part of the upper electrode 3 has a mesh structure or a perforated structure, a space may be provided on the side (back side) opposite to the lower electrode 4 of the upper electrode 3. An auxiliary electrode electrically connected to the upper electrode 3 may be provided on the wall surface of this space. Thereby, bubbles on the electrode surface of the upper electrode 3 can be discharged to the back surface side, and a reduction in effective electrode area can be suppressed. In addition, the electrode reaction can proceed on the auxiliary electrode, and the effective electrode area can be increased.
The upper electrode 3 and the lower electrode 4 are formed from a conductive material such as a metal material. Further, insoluble electrodes can be used for the upper electrode 3 and the lower electrode 4. Further, the upper electrode 3 and the lower electrode 4 may have a structure in which a catalyst such as Pt, Pd, Ir, or Ru is supported or coated on the surface thereof. This allows the electrolytic reaction to proceed efficiently.
For example, of the upper electrode 3 and the lower electrode 4, the electrode serving as the cathode is an electrode containing Ti, Pt or other metal, and the electrode serving as the anode among the upper electrode 3 or the lower electrode 4 is an electrode containing Ir or Ru, Pt or the like Insoluble electrode.
 上部電極3及び下部電極4(電解用電極対5)は、鉛直方向に対して傾斜するように配置される。また、上部電極3及び下部電極4は、上部電極3の少なくとも一部が下部電極4の鉛直上方に位置するように配置されるように設けられる。
 また、上部電極3及び下部電極4は、鉛直方向に対する傾斜角度が0度より大きく50度より小さくなるように配置することができる。また、この傾斜角度は、5度以上45度以下とすることができ、また、15度以上32度以下とすることができる。なお、傾斜角度は、上部電極3の下部電極4に対向する面(主要面、電極面)の傾斜角度、又は下部電極4の上部電極3に対向する面(主要面、電極面)の傾斜角度である。上部電極3の傾斜角度と下部電極4の傾斜角度は実質的に同じであることが好ましい。このことにより、電極間距離を実質的に一定にすることができ、電流集中が生じることを抑制することができる。
 このように電解用電極対5を配置することにより、電解効率を向上させることができる。
The upper electrode 3 and the lower electrode 4 (electrolytic electrode pair 5) are disposed so as to be inclined with respect to the vertical direction. The upper electrode 3 and the lower electrode 4 are provided so that at least a part of the upper electrode 3 is positioned vertically above the lower electrode 4.
Further, the upper electrode 3 and the lower electrode 4 can be arranged such that the inclination angle with respect to the vertical direction is larger than 0 degree and smaller than 50 degrees. Moreover, this inclination angle can be set to 5 degrees or more and 45 degrees or less, and can be set to 15 degrees or more and 32 degrees or less. The tilt angle is the tilt angle of the surface (main surface, electrode surface) facing the lower electrode 4 of the upper electrode 3 or the tilt angle of the surface (main surface, electrode surface) facing the upper electrode 3 of the lower electrode 4. It is. It is preferable that the inclination angle of the upper electrode 3 and the inclination angle of the lower electrode 4 are substantially the same. As a result, the distance between the electrodes can be made substantially constant, and current concentration can be suppressed from occurring.
Thus, by arrange | positioning the electrode pair 5 for electrolysis, electrolysis efficiency can be improved.
 図1に示した電解ユニット10では、上部電極3及び下部電極4は、傾斜角度がθとなるように配置されている。また、図1(d)のように、下部電極4の主要面に垂直な方向Bから見た際に実質的に同じ大きさの上部電極3と下部電極4が実質的に全面において重なるように、上部電極3及び下部電極4が配置されている。また、図1(c)のように、鉛直方向Aから見た際に重なり領域16において上部電極3と下部電極4とが重なるように、上部電極3及び下部電極4が配置されている。また、電解ユニット10は、被処理流体が電極間流路6の下側から上側に向かって流れるように設けられ、下部電極4において気体(気泡11)が発生する電極反応が進行するように設けられている。
 このような電解ユニット10では、図1(b)のように、下部電極4における電極反応により下部電極4上に気泡11が生じ、この気泡11を流体の流れ方向を横切るように上部電極3に向かって浮上させることができる。この気泡11の浮上により生じる流体の流れにより、下部電極4付近の流体と上部電極3付近の流体とを攪拌・混合することができ、上部電極3における電極反応を促進することができる。また、下部電極4の上流付近の流体は気泡11の移動に伴って上部電極3方向への移動が促進されるため、下部電極4の下流付近の流体は電解処理済みの液成分の割合が減少する。このため電解生成物の生成効率を高くすることができる。
In the electrolysis unit 10 shown in FIG. 1, the upper electrode 3 and the lower electrode 4 are arranged so that the inclination angle is θ. Further, as shown in FIG. 1D, the upper electrode 3 and the lower electrode 4 having substantially the same size are substantially overlapped on the entire surface when viewed from the direction B perpendicular to the main surface of the lower electrode 4. The upper electrode 3 and the lower electrode 4 are disposed. Further, as shown in FIG. 1C, the upper electrode 3 and the lower electrode 4 are arranged so that the upper electrode 3 and the lower electrode 4 overlap in the overlapping region 16 when viewed from the vertical direction A. The electrolysis unit 10 is provided so that the fluid to be treated flows from the lower side to the upper side of the interelectrode flow path 6 so that an electrode reaction in which gas (bubbles 11) is generated in the lower electrode 4 proceeds. It has been.
In such an electrolysis unit 10, as shown in FIG. 1B, bubbles 11 are generated on the lower electrode 4 by the electrode reaction in the lower electrode 4, and the bubbles 11 are formed on the upper electrode 3 so as to cross the fluid flow direction. Can be lifted up. The fluid flow generated by the rising of the bubbles 11 can stir and mix the fluid in the vicinity of the lower electrode 4 and the fluid in the vicinity of the upper electrode 3, and promote the electrode reaction in the upper electrode 3. Further, since the fluid near the upstream of the lower electrode 4 is promoted to move toward the upper electrode 3 along with the movement of the bubbles 11, the fluid near the downstream of the lower electrode 4 has a reduced proportion of liquid components that have been subjected to electrolytic treatment. To do. For this reason, the production | generation efficiency of an electrolysis product can be made high.
 電解用電極対5により生成される電解生成物は、例えば、次亜塩素酸類とすることができる。この場合、アルカリ金属塩化物の水溶液を流入口8から被処理流体流路7(電極間流路6)に供給し、上部電極3と下部電極4との間に電圧を印加することにより上記の化学反応式(1)~(4)のような電解反応を進行させることができ、次亜塩素酸塩水溶液(電解水)を製造することができる。
 また、この場合、上部電極3が陽極となり下部電極4が陰極となるように電圧を印加することができる。このことにより、下部電極4上にH2ガスの気泡を生じさせることができ、この気泡の浮上により水溶液を攪拌・混合することができ、次亜塩素酸類の生成効率を向上させることができる。また、陽極近傍の水溶液が強酸性になることを抑制することができるため、上記の化学反応式(2)の反応速度を速くすることができる。このため、次亜塩素酸類の生成効率を向上させることができる。
The electrolytic product produced by the electrode pair 5 for electrolysis can be hypochlorous acid, for example. In this case, an aqueous solution of an alkali metal chloride is supplied from the inlet 8 to the fluid flow path 7 (interelectrode flow path 6), and a voltage is applied between the upper electrode 3 and the lower electrode 4 to Electrolytic reactions such as chemical reaction formulas (1) to (4) can be advanced, and a hypochlorite aqueous solution (electrolyzed water) can be produced.
In this case, a voltage can be applied so that the upper electrode 3 serves as an anode and the lower electrode 4 serves as a cathode. As a result, H 2 gas bubbles can be generated on the lower electrode 4, and the aqueous solution can be stirred and mixed by the rising of the bubbles, thereby improving the generation efficiency of hypochlorous acid. Moreover, since it can suppress that the aqueous solution of the anode vicinity becomes strong acidity, the reaction rate of said chemical reaction formula (2) can be made quick. For this reason, the production | generation efficiency of hypochlorous acid can be improved.
第2実施形態
 図2(a)(b)はそれぞれ第2実施形態の電解装置の概略断面図であり、図2(c)は図2(a)に示した電解装置を鉛直方向Aから見た際の上部電極と下部電極との重なりを説明するための図であり、図2(d)は図2(a)に示した電解装置を下部電極の主要面に垂直な方向Bから見た際の上部電極と下部電極との重なりを説明するための図である。
 図1に示した電解装置では、方向Bから見た際に上部電極3と下部電極4が実質的に全面において重なるように上部電極3と下部電極4とが配置されていたが、第2実施形態の電解装置15では、上部電極3がより上方に位置するように配置されている。具体的には、図2(d)のように、下部電極4の主要面に垂直な方向Bから見た際に上部電極3と下部電極4が重なり領域17で重なるが、上部電極3に含まれる上部領域は下部電極4と重なっておらず、下部電極4に含まれる下部領域は上部電極3と重なっていない。
 また、第2実施形態の電解装置15では、電極間流路6の流路断面積が最も小さくなる方向における電解ユニット10の断面であって、上部電極3を含み下部電極4を含まない面をC、上部電極3及び下部電極4の両方を含む面をD、上部電極3を含まず下部電極を含む面をEとしたとき、面Cが一番上になり面Eが一番下になり面Dが面Cと面Eとの間に位置するように、上部電極3及び下部電極4が配置されている。
 このような構成とすることにより、図2(c)のように鉛直方向Aから見た際に上部電極3と下部電極4とが重なる重なり領域16を広くすることができる。
Second Embodiment FIGS. 2 (a) and 2 (b) are schematic sectional views of the electrolysis apparatus of the second embodiment, respectively. FIG. 2 (c) is a view of the electrolysis apparatus shown in FIG. FIG. 2D is a diagram for explaining the overlap between the upper electrode and the lower electrode when viewed from the direction B perpendicular to the main surface of the lower electrode. It is a figure for demonstrating the overlap of the upper electrode and lower electrode at the time.
In the electrolysis apparatus shown in FIG. 1, the upper electrode 3 and the lower electrode 4 are disposed so that the upper electrode 3 and the lower electrode 4 substantially overlap each other when viewed from the direction B. In the electrolysis apparatus 15 of the form, the upper electrode 3 is disposed so as to be positioned further upward. Specifically, as shown in FIG. 2D, the upper electrode 3 and the lower electrode 4 overlap in the overlapping region 17 when viewed from the direction B perpendicular to the main surface of the lower electrode 4, but are included in the upper electrode 3. The upper region that does not overlap the lower electrode 4 does not overlap the lower region included in the lower electrode 4.
Moreover, in the electrolysis apparatus 15 of 2nd Embodiment, it is the cross section of the electrolysis unit 10 in the direction where the flow-path cross-sectional area of the flow path 6 between electrodes becomes the smallest, Comprising: The surface which does not contain the lower electrode 4 including the upper electrode 3. When C is a surface including both the upper electrode 3 and the lower electrode 4 and D is a surface including the lower electrode but not the upper electrode 3, the surface C is at the top and the surface E is at the bottom. The upper electrode 3 and the lower electrode 4 are arranged so that the surface D is located between the surface C and the surface E.
With such a configuration, the overlapping region 16 where the upper electrode 3 and the lower electrode 4 overlap when viewed from the vertical direction A as shown in FIG.
 このような電解ユニット10では、図2(b)のように、下部電極4における電極反応により気泡11が生じ、この気泡11を流体の流れ方向を横切るように上部電極3に向かって浮上させることができる。また、図2(c)のように重なり領域16が広いため下部電極4で生じた気泡11が浮上し上部電極3に接近する確率を高くすることができる。また、下部電極4で生じた気泡11が被処理流体流路7の流れにより浮上する気泡11が下流側に流されたとしても、気泡11を高い確率で上部電極3に接近させることができる。このため、気泡11による攪拌・混合効果を大きくすることができ、上部電極3における電極反応をより効果的に促進することができる。このため電解生成物の生成効率を高くすることができる。 In such an electrolysis unit 10, as shown in FIG. 2B, bubbles 11 are generated by the electrode reaction in the lower electrode 4, and the bubbles 11 are floated toward the upper electrode 3 so as to cross the fluid flow direction. Can do. In addition, since the overlapping region 16 is wide as shown in FIG. 2C, the probability that the bubbles 11 generated in the lower electrode 4 rise and approach the upper electrode 3 can be increased. Moreover, even if the bubble 11 generated by the lower electrode 4 floats due to the flow of the fluid flow path 7 to be processed, the bubble 11 can be brought close to the upper electrode 3 with high probability. For this reason, the stirring / mixing effect by the bubbles 11 can be increased, and the electrode reaction in the upper electrode 3 can be more effectively promoted. For this reason, the production | generation efficiency of an electrolysis product can be made high.
 例えば、第2実施形態の電解装置15により、下部電極4を陽極とし上部電極3を陰極として、塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、下部電極4で発生する塩素ガスが、液体の流速の分だけ鉛直上方向から下流側に浮上しても陰極である上部電極3近傍に接近することができるので、次亜塩素酸類に変換できる割合が増加する。 For example, when the electrolyzer 15 of the second embodiment uses the lower electrode 4 as an anode and the upper electrode 3 as a cathode to electrolyze an aqueous solution of a substance having chlorine atoms to generate hypochlorous acid, it is generated at the lower electrode 4 Even if the chlorine gas that floats from the vertical upward direction to the downstream side by the liquid flow rate can approach the vicinity of the upper electrode 3 that is the cathode, the ratio that can be converted to hypochlorous acid increases.
第3実施形態
 図3(a)は第3実施形態の電解装置の概略断面図であり、図3(b)は図3(a)に示した電解装置を鉛直方向Aから見た際の上部電極と下部電極との重なりを説明するための図であり、図3(c)は図3(a)に示した電解装置を下部電極の電極面に垂直な方向Bから見た際の上部電極と下部電極との重なりを説明するための図である。
 図1、2に示した電解装置15では、上部電極3の電極面と下部電極4の電極面とが実質的に同じ大きさを有しているが、第3実施形態の電解装置15では、下部電極4の電極面は上部電極3の電極面よりも広い。また、図3(c)のように、上部電極3及び下部電極4は、電解装置15を下部電極4の電極面に垂直な方向Bから見て下流側のはみ出し長さをD、上流側のはみ出し長さをU、横側のはみ出し長さをSとしたときに、D>U≧Sを満たすように設けることができる。また、図3(b)のように、電解装置15を鉛直方向Aから見た場合、上部電極3の全面が下部電極4と重なるように上部電極3及び下部電極4を設けることができる。
Third Embodiment FIG. 3A is a schematic cross-sectional view of an electrolysis apparatus according to a third embodiment, and FIG. 3B is an upper view of the electrolysis apparatus shown in FIG. FIG. 3C is a diagram for explaining the overlap between the electrode and the lower electrode, and FIG. 3C is an upper electrode when the electrolysis apparatus shown in FIG. 3A is viewed from a direction B perpendicular to the electrode surface of the lower electrode. It is a figure for demonstrating the overlap with a lower electrode.
1 and 2, the electrode surface of the upper electrode 3 and the electrode surface of the lower electrode 4 have substantially the same size, but in the electrolysis device 15 of the third embodiment, The electrode surface of the lower electrode 4 is wider than the electrode surface of the upper electrode 3. Further, as shown in FIG. 3C, the upper electrode 3 and the lower electrode 4 have a protrusion length D on the downstream side when the electrolysis apparatus 15 is viewed from the direction B perpendicular to the electrode surface of the lower electrode 4, and an upstream side. When the protrusion length is U and the lateral protrusion length is S, it can be provided so as to satisfy D> U ≧ S. 3B, the upper electrode 3 and the lower electrode 4 can be provided so that the entire surface of the upper electrode 3 overlaps the lower electrode 4 when the electrolyzer 15 is viewed from the vertical direction A.
 例えば、下部電極4を陰極とし上部電極3を陽極として塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、上部電極3の電極面と下部電極4の電極面とがほぼ同じ面積であると、上部電極3付近は気泡による攪拌・混合効果により塩素ガスの気泡が溶解・減少して気泡による電極有効面積の減少が抑制されるが、下部電極4ではそのような効果がなく、水素ガスの気泡により電極有効面積が減少する場合がある。このため、下部電極4の電極有効面積が比較的小さくなり電解反応の律速要因となり上部電極3の面積が有効に活かせない場合がある。
 下部電極4の電極面の面積を上部電極3に比べて大きくすることで、上記現象を緩和する事ができ電極面積を有効に使う事ができ上部電極3の単位面積当たりの電解効率を向上することができる。
 更に上記の構成にすることで、下部電極4の上流側で発生する水素ガスの気泡が鉛直上方の陽極として働いている上部電極3近傍に達した時に、その近傍では既に上部電極3の上流側で電解されたpHが下降した水溶液に接する事ができるので、効率良く塩素ガスを次亜塩素酸類に変換する事ができる。
 更に上記の構成にすることで、下部電極4で発生する水素ガスが、液体の流速の分だけ鉛直上方向から下流側に浮上しても上部電極3近傍に接近することができるので、塩素ガスを次亜塩素酸類に変換できる割合が増加する。特に水素ガスの発生が多い場合は上部電極3の下流側が気泡で電界が遮蔽されても下流側に張り出した電極への電界の回り込みや、直接電極に接した気泡の酸化等により多少なりとも次亜塩素酸類に変換される塩素ガスの割合の増加が期待できる。
For example, when the lower electrode 4 is used as a cathode and the upper electrode 3 is used as an anode and an aqueous solution of a substance having chlorine atoms is electrolyzed to generate hypochlorous acid, the electrode surface of the upper electrode 3 and the electrode surface of the lower electrode 4 are almost the same. When the area is the same, in the vicinity of the upper electrode 3, chlorine gas bubbles are dissolved / reduced by the agitation / mixing effect due to the bubbles, and the reduction of the electrode effective area due to the bubbles is suppressed. In some cases, the effective area of the electrode may be reduced by hydrogen gas bubbles. For this reason, the electrode effective area of the lower electrode 4 becomes relatively small, which becomes a rate-determining factor for the electrolytic reaction, and the area of the upper electrode 3 may not be used effectively.
By increasing the area of the electrode surface of the lower electrode 4 as compared with the upper electrode 3, the above phenomenon can be alleviated, the electrode area can be used effectively, and the electrolytic efficiency per unit area of the upper electrode 3 is improved. be able to.
Further, with the above configuration, when the hydrogen gas bubbles generated on the upstream side of the lower electrode 4 reach the vicinity of the upper electrode 3 acting as the vertically upper anode, in the vicinity thereof, the upstream side of the upper electrode 3 is already present. Since it is possible to come into contact with the aqueous solution having a lowered pH, the chlorine gas can be efficiently converted into hypochlorous acid.
Further, with the above configuration, the hydrogen gas generated in the lower electrode 4 can approach the vicinity of the upper electrode 3 even if it floats from the vertical upward direction to the downstream side by the amount of the liquid flow velocity. The rate at which can be converted to hypochlorous acid increases. In particular, when the generation of hydrogen gas is large, even if the downstream side of the upper electrode 3 is blocked by air bubbles and the electric field is shielded, the electric field wraps around the electrode projecting to the downstream side, or oxidation of the bubbles directly contacting the electrode causes An increase in the proportion of chlorine gas converted to chlorous acid can be expected.
第4実施形態
 図4は、第4実施形態の電解装置の概略断面図である。
 図1~3に示した電解装置15は、直線状の被処理流体流路7を有していたが、第4実施形態の電解装置15では、被処理流体流路7は、電極間流路6の上流側の端に近接した上流側屈曲流路25または電極間流路6の下流側の端に近接した下流側屈曲流路26を有する。なお、電解装置15は、上流側屈曲流路25及び下流側屈曲流路26の両方を有してもよく、どちらか一方を有してもよい。
 例えば、流入口8又は流出口9のうち少なくとも一方は、電極間流路6の方向に対して、流入口8又は流出口9付近の流路の方向が非平行となるように設けることができる。このことにより、上流側屈曲流路25又は下流側屈曲流路26を設けることができる。このような構成にすることで、被処理流体流路7中の液体の流れに乱れを生じさせることができる。
 電解用電極5の近くに上流側屈曲流路25を設けることにより、屈曲流路で生じる乱流の影響を電極間流路6に及ぼすことができる。このことにより気泡があまり生じていない入口付近から十分攪拌効果を与えることができるので、電極表面付近の物質の拡散を促進することができ電解効率を向上させることができる。
 また、下流側屈曲流路26を設けることにより、電極間流路6で十分に溶解できながったガスがあったとしても、再度屈曲流路で攪拌を行うことができる。例えば、塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、条件によっては塩素ガスが十分に溶解せず次亜塩素酸類の生成効率が落ちる場合があるが、このような構成にすることにより塩素ガスの溶解及び次亜塩素酸類への変換を促進できるので、実質的な電解効率を向上させることができる。
 下流側屈曲流路26は、電解用電極対5で生成した気泡がその浮力により流出口9へ浮上できるように設けられることが好ましい。このことにより、気泡を被処理流体流路7からすみやかに排出することができ、気泡が滞留することに起因する電解効率の低下を抑制することができる。
Fourth Embodiment FIG. 4 is a schematic sectional view of an electrolyzer according to a fourth embodiment.
The electrolysis apparatus 15 shown in FIGS. 1 to 3 has the straight fluid flow path 7 to be treated, but in the electrolysis apparatus 15 of the fourth embodiment, the fluid flow path 7 to be treated is an interelectrode flow path. 6 has an upstream bent flow path 25 close to the upstream end, or a downstream bent flow path 26 close to the downstream end of the interelectrode flow path 6. The electrolyzer 15 may have both the upstream bent flow path 25 and the downstream bent flow path 26, or may have either one.
For example, at least one of the inflow port 8 or the outflow port 9 can be provided so that the direction of the flow path near the inflow port 8 or the outflow port 9 is non-parallel to the direction of the interelectrode flow path 6. . Thus, the upstream bent flow path 25 or the downstream bent flow path 26 can be provided. With such a configuration, the liquid flow in the fluid flow path 7 to be processed can be disturbed.
By providing the upstream bent flow path 25 in the vicinity of the electrode 5 for electrolysis, the influence of the turbulent flow generated in the bent flow path can be exerted on the interelectrode flow path 6. As a result, a sufficient stirring effect can be provided from the vicinity of the entrance where there are not so many bubbles, so that the diffusion of the substance in the vicinity of the electrode surface can be promoted and the electrolysis efficiency can be improved.
Further, by providing the downstream bent flow path 26, even if there is a gas that cannot be sufficiently dissolved in the interelectrode flow path 6, stirring can be performed again in the bent flow path. For example, when electrolyzing an aqueous solution of a substance having a chlorine atom to produce hypochlorous acid, depending on the conditions, chlorine gas may not sufficiently dissolve and the production efficiency of hypochlorous acid may be reduced. By making it a structure, dissolution of chlorine gas and conversion to hypochlorous acid can be promoted, so that substantial electrolytic efficiency can be improved.
The downstream bent flow path 26 is preferably provided so that bubbles generated by the electrode pair 5 for electrolysis can float to the outlet 9 by its buoyancy. As a result, the bubbles can be quickly discharged from the fluid flow path 7 to be treated, and a reduction in electrolytic efficiency due to the bubbles remaining can be suppressed.
第5実施形態
 図6(a)は、第5実施形態の電解装置の概略断面図である。また、図6(b)~(d)は、第5実施形態の電解装置の構成部品の概略断面図である。
 第5実施形態の電解装置15は、組み立て型の電解ユニット10を有している。第5実施形態では、電解ユニット10は3つの部品からなり、そのうち2つは図6(b)に示した下部電極4を固定した第1電極ホルダー31と図6(d)に示した上部電極3を固定した第2電極ホルダー32であり、残る1つはスペーサー33として第1及び第2電極ホルダー31、32間に配置される。また、電解用電極対5が重なり合う方向から見て、スペーサー33の少なくとも一部は、電解用電極対5と重なる。また、電極間流路6の上流側と下流側にそれぞれ突起部35が設けられている。また、上流側屈曲流路25及び下流側屈曲流路26が設けられている。
 スペーサー33は、上部電極3と下部電極4との間に電極間流路6が形成されるように設けられる。また、第1及び第2電極ホルダー31、32は少なくとも上部電極3又は下部電極4を固定する部分は凹状になっており、上部電極3又は下部電極4を固定する面とスペーサー33と接触する面との距離(凹部の深さ)は、固定する電極の厚さよりも大きくする事が好ましい。これにより、気泡や液体の攪拌効果を引き出すことができるとともに、何らかの原因により電極の反りや、電極の固定に緩みが生じても、上部電極3及び下部電極4が接触する可能性を低くする事ができる。これにより電解装置15の電解効率と安全性の両方を向上させることができる。またスペーサー33の厚みを変える事で上部電極3と下部電極4と間の距離を容易に変える事ができるので、目的にあった種々の仕様に容易に変更することができるので、電極ホルダー等の部品の共通化が容易になる。金属ホルダー31、32の材料は、例えば、アクリル樹脂や塩化ビニル樹脂等の樹脂とすることができる。
 また、図6(a)に示した電解装置15では、上部電極3を固定するボルト41及び下部電極4を固定するボルト41が電極端子45となっている。ボルト41の材料は、金属材料とすることができ、例えば金属チタンとすることができる。
Fifth Embodiment FIG. 6A is a schematic cross-sectional view of an electrolyzer according to a fifth embodiment. FIGS. 6B to 6D are schematic cross-sectional views of components of the electrolysis apparatus according to the fifth embodiment.
The electrolysis apparatus 15 of the fifth embodiment has an assembly-type electrolysis unit 10. In the fifth embodiment, the electrolysis unit 10 is composed of three parts, two of which are the first electrode holder 31 to which the lower electrode 4 shown in FIG. 6B is fixed and the upper electrode shown in FIG. 6D. 2 is a second electrode holder 32 to which 3 is fixed, and the remaining one is arranged as a spacer 33 between the first and second electrode holders 31 and 32. Further, when viewed from the direction in which the electrolysis electrode pair 5 overlaps, at least a part of the spacer 33 overlaps the electrolysis electrode pair 5. Protrusions 35 are provided on the upstream side and the downstream side of the interelectrode flow path 6, respectively. Further, an upstream bent flow path 25 and a downstream bent flow path 26 are provided.
The spacer 33 is provided so that the interelectrode flow path 6 is formed between the upper electrode 3 and the lower electrode 4. The first and second electrode holders 31 and 32 have at least a concave portion for fixing the upper electrode 3 or the lower electrode 4, and a surface that fixes the upper electrode 3 or the lower electrode 4 and a surface that contacts the spacer 33. The distance (the depth of the recess) is preferably larger than the thickness of the electrode to be fixed. As a result, the stirring effect of bubbles and liquid can be extracted, and the possibility that the upper electrode 3 and the lower electrode 4 will come into contact with each other even if the electrode warps or the electrode is loosened due to any cause is reduced. Can do. Thereby, both the electrolysis efficiency and safety | security of the electrolyzer 15 can be improved. Moreover, since the distance between the upper electrode 3 and the lower electrode 4 can be easily changed by changing the thickness of the spacer 33, it can be easily changed to various specifications according to the purpose. It is easy to share parts. The material of the metal holders 31 and 32 can be, for example, a resin such as an acrylic resin or a vinyl chloride resin.
In the electrolysis apparatus 15 shown in FIG. 6A, the bolt 41 for fixing the upper electrode 3 and the bolt 41 for fixing the lower electrode 4 are electrode terminals 45. The material of the bolt 41 can be a metal material, for example, metal titanium.
 図7(a)(b)は、図6(a)に示したような電解装置15における流体の流れを説明するための概略断面図である。なお、図7(b)は図7(a)の一点鎖線F-Fにおける電解装置15の概略断面図である。
 一般に流路中の流速は、中央部の平均速度V1が速く、端部に近い部分の平均速度V2が遅くなることが分かっている。また、電気分解による単位体積当たりの化学変化量すなわち電解によって生成される所望の成分の濃度kは他の条件が一定ならば電解を受けた時間tにほぼ比例しk∝tとなる。したがって、電極の形状がほぼ長方形であって平均流速方向の長さが中央部も端部もほぼ同じ長さLであれば、t=L/Vとなるので、k∝L/Vである。したがって、中央部を流れる水溶液における所望成分の生成濃度はk1∝L/V1、端部に関してはk2∝L/V2となり、濃度ばらつきの指標としてk1―k2を用いると、k1―k2=L(1/V1-1/V2)となる。
 図7(a)(b)のように、電極間流路6の上流に突起部35を設けると、突起部35は流路中の液体の移動に対して障害物及び流体を中央部から端部へ誘導する。このため、単位断面積当たりに流れる流体の量は中央部が少なく、端部が多くなる。したがって単純化した系で考えれば平均として中央部を流れる流速はV1-v、端部を流れる流速はV2-v、(v>0)となる。この時の濃度ばらつきk1-k2=L(1/(V1-v)-1/(V2-v))となり、vがV1-V2>vを満たす限り濃度ばらつきは小さくなる。
7 (a) and 7 (b) are schematic cross-sectional views for explaining the flow of fluid in the electrolysis device 15 as shown in FIG. 6 (a). FIG. 7B is a schematic cross-sectional view of the electrolysis apparatus 15 taken along one-dot chain line FF in FIG.
In general, it is known that the average velocity V1 at the center is high and the average velocity V2 near the end is low in the flow velocity in the flow path. Further, the amount of chemical change per unit volume due to electrolysis, that is, the concentration k of the desired component generated by electrolysis, is substantially proportional to the time t during electrolysis and becomes k∝t if other conditions are constant. Therefore, if the shape of the electrode is substantially rectangular and the length in the average flow velocity direction is substantially the same length L at the center and the end, t = L / V, and therefore k∝L / V. Therefore, the generated concentration of the desired component in the aqueous solution flowing through the central portion is k1∝L / V1, and the end portion is k2∝L / V2. / V1-1 / V2).
