WO2016013044A1 - エンジンシステムおよび鞍乗り型車両 - Google Patents

エンジンシステムおよび鞍乗り型車両 Download PDF

Info

Publication number
WO2016013044A1
WO2016013044A1 PCT/JP2014/003879 JP2014003879W WO2016013044A1 WO 2016013044 A1 WO2016013044 A1 WO 2016013044A1 JP 2014003879 W JP2014003879 W JP 2014003879W WO 2016013044 A1 WO2016013044 A1 WO 2016013044A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
crankshaft
air
fuel
angle
Prior art date
Application number
PCT/JP2014/003879
Other languages
English (en)
French (fr)
Inventor
裕生 山口
貴裕 増田
誠吾 高橋
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2014/003879 priority Critical patent/WO2016013044A1/ja
Priority to EP14885071.2A priority patent/EP3173606A4/en
Priority to TW104122408A priority patent/TWI615545B/zh
Publication of WO2016013044A1 publication Critical patent/WO2016013044A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/004Generation of the ignition spark
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/008Providing a combustible mixture outside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/007Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation using inertial reverse rotation

Definitions

  • the present invention relates to an engine system and a saddle-ride type vehicle equipped with the same.
  • the inventors have found that the air-fuel mixture may not be properly combusted by the ignition operation during reverse rotation of the crankshaft by performing various experiments and analyses. For example, at the time of cold start, the injected fuel is not easily atomized (not easily atomized). For this reason, it has been found that the air-fuel ratio of the air-fuel mixture tends to vary and it is not easy to burn the air-fuel mixture. In this case, the engine cannot be started properly.
  • An object of the present invention is to provide an engine system and a saddle-ride type vehicle that can appropriately start the engine.
  • An engine system includes an engine unit including an engine and a rotation drive unit, and a control unit that controls the engine unit, and the engine is disposed in an intake passage for guiding air to a combustion chamber.
  • a fuel injection device arranged to inject fuel, an ignition device configured to ignite an air-fuel mixture in a combustion chamber, an intake valve that opens and closes an intake port, and an exhaust valve that opens and closes an exhaust port are driven.
  • a valve drive unit configured as described above and a rotation state detection unit that detects a rotation state of the crankshaft, and the rotation drive unit is configured to rotationally drive the crankshaft in the forward direction and the reverse direction.
  • a reverse rotation start operation is performed in which the crankshaft is rotated in the reverse direction and then rotated in the forward direction when the engine is started.
  • the moving portion rotates the crankshaft in the reverse direction so that the crank angle exceeds a predetermined start intake range and reaches a predetermined start ignition range, and the valve drive portion
  • the intake port is opened when the crankshaft rotates in the reverse direction and the crank angle is within the start intake range, and the crank angle is determined in advance when the crankshaft rotates in the forward direction.
  • the intake valve In the normal intake range, the intake valve is driven so that the intake port is opened, and the fuel injection device is in the reverse rotation start operation when the crankshaft rotates in the reverse direction and the crank angle is within the start intake range.
  • the fuel is introduced so that the air-fuel mixture is introduced into the combustion chamber from the intake passage through the intake port at least at one time and when the crankshaft rotates in the positive direction and the crank angle is in the normal intake range.
  • the ignition device ignites the air-fuel mixture in the combustion chamber when the crank angle is in the start ignition range, and the control unit is in the normal rotation of the crankshaft in the reverse rotation start operation. If the rotation state detected by the rotation state detection unit does not satisfy a predetermined start condition before the piston reaches the first compression top dead center, the engine unit is set so that the reverse rotation start operation is performed again. Control.
  • the engine unit performs a reverse rotation start operation when the engine is started.
  • the crankshaft In the reverse rotation starting operation, the crankshaft is rotated in the reverse direction and then rotated in the forward direction.
  • intake air from the intake passage An air-fuel mixture is introduced into the combustion chamber through the mouth. Further, when the crank angle is in the starting ignition range, the air-fuel mixture in the combustion chamber is ignited by the ignition device.
  • the reverse rotation start operation is performed again.
  • the air-fuel mixture is reintroduced into the combustion chamber, and the concentration of fuel in the air-fuel mixture is increased.
  • the reverse rotation start operation is repeated until the rotation state of the crankshaft satisfies the start condition.
  • the concentration of fuel in the mixture becomes sufficiently high, and the mixture is burned appropriately.
  • the crankshaft is rotated so that the crank angle exceeds the angle corresponding to the first compression top dead center. As a result, the engine is properly started.
  • the control unit is configured so that the rotation state detected by the rotation state detection unit satisfies the start condition when the crankshaft rotates in the forward direction in the reverse rotation start operation and before the piston reaches the first compression top dead center.
  • the engine unit may be controlled so that the crankshaft is continuously rotated in the forward direction by the combustion of the air-fuel mixture.
  • the engine unit can shift to normal operation by continuously rotating the crankshaft in the forward direction by combustion of the air-fuel mixture without repeating the reverse rotation starting operation.
  • the starting condition may be that the rotational speed of the crankshaft is higher than a predetermined threshold value. In this case, it can be accurately determined whether or not the air-fuel mixture has been properly combusted.
  • the starting condition may be that the rate of change of the rotational speed of the crankshaft is greater than a predetermined threshold value. In this case, it can be accurately determined whether or not the air-fuel mixture has been properly combusted.
  • the control unit determines that the rotation state detected by the rotation state detection unit is a start condition when the crankshaft rotates in the forward direction in the reverse rotation start operation and the crank angle passes through the normal intake range. If not, the engine unit may be controlled so that the reverse rotation starting operation is performed again.
  • the start preparation condition when the start preparation condition is satisfied at the second time point, the first amount of fuel is injected in preparation for the normal combustion stroke after the crank angle exceeds the angle corresponding to the compression top dead center.
  • the air-fuel mixture is introduced into the combustion chamber in the intake range.
  • the start preparation condition is not satisfied at the second time point, the second amount of fuel is injected in preparation for the next reverse rotation start operation, and the air-fuel mixture is introduced into the combustion chamber in the normal intake range. In this way, an appropriate amount of fuel is injected for each of the normal combustion stroke and the next reverse rotation start operation.
  • the first amount of fuel is injected in preparation for the normal combustion stroke after the crank angle exceeds the angle corresponding to the compression top dead center, and the normal intake air In the range, the air-fuel mixture is introduced into the combustion chamber.
  • a second amount of fuel is injected in preparation for the next reverse rotation start operation, and the air-fuel mixture is introduced into the combustion chamber in the normal intake range.
  • the fuel injection device burns through the intake passage from the intake passage when the crankshaft rotates in the reverse direction and the crank angle is in the start intake range.
  • a third amount of fuel is injected so that the air-fuel mixture is introduced into the chamber, and in the second reverse rotation start operation when the engine is started, the crank angle is the start intake air when the crankshaft rotates in the reverse direction.
  • a fourth amount of fuel different from the third amount may be injected so that the air-fuel mixture is introduced into the combustion chamber from the intake passage through the intake port when in the range.
  • the amount of fuel introduced into the combustion chamber in the second reverse rotation start operation is different from the amount of fuel introduced into the combustion chamber in the first reverse rotation start operation.
  • the concentration of the fuel in the air-fuel mixture can be gradually increased while preventing the fuel from being consumed wastefully.
  • the valve drive unit drives the exhaust valve so that the exhaust port is opened when the crank angle is in the normal exhaust range when the crankshaft rotates in the forward direction and in the reverse direction.
  • a range may be included.
  • the exhaust port is opened when the crank angle is in the normal exhaust range. Further, when the crankshaft rotates in the reverse direction in the reverse rotation starting operation and the crank angle is in the normal exhaust range, the exhaust port is opened. As described above, the exhaust port is opened in the same crank angle range when the crankshaft rotates in the forward direction and when the crankshaft rotates in the reverse direction, so that the complexity of the configuration of the valve drive unit can be suppressed.
  • the start intake range is included in the normal exhaust range
  • the intake port and the exhaust port are simultaneously opened when the crankshaft rotates in the reverse direction in the reverse rotation start operation.
  • the flow rate of the gas from the intake passage toward the combustion chamber is low, the fuel is difficult to atomize, and the concentration of the fuel in the mixture is difficult to increase.
  • the concentration of the fuel in the mixture is sufficiently increased, and the mixture is appropriately combusted. Thereby, the engine can be started appropriately.
  • a saddle-ride type vehicle includes a main body having drive wheels and the engine system that generates power for rotating the drive wheels.
  • the engine can be started appropriately.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system.
  • FIG. 3 is a diagram for explaining the normal operation of the engine unit.
  • FIG. 4 is a diagram for explaining the reverse rotation start operation of the engine unit.
  • FIG. 5 is a diagram for explaining the reverse rotation start operation of the engine unit.
  • FIG. 6 is a schematic diagram for explaining the first and second combustion determinations and the repetition of the reverse rotation starting operation.
  • FIG. 7 is a schematic diagram for explaining the first and second combustion determinations and the repetition of the reverse rotation starting operation.
  • FIG. 8 is a diagram for explaining the effect of repeating the reverse rotation starting operation.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system.
  • FIG. 3 is a diagram for explaining the normal operation of the engine unit.
  • FIG. 9 is a diagram for explaining the effect of repeating the reverse rotation starting operation.
  • FIG. 10 is a flowchart of the engine start process.
  • FIG. 11 is a flowchart of the engine start process.
  • FIG. 12 is a flowchart of the engine start process.
  • FIG. 13 is a diagram for explaining another example of the fuel injection amount.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction.
  • a handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
  • the seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided.
  • the engine unit EU includes, for example, a single cylinder engine 10.
  • the engine system 200 is configured by the ECU 6 and the engine unit EU.
  • a rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine 10.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system 200.
  • the engine unit EU includes an engine 10 and a starter / generator 14.
  • the engine 10 includes a piston 11, a connecting rod 12, a crankshaft 13, an intake valve 15, an exhaust valve 16, a valve drive unit 17, a spark plug 18 and an injector 19.
  • the piston 11 is provided so as to be able to reciprocate in the cylinder 31 and is connected to the crankshaft 13 via a connecting rod 12.
  • the reciprocating motion of the piston 11 is converted into the rotational motion of the crankshaft 13.
  • a starter / generator 14 is provided on the crankshaft 13.
  • the starter / generator 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13.
  • the forward direction is the rotational direction of the crankshaft 210 during normal operation of the engine 10, and the reverse direction is the opposite direction.
  • the starter / generator 14 directly transmits torque to the crankshaft 13 without using a reduction gear.
  • the rotation of the crankshaft 13 in the positive direction (forward rotation) is transmitted to the rear wheel 7 so that the rear wheel 7 is rotationally driven.
  • a combustion chamber 31 a is formed on the piston 11.
  • the combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23.
  • An intake valve 15 is provided to open and close the intake port 21, and an exhaust valve 16 is provided to open and close the exhaust port 23.
  • the intake valve 15 and the exhaust valve 16 are driven by a valve drive unit 17.
  • the intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside.
  • the spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a.
  • the injector 19 is configured to inject fuel into the intake passage 22.
  • ECU6 contains CPU (central processing unit) and memory, for example.
  • a microcomputer may be used instead of the CPU and the memory.
  • a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, and a current sensor 44 are electrically connected to the ECU 6.
