WO2016011898A1 - 轴向柱塞式液压泵 - Google Patents

轴向柱塞式液压泵 Download PDF

Info

Publication number
WO2016011898A1
WO2016011898A1 PCT/CN2015/083823 CN2015083823W WO2016011898A1 WO 2016011898 A1 WO2016011898 A1 WO 2016011898A1 CN 2015083823 W CN2015083823 W CN 2015083823W WO 2016011898 A1 WO2016011898 A1 WO 2016011898A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
hydraulic pump
axial piston
plunger
swash plate
Prior art date
Application number
PCT/CN2015/083823
Other languages
English (en)
French (fr)
Inventor
蒋祖光
Original Assignee
沃尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410357509.1A external-priority patent/CN104153986B/zh
Priority claimed from CN201420413687.7U external-priority patent/CN203939690U/zh
Application filed by 沃尔科技有限公司 filed Critical 沃尔科技有限公司
Publication of WO2016011898A1 publication Critical patent/WO2016011898A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00

Definitions

  • the invention relates to the field of hydraulic technology, and in particular to an axial piston type hydraulic pump.
  • the plunger type hydraulic pump is a high-pressure pump which is widely used in the field of hydraulic technology.
  • On the end face, and the other end face of the return disk needs to be secured on the swash plate, wherein the return disk is mounted on the ball hinge.
  • the returning disc drives the plunger to move the piston in the cylinder bore to realize the supercharging of the liquid, and the piston movement of the plunger is realized by the returning disc, and the returning disc generates the plunger.
  • the large radial force causes the plunger to have a large friction with the cylinder bore during the movement of the piston, so that the plunger wears more.
  • the manner of the returning disc also needs to provide a ball joint that cooperates with the returning disc, which needs to be mounted on the rotating shaft of the hydraulic pump, thereby occupying the length of the rotating shaft, resulting in a relatively long hydraulic pump, and the space use aspect. Not compact enough.
  • the technical problem to be solved by the present invention is to provide an axial piston type hydraulic pump that overcomes the deficiencies of the prior art.
  • An axial piston type hydraulic pump includes an outer casing composed of two end caps and a casing having a through hole, wherein the through hole is provided with a cylinder body, and a swash plate is arranged between the cylinder body and one of the end covers.
  • a cylinder bore is arranged on the cylinder body in a circumferential array along the axial direction, and a plunger is respectively arranged in the cylinder bore A shoe assembly; one end of each of the plunger shoe assemblies exposed outside the cylinder bore is pressed against the swash plate.
  • a hydraulic chamber is disposed between each of the plunger shoe assemblies and the inner wall of the corresponding cylinder bore, and the cylinder body is provided with a communication hole communicating with the hydraulic chamber, and the hydraulic shoe is moved when the plunger shoe assembly moves into the cylinder bore The volume is reduced and the hydraulic chamber volume is increased as the plunger shoe assembly moves toward the swash plate.
  • the hydraulic chamber is filled with liquid
  • the plunger shoe assembly moving into the cylinder bore compresses the volume of the hydraulic chamber, presses the liquid in the hydraulic chamber against the other hydraulic chamber, and drives the corresponding plunger.
  • the shoe assembly moves toward the swashplate.
  • the cylinder bore is a stepped bore, and the larger end of the stepped bore has a larger aperture toward the swash plate, and the plunger shoe assembly is provided with a stepped post that matches the stepped bore.
  • the stepped hole is a stepped hole of at least two stages.
  • the ratio of the end face area of the largest cylinder on the stepped column to the end face area of the smallest cylinder is 1.15 to 1.75.
  • a sealing member is disposed between the axial side surface of the stepped hole and the plunger shoe assembly, and a sealing property between the stepped hole near one end of the swash plate and the plunger shoe assembly is higher than an end away from the swash plate .
  • the sealing member is provided with a flange which is interlocked with the step end surface of the stepped hole.
  • the axial piston hydraulic pump further includes a rotating shaft passing through the end cover and the swash plate, and the rotating shaft is provided with a mechanical seal assembly near the outer side surface of the cylinder.
  • the swash plate is fixedly coupled to the end cap and has no relative movement, and the plunger shoe assembly performs a circular motion on the swash plate while performing piston movement in the cylinder bore.
  • a thrust plate and a distribution plate are sequentially arranged between the cylinder block and the other end cover, and the liquid inlet is arranged on the thrust plate and the distribution plate, and the connection between the thrust plate and the distribution plate is provided at the liquid inlet.
  • a gap is provided between the outer wall of the cylinder and the casing, and a cavity between the cylinder and the swash plate communicates with the liquid inlet through the communication passage and the communication gap.
  • the liquid filled in the hydraulic chamber is the same as the liquid required to pressurize the cylinder bore.
  • one end of the mechanical seal assembly near the cylinder is sealed to the outer side of the shaft, and the other end is sealed to the end cover.
  • one end of the mechanical seal assembly near the cylinder is sealed to the outer side of the shaft, and the other end is sealed from the swash plate.
  • the end cover is provided with a through hole through which the rotating shaft passes, and a portion through which the rotating shaft passes is connected with a connector, the through hole being larger than the maximum outer diameter of the connector, and accommodating at least part of the connection Device.
  • the mechanical seal assembly is pressed against the end face of the cylinder body against the end face of the cylinder block.
  • the rotating shaft is provided with a shoulder on the outer side of the end face of the cylinder, and one end of the mechanical seal assembly near the cylinder is pressed against the shoulder.
  • the shoulder is pressed against the end surface of the cylinder.
  • the end cover and the housing are connected by a threaded buckle.
  • the axial piston type hydraulic pump provided by the present invention, since the end of the plunger shoe assembly exposed outside the cylinder bore directly presses against the swash plate, the return disk and the ball joint are omitted.
  • the centrifugal force can be reduced, thereby reducing the wear of the plunger shoe assembly; on the other hand, shortening the length of the rotating shaft and achieving the effect of reducing the volume of the hydraulic pump makes the space utilization of the hydraulic pump more compact.
  • FIG. 1 is a schematic structural view of a hydraulic pump in the prior art
  • FIG. 2 is a schematic structural view of a hydraulic pump according to an embodiment of the present invention.
  • Figure 3 is a partial enlarged view of a portion A of Figure 2;
  • Figure 4 is a partial enlarged view of a portion B of Figure 2;
  • Figure 5 is a cross-sectional view taken along line C-C of the cylinder of Figure 2;
  • FIG. 6 is a schematic structural view showing a two-stage stepped hole of a cylinder body according to an embodiment of the present invention.
  • FIG. 7 is a schematic view showing the assembly of a return stroke ring and a swash plate according to an embodiment of the present invention.
  • Figure 8 is a partial enlarged view of a portion D of Figure 2;
  • Figure 9 is a partially enlarged view of a portion E of Figure 2.
  • FIG. 1 An axial piston hydraulic pump of the prior art is shown in FIG. 1.
  • the hydraulic pump includes a cylinder block 100, a plunger shoe assembly 200, and a return disk 300, and the plunger shoe assembly 200 is assembled with the return disk 300.
  • the returning disc 300 is pressed against the swash plate 400.
  • the rotation of the cylinder 100 causes the plunger shoe assembly 200 and the returning disc 300 to move integrally with respect to the swash plate 400, which is equivalent to driving the plunger sliding shoe through the rotation of the returning disc 300.
  • the assembly 200 performs piston movement within the cylinder bore. Meanwhile, since the returning disc is a circular motion in an oblique direction, a ball joint 600 is attached to the rotating shaft 500, and the returning disc 300 is hinged to the ball joint 600.
  • the return disk and the ball hinge occupy a large space inside the hydraulic pump, resulting in a large manufacturing volume of the hydraulic pump.
  • the return disk moves circumferentially with the plunger shoe assembly, resulting in a large centrifugal force acting on the plunger shoe assembly, so that there is a large relative force between the plunger shoe assembly and the cylinder bore.
  • the friction between the plunger shoe assembly and the cylinder bore is easily worn, and the position that is prone to wear is toward one end of the swash plate.
  • the return disc directly exerts a force on the plunger shoe assembly, which also causes the plunger shoe assembly to be worn against the cylinder bore.
  • the return disk and the plunger shoe assembly are in direct contact connection, resulting in a large force between the two, which easily causes increased wear of the plunger shoe assembly and the return disk.
  • the embodiment of the present invention provides an axial piston type hydraulic pump.
  • the technical solution in the embodiment of the present invention will be clear and complete in the following with reference to the accompanying drawings in the embodiments of the present invention. It is apparent that the described embodiments are only a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the present invention provides a hydraulic return type axial piston type hydraulic pump.
  • the axial piston type hydraulic pump includes two end caps 10 and a housing 20, and the end cap 10 and the housing 20 constitute the same.
  • a casing of the hydraulic pump, and a through hole is formed in the casing 20, and the cylinder 30 is disposed between the two end covers, and the cylinder block 30 is provided with a cylinder hole 31 in a circumferential array along the axial direction.
  • a plunger shoe assembly 40 is respectively disposed in the cylinder bore, and the piston sliding assembly 40 in each cylinder bore 31 is alternately used to perform piston movement to achieve liquid pressurization, and a liquid powered motor can also be realized.
  • the axial piston type hydraulic pump includes two end caps 10 and a housing 20, and the end cover 10 and the shell
  • the body 20 constitutes a casing of the hydraulic pump, and a through hole is formed in the casing 20, and the through hole is provided with a cylinder 30 between the two end covers, and the cylinder 30 is arranged in a circumferential array along the axial direction.
  • the plunger shoe assembly 40 is configured to perform the rotary piston movement. As shown in FIG. 2, a swash plate 50 is disposed between the cylinder block 30 and one of the end covers, and each of the plunger shoe assemblies 40 is exposed. One end of the cylinder bore is pressed against the swash plate, and the prior art is driven by the returning disc. Instead, the plunger shoe assembly 40 is directly pressed against the swash plate 50, so that the column is in normal working process.
  • the plug shoe assembly is capable of rotating motion on the swash plate.
  • the plunger shoe assembly 40 of the present invention includes a plunger 41 and a shoe 42 in which the plunger 41 is mounted in the cylinder bore 31, the shoe 42 is pressed against the swash plate 50, and the plunger 41 and the shoe 42 are Connected by a ball joint.
  • each plunger shoe assembly 40 is disposed between the inner wall of the corresponding cylinder bore 31 and the corresponding cylinder bore 31.
  • the hydraulic chamber 32 is provided with a communication hole 33 (shown in FIG. 5) that communicates with the hydraulic chamber 32.
  • the hydraulic chamber 32 is filled with liquid, and the hydraulic chamber is disposed in the embodiment to enable the column.
  • the hydraulic chamber volume decreases as the plug shoe assembly moves into the cylinder bore, and the hydraulic chamber volume increases as the plunger shoe assembly moves toward the swash plate. As shown in FIG.
  • the cylinder bore 31 is designed as a stepped hole, the stepped hole The larger end of the middle aperture faces the swash plate 50, and the plunger shoe assembly 40 is provided with a stepped column matching the stepped hole, specifically, the plunger is designed as a matching stepped column, thereby making the stepped hole
  • a hydraulic chamber 32 is formed between the step and the step on the step column, and the other end of the cylinder body is provided with a movement space, and when the pressure is increased, the pressure is self-contained
  • stepped holes In addition to the manner of stepped holes, those skilled in the art can also implement the setting of the hydraulic chamber in other ways, such as designing a corresponding annular hole in the cylinder bore, and designing a corresponding annular strip on the plunger, the annular strip. Cooperating with the annular hole to form a hydraulic chamber.
  • the smaller end of the stepped column is provided with an annular groove at the step, thereby reducing wear thereof.
  • the other key function is the step size on the stepped column, in order to ensure The driving force can push the plunger shoe assembly to move toward the swash plate, and at the same time, can ensure the supercharging effect of the plunger shoe assembly on the pressurized liquid, and the minimum end face area of the stepped column on the front end to push the pressure, and
  • the above area ratio can select a smaller design parameter.
  • the above area ratio can be selected from 1.15 to 1.5 or so; and when the diameter of the largest cylinder on the step column is small, the above area ratio needs to select a larger design parameter.
  • the above area ratio can be selected from 1.4 to 1.75. The selection of the above area ratio can not only ensure the driving force, but also ensure the supercharging effect, and also ensure that the plunger shoe assembly is not too heavy.
  • the stepped hole in the embodiment of the present invention can achieve the technical purpose of selecting the first stepped hole.
  • the embodiment of the present invention can also design the stepped hole as a stepped hole of at least two stages, as shown in FIG. The two-stage stepped hole and the corresponding two-stage stepped column are used.
  • the embodiment of the present invention further provides a sealing member 34 between the axial side surface of the stepped hole and the plunger shoe assembly 40, which is caused by the sealing member 34.
  • the liquid in the hydraulic chamber 32 is not easily leaked, of course, due to the hydraulic pressure provided by the present invention.
  • the pump is mainly used in a high-pressure environment, and the hydraulic chamber and the outside world may have more or less liquid circulation.
  • the sealing performance in the embodiment of the present invention is as follows: Solution: the sealing between the stepped hole near the end of the swash plate 50 and the plunger shoe assembly is higher than the end away from the swash plate, so that the end of the swash plate 50 is not easily leaked, and the pressure away from the swash plate is generally greater. Therefore, the internal pressure of the hydraulic chamber leaks less. Even if the pressure is excessive due to excessive pressure, the liquid outside the hydraulic chamber leaks into the hydraulic chamber, thereby supplementing the liquid in the hydraulic chamber, thereby making the hydraulic pressure The pressure within the chamber can act better on the plunger shoe assembly 40.
  • the liquid filled in the hydraulic chamber of the embodiment of the present invention is the same as the liquid that needs to be pressurized by the cylinder bore. If we apply the hydraulic pump provided by the present invention to the desalination field, the hydraulic chamber can be filled with seawater or filled with fresh water, and neither filled seawater nor fresh water pollutes the seawater requiring pressurization.
  • the embodiment of the present invention is provided with a flange 35 on the sealing member 34 that is interlocked with the step end surface of the stepped hole.
  • the edge 35 is fastened to the step surface so that the seal is not easily removed from the cylinder bore.
  • the hydraulic pump provided by the present invention may employ, but is not limited to, the following solutions:
  • the swash plate 50 is fixedly connected to the end cover 10 without relative movement, and the plunger shoe assembly performs a circular motion on the swash plate while performing piston movement in the cylinder bore, that is, through the rotating shaft 60.
  • the cylinder 30 is driven to rotate, and the swash plate 50 is fixed on the end cover without rotating motion.
  • the cylinder body is fixed on the outer casing, and the swash plate is rotated by the rotating shaft, and the plunger sliding shoe assembly is sequentially pressed into the cylinder hole under the rotation of the swash plate.
  • the thrust plate 70 is sequentially disposed between the cylinder block 30 and the other end cover 10.
  • the distribution plate 75, the thrust plate 70 and the distribution plate 75 are provided with a liquid inlet 71, and a communication gap 72 at the liquid inlet 71 is provided between the thrust plate 70 and the distribution plate 75, and the outer side wall and the casing of the cylinder 30 are provided.
  • the cavity between the cylinder and the swash plate communicates with the liquid inlet 17 through the communication passage 36 and the communication gap 72, so that the leaked liquid can return to the liquid inlet through the above-mentioned communication position without using the hydraulic pump.
  • the liquid can be completely discharged.
  • the communication passage 36 is disposed between the outer wall of the cylinder body and the casing, and is intermittently distributed between the outer wall of the cylinder 30 and the casing 20.
  • some communication grooves are intermittently disposed on the outer wall of the cylinder 30. .
  • An embodiment of the present invention provides an anti-wear axial piston type hydraulic pump, which saves the returning disc and reduces the wear of the plunger shoe assembly by a corresponding scheme, as shown in FIG. 2, the axial column
  • the plug type hydraulic pump includes two end caps 10 and a housing 20, and the end cap 10 and the housing 20 constitute a housing of the hydraulic pump, and the housing 20 is provided with a through hole therein, and the through hole is provided with two end covers
  • a cylinder block 30 between the cylinders 30 is provided with cylinder bores 31 in the circumferential direction in the axial direction.
  • the cylinder bores 31 are respectively provided with plunger sliding shoe assemblies 40, through the plunger sliding shoes in the respective cylinder bores.
  • the plunger shoe assembly is configured to perform the rotary piston movement.
  • a swash plate 50 is disposed between the cylinder block 30 and one of the end covers 10, and each of the plunger shoe assemblies 40 is exposed.
  • One end of the cylinder bore is pressed against the swash plate 50, and the prior art is driven by the returning disc. Instead, the plunger shoe assembly is directly pressed against the swash plate, so that the plunger is in normal working process.
  • the shoe assembly is capable of rotating motion on the swashplate.
  • the embodiment of the present invention is provided with a return ring 90 between the swash plate and the cylinder block.
  • the return ring 90 is not directly connected to the column.
  • the plug shoe assembly 40 is in contact with only the protection of the plunger shoe assembly 40.
  • the return ring 90 includes an annular damper 91 that abuts the annular damper portion 91.
  • the embodiment of the present invention does not need to specifically fill the fluid gap.
  • the liquid will flow into the cavity between the swash plate and the cylinder.
  • the specific flow path refer to the description in the first embodiment. It will not be described again that the liquid in the cavity enters the fluid gap and creates a centripetal force on the moving plunger shoe assembly, thereby acting to reduce wear as described above.
  • the driving method of the plunger sliding shoe assembly to realize the piston movement can adopt the solution of the embodiment, which will not be described in detail herein.
  • other driving schemes are also conceivable by those skilled in the art.
  • the plunger shoe assembly includes a sliding portion that is pressed against the swash plate.
  • the plunger shoe assembly 40 generally includes a plunger 41 and a shoe 42, and the sliding portion is disposed on the shoe 42.
  • the sliding portion provided by the annular damper portion 92 in the embodiment of the present invention forms the outer side of the moving circumferential surface such that the first fluid gap 92 is formed between the annular damper portion and the moving circumferential surface outside the entire sliding portion.
  • the return ring 90 in the embodiment of the present invention further includes a starting support portion 93, the starting support portion 93 and the swash plate 50.
  • a guiding groove 94 is formed, and the plunger shoe assembly 40 is correspondingly provided with a guiding wheel 43.
  • the guiding wheel is generally disposed on the sliding shoe 42, and the guiding wheel 43 moves in the guiding groove 94.
  • the guiding wheel 43 is in contact with the actuating support portion 93 to drive the plunger shoe assembly 40 to move along the swash plate 50 to form a piston movement of the plunger 41 within the cylinder bore 31.
  • the hydraulic chamber 32 is filled. Liquid, so no longer need to contradict Start the support. Therefore, in the embodiment of the present invention, the width of the guiding groove 94 is designed to be larger than the thickness of the guiding wheel 43, so that when the hydraulic chamber is filled with liquid, the starting support portion 93 does not need to support the guiding wheel 43, thereby It plays the role of protecting the return loop 90.
  • a second fluid gap is also provided in the embodiment of the present invention.
  • the specific arrangement is as shown in FIG. 2, FIG. 3 and FIG. a neck portion 44 connected to the guide wheel 43, the starting support portion 93 abuts against the moving circumferential surface on the outer side of the neck portion, and the second fluid gap 95 is formed between the actuating support portion 93 and the moving circumferential surface outside the neck portion 44, which is equivalent to The starting support portion functions as a part of the annular damping portion here.
  • the fluid in the first fluid gap 92 generates a centripetal force on the outer side of the guide wheel
  • the fluid in the second fluid gap 95 generates a centripetal force on the outer side of the neck, and the centripetal force is reduced by the above two positions. Wear of the shoe assembly.
  • embodiments of the present invention design the second fluid gap 95 to be smaller than the first fluid gap 92 so that the fluid can preferentially act on the neck, reducing wear on the guide wheel.
  • both the first fluid gap and the second fluid gap need to be less than 1 mm in size.
  • the return ring of the embodiment of the present invention is provided with a mounting portion, and the return ring is installed between the cylinder block and the swash plate through the mounting portion, specifically but not limited to the following solutions:
  • the return ring 90 further includes a first mounting portion 96 extending from the annular damper portion 91 toward the end surface of the swash plate, and the first mounting portion 96 is fixed to the swash plate 50 and Between the outer casings 20.
  • the return ring 90 further includes a second mounting portion 97 extending from the annular damper portion 91 toward the end surface of the cylinder.
  • the second mounting portion 97 is fixed to the swash plate 50 and the cylinder block. Between 30.
  • the first mounting portion 96 and the second mounting portion 97 may be provided at the same time, and the return ring structure having the annular damper portion, the starting support portion, the first mounting portion, and the second mounting portion is as shown in FIG.
  • the returning ring provided by the embodiment of the present invention may be, but not limited to, PEEK (polyether ether ketone) material, or PA6 (nylon 6) material, or POM (poly), because the annular damper and the starting support portion need to generate corresponding friction.
  • PEEK polyether ether ketone
  • PA6 nylon 6
  • POM poly
  • the axial piston type hydraulic pump includes two end caps 10 and a housing 20, and the end cover 10 and the housing 20 constitute an outer casing of the hydraulic pump, and a through hole is formed in the housing.
  • a cylinder block 30 is disposed between the two end caps.
  • the cylinder block 30 is axially arranged with a cylinder bore 31 in a circumferential direction.
  • the cylinder bore 31 is respectively provided with a plunger shoe assembly 40 through each cylinder.
  • the plunger shoe assembly 40 in the bore performs a piston motion in turn to achieve supercharging of the liquid, and a liquid powered motor can also be realized.
  • the backhaul solution of the plunger shoe assembly in the embodiment of the present invention can adopt the solution provided in the first embodiment and the second embodiment, that is, the hydraulic return is performed by using the hydraulic chamber, and the return ring is used to reduce the wear, and details are not described herein again.
  • the end of each plunger shoe assembly exposed outside the cylinder bore directly presses against the swash plate 50, and the return disc and the ball joint can be omitted, since the ball joint is installed.
  • the design length of the rotating shaft can be shortened, thereby reducing the design length of the hydraulic pump, and in order to ensure that the liquid between the swash plate and the cylinder does not leak, the embodiment of the present invention approaches the outer side of the rotating shaft 60 near the cylinder 30.
  • a mechanical seal assembly 80 is provided thereon.
  • the mechanical seal assembly in the embodiment of the present invention may adopt a structure commonly used in the prior art, and specifically, the mechanical seal assembly and the circumferential surface of the rotating shaft 60 are required to be sealed, and the end cover or the swash plate needs to be sealed to ensure that the liquid does not. Leakage from the penetration hole of the shaft.
  • the mechanical seal assembly can be disposed on the outer side surface of the rotating shaft close to the antibody, the occupation of the overall length of the rotating shaft is reduced, and the design length of the hydraulic pump is shortened.
  • the swash plate 50 is fixedly connected to the end cover 10 without relative movement.
  • the plunger shoe assembly 40 performs a circular motion on the swash plate while performing piston movement in the cylinder bore 31, that is, the cylinder 30 is rotated by the rotating shaft 60, and the swash plate 50 is fixed on the end cover 10 without rotating motion. .
  • the cylinder body is fixed on the outer casing, and the swash plate is rotated by the rotating shaft, and the plunger sliding shoe assembly is sequentially pressed into the cylinder hole under the rotation of the swash plate.
  • At least one end of the mechanical seal assembly close to the cylinder body is sealed with the outer side of the rotating shaft, and at least one of the following sealing structures is required:
  • the other end of the mechanical seal assembly is sealed with the end cover 10, and the end cover 10 is provided with a mounting step matched with the mechanical seal assembly, and is sealed by a mounting step and a mechanical seal assembly to prevent liquid from leaking from the end cover. .
  • the other end of the mechanical seal assembly is sealed with the swash plate.
  • the swash plate 50 is disposed on the mounting step matched with the mechanical seal assembly, and the mounting step and the mechanical seal assembly on the swash plate are provided. Sealing also prevents liquid from leaking from the end cap.
  • the embodiment of the present invention is provided with a through hole 11 through which the rotating shaft 60 passes through the end cover 10, and the connecting portion of the rotating shaft 0 passes through the connection.
  • the through hole 11 is larger than the maximum outer diameter of the connector, and accommodates at least a part of the connector, so that at least a part of the connector can be accommodated in the through hole 11 of the end cover, thereby reducing the overall length of the hydraulic pump This makes the hydraulic pump more compact.
  • the installation manner of the mechanical seal assembly near one end of the cylinder block may be as follows: 1. The end of the mechanical seal assembly 80 near the cylinder body is directly pressed against the end surface of the cylinder block 30, as shown in FIG. 8; Second, a shaft shoulder is arranged on the rotating shaft near the outer end surface of the cylinder body, and one end of the mechanical seal assembly near the cylinder body is pressed against the shoulder, and in order to shorten the design length of the hydraulic pump, the shoulder and the cylinder body can be used in the embodiment of the invention. The end face is pressed against the setting.
  • the embodiment of the present invention connects the end cover 10 and the housing 20 by screwing, as shown in FIG. 2, instead of using the bolt connection in FIG. 1, so that there is no bolt hole. It is not necessary to design the housing too thick and reduce the design thickness of the housing, thereby making the hydraulic pump more compact.
  • the mechanical seal assembly 80 of the embodiment of the present invention includes an axial seal 81, a first mount 82, and a second mount 83.
  • the axial seal 81 seals the axial direction of the shaft, and the first installation
  • the member 82 and the second mounting member 83 are sequentially assembled on the axial seal, and an O-ring 84 is disposed between the second mounting member 83 and the end cap or the swash plate, and the end cover or the inclined portion is passed through the O-ring 84.
  • the through hole of the disc is sealed.
  • Embodiments of the invention are primarily used in various hydraulic pumps, particularly in fully water lubricated hydraulic pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种轴向柱塞式液压泵,包括两个端盖(10)和具有通孔(11)的壳体(20)组成的外壳,所述通孔(11)内设有缸体(30),缸体(30)和其中一个端盖(10)之间设有斜盘(50),所述缸体(30)上沿轴向按照圆周阵列布设有缸孔(31),缸孔(31)内分别设有柱塞滑靴组件(40);每个柱塞滑靴组件(40)露出于缸孔(31)外的一端与斜盘(50)抵压。该轴向柱塞式液压泵解决了柱塞磨损过大和液压泵体积过大的问题。

Description

轴向柱塞式液压泵
本申请要求于2014年7月21日提交中国专利局、申请号为201420413687.7、实用新型名称为“紧凑型轴向柱塞式液压泵”以及2014年7月21日提交中国专利局、申请号为201410357509.1、发明名称为“液压回程的轴向柱塞式液压泵”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及液压技术领域,尤其涉及轴向柱塞式液压泵。
背景技术
柱塞式液压泵是液压技术领域使用较多的高压泵,为了让液压泵的缸孔内产生负压以便吸入需要增压的液体,通常需要将缸孔内的柱塞连接到回程盘的一个端面上,并且回程盘的另一个端面需要抵押在斜盘上,其中回程盘安装在球铰上。
在通过电机带动液压泵运动时,回程盘带动柱塞在缸孔内做活塞运动,实现液体的增压,采用这种回程盘的方式实现柱塞的活塞运动,该回程盘对柱塞会产生较大的径向作用力,导致柱塞在活塞运动过程中与缸孔的摩擦较大,从而使得柱塞的磨损较多。而且,这种回程盘的方式还需要设置一个与回程盘配合的球铰,该球铰需要安装在液压泵的转轴上,从而占用了转轴的长度,导致整个液压泵相对较长,空间使用方面不够紧凑。
发明内容
本发明所要解决的技术问题在于克服现有技术的不足而提供一种轴向柱塞式液压泵。
为达到上述目的,本发明采用如下技术方案:
一种轴向柱塞式液压泵,包括两个端盖和具有通孔的壳体组成的外壳,所述通孔内设有缸体,缸体和其中一个端盖之间设有斜盘,所述缸体上沿轴向按照圆周阵列布设有缸孔,缸孔内分别设有柱塞 滑靴组件;每个柱塞滑靴组件露出于缸孔外的一端与斜盘抵压。
优选地,每个柱塞滑靴组件与对应缸孔的内壁之间设有液压腔,缸体上设有连通液压腔的连通孔,所述柱塞滑靴组件向缸孔内运动时液压腔体积减小,所述柱塞滑靴组件向斜盘运动时液压腔体积增大。
优选地,所述液压腔内填充有液体,向缸孔内运动的柱塞滑靴组件对液压腔的体积进行压缩,将该液压腔内的液体压向其他液压腔,并驱动对应的柱塞滑靴组件向斜盘运动。
优选地,所述缸孔为台阶孔,并且台阶孔中孔径较大的一端朝向斜盘,所述柱塞滑靴组件上设有与台阶孔匹配的台阶柱。
优选地,所述台阶孔为至少两级的台阶孔。
优选地,所述台阶柱上最大柱体的端面面积与最小柱体的端面面积比为:1.15至1.75。
优选地,所述台阶孔的轴向侧面与柱塞滑靴组件之间设有密封件,并且靠近斜盘一端的台阶孔与柱塞滑靴组件之间的密封性高于远离斜盘的一端。
优选地,所述密封件上设有与台阶孔的台阶端面相扣的翻边。
优选地,所述轴向柱塞式液压泵还包括穿过端盖和斜盘的转轴,所述转轴靠近缸体的外侧面上设有机械密封组件。
优选地,所述斜盘与端盖固定连接且无相对运动,柱塞滑靴组件在缸孔内做活塞运动的同时在斜盘上做圆周运动。
优选地,缸体和另一个端盖之间依次设有止推盘和配流盘,止推盘和配流盘上设有液体入口,止推盘与配流盘之间设有位于液体入口处的连通间隙,所述缸体外侧壁与壳体之间设有连通通道,缸体与斜盘之间的空腔通过所述连通通道和连通间隙与液体入口连通。
优选地,所述液压腔内填充的液体与缸孔需要增压的液体相同。
优选地,所述机械密封组件靠近缸体的一端与转轴外侧面密封,另一端与端盖密封。
优选地,所述机械密封组件靠近缸体的一端与转轴外侧面密封,另一端与斜盘密封。
优选地,所述端盖上设有供转轴穿过的通孔,并且转轴穿过通过的部分连接有连接器,所述通孔大于连接器的最大外径,并容设至少部分所述连接器。
优选地,所述机械密封组件靠近缸体的一端抵压在缸体的端面上。
优选地,所述转轴在缸体端面外侧设有轴肩,所述机械密封组件靠近缸体的一端抵压在轴肩上。
优选地,所述轴肩与缸体的端面抵压设置。
优选地,所述端盖与壳体之间通过螺纹旋扣连接。
本发明提供的轴向柱塞式液压泵,由于柱塞滑靴组件露出于缸孔外的一端直接与斜盘抵压,因此省去了回程盘和球铰。由此,一方面,可以减小离心力,从而减少柱塞滑靴组件的磨损;另一方面,缩短转轴的长度,达到减小液压泵体积的效果,使得液压泵的空间利用更加紧凑。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中液压泵的结构示意图;
图2为本发明实施例中液压泵的结构示意图;
图3为图2中A部分局部放大图;
图4为图2中B部分局部放大图;
图5为图2中缸体的C-C剖视图;
图6为本发明实施例中缸体采用两级台阶孔的结构示意图;
图7为本发明实施例中回程圈与斜盘的装配示意图;
图8为图2中D部分局部放大图;
图9为图2中E部分局部放大图。
附图标记:10-端盖,11-通孔,20-壳体,30-缸体,31-缸孔,32-液压腔,33-连通孔,34-密封件,35-翻边,36-连通通道,40-柱塞滑靴组件,41-柱塞,42-滑靴,43-导向轮,44-颈部,50-斜盘,60-转轴,70-止推盘,71-液体入口,72-连通间隙,75-配流盘,80-机械密封组件,81-轴向密封件,82-第一安装件,83-第二安装件,84-O型密封圈,90-回程圈,91-环状阻尼部,92-第一流体间隙,93-启动支撑部,94-导向槽,95-第二流体间隙,96-第一安装部,97-第二安装部;
100-缸体,200-柱塞滑靴组件,300-回程盘,400-斜盘,500-转轴,600-球铰。
具体实施方式
现有技术中的轴向柱塞式液压泵如图1所示,该液压泵包括缸体100、柱塞滑靴组件200和回程盘300,并且柱塞滑靴组件200与回程盘300装配,回程盘300与斜盘400抵压,通过缸体100的转动,使得柱塞滑靴组件200与回程盘300整体相对于斜盘400进行运动,相当于通过回程盘300的转动带动柱塞滑靴组件200在缸孔内做活塞运动。同时,由于回程盘是做斜向的圆周运动,所以,在转轴500上安装有球铰600,回程盘300铰接在球铰600上。
以上采用球铰和回程盘结构的液压泵存在如下缺陷:
一、回程盘和球铰占用液压泵内部的较大空间,导致液压泵整体制造体积较大。
二、回程盘随着柱塞滑靴组件一起做圆周运动,导致作用在柱塞滑靴组件上的离心力较大,从而使得柱塞滑靴组件与缸孔之间存在较大的相对作用力,造成柱塞滑靴组件与缸孔摩擦处容易被磨损,并且容易磨损的位置为朝向斜盘的一端。另外,回程盘直接对柱塞滑靴组件产生作用力,也会使得柱塞滑靴组件与缸孔摩擦处容易被磨损。
三、回程盘与柱塞滑靴组件属于直接接触连接,造成两者之间存在较大作用力,容易造成柱塞滑靴组件与回程盘接触处产生加大磨损。
四、采用回程盘与球铰的方案,还需要通过弹簧提供相应作用力,造成液压泵内部装配的零部件较多,不仅成本较高,还使得装配较为复杂。
为了克服现有技术中液压泵的缺陷,本发明实施例提供一种轴向柱塞式液压泵,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种液压回程的轴向柱塞式液压泵,如图2所示,该轴向柱塞式液压泵包括两个端盖10和壳体20,端盖10和壳体20组成该液压泵的外壳,并且壳体20内设有通孔,该通孔内设有位于两个端盖之间的缸体30,所述缸体30上沿轴向按照圆周阵列布设有缸孔31,缸孔内分别设有柱塞滑靴组件40,通过各个缸孔31内的柱塞滑靴组件40轮流进行活塞运动,实现对液体的增压,也可以实现液体提供动力的马达,为了克服现有技术的缺陷,本发明实施例中每个柱塞滑靴组件露出于缸孔外的一端与斜盘抵压,省去现有技术中回程盘和球铰。在此发明构思基础上,本发明实施例还提供如下实施例。
实施例一
本发明实施例提供一种采用液压回程方式的轴向柱塞式液压泵,如图2所示,该轴向柱塞式液压泵包括两个端盖10和壳体20,端盖10和壳体20组成该液压泵的外壳,并且壳体20内设有通孔,该通孔内设有位于两个端盖之间的缸体30,所述缸体30上沿轴向按照圆周阵列布设有缸孔31,所述缸孔为2至24个,缸孔内分别设有柱塞滑靴组件40,通过各个缸孔31内的柱塞滑靴组件40轮流 进行活塞运动,实现对液体的增压,也可以实现液体提供动力的马达。本发明实施例中实现柱塞滑靴组件40进行轮流活塞运动的方案如图2所示,在缸体30和其中一个端盖之间设置斜盘50,每个柱塞滑靴组件40露出于缸孔外的一端与斜盘抵压,不再采用现有技术中通过回程盘带动的方案,而是将柱塞滑靴组件40直接抵压在斜盘50上,使得正常工作过程中,柱塞滑靴组件能够在斜盘上做旋转运动。
本发明中的柱塞滑靴组件40包括柱塞41和滑靴42,其中柱塞41安装在缸孔31内,滑靴42抵压在斜盘50上,并且柱塞41与滑靴42之间通过球铰进行连接。
为了给柱塞滑靴组件40做活塞运动提供动力,如图2、图3、图4所示,本发明实施例中每个柱塞滑靴组件40与对应缸孔31的内壁之间设有液压腔32,并且缸体30上设有连通液压腔32的连通孔33(参见图5所示),在液压腔32内填充有液体,并且本实施例中液压腔的设置方式,可以使得柱塞滑靴组件向缸孔内运动时液压腔体积减小,而柱塞滑靴组件向斜盘运动时液压腔体积增大。如图3所示,在斜盘50将柱塞滑靴组件40压向缸孔内时对液压腔的体积进行压缩,由于对应液压腔32的体积减小,故而对应液压腔内的液体通过连通孔33流动到其他液压腔,使得其他液压腔内的液体压力增大,如图4所示,其他液压腔在液体压力增大的情况下实现液压腔32体积的增大,从而驱动对应的柱塞滑靴组件40能够像斜盘50方向运动。以上运动机理轮流作用于各个柱塞滑靴组件,从而使得柱塞滑靴组件做活塞运动。
优选地,在液压腔内的压力增大时,为了能够驱动柱塞滑靴组件项斜盘方向运动,如图4所示,本发明实施例中将缸孔31设计为台阶孔,该台阶孔中孔径较大的一端朝向斜盘50,并在柱塞滑靴组件40上设有与台阶孔匹配的台阶柱,具体而言是将柱塞设计为相匹配的台阶柱,从而使得台阶孔上的台阶与台阶柱上的台阶之间形成液压腔32,缸体的另一端设有运动空间,在压力增大时,该压力自 然会主要作用在台阶柱的台阶面上,并推动柱塞滑靴组件40向斜盘50方向运动。除了采用台阶孔的方式外,本领域技术人员还可以采用其他方式实现液压腔的设置,如在缸孔内再设计对应的环状孔,而柱塞上设计对应的环状条,环状条与环状孔配合形成液压腔。本发明实施例台阶柱上较小的一端位于台阶处设有环形槽,从而减少其磨损。
优选地,由于在液压腔32内的压力推动柱塞41进行运动时,与推动力大小相关的除了液压腔内的压力外,另一个起关键作用的是台阶柱上的台阶面积大小,为了保证推动力能够推动柱塞滑靴组件向斜盘方向运动,同时还能够保证柱塞滑靴组件对需要增压液体的增压效果,需要同时保证台阶柱上前端推动增压的最小端面面积、以及台阶柱上台阶面的大小设计,本发明设计人员通过多次设计,多次效果评估,最终认为台阶柱上最大柱体的端面面积与最小柱体的端面面积比设计为1.15至1.75时,相应的效果最好,也能够将柱塞滑靴的体积设计最优化。一般情况下,在台阶柱上最大柱体的直径较大时,上述的面积比可以选择较小的设计参数,如在最大柱体的直径大于24mm时,此时的上述面积比可以选择1.15至1.5左右;而在台阶柱上最大柱体的直径较小时,上述面积比则需要选择较大的设计参数,如在最大柱体的直径小于24mm时,此时的上述面积比可以选择1.4至1.75;采用上述面积比的选择方式既能够保证推动力,又可以保证增压效果,还可以保证柱塞滑靴组件不至于太笨重。
优选地,本发明实施例中的台阶孔选择一级台阶孔就可实现其技术目的,为了保证推动力,本发明实施例还可以将台阶孔设计为至少两级的台阶孔,如图6中采用的就是两级台阶孔以及对应的两级台阶柱。
优选地,如图2、图3、图4所示,本发明实施例还在所述台阶孔的轴向侧面与柱塞滑靴组件40之间设有密封件34,通过密封件34将使得液压腔32中液体不易泄露,当然由于本发明提供的液压 泵主要用在高压环境下,液压腔与外界或多或少会出现一些液体的流通,为了保证液压腔32能够将柱塞滑靴组件压向斜盘,本发明实施例中的密封性能采用如下方案:靠近斜盘50一端的台阶孔与柱塞滑靴组件之间的密封性高于远离斜盘的一端,使得靠近斜盘50一端不易泄露,而远离斜盘一端一般来说压力更大,故而液压腔的内压力泄漏的就会较少,即使因为压力过大造成泄漏,也会出现液压腔外的液体向液压腔内泄漏,从而对液压腔内的液体起到补充作用,从而使得液压腔内的压力能够更好地作用在柱塞滑靴组件40上。当然,由于液压腔与外界或多或少会出现一些液体的流通,为了保证不会对需要增压的液体出现污染,本发明实施例液压腔内填充的液体与缸孔需要增压的液体相同;如我们将本发明提供的液压泵运用到海水淡化领域,则液压腔中可以填充海水也可以填充淡水,无论填充海水还是淡水都不会对需要增压的海水造成污染。
优选地,由于柱塞一直在做活塞运动,为了防止密封件脱落,如图3所示,本发明实施例在密封件34上设有与台阶孔的台阶端面相扣的翻边35,通过翻边35扣在台阶面上,使得密封件不易从缸孔中脱出。
优选地,本发明提供的液压泵可以采用但不限于如下方案:
第一、如图2所示,斜盘50与端盖10固定连接且无相对运动,柱塞滑靴组件在缸孔内做活塞运动的同时在斜盘上做圆周运动,也就是通过转轴60带动缸体30转动,而斜盘50则固定在端盖上不做旋转运动。
第二、将缸体固定在外壳上,通过转轴带动斜盘转动,在斜盘的转动下依次将柱塞滑靴组件压向缸孔内。
优选地,由于液压腔内的液体会泄漏出来,为了保证液体能够全面循环,如图9所示,本发明实施例中缸体30和另一个端盖10之间依次设有止推盘70和配流盘75,止推盘70和配流盘75上设有液体入口71,止推盘70与配流盘75之间设有位于液体入口71处的连通间隙72,并且缸体30外侧壁与壳体20之间设有连通通道 36,缸体与斜盘之间的空腔通过所述连通通道36和连通间隙72与液体入口17连通,从而使得泄漏出的液体能够通过上述连通位置回到液体入口处,在不使用液压泵时可以将液体全部排出。
优选地,上述缸体外侧壁与壳体之间设置连通通道36可以间断地分布在缸体30外侧壁与壳体20之间,如,在缸体30外侧壁上间断地设置一些连通凹槽。
实施例二
本发明实施例提供一种抗磨损的轴向柱塞式液压泵,该液压泵省去回程盘,并且通过相应方案减少柱塞滑靴组件的磨损,具体如图2所示,该轴向柱塞式液压泵包括两个端盖10和壳体20,端盖10和壳体20组成该液压泵的外壳,并且壳体20内设有通孔,该通孔内设有位于两个端盖10之间的缸体30,所述缸体30上沿轴向按照圆周阵列布设有缸孔31,缸孔31内分别设有柱塞滑靴组件40,通过各个缸孔内的柱塞滑靴组件轮流进行活塞运动,实现对液体的增压,也可以实现液体提供动力的马达。本发明实施例中实现柱塞滑靴组件进行轮流活塞运动的方案如图2所示,在缸体30和其中一个端盖10之间设置斜盘50,每个柱塞滑靴组件40露出于缸孔外的一端与斜盘50抵压,不再采用现有技术中通过回程盘带动的方案,而是将柱塞滑靴组件直接抵压在斜盘上,使得正常工作过程中,柱塞滑靴组件能够在斜盘上做旋转运动。
为了减少柱塞滑靴组件的磨损,如图2所示,本发明实施例在斜盘与缸体之间设有回程圈90,在液压泵正常工作过程中,该回程圈90不直接与柱塞滑靴组件40接触,仅仅是对柱塞滑靴组件40起保护作用,如图2和图7所示,所述回程圈90包括环状阻尼部91,所述环状阻尼部91紧靠全部柱塞滑靴组件外侧的运动圆周面,并且与柱塞滑靴组件的外侧面之间设有流体间隙,具体而言,由于柱塞滑靴组件沿着斜盘做圆周运动,在该圆周运动的圆周面外侧设置有环状阻尼部91,并且环状阻尼部91与各个柱塞滑靴组件之间设有第一流体间隙92,由于液压泵工作过程中第一流体间隙92中充满 有流体,在柱塞滑靴组件40高速旋转的过程中,第一流体间隙92中的流体对柱塞滑靴组件产生向心力,能够抵消一大部分柱塞滑靴组件40的离心力,从而降低柱塞滑靴组件因离心力带来的磨损。并且,由于环状阻尼部91与柱塞滑靴组件之间没有直接接触,而是通过流体产生相应作用力,这样可以减少柱塞滑靴组件的作用力,减少其磨损。
本发明实施例不需要专门在流体间隙中填充液体,液压泵在工作过程中,液体会流入斜盘与缸体之间的空腔中,具体流通路径可以参考实施例一中的说明,此处不再赘述,在空腔中的液体进入流体间隙并对运动的柱塞滑靴组件产生向心力,从而起到上述减少磨损的作用。
本发明实施例中柱塞滑靴组件实现活塞运动的驱动方式可以采用实施例一种的方案,此处不再详细说明,当然本领域技术人员也可以想到其他驱动方案。
如图2和图7所示,柱塞滑靴组件包括与斜盘抵压的滑动部,一般柱塞滑靴组件40包括柱塞41和滑靴42,并且滑动部设置在滑靴42上,本发明实施例中的环状阻尼部92设置的滑动部所形成运动圆周面的外侧,使得环状阻尼部与全部滑动部外侧的运动圆周面之间形成第一流体间隙92。
由于采用液压腔的方式驱动柱塞滑靴组件做活塞运动,在液压泵长时间不工作的情况下,液压腔内的液体可能泄漏,导致不能驱动柱塞滑靴组件做活塞运动,为了能够在液压泵刚启动的时候带动柱塞滑靴组件做活塞运动,如图2和图7所示,本发明实施例中的回程圈90还包括启动支撑部93,启动支撑部93与斜盘50之间形成导向槽94,所述柱塞滑靴组件40上对应设有导向轮43,导向轮一般设置在滑靴42上,并且导向轮43在导向槽94内运动,在启动之初,导向轮43抵触在启动支撑部93上,从而驱动柱塞滑靴组件40沿着斜盘50运动,形成柱塞41在缸孔31内的活塞运动,当启动一段时间之后,液压腔32内会填充满液体,从而不再需要抵触在 启动支撑部。故而,本发明实施例在设计时,将导向槽94的宽度设计成大于导向轮43的厚度,使得液压腔内填充满液体情况下,启动支撑部93并不需要对导向轮43进行支撑,从而起到保护回程圈90的作用。
为了更好地保护柱塞滑靴组件不被磨损,本发明实施例中的还设置了第二流体间隙,具体设置方式如图2、图3、图7所示,柱塞滑靴组件设有与导向轮43连接的颈部44,所述启动支撑部93紧靠颈部外侧的运动圆周面,启动支撑部93与颈部44外侧的运动圆周面之间形成第二流体间隙95,相当于启动支撑部在此处起到了一部分环状阻尼部的作用。如此一来,第一流体间隙92中的流体则是对导向轮的外侧产生向心力,而第二流体间隙95中的流体则是对颈部外侧产生向心力,通过上述两个位置向心力来减少柱塞滑靴组件的磨损。
为了保护导向轮,本发明实施例将第二流体间隙95设计为小于第一流体间隙92,使得流体能够优先作用于颈部,减少导向轮的磨损。一般来讲,第一流体间隙和第二流体间隙的大小均需要小于1mm。
为了方便安装,本发明实施例的回程圈上设有安装部,通过安装部将回程圈安装在缸体与斜盘之间,具体但不限于如下方案:
第一、如图2和图7所示,回程圈90还包括从环状阻尼部91朝向斜盘的端面延伸形成的第一安装部96,所述第一安装部96固定在斜盘50与外壳20之间。
第二、如图2和图7所示,回程圈90还包括从环状阻尼部91朝向缸体的端面延伸形成的第二安装部97,第二安装部97固定在斜盘50与缸体30之间。
以上第一安装部96和第二安装部97可以同时设置,具有上述环状阻尼部、启动支撑部、第一安装部、第二安装部的回程圈结构如图7所示。由于环状阻尼部与启动支撑部都需要产生相应的摩擦,本发明实施例提供的回程圈可以采用但不限于PEEK(聚醚醚酮)材料、或者PA6(尼龙6)材料、或者POM(聚甲醛)材料制成,提高其耐 磨程度,延长回程圈使用寿命。
实施例三
现有技术中的液压泵,由于回程盘和球铰占用液压泵内部的较大空间,导致液压泵整体制造体积较大,本发明实施例提供一种紧凑型轴向柱塞式液压泵,具体如图2所示,该轴向柱塞式液压泵包括两个端盖10和壳体20,端盖10和壳体20组成该液压泵的外壳,并且壳体内设有通孔,该通孔内设有位于两个端盖之间的缸体30,所述缸体30上沿轴向按照圆周阵列布设有缸孔31,缸孔31内分别设有柱塞滑靴组件40,通过各个缸孔内的柱塞滑靴组件40轮流进行活塞运动,实现对液体的增压,也可以实现液体提供动力的马达。
本发明实施例中的柱塞滑靴组件的回程方案可以采用实施例一和实施例二提供的方案,即采用液压腔进行液压回程,并采用回程圈减少磨损,具体不再赘述。
为了减小液压泵的设计长度,本发明实施例中每个柱塞滑靴组件露出于缸孔外的一端直接与斜盘50抵压,可以省去回程盘和球铰,由于球铰是安装在转轴上的,故而可以缩短转轴的设计长度,从而降低液压泵的设计长度,为了保证斜盘与缸体之间的液体不会泄漏,本发明实施例在转轴60靠近缸体30的外侧面上设有机械密封组件80。
本发明实施例中的机械密封组件可以采用现有技术中常用的结构,具体需要做到机械密封组件与转轴60的圆周面实现密封,并且与端盖或者斜盘需要进行密封,保证液体不会从转轴的穿入孔中泄漏。
本发明实施例由于不采用球铰,可以将机械密封组件设置在转轴靠近抗体的外侧面上,减小转轴整体长度的占用,缩短液压泵的设计长度。
本发明实施例中无回程盘和球铰的方案可以适用于如下两种形式的液压泵:
第一、如图2所示,斜盘50与端盖10固定连接且无相对运动, 柱塞滑靴组件40在缸孔31内做活塞运动的同时在斜盘上做圆周运动,也就是通过转轴60带动缸体30转动,而斜盘50则固定在端盖10上不做旋转运动。
第二、将缸体固定在外壳上,通过转轴带动斜盘转动,在斜盘的转动下依次将柱塞滑靴组件压向缸孔内。
本发明实施例中机械密封组件靠近缸体的一端除了与转轴外侧面密封外,还需要以下至少一种密封结构:
一、机械密封组件的另一端与端盖10密封,相当于端盖10上设有与机械密封组件相配合的安装台阶,通过安装台阶与机械密封组件进行密封,以防液体从端盖处泄漏。
二、如图2和图8所示,机械密封组件另一端与斜盘密封,图中斜盘50上设于与机械密封组件相配合的安装台阶,通过斜盘上的安装台阶与机械密封组件进行密封,也可以防止液体从端盖处泄漏。
在采用上述第二种密封方案时,为了进一步减少液压泵的长度,本发明实施例在端盖10上设有供转轴60穿过的通孔11,并且转轴0穿过通过的部分连接有连接器,所述通孔11大于连接器的最大外径,并容设至少部分所述连接器,从而可以将连接器的至少一部分容纳到端盖的通孔11中,从而降低液压泵的整体长度,使得液压泵更加紧凑。
本发明实施例中机械密封组件靠近缸体一端的安装方式可以采用如下方案:一、将机械密封组件80靠近缸体的一端直接抵压在缸体30的端面上,具体如图8所示;二、在转轴上靠近缸体端面外侧设有轴肩,将机械密封组件靠近缸体的一端抵压在轴肩上,并且为了缩短液压泵设计长度,本发明实施例可以将轴肩与缸体的端面抵压设置。
为了可以降低外壳的厚度,本发明实施例将端盖10与壳体20通过螺纹旋扣连接,具体如图2所示,而不是采用图1中的螺栓连接,这样没有螺栓孔的情况下,则不需要将壳体设计的过厚,降低壳体的设计厚度,从而使得液压泵更加紧凑。
如图8所示,本发明实施例中机械密封组件80包括轴向密封件81、第一安装件82、第二安装件83,轴向密封件81对转轴的轴向进行密封,第一安装件82和第二安装件83依次装配在轴向密封件上,并且第二安装件83与端盖或斜盘之间设有O型密封圈84,通过O型密封圈84对端盖或斜盘的通孔进行密封。
本发明实施例主要用在各种液压泵中,尤其是全水润滑的液压泵中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种轴向柱塞式液压泵,包括两个端盖和具有通孔的壳体组成的外壳,所述通孔内设有缸体,缸体和其中一个端盖之间设有斜盘,所述缸体上沿轴向按照圆周阵列布设有缸孔,缸孔内分别设有柱塞滑靴组件;其特征在于,每个柱塞滑靴组件露出于缸孔外的一端与斜盘抵压。
  2. 根据权利要求1所述的轴向柱塞式液压泵,其特征在于,每个柱塞滑靴组件与对应缸孔的内壁之间设有液压腔,缸体上设有连通液压腔的连通孔,所述柱塞滑靴组件向缸孔内运动时液压腔体积减小,所述柱塞滑靴组件向斜盘运动时液压腔体积增大。
  3. 根据权利要求2所述的轴向柱塞式液压泵,其特征在于,所述液压腔内填充有液体,向缸孔内运动的柱塞滑靴组件对液压腔的体积进行压缩,将该液压腔内的液体压向其他液压腔,并驱动对应的柱塞滑靴组件向斜盘运动。
  4. 根据权利要求2或3所述的轴向柱塞式液压泵,其特征在于,所述缸孔为台阶孔,并且台阶孔中孔径较大的一端朝向斜盘,所述柱塞滑靴组件上设有与台阶孔匹配的台阶柱。
  5. 根据权利要求4所述的轴向柱塞式液压泵,其特征在于,所述台阶孔为至少两级的台阶孔。
  6. 根据权利要求4所述的轴向柱塞式液压泵,其特征在于,所述台阶柱上最大柱体的端面面积与最小柱体的端面面积比为:1.15至1.75。
  7. 根据权利要求4所述的轴向柱塞式液压泵,其特征在于,所述台阶孔的轴向侧面与柱塞滑靴组件之间设有密封件,并且靠近斜盘一端的台阶孔与柱塞滑靴组件之间的密封性高于远离斜盘的一端。
  8. 根据权利要求7所述的轴向柱塞式液压泵,其特征在于,所述密封件上设有与台阶孔的台阶端面相扣的翻边。
  9. 根据权利要求1所述的轴向柱塞式液压泵,所述轴向柱塞式液压 泵还包括穿过端盖和斜盘的转轴,其特征在于,所述转轴靠近缸体的外侧面上设有机械密封组件。
  10. 根据权利要求2或3或9所述的轴向柱塞式液压泵,其特征在于,所述斜盘与端盖固定连接且无相对运动,柱塞滑靴组件在缸孔内做活塞运动的同时在斜盘上做圆周运动。
  11. 根据权利要求2或3所述的轴向柱塞式液压泵,其特征在于,缸体和另一个端盖之间依次设有止推盘和配流盘,止推盘和配流盘上设有液体入口,止推盘与配流盘之间设有位于液体入口处的连通间隙,所述缸体外侧壁与壳体之间设有连通通道,缸体与斜盘之间的空腔通过所述连通通道和连通间隙与液体入口连通。
  12. 根据权利要求3所述的轴向柱塞式液压泵,其特征在于,所述液压腔内填充的液体与缸孔需要增压的液体相同。
  13. 根据权利要求9所述的轴向柱塞式液压泵,其特征在于,所述机械密封组件靠近缸体的一端与转轴外侧面密封,另一端与端盖密封。
  14. 根据权利要求9所述的轴向柱塞式液压泵,其特征在于,所述机械密封组件靠近缸体的一端与转轴外侧面密封,另一端与斜盘密封。
  15. 根据权利要求14所述的轴向柱塞式液压泵,其特征在于,所述端盖上设有供转轴穿过的通孔,并且转轴穿过通过的部分连接有连接器,所述通孔大于连接器的最大外径,并容设至少部分所述连接器。
  16. 根据权利要求9所述的轴向柱塞式液压泵,其特征在于,所述机械密封组件靠近缸体的一端抵压在缸体的端面上。
  17. 根据权利要求9所述的轴向柱塞式液压泵,其特征在于,所述转轴在缸体端面外侧设有轴肩,所述机械密封组件靠近缸体的一端抵压在轴肩上。
  18. 根据权利要求17所述的轴向柱塞式液压泵,其特征在于,所述轴肩与缸体的端面抵压设置。
  19. 根据权利要求9所述的轴向柱塞式液压泵,其特征在于,所述端盖与壳体之间通过螺纹旋扣连接。
PCT/CN2015/083823 2014-07-21 2015-07-10 轴向柱塞式液压泵 WO2016011898A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410357509.1 2014-07-21
CN201410357509.1A CN104153986B (zh) 2014-07-21 2014-07-21 液压回程的轴向柱塞式液压泵
CN201420413687.7U CN203939690U (zh) 2014-07-21 2014-07-21 紧凑型轴向柱塞式液压泵
CN201420413687.7 2014-07-21

Publications (1)

Publication Number Publication Date
WO2016011898A1 true WO2016011898A1 (zh) 2016-01-28

Family

ID=55162502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083823 WO2016011898A1 (zh) 2014-07-21 2015-07-10 轴向柱塞式液压泵

Country Status (1)

Country Link
WO (1) WO2016011898A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005986A (zh) * 2017-12-31 2018-05-08 无锡威孚精密机械制造有限责任公司 一种柱塞马达用复合式配流装置
CN108035857A (zh) * 2018-01-05 2018-05-15 燕山大学 一种轴向柱塞式泵/马达及海水淡化液压系统
CN108425819A (zh) * 2018-03-31 2018-08-21 何旺成 斜盘滑靴式轴向柱塞水液压泵或马达
CN109139404A (zh) * 2018-10-17 2019-01-04 安徽理工大学 一种新型外排压紧的多排轴向柱塞泵/马达
CN110469475A (zh) * 2019-08-23 2019-11-19 温州大学 带有压力补偿装置的轴向变量柱塞泵
CN114215711A (zh) * 2021-11-24 2022-03-22 罗福龙 一种双向柱塞液压泵
CN114992184A (zh) * 2022-07-12 2022-09-02 华侨大学 转轴控制的二通插装阀配流径向柱塞液压装置及工作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236872A (ja) * 1998-02-24 1999-08-31 Komatsu Ltd 油圧ポンプ・モータの回転状態検出装置
CN101216022A (zh) * 2008-01-04 2008-07-09 华中科技大学 柱塞配流轴向柱塞液压泵
CN201461287U (zh) * 2009-05-05 2010-05-12 上海电气液压气动有限公司 一种柱塞变量液压泵
CN102155370A (zh) * 2011-03-30 2011-08-17 浙江大学 纯水液压通轴式球面配流轴向柱塞泵
CN103075316A (zh) * 2012-12-24 2013-05-01 北京工业大学 缸内轴承支撑半轴式纯水液压轴向柱塞泵
CN104100482A (zh) * 2014-07-21 2014-10-15 浙江沃尔液压科技有限公司 抗磨损的轴向柱塞式液压泵
CN203939689U (zh) * 2014-07-21 2014-11-12 浙江沃尔液压科技有限公司 液压回程的轴向柱塞式液压泵
CN203939690U (zh) * 2014-07-21 2014-11-12 浙江沃尔液压科技有限公司 紧凑型轴向柱塞式液压泵
CN104153986A (zh) * 2014-07-21 2014-11-19 浙江沃尔液压科技有限公司 液压回程的轴向柱塞式液压泵
CN204082514U (zh) * 2014-07-21 2015-01-07 浙江沃尔液压科技有限公司 抗磨损的轴向柱塞式液压泵

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236872A (ja) * 1998-02-24 1999-08-31 Komatsu Ltd 油圧ポンプ・モータの回転状態検出装置
CN101216022A (zh) * 2008-01-04 2008-07-09 华中科技大学 柱塞配流轴向柱塞液压泵
CN201461287U (zh) * 2009-05-05 2010-05-12 上海电气液压气动有限公司 一种柱塞变量液压泵
CN102155370A (zh) * 2011-03-30 2011-08-17 浙江大学 纯水液压通轴式球面配流轴向柱塞泵
CN103075316A (zh) * 2012-12-24 2013-05-01 北京工业大学 缸内轴承支撑半轴式纯水液压轴向柱塞泵
CN104100482A (zh) * 2014-07-21 2014-10-15 浙江沃尔液压科技有限公司 抗磨损的轴向柱塞式液压泵
CN203939689U (zh) * 2014-07-21 2014-11-12 浙江沃尔液压科技有限公司 液压回程的轴向柱塞式液压泵
CN203939690U (zh) * 2014-07-21 2014-11-12 浙江沃尔液压科技有限公司 紧凑型轴向柱塞式液压泵
CN104153986A (zh) * 2014-07-21 2014-11-19 浙江沃尔液压科技有限公司 液压回程的轴向柱塞式液压泵
CN204082514U (zh) * 2014-07-21 2015-01-07 浙江沃尔液压科技有限公司 抗磨损的轴向柱塞式液压泵

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005986A (zh) * 2017-12-31 2018-05-08 无锡威孚精密机械制造有限责任公司 一种柱塞马达用复合式配流装置
CN108035857A (zh) * 2018-01-05 2018-05-15 燕山大学 一种轴向柱塞式泵/马达及海水淡化液压系统
CN108035857B (zh) * 2018-01-05 2023-05-30 燕山大学 一种轴向柱塞式泵/马达及海水淡化液压系统
CN108425819A (zh) * 2018-03-31 2018-08-21 何旺成 斜盘滑靴式轴向柱塞水液压泵或马达
CN109139404A (zh) * 2018-10-17 2019-01-04 安徽理工大学 一种新型外排压紧的多排轴向柱塞泵/马达
CN110469475A (zh) * 2019-08-23 2019-11-19 温州大学 带有压力补偿装置的轴向变量柱塞泵
CN114215711A (zh) * 2021-11-24 2022-03-22 罗福龙 一种双向柱塞液压泵
CN114215711B (zh) * 2021-11-24 2023-12-01 濮阳市国胜机械加工有限公司 一种双向柱塞液压泵
CN114992184A (zh) * 2022-07-12 2022-09-02 华侨大学 转轴控制的二通插装阀配流径向柱塞液压装置及工作方法

Similar Documents

Publication Publication Date Title
WO2016011898A1 (zh) 轴向柱塞式液压泵
US9677548B2 (en) Pump
CN209781143U (zh) 轴向柱塞泵
US20130323103A1 (en) Seal assemblies for reciprocating and rotary applications
WO2017015782A1 (zh) 一种新型轴向柱塞泵
CN104454420A (zh) 斜盘旋转式内置阀配流轴向柱塞泵
CN104153986A (zh) 液压回程的轴向柱塞式液压泵
CN202833001U (zh) 斜盘式旋转阀配流纯水柱塞泵
US20050265862A1 (en) Pump
CN104100482A (zh) 抗磨损的轴向柱塞式液压泵
CN106051162A (zh) 轴杆浮动密封器及应用方法
CN106968910B (zh) 轻型电动液压柱塞泵
CN102761197B (zh) 平衡器与动密封一体结构
US10443584B2 (en) Fluid pressure pump and fluid pressure system
CN204082514U (zh) 抗磨损的轴向柱塞式液压泵
US20180142553A1 (en) Hydraulic axial piston unit with central fixed hold down device
CN102374292A (zh) 密封组件、带有该密封组件的装置及密封方法
CN105114278A (zh) 一种新型轴向柱塞泵
GB2160596A (en) Pump
CN203939689U (zh) 液压回程的轴向柱塞式液压泵
CN101531331A (zh) 一种新型液压千斤顶
CN203939690U (zh) 紧凑型轴向柱塞式液压泵
JP2015021485A (ja) 手押しポンプ
CN109798232B (zh) 斜盘式柱塞泵马达
CN208221073U (zh) 轴向柱塞泵的柱塞组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824120

Country of ref document: EP

Kind code of ref document: A1