As shown in FIGS. 7A and 7B, when the protrusion 35 is provided upstream of the interelectrode flow path 6, the protrusion 35 can end the obstacle and the fluid from the central portion against the movement of the liquid in the flow path. Guide to the department. For this reason, the amount of fluid flowing per unit cross-sectional area is small in the central portion and large in the end portions. Therefore, considering a simplified system, the average flow velocity flowing through the center is V1−v, and the average flow velocity flowing through the ends is V2−v (v> 0). At this time, the density variation k1−k2 = L (1 / (V1−v) −1 / (V2−v)), and the density variation becomes small as long as v satisfies V1−V2> v.
第6実施形態
 図8は、第6実施形態の電解装置の概略断面図である。図8に示した電解装置15に含まれる電解ユニット10は、少なくとも電解用電極対5と、電極間流路6以外の流路を構成する電極ホルダー30からなり、突起部35を有する部材(図8では電極端子45)の少なくとも一部は、電解用電極対5または、電解用電極対5の基材または、電解用電極対5と物理的に結合している部材と、結合しており、かつ電極ホルダー30とも結合している。このような結合構造により、電解用電極対5を電極ホルダー30に固定することが可能になる。このため、構成や構造を複雑化することがなくなる。また、上記の結合構造により、電解用電極対5の電極ホルダー30への固定を補強することができる。このことにより、電解ユニット10の信頼性を向上させることができる。
 また、突起部35または突起部35と結合している部材(図8では電極端子45)は、少なくとも一部は導電性材料からなり、前記部材の少なくとも一部は、電解用電極対5と電気的に接続することができる。
 また、突起部35を有する部材を電解用電極対5の表面のうち被処理流体流路7を構成する主たる面の法線方向に配置し電極ホルダーと電極と接続することができる。
Sixth Embodiment FIG. 8 is a schematic cross-sectional view of an electrolyzer according to a sixth embodiment. The electrolysis unit 10 included in the electrolysis apparatus 15 illustrated in FIG. 8 includes at least an electrode pair 5 for electrolysis and an electrode holder 30 that constitutes a flow path other than the inter-electrode flow path 6 and has a protrusion 35 (see FIG. 8). 8, at least a part of the electrode terminal 45) is bonded to the electrode pair 5 for electrolysis, the base material of the electrode pair 5 for electrolysis, or a member physically bonded to the electrode pair 5 for electrolysis, The electrode holder 30 is also coupled. Such a coupling structure makes it possible to fix the electrode pair 5 for electrolysis to the electrode holder 30. For this reason, the configuration and structure are not complicated. In addition, the above-described coupling structure can reinforce the fixation of the electrolysis electrode pair 5 to the electrode holder 30. Thereby, the reliability of the electrolysis unit 10 can be improved.
Further, at least a part of the protrusion 35 or the member (electrode terminal 45 in FIG. 8) coupled to the protrusion 35 is made of a conductive material, and at least a part of the member is electrically connected to the electrode pair 5 for electrolysis. Can be connected.
In addition, the member having the protrusion 35 can be disposed in the normal direction of the main surface of the surface of the electrode pair 5 for electrolysis that constitutes the fluid flow path 7 to be treated, and can be connected to the electrode holder and the electrode.
 例えば、突起部35と電極端子45とは一体の部材とすることができる。電極ホルダー30及び電解用電極対5は所定の位置に電極端子45の大きさに適した穴を有している。電極端子45には、突起部35と反対側の、少なくとも適切な部位にミゾが切ってある。このミゾに適したナット42を用いて電解用電極対5を電極ホルダー30に固定することができるとともに、電極端子45を通して電極ホルダー30の外部から電解用電極対5へ電圧印加が可能となる。必要に応じてOリング47やワッシャ48、スプリングワッシャ49を用いる事で液漏れの発生を抑制することができる。
 また、例えば、電極ホルダー30の穴にめねじ構造の溝を設け、電極端子45におねじ構造の溝を設けて、このめねじ構造とおねじ構造とを組み合わせることにより、金属ホルダー30と電極端子45とを接合してもよい。このような構造とすると、ナットを用いずに電解用電極対5を電極ホルダー30に固定することが可能である。
 また他の方法としては、例えば電極ホルダー30と電極端子45を一体成型することも可能である。
For example, the protrusion 35 and the electrode terminal 45 can be an integral member. The electrode holder 30 and the electrode pair 5 for electrolysis have a hole suitable for the size of the electrode terminal 45 at a predetermined position. In the electrode terminal 45, a groove is cut at least at an appropriate position on the opposite side to the protruding portion 35. The electrolysis electrode pair 5 can be fixed to the electrode holder 30 using a nut 42 suitable for this groove, and a voltage can be applied to the electrolysis electrode pair 5 from the outside of the electrode holder 30 through the electrode terminal 45. The occurrence of liquid leakage can be suppressed by using an O-ring 47, a washer 48, and a spring washer 49 as necessary.
Further, for example, by providing a groove of a female screw structure in the hole of the electrode holder 30 and providing a groove of a screw structure in the electrode terminal 45 and combining the female screw structure and the male screw structure, the metal holder 30 and the electrode terminal are combined. 45 may be joined. With such a structure, the electrode pair 5 for electrolysis can be fixed to the electrode holder 30 without using a nut.
As another method, for example, the electrode holder 30 and the electrode terminal 45 can be integrally formed.
 このような構造により、電解用電極対5の電極ホルダー30への固定や電解用電極対5へ電圧印加を行うことができるので、別途電解用電極対5へ電圧印加するための引き出しラインの必要がなくなる。したがって、構成や構造を複雑化することがなくなる。また、非常に簡単な方法で電解用電極対5の電極ホルダー30への固定や電解用電極対5へ電圧印加を行うことができる。
 突起部35の表面のうち少なくとも対向電極に最も近い部位は不導体にする事もできる。 例えば突起部35の表面を酸化処理しておくこと等により不導体の膜を形成することができる。また、突起部35の表面を樹脂等によりコーティングしてもよい。このことにより、突起部35の表面で電気化学反応が進行することを抑制することができ、不要な成分が生成する事や、生成濃度が大きく変動する事を抑制できる。
With such a structure, the electrode pair 5 for electrolysis can be fixed to the electrode holder 30 and a voltage can be applied to the electrode pair 5 for electrolysis, so that a separate drawing line for applying a voltage to the electrode pair 5 for electrolysis is necessary. Disappears. Therefore, the configuration and structure are not complicated. In addition, the electrolysis electrode pair 5 can be fixed to the electrode holder 30 or a voltage can be applied to the electrolysis electrode pair 5 by a very simple method.
Of the surface of the protrusion 35, at least the portion closest to the counter electrode can be made non-conductive. For example, a nonconductive film can be formed by oxidizing the surface of the protrusion 35. Further, the surface of the protrusion 35 may be coated with a resin or the like. As a result, it is possible to suppress the electrochemical reaction from proceeding on the surface of the protrusion 35, and it is possible to suppress the generation of unnecessary components and the fluctuation in the generation concentration.
第7実施形態
 図9(a)は、第7実施形態の電解装置の概略断面図である。また、図9(b)~(f)は、第7実施形態の電解装置の構成部品の概略断面図である。なお、図9(d)は、図9(c)の一点鎖線G-Gにおけるスペーサー33の概略断面図であり、図9(e)は、図9(c)の一点鎖線H-Hにおけるスペーサー33の概略断面図である。
 第7実施形態の電解装置15は、組み立て型の電解ユニット10を有している。第7実施形態では、電解ユニット10は3つの部品からなり、そのうち2つは図9(b)に示した下部電極4を固定した第1電極ホルダー31と図9(f)に示した上部電極3を固定した第2電極ホルダー32であり、残る1つは図9(c)~(e)に示したスペーサー33であり、第1及び第2電極ホルダー31、32間に配置される。また、図9に示した電解装置15では、電極間のスペーサーの開口36を図6に示した電解装置15よりも狭く形成している。また、スペーサー33は、下部電極4の電極面に垂直な方向から見た際に、スペーサー33と、上部電極3のエッジ部及び下部電極4のエッジ部とが重なるように配置される。このことにより、電界集中が起こり易く劣化が起こりやすい電極エッジで電解反応が進行することを抑制できる。これにより安定して電解処理を行うことができるとともに、電極損耗を抑制し電解用電極対5の長寿命化が可能となる。
Seventh Embodiment FIG. 9A is a schematic cross-sectional view of an electrolyzer according to a seventh embodiment. FIGS. 9B to 9F are schematic sectional views of components of the electrolysis apparatus according to the seventh embodiment. FIG. 9D is a schematic cross-sectional view of the spacer 33 taken along one-dot chain line GG in FIG. 9C, and FIG. 9E is a spacer taken along one-dot chain line HH in FIG. FIG.
The electrolysis device 15 of the seventh embodiment has an assembly-type electrolysis unit 10. In the seventh embodiment, the electrolysis unit 10 is composed of three parts, two of which are the first electrode holder 31 to which the lower electrode 4 shown in FIG. 9B is fixed and the upper electrode shown in FIG. 9F. 2 is a second electrode holder 32 to which 3 is fixed, and the remaining one is a spacer 33 shown in FIGS. 9C to 9E, which is disposed between the first and second electrode holders 31 and 32. Moreover, in the electrolysis apparatus 15 shown in FIG. 9, the opening 36 of the spacer between electrodes is formed narrower than the electrolysis apparatus 15 shown in FIG. Further, the spacer 33 is disposed so that the spacer 33 overlaps the edge portion of the upper electrode 3 and the edge portion of the lower electrode 4 when viewed from the direction perpendicular to the electrode surface of the lower electrode 4. As a result, it is possible to suppress the electrolytic reaction from proceeding at the electrode edge where electric field concentration is likely to occur and deterioration is likely to occur. As a result, the electrolytic treatment can be performed stably, and electrode wear can be suppressed and the life of the electrode pair 5 for electrolysis can be extended.
第8実施形態
 図10(a)(b)はそれぞれ第8実施形態の電解装置の概略構成図である。
 第8実施形態の電解装置15は、第1~7実施形態の電解ユニット10と、原液タンク51と、希釈部53を備えている。配管57は、配管内の流体の流れる方向を含めて矢印で示している。図10(a)に示した電解装置15は、希釈部53である希釈タンク54に溜めた溜め水55に、電解ユニット10により電解処理した溶液を注入し希釈液を生成する構成を有している。図10(b)に示した電解装置15は、希釈部53である混合部59において、電解ユニット10により電解処理した溶液と流水とを混合し希釈液を生成する構成を有している。図10(a)(b)では電解ユニット10内の電解用電極対5に電力を供給する配線や、必要に応じて備える送液ポンプ等は図示していない。
 このような構成によると、電解生成物を含む希釈液を製造することができる。また、塩素原子を有する物質の水溶液を電気分解し次亜塩素酸類を生成する場合、塩素ガスの放出が抑制された希釈液を生成することができる。
Eighth Embodiment FIGS. 10A and 10B are schematic configuration diagrams of an electrolysis apparatus according to an eighth embodiment, respectively.
The electrolysis apparatus 15 of the eighth embodiment includes the electrolysis unit 10 of the first to seventh embodiments, a stock solution tank 51, and a dilution unit 53. The pipe 57 is indicated by an arrow including the direction in which the fluid in the pipe flows. The electrolyzer 15 shown in FIG. 10A has a configuration that generates a dilute solution by injecting a solution electrolyzed by the electrolysis unit 10 into a pooled water 55 accumulated in a dilution tank 54 that is a dilution unit 53. Yes. The electrolysis device 15 shown in FIG. 10B has a configuration in which a solution electrolyzed by the electrolysis unit 10 and running water are mixed in the mixing unit 59 that is the dilution unit 53 to generate a diluted solution. 10 (a) and 10 (b), wiring for supplying power to the electrode pair 5 for electrolysis in the electrolysis unit 10 and a liquid feed pump provided as necessary are not shown.
According to such a structure, the dilution liquid containing an electrolysis product can be manufactured. Moreover, when producing | generating hypochlorous acid by electrolyzing the aqueous solution of the substance which has a chlorine atom, the dilution liquid by which discharge | release of chlorine gas was suppressed can be produced | generated.
第9実施形態
 図11は、第9実施形態の電解装置の概略構成図である。第9実施形態の電解装置15は、電解用電極対5が鉛直方向に対して傾斜するように配置された電解ユニット10を用いたこと以外は、図16、図17に示した従来の電解水生成器120と同様の構成を有している。また、第9実施形態の電解装置15の基本的な動作も従来の電解水生成器120と同様である。
 電解装置15において、望ましくは、スイッチ64をONにすると同時に電磁弁66、電解ユニット10、ポンプ68を動作させるのではなく、適切なタイミングで電磁弁66が開き水が給水口62から電解装置15内に供給されて配管65を通って吐出口63から吐出する。また適切なタイミングで送液ポンプ68が作動し原液タンク67に貯蔵されている電解原液が電解ユニット10に供給される。 電解ユニット10には適切なタイミングで電源(図示せず)から電力が供給され、原液が電気分解される。電気分解により生成された高濃度電解水は、配管65へ供給され配管65を流れる水によって適切な濃度に希釈される。希釈後の電解水は、吐出口63から適宜接続されるホース等の配管を通って電解水供給ポイントまで送られる。
 スイッチ64をOFFにすると、電磁弁66、送液ポンプ68、電解ユニット10への電力供給が適切なタイミングで遮断されて電解装置15の動作が停止する。
 実際には、各種インターロックを備えた上で、電磁バルブをまず開いた後に、前回動作時に電解ユニット10内に残った原液の電解を少し行ったのちに原液供給を開始する等、目的に応じた最適なシーケンスを設定する。
Ninth Embodiment FIG. 11 is a schematic configuration diagram of an electrolyzer according to a ninth embodiment. The electrolysis apparatus 15 of the ninth embodiment uses the conventional electrolyzed water shown in FIGS. 16 and 17 except that the electrolysis unit 10 is arranged so that the electrode pair 5 for electrolysis is inclined with respect to the vertical direction. The configuration is the same as that of the generator 120. The basic operation of the electrolyzer 15 of the ninth embodiment is the same as that of the conventional electrolyzed water generator 120.
In the electrolyzer 15, desirably, the electromagnetic valve 66, the electrolysis unit 10, and the pump 68 are not operated at the same time as the switch 64 is turned on, but the electromagnetic valve 66 is opened at an appropriate timing and water is supplied from the water supply port 62 to the electrolyzer 15. And is discharged from the discharge port 63 through the pipe 65. Moreover, the liquid feed pump 68 is operated at an appropriate timing, and the electrolytic stock solution stored in the stock solution tank 67 is supplied to the electrolysis unit 10. Electric power is supplied to the electrolysis unit 10 from a power source (not shown) at an appropriate timing, and the stock solution is electrolyzed. High-concentration electrolyzed water generated by electrolysis is diluted to an appropriate concentration by water supplied to the pipe 65 and flowing through the pipe 65. The diluted electrolyzed water is sent to the electrolyzed water supply point through a pipe such as a hose connected as appropriate from the discharge port 63.
When the switch 64 is turned OFF, power supply to the electromagnetic valve 66, the liquid feed pump 68, and the electrolysis unit 10 is interrupted at an appropriate timing, and the operation of the electrolysis device 15 is stopped.
Actually, after providing various interlocks, the electromagnetic valve is first opened, and then the stock solution remaining in the electrolysis unit 10 during the previous operation is electrolyzed and then the stock solution supply is started. Set the optimal sequence.
 例えば、はじめに高濃度の電解水が出る可能性を極力抑制したい場合には、電磁バルブ66、送液ポンプ68、電解ユニット10の順にONする事が好ましい。
 逆に電解水濃度の立ち上がりを速くしたい場合には、電解ユニット10、送液ポンプ68、電磁バルブ66の順にONする等の方法を用いる事ができる。
 動作停止する場合も、電解水を使った後に水で濯ぎたい場合は、電解ユニット10と送液ポンプ68をOFFしたのち、規定時間だけ電磁バルブ66はONしておけば、およそ規定時間の間、濯ぐことが可能になる。
 また高濃度の電解水が電解ユニット10内に留まる事を避けたい場合には、電解ユニット10を先にOFFした後に暫く送液ポンプ68をONにして電解ユニット10内の高濃度電解水を電解原液で希釈または殆ど置き換える事も可能である。この場合は電磁バルブ66もONしておくことが望ましい。当然ながらその分原液と水が余分に必要になるので、頻繁に繰り返し使用する場合はそのような動作をしなくて済むように設計する事が望ましい事は言うまでもない。
For example, when it is desired to suppress the possibility that high-concentration electrolyzed water is discharged first, it is preferable to turn on the electromagnetic valve 66, the liquid feed pump 68, and the electrolysis unit 10 in this order.
On the other hand, when it is desired to increase the rise of the electrolytic water concentration, a method such as turning on the electrolysis unit 10, the liquid feed pump 68, and the electromagnetic valve 66 in this order can be used.
Even when the operation is stopped, when it is desired to rinse with electrolyzed water after using electrolyzed water, the electrolysis unit 10 and the liquid feed pump 68 are turned off, and the electromagnetic valve 66 is turned on for a specified time. It becomes possible to rinse.
When it is desired to avoid the high concentration electrolyzed water from staying in the electrolysis unit 10, the liquid feed pump 68 is turned on for a while after the electrolysis unit 10 is turned off to electrolyze the high concentration electrolyzed water in the electrolysis unit 10. It is also possible to dilute or almost replace with the stock solution. In this case, it is desirable that the electromagnetic valve 66 is also turned on. Needless to say, since the undiluted solution and water are necessary, it is of course desirable to design so as not to perform such an operation when frequently used repeatedly.
実験例1
 図1に示したような電解装置を作製し電解用電極対5の鉛直方向に対する傾斜角度を変化させて電解実験を行った。電解用電極対5には、長辺8cm、短辺3cmの1mm厚のチタン板からなる電極(Ti電極という)と、長辺8cm、短辺3cmの1mm厚のチタン板に酸化イリジウムを焼結法によりコーティングした電極(Ir被覆Ti電極という)とを用いた。Ti電極とIr被覆Ti電極とが略平行で電極間距離が1mm~5mmの範囲内となるように電解用電極対5をアクリル樹脂製の筐体1に固定し電解装置を作製した。また、Ti電極が陰極となり、Ir被覆Ti電極が陽極となるように電源装置と電解用電極対5とを接続した。
 電解用電極対5の鉛直方向に対する傾斜角度が約-50度~約+50度となるように、設置角度を変えて作製した電解装置を設置し、被処理流体流路7に3~4%の塩化ナトリウム水溶液を下側から一定流量で供給した。なお、電解用電極対が鉛直であるとき傾斜角度は0度であり、Ir被覆Ti電極(陽極)が上側となるように電解用電極対を傾斜させたとき傾斜角度はプラスの角度であり、Ir被覆Ti電極が下側となるように電解用電極対を傾斜させたとき傾斜角度はマイナスの角度である。
 そして、電源装置により電解用電極対5に5Aの定電流を供給し、塩化ナトリウム水溶液を電解処理した。また、印加電圧は、約4~5Vの間であった。また、電解処理後の水溶液の有効塩素濃度(mg/L)の測定を行った。
Experimental example 1
An electrolysis apparatus as shown in FIG. 1 was produced, and an electrolysis experiment was performed by changing the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction. For the electrode pair 5 for electrolysis, iridium oxide is sintered to an electrode made of a 1 mm thick titanium plate having a long side of 8 cm and a short side of 3 cm (referred to as a Ti electrode) and a 1 mm thick titanium plate having a long side of 8 cm and a short side of 3 cm. An electrode coated by the method (referred to as an Ir-coated Ti electrode) was used. The electrolytic electrode pair 5 was fixed to the acrylic resin casing 1 so that the Ti electrode and the Ir-coated Ti electrode were substantially parallel and the distance between the electrodes was in the range of 1 mm to 5 mm, thereby producing an electrolytic device. Further, the power supply device and the electrode pair 5 for electrolysis were connected so that the Ti electrode became a cathode and the Ir-coated Ti electrode became an anode.
An electrolyzer produced by changing the installation angle so that the inclination angle of the electrode pair 5 for electrolysis with respect to the vertical direction is about −50 degrees to about +50 degrees is installed, and 3 to 4% A sodium chloride aqueous solution was supplied from the lower side at a constant flow rate. When the electrode pair for electrolysis is vertical, the tilt angle is 0 degree, and when the electrode pair for electrolysis is tilted so that the Ir-coated Ti electrode (anode) is on the upper side, the tilt angle is a positive angle, When the electrode pair for electrolysis is tilted so that the Ir-coated Ti electrode is on the lower side, the tilt angle is a negative angle.
Then, a constant current of 5 A was supplied to the electrode pair 5 for electrolysis by the power supply device, and the sodium chloride aqueous solution was subjected to electrolytic treatment. The applied voltage was between about 4 and 5V. Moreover, the effective chlorine concentration (mg / L) of the aqueous solution after electrolytic treatment was measured.
 有効塩素濃度の測定結果を図12に示す。本結果によると、陽極であるIr被覆Ti電極が上側となるように電解用電極対5を傾けると電解処理後の水溶液の有効塩素濃度を高めることができた。具体的には、電解用電極対5を約5度から約45度までの範囲で傾けると、電解用電極対5を鉛直としたときと比べ有効塩素濃度が約5%向上した。また、電解用電極対5を約15度から約32度までの範囲で傾けると、電解用電極対5を鉛直としたときと比べ有効塩素濃度が約10%向上した。電解用電極対5の傾きが大きすぎると有効塩素濃度が低下し約50度の時に鉛直(0度)の時の有効塩素濃度と同程度になった。
 したがって、電解用電極対5の鉛直方向に対する傾斜角度が0度より大きく50度より小さい範囲になるように電解装置を設置する事が良く、電解用電極対5の傾斜角度が好ましくは5度~45度(約5%向上)、更に好ましくは15度~32度となるように電解装置を設置する事が良い。また、陽極であるIr被覆Ti電極の一部が、陰極であるTi電極の鉛直上方に位置するように電解用電極対5を配置することにより電解処理後の水溶液の有効塩素濃度を高くすることができ、電解効率を向上させることができることがわかった。
The measurement result of the effective chlorine concentration is shown in FIG. According to this result, it was possible to increase the effective chlorine concentration of the aqueous solution after the electrolytic treatment by tilting the electrode pair 5 for electrolysis so that the Ir-coated Ti electrode as the anode is on the upper side. Specifically, when the electrode pair 5 for electrolysis is tilted in a range from about 5 degrees to about 45 degrees, the effective chlorine concentration is improved by about 5% compared to when the electrode pair 5 for electrolysis is set to be vertical. Moreover, when the electrode pair 5 for electrolysis was tilted in the range of about 15 degrees to about 32 degrees, the effective chlorine concentration was improved by about 10% compared to when the electrode pair 5 for electrolysis was made vertical. When the inclination of the electrode pair 5 for electrolysis was too large, the effective chlorine concentration was reduced to about the same as the effective chlorine concentration at the vertical (0 degree) at about 50 degrees.
Therefore, it is preferable to install the electrolyzer so that the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction is larger than 0 degree and smaller than 50 degrees, and the inclination angle of the electrolysis electrode pair 5 is preferably 5 degrees to It is preferable to install the electrolyzer so as to be 45 degrees (about 5% improvement), more preferably 15 degrees to 32 degrees. Further, the effective chlorine concentration of the aqueous solution after the electrolytic treatment is increased by arranging the electrode pair 5 for electrolysis so that a part of the Ir-coated Ti electrode serving as the anode is positioned vertically above the Ti electrode serving as the cathode. It was found that the electrolysis efficiency could be improved.
 同様の実験を、種々の塩素発生用電極材を用いたり、塩化物を含む水溶液、例えば塩化ナトリウム水溶液の他、塩酸、またはその両方の混合液等を用いたり、水溶液の送液量を変化させたり、電解条件(電圧や電流量)を変化さえて行っても同様の傾向を示した。場合によっては鉛直(0度)の時と、最良の傾き(0度~約50度)の時の有効塩素濃度が測定誤差の範囲で同程度の場合もあったが、このような場合であっても陰極側を上になる方向に傾けた場合は有効塩素濃度が明らかに低下し図12と同様に約23度の時は約10%、約45度の時は約20%低下する傾向にあった。したがって、電解条件によっては鉛直(0度)が最良の角度である場合もあると想定されるが、実用上は陽極が上になるように多少なりとも傾けておく方が好ましい。その理由は、電解装置を各種機器に組み込む際の組立公差はもとより、組み込んだ各種機器が実際に使われる場合に必ずしも厳密に水平な場所で使用されるとは限らないためである。したがって、鉛直(0度)から陽極側、陰極側に同程度傾けた場合に、有効塩素濃度の低下が少ない、もしくは上昇する方に、予め傾けて設置する方が好ましい。最適な傾きは、電解装置の構造、被電解水溶液の組成、送液量、電解条件等により変化するが、前述のように実用上の環境においては振動、揺れ、傾き等が生じる。これを鑑みれば、例えば想定使用形態において5度の余裕をみる場合は5度~45度の範囲で最良の傾きで設置するのが好ましい。典型的には20度~30度の範囲と予想されるが、電解装置を組み込む装置の高さを低くできるメリットを活かすために、45度まで傾けて使用する事は可能である。
 なお、本実験例では、泡の状態を観察するために筐体1に透明性の高いアクリル樹脂を使用したが、電解装置に供給される水溶液や電解により生じる各種の電解済み物質、発生するガス等に対して耐性があれば筐体1に様々な材質を用いる事ができるのは言うまでもなく所望の信頼性が確保できるならばポリプロピレン等も使用できる。本実験例のように塩素系の水溶液やガスが発生する場合、筐体1の材質には一般に塩化ビニル樹脂が耐性の高さと加工性、コストの安さの面で最も好ましい。
The same experiment was conducted using various electrode materials for chlorine generation, using aqueous solutions containing chlorides, such as sodium chloride aqueous solution, hydrochloric acid, or a mixture of both, or changing the amount of aqueous solution fed. Even when the electrolysis conditions (voltage and current amount) were changed, the same tendency was shown. In some cases, the effective chlorine concentration at the time of vertical (0 degree) and the best inclination (from 0 degree to about 50 degrees) may be the same within the range of measurement error. However, when the cathode side is tilted upward, the effective chlorine concentration clearly decreases and tends to decrease by about 10% at about 23 degrees and about 20% at about 45 degrees as in FIG. there were. Therefore, although it is assumed that the vertical (0 degree) may be the best angle depending on the electrolysis conditions, it is preferable that the anode is tilted to some extent so that the anode is upward. The reason is that not only the assembly tolerance when the electrolysis apparatus is incorporated into various devices, but also when the incorporated devices are actually used, they are not always used in a strictly horizontal place. Therefore, it is preferable that the tilt is set in advance so that the effective chlorine concentration decreases little or increases when tilted to the same degree from the vertical (0 degree) to the anode side and the cathode side. The optimum inclination changes depending on the structure of the electrolyzer, the composition of the aqueous solution to be electrolyzed, the amount of liquid to be fed, the electrolysis conditions, and the like, but as described above, vibration, vibration, inclination, etc. occur in a practical environment. In view of this, for example, in the case of an assumed usage mode, when a margin of 5 degrees is seen, it is preferable to install with the best inclination in the range of 5 degrees to 45 degrees. Typically, it is expected to be in the range of 20 to 30 degrees, but in order to take advantage of the fact that the height of the apparatus incorporating the electrolyzer can be reduced, it can be used at an angle of 45 degrees.
In this experimental example, a highly transparent acrylic resin was used for the casing 1 in order to observe the state of bubbles. However, various aqueous solutions supplied to the electrolysis apparatus, various electrolyzed substances generated by electrolysis, and generated gases It is needless to say that various materials can be used for the housing 1 if it is resistant to the above, and polypropylene or the like can also be used if the desired reliability can be ensured. When a chlorine-based aqueous solution or gas is generated as in this experimental example, a vinyl chloride resin is generally the most preferable material for the housing 1 in terms of high resistance, workability, and low cost.
 このように陽極の一部が陰極の鉛直上方に位置するように電解用電極対5を傾けて配置することにより電解効率が向上する理由は明らかではないが、以下のような仮説が考えられる。
 陰極では、上記の化学反応式(4)のような電極反応が進行しH2が発生すると考えられる。発生したH2は比較的溶解しにくいため殆どが気泡となる。電解用電極対5の傾きにより陰極は陽極の鉛直下方に位置するため、H2の気泡はその浮力により陰極を離れ浮上し陽極の近傍へ移動すると考えられる。このため、陰極で発生する気泡が水溶液の流速方向を横切るように移動しようとするので、陰極近傍の水溶液と陽極近傍の水溶液との攪拌が促進される。またH2の気泡は陽極近傍に移動するので陰極近辺のアルカリ寄りの水溶液も陽極近辺に運ばれるため、上記の化学反応式(2)のような塩素ガスの次亜塩素酸等への変換が促進される。また、陰極の上流付近の水溶液は気泡の移動に伴って陽極方向への移動が促進されるため、陰極の下流付近の水溶液は電解処理済みの液成分の割合が減少するため電解のために有効に働く。
The reason why the electrolysis efficiency is improved by inclining and arranging the electrode pair 5 for electrolysis so that a part of the anode is positioned vertically above the cathode is not clear, but the following hypothesis can be considered.
At the cathode, it is considered that the electrode reaction as shown in the chemical reaction formula (4) proceeds to generate H 2 . Since the generated H 2 is relatively difficult to dissolve, most of it becomes bubbles. Since the cathode is positioned vertically below the anode due to the inclination of the electrode pair 5 for electrolysis, it is considered that the H 2 bubbles float away from the cathode by the buoyancy and move to the vicinity of the anode. For this reason, since bubbles generated at the cathode try to move across the flow rate direction of the aqueous solution, stirring of the aqueous solution near the cathode and the aqueous solution near the anode is promoted. Also, since the H 2 bubbles move to the vicinity of the anode, the alkaline solution near the cathode is also transported to the vicinity of the anode, so that the conversion of chlorine gas to hypochlorous acid or the like as shown in the chemical reaction formula (2) is possible. Promoted. In addition, the aqueous solution near the cathode is promoted to move toward the anode along with the movement of the bubbles, so the aqueous solution near the cathode is effective for electrolysis because the proportion of the liquid component that has undergone electrolysis decreases. To work.
 図13は、電解用電極対の傾斜角度を0度とした場合の電極間流路の模式図である。傾斜角度0度で電解用電極対を設置した場合、電極間流路を下から上へ流れる水溶液の流れの方向と電極表面の電解反応で発生する気泡が下から上へ浮上する方向は一致する。そのため、図13中に示した矢線のように陰極に近い方の水溶液及び気泡、陽極に近い方の水溶液及び気泡は比較的混合されにくい状態で電極間流路を流れて行く。 FIG. 13 is a schematic diagram of the interelectrode flow path when the inclination angle of the electrode pair for electrolysis is 0 degree. When the electrode pair for electrolysis is installed at an inclination angle of 0 °, the direction of the aqueous solution flowing from the bottom to the top in the interelectrode flow path coincides with the direction in which bubbles generated by the electrolytic reaction on the electrode surface rise from the bottom to the top. . Therefore, as indicated by the arrows in FIG. 13, the aqueous solution and bubbles closer to the cathode and the aqueous solution and bubbles closer to the anode flow through the inter-electrode flow path in a relatively difficult state to be mixed.
 陽極が上部電極となるように電解用電極対を鉛直方向に対して傾けて配置した場合でも、電解を行っておらず気泡の発生もなければ、図13と同様に水溶液が流れると考えられる。しかし、電解を行って特に気泡が発生する場合は、状況が大きく異なる。
 気泡が陰極から陽極に向かって水溶液中を浮上する際、気泡と水溶液の速度ベクトルが異なる場合は互いに抵抗となって運動量の交換が行われる。典型的な例では静水中に気泡があると、気泡は浮力によって上向き方向へ移動するが、その動きに引きずられるように水流も発生する事はよく知られている。
 傾斜した電極間流路中、つまり斜め方向の流束を有する水溶液中に発生した気泡は浮力により上方向へ移動する力が働く。このため、気泡の移動方向は水溶液が流れる方向と非平行となり下部電極(陰極)から上部電極(陽極)に向かう方向へ、水溶液の流れの方向よりも上方向に向かって移動する。この時、気泡の移動に引きずられて水溶液も下部電極(陰極)から上部電極(陽極)へ向かう方向へ移動しようとする動きが生じる。これにより陰極近傍の水溶液が陽極近傍に移動する流れが生じる。この結果、陽極側生成物と陰極側生成物の混合が良く行われる。
Even when the electrode pair for electrolysis is disposed so as to be inclined with respect to the vertical direction so that the anode becomes the upper electrode, it is considered that the aqueous solution flows as in FIG. However, the situation is greatly different when electrolysis is performed, especially when bubbles are generated.
When bubbles rise in the aqueous solution from the cathode toward the anode, if the velocity vectors of the bubbles and the aqueous solution are different, they become resistance to each other and exchange momentum. In a typical example, if there are bubbles in still water, the bubbles move upward due to buoyancy, but it is well known that a water flow is also generated as dragged by the movement.
The bubbles generated in the inclined inter-electrode flow path, that is, in the aqueous solution having the slanting flux, act as a force to move upward by buoyancy. For this reason, the moving direction of the bubbles is not parallel to the direction in which the aqueous solution flows, and moves in the direction from the lower electrode (cathode) to the upper electrode (anode) in the upward direction from the direction of the aqueous solution flow. At this time, the aqueous solution is also moved in the direction from the lower electrode (cathode) to the upper electrode (anode) as the bubble moves. This causes a flow in which the aqueous solution near the cathode moves to the vicinity of the anode. As a result, the anode side product and the cathode side product are well mixed.
 次に陰極が上部電極となるように電解用電極対を傾けた場合、つまり図12のグラフの負の傾斜角度の場合を考える。下部電極である陽極で発生する気泡は、上記の化学反応式(1)(3)のように塩素ガスや酸素ガスであるが、上記の化学反応式(2)のように塩素ガスは水に容易に溶解して次亜塩素酸を生成する。そのため上部電極である陰極で発生するH2ガスの気泡に比べて下部電極である陰極で発生する気泡の量は少ない。このため、下部電極で発生した気泡による攪拌効果は少ない。更に上部電極である陰極で発生する比較的多量の気泡は陰極表面に沿って移動する。このため、気泡に覆われる陰極の表面の面積が広くなり陰極と水溶液との接触を阻害して電解効率を低下させる。このため電解に不利に働くと考えられる。
 なお、本実験例では陽極を上部電極にした方が好ましい結果が得られたが、本仮説によれば、電解を行うものによっては、発生する気泡が比較的多い方の電極を下部電極にし、発生する気泡が比較的少ない方の電極を上部電極にする事で、電解効率を向上させることができる事が分かる。
Next, consider a case where the electrode pair for electrolysis is tilted so that the cathode becomes the upper electrode, that is, a negative tilt angle in the graph of FIG. Bubbles generated at the anode, which is the lower electrode, are chlorine gas and oxygen gas as in the chemical reaction formulas (1) and (3), but the chlorine gas is converted into water as in the chemical reaction formula (2). Easily dissolves to produce hypochlorous acid. Therefore, the amount of bubbles generated at the cathode as the lower electrode is smaller than the bubbles of H 2 gas generated at the cathode as the upper electrode. For this reason, the stirring effect by the bubble which generate | occur | produced in the lower electrode is few. Further, a relatively large amount of bubbles generated at the cathode as the upper electrode move along the cathode surface. For this reason, the area of the surface of the cathode covered with bubbles is increased, and the contact between the cathode and the aqueous solution is hindered to lower the electrolysis efficiency. For this reason, it is thought to work against electrolysis.
In this experimental example, it was preferable to use the anode as the upper electrode, but according to this hypothesis, depending on what is to be electrolyzed, the electrode with a relatively large number of bubbles generated is used as the lower electrode, It can be seen that electrolysis efficiency can be improved by using the electrode with relatively few bubbles as the upper electrode.
 次に、この仮説を確認するために、電解用電極対の傾斜角度を0度とし、図14(b)のように陽極21であるIr被覆Ti電極の上端を陰極22であるTi電極の上端よりも1cm上側にずらした電解装置と、図14(c)のように陰極22の上端を陽極21の上端よりも1cm上側にずらした電解装置とを作製した。これらの電解装置の被処理流体流路7に塩化ナトリウム水溶液を下側から一定流量で供給し、陰極22と陽極21との間に5Aの定電流を供給し電解実験を行った。他の実験条件や測定方法は上記の電解実験と同様である。
 陽極21を上側にずらした電解装置を用いた電解実験では、電解処理後の水溶液の有効塩素濃度(mg/L)は、約65mg/Lであった。また、陰極22を上側にずらした電解装置を用いた電解実験では、電解処理後の水溶液の有効塩素濃度(mg/L)は、約60mg/Lであった。このように、陽極21を上側にずらした電解装置を用いた実験では、陰極22を上側にずらした電解装置を用いた実験よりも1割程度効率がよく電解反応生成物を得られた。
Next, in order to confirm this hypothesis, the inclination angle of the electrode pair for electrolysis is set to 0 degree, and the upper end of the Ir-coated Ti electrode as the anode 21 is set to the upper end of the Ti electrode as the cathode 22 as shown in FIG. Then, an electrolyzer that was shifted 1 cm above the upper end and an electrolyzer where the upper end of the cathode 22 was shifted 1 cm higher than the upper end of the anode 21 as shown in FIG. A sodium chloride aqueous solution was supplied from the lower side to the fluid flow path 7 to be treated of these electrolyzers, and a constant current of 5 A was supplied between the cathode 22 and the anode 21 to conduct an electrolysis experiment. Other experimental conditions and measurement methods are the same as in the above electrolysis experiment.
In an electrolysis experiment using an electrolysis apparatus in which the anode 21 was shifted upward, the effective chlorine concentration (mg / L) of the aqueous solution after the electrolysis treatment was about 65 mg / L. Moreover, in the electrolysis experiment using the electrolyzer in which the cathode 22 was shifted upward, the effective chlorine concentration (mg / L) of the aqueous solution after the electrolysis treatment was about 60 mg / L. As described above, in the experiment using the electrolysis apparatus in which the anode 21 was shifted upward, the electrolytic reaction product was obtained with about 10% higher efficiency than the experiment using the electrolysis apparatus in which the cathode 22 was shifted upward.
 これは図14(a)に示したように、気泡が発生しない場合は気泡の効果による攪拌混合効果は期待できない。また気泡が発生する場合も気泡の量が両側で同程度であれば、どちらの電極を上にするかは気泡の効果に関してはほぼ同等であると考えられる。
 しかしながら本実験のように発生する気泡の量が異なる陽極21及び陰極22を用いる場合には様相が異なる。本実験の場合では陽極21から主として発生する塩素ガスは水溶液によく溶解するので気泡量が少なく、水素ガスが生成する陰極22の気泡量の方が多い。この状態を模式的に表した図が図14(b)と図14(c)である。図14(b)のように陽極21を上側にずらした場合では、陰極22で発生する気泡量が十分多い場合、気泡が陽極近傍まで移動し水溶液を攪拌、混合する効果を与えうる事が予想される。
 図14(c)のように陰極22を上側にずらした場合では、陰極22で生成した気泡が陽極近傍まで移動することができず、少なくとも図14(b)に比べると気泡による水溶液を攪拌、混合する効果が少ない事が予想される。攪拌、混合する効果が少ない場合は陽極下側で電解処理済みの水溶液が陽極の電極面に沿って上昇するため陽極上側では電解効率が低下する事が予想される。攪拌混合効果が多い場合は新鮮な原液が陽極表面に供給されるので電解効率が向上する事が予想される。したがって気泡による水溶液を攪拌、混合する効果と実験結果は定性的に整合する。
 よって、本実験では陽極21を上側にずらした方が好ましい結果が得られたが、本仮説によれば、電解を行うものによっては、発生する気泡が比較的多い方の電極を下方にし、発生する気泡が比較的少ない方の電極を上方にする事で、電解効率を向上できる事が分かる。
As shown in FIG. 14A, when no bubbles are generated, the stirring and mixing effect due to the bubbles cannot be expected. Also, when bubbles are generated, if the amount of bubbles is the same on both sides, it can be considered that which electrode is placed upward is almost equivalent in terms of the effect of the bubbles.
However, when using the anode 21 and the cathode 22 with different amounts of bubbles generated as in this experiment, the appearance is different. In the case of this experiment, the chlorine gas mainly generated from the anode 21 dissolves well in the aqueous solution, so the amount of bubbles is small, and the amount of bubbles in the cathode 22 where hydrogen gas is generated is larger. FIGS. 14B and 14C schematically show this state. When the anode 21 is shifted upward as shown in FIG. 14B, it is expected that when the amount of bubbles generated at the cathode 22 is sufficiently large, the bubbles move to the vicinity of the anode, and the aqueous solution can be stirred and mixed. Is done.
In the case where the cathode 22 is shifted upward as shown in FIG. 14C, the bubbles generated at the cathode 22 cannot move to the vicinity of the anode, and at least compared with FIG. Expected to have little effect of mixing. When the effect of stirring and mixing is small, the aqueous solution that has been subjected to the electrolytic treatment on the lower side of the anode rises along the electrode surface of the anode, so that it is expected that the electrolytic efficiency is lowered on the upper side of the anode. When the stirring and mixing effect is large, a fresh stock solution is supplied to the anode surface, so that the electrolysis efficiency is expected to be improved. Therefore, the effect of stirring and mixing the aqueous solution by bubbles and the experimental results are qualitatively matched.
Therefore, in this experiment, it was preferable to shift the anode 21 to the upper side. However, according to this hypothesis, depending on what is to be electrolyzed, the electrode with a relatively large number of bubbles generated is placed downward and generated. It can be seen that the electrolytic efficiency can be improved by placing the electrode having relatively few bubbles upward.
実験例2
 図1のように流入口8及び流出口9を電極間流路6の流路方向に備える「縦だし」型の電解ユニット10と、図4のように流出口9が上向きになるように上流側屈曲流路25と下流側屈曲流路26を設けた「横出し(上)」型の電解ユニット10と、図5のように流出口9が下向きになるように上流側屈曲流路25と下流側屈曲流路26を設けた「横出し(下)」型の電解ユニット10とを作製し、電解実験を行った。
 電解実験では、電解用電極対5の鉛直方向に対する傾斜角度が約23度と約45度となるように電解装置15を設置し、被処理流体流路7に3~4%の塩化ナトリウム水溶液を下側から一定流量で供給し、電解用電極対5により電解処理を行った。また、電解処理後の水溶液の有効塩素濃度(ppm)の測定を行った。その他の条件は実験例1と同じである。電解実験の結果を表1に示す。
 表1から、明らかに「横出し(上)」型の電解装置の電解効率が高いことがわかった。この理由は定かではないが、電極間流路の上流側の端に近接した上流側流路がある程度屈曲または下流側の端に近接した下流側流路がある程度屈曲していた方が、流束あるいは気泡の流れがランダム化されて電解効率が向上している可能性がある。
 流体が屈曲した後の気泡の流れはスムーズな方が良いとすれば、図20(a)のように出入り口の特に出口側流路を鉛直方向にする事も考えられる。
 量産容易性を考慮すると図20(b)、(c)のように配管部70で鉛直方向にする変形例も考えられる。
Experimental example 2
As shown in FIG. 1, a “vertical” type electrolysis unit 10 having an inflow port 8 and an outflow port 9 in the flow direction of the inter-electrode flow channel 6 and upstream so that the outflow port 9 faces upward as shown in FIG. The “lateral (up)” type electrolysis unit 10 provided with the side bent flow path 25 and the downstream bent flow path 26, and the upstream bent flow path 25 so that the outlet 9 faces downward as shown in FIG. A “side-out (lower)” type electrolysis unit 10 provided with a downstream-side bent flow path 26 was produced, and an electrolysis experiment was conducted.
In the electrolysis experiment, the electrolysis apparatus 15 was installed so that the inclination angle of the electrode pair 5 for electrolysis with respect to the vertical direction was about 23 degrees and about 45 degrees, and 3-4% sodium chloride aqueous solution was added to the fluid flow path 7 to be treated. Supplying at a constant flow rate from the lower side, electrolytic treatment was performed by the electrode pair 5 for electrolysis. Moreover, the effective chlorine concentration (ppm) of the aqueous solution after electrolytic treatment was measured. The other conditions are the same as in Experimental Example 1. The results of the electrolysis experiment are shown in Table 1.
From Table 1, it is apparent that the electrolysis efficiency of the “horizontal (up)” type electrolyzer is high. The reason for this is not clear, but it is more likely that the upstream flow path close to the upstream end of the interelectrode flow path is bent to some extent or the downstream flow path close to the downstream end is bent to some extent. Or the flow of bubbles may be randomized to improve electrolysis efficiency.
If it is preferable that the flow of bubbles after the fluid bends be smooth, it is conceivable that the outlet-side channel, particularly the outlet-side channel, is in the vertical direction as shown in FIG.
Considering the ease of mass production, a modification example in which the pipe portion 70 is set in the vertical direction as shown in FIGS. 20B and 20C is also conceivable.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実験例3
 図6(a)に示したような電解ユニット10を作製し電解実験を行った。作製した電解ユニット10は、図6(b)~(d)のような3つの部品からなり、そのうち2つは同じ形状の電極ホルダー31、32であって互いに点対称になるように配置され、残る1つはスペーサー33であり、2つの電極ホルダー間に配置され、電解用電極対5が重なり合う方向から見て、スペーサー33の少なくとも一部は、電解用電極対5と重なる。
 また、作製した電解ユニット10では、突起部35を有するチタン製のボルト41を用いた。電極ホルダー31、32及びスペーサー33はアクリル樹脂製のものを用いた。陽極となる上部電極3にはダイソーエンジニアリング製の次亜塩素酸ソーダ生成用の不溶性電極を用いた。陰極となる下部電極4にはニラコ製チタン板を用いた。また、スペーサー33の厚みを調整して電極間距離が1mm~5mmの範囲内となるように3つの部材を組み立てた。本実験例では電極ホルダーなどにアクリル樹脂製のものを用いているため、電解ユニット10の中の様子を観察することができる。ただし短波長の光、特にUVは透過しないアクリルで作製した。これは光による影響をできるだけ少なくするためである。したがって、実際の製品では光を全く透過しない材料を用いる事が好ましい。
 電極ホルダー31、32、スペーサー33は、はボルト41とナット42及び、図示していないがワッシャ、スプリングワッシャ、Oリングを用いて固定した。本実験例では分解可能な状態であるが、長期信頼性の観点からは電解ユニット10の接着面は強固な接着剤等で電解液が漏れることがないようにする事が好ましい。また、スペーサー33として耐薬性、気密性の高いガスケットを用いる事で厚み調整とシールを兼ねる事ができる。更に大量生産によるコストダウンを図るために、一体成型で一度に電解ユニット10を作製することも可能である。
 また、比較のために、突起部35を設けていない電解ユニットも作製し電解実験を行った。他の構成は、上記の電解ユニット10と同じである。
Experimental example 3
An electrolysis unit 10 as shown in FIG. 6A was prepared and an electrolysis experiment was conducted. The produced electrolysis unit 10 is composed of three parts as shown in FIGS. 6B to 6D, and two of them are electrode holders 31 and 32 having the same shape and arranged so as to be point-symmetric with each other. The remaining one is a spacer 33, which is disposed between the two electrode holders, and at least a part of the spacer 33 overlaps the electrolysis electrode pair 5 when viewed from the direction in which the electrolysis electrode pair 5 overlaps.
Further, in the produced electrolytic unit 10, a titanium bolt 41 having a protrusion 35 was used. The electrode holders 31 and 32 and the spacer 33 were made of acrylic resin. As the upper electrode 3 serving as an anode, an insoluble electrode for producing sodium hypochlorite manufactured by Daiso Engineering was used. As the lower electrode 4 serving as the cathode, a Nilaco titanium plate was used. In addition, the thickness of the spacer 33 was adjusted, and three members were assembled so that the distance between the electrodes was in the range of 1 mm to 5 mm. In this experimental example, since the electrode holder or the like made of acrylic resin is used, the inside of the electrolysis unit 10 can be observed. However, it was made of acrylic that does not transmit short-wavelength light, especially UV. This is to minimize the influence of light. Therefore, it is preferable to use a material that does not transmit light at all in an actual product.
The electrode holders 31 and 32 and the spacer 33 were fixed using bolts 41 and nuts 42, and a washer, a spring washer and an O-ring (not shown). Although it can be disassembled in this experimental example, from the viewpoint of long-term reliability, it is preferable to prevent the electrolytic solution from leaking from the adhesive surface of the electrolytic unit 10 with a strong adhesive or the like. Further, by using a gasket having high chemical resistance and high airtightness as the spacer 33, it is possible to perform both thickness adjustment and sealing. Furthermore, in order to reduce the cost by mass production, the electrolytic unit 10 can be produced at a time by integral molding.
For comparison, an electrolysis unit not provided with the protrusion 35 was also produced and an electrolysis experiment was conducted. Other configurations are the same as those of the electrolysis unit 10 described above.
 作製した電解ユニット10の被処理流体流路7に3~4%のNaCl水溶液を毎分5~80ml/分で送液しながら電気分解を行ったところ、突起部35を設けた電解ユニット10は、突起部35を設けていない電解ユニットに比べて高い電解効率で電解処理を行うことができた。 Electrolysis was carried out while feeding a 3 to 4% NaCl aqueous solution at a rate of 5 to 80 ml / min to the fluid flow path 7 of the produced electrolysis unit 10, and the electrolysis unit 10 provided with the protrusions 35 was The electrolytic treatment could be performed with higher electrolysis efficiency than the electrolysis unit not provided with the protrusion 35.
実験例4
 図9(a)に示したような電解ユニット10を作製し電解実験を行った。作製した電解ユニット10は、図9(b)~(f)に示したような部品から構成され、スペーサー33の開口の大きさが、図6に示した電解ユニット10よりも狭い。また、スペーサー33は、スペーサー33と、上部電極3のエッジ部及び下部電極4のエッジ部とが重なるように配置した。
 電解する溶液を塩化ナトリウム水溶液とした場合、電解効率は実験例3とあまり差がなかったが、電解液に塩化ナトリウム水溶液に塩酸を加えて酸性にしたものでは図9の構成の電解ユニット10で生成される次亜塩素酸類の濃度が高かくかつ濃度変動が少なかった。従って、図9のような構成により飛躍的に電解効率と生成される物質濃度の安定度が向上した。
 この理由としては、図9に示したような構成とすることにより、電解用電極対5では比較的ムラなく電解反応が進行するとともに比較的均一に攪拌も行われるためと考えられる。また、被処理流体流路7を図9に示したような構成にすることで、電極間流路6以外でも被処理流体の攪拌及び均一化の効果を得られるので更に実質的な効率と安定性が向上したと考えられる。
Experimental Example 4
An electrolysis unit 10 as shown in FIG. 9A was prepared and an electrolysis experiment was conducted. The produced electrolysis unit 10 is composed of components as shown in FIGS. 9B to 9F, and the size of the opening of the spacer 33 is narrower than that of the electrolysis unit 10 shown in FIG. The spacer 33 is arranged so that the spacer 33 overlaps the edge portion of the upper electrode 3 and the edge portion of the lower electrode 4.
When the solution to be electrolyzed was a sodium chloride aqueous solution, the electrolysis efficiency was not so different from that of Experimental Example 3. However, in the case where the electrolyte was made acidic by adding hydrochloric acid to the sodium chloride aqueous solution, the electrolysis unit 10 having the configuration of FIG. The concentration of hypochlorous acid produced was high and the concentration fluctuation was small. Accordingly, the configuration shown in FIG. 9 dramatically improves the electrolysis efficiency and the stability of the generated substance concentration.
The reason for this is considered to be that, by adopting the configuration as shown in FIG. 9, the electrolytic reaction proceeds relatively uniformly in the electrode pair 5 for electrolysis and stirring is performed relatively uniformly. Moreover, since the fluid flow path 7 to be treated is configured as shown in FIG. 9, the effect of stirring and uniformizing the fluid to be treated can be obtained even in a place other than the inter-electrode flow path 6. It is thought that the nature improved.
実験例5
 図10(a)(b)のような電解装置15を用いて、電解生成物を含む希釈液の製造を行った。電解原液52には、3~4%のNaCl水溶液を用い、図6(a)に示したような電解ユニット10を用いて理論上4000ppmの次亜塩素酸を生成する条件で電解処理を行った。そして、希釈部53により処理後の水溶液を純水で希釈し希釈液を製造した。また、比較のために、電解用電極対の電極面が鉛直方向と平行である従来の電解ユニットを図10(a)のような電解装置に組み込み希釈液を製造した。
 従来の電解ユニットを用いた電解実験では、pH7以下の酸性域では塩素ガスが十分に水溶液に溶解せず、希釈タンクにおいて希釈するための純水に気泡を潜らせた場合でも、希釈液の表面付近の塩素ガス濃度が0.5ppmを超え、場合によっては2ppm以上になった。なお、これまでは電解による高濃度低pHの次亜塩素酸の生成が広く実用化されていなかったが、それは従来の方法では低pHでは塩素ガスが発生しやすく電解により効率良く高濃度の液が生成するのが難しかったからだと思われる。
 これに対し、図10(a)のような本実験例の電解装置15を用いた電解実験では、製造した希釈液は、pHが6~8の領域内であり、次亜塩素酸濃度が1000ppm以上であり、希釈液の表面付近の塩素ガス濃度が0.5ppm以下であった。従って、本実験例の電解装置15では、比較例に比べ顕著に塩素ガスの放出を抑制できた。また、本実験例の電解装置15では電解により生じた塩素ガスが効率的に水溶液に溶解できるので、希釈液の次亜塩素酸濃度が1000ppmを超えるまでにかかる時間も顕著に短くなった。
 図10(b)のような本実験例の電解装置15を用いた電解実験では、希釈液を排出する配管57の末端の排出近傍の塩素ガス濃度を測定したところ0.5ppm以下であった。
Experimental Example 5
Using an electrolysis apparatus 15 as shown in FIGS. 10 (a) and 10 (b), a diluted solution containing an electrolysis product was manufactured. As the electrolytic stock solution 52, a 3 to 4% NaCl aqueous solution was used, and electrolytic treatment was performed using the electrolytic unit 10 as shown in FIG. 6 (a) under the condition of theoretically generating 4000 ppm hypochlorous acid. . And the aqueous solution after a process by the dilution part 53 was diluted with the pure water, and the dilution liquid was manufactured. For comparison, a conventional electrolytic unit in which the electrode surface of the electrode pair for electrolysis is parallel to the vertical direction was incorporated in an electrolysis apparatus as shown in FIG.
In an electrolysis experiment using a conventional electrolysis unit, chlorine gas does not dissolve sufficiently in an aqueous solution in an acidic range of pH 7 or lower, and even if bubbles are submerged in pure water for dilution in a dilution tank, the surface of the dilution liquid The nearby chlorine gas concentration exceeded 0.5 ppm, and in some cases it was 2 ppm or more. In the past, the production of high-concentration and low-pH hypochlorous acid by electrolysis has not been widely put into practical use. However, in the conventional method, chlorine gas is easily generated at low pH, and high-concentration liquid is efficiently produced by electrolysis. This is probably because it was difficult to generate.
On the other hand, in the electrolysis experiment using the electrolysis apparatus 15 of this experimental example as shown in FIG. 10 (a), the manufactured diluted solution has a pH in the region of 6 to 8, and the hypochlorous acid concentration is 1000 ppm. The chlorine gas concentration near the surface of the diluted solution was 0.5 ppm or less. Therefore, in the electrolysis apparatus 15 of this experimental example, the release of chlorine gas could be significantly suppressed as compared with the comparative example. In addition, since the chlorine gas generated by electrolysis can be efficiently dissolved in the aqueous solution in the electrolysis apparatus 15 of this experimental example, the time required for the hypochlorous acid concentration of the diluted solution to exceed 1000 ppm is significantly shortened.
In the electrolysis experiment using the electrolysis apparatus 15 of this experimental example as shown in FIG. 10B, the chlorine gas concentration in the vicinity of the discharge at the end of the pipe 57 for discharging the diluent was measured and found to be 0.5 ppm or less.
実験例6
 図19に示したような電解装置を作製し実験例1同様に電解用電極対5の鉛直方向に対する傾斜角度を変化させて電解実験を行った。電解用電極対5には、長辺5cm、短辺1cmの1mm厚のチタン板からなる電極(Ti電極という)と、長辺5cm、短辺1cmの1mm厚のチタン板に酸化イリジウムを焼結法によりコーティングした電極(Ir被覆Ti電極という)とを用いた。Ti電極とIr被覆Ti電極とが略平行で電極間距離が1mm~5mmの範囲内となるように電解用電極対5をアクリル樹脂製の筐体1に固定し電解装置を作製した。また、Ti電極が陰極となり、Ir被覆Ti電極が陽極となるように電源装置72と電解用電極対5とを接続した。
Experimental Example 6
An electrolysis apparatus as shown in FIG. 19 was prepared, and an electrolysis experiment was performed by changing the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction in the same manner as in Experimental Example 1. For the electrode pair 5 for electrolysis, iridium oxide is sintered to an electrode made of a 1 mm thick titanium plate having a long side of 5 cm and a short side of 1 cm (referred to as a Ti electrode), and a 1 mm thick titanium plate having a long side of 5 cm and a short side of 1 cm. An electrode coated by the method (referred to as an Ir-coated Ti electrode) was used. The electrolytic electrode pair 5 was fixed to the acrylic resin casing 1 so that the Ti electrode and the Ir-coated Ti electrode were substantially parallel and the distance between the electrodes was in the range of 1 mm to 5 mm, thereby producing an electrolytic device. Further, the power supply device 72 and the electrode pair 5 for electrolysis were connected so that the Ti electrode became a cathode and the Ir-coated Ti electrode became an anode.
 本実験例では、実験例1のような電極が流路の一部を形成して被処理流体がほぼ一定方向に供給されるような閉鎖流路型電解ユニットの形態ではなく、いわゆるバッチ式と言われる方式の電解槽74に電解用電極対5の鉛直方向に対する傾斜角度が約-60度~約+60度となるように、設置角度を変えて設置した。電解槽74には3~4%の塩化ナトリウム水溶液を投入した。なお、電解用電極対5が鉛直であるとき傾斜角度は0度であり、Ir被覆Ti電極(陽極)が上側となるように電解用電極対5を傾斜させたとき傾斜角度はプラスの角度であり、Ir被覆Ti電極が下側となるように電解用電極対5を傾斜させたとき傾斜角度はマイナスの角度である。
 そして、電源装置72により電解用電極対5に1Aの定電流を供給し、塩化ナトリウム水溶液を電解処理した。また、印加電圧は、約4~5Vの間であった。また、電解処理後の水溶液の有効塩素濃度(mg/L)の測定を行った。
In this experimental example, the electrode as in Experimental Example 1 forms a part of the flow path, and is not in the form of a closed flow path electrolysis unit in which the fluid to be processed is supplied in a substantially constant direction. The so-called electrolytic cell 74 was installed with the installation angle changed so that the inclination angle of the electrode pair 5 for electrolysis with respect to the vertical direction was about −60 degrees to about +60 degrees. The electrolytic cell 74 was charged with 3 to 4% sodium chloride aqueous solution. When the electrode pair 5 for electrolysis is vertical, the tilt angle is 0 degree, and when the electrode pair 5 for electrolysis is tilted so that the Ir-coated Ti electrode (anode) is on the upper side, the tilt angle is a positive angle. Yes, when the electrode pair 5 for electrolysis is tilted so that the Ir-coated Ti electrode is on the lower side, the tilt angle is a negative angle.
Then, a constant current of 1 A was supplied to the electrode pair 5 for electrolysis by the power supply device 72 to electrolyze the sodium chloride aqueous solution. The applied voltage was between about 4 and 5V. Moreover, the effective chlorine concentration (mg / L) of the aqueous solution after electrolytic treatment was measured.
 有効塩素濃度の測定結果を図18に示す。本結果によると、実験例1とは逆に陽極であるIr被覆Ti電極が下側となるように電解用電極対5を傾けると電解処理後の水溶液の有効塩素濃度を高めることができた。具体的には、電解用電極対5を少なくとも約-60度までの範囲で傾けると、電解用電極対5を鉛直としたときと比べ有効塩素濃度が向上した。また、電解用電極対5を約-20度から約-45度までの範囲で傾けると、電解用電極対5を鉛直としたときと比べ有効塩素濃度が約5%向上した。電解用電極対5の傾きが大きすぎると有効塩素濃度が低下する傾向を示し約-60度の時に鉛直(0度)の時の有効塩素濃度と同程度になった。
 したがって、電解用電極対5の鉛直方向に対する傾斜角度が0度より大きく60度より小さい範囲になるように電解用電極対5を設置する事が良く、電解用電極対5の傾斜角度が好ましくは20度~45度(約5%向上)となるように電解槽74中に電解用電極対5を設置する事が良い。また、陽極であるIr被覆Ti電極の一部が、陰極であるTi電極の鉛直下方に位置するように電解用電極対5を配置することにより電解処理後の水溶液の有効塩素濃度を高くすることができ、電解効率を向上させることができることがわかった。
 電解用電極対5の向きとして短辺を水平とする場合と、長辺を水平とする場合があるが、どちらも陰極側を上なるように電解用電極対5を傾けた方が電解効率が良かった。
The measurement result of the effective chlorine concentration is shown in FIG. According to this result, the effective chlorine concentration of the aqueous solution after the electrolytic treatment could be increased by inclining the electrode pair 5 for electrolysis so that the Ir-covered Ti electrode as the anode was on the lower side, contrary to Experimental Example 1. Specifically, when the electrolysis electrode pair 5 is tilted within a range of at least about −60 degrees, the effective chlorine concentration is improved as compared with the case where the electrolysis electrode pair 5 is vertical. In addition, when the electrolysis electrode pair 5 is tilted in the range of about −20 degrees to about −45 degrees, the effective chlorine concentration is improved by about 5% compared to the case where the electrolysis electrode pair 5 is vertical. When the inclination of the electrode pair 5 for electrolysis was too large, the effective chlorine concentration tended to decrease, and was approximately the same as the effective chlorine concentration at the vertical (0 degree) at about -60 degrees.
Therefore, the electrolysis electrode pair 5 is preferably installed so that the inclination angle of the electrolysis electrode pair 5 with respect to the vertical direction is larger than 0 degree and smaller than 60 degrees, and the inclination angle of the electrolysis electrode pair 5 is preferably It is preferable to install the electrode pair 5 for electrolysis in the electrolytic cell 74 so as to be 20 to 45 degrees (about 5% improvement). Further, the effective chlorine concentration of the aqueous solution after the electrolytic treatment is increased by arranging the electrode pair 5 for electrolysis so that a part of the Ir-coated Ti electrode serving as the anode is positioned vertically below the Ti electrode serving as the cathode. It was found that the electrolysis efficiency could be improved.
There are cases where the short side is horizontal and the long side is horizontal as the direction of the electrode pair 5 for electrolysis. In both cases, the electrolysis efficiency is better when the electrode pair 5 is inclined so that the cathode side is up. Was good.
 このようにバッチ式の電解槽74では、閉鎖流路型の電解ユニットと違って、電極陽極の一部が陰極の鉛直下方に位置するように電解用電極対5を傾けて配置することにより電解効率が向上する。この違いの理由は明らかではないが、以下のような仮説が考えられる。
 陰極では、実験例1同様に電極反応が進行しH2が発生すると考えられる。発生したH2は比較的溶解しにくいため殆どが気泡となる。
 ここで閉鎖系電解ユニットと違ってバッチ式の電解槽74の、特に側面含めて開放面積が多い場合は、閉じ込め効果が少ないので電極間にH2の気泡が存在する平均時間は短くなり、H2の気泡と入れ替わりで新鮮な被電解質が自然に供給されるため電解効率が良くなると考えられる。
 また自然に供給される被電解質の量は特に制限されないので、電極間の電解済み濃度、ここでは次亜塩素酸類の濃度は比較的低濃度に保たれる。陽極で発生して次亜塩素酸に転換しきれなかった塩素ガスは浮力により上昇し陰極側へ移動する。この時、陰極近辺のアルカリ寄りの水溶液はH2や塩素ガスの気泡に比べると移動速度が遅いために、陽極側から移動してきた塩素ガスと接触する機会が増え、塩素ガスの次亜塩素酸等への変換が促進される。
As described above, in the batch type electrolytic cell 74, unlike the closed flow type electrolysis unit, the electrolysis electrode pair 5 is inclined and disposed so that a part of the electrode anode is positioned vertically below the cathode. Efficiency is improved. The reason for this difference is not clear, but the following hypothesis can be considered.
At the cathode, it is considered that the electrode reaction proceeds and H 2 is generated as in Experimental Example 1. Since the generated H 2 is relatively difficult to dissolve, most of it becomes bubbles.
Here, unlike the closed electrolysis unit, when the open area of the batch-type electrolytic cell 74 is large, particularly including the side surface, since the confinement effect is small, the average time for the presence of H 2 bubbles between the electrodes is shortened. It is thought that the efficiency of electrolysis is improved because the fresh electrolyte is naturally supplied by replacing the bubbles of 2 .
Further, since the amount of the electrolyte to be naturally supplied is not particularly limited, the electrolyzed concentration between the electrodes, here, the concentration of hypochlorous acid is kept at a relatively low concentration. Chlorine gas generated at the anode and not converted into hypochlorous acid rises by buoyancy and moves to the cathode side. At this time, the alkali solution near the cathode is slower in moving speed than H 2 and chlorine gas bubbles, so the chance of contact with the chlorine gas moving from the anode side increases, and the chlorine gas hypochlorous acid. Conversion to etc. is promoted.
 陰極側が下の場合は、発生したH2の気泡はその浮力により陽極側に向かって移動し、電極間はH2の気泡が充満し場合によっては陽極側に付着滞留して陽極が被電解質が接する面積が著しく減少する。実験では角度が80度以上になると陽極表面の殆どがH2の気泡覆われ著しく電解効率が低下した。このように、電極間の被電解質の量の減少、気泡による実効電極面積の減少、新鮮な被電解質の流入の阻害等により電解効率が低下すると考えられる。
 また陽極近傍の水溶液や陽極で発生した塩素ガスは、電極間から側面等の開放面へH2の気泡に押し出されるように流出するために、閉鎖系電解ユニットのようには陰極近傍の水溶液と陽極近傍の水溶液との攪拌は促進されず、塩素ガスの次亜塩素酸等への変換も促進されず場合によっては塩素ガスのまま被電解質から空間に放出されるため、有効塩素濃度が低くなると考えられる。
When the cathode side is below, the generated H 2 bubbles move toward the anode side due to the buoyancy, and the H 2 bubbles are filled between the electrodes, and in some cases, adhere to and stay on the anode side, and the anode becomes the electrolyte. The contact area is significantly reduced. In the experiment, when the angle was 80 degrees or more, most of the anode surface was covered with H 2 bubbles, and the electrolytic efficiency was remarkably reduced. As described above, it is considered that the electrolytic efficiency is lowered due to a decrease in the amount of the electrolyte between the electrodes, a reduction in the effective electrode area due to bubbles, an inhibition of the inflow of fresh electrolyte, and the like.
In addition, since the aqueous solution near the anode and the chlorine gas generated at the anode flow out from between the electrodes to the open surface such as the side surface so as to be pushed out by H 2 bubbles, the aqueous solution near the cathode Stirring with the aqueous solution in the vicinity of the anode is not promoted, and conversion of chlorine gas to hypochlorous acid is not promoted. In some cases, chlorine gas is released from the electrolyte as it is into the space. Conceivable.
 閉鎖系電解ユニットの場合はH2の気泡は傾き方によらず電極間に保持される点、及び被電解質の供給量が制限される点が異なる。このような状態の閉鎖系電解ユニットでは陰極側を上にすると陰極からH2の脱離が遅くなるためにH2の被覆効果による陰極の有効電極面積低下及び陰極表面近傍の被電解質の接近が妨げられるため電解効率が低下すると考えられる。陰極側を下にすればH2の脱離が促進されるために、H2の被覆効果による陰極の有効電極面積低下の抑制及び陰極表面は新鮮な被電解質の供給が行われる。またH2の気泡は陽極近傍に移動するので陰極近辺のアルカリ寄りの水溶液も陽極近辺に運ばれるため、塩素ガスの次亜塩素酸等への変換が促進される。また、陰極の上流付近の水溶液は気泡の移動に伴って陽極方向への移動が促進されるため、陰極の下流付近の水溶液は電解処理済みの液成分の割合が減少するため電解のために有効に働く。
 また、閉鎖系電解ユニットは電解ユニット内に供給される被電解質は制限されるので電解済み物質の濃度、本実験例では次亜塩素酸類の濃度が高くなりやすい。次亜塩素酸濃度が高くなり過ぎると、電解効率が低下する。この場合は、陽極で発生した塩素ガスの少なくとも一部は電解ユニット内で次亜塩素酸類に転換せずに出口から放出させ、希釈部以降の水に接触さえて次亜塩素酸類に転換した方が電解ユニット内の次亜塩酸類の濃度上昇が抑えられ電解効率が良くなると考えられる。
 このように、場合によって電解効率が良くなる条件は異なる。
In the case of a closed system electrolysis unit, the difference is that the bubbles of H 2 are held between the electrodes regardless of the inclination, and the supply amount of the electrolyte is limited. In the closed electrolysis unit in such a state, when the cathode side is turned up, the desorption of H 2 from the cathode is delayed, so that the effective electrode area of the cathode is reduced due to the coating effect of H 2 and the electrolyte near the cathode surface approaches. It is thought that the electrolysis efficiency is lowered because it is hindered. For desorption of H 2 is accelerated if the cathode side down, suppression and cathode surface of the cathode effective electrode area reduction of by coating effect of H 2 is carried out supply of fresh the electrolyte. Further, since the H 2 bubbles move to the vicinity of the anode, an aqueous solution close to the alkali near the cathode is also carried to the vicinity of the anode, so that the conversion of chlorine gas to hypochlorous acid or the like is promoted. In addition, the aqueous solution near the cathode is promoted to move toward the anode along with the movement of the bubbles, so the aqueous solution near the cathode is effective for electrolysis because the proportion of the liquid component that has undergone electrolysis decreases. To work.
Further, since the electrolyte to be supplied to the electrolytic unit in the closed electrolysis unit is limited, the concentration of the electrolyzed substance, that is, the concentration of hypochlorous acid in this experimental example, tends to be high. When the hypochlorous acid concentration becomes too high, the electrolysis efficiency decreases. In this case, at least part of the chlorine gas generated at the anode is not converted into hypochlorous acid in the electrolysis unit, but is discharged from the outlet, and even converted into hypochlorous acid by contact with water after the dilution section. However, it is considered that the increase in the concentration of hypochlorous acid in the electrolysis unit is suppressed and the electrolysis efficiency is improved.
Thus, the conditions for improving the electrolytic efficiency differ depending on the case.
 陽極は陰極より上方に位置するように電極対を傾けて設ける事が良い場合として、(i)電極が実質的に電解槽あるいは流路の壁面の一部となるような閉鎖型の電解ユニットであり、(ii)前記電解ユニットは、被電解物質の入り口と、電解によって生じる物質及び未電解物質の出口を備え、(iii)入口から強制的に被電解物質を供給する手段または、出口から強制的に電解によって生じる物質及び未電解物質を吸出す手段、またはその両方を備える構造の時と考えられる。 As a case where the anode should be provided with the electrode pair tilted so that the anode is positioned above the cathode, (i) a closed-type electrolysis unit in which the electrode is substantially a part of the wall of the electrolytic cell or the channel. And (ii) the electrolysis unit includes an inlet of the substance to be electrolyzed and an outlet of the substance generated by electrolysis and the unelectrolyzed substance, and (iii) means for forcibly supplying the substance to be electrolyzed from the inlet or forced from the outlet In particular, it is considered to be a structure having a means for sucking a substance generated by electrolysis and a non-electrolytic substance, or both.
 なお、前記強制的に供給する手段としては、前記入口へポンプで送り込む、または前記出口からポンプで吸引する、または希釈部とその周辺をベンチュリー効果が生じる構造として前記出口から吸引する、またはタンクを上方に設けて重力により送り込む等の方法が可能である。最も安定的に送液を実現できるポンプを備えるのが好ましい。ある程度のばらつきが許容されるならば、ポンプを用いずにベンチュリー効果や重力を利用する構造を備える方がポンプを動作させるエネルギーが不用になり、省エネ、ポンプコスト削減になり、好ましい。勿論、ポンプとベンチュリー効果と重力の、何れかの組合せや、全てを組合せて用いる事も可能である。
 例えば実験例1では、できるだけ一定量を供給できるようにチューブポンプを用いて送り込む構造を採用している。
As the means for forcibly supplying, the pump is pumped into the inlet, or the pump is sucked from the outlet, or the dilution part and its surroundings are sucked from the outlet as a structure in which a venturi effect is generated, or a tank is provided. It is possible to use a method such as providing it above and feeding it by gravity. It is preferable to provide a pump that can realize liquid feeding most stably. If a certain degree of variation is allowed, it is preferable to provide a structure that uses the Venturi effect or gravity without using a pump, because the energy for operating the pump becomes unnecessary, which saves energy and reduces pump costs. Of course, any combination or all of the pump, the venturi effect and gravity can be used.
For example, in Experimental Example 1, a structure in which a tube pump is used to supply a constant amount as much as possible is employed.
 また、(a)陰極側から気泡が発生する電気分解を行う場合、(b)陽極側で発生する物質もしくはその物質が化学反応してなる物質を得る場合、(c)電解ユニットの出口は希釈部を備える場合、及び(d)電解によって生じる物質濃度が電解ユニット内で比較的高濃度になる場合の少なくとも1つの条件を満たす場合、陽極は陰極より上方に位置するように電極対を傾けて設ける方が良いと考えられる。また、(a)~(d)の複数の条件を満たす場合、(a)~(d)の全部の条件の満たす場合においても陽極は陰極より上方に位置するように電極対を傾けて設ける方が良いと考えられる。
 電解用電極対が実質的に貯留された被電解物質の中に備えられた構造で、電極間に被電解物質を強制的に供給もしくは吸出す手段がない場合は、陽極は陰極より下方に位置するように電極対を傾けて設ける事が良いと考えられる。
 本構造の場合は、気泡の上昇に伴って受動的に被電解質の供給が行われる。
 また、次亜塩素酸類に未転換の塩素ガスは、閉鎖系電解ユニットに比べると短い時間で容易に気相に放出される。
 閉鎖系電解ユニットの方が気相への放出が抑制されるは、供給される被電解質の量が制限されるため電解ユニット内での閉じ込め効果及びH2気泡による攪拌効果により次亜塩素酸類への転換がなされやすい事、希釈部での塩素ガスの次亜塩素酸類への転換促進される事、希釈部以降の希釈水が流れるライン内でも引き続き塩素ガスの次亜塩素酸類への転換が行われる等、次亜塩素酸類への転換促進要因が多いためと考えられる。
In addition, (a) when performing electrolysis in which bubbles are generated from the cathode side, (b) when obtaining a substance generated on the anode side or a substance obtained by a chemical reaction thereof, (c) the outlet of the electrolysis unit is diluted. And (d) when satisfying at least one of the conditions in which the substance concentration generated by electrolysis is relatively high in the electrolysis unit, the electrode pair is inclined so that the anode is positioned above the cathode. It is considered better to provide it. Also, when multiple conditions (a) to (d) are satisfied, even when all the conditions (a) to (d) are satisfied, the anode is inclined so that the anode is positioned above the cathode. Is considered good.
When the electrode pair for electrolysis is provided in an electrolyzed material that is substantially stored, and there is no means for forcibly supplying or sucking the electrolyzed material between the electrodes, the anode is positioned below the cathode. Thus, it is considered that the electrode pair is preferably inclined.
In the case of this structure, the electrolyte is passively supplied as the bubbles rise.
In addition, chlorine gas that has not been converted to hypochlorous acid is easily released into the gas phase in a shorter time than a closed electrolysis unit.
The closed-system electrolysis unit suppresses the release to the gas phase because the amount of the supplied electrolyte is limited, so that it is reduced to hypochlorous acid by the confinement effect in the electrolysis unit and the stirring effect by H 2 bubbles. The conversion of chlorine gas to hypochlorous acid in the dilution section is promoted, and the conversion of chlorine gas to hypochlorous acid continues in the line where dilution water flows after the dilution section. This is probably because there are many factors that promote the conversion to hypochlorous acid.
 1:筐体  3:上部電極  4:下部電極  5:電解用電極対  6:電極間流路  7:被処理流体流路  8:流入口  9:流出口  10:電解ユニット  11:気泡  15:電解装置  16:鉛直方向から見た際の重なり領域  17:下部電極の主要面に垂直な方向から見た際の重なり領域  21:陽極  22:陰極  25:上流側屈曲流路  26:下流側屈曲流路  30:電極ホルダー  31:第1電極ホルダー  32:第2電極ホルダー  33:スペーサー  35:突起部  36:スペーサーの開口  37:電極ホルダーの溝  41:ボルト  42:ナット  43:ボルト穴  45:電極端子  47:Oリング  48:ワッシャ  49:スプリングワッシャ  51:電解原液タンク  52:電解原液  53:希釈部  54:希釈タンク  55:溜め水  57:配管  59:混合部  61:筐体  62:給水口  63:吐出口  64:スイッチ  65:配管  66:電磁弁  67:原液タンク  68:ポンプ  70:配管部  72:電源装置  74:電解槽  75:被処理流体  77:配線
 100:電解装置  101:筐体  103:第1電極  104:第2電極  106:第1配線  107:第2配線  108:供給口  109:放出口  111:筐体  112:給水口  113:吐出口  114:スイッチ  115:配管  116:電磁弁  117:原液タンク  118:ポンプ  120:電解水生成器
1: Housing 3: Upper electrode 4: Lower electrode 5: Electrode pair for electrolysis 6: Interelectrode flow path 7: Fluid flow path 8: Inlet 9: Outlet 10: Electrolytic unit 11: Bubble 15: Electrolyzer 16: Overlapping region when viewed from the vertical direction 17: Overlapping region when viewed from the direction perpendicular to the main surface of the lower electrode 21: Anode 22: Cathode 25: Upstream bent channel 26: Downstream bent channel 30 : Electrode holder 31: First electrode holder 32: Second electrode holder 33: Spacer 35: Projection 36: Opening of spacer 37: Groove of electrode holder 41: Bolt 42: Nut 43: Bolt hole 45: Electrode terminal 47: O Ring 48: Washer 49: Spring washer 51: Electrolysis stock solution tank 52: Electrolysis stock solution 53: Dilution section 54: Dilution tank 55: Reservoir water 57: Piping 9: Mixing unit 61: Housing 62: Water supply port 63: Discharge port 64: Switch 65: Piping 66: Solenoid valve 67: Stock solution tank 68: Pump 70: Piping unit 72: Power supply device 74: Electrolysis tank 75: Fluid to be treated 77: Wiring 100: Electrolyzer 101: Housing 103: First electrode 104: Second electrode 106: First wiring 107: Second wiring 108: Supply port 109: Discharge port 111: Housing 112: Water supply port 113: Sink Outlet 114: Switch 115: Piping 116: Solenoid valve 117: Stock solution tank 118: Pump 120: Electrolyzed water generator

Claims (8)

  1.  電解ユニットを備え、
    前記電解ユニットは、被処理流体流路と、少なくとも一組の電解用電極対と、流入口と、流出口とを備え、
    前記電解用電極対は、鉛直方向に対して傾斜するように配置され、かつ、互いに対向するように配置された上部電極と下部電極とを含み、
    前記被処理流体流路は、前記流入口から流入した流体が前記上部電極と前記下部電極との間の電極間流路を下側から上側に向かって流れ前記流出口から流出するように設けられたことを特徴とする電解装置。
    With an electrolysis unit,
    The electrolysis unit includes a fluid flow path to be processed, at least one pair of electrode for electrolysis, an inlet, and an outlet.
    The electrode pair for electrolysis is disposed so as to be inclined with respect to the vertical direction, and includes an upper electrode and a lower electrode disposed so as to face each other,
    The fluid flow path to be treated is provided such that the fluid flowing in from the inflow port flows from the lower electrode to the upper electrode flow channel between the upper electrode and the lower electrode, and flows out from the outflow port. An electrolyzer characterized by that.
  2.  前記電解用電極対は、鉛直方向に対する傾斜角度が0度より大きく50度より小さくなるように配置された請求項1に記載の電解装置。 The electrolysis apparatus according to claim 1, wherein the electrode pair for electrolysis is arranged so that an inclination angle with respect to a vertical direction is larger than 0 degree and smaller than 50 degrees.
  3.  前記被処理流体流路は、前記電極間流路の上流側の端に近接した上流側屈曲流路または前記電極間流路の下流側の端に近接した下流側屈曲流路を有する請求項1又は2に記載の電解装置。 2. The fluid flow path to be treated has an upstream bent flow path close to an upstream end of the interelectrode flow path or a downstream bent flow path close to a downstream end of the interelectrode flow path. Or the electrolysis apparatus of 2.
  4.  前記被処理流体流路に流体を強制的に供給する手段をさらに備え、
    前記電解用電極対は、前記下部電極及び前記上部電極において気体が生成される電極反応が進行するように設けられ、
    前記下部電極において生成され外部に放出される気体の量は、前記上部電極において生成され外部に放出される気体の量よりも実質的に多い請求項1~3のいずれか1つに記載の電解装置。
    Means for forcibly supplying fluid to the fluid flow path to be treated;
    The electrode pair for electrolysis is provided so that an electrode reaction in which gas is generated in the lower electrode and the upper electrode proceeds,
    The electrolysis according to any one of claims 1 to 3, wherein an amount of gas generated and released to the outside at the lower electrode is substantially larger than an amount of gas generated and released to the outside at the upper electrode. apparatus.
  5.  前記上部電極は、陽極となるように設けられ、
    前記下部電極は、陰極となるように設けられた請求項1~4のいずれか1つに記載の電解装置。
    The upper electrode is provided to be an anode,
    The electrolyzer according to any one of claims 1 to 4, wherein the lower electrode is provided to be a cathode.
  6.  前記下部電極は、前記上部電極の電極面よりも面積の広い電極面を有する請求項1~5のいずれか1つに記載の電解装置。 The electrolysis apparatus according to any one of claims 1 to 5, wherein the lower electrode has an electrode surface having a larger area than the electrode surface of the upper electrode.
  7.  希釈部をさらに備え、
    前記流体は、水溶液であり、
    前記電解用電極対は、前記水溶液に含まれる塩素含有化合物から次亜塩素酸イオンが電気化学的に生成するように設けられ、
    前記流出口における水溶液は、重量比で4000ppm以上の次亜塩素酸イオンを含み、
    前記希釈部は、前記流出口から排出された次亜塩素酸イオンを含む水溶液の希釈液を生成するように設けられ、
    前記希釈液は、pH7.5以下である請求項1~6のいずれか1つに記載の電解装置。
    A further dilution section,
    The fluid is an aqueous solution;
    The electrode pair for electrolysis is provided such that hypochlorite ions are generated electrochemically from a chlorine-containing compound contained in the aqueous solution,
    The aqueous solution at the outlet contains hypochlorite ions of 4000 ppm or more by weight,
    The dilution section is provided to generate a diluted solution of an aqueous solution containing hypochlorite ions discharged from the outlet,
    The electrolysis apparatus according to any one of claims 1 to 6, wherein the dilution liquid has a pH of 7.5 or less.
  8.  前記被処理流体流路は、対流により前記被処理流体流路に流体が供給されるように設けられ、
    前記電解用電極対は、前記下部電極及び前記上部電極において気体が生成される電極反応が進行するように設けられ、
    前記上部電極において生成され外部に放出される気体の量は、前記下部電極において生成され外部に放出される気体の量よりも実質的に多い請求項1~3のいずれか1つに記載の電解装置。
    The treated fluid channel is provided such that fluid is supplied to the treated fluid channel by convection,
    The electrode pair for electrolysis is provided so that an electrode reaction in which gas is generated in the lower electrode and the upper electrode proceeds,
    The electrolysis according to any one of claims 1 to 3, wherein an amount of gas generated and released to the outside at the upper electrode is substantially larger than an amount of gas generated and released to the outside at the lower electrode. apparatus.
PCT/JP2015/052357 2014-07-25 2015-01-28 Electrolysis device WO2016013234A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580041222.0A CN106661742A (en) 2014-07-25 2015-01-28 Electrolysis device
US15/325,817 US20170145571A1 (en) 2014-07-25 2015-01-28 Electrolysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-151839 2014-07-25
JP2014151839A JP5887385B2 (en) 2014-07-25 2014-07-25 Electrolyzer

Publications (1)

Publication Number Publication Date
WO2016013234A1 true WO2016013234A1 (en) 2016-01-28

Family

ID=55162773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052357 WO2016013234A1 (en) 2014-07-25 2015-01-28 Electrolysis device

Country Status (4)

Country Link
US (1) US20170145571A1 (en)
JP (1) JP5887385B2 (en)
CN (1) CN106661742A (en)
WO (1) WO2016013234A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624904A (en) * 2017-03-22 2018-10-09 株式会社东芝 Electrolytic water generating device
CN113897618A (en) * 2020-06-22 2022-01-07 现代自动车株式会社 Water electrolysis system
US11535533B2 (en) * 2018-09-17 2022-12-27 Elateq, Inc. Systems and methods for electrochemically enhanced water filtration

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521385B6 (en) * 2016-04-18 2019-06-26 エア・ウォーター・バイオデザイン株式会社 Electrolyzed water generator
CN107317040A (en) * 2017-06-22 2017-11-03 清华大学 The floatation type gas-diffusion electrode reacted for gas consumption and its preparation
BR112020025689A2 (en) * 2018-06-18 2021-03-16 Subcuject Aps OSMOTIC ACTUATOR FOR INJECTION DEVICE AND INJECTION DEVICE UNDERSTANDING SUCH OSMOTIC ACTUATOR
JPWO2020179667A1 (en) * 2019-03-07 2021-03-11 株式会社超微細科学研究所 Fine bubble-containing water generator
JP7161773B2 (en) * 2019-10-30 2022-10-27 株式会社テックコーポレーション Electrolyzed water generator
JP7340744B2 (en) * 2020-02-10 2023-09-08 パナソニックIpマネジメント株式会社 portable electrolyzed water sprayer
CN112018033B (en) * 2020-08-13 2022-05-31 华南师范大学 Epitaxial thin film wafer-level stripping method and device
JP6828212B1 (en) * 2020-08-25 2021-02-10 三菱重工環境・化学エンジニアリング株式会社 Electrolyzer
JP6845975B1 (en) * 2021-01-14 2021-03-24 三菱重工環境・化学エンジニアリング株式会社 Electrolytic system
IL282016A (en) * 2021-04-04 2022-11-01 Purific Solutions Ltd System for producing electrolyzed water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474879A (en) * 1990-07-16 1992-03-10 Permelec Electrode Ltd Electrolytic device for producing hypochlorite
JP2003328173A (en) * 2002-05-08 2003-11-19 Takayuki Shimamune Electrolyzer for fused salt
JP2003328171A (en) * 2002-05-14 2003-11-19 Kurita Water Ind Ltd Apparatus for producing hydrogen peroxide
JP2005270732A (en) * 2004-03-23 2005-10-06 Sanden Corp Hypochlorous acid generating device and its control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277591B (en) * 2011-08-02 2014-03-05 北京化工大学 Method for electrochemically degrading lignin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474879A (en) * 1990-07-16 1992-03-10 Permelec Electrode Ltd Electrolytic device for producing hypochlorite
JP2003328173A (en) * 2002-05-08 2003-11-19 Takayuki Shimamune Electrolyzer for fused salt
JP2003328171A (en) * 2002-05-14 2003-11-19 Kurita Water Ind Ltd Apparatus for producing hydrogen peroxide
JP2005270732A (en) * 2004-03-23 2005-10-06 Sanden Corp Hypochlorous acid generating device and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624904A (en) * 2017-03-22 2018-10-09 株式会社东芝 Electrolytic water generating device
US11535533B2 (en) * 2018-09-17 2022-12-27 Elateq, Inc. Systems and methods for electrochemically enhanced water filtration
CN113897618A (en) * 2020-06-22 2022-01-07 现代自动车株式会社 Water electrolysis system

Also Published As

Publication number Publication date
US20170145571A1 (en) 2017-05-25
JP5887385B2 (en) 2016-03-16
JP2016029204A (en) 2016-03-03
CN106661742A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5887385B2 (en) Electrolyzer
KR100575036B1 (en) Electrolysis cell for generating chlorine dioxide
JP4394942B2 (en) Electrolytic ozonizer
KR100883894B1 (en) Apparatus for manufacturing of weak-acidic hypochlorous acid water and manufacturing method of weak-acidic hypochlorous acid water
US9399588B2 (en) Electrolysis water-making apparatus
KR101352887B1 (en) Electrolytically Ionized Water Generator
JP4394941B2 (en) Electrolytic ozonizer
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP2007301540A (en) Slightly acidic electrolyzed water generation apparatus
JP4838705B2 (en) Ozone water generator
WO2008090367A1 (en) Electro-chlorinator
JP4599487B2 (en) Water-cooled vertical electrolytic cell
JP2004010904A (en) Electrolytic cell for manufacturing hydrogen peroxide
JP2012091121A (en) Apparatus for producing electrolytic water
US9388060B2 (en) Electrolysis water-making apparatus
JP2010156033A (en) Apparatus and method for producing persulfuric acid
JP5711945B2 (en) Electrolyzer for generating hypochlorous acid water and method for generating hypochlorous acid water
KR101054266B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
JP2012096215A (en) Electrolysis tank and device for generating strong alkali electrolytic water
JP4051774B2 (en) Electrolyzer
Taumaturgo Medina Collana et al. Effect of Electrolytic Cell Operating Parameters on Sodium Hypochlorite Formation and Energy Consumption
JP2023159497A (en) Electrolytic water generator
JP2019042726A (en) Method and device for producing high concentration slightly acidic electrolyzed water
JP2018153793A (en) Method for producing strong alkaline electrolyzed water and product water
JP2005193218A (en) Apparatus and method for producing chlorine dioxide-containing sterile water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15325817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15823931

Country of ref document: EP

Kind code of ref document: A1