  • the starter switch 41 is provided, for example, on the handle 4 in FIG. 1 and is operated by the driver.
  • the intake pressure sensor 42 detects the pressure in the intake passage 22.
  • the crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle).
  • the current sensor 44 detects a current (hereinafter referred to as a motor current) flowing through the starter / generator 14.
  • the operation of the starter switch 41 is given to the ECU 6 as an operation signal, and the detection results by the intake pressure sensor 42, the crank angle sensor 43 and the current sensor 44 are given to the ECU 6 as detection signals.
  • the ECU 6 controls the starter / generator 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
  • the engine 10 is started when the starter switch 41 of FIG. 2 is turned on, and the engine 10 is stopped when a main switch (not shown) is turned off. Further, the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied.
  • the idle stop condition includes, for example, a condition relating to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotational speed of the engine 10.
  • the idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated.
  • an idle stop state a state where the engine 10 is automatically stopped when the idle stop condition is satisfied.
  • the engine unit EU performs a reverse rotation start operation when the engine 10 is started. Thereafter, when the crank angle exceeds the angle corresponding to the first compression top dead center, the engine unit EU performs normal operation.
  • FIG. 3 is a diagram for explaining a normal operation of the engine unit EU.
  • 4 and 5 are diagrams for explaining the reverse rotation start operation of the engine unit EU.
  • the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center
  • the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke Called dead point.
  • the bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center
  • the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center.
  • the rotation angle of the crankshaft 13 in the range of two rotations (720 degrees) is represented by one circle. Two rotations of the crankshaft 13 correspond to one cycle of the engine 10.
  • the crank angle sensor 43 in FIG. 2 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees).
  • the ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
  • the angle A0 is a crank angle when the piston 11 (FIG. 2) is located at the exhaust top dead center
  • the angle A2 is a crank angle when the piston 11 is located at the compression top dead center
  • the angle A1 is a crank angle when the piston 11 is located at the intake bottom dead center
  • the angle A3 is a crank angle when the piston 11 is located at the expansion bottom dead center.
  • Arrow R1 represents the direction of change of the crank angle when the crankshaft 13 is rotating forward
  • arrow R2 represents the direction of change of the crank angle when the crankshaft 13 is rotated reversely.
  • Arrows P1 to P4 indicate the moving direction of the piston 11 when the crankshaft 13 rotates forward
  • arrows P5 to P8 indicate the moving direction of the piston 11 when the crankshaft 13 rotates reversely.
  • angle A11 fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2).
  • the angle A11 is located on the more advanced side than the angle A0.
  • the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2).
  • the angle A12 is positioned more retarded than the angle A11 and more advanced than the angle A0, and the angle A13 is positioned more retarded than the angle A1.
  • the range from the angle A12 to the angle A13 is an example of the normal intake range.
  • the air-fuel mixture containing air and fuel is introduced into the combustion chamber 31a (FIG. 2) through the intake port 21.
  • the air-fuel mixture in the combustion chamber 31a (FIG. 2) is ignited by the spark plug 18 (FIG. 2).
  • the angle A14 is located on the more advanced side than the angle A2.
  • an explosion combustion of the air-fuel mixture
  • the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2) in the range from the angle A15 to the angle A16.
  • the angle A15 is located on the more advanced side than the angle A3, and the angle A16 is located on the more retarded side than the angle A0.
  • the range from the angle A15 to the angle A16 is an example of the normal exhaust range.
  • the gas after combustion is discharged
  • the reverse rotation starting operation is repeated until the air-fuel mixture is successfully burned.
  • Successful combustion of the air-fuel mixture means that the air-fuel mixture is properly combusted by ignition.
  • the reverse rotation starting operation will be specifically described.
  • the crank angle is adjusted to a predetermined reverse rotation start range.
  • the reverse rotation start range is, for example, in the range from angle A0 to angle A2 in the positive direction, and preferably in the range from angle A13 to angle A2.
  • the reverse rotation start range is a range from the angle A30a to the angle A30b.
  • the angle ranges A30a and A30b are in the range from the angle range A13 to the angle A2.
  • the crankshaft 13 is rotated in the reverse direction from the state where the crank angle is in the reverse rotation start range.
  • the crank angle changes in the direction of arrow R2.
  • the piston 11 descends in the range from the angle A2 to the angle A1
  • the piston 11 rises in the range from the angle A1 to the angle A0
  • the angle A0 to the angle A3 The piston 11 descends in the range, and the piston 11 rises in the range from the angle A3 to the angle A2.
  • the moving direction of the piston 11 when the crankshaft 13 rotates in the reverse direction is opposite to the moving direction of the piston 11 when the crankshaft 13 rotates in the forward direction.
  • angle A23 fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2).
  • the angle A23 is located on the more advanced side than the angle A0.
  • the fuel injection amount at the angle A23 in the first reverse rotation start operation is different from the fuel injection amount at the angle A23 in the second and subsequent reverse rotation start operations.
  • the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2).
  • the range from the angle A21 to the angle A22 is an example of the starting intake air range.
  • the angles A21 and A22 are in the range from the angle A0 to the angle A3. In this case, since the piston 11 rises in the range from the angle A1 to the angle A0, air and fuel are hardly introduced into the combustion chamber 31a in the range from the angle A13 to the angle A12.
  • the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2).
  • the piston 11 descends in the range from the angle A0 to the angle A3, the gas is guided from the exhaust passage 24 to the combustion chamber 31a.
  • the unburned air-fuel mixture remaining in the exhaust passage 24 is guided to the combustion chamber 31a.
  • the angle A31a is located on the more advanced side than the angle A31, and the angle A31 is located on the more advanced side than the angle A2.
  • the angle A31 is an example of the starting ignition range.
  • the air-fuel mixture is ignited and the crankshaft 13 is rotated in the positive direction. Thereby, as shown in FIG. 5, the crank angle changes in the direction of arrow R1.
  • the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2) in the range from the angle A15 to the angle A16. If combustion of the air-fuel mixture has been successful immediately before, the gas after combustion is guided from the combustion chamber 31a to the exhaust passage 24. On the other hand, if the combustion of the air-fuel mixture has failed, the unburned air-fuel mixture is guided from the combustion chamber 31a to the exhaust passage 24.
  • the fuel injection amount at the angle A11 of the reverse rotation starting operation differs depending on the result of the determination as to whether or not the combustion of the air-fuel mixture has succeeded.
  • the combustion determination as to whether or not the combustion of the air-fuel mixture has been successful is performed. Is called.
  • the first combustion determination is performed at the angle A32
  • the second combustion determination is performed at the angle A33.
  • the time point when the crank angle becomes the angle A33 is an example of the first time point
  • the time point when the crank angle becomes the angle A32 is an example of the second time point.
  • the angle A32 is located on the more advanced side than the angle A15
  • the angle A33 is located on the more retarded side than the angle A13.
  • the first combustion determination it is determined whether or not the rotation state of the crankshaft 13 satisfies a predetermined first condition based on the detection result of the crank angle sensor 43 (FIG. 2).
  • the second combustion determination it is determined whether the rotation state of the crankshaft 13 satisfies a predetermined second condition based on the detection result of the crank angle sensor 43 (FIG. 2).
  • the rotational state of the crankshaft 13 is, for example, the rotational speed of the crankshaft 13 or the rate of change (rotational acceleration) of the rotational speed of the crankshaft 13.
  • the first and second conditions are, for example, that the rotational speed or rotational acceleration of the crankshaft 13 is higher than a predetermined threshold value.
  • the threshold value of the first condition and the threshold value of the second condition are different from each other. Thereby, it is possible to accurately determine whether or not the air-fuel mixture has been combusted appropriately.
  • Whether or not the combustion of the air-fuel mixture has succeeded is determined based on the results of the first and second combustion determinations. In this example, when the first condition is satisfied in the first combustion determination and the second condition is satisfied in the second combustion determination, it is determined that the combustion of the air-fuel mixture is successful, In this case, it is determined that the combustion of the air-fuel mixture has failed.
  • the determination of whether or not the air-fuel mixture has been successfully burned is not limited to the above example.
  • the second combustion determination is performed when the crank angle approaches the angle A2 corresponding to the compression top dead center. Therefore, when the second condition is satisfied in the second combustion determination, there is a high possibility that the air-fuel mixture has been successfully burned. Therefore, even if the first condition is not satisfied in the first combustion determination, even if the second condition is satisfied in the second combustion determination, it is determined that the combustion of the air-fuel mixture is successful. Good. Further, even when the first condition is satisfied in the first combustion determination, it is determined that the combustion of the air-fuel mixture has failed when the second condition is not satisfied in the second combustion determination. Good.
  • 6 and 7 are schematic diagrams for explaining the first and second combustion determinations and the repetition of the reverse rotation starting operation. 6 and 7 show the relationship between the crank angle and the rotational load of the crankshaft 13 as a reference.
  • the crank angle is represented by the horizontal axis
  • the rotational load of the crankshaft 13 is represented by the vertical axis.
  • the rotational load on the crankshaft 13 is largest at an angle A2 corresponding to the compression top dead center.
  • a load for driving the intake valve 15 is applied to the crankshaft 13 between the angle A1 and the angle A0, so that the rotational load on the crankshaft 13 increases.
  • a load for driving the exhaust valve 16 is applied to the crankshaft 13 between the angle A0 and the angle A3, the rotational load on the crankshaft 13 increases.
  • fuel is injected at an angle A23 while the crankshaft 13 is rotated in the reverse direction.
  • the fuel injection amount at the angle A23 is set to V1.
  • the amount V1 is an example of a third amount.
  • the air-fuel mixture is successfully burned. Thereby, the air-fuel mixture is appropriately combusted and the crankshaft 13 is driven in the positive direction. Therefore, the first condition is satisfied by the first combustion determination at the angle A32.
  • the fuel injection amount at the angle A11 is set to V2.
  • the amount V2 is an amount prepared for ignition at an angle A14 in normal operation.
  • the amount V2 is an example of the second amount.
  • the second condition is satisfied in the second combustion determination at the angle A33.
  • the engine unit EU shifts to the normal operation without repeating the reverse rotation starting operation. Specifically, the crank angle exceeds the angle A2 corresponding to the compression top dead center, and the air-fuel mixture is ignited at the angle A14.
  • the combustion of the air-fuel mixture by ignition at the angle A31 fails. Therefore, the first condition is not satisfied in the first combustion determination at the angle A32.
  • the fuel injection amount is set to V2a at the angle A11.
  • the amount V2a is an amount prepared for ignition in the next reverse rotation start operation, and is smaller than the amount V2 in the example of FIG.
  • the amount V2a is an example of a first amount. In this case, it is possible to prevent the fuel from being wasted.
  • the fuel injection amount at the angle A23 during the reverse rotation is set to V1a.
  • the amount V1a is an example of the fourth amount, and is smaller than the amount V1 in the first reverse rotation start operation. In this case, it is possible to prevent the fuel from being wasted.
  • the combustion of the air-fuel mixture is successful by ignition at the angle A31 in the second reverse rotation start operation. Thereby, the air-fuel mixture is appropriately combusted and the crankshaft 13 is driven in the positive direction. Therefore, the first condition is satisfied by the first combustion determination at the angle A32. In this case, the fuel injection amount at the angle A11 is set to V2. Thereafter, the second condition is satisfied in the second combustion determination at the angle A33. Thereby, the engine unit EU shifts to the normal operation without repeating the reverse rotation starting operation.
  • FIG. 8 and FIG. 9 are diagrams for explaining the effect of repeating the reverse rotation starting operation.
  • An air-fuel mixture is generated when the injected fuel is vaporized in the intake passage 22.
  • the temperature of the engine 10 is high, the fuel is easily vaporized and the air-fuel mixture is easily generated.
  • the temperature of the engine 10 is low, the fuel is difficult to vaporize and the air-fuel mixture is difficult to be generated.
  • the temperature of the engine 10 is high immediately after the engine 10 is stopped, and the temperature of the engine 10 is lowered when a long time has elapsed since the engine 10 was stopped. Therefore, for example, at the time of restart from the idle stop state, the fuel is easily vaporized and the air-fuel mixture is easily generated.
  • the time of cold start the fuel is difficult to vaporize and the air-fuel mixture is difficult to be generated.
  • the air-fuel mixture is introduced into the combustion chamber 31a from the intake passage 22 through the intake port 21 in the range from the angle A21 to the angle A22.
  • the exhaust port 23 is also open, gas is introduced from the exhaust port 23 into the combustion chamber 31a.
  • the flow velocity of the gas from the intake passage 22 to the combustion chamber 31a becomes lower than when only the intake port 21 is opened. Thereby, a part of the air-fuel mixture in the intake passage 22 may stay in the intake passage 22 without being introduced into the combustion chamber 31a.
  • the air-fuel mixture concentration means the concentration of fuel in the air-fuel mixture.
  • the fuel is not easily atomized.
  • the air-fuel mixture is not sufficiently introduced from the intake passage 22 into the combustion chamber 31a, and the fuel that has not been vaporized is not easily atomized. Further, the air-fuel mixture is not easily generated in the intake passage 22 during cold start. Therefore, in one reverse rotation start operation, the mixture concentration in the combustion chamber 31a tends to be lower than an appropriate value. As a result, as shown in FIG. 8C, the combustion of the air-fuel mixture due to ignition at the angle A31 tends to fail.
  • the air-fuel mixture is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A12 to the angle A13.
  • the air inlet 21 is opened except for the range (overlap) from the angle A12 to the angle A16 (FIG. 5). Therefore, the flow rate of gas from the intake passage 22 to the combustion chamber 31a is relatively fast.
  • the air-fuel mixture in the intake passage 22 is efficiently introduced into the combustion chamber 31a, and the fuel is easily atomized by the gas flow through the intake passage 22.
  • the rotation direction of the crankshaft 13 is switched to the reverse direction.
  • the second reverse rotation start operation will be described.
  • fuel is injected into the intake passage 22 at an angle A23 while the crankshaft 13 is rotated in the reverse direction.
  • FIG. 9C in the range from the angle A21 to the angle A22, the air-fuel mixture is introduced from the intake passage 22 into the combustion chamber 31a through the intake port 21.
  • the air-fuel mixture staying in the exhaust passage 24 is introduced into the combustion chamber 31a through the exhaust port 23.
  • the air-fuel mixture in the combustion chamber 31a is injected at the angle A23 of the first reverse rotation start operation (FIG. 8A), and the fuel injected at the angle A11 of the first reverse rotation start operation. (FIG. 8D) and the fuel (FIG. 9B) injected at the angle A23 of the second reverse rotation start operation are included.
  • the fuel in the combustion chamber 31a is accumulated by repeating the reverse rotation starting operation.
  • fuel that has not been vaporized is introduced from the intake passage 22 and the exhaust passage 24 into the combustion chamber 31a.
  • the fuel that has not been vaporized is gradually atomized by flowing between the intake passage 22, the combustion chamber 31 a and the exhaust passage 24. Therefore, fuel atomization proceeds by repeating the reverse rotation starting operation. Furthermore, since the temperature of the engine 10 rises by repeating the reverse rotation starting operation, the fuel is easily vaporized.
  • the air-fuel mixture concentration in the combustion chamber 31a is increased.
  • the air-fuel mixture is successfully burned by ignition at the angle A31.
  • Engine start process ECU6 performs an engine start process based on the control program previously memorize
  • 10 to 12 are flowcharts of the engine start process.
  • the engine start process is performed, for example, when a main switch (not shown) is turned on or when the engine 10 shifts to an idle stop state.
  • the ECU 6 determines whether or not a predetermined start condition is satisfied (step S1).
  • the start condition is, for example, that the starter switch 41 (FIG. 2) is turned on.
  • the start condition is that the idle stop cancellation condition is satisfied.
  • step S2 the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated in the reverse direction (step S2).
  • crank angle is not in the reverse rotation start range (range from angle A30a to A30b) at the start of the engine start process, the crank angle is reversely rotated before the crankshaft 13 is reversely rotated as described above. It may be adjusted to the start range.
  • the ECU 6 determines whether or not the reverse rotation fuel injection condition is satisfied (step S3).
  • the reverse rotation fuel injection condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A23 of FIG.
  • the ECU 6 repeats the process of step S3.
  • the ECU 6 controls the injector 19 (FIG. 2) so that the fuel is injected into the intake passage 22 (FIG. 2) (step S4). In this case, the fuel injection amount is set to V1.
  • the ECU 6 determines whether or not the reverse rotation energization start condition is satisfied (step S5).
  • the reverse rotation energization start condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A31a in FIG.
  • the ECU 6 repeats the process of step S5.
  • the ECU 6 starts energizing the ignition coil (step S6).
  • the ECU 6 determines whether or not the reverse rotation ignition condition is satisfied (step S7).
  • the reverse rotation ignition condition is that the motor current obtained from the detection result of the current sensor 44 (FIG. 2) reaches a predetermined threshold value.
  • the motor current increases as the crank angle approaches the angle A2 in FIG. In this example, when the crank angle reaches the angle A31 in FIG. 4, the motor current reaches the threshold value.
  • step S7 the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated in the forward direction (step S8), and the mixture in the combustion chamber 31a is ignited.
  • the spark plug 18 is controlled (step S9).
  • the ECU 6 determines whether or not the first combustion determination condition is satisfied (step S10).
  • the first combustion determination condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A32 of FIG.
  • the ECU 6 repeats the process of step S10.
  • the ECU 6 performs the first combustion determination (step S11).
  • the ECU 6 determines whether or not the normal rotation fuel injection condition is satisfied (step S12).
  • the forward rotation fuel injection condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A11 in FIG.
  • the ECU 6 repeats the process of step S12.
  • the ECU 6 controls the injector 19 (FIG. 2) so that the fuel is injected into the intake passage 22 (FIG. 2) (step S13).
  • the fuel injection amount is set based on the result of the first combustion determination in step S11. As described above, when the first condition is satisfied in the first combustion determination, the fuel injection amount is set to V2. On the other hand, when the first condition is not satisfied in the first combustion determination, the fuel injection amount is set to V2a which is smaller than V2.
  • the ECU 6 determines whether or not the second combustion determination condition is satisfied (step S14).
  • the second combustion determination condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A33 in FIG.
  • the ECU 6 repeats the process of step S14.
  • the ECU 6 performs a second combustion determination (step S15).
  • step S16 the ECU 6 burns the air-fuel mixture by ignition in step S9 in FIG. 11 based on the results of the first combustion determination in step S11 in FIG. 11 and the second combustion determination in step S14 in FIG. It is determined whether or not successful (step S16).
  • the ECU 6 ends the engine start process.
  • the crank angle exceeds the angle corresponding to the first compression top dead center due to the combustion energy of the air-fuel mixture, and the engine unit EU shifts to the normal operation of FIG.
  • step S18 determines whether or not the reverse rotation fuel injection condition is satisfied.
  • the reverse rotation fuel injection condition is the same as step S3 in FIG.
  • the ECU 6 repeats the process of step S18.
  • the ECU 6 controls the injector 19 (FIG. 2) so that the fuel is injected into the intake passage 22 (FIG. 2) (step S19).
  • the fuel injection amount is set to V1a smaller than the injection amount V1 in step S4.
  • the ECU 6 returns to the process of step S5. Thereby, the reverse rotation starting operation is repeated.
  • the first combustion determination is performed at the angle A32 before the crank angle reaches the normal exhaust range, and the crank angle is within the normal intake range.
  • the second combustion determination is performed at an angle A33 after passing through the above.
  • the injection amount of combustion at the angle A11 is adjusted based on the result of the first combustion determination. Accordingly, it is possible to inject an amount of fuel suitable for each of the ignition in the normal operation and the ignition in the next reverse rotation start operation. Therefore, an air-fuel mixture having a concentration suitable for each can be introduced into the combustion chamber 31a.
  • the fuel injection amount at the angle A23 in the first reverse rotation start operation is different from the fuel injection amount at the angle A23 in the second and subsequent reverse rotation start operations.
  • the air-fuel mixture concentration in the combustion chamber 31a can be gradually increased while preventing wasteful consumption of fuel.
  • the fuel injection amount at the angle A23 in the first reverse rotation start operation is set to V1
  • the angle A23 in the second and subsequent reverse rotation start operations is set.
  • the present invention is not limited to this.
  • FIG. 13 is a diagram for explaining another example of the fuel injection amount.
  • the horizontal axis indicates the number of reverse rotation starting operations
  • the vertical axis indicates the fuel injection amount at the angle A23.
  • the fuel injection amount at the angle A11 when the combustion of the air-fuel mixture fails in the reverse rotation start operation also gradually decreases as the number of reverse rotation start operations increases, as in the example of FIG. May be adjusted.
  • the fuel injection amount at the angle A11 is adjusted based on the results of the first and second combustion determinations. However, regardless of the results of the first and second combustion determinations, the fuel injection amount at the angle A11 is adjusted.
  • the fuel injection amount may be constant.
  • the fuel injection amount at the angle A23 is adjusted based on the number of repetitions of the reverse rotation starting operation. However, the amount of fuel at the angle A23 is adjusted regardless of the number of repetitions of the reverse rotation starting operation.
  • the injection amount may be constant.
  • the exhaust port 23 is opened in the range from the angle A16 to the angle A15 when the crankshaft 13 rotates in the reverse direction, but the present invention is not limited to this.
  • the air-fuel mixture remaining in the exhaust passage 24 is introduced into the combustion chamber 31a through the exhaust port 23 in the range from the angle A16 to the angle A15. If the exhaust port 23 is not opened in the range from the angle A16 to the angle A15, the air-fuel mixture is not introduced from the exhaust passage 24 into the combustion chamber 31a in this way.
  • the air-fuel mixture is repeatedly introduced into the combustion chamber 31a from the intake passage 22 by repeating the reverse rotation starting operation, the air-fuel mixture concentration in the combustion chamber 31a is not opened even in the above range. Is gradually increased. Therefore, the exhaust port 23 does not have to be opened in the above range when the crankshaft 13 rotates in the reverse direction.
  • the intake port 21 is opened in the range from the angle A13 to the angle A12 when the crankshaft 13 rotates in reverse, but the intake port 21 may not be opened in this range.
  • the above embodiment is an example in which the present invention is applied to a motorcycle.
  • the present invention is not limited to this, and the present invention is applied to other saddle riding type vehicles such as a motor tricycle or an ATV (All Terrain Vehicle). You may apply.
  • the engine unit EU is an example of an engine unit
  • the engine 10 is an example of an engine
  • the starter / generator 14 is an example of a rotational drive unit
  • the ECU 6 is an example of a control unit
  • an injector 19 is an example of a fuel injection device
  • an ignition plug 18 is an example of an ignition device
  • a valve drive unit 17 is an example of a valve drive unit
  • an intake valve 15 is an example of an intake valve
  • an exhaust valve 16 is an exhaust gas.
  • the crank angle sensor 43 is an example of a rotation state detection unit
  • the crankshaft 13 is an example of a crankshaft.
  • the first and second conditions are examples of the start condition, and the first condition is an example of the start preparation condition.
  • the motorcycle 100 is an example of a saddle-ride type vehicle
  • the rear wheel 7 is an example of a driving wheel
  • the vehicle body 1 is an example of a main body.
  • the present invention can be applied to various engine systems and saddle riding type vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

エンジンの始動時に、クランク軸が逆方向に回転された後に正方向に回転される逆回転始動動作が行われる。逆回転始動動作において、燃料噴射装置は、クランク軸の逆方向の回転時であってクランク角が始動吸気範囲にあるときおよびクランク軸の正方向の回転時であってクランク角が通常吸気範囲にあるときの少なくとも一方で吸気通路から吸気口を通して燃焼室に混合気が導入されるように燃料を噴射し、点火装置は、クランク角が始動点火範囲にあるときに燃焼室内の混合気に点火する。逆回転始動動作におけるクランク軸の正方向の回転時であってピストンが最初の圧縮上死点に達する前に、回転状態検出部により検出される回転状態が予め定められた始動条件を満たさない場合、逆回転始動動作が再度行われるようにエンジンユニットが制御される。

Description

エンジンシステムおよび鞍乗り型車両
 本発明は、エンジンシステムおよびそれを備えた鞍乗り型車両に関する。
 自動二輪車等の鞍乗り型車両において、エンジンの始動動作の際には、クランク角が最初の圧縮上死点に対応する角度を超えるために大きなトルクが必要となる。そこで、エンジンの始動性を高めるため、クランク軸を逆方向に回転させる技術がある。
 特許文献1に記載されるエンジンシステムにおいては、エンジンの始動時に、クランク軸が逆方向に回転されつつ燃焼室内に混合気が導入される。燃焼室内で混合気が圧縮される状態で、点火装置による点火動作が行われる。それにより、混合気が燃焼され、燃焼のエネルギーによりクランク軸が正方向に回転駆動される。
特開2014-77405号公報
 発明者らは、種々の実験および解析を行うことにより、クランク軸の逆回転時における点火動作で混合気を適切に燃焼させることができない場合があることを見出した。例えば、冷間始動時には、噴射された燃料が霧化しにくい(霧状になりにくい)。そのため、混合気の空燃比にばらつきが生じやすく、混合気を燃焼させることが容易でないことがわかった。この場合、エンジンを適切に始動することができない。
 本発明の目的は、エンジンを適切に始動することが可能なエンジンシステムおよび鞍乗り型車両を提供することである。
 (1)本発明の一局面に従うエンジンシステムは、エンジンおよび回転駆動部を含むエンジンユニットと、エンジンユニットを制御する制御部とを備え、エンジンは、燃焼室に空気を導くための吸気通路内に燃料を噴射するように配置された燃料噴射装置と、燃焼室内の混合気に点火するように構成された点火装置と、吸気口を開閉する吸気バルブおよび排気口を開閉する排気バルブをそれぞれ駆動するように構成されたバルブ駆動部と、クランク軸の回転状態を検出する回転状態検出部とを含み、回転駆動部は、クランク軸を正方向および逆方向に回転駆動するように構成され、制御部は、エンジンの始動時に、クランク軸が逆方向に回転された後に正方向に回転される逆回転始動動作が行われるようにエンジンユニットを制御し、回転駆動部は、逆回転始動動作において、クランク角が予め定められた始動吸気範囲を超えて予め定められた始動点火範囲に到るようにクランク軸を逆方向に回転させ、バルブ駆動部は、逆回転始動動作において、クランク軸の逆方向の回転時であってクランク角が始動吸気範囲にあるときに吸気口が開かれ、かつクランク軸の正方向の回転時であってクランク角が予め定められた通常吸気範囲にあるときに吸気口が開かれるように吸気バルブを駆動し、燃料噴射装置は、逆回転始動動作において、クランク軸の逆方向の回転時であってクランク角が始動吸気範囲にあるときおよびクランク軸の正方向の回転時であってクランク角が通常吸気範囲にあるときの少なくとも一方で吸気通路から吸気口を通して燃焼室に混合気が導入されるように燃料を噴射し、点火装置は、逆回転始動動作において、クランク角が始動点火範囲にあるときに燃焼室内の混合気に点火し、制御部は、逆回転始動動作におけるクランク軸の正方向の回転時であってピストンが最初の圧縮上死点に達する前に、回転状態検出部により検出される回転状態が予め定められた始動条件を満たさない場合、逆回転始動動作が再度行われるようにエンジンユニットを制御する。
 このエンジンシステムにおいては、エンジンの始動時に、エンジンユニットが逆回転始動動作を行う。逆回転始動動作では、クランク軸が逆方向に回転された後に正方向に回転される。クランク軸の逆方向の回転時であってクランク角が始動吸気範囲にあるときおよびクランク軸の正方向の回転時であってクランク角が通常吸気範囲にあるときの少なくとも一方で、吸気通路から吸気口を通して燃焼室に混合気が導入される。また、クランク角が始動点火範囲にあるときに、点火装置により燃焼室内の混合気に点火される。
 この場合、混合気中の燃料の濃度が十分に高いと、混合気が適切に燃焼され、その燃焼のエネルギーによってクランク軸が正方向に回転駆動される。そのため、クランク軸の回転状態が始動条件を満たす。一方、混合気中の燃料の濃度が低いと、混合気が適切に燃焼されないため、クランク軸の回転状態が始動条件を満たさない。
 そこで、クランク軸の回転状態が始動状態を満たさない場合には、逆回転始動動作が再度行われる。これにより、燃焼室に混合気が再度導入され、混合気中の燃料の濃度が高められる。クランク軸の回転状態が始動条件を満たすまで、逆回転始動動作が繰り返される。最終的に、混合気中の燃料の濃度が十分に高くなり、混合気が適切に燃焼される。それにより、クランク角が最初の圧縮上死点に対応する角度を超えるようにクランク軸が回転される。その結果、エンジンが適切に始動される。
 (2)制御部は、逆回転始動動作におけるクランク軸の正方向の回転時であってピストンが最初の圧縮上死点に達する前に、回転状態検出部により検出される回転状態が始動条件を満たす場合、混合気の燃焼によりクランク軸が正方向に継続的に回転されるようにエンジンユニットを制御してもよい。
 クランク軸の回転状態が始動条件を満たす場合、逆回転始動動作での混合気の燃焼が適切に行われているため、クランク角が最初の圧縮上死点に対応する角度を超える。その場合、逆回転始動動作が繰り返されることなく、混合気の燃焼によってクランク軸が継続的に正方向に回転されることにより、エンジンユニットが通常動作に移行することができる。
 (3)始動条件は、クランク軸の回転速度が予め定められたしきい値より高いことであってもよい。この場合、混合気が適切に燃焼されたか否かを精度良く判定することができる。
 (4)始動条件は、クランク軸の回転速度の変化率が予め定められたしきい値より大きいことであってもよい。この場合、混合気が適切に燃焼されたか否かを精度良く判定することができる。
 (5)制御部は、逆回転始動動作におけるクランク軸の正方向の回転時であってクランク角が通常吸気範囲を経た第1の時点で、回転状態検出部により検出される回転状態が始動条件を満たさない場合、逆回転始動動作が再度行われるようにエンジンユニットを制御してもよい。
 この場合、圧縮上死点に対応するクランク角の近くまでクランク軸が回転された後の第1の時点で、始動条件が満たされたか否かの判定が行われる。そのため、クランク角が最初の圧縮上死点に対応する角度を超えるか否かを精度良く判定することができる。
 (6)燃料噴射装置は、逆回転始動動作におけるクランク軸の正方向の回転時であってクランク角が通常吸気範囲に到る前の第2の時点で、回転状態検出部により検出される回転状態が予め定められた始動準備条件を満たさない場合、クランク角が通常吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように第1の量の燃料を噴射し、第2の時点で、回転状態検出部により検出される回転状態が始動準備条件を満たす場合、クランク角が通常吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように第1の量と異なる第2の量の燃料を噴射してもよい。
 この場合、第2の時点で始動準備条件が満たされると、クランク角が圧縮上死点に対応する角度を超えた後の通常の燃焼行程に備えて第1の量の燃料が噴射され、通常吸気範囲で混合気が燃焼室に導入される。一方、第2の時点で始動準備条件が満たされないと、次の逆回転始動動作に備えて第2の量の燃料が噴射され、通常吸気範囲で混合気が燃焼室に導入される。このように、通常の燃焼行程および次の逆回転始動動作に備えて、各々に適した量の燃料が噴射される。
 また、第2の時点で始動準備条件が満たされた場合であっても、第1の時点で始動条件が満たされない場合、逆回転始動動作が再度行われる。このように、段階的にクランク軸の回転状態に基づく判定が行われることにより、エンジンの始動を適切に行うことができる。
 (7)燃料噴射装置は、逆回転始動動作におけるクランク軸の正方向の回転時であってクランク角が通常吸気範囲に到る前の第2の時点で、回転状態検出部により検出される回転状態が始動条件を満たさない場合、クランク角が通常吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように第1の量の燃料を噴射し、第2の時点で、回転状態検出部により検出される回転状態が始動条件を満たす場合、クランク角が通常吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように第1の量と異なる第2の量の燃料を噴射してもよい。
 この場合、第2の時点で始動条件が満たされると、クランク角が圧縮上死点に対応する角度を超えた後の通常の燃焼行程に備えて第1の量の燃料が噴射され、通常吸気範囲で混合気が燃焼室に導入される。一方、第2の時点で始動条件が満たされないと、次の逆回転始動動作に備えて第2の量の燃料が噴射され、通常吸気範囲で混合気が燃焼室に導入される。このように、始動条件が満たされたか否かによって噴射される燃料の量が異なるので、通常の燃焼行程および次の逆回転始動動作の各々に適した濃度の混合気を燃焼室内に導入することができる。
 (8)燃料噴射装置は、エンジンの始動時における1回目の逆回転始動動作において、クランク軸の逆方向の回転時であってクランク角が始動吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように第3の量の燃料を噴射し、エンジンの始動時における2回目の逆回転始動動作において、クランク軸の逆方向の回転時であってクランク角が始動吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように第3の量と異なる第4の量の燃料を噴射してもよい。
 この場合、2回目の逆回転始動動作において燃焼室に導入される燃料の量が、1回目の逆回転始動動作において燃焼室に導入される燃料の量と異なる。これにより、燃料が無駄に消費されることを防止しつつ、混合気中の燃料の濃度を徐々に高めることができる。
 (9)バルブ駆動部は、クランク軸の正方向および逆方向の回転時に、クランク角が通常排気範囲にあるときに排気口が開かれるように排気バルブを駆動し、通常排気範囲は、始動吸気範囲を含んでもよい。
 この場合、エンジンが始動された後において、クランク角が通常排気範囲にあるときに排気口が開かれる。また、逆回転始動動作におけるクランク軸の逆方向の回転時であってクランク角が通常排気範囲にあるときに排気口が開かれる。このように、クランク軸の正方向の回転時と逆方向の回転時とで同じクランク角の範囲で排気口が開かれることにより、バルブ駆動部の構成の複雑化を抑制することができる。
 一方、始動吸気範囲が通常排気範囲に含まれるので、逆回転始動動作におけるクランク軸の逆方向の回転時に、吸気口および排気口が同時に開かれる。この場合、吸気通路から燃焼室に向かう気体の流速が低くなるので、燃料が霧化しにくくなり、混合気中の燃料の濃度が上がりにくくなる。その場合でも、逆回転始動動作が繰り返されることにより、混合気中の燃料の濃度が十分に高められ、混合気が適切に燃焼される。それにより、エンジンを適切に始動させることができる。
 (10)本発明の他の局面に従う鞍乗り型車両は、駆動輪を有する本体部と、駆動輪を回転させるための動力を発生する上記のエンジンシステムとを備える。
 この鞍乗り型車両においては、上記のエンジンシステムが用いられるので、エンジンが適切に始動される。
 本発明によれば、エンジンを適切に始動することができる。
図1は本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。 図2はエンジンシステムの構成について説明するための模式図である。 図3はエンジンユニットの通常動作について説明するための図である。 図4はエンジンユニットの逆回転始動動作について説明するための図である。 図5はエンジンユニットの逆回転始動動作について説明するための図である。 図6は第1および第2の燃焼判定ならびに逆回転始動動作の繰り返しについて説明するための模式図である。 図7は第1および第2の燃焼判定ならびに逆回転始動動作の繰り返しについて説明するための模式図である。 図8は逆回転始動動作の繰り返しによる効果について説明するための図である。 図9は逆回転始動動作の繰り返しによる効果について説明するための図である。 図10はエンジン始動処理のフローチャートである。 図11はエンジン始動処理のフローチャートである。 図12はエンジン始動処理のフローチャートである。 図13は燃料の噴射量の他の例について説明するための図である。
 以下、本発明の実施の形態に係る鞍乗り型車両の一例として、自動二輪車について図面を用いて説明する。
 (1)自動二輪車
 図1は、本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。図1の自動二輪車100においては、車体1の前部にフロントフォーク2が左右方向に揺動可能に設けられる。フロントフォーク2の上端にハンドル4が取り付けられ、フロントフォーク2の下端に前輪3が回転可能に取り付けられる。
 車体1の略中央上部にシート5が設けられる。シート5の下方にECU(Engine Control Unit;エンジン制御装置)6およびエンジンユニットEUが設けられる。エンジンユニットEUは、例えば単気筒のエンジン10を含む。ECU6およびエンジンユニットEUによりエンジンシステム200が構成される。車体1の後端下部には後輪7が回転可能に取り付けられる。エンジン10により発生される動力により後輪7が回転駆動される。
 (2)エンジンシステム
 図2は、エンジンシステム200の構成について説明するための模式図である。図2に示すように、エンジンユニットEUは、エンジン10および始動兼発電機14を含む。エンジン10は、ピストン11、コンロッド12、クランク軸13、吸気バルブ15、排気バルブ16、バルブ駆動部17、点火プラグ18およびインジェクタ19を備える。
 ピストン11はシリンダ31内で往復動可能に設けられ、コンロッド12を介してクランク軸13に接続される。ピストン11の往復運動がクランク軸13の回転運動に変換される。クランク軸13に始動兼発電機14が設けられる。始動兼発電機14は、スタータモータの機能を有する発電機であり、クランク軸13を正方向および逆方向に回転駆動しかつクランク軸13の回転により電力を発生する。正方向は、エンジン10の通常動作時におけるクランク軸210の回転方向であり、逆方向は、その逆の方向である。始動兼発電機14は、減速機を介することなく直接的にクランク軸13にトルクを伝達する。クランク軸13の正方向の回転(正回転)が後輪7に伝達されることにより、後輪7が回転駆動される。
 ピストン11上に燃焼室31aが形成される。燃焼室31aは、吸気口21を介して吸気通路22に連通し、排気口23を介して排気通路24に連通する。吸気口21を開閉するように吸気バルブ15が設けられ、排気口23を開閉するように排気バルブ16が設けられる。吸気バルブ15および排気バルブ16は、バルブ駆動部17により駆動される。吸気通路22には、外部から流入する空気の流量を調整するためのスロットルバルブTVが設けられる。点火プラグ18は、燃焼室31a内の混合気に点火するように構成される。インジェクタ19は、吸気通路22に燃料を噴射するように構成される。
 ECU6は、例えばCPU(中央演算処理装置)およびメモリを含む。CPUおよびメモリの代わりに、マイクロコンピュータが用いられてもよい。ECU6には、スタータスイッチ41、吸気圧力センサ42、クランク角センサ43および電流センサ44が電気的に接続される。スタータスイッチ41は、例えば図1のハンドル4に設けられ、運転者により操作される。吸気圧力センサ42は、吸気通路22内の圧力を検出する。クランク角センサ43は、クランク軸13の回転位置(以下、クランク角と呼ぶ)を検出する。電流センサ44は、始動兼発電機14に流れる電流(以下、モータ電流と呼ぶ)を検出する。
 スタータスイッチ41の操作が操作信号としてECU6に与えられ、吸気圧力センサ42、クランク角センサ43および電流センサ44による検出結果が検出信号としてECU6に与えられる。ECU6は、与えられた操作信号および検出信号に基づいて、始動兼発電機14、点火プラグ18およびインジェクタ19を制御する。
 (3)エンジンの動作
 例えば、図2のスタータスイッチ41がオンされることによりエンジン10が始動され、図示しないメインスイッチがオフされることにより、エンジン10が停止される。また、予め定められたアイドルストップ条件が満たされることによりエンジン10が自動的に停止され、その後に予め定められたアイドルストップ解除条件が満たされることによりエンジン10が自動的に再始動されてもよい。アイドルストップ条件は、例えば、スロットル開度(スロットルバルブTVの開度)、車速およびエンジン10の回転速度のうち少なくとも1つに関する条件を含む。アイドルストップ解除条件は、例えば、アクセルグリップが操作されてスロットル開度が0より大きくなることである。以下、アイドルストップ条件が満たされることによってエンジン10が自動的に停止された状態をアイドルストップ状態と呼ぶ。
 エンジンユニットEUは、エンジン10の始動時に逆回転始動動作を行う。その後、クランク角が最初の圧縮上死点に対応する角度を超えると、エンジンユニットEUは、通常動作を行う。図3は、エンジンユニットEUの通常動作について説明するための図である。図4および図5は、エンジンユニットEUの逆回転始動動作について説明するための図である。
 以下の説明では、圧縮行程から膨張行程への移行時にピストン11が経由する上死点を圧縮上死点と呼び、排気行程から吸気行程への移行時にピストン11が経由する上死点を排気上死点と呼ぶ。吸気行程から圧縮行程への移行時にピストン11が経由する下死点を吸気下死点と呼び、膨張行程から排気行程への移行時にピストン11が経由する下死点を膨張下死点と呼ぶ。
 図3~図5においては、クランク軸13の2回転(720度)の範囲における回転角度が1つの円で表される。クランク軸13の2回転は、エンジン10の1サイクルに相当する。図2のクランク角センサ43は、クランク軸13の1回転(360度)の範囲における回転位置を検出する。ECU6は、吸気圧力センサ42により検出された吸気通路22内の圧力に基づいて、クランク角センサ43により検出された回転位置が、エンジン10の1サイクルに相当するクランク軸13の2回転のうちいずれの回転に対応するかを判定する。それにより、ECU6は、クランク軸13の2回転(720度)の範囲における回転位置を取得することができる。
 図3~図5において、角度A0は、ピストン11(図2)が排気上死点に位置するときのクランク角であり、角度A2は、ピストン11が圧縮上死点に位置するときのクランク角であり、角度A1は、ピストン11が吸気下死点に位置するときのクランク角であり、角度A3は、ピストン11が膨張下死点に位置するときのクランク角である。矢印R1は、クランク軸13の正回転時におけるクランク角の変化の方向を表し、矢印R2は、クランク軸13の逆回転時におけるクランク角の変化の方向を表す。矢印P1~P4は、クランク軸13の正回転時におけるピストン11の移動方向を表し、矢印P5~P8は、クランク軸13の逆回転時におけるピストン11の移動方向を表す。
 (3-1)通常動作
 図3を参照しながらエンジンユニットEUの通常動作について説明する。通常動作では、クランク軸13(図2)が正方向に回転する。そのため、クランク角が矢印R1の方向に変化する。この場合、矢印P1~P4で示されるように、角度A0から角度A1までの範囲でピストン11(図2)が下降し、角度A1から角度A2までの範囲でピストン11が上昇し、角度A2から角度A3までの範囲でピストン11が下降し、角度A3から角度A0までの範囲でピストン11が上昇する。
 角度A11において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射される。正方向において、角度A11は角度A0よりも進角側に位置する。続いて、角度A12から角度A13までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。正方向において、角度A12は角度A11よりも遅角側でかつ角度A0よりも進角側に位置し、角度A13は角度A1よりも遅角側に位置する。角度A12から角度A13までの範囲が通常吸気範囲の例である。これにより、空気および燃料を含む混合気が吸気口21を通して燃焼室31a(図2)内に導入される。
 次に、角度A14において、点火プラグ18(図2)により燃焼室31a(図2)内の混合気に点火される。正方向において、角度A14は角度A2よりも進角側に位置する。混合気に点火されることにより、燃焼室31a内で爆発(混合気の燃焼)が生じる。混合気の燃焼のエネルギーがピストン11の駆動力となる。その後、角度A15から角度A16までの範囲において、排気バルブ16(図2)により排気口23(図2)が開かれる。正方向において、角度A15は角度A3よりも進角側に位置し、角度A16は角度A0よりも遅角側に位置する。角度A15から角度A16までの範囲が通常排気範囲の例である。これにより、燃焼室31aから排気口23を通して燃焼後の気体が排出される。
 (3-2)逆回転始動動作
 図4および図5を参照しながらエンジンユニットEUの逆回転始動動作について説明する。逆回転始動動作では、クランク軸13が逆回転された後に正回転される。この場合、クランク軸13の逆回転によって燃焼室31a内で混合気が圧縮され、圧縮された混合気に点火されるとともにクランク軸13が正回転される。混合気が適切に燃焼されると、燃焼のエネルギーでクランク軸13の正方向のトルクが十分に大きくなる。それにより、クランク角が最初の圧縮上死点に対応する角度A2を超える。一方、混合気が適切に燃焼されないと、クランク軸13の正方向のトルクが十分に大きくならない。そのため、クランク角が最初の圧縮上死点に対応する角度A2を超えない。そこで、本実施の形態では、混合気の燃焼に成功するまで、逆回転始動動作が繰り返される。混合気の燃焼に成功するとは、点火によって混合気が適切に燃焼されることをいう。以下、逆回転始動動作について具体的に説明する。
 本例では、1回目の逆回転始動動作が行われる前に、クランク角が予め定められた逆転開始範囲に調整される。逆転開始範囲は、正方向において例えば角度A0から角度A2までの範囲にあり、角度A13から角度A2までの範囲にあることが好ましい。図4において、逆転開始範囲は、角度A30aから角度A30bまでの範囲である。角度範囲A30a,A30bは、角度範囲A13から角度A2までの範囲にある。
 図4に示すように、クランク角が逆回転開始範囲にある状態からクランク軸13が逆方向に回転される。それにより、クランク角が矢印R2の方向に変化する。この場合、矢印P5~P8で示されるように、角度A2から角度A1までの範囲でピストン11が下降し、角度A1から角度A0までの範囲でピストン11が上昇し、角度A0から角度A3までの範囲でピストン11が下降し、角度A3から角度A2までの範囲でピストン11が上昇する。クランク軸13の逆回転時におけるピストン11の移動方向は、クランク軸13の正回転時におけるピストン11の移動方向と逆になる。
 角度A23において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射される。逆方向において、角度A23は、角度A0より進角側に位置する。後述のように、本例では、1回目の逆回転始動動作における角度A23での燃料の噴射量と、2回目以降の逆回転始動動作における角度A23での燃料の噴射量とが異なる。
 角度A13から角度A12までの範囲および角度A21から角度A22までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。角度A21から角度A22までの範囲は、始動吸気範囲の例である。逆方向において、角度A21,A22は、角度A0から角度A3までの範囲にある。この場合、角度A1から角度A0までの範囲でピストン11が上昇するので、角度A13から角度A12までの範囲においては、燃焼室31aに空気および燃料がほとんど導入されない。その後、角度A0から角度A3までの範囲でピストン11が下降するので、角度A21から角度A22までの範囲において、吸気通路22から空気および燃料を含む混合気が吸気口21を通して燃焼室31a内に導入される。
 また、角度A16からA15までの範囲において、排気バルブ16(図2)により排気口23(図2)が開かれる。この場合、角度A0から角度A3までの範囲でピストン11が下降するので、排気通路24から燃焼室31aに気体が導かれる。後述のように、2回目以降の逆回転始動動作では、排気通路24に滞留する未燃の混合気が燃焼室31aに導かれる。
 角度31aにおいて、点火プラグ18(図2)に接続された点火コイルへの通電が開始され、角度A31において、点火プラグ18(図2)により燃焼室31a内の混合気に点火される。逆方向において、角度A31aは角度A31より進角側に位置し、角度A31は角度A2より進角側に位置する。角度A31は、始動点火範囲の例である。
 角度A31で混合気に点火されるとともに、クランク軸13が正方向に回転される。それにより、図5に示すように、クランク角が矢印R1の方向に変化する。図3の通常動作と同様に、角度A15から角度A16までの範囲において、排気バルブ16(図2)により排気口23(図2)が開かれる。直前で混合気の燃焼に成功していると、燃焼室31aから排気通路24に燃焼後の気体が導かれる。一方、混合気の燃焼に失敗していると、燃焼室31aから排気通路24に未燃の混合気が導かれる。
 角度A11において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射され、角度A12から角度A13までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。そのため、吸気通路22から燃焼室31aに混合気が導入される。後述のように、本例では、混合気の燃焼に成功したか否かの判定の結果によって逆回転始動動作の角度A11における燃料の噴射量が異なる。
 逆回転始動動作では、角度A31における点火後であって、クランク角が最初の圧縮上死点に対応する角度A2に達する前に、混合気の燃焼に成功したか否かについての燃焼判定が行われる。本例では、角度A32において、第1の燃焼判定が行われ、角度A33において、第2の燃焼判定が行われる。クランク角が角度A33となる時点が第1の時点の例であり、クランク角が角度A32となる時点が第2の時点の例である。正方向において、角度A32は、角度A15よりも進角側に位置し、角度A33は、角度A13よりも遅角側に位置する。
 第1の燃焼判定では、クランク角センサ43(図2)の検出結果に基づいて、クランク軸13の回転状態が予め定められた第1の条件を満たすか否かが判定される。同様に、第2の燃焼判定では、クランク角センサ43(図2)の検出結果に基づいて、クランク軸13の回転状態が予め定められた第2の条件を満たすか否かが判定される。
 クランク軸13の回転状態は、例えば、クランク軸13の回転速度、またはクランク軸13の回転速度の変化率(回転加速度)である。第1および第2の条件は、例えば、クランク軸13の回転速度または回転加速度が予め定められたしきい値より高いことである。この場合、第1の条件のしきい値と第2の条件のしきい値とは互いに異なる。これにより、混合気が適切に燃焼されたか否かを精度良く判定することができる。
 第1および第2の燃焼判定の結果に基づいて、混合気の燃焼に成功したか否かが判定される。本例では、第1の燃焼判定で第1の条件が満たされ、かつ第2の燃焼判定で第2の条件が満たされた場合に、混合気の燃焼に成功したと判定され、それ以外の場合に、混合気の燃焼に失敗したと判定される。
 混合気の燃焼に成功したか否かの判定は、上記の例に限らない。第1の燃焼判定における第1の条件および第2の燃焼判定における第2の条件の少なくとも一方が満たされた場合に、混合気の燃焼に成功したと判定されてもよい。例えば、第2の燃焼判定は、クランク角が圧縮上死点に対応する角度A2に近づいた時点で行われる。そのため、第2の燃焼判定で第2の条件が満たされる場合、混合気の燃焼に成功している可能性が高い。そこで、第1の燃焼判定で第1の条件が満たされない場合であっても、第2の燃焼判定で第2の条件が満たされた場合に、混合気の燃焼に成功したと判定されてもよい。また、第1の燃焼判定で第1の条件が満たされた場合であっても、第2の燃焼判定で第2の条件が満たされない場合に、混合気の燃焼に失敗したと判定されてもよい。
 あるいは、第1の燃焼判定時におけるクランク軸13の回転速度および第2の燃焼判定時におけるクランク軸13の回転速度の両方を考慮して、混合気の燃焼に成功したか否かの判定が行われてもよい。例えば、第1の燃焼判定時におけるクランク軸13の回転速度と第2の燃焼判定時におけるクランク軸13の回転速度の平均値が、予め定められた値より大きい場合に、混合気の燃焼に成功したと判定されてもよい。同様に、第1の燃焼判定時におけるクランク軸13の回転加速度および第2の燃焼判定時におけるクランク軸13の回転加速度の両方を考慮して、混合気の燃焼に成功したか否かの判定が行われてもよい。
 混合気の燃焼に成功した場合、エンジンユニットEUは図3の通常動作に移行する。一方、混合気の燃焼に失敗した場合、混合気の燃焼に成功するまで逆回転始動動作が繰り返される。
 図6および図7は、第1および第2の燃焼判定ならびに逆回転始動動作の繰り返しについて説明するための模式図である。図6および図7には、クランク角とクランク軸13の回転負荷との関係が参考として示される。クランク角は横軸で表され、クランク軸13の回転負荷は縦軸で表される。
 図6および図7に示すように、クランク軸13の回転負荷は、圧縮上死点に対応する角度A2で最も大きくなる。また、図6および図7の例では、角度A1と角度A0との中間において、吸気バルブ15を駆動するための負荷がクランク軸13に加わるため、クランク軸13の回転負荷が大きくなる。また、角度A0と角度A3との中間において、排気バルブ16を駆動するための負荷がクランク軸13に加わるため、クランク軸13の回転負荷が大きくなる。
 図6の例では、クランク軸13が逆方向に回転されつつ角度A23で燃料が噴射される。1回目の逆回転始動動作では、角度A23での燃料の噴射量がV1に設定される。量V1は、第3の量の例である。
 角度A31において、混合気の燃焼に成功する。それにより、混合気が適切に燃焼され、クランク軸13が正方向に駆動される。したがって、角度A32における第1の燃焼判定で第1の条件が満たされる。第1の燃焼判定で第1の条件が満たされた場合、角度A11での燃料の噴射量がV2に設定される。量V2は、通常動作における角度A14での点火に備えた量である。量V2は、第2の量の例である。
 その後、角度A33における第2の燃焼判定で第2の条件が満たされる。このように、第1および第2の燃焼判定で第1および第2の条件がそれぞれ満たされる場合、逆回転始動動作が繰り返されることなく、エンジンユニットEUが通常動作に移行する。具体的には、クランク角が圧縮上死点に対応する角度A2を超え、角度A14で混合気に点火される。
 図7の例について、図6の例と異なる点を説明する。図7の例では、1回目の逆回転始動動作において、角度A31での点火による混合気の燃焼に失敗する。そのため、角度A32における第1の燃焼判定で第1の条件が満たされない。第1の燃焼判定で第1の条件が満たされない場合、角度A11で燃料の噴射量がV2aに設定される。量V2aは、次の逆回転始動動作での点火に備えた量であり、図6の例の量V2よりも少ない。量V2aは、第1の量の例である。この場合、燃料が無駄に消費されることが防止される。
 その後、角度A33における第2の燃焼判定でも第2の条件が満たされない。このように、第1および第2の燃焼判定で第1および第2の条件がそれぞれ満たされない場合、クランク軸13の回転方向が再び逆方向に切り替えられ、逆回転始動動作が繰り返される。
 2回目以降の逆回転始動動作では、逆回転時における角度A23での燃料の噴射量がV1aに設定される。量V1aは、第4の量の例であり、1回目の逆回転始動動作での量V1よりも少ない。この場合、燃料が無駄に消費されることが防止される。
 2回目の逆回転始動動作における角度A31での点火により、混合気の燃焼に成功する。それにより、混合気が適切に燃焼され、クランク軸13が正方向に駆動される。したがって、角度A32における第1の燃焼判定で第1の条件が満たされる。この場合、角度A11での燃料の噴射量がV2に設定される。その後、角度A33における第2の燃焼判定で第2の条件が満たされる。これにより、逆回転始動動作が繰り返されることなく、エンジンユニットEUが通常動作に移行する。
 図7の例のように、逆回転始動動作が繰り返されると、混合気の燃焼に成功する可能性が高まる。以下、その理由について説明する。図8および図9は、逆回転始動動作の繰り返しによる効果について説明するための図である。
 まず、1回目の逆回転始動動作での作用を説明する。図8(a)に示すように、クランク軸13が逆回転されつつ角度A23で吸気通路22に燃料が噴射される。上記のように、角度A23ではピストン11が上昇しているので、燃料が燃焼室31aに導入されない。
 噴射された燃料が吸気通路22で気化することにより、混合気が生成される。この場合、エンジン10の温度が高いと、燃料が気化しやすく、混合気が生成されやすい。一方、エンジン10の温度が低いと、燃料が気化しにくく、混合気が生成されにくい。通常、エンジン10の停止直後にはエンジン10の温度が高く、エンジン10が停止されてから長時間が経過すると、エンジン10の温度が低くなる。そのため、例えばアイドルストップ状態からの再始動時には、燃料が気化しやすく、混合気が生成されやすい。一方、冷間始動時には、燃料が気化しにくく、混合気が生成されにくい。
 続いて、図8(b)に示すように、角度A21から角度A22までの範囲で吸気通路22から吸気口21を通して燃焼室31aに混合気が導入される。この期間には、排気口23も開かれているため、排気口23から燃焼室31aにも気体が導入される。このように、吸気口21および排気口23がともに開かれている場合、吸気口21のみが開かれる場合に比べて、吸気通路22から燃焼室31aへの気体の流速が低くなる。それにより、吸気通路22内の混合気の一部が燃焼室31aに導入されずに吸気通路22に滞留する可能性がある。
 また、吸気通路22において気化していない燃料の一部は、吸気通路22を通る気体の流れによって燃焼室31aに移動される。この場合、吸気通路22を通る気体の流速が高いと、燃料が霧化(微細化)され、混合気濃度が高くなる。ここで、混合気濃度とは、混合気中の燃料の濃度を意味する。しかしながら、上記のように、角度A21から角度A22までの範囲では、吸気通路22を通る気体の流速が低いため、燃料が霧化されにくい。
 このように、逆回転始動動作では、吸気通路22から燃焼室31aに混合気が十分に導入されにくく、かつ気化されていない燃料が霧化されにくい。さらに、冷間始動時には、吸気通路22で混合気が生成されにくい。したがって、1回の逆回転始動動作では、燃焼室31a内の混合気濃度が適切な値より低くなりやすい。その結果、図8(c)に示すように、角度A31での点火による混合気の燃焼に失敗しやすい。
 混合気の燃焼に失敗した場合、図8(d)に示すように、クランク軸13が正回転されつつ角度A15から角度A16までの範囲において燃焼室31a内の未燃の混合気が排気口23を通して排気通路24に導かれる。逆回転始動動作が行われている期間には、排気通路24を通る気体の流速が低い。そのため、排気通路24に導かれた混合気の大部分は、外部に排出されることなく排気通路24に滞留する。また、気化されていない燃料も混合気とともに燃焼室31aから排気通路24に移動する。また、角度A15から角度A16までの範囲内にある角度A11において、吸気通路22に燃料が噴射される。
 続いて、図9(a)に示すように、角度A12から角度A13までの範囲において、吸気口21を通して燃焼室31aに混合気が導入される。この場合、角度A12から角度A16(図5)までの範囲(オーバーラップ)を除いて、吸気口21のみが開かれる。そのため、吸気通路22から燃焼室31aへの気体の流速が比較的早い。それにより、吸気通路22内の混合気が効率よく燃焼室31aに導入されるとともに、吸気通路22を通る気体の流れによって燃料が霧化されやすい。その後、クランク軸13の回転方向が逆方向に切り替えられる。
 2回目の逆回転始動動作について説明する。図9(b)に示すように、クランク軸13が逆回転されつつ角度A23で吸気通路22に燃料が噴射される。続いて、図9(c)に示すように、角度A21から角度A22までの範囲において、吸気口21を通して吸気通路22から燃焼室31aに混合気が導入される。この場合、排気通路24に滞留する混合気が排気口23を通して燃焼室31aに導入される。
 これにより、燃焼室31a内の混合気は、1回目の逆回転始動動作の角度A23で噴射された燃料(図8(a))、1回目の逆回転始動動作の角度A11で噴射された燃料(図8(d))、および2回目の逆回転始動動作の角度A23で噴射された燃料(図9(b))をそれぞれ含む。このように、逆回転始動動作が繰り返されることにより、燃焼室31a内の燃料が蓄積される。
 また、気化されていない燃料が吸気通路22および排気通路24から燃焼室31aに導入される。気化されていない燃料は、吸気通路22、燃焼室31aおよび排気通路24の間で流動することにより、徐々に霧化される。したがって、逆回転始動動作が繰り返されることにより、燃料の霧化が進行する。さらに、逆回転始動動作が繰り返されることによってエンジン10の温度が上昇するため、燃料が気化しやすくなる。
 これらにより、逆回転始動動作が繰り返されることにより、燃焼室31a内の混合気濃度が高められる。その結果、図9(d)に示すように、角度A31での点火により、混合気の燃焼に成功する。
 (4)エンジン始動処理
 ECU6は、予めメモリに記憶された制御プログラムに基づいて、エンジン始動処理を行う。図10~図12は、エンジン始動処理のフローチャートである。エンジン始動処理は、例えば、図示しないメインスイッチがオンされる、またはエンジン10がアイドルストップ状態に移行した場合に行われる。
 図10に示すように、ECU6は、予め定められた開始条件が成立したか否かを判定する(ステップS1)。エンジンユニットEUがアイドルストップ状態でない場合、開始条件は、例えば、スタータスイッチ41(図2)がオンされることである。エンジンユニットEUがアイドルストップ状態である場合、開始条件は、アイドルストップ解除条件が満たされることである。
 開始条件が満たされていない場合、ECU6は、開始条件が満たされるまでステップS1の処理を繰り返す。開始条件が満たされた場合、ECU6は、クランク軸13が逆方向に回転されるように始動兼発電機14を制御する(ステップS2)。
 なお、エンジン始動処理の開始時に、クランク角が逆回転開始範囲(角度A30aからA30bまでの範囲)にない場合、上記のように、クランク軸13が逆回転される前に、クランク角が逆回転開始範囲に調整されてもよい。
 次に、ECU6は、逆回転燃料噴射条件が満たされたか否かを判定する(ステップS3)。本例において、逆回転燃料噴射条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図4の角度A23に達することである。逆回転燃料噴射条件が満たされていない場合、ECU6は、ステップS3の処理を繰り返す。逆回転燃料噴射条件が満たされると、ECU6は、吸気通路22(図2)に燃料が噴射されるように、インジェクタ19(図2)を制御する(ステップS4)。この場合、燃料の噴射量はV1に設定される。
 次に、ECU6は、逆回転通電開始条件が満たされたか否かを判定する(ステップS5)。本例において、逆回転通電開始条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図4の角度A31aに達することである。逆回転通電開始条件が満たされていない場合、ECU6は、ステップS5の処理を繰り返す。逆回転通電開始条件が満たされると、ECU6は、点火コイルへの通電を開始する(ステップS6)。
 次に、図11に示すように、ECU6は、逆回転点火条件が満たされたか否かを判定する(ステップS7)。本例において、逆回転点火条件は、電流センサ44(図2)の検出結果から得られるモータ電流が、予め定められたしきい値に達することである。モータ電流は、クランク角が図4の角度A2に近づくにつれて大きくなる。本例では、クランク角が図4の角度A31に達したときに、モータ電流がしきい値に達する。
 逆回転点火条件が満たされていない場合、ECU6は、ステップS7の処理を繰り返す。逆回転点火条件が満たされると、ECU6は、クランク軸13が正方向に回転されるように始動兼発電機14を制御するとともに(ステップS8)、燃焼室31a内の混合気に点火されるように点火プラグ18を制御する(ステップS9)。
 次に、ECU6は、第1の燃焼判定条件が満たされたか否かを判定する(ステップS10)。本例において、第1の燃焼判定条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図5の角度A32に達することである。第1の燃焼判定条件が満たされない場合、ECU6は、ステップS10の処理を繰り返す。第1の燃焼判定条件が満たされると、ECU6は、第1の燃焼判定を行う(ステップS11)。
 次に、ECU6は、正回転燃料噴射条件が満たされたか否かを判定する(ステップS12)。本例において、正回転燃料噴射条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図5の角度A11に達することである。正回転燃料噴射条件が満たされていない場合、ECU6は、ステップS12の処理を繰り返す。正回転燃料噴射条件が満たされると、ECU6は、吸気通路22(図2)に燃料が噴射されるように、インジェクタ19(図2)を制御する(ステップS13)。
 この場合、ステップS11での第1の燃焼判定の結果に基づいて、燃料の噴射量が設定される。上記のように、第1の燃焼判定で第1の条件が満たされる場合、燃料の噴射量がV2に設定される。一方、第1の燃焼判定で第1の条件が満たされない場合、燃料の噴射量がV2よりも少ないV2aに設定される。
 次に、図12に示すように、ECU6は、第2の燃焼判定条件が満たされたか否かを判定する(ステップS14)。本例において、第2の燃焼判定条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図5の角度A33に達することである。第2の燃焼判定条件が満たされない場合、ECU6は、ステップS14の処理を繰り返す。第2の燃焼判定条件が満たされると、ECU6は、第2の燃焼判定を行う(ステップS15)。
 次に、ECU6は、図11のステップS11での第1の燃焼判定および図12のステップS14での第2の燃焼判定の結果に基づいて、図11のステップS9での点火による混合気の燃焼に成功したか否かを判定する(ステップS16)。
 混合気の燃焼に成功した場合、ECU6は、エンジン始動処理を終了する。この場合、混合気の燃焼のエネルギーによってクランク角が最初の圧縮上死点に対応する角度を超え、エンジンユニットEUが図3の通常動作に移行する。
 一方、混合気の燃焼に失敗した場合、ECU6は、クランク軸13が再び逆方向に回転されるように始動兼発電機14を制御する(ステップS17)。次に、ECU6は、逆回転燃料噴射条件が満たされたか否かを判定する(ステップS18)。逆回転燃料噴射条件は、図10のステップS3と同じである。逆回転燃料噴射条件が満たされていない場合、ECU6は、ステップS18の処理を繰り返す。逆回転燃料噴射条件が満たされると、ECU6は、吸気通路22(図2)に燃料が噴射されるように、インジェクタ19(図2)を制御する(ステップS19)。この場合、燃料の噴射量はステップS4での噴射量V1より少ないV1aに設定される。その後、ECU6は、ステップS5の処理に戻る。それにより、逆回転始動動作が繰り返される。
 (5)効果
 本実施の形態に係るエンジンシステム200においては、逆回転始動動作における混合気の点火後に第1および第2の燃焼判定が行われ、混合気の燃焼に失敗したと判定された場合、逆回転始動動作が繰り返される。逆回転始動動作が繰り返されることにより、燃焼室31a内の混合気濃度が徐々に高められる。それにより、最終的に混合気を適切に燃焼させることができる。したがって、クランク角が最初の圧縮上死点に対応する角度A2を超えるようにクランク軸13を回転させることができる。その結果、エンジン10を適切に始動させることができる。
 また、本実施の形態では、逆回転始動動作で混合気に点火された後、クランク角が通常排気範囲に到る前の角度A32で第1の燃焼判定が行われ、クランク角が通常吸気範囲を経た後の角度A33で第2の燃焼判定が行われる。このように、段階的に燃焼判定が行われることにより、混合気の燃焼に成功したか否かを適切に判定することができる。それにより、エンジン10を適切に始動させることができる。
 また、本実施の形態では、第1の燃焼判定の結果に基づいて角度A11での燃焼の噴射量が調整される。それにより、通常動作での点火および次の逆回転始動動作での点火の各々に適した量の燃料を噴射することができる。したがって、各々に適した濃度の混合気を燃焼室31a内に導入することができる。
 また、本実施の形態では、1回目の逆回転始動動作における角度A23での燃料の噴射量と、2回目以降の逆回転始動動作における角度A23での燃料の噴射量とが異なる。これにより、燃料が無駄に消費されることを防止しつつ、燃焼室31a内の混合気濃度を徐々に高めることができる。
 (6)燃料の噴射量の他の例
 上記実施の形態では、1回目の逆回転始動動作における角度A23での燃料の噴射量がV1に設定され、2回目以降の逆回転始動動作における角度A23での燃料の噴射量がV1aに設定されるが、本発明はこれに限らない。
 図13は、燃料の噴射量の他の例について説明するための図である。図13において、横軸は、逆回転始動動作の回数を示し、縦軸は、角度A23での燃料の噴射量を示す。上記のように、逆回転始動動作が繰り返されることにより、燃焼室31a内の混合気濃度が徐々に高くなる。そこで、図13の例では、逆回転始動動作の回数が多くなるにつれて燃料の噴射量が徐々に少なくなるように調整される。これにより、燃料が無駄に消費されることが防止されるとともに、燃焼室31a内の混合気濃度が過剰に高くなることが防止される。
 また、逆回転始動動作で混合気の燃焼に失敗した場合の角度A11での燃料の噴射量についても、図13の例と同様に、逆回転始動動作の回数が多くなるにつれて徐々に少なくなるように調整されてもよい。
 (7)他の実施の形態
 (7-1)
 上記実施の形態では、逆回転始動動作時における混合気の点火後に第1および第2の燃焼判定を含む2回の燃焼判定が行われるが、本発明はこれに限らない。第1および第2の燃焼判定のうち一方のみが行われてもよい。また、燃焼判定が行われる回数および燃焼判定が行われるクランク角は、上記の例に限定されず、適宜変更可能である。例えば、角度A32から角度A33にまでの範囲で継続的にクランク軸の回転状態に基づく燃焼判定が行われ、混合気の燃焼に成功したか否かが判定されてもよい。
 (7-2)
 上記実施の形態では、第1および第2の燃焼判定の結果に基づいて角度A11での燃料の噴射量が調整されるが、第1および第2の燃焼判定の結果に拘わらず角度A11での燃料の噴射量が一定であってもよい。また、上記実施の形態では、逆回転始動動作の繰り返しの回数に基づいて角度A23での燃料の噴射量が調整されるが、逆回転始動動作の繰り返しの回数に拘わらず角度A23での燃料の噴射量が一定であってもよい。
 (7-3)
 上記実施の形態では、クランク軸13の逆回転時に角度A16から角度A15までの範囲で排気口23が開かれるが、本発明はこれに限らない。上記のように、2回目以降の逆回転始動動作においては、排気通路24に滞留する混合気が、角度A16から角度A15までの範囲で排気口23を通して燃焼室31aに導入される。仮に、角度A16から角度A15までの範囲で排気口23が開かれないと、このように排気通路24から燃焼室31aに混合気が導入されることはない。しかしながら、逆回転始動動作が繰り返されることによって吸気通路22から燃焼室31aに混合気が繰り返し導入されるので、上記の範囲で排気口23が開かれなくても、燃焼室31a内の混合気濃度は徐々に高められる。そのため、クランク軸13の逆回転時に上記の範囲で排気口23が開かれなくてもよい。
 また、上記実施の形態では、クランク軸13の逆回転時に角度A13から角度A12までの範囲で吸気口21が開かれるが、この範囲で吸気口21が開かれなくてもよい。
 (7-4)
 上記実施の形態は、本発明を自動二輪車に適用した例であるが、これに限らず、自動三輪車もしくはATV(All Terrain Vehicle;不整地走行車両)等の他の鞍乗り型車両に本発明を適用してもよい。
 (8)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態では、エンジンユニットEUがエンジンユニットの例であり、エンジン10がエンジンの例であり、始動兼発電機14が回転駆動部の例であり、ECU6が制御部の例であり、インジェクタ19が燃料噴射装置の例であり、点火プラグ18が点火装置の例であり、バルブ駆動部17がバルブ駆動部の例であり、吸気バルブ15が吸気バルブの例であり、排気バルブ16が排気バルブの例であり、クランク角センサ43が回転状態検出部の例であり、クランク軸13がクランク軸の例である。また、第1および第2の条件が始動条件の例であり、第1の条件が始動準備条件の例である。また、自動二輪車100が鞍乗り型車両の例であり、後輪7が駆動輪の例であり、車体1が本体部の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 本発明は、種々のエンジンシステムおよび鞍乗り型車両に適用可能である。

Claims (10)

  1. エンジンおよび回転駆動部を含むエンジンユニットと、
     前記エンジンユニットを制御する制御部とを備え、
     前記エンジンは、
     燃焼室に空気を導くための吸気通路内に燃料を噴射するように配置された燃料噴射装置と、
     前記燃焼室内の混合気に点火するように構成された点火装置と、
     吸気口を開閉する吸気バルブおよび排気口を開閉する排気バルブをそれぞれ駆動するように構成されたバルブ駆動部と、
     クランク軸の回転状態を検出する回転状態検出部とを含み、
     前記回転駆動部は、前記クランク軸を正方向および逆方向に回転駆動するように構成され、
     前記制御部は、前記エンジンの始動時に、前記クランク軸が逆方向に回転された後に正方向に回転される逆回転始動動作が行われるように前記エンジンユニットを制御し、
     前記回転駆動部は、前記逆回転始動動作において、クランク角が予め定められた始動吸気範囲を超えて予め定められた始動点火範囲に到るように前記クランク軸を逆方向に回転させ、
     前記バルブ駆動部は、前記逆回転始動動作において、前記クランク軸の逆方向の回転時であってクランク角が前記始動吸気範囲にあるときに前記吸気口が開かれ、かつ前記クランク軸の正方向の回転時であってクランク角が予め定められた通常吸気範囲にあるときに前記吸気口が開かれるように前記吸気バルブを駆動し、
     前記燃料噴射装置は、前記逆回転始動動作において、前記クランク軸の逆方向の回転時であってクランク角が前記始動吸気範囲にあるときおよび前記クランク軸の正方向の回転時であってクランク角が前記通常吸気範囲にあるときの少なくとも一方で前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように燃料を噴射し、
     前記点火装置は、前記逆回転始動動作において、クランク角が前記始動点火範囲にあるときに前記燃焼室内の混合気に点火し、
     前記制御部は、前記逆回転始動動作における前記クランク軸の正方向の回転時であってピストンが最初の圧縮上死点に達する前に、前記回転状態検出部により検出される回転状態が予め定められた始動条件を満たさない場合、前記逆回転始動動作が再度行われるように前記エンジンユニットを制御する、エンジンシステム。
  2. 前記制御部は、前記逆回転始動動作における前記クランク軸の正方向の回転時であって前記ピストンが最初の圧縮上死点に達する前に、前記回転状態検出部により検出される回転状態が前記始動条件を満たす場合、混合気の燃焼により前記クランク軸が正方向に継続的に回転されるように前記エンジンユニットを制御する、請求項1記載のエンジンシステム。
  3. 前記始動条件は、前記クランク軸の回転速度が予め定められたしきい値より高いことである、請求項1または2記載のエンジンユニット。
  4. 前記始動条件は、前記クランク軸の回転速度の変化率が予め定められたしきい値より大きいことである、請求項1または2記載のエンジンユニット。
  5. 前記制御部は、
     前記逆回転始動動作における前記クランク軸の正方向の回転時であってクランク角が前記通常吸気範囲を経た第1の時点で、前記回転状態検出部により検出される回転状態が前記始動条件を満たさない場合、前記逆回転始動動作が再度行われるように前記エンジンユニットを制御する、請求項1~4のいずれか一項に記載のエンジンシステム。
  6. 前記燃料噴射装置は、
     前記逆回転始動動作における前記クランク軸の正方向の回転時であってクランク角が前記通常吸気範囲に到る前の第2の時点で、前記回転状態検出部により検出される回転状態が予め定められた始動準備条件を満たさない場合、クランク角が前記通常吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように第1の量の燃料を噴射し、
     前記第2の時点で、前記回転状態検出部により検出される回転状態が前記始動準備条件を満たす場合、クランク角が前記通常吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように前記第1の量と異なる第2の量の燃料を噴射する、請求項5記載のエンジンシステム。
  7. 前記燃料噴射装置は、
     前記逆回転始動動作における前記クランク軸の正方向の回転時であってクランク角が前記通常吸気範囲に到る前の第2の時点で、前記回転状態検出部により検出される回転状態が前記始動条件を満たさない場合、クランク角が前記通常吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように第1の量の燃料を噴射し、
     前記第2の時点で、前記回転状態検出部により検出される回転状態が前記始動条件を満たす場合、クランク角が前記通常吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように前記第1の量と異なる第2の量の燃料を噴射する、請求項1~4のいずれか一項に記載のエンジンシステム。
  8. 前記燃料噴射装置は、
     前記エンジンの始動時における1回目の前記逆回転始動動作において、前記クランク軸の逆方向の回転時であってクランク角が前記始動吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように第3の量の燃料を噴射し、
     前記エンジンの始動時における2回目の前記逆回転始動動作において、前記クランク軸の逆方向の回転時であってクランク角が前記始動吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように前記第3の量と異なる第4の量の燃料を噴射する、請求項1~7のいずれか一項に記載のエンジンシステム。
  9. 前記バルブ駆動部は、前記クランク軸の正方向および逆方向の回転時に、クランク角が通常排気範囲にあるときに前記排気口が開かれるように前記排気バルブを駆動し、
     前記通常排気範囲は、前記始動吸気範囲を含む、請求項1~8のいずれか一項に記載のエンジンシステム。
  10. 駆動輪を有する本体部と、
     前記駆動輪を回転させるための動力を発生する請求項1~9のいずれか一項に記載のエンジンシステムとを備えた、鞍乗り型車両。
PCT/JP2014/003879 2014-07-23 2014-07-23 エンジンシステムおよび鞍乗り型車両 WO2016013044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/003879 WO2016013044A1 (ja) 2014-07-23 2014-07-23 エンジンシステムおよび鞍乗り型車両
EP14885071.2A EP3173606A4 (en) 2014-07-23 2014-07-23 Engine system and saddle-type vehicle
TW104122408A TWI615545B (zh) 2014-07-23 2015-07-09 引擎系統及跨坐型車輛

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003879 WO2016013044A1 (ja) 2014-07-23 2014-07-23 エンジンシステムおよび鞍乗り型車両

Publications (1)

Publication Number Publication Date
WO2016013044A1 true WO2016013044A1 (ja) 2016-01-28

Family

ID=55162603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003879 WO2016013044A1 (ja) 2014-07-23 2014-07-23 エンジンシステムおよび鞍乗り型車両

Country Status (3)

Country Link
EP (1) EP3173606A4 (ja)
TW (1) TWI615545B (ja)
WO (1) WO2016013044A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022210266A1 (de) 2022-09-28 2024-03-28 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Aufstarten eines Verbrennermotors bei Zweirädern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176709A (ja) * 2002-09-30 2004-06-24 Toyota Motor Corp 内燃機関の始動制御装置
JP2004339952A (ja) * 2003-05-13 2004-12-02 Toyota Motor Corp 内燃機関の始動装置
JP2005315231A (ja) * 2004-04-30 2005-11-10 Mazda Motor Corp エンジンの始動装置
JP2014077405A (ja) * 2012-10-11 2014-05-01 Yamaha Motor Co Ltd エンジンシステムおよび鞍乗り型車両

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351042B2 (ja) * 1993-09-02 2002-11-25 株式会社デンソー 車両用内燃機関始動装置
US20070204827A1 (en) * 2006-03-02 2007-09-06 Kokusan Denki Co., Ltd. Engine starting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176709A (ja) * 2002-09-30 2004-06-24 Toyota Motor Corp 内燃機関の始動制御装置
JP2004339952A (ja) * 2003-05-13 2004-12-02 Toyota Motor Corp 内燃機関の始動装置
JP2005315231A (ja) * 2004-04-30 2005-11-10 Mazda Motor Corp エンジンの始動装置
JP2014077405A (ja) * 2012-10-11 2014-05-01 Yamaha Motor Co Ltd エンジンシステムおよび鞍乗り型車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3173606A4 *

Also Published As

Publication number Publication date
EP3173606A4 (en) 2018-02-14
TW201604388A (zh) 2016-02-01
EP3173606A1 (en) 2017-05-31
TWI615545B (zh) 2018-02-21

Similar Documents

Publication Publication Date Title
EP2719883B1 (en) Engine System
EP2375040B1 (en) Engine control unit
EP2881565A1 (en) Engine system and saddle-straddling type motor vehicle
WO2016013046A1 (ja) エンジンシステムおよび鞍乗り型車両
TWI596274B (zh) 引擎系統及跨坐型車輛
TWI553218B (zh) 引擎系統及跨坐型車輛
WO2016013044A1 (ja) エンジンシステムおよび鞍乗り型車両
JP4367646B2 (ja) エンジンの始動装置
WO2016013045A1 (ja) エンジンシステムおよび鞍乗り型車両
JP2009167977A (ja) エンジンの動作制御装置およびそれを備えた車両
EP3017168B1 (en) Engine system and saddle-straddling type motor vehicle
WO2016152010A1 (ja) エンジンシステムおよび鞍乗り型車両
JP2016176444A (ja) エンジンシステムおよび鞍乗り型車両
EP2909462B1 (en) Engine system and saddle-straddling type motor vehicle
JP2008163860A (ja) 燃料噴射式エンジンの吸気装置
JP4479912B2 (ja) エンジンの制御装置
WO2016203686A1 (ja) エンジンシステムおよび鞍乗り型車両
JP2008121587A (ja) エンジンの制御装置
CN106812614B (zh) 发动机系统和跨乘型车辆
TW201638462A (zh) 引擎系統及跨坐型車輛
WO2017188144A1 (ja) エンジン制御装置
JP4979790B2 (ja) 内燃機関の燃料噴射装置
JP2001221073A (ja) 内燃機関の逆回転防止装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: IDP00201505249

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2014885071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885071

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP