WO2016011801A1 - 投影镜头 - Google Patents

投影镜头 Download PDF

Info

Publication number
WO2016011801A1
WO2016011801A1 PCT/CN2015/072050 CN2015072050W WO2016011801A1 WO 2016011801 A1 WO2016011801 A1 WO 2016011801A1 CN 2015072050 W CN2015072050 W CN 2015072050W WO 2016011801 A1 WO2016011801 A1 WO 2016011801A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image source
projection lens
image
imaging
Prior art date
Application number
PCT/CN2015/072050
Other languages
English (en)
French (fr)
Inventor
黄林
戴付建
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420406023.8U external-priority patent/CN204009209U/zh
Priority claimed from CN201410349750.XA external-priority patent/CN104142565B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to EP15766037.4A priority Critical patent/EP3026477B1/en
Priority to ES15766037.4T priority patent/ES2689091T3/es
Priority to US14/779,785 priority patent/US9529180B2/en
Publication of WO2016011801A1 publication Critical patent/WO2016011801A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text

Definitions

  • the present invention relates to optical projection systems, and more particularly to a projection lens.
  • the projection lens In recent years, with the continuous advancement of imaging technology, the application range of projection lenses has become wider and wider, and interactive projection devices have gradually emerged. In order to be suitable for miniaturized electronic devices and interactive requirements, the projection lens needs to have a sufficient angle of view while ensuring miniaturization, and to ensure good image quality and information acquisition.
  • Conventional projection lenses are generally used for imaging. By using more lenses to eliminate various aberrations to improve the resolution, but the projection lens length is longer, which is not conducive to miniaturization; and the general large angle of view projection For the lens, the distortion will be large and the image quality will not be high.
  • the interactive device mainly relies on the projection lens to generate a signal, and then captures the image through the imaging lens, and extracts the information through the image processing software, thereby realizing interactive functions such as multi-touch and gesture recognition. Therefore, the signal quality simulated by the projection lens plays a decisive role in the accuracy of information extraction.
  • the infrared band can filter out the influence of visible light due to its own characteristics, and it is easier to extract information.
  • the present invention proposes a projection lens that can be applied to an interactive device and can be applied to an infrared band.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • a first lens having a negative power the imaging side being a convex surface, and the image side being a concave surface;
  • the imaging side is convex, and the image side is concave;
  • An aperture is disposed between the first lens and the second lens, and the projection lens satisfies the following relationship:
  • ImgH is half the length of the image source diagonal; D is the vertical height of the first lens imaging side to a central optical axis perpendicular to the image source.
  • the second lens and the fourth lens are made of a glass material.
  • the projection lens satisfies the following relationship:
  • f1 is the focal length of the first lens and f is the overall focal length of the projection lens.
  • the projection lens satisfies the following relationship:
  • f2 is the focal length of the second lens.
  • the projection lens satisfies the following relationship:
  • f4 is a focal length of the fourth lens
  • R5 is a radius of curvature of an imaging side surface of the third lens
  • R6 is a radius of curvature of an image source side surface of the third lens.
  • the second lens imaging side is convex.
  • the fourth lens imaging side is convex.
  • the fourth lens image source side is convex.
  • the reflective optical surface that bends the optical path is a reflective prism or a reflective planar mirror.
  • the projection lens of the preferred embodiment of the present invention has a large angle of view, a large aperture, and is miniaturized.
  • Embodiment 1 is a schematic diagram showing the main structure of Embodiment 1 of a projection lens provided by the present invention
  • Figure 2 is an axial chromatic aberration diagram (mm) in the embodiment 1;
  • Figure 3 is an astigmatism diagram (mm) in Embodiment 1;
  • Figure 4 is a distortion diagram (%) in Embodiment 1;
  • Figure 5 is a magnification chromatic aberration diagram ( ⁇ m) in Example 1;
  • Embodiment 2 is a schematic diagram showing the main structure of Embodiment 2 of a projection lens provided by the present invention.
  • Figure 7 is an axial chromatic aberration diagram (mm) in Embodiment 2.
  • Figure 8 is an astigmatism diagram (mm) in Embodiment 2;
  • Figure 9 is a distortion diagram (%) in Embodiment 2.
  • Figure 10 is a magnification chromatic aberration diagram ( ⁇ m) in Example 2.
  • FIG. 11 is a schematic diagram showing the main structure of Embodiment 3 of a projection lens provided by the present invention.
  • Figure 12 is a diagram of axial chromatic aberration (mm) in Example 3.
  • Figure 13 is an astigmatism diagram (mm) in Embodiment 3.
  • Figure 14 is a distortion diagram (%) in Embodiment 3.
  • Figure 15 is a magnification chromatic aberration diagram ( ⁇ m) in Example 3.
  • FIG. 16 is a schematic diagram showing the main structure of Embodiment 4 of a projection lens provided by the present invention.
  • Figure 17 is a diagram of axial chromatic aberration (mm) in Example 4.
  • Figure 18 is an astigmatism diagram (mm) in Embodiment 4.
  • Figure 19 is a distortion diagram (%) in Embodiment 4.
  • Figure 20 is a magnification chromatic aberration diagram ( ⁇ m) in Example 4.
  • Embodiment 21 is a main structural diagram of Embodiment 5 of a projection lens provided by the present invention.
  • Figure 22 is an axial chromatic aberration diagram (mm) in the embodiment 5;
  • Figure 23 is an astigmatism diagram (mm) in Embodiment 5.
  • Figure 24 is a distortion diagram (%) in Embodiment 5.
  • Fig. 25 is a magnification chromatic aberration diagram ( ⁇ m) in the fifth embodiment.
  • FIG. 26 is a schematic diagram showing the main structure of Embodiment 6 of a projection lens provided by the present invention.
  • Figure 27 is a diagram of axial chromatic aberration (mm) in Example 6;
  • Figure 28 is an astigmatism diagram (mm) in Embodiment 6;
  • Figure 29 is a distortion diagram (%) in Embodiment 6;
  • Fig. 30 is a magnification chromatic aberration diagram ( ⁇ m) in the sixth embodiment.
  • FIG. 31 is a schematic diagram showing the main structure of Embodiment 7 of a projection lens provided by the present invention.
  • Figure 32 is an axial chromatic aberration diagram (mm) in Embodiment 7;
  • Figure 33 is an astigmatism diagram (mm) in Embodiment 7;
  • Figure 34 is a distortion diagram (%) in Embodiment 7.
  • Figure 35 is a magnification chromatic aberration diagram ( ⁇ m) in Example 7.
  • Embodiment 8 of a projection lens provided by the present invention
  • Figure 37 is an axial chromatic aberration diagram (mm) in Embodiment 8.
  • Figure 38 is an astigmatism diagram (mm) in Embodiment 8.
  • Figure 39 is a distortion diagram (%) in Embodiment 8.
  • Figure 40 is a magnification chromatic aberration diagram ( ⁇ m) in Example 8.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a first lens having a negative power the imaging side being a convex surface, and the image side being a concave surface;
  • the imaging side is convex, and the image side is concave;
  • an aperture is disposed between the first lens and the second lens, and the second lens and the fourth lens are made of glass, and the method of inserting the glass lens into the plastic lens is matched with an appropriate method.
  • the structural design can effectively eliminate the influence of thermal difference on the projection lens.
  • f1 is the focal length of the first lens
  • f is the overall focal length of the projection lens, and satisfies the following relationship:
  • the first lens satisfies the requirements of the above formula to ensure the wide-angle characteristics of the projection lens of the preferred embodiment of the present invention.
  • f2 is the focal length of the second lens
  • f is the overall focal length of the projection lens, and satisfies the following relationship:
  • the second lens is a glass lens, and the above requirement is required to eliminate the influence of the thermal difference on the projection lens of the preferred embodiment of the present invention, and obtain a more reliable and stable image quality.
  • f4 is the focal length of the fourth lens
  • f is the overall focal length of the projection lens
  • R5 and R6 are respectively the radius of curvature of the imaging side of the third lens and the side of the image source, which will satisfy the following relationship. :
  • the third lens and the fourth lens meet the above requirements, and can realize the telecentric characteristics of the projection lens of the preferred embodiment of the present invention, so that the light is kept uniform, no vignetting, and the distortion is better corrected.
  • the second lens imaging side is convex.
  • the fourth lens imaging side is convex
  • the image source side is convex
  • the reflective optical surface that bends the optical path may be a reflective prism or a reflective planar mirror.
  • the projection lens of the preferred embodiment of the present invention adopts four lenses, and realizes the technical effects of large angle of view, large aperture, and miniaturization. Through the combination of plastic and glass and the distribution of different power and curvature radius, The production cost is reduced, and the influence of the thermal difference on the projection lens of the preferred embodiment of the present invention is eliminated, and the telecentricity of the image is achieved.
  • the aspherical shape is determined by the following formula:
  • h is the height from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex
  • k is the cone constant
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, the imaging side is a convex surface, the image side is a concave surface, and the imaging side is an image side.
  • the source side are aspherical; a curved reflector E2; a second lens E3 having a positive power, the imaging side is convex, the image side is convex, and the imaging side and the image source side are spherical; the third lens E4 having positive power, The imaging side is convex, the image side is concave, and the imaging side and the image source side are aspherical; the fourth lens E5 having positive power has a convex side on the imaging side, a convex side on the image side, and an imaging side and The image source side is a spherical surface; the pupil is located between the first lens E1 and the second lens E3; and in the projection lens, the second lens E3 and the fourth lens E5 are made of glass.
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, the imaging side is a convex surface, the image side is a concave surface, and the imaging side is an image side.
  • the image source side are aspherical; the reflective prism E2 for bending the optical path; the second lens E3 having positive refractive power, the imaging side is concave, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 having positive refractive power has a convex side on the imaging side, a concave side on the image side, and an aspherical surface on the imaging side and the image source side;
  • a fourth lens E5 having a positive power, the imaging side is a convex surface, The image side is convex, and the imaging side and the image source side are spherical;
  • the pupil is located between the first lens E1 and the second lens E3; and the second lens E3 and the fourth lens E5 are made of glass in the projection lens .
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, the imaging side is a convex surface, the image side is a concave surface, and the imaging side is an image side.
  • the image source side are aspherical;
  • the second lens E3 having positive refractive power, the imaging side is convex, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 with positive power has a convex side on the imaging side, like the source side It is a concave surface, and both the imaging side and the image source side are aspherical;
  • the fourth lens E5 having positive refractive power has a concave side on the imaging side, a convex side on the image side, and a spherical surface on both the imaging side and the image source side;
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, a convex side on the imaging side, a concave side on the image side, and an imaging side.
  • the image source side are aspherical; the reflective prism E2 for bending the optical path; the second lens E3 having positive refractive power, the imaging side is convex, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 having positive refractive power has a convex side on the imaging side, a concave side on the image side, and an aspherical surface on the imaging side and the image source side;
  • a fourth lens E5 having a positive power, the imaging side is a convex surface,
  • the image source side is concave, and the image side and the image source side are spherical;
  • the pupil is located between the first lens E1 and the second lens E3; and the second lens E3 and the fourth lens E3 are made of glass in the projection lens .
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, a convex side on the imaging side, a concave side on the image side, and an imaging side.
  • the image source side are aspherical; the reflective prism E2 for bending the optical path; the second lens E3 having positive refractive power, the imaging side is concave, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 having positive refractive power has a convex side on the imaging side, a concave side on the image side, and an aspherical surface on both the imaging side and the image source side;
  • a fourth lens E5 having positive power, the imaging side of which is a concave surface, the source side is a convex surface, and the imaging side surface and the image source side surface are both spherical surfaces;
  • the pupil is located between the first lens E1 and the second lens E3; and the second lens E3 and the fourth lens E5 are glass by the projection lens production.
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, the imaging side is a convex surface, the image side is a concave surface, and the imaging side is an image side.
  • the image source side are aspherical; the reflective prism E2 for bending the optical path; the second lens E3 having positive refractive power, the imaging side is concave, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 having positive refractive power has a convex side on the imaging side, a concave side on the image side, and an aspherical surface on the imaging side and the image source side;
  • a fourth lens E5 having a positive power, the imaging side is a convex surface, The image side is concave, and the imaging side and the image source side are spherical;
  • the pupil is located between the first lens E1 and the second lens E3; and the second lens E3 and the fourth lens E5 are made of glass in the projection lens .
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, the imaging side is a convex surface, the image side is a concave surface, and the imaging side is an image side.
  • the image source side are aspherical; the reflective prism E2 for bending the optical path; the second lens E3 having positive refractive power, the imaging side is convex, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 having positive refractive power has a convex side on the imaging side, a concave side on the image side, and an aspherical surface on the imaging side and the image source side;
  • a fourth lens E5 having a positive power, the imaging side is a convex surface, The image side is convex, and the imaging side and the image source side are spherical;
  • the pupil is located between the first lens E1 and the second lens E3; and the second lens E3 and the fourth lens E5 are made of glass in the projection lens .
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • the projection lens includes, in order from the imaging side to the image source side, a first lens E1 having a negative refractive power, the imaging side is a convex surface, the image side is a concave surface, and the imaging side is an image side.
  • the image source side are aspherical; the reflective plane mirror E2 for bending the optical path; the second lens E3 having positive refractive power, the imaging side is convex, the image side is convex, and the imaging side and the image source side are spherical;
  • the third lens E4 having positive refractive power has a convex side on the imaging side, a concave side on the image side, and an aspherical surface on the imaging side and the image source side;
  • a fourth lens E5 having a positive power, the imaging side is a convex surface, The image side is convex, and the imaging side and the image source side are spherical;
  • the pupil is located between the first lens E1 and the second lens E3; and the second lens E3 and the fourth lens E5 are made of glass in the projection lens .
  • both sides of the first lens E1 are S1 and S2
  • the pupil plane is S3
  • the two sides of the second lens E3 are S4 and S5
  • the two sides of the third lens E4 are S6 and S7
  • the fourth lens The two sides of E5 are S8 and S9
  • the image source is S10.
  • FIG. 2 is an axial chromatic aberration diagram (mm) of the first embodiment
  • FIG. 3 is an astigmatism diagram (mm) of the first embodiment
  • FIG. 4 is a distortion diagram (%) of the first embodiment
  • FIG. 5 is a magnification of the embodiment 1.
  • FIG. 7 is an axial chromatic aberration diagram (mm) of the embodiment 2
  • FIG. 8 is an astigmatism diagram (mm) of the embodiment 2
  • FIG. 9 is a distortion diagram (%) of the embodiment 2
  • FIG. 10 is a magnification of the embodiment 2.
  • FIG. 12 is an axial chromatic aberration diagram (mm) of the third embodiment
  • FIG. 13 is an astigmatism diagram (mm) of the third embodiment
  • FIG. 14 is a distortion diagram (%) of the third embodiment
  • FIG. 15 is a magnification of the third embodiment.
  • FIG. 17 is an axial chromatic aberration diagram (mm) of the fourth embodiment
  • FIG. 18 is an astigmatism diagram (mm) of the fourth embodiment
  • FIG. 19 is a distortion diagram (%) of the embodiment 4
  • FIG. 20 is a magnification of the embodiment 4.
  • FIG. 22 is an axial chromatic aberration diagram (mm) of the fifth embodiment
  • FIG. 23 is an astigmatism diagram (mm) of the embodiment 5
  • FIG. 24 is a distortion diagram (%) of the embodiment 5
  • FIG. 25 is a magnification of the embodiment 5.
  • FIG. 27 is an axial chromatic aberration diagram (mm) of the embodiment 6
  • FIG. 28 is an astigmatism diagram (mm) of the embodiment 6
  • FIG. 29 is a distortion diagram (%) of the embodiment 6, and
  • FIG. 30 is a magnification of the embodiment 6.
  • FIG. 32 is an axial chromatic aberration diagram (mm) of Example 7
  • FIG. 33 is an astigmatism diagram (mm) of Example 7
  • FIG. 34 is a distortion diagram (%) of Example 7, and
  • FIG. 35 is a magnification of Example 7.
  • FIG. 37 is an axial chromatic aberration diagram (mm) of Example 8
  • FIG. 38 is an astigmatism diagram (mm) of Example 8
  • FIG. 39 is a distortion diagram (%) of Embodiment 8
  • FIG. 40 is a magnification of Example 8.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Lenses (AREA)

Abstract

一种投影镜头,其从成像侧至像源侧依序包括:具负光焦度的第一透镜(E1),其成像侧为凸面,像源侧为凹面;使光路弯曲的反射光学面(E2);具正光焦度的第二透镜(E3),其像源侧为凸面;具正光焦度的第三透镜(E4),其成像侧为凸面,像源侧为凹面;具正光焦度的第四透镜(E5);光阑置于所述第一透镜(E1)和所述第二透镜(E3)之间,所述投影镜头满足下列关系式:0.25<ImgH/D<0.55;其中,ImgH为像源直径对角线长的一半;D为所述第一透镜(E1)成像侧面至垂直于像源的中心光轴的垂直高度。所述投影镜头具有大视场角、大孔径且小型化。

Description

投影镜头
优先权信息
本申请请求2014年7月22日向中国国家知识产权局提交的、专利申请号为201410349750.X的专利申请及2014年7月22日向中国国家知识产权局提交的、专利申请号为201420406023.8的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及光学投影系统,尤其是涉及一种投影镜头。
背景技术
近年来,随着影像科技的不断进步,投影镜头的应用范围也越来越广,交互式投影设备逐步兴起。为了适用于小型化电子设备和交互式需求,投影镜头需要在保证小型化的同时,具有足够的视场角,并保证良好的成像质量和信息的获取。传统的投影镜头一般用于成像,通过采用较多的镜片来消除各种像差,以提高分辨率,但会使投影镜头全长变长,不利于小型化;且一般的大视场角投影镜头,畸变都会较大,成像质量不高。
交互设备主要依靠经投影镜头投影产生信号,再经成像镜头捕捉图像,并通过图像处理软件对信息进行提取,从而实现多点触控、手势识别等交互功能。因此,投影镜头模拟的信号质量对信息提取的精度有着决定性的作用。而红外波段因其自身的特性,可以滤去可见光的影响,更容易实现信息的提取。
因此,本发明提出一种投影镜头,可应用于交互设备、且可应用于红外波段。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
本发明较佳实施方式的投影镜头,从成像侧至像源侧依序包括:
具负光焦度的第一透镜,其成像侧为凸面,像源侧为凹面;
使光路弯曲的反射光学面;
具正光焦度的第二透镜,其像源侧为凸面;
具正光焦度的第三透镜,其成像侧为凸面,像源侧为凹面;
具正光焦度的第四透镜;
光阑置于所述第一透镜和所述第二透镜之间,所述投影镜头满足下列关系式:
0.25<ImgH/D<0.55;
其中,ImgH为像源直径对角线长的一半;D为所述第一透镜成像侧面至垂直于像源的中心光轴的垂直高度。
在某些实施方式中,所述第二透镜和所述第四透镜由玻璃材料制成。
在某些实施方式中,所述投影镜头满足下列关系式:
-3<f1/f<-1;
其中,f1为所述第一透镜的焦距,f为所述投影镜头的整体焦距。
在某些实施方式中,所述投影镜头满足下列关系式:
2<f2/f<4;
其中,f2为第二透镜的焦距。
在某些实施方式中,所述投影镜头满足下列关系式:
3<f4/f<12;及
-22<(R5+R6)/(R5-R6)<-5;
其中,f4为所述第四透镜的焦距,R5为所述第三透镜的成像侧面的曲率半径,R6为所述第三透镜的像源侧面的曲率半径。
在某些实施方式中,所述第二透镜成像侧为凸面。
在某些实施方式中,所述第四透镜成像侧面为凸面。
在某些实施方式中,所述第四透镜像源侧面为凸面。
在某些实施方式中,所述使光路弯曲的反射光学面是反射棱镜或者是反射平面镜。
本发明较佳实施方式的投影镜头具有大视场角、大孔径且小型化。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明提供的投影镜头的实施例1的主要结构示意图;
图2是实施例1中的轴上色差图(mm);
图3是实施例1中的像散图(mm);
图4是实施例1中的畸变图(%);
图5是实施例1中的倍率色差图(μm);
图6是本发明提供的投影镜头的实施例2的主要结构示意图;
图7是实施例2中的轴上色差图(mm);
图8是实施例2中的像散图(mm);
图9是实施例2中的畸变图(%);
图10是实施例2中的倍率色差图(μm);
图11是本发明提供的投影镜头的实施例3的主要结构示意图;
图12是实施例3中的轴上色差图(mm);
图13是实施例3中的像散图(mm);
图14是实施例3中的畸变图(%);
图15是实施例3中的倍率色差图(μm);
图16是本发明提供的投影镜头的实施例4的主要结构示意图;
图17是实施例4中的轴上色差图(mm);
图18是实施例4中的像散图(mm);
图19是实施例4中的畸变图(%);
图20是实施例4中的倍率色差图(μm);
图21是本发明提供的投影镜头的实施例5的主要结构示意图;
图22是实施例5中的轴上色差图(mm);
图23是实施例5中的像散图(mm);
图24是实施例5中的畸变图(%);
图25是实施例5中的倍率色差图(μm)。
图26是本发明提供的投影镜头的实施例6的主要结构示意图;
图27是实施例6中的轴上色差图(mm);
图28是实施例6中的像散图(mm);
图29是实施例6中的畸变图(%);
图30是实施例6中的倍率色差图(μm)。
图31是本发明提供的投影镜头的实施例7的主要结构示意图;
图32是实施例7中的轴上色差图(mm);
图33是实施例7中的像散图(mm);
图34是实施例7中的畸变图(%);
图35是实施例7中的倍率色差图(μm);
图36是本发明提供的投影镜头的实施例8的主要结构示意图;
图37是实施例8中的轴上色差图(mm);
图38是实施例8中的像散图(mm);
图39是实施例8中的畸变图(%);及
图40是实施例8中的倍率色差图(μm)。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本发明较佳实施方式的投影镜头,从成像侧至像源侧依序包括:
具负光焦度的第一透镜,其成像侧为凸面,像源侧为凹面;
使光路弯曲的反射光学面;
具正光焦度的第二透镜,其像源侧为凸面;
具正光焦度的第三透镜,其成像侧为凸面,像源侧为凹面;
具正光焦度的第四透镜;
本发明提供的投影镜头中,第一透镜和第二透镜之间设置有光阑,且第二透镜和第四透镜由玻璃制成,这种塑料镜头中插入玻璃镜片的方法,再配合恰当的结构设计,能有效的消除热差对投影镜头的影响。
本发明较佳实施方式的投影镜头中,ImgH为像源直径对角线长的一半;D为第一透镜成像侧面至垂直于像源的中心光轴的垂直高度,将满足下列关系式:
0.25<ImgH/D<0.55;
满足以上关系式能让本发明较佳实施方式的投影镜头实现小型化的特性,以便应用于便携式产品上。
本发明较佳实施方式的投影镜头中,f1为第一透镜的焦距,f为投影镜头的整体焦距,满足下列关系式:
-3<f1/f<-1;
第一透镜满足上式要求,保证本发明较佳实施方式的投影镜头的广角特征。
本发明较佳实施方式的投影镜头中,f2为第二透镜的焦距,f为投影镜头的整体焦距,满足下列关系式:
2<f2/f<4;
第二透镜为玻璃透镜,再加之上式要求,能够很好的消除热差对本发明较佳实施方式的投影镜头的影响,获得更可靠、稳定的成像质量。
本发明较佳实施方式的投影镜头中,f4为第四透镜的焦距,f为投影镜头的整体焦距,R5、R6分别为第三透镜成像侧面和像源侧面的曲率半径,将满足下列关系式:
3<f4/f<12;及
-22<(R5+R6)/(R5-R6)<-5;
第三透镜和第四透镜符合以上要求,能够实现本发明较佳实施方式的投影镜头的像方远心特性,让光线保持均匀,无暗角,并较好的修正畸变。
优选的,第二透镜成像侧面为凸面。
优选的,第四透镜成像侧面为凸面,像源侧面为凸面。
优选的,使光路弯曲的反射光学面可以是反射棱镜,也可以是反射平面镜。
本发明较佳实施方式的投影镜头采用了四片透镜,实现了大视场角、大孔径、小型化的技术效果,通过塑料和玻璃的相结合及不同的光焦度和曲率半径的分配,降低了生产成本,消除了热差对本发明较佳实施方式的投影镜头的影响,同时达到了像方远心的特性。
非球面的面形由以下公式决定:
Figure PCTCN2015072050-appb-000001
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
如图1所示,实施例1中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光 路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例1中,各参数如下所述:TTL=11.51;f1=-2.99;f2=4.14;f3=17.65;f4=6.47;f=1.56
ImgH/D=0.53;
f1/f=-1.92;
f2/f=2.66;
f4/f=4.15;
(R5+R6)/(R5-R6)=-21.59
系统参数:光阑值2.8
表1
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0000    
1 非球面 4.4952 0.3487 1.5351/55.7797 3.4407
2 非球面 1.1364 0.8515   -0.8550
3 球面 无穷 2.5000 1.5168/64.1673  
4 球面 无穷 0.1000    
stop 球面 无穷 1.2492    
6 球面 13.9318 1.5994 1.6385/55.4496  
7 球面 -3.0606 0.0497    
8 非球面 2.1970 1.0309 1.5351/55.7797 -0.0806
9 非球面 2.4105 1.0575   -0.6120
10 球面 6.7171 1.3752 1.5168/64.1673  
11 球面 -6.0355 1.3493    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表2
Figure PCTCN2015072050-appb-000002
如图6所示,实施例2中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凹面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例2中,各参数如下所述:TTL=11.28;f1=-2.71;f2=4.4;f3=13.7;f4=5.3;f=1.47
ImgH/D=0.44;
f1/f=-1.85;
f2/f=3.0;
f4/f=3.61;
(R5+R6)/(R5-R6)=-12.6
系统参数:光阑值2.8
表3
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0000    
1 非球面 4.7321 0.4966 1.5351/55.7797 3.6498
2 非球面 1.0587 0.8601   -0.6885
3 球面 无穷 2.6515 1.5168/64.1673  
4 球面 无穷 0.0997    
stop 球面 无穷 0.8263    
6 球面 -100.0015 1.3349 1.6385/55.4496  
7 球面 -2.7077 0.0544    
8 非球面 2.1045 1.0310 1.5351/55.7797 -0.1226
9 非球面 2.4674 1.0119   -1.1281
10 球面 5.7617 1.4809 1.5168/64.1673  
11 球面 -4.6472 1.4348    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表4
Figure PCTCN2015072050-appb-000003
如图11所示,实施例3中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧 为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凹面,像源侧为凸面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例3中,各参数如下所述:TTL=11.75;f1=-3.01;f2=4.08;f3=16.01;f4=7.32;f=1.63
ImgH/D=0.48;
f1/f=-1.84;
f2/f=2.5;
f4/f=4.48;
(R5+R6)/(R5-R6)=-17.55
系统参数:光阑值2.8
表5
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0000    
1 非球面 4.4911 0.3348 1.5351/55.7797 3.3494
2 非球面 1.1416 1.0011   -0.8161
3 球面 无穷 2.7720 1.5168/64.1673  
4 球面 无穷 0.1252    
stop 球面 无穷 1.1869    
6 球面 12.1532 1.3018 1.6385/55.4496  
7 球面 -3.1215 0.0237    
8 非球面 2.1605 1.0396 1.5351/55.7797 -0.1075
9 非球面 2.4215 1.1146   -0.5974
10 球面 -50.1328 1.4393 1.5168/64.1673  
11 球面 -3.5075 1.4098    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表6
Figure PCTCN2015072050-appb-000004
如图16所示,实施例4中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E3由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例4中,各参数如下所述:TTL=11.59;f1=-3.05;f2=4.12;f3=15.47;f4=17.01;f=1.51
ImgH/D=0.47;
f1/f=-2.02;
f2/f=2.73;
f4/f=11.26;
(R5+R6)/(R5-R6)=-14.96
系统参数:光阑值2.8
表7
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0000    
1 非球面 4.4350 0.3573 1.5351/55.7797 3.4574
2 非球面 1.1462 0.9313   -0.8741
3 球面 无穷 2.5366 1.5168/64.1673  
4 球面 无穷 0.1817    
stop 球面 无穷 1.4606    
6 球面 9.0228 1.7150 1.6385/55.4496  
7 球面 -3.3686 0.0497    
8 非球面 2.1832 1.0300 1.5351/55.7797 -0.0726
9 非球面 2.4960 0.7739   -0.6516
10 球面 3.0696 1.2827 1.5168/64.1673  
11 球面 4.0813 1.2682    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表8
Figure PCTCN2015072050-appb-000005
如图21所示,实施例5中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凹面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为 凹面,像源侧为凸面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例5中,各参数如下所述:TTL=12.02;f1=-2.89;f2=4.36;f3=12.24;f4=8.28;f=1.6
ImgH/D=0.46;
f1/f=-1.81;
f2/f=2.72;
f4/f=5.17;
(R5+R6)/(R5-R6)=-9.9
系统参数:光阑值2.8
表9
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0000    
1 非球面 4.7095 0.4765 1.5351/55.7797 3.5909
2 非球面 1.1118 0.9038   -0.7191
3 球面 无穷 2.7789 1.5168/64.1673  
4 球面 无穷 0.1444    
stop 球面 无穷 0.9488    
6 球面 -100.0016 1.6068 1.6385/55.4496  
7 球面 -2.6862 0.0544    
8 非球面 2.0930 1.0463 1.5351/55.7797 -0.1182
9 非球面 2.5633 1.0720   -1.1893
10 球面 -998.3688 1.5278 1.5168/64.1673  
11 球面 -4.2071 1.4648    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表10
Figure PCTCN2015072050-appb-000006
Figure PCTCN2015072050-appb-000007
如图26所示,实施例6中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凹面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例6中,各参数如下所述:TTL=10.36;f1=-2.72;f2=4.06;f3=9.08;f4=8.52;f=1.19
ImgH/D=0.47;
f1/f=-2.3;
f2/f=3.42;
f4/f=7.19;
(R5+R6)/(R5-R6)=-5.2
系统参数:光阑值2.8
表11
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0015    
1 非球面 4.7491 0.4241 1.5351/55.7797 3.7756
2 非球面 1.0726 0.6477   -0.7280
3 球面 无穷 1.9370 1.5168/64.1673  
4 球面 无穷 0.3056    
stop 球面 无穷 1.0090    
6 球面 -97.7371 2.1397 1.6385/55.4496  
7 球面 -2.5105 0.0561    
8 非球面 2.1049 1.0358 1.5351/55.7797 -0.1043
9 非球面 3.1067 0.4351   -1.4966
10 球面 2.9638 1.2340 1.5168/64.1673  
11 球面 8.0044 1.1642    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表12
Figure PCTCN2015072050-appb-000008
如图31所示,实施例7中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射棱镜E2;具正光焦度的第二透镜E3,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例7中,各参数如下所述:TTL=12.01;f1=-2.54;f2=4.02;f3=10.66;f4=9.0;f=1.06
ImgH/D=0.29;
f1/f=-2.4;
f2/f=3.80;
f4/f=8.5;
(R5+R6)/(R5-R6)=-7.66
系统参数:光阑值2.8
表13
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 466.9994    
1 非球面 5.3676 0.3681 1.5351/55.7797 2.9912
2 非球面 1.0514 1.2586   -0.8884
3 球面 无穷 2.5014 1.5168/64.1673  
4 球面 无穷 0.4027    
stop 球面 无穷 1.4842    
6 球面 11.1729 2.0165 1.6385/55.4496  
7 球面 -3.0437 0.0546    
8 非球面 2.0424 1.0062 1.5351/55.7797 -0.2037
9 非球面 2.6554 0.6359   -1.5667
10 球面 7.5580 1.0437 1.5168/64.1673  
11 球面 -11.1347 1.2715    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表14
Figure PCTCN2015072050-appb-000009
Figure PCTCN2015072050-appb-000010
如图36所示,实施例8中,投影镜头由成像侧至像源侧依序包括:具负光焦度的第一透镜E1,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;使光路弯曲的反射平面镜E2;具正光焦度的第二透镜E3,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;具正光焦度的第三透镜E4,其成像侧为凸面,像源侧为凹面,且成像侧面和像源侧面均为非球面;具有正光焦度的第四透镜E5,其成像侧为凸面,像源侧为凸面,且成像侧面和像源侧面均为球面;光阑位于第一透镜E1和第二透镜E3之间;所述投影镜头中第二透镜E3和第四透镜E5由玻璃制成。
从成像侧至像源侧,第一透镜E1的两面为S1、S2,光阑面为S3,第二透镜E3的两面为S4、S5,第三透镜E4的两面为S6、S7,第四透镜E5的两面为S8、S9,像源为S10。
实施例8中,各参数如下所述:TTL=7.74;f1=-2.89;f2=3.97;f3=19.69;f4=6.34;f=1.66
ImgH/D=0.45;
f1/f=-1.74;
f2/f=2.39;
f4/f=3.82;
(R5+R6)/(R5-R6)=-15.83
系统参数:光阑值2.8
表15
表面编号 表面类型 曲率半径 厚度 材料 圆锥系数
obj 球面 无穷 467.0000    
1 非球面 6.1068 0.4173 1.5351/55.7797 6.9581
2 非球面 1.1911 2.2937   -0.5322
3 坐标断点   0.0000 -  
4 球面 无穷 0.0000 1.0/0.0  
5 坐标断点   -1.2938 -  
stop 球面 无穷 -0.5169    
7 球面 -10.7516 -0.3820 1.6385/55.4496  
8 球面 3.2030 -0.8897    
9 非球面 -2.4523 -0.9470 1.5351/55.7797 -0.3151
10 非球面 -2.7829 -0.9906   -3.2247
11 球面 -5.0984 -1.3600 1.5168/64.1673  
12 球面 8.0502 -1.3639    
IMG 球面 无穷      
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12:
表16
Figure PCTCN2015072050-appb-000011
图2是实施例1的轴上色差图(mm),图3是实施例1的像散图(mm),图4是实施例1的畸变图(%),图5是实施例1的倍率色差图(μm)。
图7是实施例2的轴上色差图(mm),图8是实施例2的像散图(mm),图9是实施例2的畸变图(%),图10是实施例2的倍率色差图(μm)。
图12是实施例3的轴上色差图(mm),图13是实施例3的像散图(mm),图14是实施例3的畸变图(%),图15是实施例3的倍率色差图(μm)。
图17是实施例4的轴上色差图(mm),图18是实施例4的像散图(mm),图19是实施例4的畸变图(%),图20是实施例4的倍率色差图(μm)。
图22是实施例5的轴上色差图(mm),图23是实施例5的像散图(mm),图24是实施例5的畸变图(%),图25是实施例5的倍率色差图(μm)。
图27是实施例6的轴上色差图(mm),图28是实施例6的像散图(mm),图29是实施例6的畸变图(%),图30是实施例6的倍率色差图(μm)。
图32是实施例7的轴上色差图(mm),图33是实施例7的像散图(mm),图34是实施例7的畸变图(%),图35是实施例7的倍率色差图(μm)。
图37是实施例8的轴上色差图(mm),图38是实施例8的像散图(mm),图39是实施例8的畸变图(%),图40是实施例8的倍率色差图(μm)。
通过每个实施例的轴上色差图、像散图、畸变图和倍率色差图,可以看出本发明具有良好的光学性能。
虽然上面针对投影镜头描述了本发明的原理以及具体实施方式,但是在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本发明的保护范围内。本领域技术人员应该明白,上面的具体描述只是为了解释本发明的目的,而并非用于限制本发明,本发明的保护范围由权利要求及其等同物限定。

Claims (9)

  1. 一种投影镜头,其特征在于:从成像侧至像源侧依序包括:具负光焦度的第一透镜,其成像侧为凸面,像源侧为凹面;使光路弯曲的反射光学面;具正光焦度的第二透镜,其像源侧为凸面;具正光焦度的第三透镜,其成像侧为凸面,像源侧为凹面;具正光焦度的第四透镜;光阑置于所述第一透镜和所述第二透镜之间,所述投影镜头满足下列关系式:
    0.25<ImgH/D<0.55;
    其中,ImgH为像源直径对角线长的一半;D为所述第一透镜成像侧面至垂直于像源的中心光轴的垂直高度。
  2. 根据权利要求1所述的投影镜头,其特征在于:所述第二透镜和所述第四透镜由玻璃材料制成。
  3. 根据权利要求2所述的投影镜头,其特征在于:所述投影镜头满足下列关系式:
    -3<f1/f<-1;
    其中,f1为所述第一透镜的焦距,f为所述投影镜头的整体焦距。
  4. 根据权利要求3所述的投影镜头,其特征在于:所述投影镜头满足下列关系式:
    2<f2/f<4;
    其中,f2为第二透镜的焦距。
  5. 根据权利要求4所述的投影镜头,其特征在于:所述投影镜头满足下列关系式:
    3<f4/f<12;及
    -22<(R5+R6)/(R5-R6)<-5;
    其中,f4为所述第四透镜的焦距,R5为所述第三透镜的成像侧面的曲率半径,R6为所述第三透镜的像源侧面的曲率半径。
  6. 根据权利要求1-5任意一项所述的投影镜头,其特征在于:所述第二透镜成像侧为凸面。
  7. 根据权利要求6所述投影镜头,其特征在于:所述第四透镜成像侧面为凸面。
  8. 根据权利要求7所述投影镜头,其特征在于:所述第四透镜像源侧面为凸面。
  9. 根据权利要求1-5、7、8任意一项所述的投影镜头,其特征在于:所述使光路弯曲的反射光学面是反射棱镜或者是反射平面镜。
PCT/CN2015/072050 2014-07-22 2015-01-30 投影镜头 WO2016011801A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15766037.4A EP3026477B1 (en) 2014-07-22 2015-01-30 Projection lens
ES15766037.4T ES2689091T3 (es) 2014-07-22 2015-01-30 Lente de proyección
US14/779,785 US9529180B2 (en) 2014-07-22 2015-01-30 Projection lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410349750.X 2014-07-22
CN201420406023.8U CN204009209U (zh) 2014-07-22 2014-07-22 近红外交互式投影镜头
CN201420406023.8 2014-07-22
CN201410349750.XA CN104142565B (zh) 2014-07-22 2014-07-22 近红外交互式投影镜头

Publications (1)

Publication Number Publication Date
WO2016011801A1 true WO2016011801A1 (zh) 2016-01-28

Family

ID=55162479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072050 WO2016011801A1 (zh) 2014-07-22 2015-01-30 投影镜头

Country Status (4)

Country Link
US (1) US9529180B2 (zh)
EP (1) EP3026477B1 (zh)
ES (1) ES2689091T3 (zh)
WO (1) WO2016011801A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172794A1 (en) * 2016-03-28 2017-10-05 Apple Inc. Folded lens system with four refractive lenses
US10437022B2 (en) 2016-03-28 2019-10-08 Apple Inc. Folded lens system with five refractive lenses
US10437023B2 (en) 2016-03-28 2019-10-08 Apple Inc. Folded lens system with three refractive lenses
US11582388B2 (en) 2016-03-11 2023-02-14 Apple Inc. Optical image stabilization with voice coil motor for moving image sensor
US11614597B2 (en) 2017-03-29 2023-03-28 Apple Inc. Camera actuator for lens and sensor shifting
US11750929B2 (en) 2017-07-17 2023-09-05 Apple Inc. Camera with image sensor shifting
US11831986B2 (en) 2018-09-14 2023-11-28 Apple Inc. Camera actuator assembly with sensor shift flexure arrangement
US11956544B2 (en) 2016-03-11 2024-04-09 Apple Inc. Optical image stabilization with voice coil motor for moving image sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466451B2 (en) * 2017-12-04 2019-11-05 Newmax Technology Co., Ltd. Two-piece infrared single wavelength projection lens system
CN109324392B (zh) * 2018-12-11 2021-07-16 中国科学院长春光学精密机械与物理研究所 一种中短波宽波段红外光学系统及遥感光学设备
US11774709B2 (en) * 2019-08-30 2023-10-03 Samsung Electro-Mechanics Co., Ltd. Optical imaging system and portable electronic device
CN118033878B (zh) * 2024-04-11 2024-07-02 中国科学院长春光学精密机械与物理研究所 用于微纳制造技术的双远心图像位置对准测量镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093955A (ja) * 2005-09-28 2007-04-12 Fujinon Corp ズームレンズ
KR100782477B1 (ko) * 2007-05-15 2007-12-05 주식회사 디오스텍 간단한 줌렌즈 광학계
US20110141339A1 (en) * 2009-12-15 2011-06-16 Samsung Electronics Co., Ltd. Compact lens optical system and digital camera module including the same
WO2013161995A1 (ja) * 2012-04-27 2013-10-31 コニカミノルタ株式会社 ズームレンズ、撮像装置、及びデジタル機器
CN103901586A (zh) * 2014-04-13 2014-07-02 浙江舜宇光学有限公司 3d交互式投影镜头
CN104142565A (zh) * 2014-07-22 2014-11-12 浙江舜宇光学有限公司 近红外交互式投影镜头
CN204009209U (zh) * 2014-07-22 2014-12-10 浙江舜宇光学有限公司 近红外交互式投影镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635404B2 (ja) * 1989-03-23 1997-07-30 松下電器産業株式会社 投写型表示装置
JPH06107070A (ja) * 1992-09-22 1994-04-19 Olympus Optical Co Ltd 車載監視カメラの光学系
US6339508B1 (en) * 1999-01-02 2002-01-15 Olympus Optical Co., Ltd. Photographic optical system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093955A (ja) * 2005-09-28 2007-04-12 Fujinon Corp ズームレンズ
KR100782477B1 (ko) * 2007-05-15 2007-12-05 주식회사 디오스텍 간단한 줌렌즈 광학계
US20110141339A1 (en) * 2009-12-15 2011-06-16 Samsung Electronics Co., Ltd. Compact lens optical system and digital camera module including the same
WO2013161995A1 (ja) * 2012-04-27 2013-10-31 コニカミノルタ株式会社 ズームレンズ、撮像装置、及びデジタル機器
CN103901586A (zh) * 2014-04-13 2014-07-02 浙江舜宇光学有限公司 3d交互式投影镜头
CN104142565A (zh) * 2014-07-22 2014-11-12 浙江舜宇光学有限公司 近红外交互式投影镜头
CN204009209U (zh) * 2014-07-22 2014-12-10 浙江舜宇光学有限公司 近红外交互式投影镜头

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11582388B2 (en) 2016-03-11 2023-02-14 Apple Inc. Optical image stabilization with voice coil motor for moving image sensor
US12028615B2 (en) 2016-03-11 2024-07-02 Apple Inc. Optical image stabilization with voice coil motor for moving image sensor
US11956544B2 (en) 2016-03-11 2024-04-09 Apple Inc. Optical image stabilization with voice coil motor for moving image sensor
US11163141B2 (en) 2016-03-28 2021-11-02 Apple Inc. Folded lens system with three refractive lenses
WO2017172794A1 (en) * 2016-03-28 2017-10-05 Apple Inc. Folded lens system with four refractive lenses
US11194133B2 (en) 2016-03-28 2021-12-07 Apple Inc. Folded lens system with five refractive lenses
US10437023B2 (en) 2016-03-28 2019-10-08 Apple Inc. Folded lens system with three refractive lenses
US11604337B2 (en) 2016-03-28 2023-03-14 Apple Inc. Folded lens system with five refractive lenses
US11635597B2 (en) 2016-03-28 2023-04-25 Apple Inc. Folded lens system with three refractive lenses
US10437022B2 (en) 2016-03-28 2019-10-08 Apple Inc. Folded lens system with five refractive lenses
US10234659B2 (en) 2016-03-28 2019-03-19 Apple Inc. Folded lens system with four refractive lenses
US11614597B2 (en) 2017-03-29 2023-03-28 Apple Inc. Camera actuator for lens and sensor shifting
US11982867B2 (en) 2017-03-29 2024-05-14 Apple Inc. Camera actuator for lens and sensor shifting
US11750929B2 (en) 2017-07-17 2023-09-05 Apple Inc. Camera with image sensor shifting
US12022194B2 (en) 2017-07-17 2024-06-25 Apple Inc. Camera with image sensor shifting
US11831986B2 (en) 2018-09-14 2023-11-28 Apple Inc. Camera actuator assembly with sensor shift flexure arrangement

Also Published As

Publication number Publication date
ES2689091T3 (es) 2018-11-08
EP3026477B1 (en) 2018-07-18
US20160231539A1 (en) 2016-08-11
EP3026477A4 (en) 2017-05-31
EP3026477A1 (en) 2016-06-01
US9529180B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
WO2016011801A1 (zh) 投影镜头
TWI484215B (zh) 光學結像鏡片系統、取像裝置及可攜裝置
TWI460465B (zh) 光學影像鏡頭系統組
TWI452330B (zh) 廣視角攝像鏡組
TWI611205B (zh) 光學系統
TWI461778B (zh) 光學成像系統組
TWI438480B (zh) 光學影像系統組
TWI424187B (zh) 拾像光學系統
TWI424189B (zh) 成像光學鏡頭
WO2016008299A1 (zh) 摄像镜头
TWI447426B (zh) 取像鏡頭
TWI452334B (zh) 光學影像拾取系統鏡組
TWM504250U (zh) 攝像透鏡及包括攝像透鏡的攝像裝置
TW201626037A (zh) 薄型光學系統、取像裝置及電子裝置
CN102681144A (zh) 摄像用光学镜片组
TW201326883A (zh) 成像系統鏡片組
TW201333517A (zh) 結像鏡頭系統組
TW201326886A (zh) 廣視角攝像鏡片組
TW201314254A (zh) 攝影鏡頭組
TW201329501A (zh) 取像系統
WO2017148078A1 (zh) 超广角摄像镜头
CN103823289A (zh) 微型投影镜头
TWM498884U (zh) 攝像鏡頭及具備攝像鏡頭的攝像裝置
CN111025605B (zh) 一种自由曲面广角摄像镜头
TWM496770U (zh) 攝像鏡頭及具備攝像鏡頭的攝像裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14779785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2015766037

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE