WO2016010302A1 - 친환경 생분해 부직포 및 그 제조장치 및 제조방법 - Google Patents

친환경 생분해 부직포 및 그 제조장치 및 제조방법 Download PDF

Info

Publication number
WO2016010302A1
WO2016010302A1 PCT/KR2015/007099 KR2015007099W WO2016010302A1 WO 2016010302 A1 WO2016010302 A1 WO 2016010302A1 KR 2015007099 W KR2015007099 W KR 2015007099W WO 2016010302 A1 WO2016010302 A1 WO 2016010302A1
Authority
WO
WIPO (PCT)
Prior art keywords
pla
pulp
pla fiber
nonwoven fabric
fiber
Prior art date
Application number
PCT/KR2015/007099
Other languages
English (en)
French (fr)
Inventor
구기승
Original Assignee
구기승
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구기승 filed Critical 구기승
Publication of WO2016010302A1 publication Critical patent/WO2016010302A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs

Definitions

  • Embodiments of the present invention relate to an eco-friendly biodegradable nonwoven fabric and a manufacturing apparatus and a manufacturing method thereof, and more particularly, to an eco-friendly biodegradable nonwoven fabric and an apparatus and a manufacturing method for improving the mechanical properties of absorbent and soft and bulky will be.
  • nonwoven refers to nonwoven fabric. That is, it refers to a fiber aggregate that is not based on spinning, weaving, or braiding, and means sheeting and bonding by physical and chemical means.
  • Conventional nonwoven fabrics were prepared by composite injection of high absorbency pulp and high polyethylene (PE) or polypropylene (PP) when used as a hygiene product.
  • PE polyethylene
  • PP polypropylene
  • PE polyethylene
  • PP polypropylene
  • Polylactic acid forms a market of 150,000 tons around the world, and is used not only for disposable products using PLA's biodegradable properties, but also for general plastics such as food packaging, containers, and electronics cases. The scope of application is expanding.
  • polylactic acid has a problem that the price is higher than polyethylene (PE) or polypropylene (PP), the texture is rough, the volume is low, and the elasticity is low.
  • the present invention has been made to solve the conventional problems
  • PLA biodegradable polylactic acid
  • Eco-friendly biodegradable nonwoven fabric and its manufacturing apparatus and method for laminating the second PLA layer integrated in the form of a web on a mesh drum on the pulp layer to improve absorbency, softness and volume, improve physical properties, and 100% biodegradation after disposal To provide.
  • Another object of the present invention is to provide an eco-friendly biodegradable nonwoven fabric, an apparatus and a manufacturing method thereof, which can improve the quality of the nonwoven fabric and reduce the manufacturing cost.
  • Eco-friendly biodegradable nonwoven manufacturing apparatus provided to achieve the above object is a first PLA fiber manufacturing apparatus for fiberizing PLA;
  • a mesh belt provided at a lower portion of the first PLA fiber maker to integrate the first PLA fibers vertically sprayed into a web form;
  • a pulp supply unit provided at one side of the first PLA fiber manufacturing machine to stack pulp on top of the first PLA fiber integrated on the mesh belt;
  • a second PLA fiber making machine provided on one side of the pulp supply unit to fiberize PLA;
  • a heat fusion unit for heat-sealing the laminates by applying heat to the laminates stacked in order of the first PLA fibers, the pulp, and the second PLA fibers;
  • And controlling the injection amount of the first and second PLA fibers manufactured by the first and second PLA fiber makers by being electrically connected to the first and second PLA fiber makers and the pulp supply unit, and the pulp supply amount of the pulp
  • the first and second PLA fiber making machine is an extruder for melting and extruding PLA (biodegradable polylactic acid), a spray nozzle formed with hundreds of small orifices (orifice) for spraying the molten PLA in the extruder, and the injection nozzle
  • PLA biodegradable polylactic acid
  • spray nozzle formed with hundreds of small orifices (orifice) for spraying the molten PLA in the extruder
  • injection nozzle A hot air fan for stretching PLA sprayed from the spray nozzle by spraying high-pressure hot air from both sides of the cooler, a cooler for cooling the stretched PLA, a cutter for cutting the PLA fiber determined by the stretching, and spraying the cut PLA fiber
  • Eco-friendly biodegradable nonwoven fabric manufacturing apparatus characterized in that it comprises a nozzle to.
  • the extruder and the injection nozzle is characterized in that it further comprises a filter device for filtering the molten biodegradable polylactic acid (Poly lactic acid; PLA).
  • a filter device for filtering the molten biodegradable polylactic acid (Poly lactic acid; PLA).
  • the extruder is divided into first to fifth regions, the first region is 150 to 160 °C, the second region is 200 to 210 °C, the third region is 220 to 230 °C, the fourth region is 230 to 240 °C,
  • the five regions are characterized in that a temperature of 250 to 260 ⁇ is set.
  • the pulp supply unit is characterized in that the carding machine for separating the pulp fibers consisting of sheets or mats into individual fibers are connected.
  • the control unit controls the injection amount of the first PLA fiber manufacturing machine so that the first PLA fiber of 10% by weight to 40% by weight relative to the total weight of the nonwoven fabric, and 25% to 80% by weight of pulp is supplied to the total weight of the nonwoven fabric.
  • the supply amount of the pulp supply unit is controlled so as to control the injection amount of the second PLA fiber maker so that the second PLA fiber of 10% by weight to 40% by weight relative to the total weight of the nonwoven fabric is injected.
  • Eco-friendly biodegradable nonwoven fabric manufacturing method is put PLA (biodegradable polylactic acid) into an extruder (melt) and then spinning through a spinning nozzle formed with hundreds of small orifices (Orifice) and the sides of the spinning nozzle
  • PLA (biodegradable polylactic acid) is put into an extruder and melted, then spun through a spinning nozzle formed with hundreds of small orifices, and drawn and cooled by a high pressure hot air sprayed at high speed from both sides of the spinning nozzle.
  • S40 step of producing a PLA fiber S50 step of integrating the second PLA fiber in the form of a web (Web) on the mesh drum; S60 step of laminating the second PLA fiber integrated in the web form on the upper surface of the pulp; And a step S70 of thermally bonding the laminated first PLA fibers, pulp, and the second PLA fibers to each other.
  • the extruder has a first region having a temperature of 150 to 160 ° C., a second region having a temperature of 200 to 210 ° C., a third region having a temperature of 220 to 230 ° C., a fourth region having a temperature of 230 to 240 ° C., and a 250 to 260 ° C.
  • the temperature is divided into a fifth region is set, the PLA is characterized in that complete melting through the first to fifth regions.
  • step S10 and S40 is characterized in that it further comprises the step of filtering the molten PLA.
  • the PLA is characterized in that selected from the group consisting of poly-D-lactic acid, poly-L-lactic acid, copolymers of D-lactic acid and L-lactic acid.
  • the PLA has a melting point of 100 °C to 180 °C, the melt index is 75 to 120g / 10 minutes, the melt density is characterized in that it has a characteristic in the range of 0.98 to 2.24g / cm3 (260 °C).
  • the pulp is characterized in that the pulp fibers made of a sheet or mat put into a carding machine and separated into individual fibers.
  • the first PLA fibers are injected by injecting 10% by weight to 40% by weight of the total weight of the nonwoven fabric, and the pulp is fed by 25% by weight to 80% by weight of the total weight of the nonwoven fabric. 10% by weight to 40% by weight is characterized in that the injection is integrated.
  • the first PLA fiber layer integrated in the form of a web on the mesh belt by the above manufacturing method A pulp layer laminated on the first PLA fiber layer;
  • the second PLA fiber layer laminated on the upper surface of the pulp layer is integrated in the form of a web (Web) on the mesh drum is characterized in that it is manufactured by thermal fusion bonding.
  • Embodiment of the present invention by laminating a biodegradable polylactic acid (PLA) having excellent physical properties on the outer surface of the pulp having a soft property and absorbency and volume, utilizing the soft properties, absorbency and volume of the pulp, the first PLA layer
  • the second PLA layer is to hold and protect the pulp to have a mechanical strength required in actual use to efficiently produce a high quality nonwoven fabric, there is an effect that can reduce the manufacturing cost through a simple process.
  • the pulp can reduce the manufacturing cost, 100% biodegradation after disposal, does not cause environmental problems, does not emit carcinogens or harmful substances to hygiene, hygiene and hygiene is excellent And it becomes possible to manufacture a nonwoven fabric with improved safety.
  • first and the second PLA fiber layer to hold the surface of the pulp can be washed, thereby producing a non-woven fabric that can be used repeatedly.
  • FIG. 1 is a schematic diagram for explaining the eco-friendly biodegradable nonwoven fabric manufacturing apparatus according to an embodiment of the present invention.
  • Figure 2 is a block diagram for explaining the overall configuration of the eco-friendly biodegradable nonwoven fabric manufacturing apparatus according to an embodiment of the present invention.
  • Figure 3 is a block diagram for explaining the configuration of the first, second PLA fiber manufacturing apparatus in an eco-friendly biodegradable nonwoven fabric manufacturing apparatus according to an embodiment of the present invention.
  • Figure 4 is a flow chart for explaining a method for producing an eco-friendly biodegradable nonwoven fabric according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing an eco-friendly biodegradable nonwoven fabric according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram for explaining an eco-friendly biodegradable nonwoven fabric manufacturing apparatus according to an embodiment of the present invention
  • Figure 2 is a block diagram for explaining the overall configuration of an eco-friendly biodegradable nonwoven fabric manufacturing apparatus according to an embodiment of the present invention
  • Figure 3 is a block diagram for explaining the configuration of the first, second PLA fiber manufacturing apparatus in an eco-friendly biodegradable nonwoven fabric manufacturing apparatus according to an embodiment of the present invention.
  • the manufacturing apparatus of eco-friendly biodegradable nonwoven fabric is the first PLA fiber manufacturing machine 100, pulp supply unit 200, the second PLA fiber manufacturing machine 300, mesh drum 400, mesh belt ( 500), a control unit 600, and a heat fusion unit 700.
  • the first and second PLA fiber makers 100 and 300 are extruders 110 and 310 for melting and extruding PLA (biodegradable polylactic acid) introduced as shown in FIG. 3, and hundreds of spraying molten PLA from the extruder.
  • Injection nozzles 130 and 330 having two small orifices formed therein, filter devices 120 and 320 provided between the extruder and the injection nozzle to filter the molten PLA, and PLAs which are provided on both sides of the injection nozzles and sprayed by the injection nozzles.
  • It comprises a hot air fan (140,340) for stretching, a cooler (150,350) for cooling the stretched PLA, cutters (160,360) for cutting the PLA fiber determined by the stretching, and injection holes (170,370) for spraying the cut PLA fiber do.
  • the injection port is provided with valves (171, 371) for controlling the injection amount of the PLA fiber is electrically connected to the control unit.
  • the extruders 110 and 310 are partitioned into first to fifth regions. Then, the partitioned first region is 150 to 160 ⁇ , the second region is 200 to 210 ⁇ , the third region is 220 to 230 ⁇ , the fourth region is 230 to 240 ⁇ and the fifth region is 250 to 260 ⁇ . Are set respectively.
  • the injection nozzles 130 and 330 have 0.88 mm per 12 to 16 cm, and hot air having a high velocity distribution forms various filaments between 0.1 ⁇ m and 500 ⁇ in diameter.
  • One pulp supply unit 200 is disposed on one side of the first PLA fiber manufacturing machine (100).
  • the pulp supply unit 200 may directly supply pulp, but the pulp supply unit 200 is connected to a carding machine 210 for separating the pulp fibers made of sheets or mats into individual fibers to separate pulp fibers made of sheets or mats. It is also possible to feed pulp of individual fibers.
  • the mesh drum 400 is disposed at one side of the pulp supply unit 200. And the second PLA fiber manufacturing machine 300 is provided at the top of the mesh drum 400.
  • the mesh drum 400 integrates the second PLA fibers sprayed from the second PLA fiber maker 300 into a web form.
  • the first PLA fiber manufacturing apparatus 100 and the pulp supply unit 200 and the mesh belt 400 is provided below the mesh drum 400 arranged side by side.
  • the mesh belt 500 accumulates and transfers the first PLA sprayed from the first PLA fiber maker 100 into a web form, stacking the pulp sprayed from the pulp supply unit 200 on the first PLA, and a mesh drum ( In step 400, the second PLA fiber integrated in the form of a web is stacked on top of the pulp and transferred to the heat-sealed portion 700.
  • the first PLA fiber maker 100, the pulp supply unit 200, and the second PLA fiber maker 300 is electrically connected to the control unit 600, respectively.
  • the control unit 600 controls the valves 171, 220, 371 of the first PLA fiber maker 100, the pulp supply unit 200, and the second PLA fiber maker 300 to be sprayed onto the mesh belt 500.
  • the injection amount of the fiber and pulp is controlled, and the injection amount of the second PLA fiber injected onto the mesh drum 400 is controlled.
  • the first PLA fibers are sprayed first, the pulp is sprayed on the first PLA fibers, and the spraying time difference is controlled so that the second PLA fibers are laminated on the pulp.
  • one side of the mesh belt 500 is provided with a heat-sealed portion 700.
  • the heat-sealed portion 700 is composed of a calendar through which the laminate laminated in the order of the first PLA fibers, pulp, the second PLA fibers guided by the mesh belt 500 passes.
  • the calendar is a compression roller that lubricates paper or paper, and heat-bonds the first PLA fibers, the pulp, and the second PLA fibers of the laminate to be passed in a state where heat is applied.
  • the pattern is engraved on the calendar to increase the bonding force of the first PLA fiber, pulp, the second PLA fiber.
  • Figure 4 is a flow chart for explaining a method for producing an eco-friendly biodegradable nonwoven fabric according to an embodiment of the present invention.
  • a method for manufacturing an eco-friendly biodegradable nonwoven fabric is formed by melting PLA (biodegradable polylactic acid) into an extruder and then spinning through a spinning nozzle in which hundreds of small orifices are formed, and on both sides of a spinning nozzle.
  • PLA biodegradable polylactic acid
  • PLA biodegradable polylactic acid
  • PLA is melted in an extruder and then spun through a spinning nozzle with hundreds of small orifices, drawn and cooled by high pressure hot air sprayed at high speed from both sides of the spinning nozzle.
  • S40 step of producing a fiber S50 step of integrating the second PLA fiber in the form of a web (Web) on the mesh drum; S60 step of laminating the second PLA fiber integrated in the web form on the upper surface of the pulp; And a step S70 of thermally bonding the laminated first PLA fibers, pulp and the second PLA fibers to each other.
  • S10 step is made in the first PLA fiber manufacturing machine (100).
  • PLA biologicallygradable polylactic acid
  • PLA has a melting point of 100 to 180 °C
  • the melt index is 20 to 40g / 10 minutes level
  • melt density of 0.98 to 2.24g / cm 3 (260 °C) is used that has a characteristic range.
  • PLA is used selected from the group consisting of poly-D-lactic acid, poly-L-lactic acid, copolymers of D-lactic acid and L-lactic acid.
  • the extruder 110 may include a first region having a temperature of 150 to 160 ° C., a second region having a temperature of 200 to 210 ° C., a third region having a temperature of 220 to 230 ° C., and a fourth region having a temperature of 230 to 240 ° C. It is partitioned into the 5th area
  • PLA is completely dissolved while passing through the first to fifth regions of the extruder 110.
  • the completely dissolved PLA is filtered through the filter device 120 and supplied to the injection nozzle 130, and the PLA supplied to the injection nozzle 130 is injected through hundreds of small orifices.
  • the injected PLA is stretched by the high pressure hot air sprayed at high speed by the hot air fan 140 and cooled by the cooler to be fiberized.
  • the fiberized PLA is cut through the cutter 160 is injected through the injection port 170.
  • the first PLA fiber 10 is injected into the injection port 170 is 10% by weight to 40% by weight relative to the total weight of the nonwoven fabric.
  • Step S20 integrates the first PLA fiber 10 is sprayed on the mesh belt 500 in the form of a web.
  • the web formed by the Melt-Blown method has an isotrophic formation. That is, since the web is formed for hot air, the fibers are arbitrarily arranged in the machine direction and the machine width direction, and are not sufficiently cooled so that mutual bonding is achieved by thermal bonding between the fibers.
  • step S30 the pulp 20 sprayed from the pulp supply unit 200 is stacked on the first PLA fiber 10 which is integrated and transported in a web form. At this time, the laminated pulp 20 is sprayed 25% to 80% by weight relative to the total weight of the nonwoven fabric.
  • step S40 the second PLA fiber 30 is manufactured in the same manner as in step S10 through the second PLA fiber maker 300.
  • PLA is injected into the extruder 310 of the second PLA fiber maker 300, and PLA is completely dissolved while passing through the first to fifth regions of the extruder 310.
  • the complete dissolved PLA is filtered to the filter device 320 is supplied to the injection nozzle 330 and injected through hundreds of small orifices (Orifice).
  • the injected PLA is stretched by the high pressure hot air of the hot air blower 340 and cooled by the cooler 350 to be fiberized.
  • the fiberized PLA is cut through the cutter 360 is injected through the injection hole 370.
  • the second PLA fiber 30 is injected into the injection hole 370 is 10% by weight to 40% by weight relative to the total weight of the nonwoven fabric.
  • step S50 the second PLA fiber 30 sprayed from the second PLA fiber maker is integrated into the web form on the mesh drum 400 to guide the mesh belt 500.
  • step S60 the second PLA fiber 30 integrated in the web form is laminated on the upper surface of the pulp 20 that is stacked and transported on the first PLA fiber 10.
  • step S70 the laminate stacked in order of the first PLA fiber 10, the pulp 20, and the second PLA fiber 30 is passed through the heat-sealed portion 700 to thermally bond the laminate to each other.
  • the first PLA fiber layer, the pulp layer laminated on the upper surface of the first PLA fiber layer, and the web integrated on the mesh drum are sprayed onto the mesh belt 500 as shown in FIG. And a nonwoven fabric comprising a second PLA fiber layer laminated on the upper surface of the pulp layer.
  • the nonwoven fabric was manufactured by mutually heat-sealing a second PLA fiber layer stacked on top of the pulp layer by being integrated in a web form.
  • the first PLA fiber layer integrated in the form of a web, pulp layer is laminated by spraying 20% by weight relative to the total weight of the nonwoven fabric on the first PLA fiber layer, the mesh drum 40 wt% of the total weight of the nonwoven fabric was sprayed on, and a nonwoven fabric was prepared by mutually heat-sealing a second PLA fiber layer stacked on top of the pulp layer in a web form.
  • the first PLA fiber layer integrated in the form of a web
  • the pulp layer is laminated by spraying 10% by weight relative to the total weight of the nonwoven fabric on top of the first PLA fiber layer
  • mesh drum 45 wt% of the total weight of the nonwoven fabric was sprayed on
  • a nonwoven fabric was prepared by mutually heat-sealing a second PLA fiber layer laminated on top of the pulp layer by being integrated in a web form.
  • Examples 1, 2, and 3 show that the first PLA fiber layer and the second PLA fiber layer wrap the outer surface of the pulp layer to protect the pulp layer, and hold the pulp without breaking the pulp or dust. Played a role. In addition, it could be seen that due to the pulp layer to maintain a proper sense of volume, it was able to feel a soft texture, excellent absorbency.
  • the first PLA fiber layer and the second PLA fiber layer were formed so thick that the breakage of the first PLA fiber layer and the second PLA fiber layer occurred, the texture was rough, and the volume and absorbency were not good. That is, it can be seen that the first PLA fiber layer and the second PLA fiber layer is preferably used 40% by weight or less based on the total weight of the nonwoven fabric.
  • Comparative Example 2 was inferior in volume and feel compared to the examples, and the absorbency was also not good.
  • Example 1 exhibited an elongation of 35.6% at 20.5N before time elapsed of the manufactured nonwoven fabric, exhibited an elongation of 6.5% at 12.9N after 50 hours of nonwoven fabric, and 75 hours of nonwoven fabric. After the corrosion of the pulp proceeds, the first PLA fibers and the second PLA fibers were corrosion due to biodegradation was unable to measure.
  • Example 2 exhibited an elongation of 27.6% at 23.5 N before time elapsed of the manufactured nonwoven fabric, an elongation of 8.5% at 15.9 N after 50 hours of nonwoven fabric, and corrosion of pulp after 75 hours of nonwoven fabric.
  • the first PLA fibers and the second PLA fibers were torn due to the progress of the corrosion was not possible to measure.
  • Example 3 exhibited an elongation of 28.9% at 25.2N before the time-lapse of the manufactured nonwoven fabric, an elongation of 12.0% at 16.3N after 50 hours of nonwoven fabric, and corrosion of the pulp progressed after 75 hours of nonwoven fabric.
  • the first PLA fibers and the second PLA fibers were torn due to the progress of corrosion, and thus could not be measured.
  • the elongation was 8.0% at 5.1N before the time elapsed of the manufactured nonwoven fabric, the elongation was 4.0% at 3.5N after 50 hours of nonwoven fabric, and the corrosion of the pulp progressed after 75 hours of nonwoven fabric.
  • the first PLA fiber and the second PLA fiber could not be measured due to the breakage.
  • the present invention manufactures a nonwoven fabric by laminating a first PLA layer, a pulp layer, and a second PLA layer having biodegradation properties, thereby improving softness, water absorption, and bulkiness of the pulp layer, and the PLA layer holds and protects the pulp layer. It is to provide a nonwoven fabric that improves the mechanical strength required in actual use.
  • the PLA layer can be washed by holding the surface of the pulp layer, thereby providing a non-woven fabric that can be used repeatedly.
  • carding machine 300 second PLA fiber manufacturing machine
  • injection nozzle 140,340 hot air fan
  • control unit 700 heat fusion unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명의 실시 예는 PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 상기 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 1 PLA섬유를 제조하는 S10단계; 상기 제 1 PLA섬유를 메쉬벨트 상에 웹(Web) 형태로 집적하는 S20단계; 상기 웹 형태로 집적된 제 1 PLA섬유 위에 펄프를 적층시키는 S30단계; PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 상기 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 2 PLA섬유를 제조하는 S40단계; 상기 제 2 PLA섬유를 메쉬드럼 상에 웹(Web) 형태로 집적하는 S50단계; 상기 웹 형태로 집적된 제 2 PLA섬유를 상기 펄프의 상면에 적층시키는 S60단계; 및 상기 적층된 제 1 PLA섬유, 펄프, 제 2 PLA섬유를 열융착하여 결합시키는 S70단계;를 포함하는 친환경 생분해 부직포 및 그 제조장치 및 제조방법을 제공한다. 본 발명의 실시 예에 따르면, 펄프층의 부드러운 특성과 흡수성과 부피감을 살리고, 제 1 PLA층과 제 2 PLA층이 펄프층을 잡아주고 보호하여 실제 사용시 필요한 기계적 강도를 갖게 함으로써 품질이 우수한 부직포를 효율적으로 제조할 수 있고, 간단한 공정을 통해 제조비용을 절감시킬 수 있게 된다.

Description

친환경 생분해 부직포 및 그 제조장치 및 제조방법
본 발명의 실시 예는 친환경 생분해 부직포 및 그 제조장치 및 제조방법에 관한 것으로서, 좀 더 상세하게는 흡수성과 부드러움과 부피감을 살리고 기계적인 물성을 향상시키는 친환경 생분해 부직포 및 그 제조장치 및 제조방법에 관한 것이다.
일반적으로 부직포란 짜지 않은 섬유를 말한다. 즉, 방적, 제직, 편조에 의하지 않은 섬유 집합제를 뜻하며, 시트화시켜 물리적, 화학적 수단에 의하여 결합시킨 것을 뜻한다.
종래 부직포는 위생용품으로 사용시 흡수성이 좋은 펄프와 결합력이 높은 폴리 에틸렌(PE)이나 폴리 프로필렌(PP)을 복합분사하여 제조하였다.
그러나, 폴리 에틸렌(PE)이나 폴리 프로필렌(PP)은 유해성분이 분사되고 흡수가 되지 않아서 연약한 피부엔 홍반 가려움증 등 피부질환을 일으킬 수 있는 문제점이 있고, 썩지 않은 특성때문에 폐기 후 환경문제를 유발시키는 문제점이 있었다.
최근 지구 온난화에 따라 이산화탄소를 줄이고자 하는 노력들이 지속 연구되고 있다. 특히, 화석연료로부터 생산되는 폴리머는 이산화탄소의 배출량을 높일 뿐만 아니라 매장량의 한계가 있기 때문에 천연식물로부터 합성되는 폴리머를 용융분사하여 섬유화할 수 있는 폴리유산 제품에 대한 연구가 진행되고 있다.
폴리유산(Poly lactic acid; PLA)은 전세계에 15만톤 규모 시장을 형성하고 있고, PLA의 생분해성 특성을 이용한 일회용 제품은 물론 식품 포장재, 용기, 전자제품 케이스 등의 일반 플라스틱이 사용되었던 분야까지 그 적용 범위가 확대되고 있다.
그러나, 폴리유산(Poly lactic acid; PLA)는 폴리 에틸렌(PE)이나 폴리 프로필렌(PP)보다 가격이 높고, 감촉이 거칠며, 부피감이 적을 뿐만 아니라 신축성이 낮은 문제점이 있었다.
[선행기술문헌]
한국공개특허: 10-2012-0107092 (공개일 2012. 09. 28)
한국등록특허: 10-1075004 (공고일 2011. 10. 19)
본 발명은 종래의 문제점을 해결하기 위해 안출 된 것으로서,
본 발명의 목적은 물성이 우수한 PLA(생분해성 폴리유산)를 메쉬벨트 상에서 웹 형태로 집적하여 제 1 PLA층을 형성하고, 제 1 PLA층 위에 부드러운 특성과 흡수성과 부피감을 갖는 펄프층을 적층하며, 펄프층 위에 메쉬드럼 상에서 웹 형태로 집적된 제 2 PLA층을 적층하여 흡수성과 부드러움과 부피감을 살리고, 물리적 성질을 향상시키며, 폐기 후 100% 생분해가 이루어지는 친환경 생분해 부직포 및 그 제조장치 및 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 부직포의 품질을 향상시키고, 제조비용을 절감시킬 수 있는 친환경 생분해 부직포 및 그 제조장치 및 제조방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위해 제공되는 본 발명의 일 실시 예에 따른 친환경 생분해 부직포 제조장치는 PLA를 섬유화시키는 제 1 PLA섬유제조기; 상기 제 1 PLA섬유제조기의 하부에 구비되어 수직 분사되는 제 1 PLA섬유를 웹 형태로 집적하는 메쉬벨트; 상기 제 1 PLA섬유제조기 일측에 구비되어 상기 메쉬벨트 상에 집적된 제 1 PLA 섬유 상부에 펄프를 적층시키는 펄프공급부; 상기 펄프공급부의 일측에 구비되어 PLA를 섬유화시키는 제 2 PLA섬유제조기; 상기 제 2 PLA섬유제조기에서 분사되는 제 2 PLA섬유를 웹 형태로 집적하여 상기 펄프의 상부에 적층시키는 메쉬드럼; 상기 제 1 PLA섬유, 펄프, 제 2 PLA섬유 순으로 적층된 적층물에 열을 가하여 상기 적층물들을 상호 열융착시키는 열융착부; 및 상기 제 1, 제 2 PLA섬유제조기, 펄프공급부와 전기적으로 연결되어 상기 제 1, 제 2 PLA섬유제조기에서 제조되는 제1, 제2 PLA섬유의 분사량을 제어하고, 상기 펄프공급부의 펄프공급량을 제어하는 제어부;를 포함하여 구성된다.
상기 제 1, 제 2 PLA섬유제조기는 PLA(생분해성 폴리유산)를 용융 및 압출시키는 압출기와, 상기 압출기에서 용융된 PLA를 분사하는 수백 개의 작은 오리피스(Orifice)가 형성된 분사노즐과, 상기 분사노즐의 양옆에서 고압열풍을 분사하여 분사노즐에서 분사되는 PLA를 연신시키는 열풍기와, 상기 연신된 PLA를 냉각시키는 냉각기와, 상기 연신에 의해 결정된 PLA섬유를 절단하는 절단기와, 상기 절단된 PLA섬유를 분사하는 분사구를 포함하여 구성되는 것을 특징으로 하는 친환경 생분해 부직포 제조장치.
상기 압출기와 분사노즐 사이에는 용융된 생분해성 폴리유산(Poly lactic acid; PLA)을 필터링하는 필터장치가 더 포함되는 것을 특징으로 한다.
상기 압출기는 제 1 내지 제 5 영역으로 구획되고, 제 1 영역은 150∼160℃, 제 2 영역은 200∼210℃, 제 3 영역은 220∼230℃, 제 4 영역은 230∼240℃, 제 5 영역은 250∼260℃의 온도가 설정되는 것을 특징으로 한다.
상기 펄프공급부에는 시트 또는 매트로 이루어진 펄프섬유를 개별섬유로 분리시키는 소면기가 연결되는 것을 특징으로 한다.
상기 제어부는 부직포 전체 중량에 대하여 10중량%∼40중량%의 제 1 PLA섬유가 분사되도록 제 1 PLA섬유제조기의 분사량을 제어하고, 부직포 전체 중량에 대하여 25중량%∼80중량%의 펄프가 공급되도록 펄프공급부의 공급량을 제어하며, 부직포 전체 중량에 대하여 10중량%∼40중량%의 제 2 PLA섬유가 분사되도록 제 2 PLA섬유제조기의 분사량을 제어하는 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 친환경 생분해 부직포 제조방법은 PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 상기 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 1 PLA섬유를 제조하는 S10단계; 상기 제 1 PLA섬유를 메쉬벨트 상에 웹(Web) 형태로 집적하는 S20단계; 상기 웹 형태로 집적된 제 1 PLA섬유 위에 펄프를 적층시키는 S30단계; PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 상기 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 2 PLA섬유를 제조하는 S40단계; 상기 제 2 PLA섬유를 메쉬드럼 상에 웹(Web) 형태로 집적하는 S50단계; 상기 웹 형태로 집적된 제 2 PLA섬유를 상기 펄프의 상면에 적층시키는 S60단계; 및 상기 적층된 제 1 PLA섬유, 펄프, 제 2 PLA섬유를 열융착하여 결합시키는 S70단계;를 포함하여 제조된다.
상기 압출기는 150∼160℃ 온도가 설정된 제 1 영역, 200∼210℃ 온도가 설정된 제 2 영역, 220∼230℃ 온도가 설정된 제 3 영역, 230∼240℃ 온도가 설정된 제 4 영역, 250∼260℃ 온도가 설정된 제 5 영역으로 구획되고, 상기 PLA는 제 1 내지 제 5 영역을 통과하여 완전용해가 이루어지는 것을 특징으로 한다.
그리고, 상기 S10단계 및 S40단계에는 용융된 PLA를 필터링하는 단계가 더 포함되는 것을 특징으로 한다.
또한, 상기 PLA는 폴리-D-유산, 폴리-L-유산, D-유산과 L-유산의 공중합체로 이루어진 군으로부터 선택된 것을 특징으로 한다.
또한, 상기 PLA는 융점이 100℃∼180℃ 이고, 용융지수 75∼120g/10분이며, 용융밀도는 0.98 내지 2.24g/㎤(260℃) 범위의 특성을 갖는 것을 특징으로 한다.
상기 펄프는 시트 또는 매트로 이루어진 펄프섬유를 소면기에 넣어 개별섬유로 분리시킨 것이 사용되는 것을 특징으로 한다.
상기 제 1 PLA섬유는 부직포 전체 중량의 10중량%∼40중량% 분사되어 집적되고, 상기 펄프는 부직포 전체 중량의 25중량%∼80중량% 공급되어 집적되며, 제 2 PLA섬유는 부직포 전체 중량의 10중량%∼40중량% 분사되어 집적되는 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 친환경 생분해 부직포는 상기의 제조방법에 의하여, 메쉬벨트 상에서 웹 형태로 집적된 제 1 PLA섬유층; 상기 제 1 PLA섬유층 상부에 적층되는 펄프층; 메쉬드럼 상에 웹(Web) 형태로 집적되어 상기 펄프층 상면에 적층되는 제 2 PLA섬유층이 상호 열융착되어 제조되는 것을 특징으로 한다.
본 발명의 실시 예는 부드러운 특성과 흡수성과 부피감을 갖는 펄프의 외면에 물성이 우수한 생분해성 폴리유산(Poly lactic acid; PLA)을 적층하여 펄프의 부드러운 특성과 흡수성과 부피감을 살리고, 제 1 PLA층과 제 2 PLA층이 펄프를 잡아주고 보호하여 실제 사용시 필요한 기계적 강도를 갖게 함으로써 품질이 우수한 부직포를 효율적으로 제조할 수 있고, 간단한 공정을 통해 제조비용을 절감시킬 수 있는 효과가 있다.
또한, 펄프를 이용함으로써 제조단가를 절감시킬 수 있고, 폐기 후 100% 생분해가 이루어짐에 따라 환경문제를 유발시키지 않으며, 발암물질이나 위생에 해로운 물질을 방출하지 않을 뿐만 아니라 통기성과 청량감이 우수하여 위생성 및 안전성이 향상되는 부직포를 제조할 수 있게 된다.
또한, 제 1, 제 2 PLA섬유층이 펄프의 표면을 잡고 있어서 세척이 가능하고 이로 인하여 여러 번 반복 사용이 가능한 부직포를 제조할 수 있게 된다.
도 1은 본 발명의 일 실시 예에 따른 친환경 생분해 부직포의 제조장치를 설명하기 위한 개략도.
도 2는 본 발명의 일 실시 예에 따른 친환경 생분해 부직포의 제조장치의 전체 구성을 설명하기 위한 블럭도.
도 3은 본 발명의 일 실시 예에 따른 친환경 생분해 부직포의 제조장치에서 제 1, 제 2 PLA 섬유제조기의 구성을 설명하기 위한 블럭도.
도 4는 본 발명의 일 실시 예에 따른 친환경 생분해 부직포의 제조방법을 설명하기 위한 순서도.
도 5는 본 발명의 일 실시 예에 따른 친환경 생분해 부직포를 도시한 단면도.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명함으로써 더욱 명백해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 친환경 생분해 부직포 및 그 제조장치 및 제조방법을 상세히 설명하기로 한다. 본 명세서를 위해서, 도면에서의 동일한 참조번호들은 달리 지시하지 않는 한 동일한 구성 부분을 나타낸다.
도 1은 본 발명의 일 실시 예에 따른 친환경 생분해 부직포 제조장치를 설명하기 위한 개략도이고, 도 2는 본 발명의 일 실시 예에 따른 친환경 생분해 부직포 제조장치의 전체 구성을 설명하기 위한 블럭도이며, 도 3은 본 발명의 일 실시 예에 따른 친환경 생분해 부직포 제조장치에서 제 1, 제 2 PLA섬유제조기의 구성을 설명하기 위한 블럭도이다.
도 1, 도 2에 도시된 바와 같이 친환경 생분해 부직포의 제조장치는 제 1 PLA섬유제조기(100), 펄프공급부(200), 제 2 PLA섬유제조기(300), 메쉬드럼(400), 메쉬벨트(500), 제어부(600), 열융착부(700)를 포함한다.
먼저, 제 1, 제 2 PLA섬유제조기(100,300)는 도 3에 도시된 바와 같이 투입되는 PLA(생분해성 폴리유산)를 용융 및 압출시키는 압출기(110,310)와, 압출기에서 용융된 PLA를 분사하는 수백 개의 작은 오리피스(Orifice)가 형성된 분사노즐(130,330)과, 압출기와 분사노즐 사이에 구비되어 용융된 PLA를 필터링하는 필터장치(120,320)와, 분사노즐의 양옆에 구비되어 분사노즐로 분사되는 PLA을 연신시키는 열풍기(140,340)와, 연신된 PLA를 냉각시키는 냉각기(150,350)와, 연신에 의해 결정된 PLA섬유를 절단하는 절단기(160,360)와, 절단된 PLA섬유를 분사하는 분사구(170,370)를 포함하여 구성된다. 그리고, 분사구에는 제어부와 전기적으로 연결되어 분사되는 PLA섬유의 분사량을 조절하는 밸브(171,371)가 구비된다.
여기서, 압출기(110,310)는 제 1 내지 제 5 영역으로 구획된다. 그리고, 구획된 제 1 영역은 150∼160℃, 제 2 영역은 200∼210℃, 제 3 영역은 220∼230℃, 제 4 영역은 230∼240℃, 제 5 영역은 250∼260℃의 온도가 각각 설정된다.
그리고, 분사노즐(130,330)은 12∼16cm당 0.88mm를 갖으며, 높은 속도분배를 갖는 고온의 공기는 직경 0.1μ으로부터 500μ 사이의 다양한 필라멘트를 형성시킨다.
제 1 PLA섬유제조기(100) 일측에는 펄프공급부(200)가 배치된다.
펄프공급부(200)는 펄프를 직접 공급할 수도 있으나, 펄프공급부(200)에는 시트 또는 매트로 이루어진 펄프섬유를 개별섬유로 분리시키는 소면기(210)가 연결되어 시트 또는 매트로 이루어진 펄프섬유를 분리시킨 개별섬유의 펄프를 공급할 수도 있다.
펄프공급부(200) 일측에는 메쉬드럼(400)이 배치된다. 그리고 메쉬드럼(400)의 상부에 제 2 PLA섬유제조기(300)가 구비된다.
메쉬드럼(400)은 제 2 PLA섬유제조기(300)에서 분사되는 제 2 PLA섬유를 웹 형태로 집적한다.
그리고, 나란히 배치되는 제 1 PLA섬유제조기(100)와 펄프공급부(200)와, 메쉬드럼(400)의 하부에는 메쉬벨트(500)가 구비된다.
메쉬벨트(500)는 제 1 PLA섬유제조기(100)에서 분사되는 제 1 PLA를 웹 형태로 집적하여 이송하고, 펄프공급부(200)에서 분사되는 펄프를 제 1 PLA 상부에 적층시키며, 메쉬드럼(400)에서 웹 형태로 집적된 제 2 PLA섬유를 펄프의 상부에 적층시켜 열융착부(700)로 이송시킨다.
여기서, 제 1 PLA섬유제조기(100)와, 펄프공급부(200)와, 제 2 PLA섬유제조기(300)는 각각 제어부(600)와 전기적으로 연결된다.
제어부(600)는 제 1 PLA섬유제조기(100)와, 펄프공급부(200)와, 제 2 PLA섬유제조기(300)의 밸브(171,220,371)를 제어하여 메쉬벨트(500) 상에 분사되는 제 1 PLA섬유 및 펄프의 분사량을 제어하고, 메쉬드럼(400) 상에 분사되는 제 2 PLA섬유의 분사량을 제어한다. 또한, 제 1 PLA섬유가 가장 먼저 분사되게 하고, 제 1 PLA섬유 위에 펄프가 분사되게 하며, 펄프의 위에 제 2 PLA섬유가 적층될 수 있게 분사 시간차를 제어한다.
그리고, 메쉬벨트(500)의 일측에는 열융착부(700)가 구비된다.
열융착부(700)는 메쉬벨트(500)에 의해 안내되는 제 1 PLA섬유, 펄프, 제 2 PLA섬유 순으로 적층된 적층물이 통과되는 켈린더로 구성된다. 켈린더는 종이나 피륙에 윤을 내는 압착롤러로서 열이 가해진 상태에서 통과되는 적층물의 제 1 PLA섬유, 펄프, 제 2 PLA섬유를 상호 열융착시킨다. 이때, 켈린더에는 제 1 PLA섬유, 펄프, 제 2 PLA섬유의 결합력을 높이도록 무늬가 조각된다.
도 4는 본 발명의 일 실시 예에 따른 친환경 생분해 부직포의 제조방법을 설명하기 위한 순서도이다.
본 발명의 일 실시 예에 따른 친환경 생분해 부직포의 제조방법은 PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 1 PLA섬유를 제조하는 S10단계; 제 1 PLA섬유를 메쉬벨트 상에 웹(Web) 형태로 집적하는 S20단계; 웹 형태로 집적된 제 1 PLA섬유 위에 펄프를 적층시키는 S30단계; PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 2 PLA섬유를 제조하는 S40단계; 제 2 PLA섬유를 메쉬드럼 상에 웹(Web) 형태로 집적하는 S50단계; 웹 형태로 집적된 제 2 PLA섬유를 상기 펄프의 상면에 적층시키는 S60단계; 및 적층된 제 1 PLA섬유, 펄프, 제 2 PLA섬유를 열융착하여 결합시키는 S70단계;를 포함하여 제조된다.
S10단계는 제 1 PLA섬유제조기(100)에서 이루어진다. 먼저, 제 1 PLA섬유제조기(100)의 압출기(110)에 PLA(생분해성 폴리유산)를 넣어 용융시킨다.
여기서, PLA는 융점이 100∼180℃이고, 용융지수는 20∼40g/10분 수준이며, 용융밀도는 0.98 내지 2.24g/㎤(260℃) 범위의 특성을 갖는 것이 사용된다. 또한, PLA는 폴리-D-유산, 폴리-L-유산, D-유산과 L-유산의 공중합체로 이루어진 군으로부터 선택된 것이 사용된다.
그리고, 압출기(110)는 150∼160℃ 온도가 설정된 제 1 영역, 200∼210℃ 온도가 설정된 제 2 영역, 220∼230℃ 온도가 설정된 제 3 영역, 230∼240℃ 온도가 설정된 제 4 영역, 250∼260℃ 온도가 설정된 제 5 영역으로 구획되어 있다.
따라서, PLA는 압출기(110)의 제 1 내지 제 5 영역을 통과하면서 완전용해가 이루어진다.
이어, 완전용해가 이루어진 PLA는 필터장치(120)에 필터링되어 분사노즐(130)로 공급되고, 분사노즐(130)로 공급된 PLA는 수백 개의 작은 오리피스(Orifice)를 통해 분사된다.
이어, 분사된 PLA는 열풍기(140)에서 고속 분사하는 고압 열풍에 의해 연신되고 냉각기에 의해 냉각되어 섬유화된다.
그리고 섬유화된 PLA는 절단기(160)에 절단되어 분사구(170)를 통해 분사된다. 이때, 분사구(170)로 분사되는 제 1 PLA섬유(10)는 부직포 전체 중량에 대하여 10중량%∼40중량% 분사된다.
S20단계는 메쉬벨트(500) 상에 분사되는 제 1 PLA섬유(10)를 웹 형태로 집적한다. 이때, Melt-Blown 방식에 의해 형성된 웹은 등방향구조(Isotrophic Formation)를 갖는다. 즉, 웹이 고온의 공기에 위해 형성되기 때문에 섬유가 기계방향과 기계 폭 방향으로 임의로 배열되고, 충분히 냉각된 상태가 아니어서 섬유 간 열 접착으로 상호 결합이 이루어진다.
S30단계는 웹 형태로 집적되어 이송되는 제 1 PLA섬유(10) 위에 펄프공급부(200)로부터 분사되는 펄프(20)를 적층시킨다. 이때, 적층되는 펄프(20)는 부직포 전체 중량에 대하여 25중량%∼80중량% 분사된다.
S40단계는 제 2 PLA 섬유제조기(300)를 통해 S10단계와 동일한 방법으로 제 2 PLA섬유(30)가 제조된다. 보다 자세히 설명하면, 제 2 PLA섬유제조기(300)의 압출기(310)에 PLA가 투입되고, PLA는 압출기(310)의 제 1 내지 제 5 영역을 통과하면서 완전용해가 이루어진다. 그리고, 완전용해가 이루어진 PLA는 필터장치(320)에 필터링되어 분사노즐(330)로 공급되고 수백 개의 작은 오리피스(Orifice)를 통해 분사된다. 이어, 분사된 PLA는 열풍기(340)의 고압 열풍에 의해 연신되고 냉각기(350)에 의해 냉각되어 섬유화된다. 그리고, 섬유화된 PLA는 절단기(360)에 절단되어 분사구(370)를 통해 분사된다. 이때, 분사구(370)로 분사되는 제 2 PLA섬유(30)는 부직포 전체 중량에 대하여 10중량% ∼40중량% 분사된다.
S50단계는 제 2 PLA섬유제조기에서 분사되는 제 2 PLA섬유(30)를 메쉬드럼(400) 상에서 웹 형태로 집적하여 메쉬벨트(500)로 안내한다.
S60단계는 제 1 PLA섬유(10) 위에 적층되어 이송되는 펄프(20)의 상면에 웹 형태로 집적된 제 2 PLA섬유(30)를 적층시킨다.
S70단계는 제 1 PLA섬유(10), 펄프(20), 제 2 PLA섬유(30) 순으로 적층된 적층물을 열융착부(700)에 통과시켜 적층물을 상호 열융착시킨다.
상기의 제조방법에 의하여 도 5에 도시된 바와 같이 메쉬벨트(500) 상에 분사되어 웹 형태로 집적된 제 1 PLA섬유층, 제 1 PLA섬유층 상면에 적층되는 펄프층, 메쉬드럼 상에서 웹 형태로 집적되어 펄프층의 상면에 적층되는 제 2 PLA섬유층을 포함하는 부직포가 제조된다.
(실시 예 1)
메쉬벨트 상에 부직포 전체 중량에 대하여 10중량%가 분사되어 웹 형태로 집적된 제 1 PLA섬유층, 제 1 PLA섬유층 상부에 부직포 전체 중량에 대하여 80중량%가 분사되어 적층되는 펄프층, 메쉬드럼 상에 부직포 전체 중량에 대하여 10중량%가 분사되고 웹 형태로 집적되어 펄프층의 상부에 적층되는 제 2 PLA섬유층을 상호 열융착하여 부직포를 제조하였다.
(실시 예 2)
메쉬벨트 상에 부직포 전체 중량에 대하여 25중량%가 분사되어 웹 형태로 집적된 제 1 PLA섬유층, 제 1 PLA섬유층 상부에 부직포 전체 중량에 대하여 50중량%가 분사되어 적층되는 펄프층, 메쉬드럼 상에 부직포 전체 중량에 대하여 25중량%가 분사되고 웹 형태로 집적되어 펄프층의 상부에 적층되는 제 2 PLA섬유층을 상호 열융착하여 부직포를 제조하였다.
(실시 예 3)
메쉬벨트 상에 부직포 전체 중량에 대하여 40중량%가 분사되어 웹 형태로 집적된 제 1 PLA섬유층, 제 1 PLA섬유층 상부에 부직포 전체 중량에 대하여 20중량%가 분사되어 적층되는 펄프층, 메쉬드럼 상에 부직포 전체 중량에 대하여 40중량%가 분사되고 웹 형태로 집적되어 펄프층의 상부에 적층되는 제 2 PLA섬유층을 상호 열융착하여 부직포를 제조하였다.
(비교 예 1)
메쉬벨트 상에 부직포 전체 중량에 대하여 45중량%가 분사되어 웹 형태로 집적된 제 1 PLA섬유층, 제 1 PLA섬유층 상부에 부직포 전체 중량에 대하여 10중량%가 분사되어 적층되는 펄프층, 메쉬드럼 상에 부직포 전체 중량에 대하여 45중량%가 분사되고 웹 형태로 집적되어 펄프층의 상부에 적층되는 제 2 PLA섬유층을 상호 열융착하여 부직포를 제조하였다.
(비교 예 2)
펄프20 중량%와 폴리 에틸렌(PE) 40중량%와, 폴리 프로필렌(PP) 40중량%를 혼합하고 복합분사하여 부직포를 제조하였다.
<시험 1>
실시 예 1, 2, 3 및 비교 예 1, 2의 부직포 각각에 대하여 부드러움, 부피감, 흡수성을 평가하여 [표 1]에 나타내었다.
표 1
실시 예 1 실시 예 2 실시 예 3 비교 예 1 비교 예 2
부드러움 ×
부피감
흡수성 ×
[표 1]에 나타낸 바와 같이 실시 예 1, 2, 3은 제 1 PLA섬유층과 제 2 PLA섬유층이 펄프층의 외면을 감싸서 펄프층을 보호하고, 펄프가 깨지거나 분진이 날리지 않게 펄프를 잡아주는 역할을 하였다. 또한, 펄프층으로 인하여 적당한 부피감을 유지시키는 것을 알 수 있었고, 부드러운 감촉을 느낄 수 있었으며, 흡수성이 우수함을 알 수 있었다.
비교 예 1은 제 1 PLA섬유층과 제 2 PLA섬유층이 너무 두껍게 형성되어 제 1 PLA섬유층과 제 2 PLA섬유층의 부서짐이 발생하였고, 감촉이 거칠었으며, 부피감과 흡수성이 양호하지 못하였다. 즉, 제 1 PLA섬유층과 제 2 PLA섬유층은 각각 부직포 전체 중량에 대하여 40중량% 이하가 사용되는 것이 바람직함을 알 수 있었다.
또한, 비교 예 2는 부피감과 감촉이 실시 예들에 비하여 떨어졌으며, 흡수성도 양호하지 못하였다.
<시험 2>
실시 예 1, 2, 3 및 비교 예 1, 2의 부직포 각각에 대하여 내환경성을 평가하였다. 즉, 부직포가 땅에 매립되었을 때와 동일한 환경의 조건으로 시간경과 전, 50시간(hr)과 75시간(hr) 경과 한 부직포의 전면에서 스프레이를 하여 부직포의 상태를 측정하여 [표 2]에 나타내었다.
표 2
실시 예 1 실시 예 2 실시 예 3 비교 예 1 비교 예 2
Force (N) ELong (%) Force (N) ELong (%) Force (N) ELong (%) Force (N) ELong (%) Force (N) ELong (%)
시간경과전 20.5 35.6 23.5 27.6 25.2 28.9 5.1 8.0 19.2 31.6
50시간경과 12.9 6.5 15.9 8.5 16.3 12.0 3.5 4.0 9.0 21.0
75시간경과 측정불가 측정불가 측정불가 측정불가 5.9 9.5
[표 2]에 나타낸 바와 같이 실시 예 1은 제조된 부직포의 시간경과 전 20.5N에서 연신률 35.6%를 나타내었고, 부직포의 50시간 경과 후 12.9N에서 연신률 6.5%을 나타내었으며, 부직포의 75시간 경과 후에는 펄프의 부식이 진행되고, 제 1 PLA섬유와 제 2 PLA 섬유는 생분해로 인한 부식이 진행되어 측정이 불가하였다.
그리고, 실시 예 2는 제조된 부직포의 시간경과 전 23.5N에서 연신률 27.6%를 나타내었고, 부직포의 50시간 경과 후 15.9N에서 연신률 8.5%을 나타내었으며, 부직포의 75시간 경과 후에는 펄프의 부식이 진행되고, 제 1 PLA섬유와 제 2 PLA 섬유는 부식의 진행으로 인한 찢어짐이 발생하여 측정이 불가하였다.
그리고, 실시 예 3은 제조된 부직포의 시간경과 전 25.2N에서 연신률 28.9%를 나타내었고, 부직포의 50시간 경과 후 16.3N에서 연신률 12.0%을 나타내었으며, 부직포의 75시간 경과 후 펄프의 부식이 진행되고, 제 1 PLA섬유와 제 2 PLA 섬유는 부식이 진행으로 인한 찢어짐이 발생하여 측정이 불가하였다.
그리고, 비교 예 1은 제조된 부직포의 시간경과 전 5.1N에서 연신률 8.0%를 나타내었고, 부직포의 50시간 경과 후 3.5N에서 연신률 4.0%을 나타내었으며, 부직포의 75시간 경과 후 펄프의 부식이 진행되고, 제 1 PLA섬유와 제 2 PLA 섬유는 부서짐으로 인하여 측정이 불가하였다.
그리고, 비교 예 2는 제조된 부직포의 시간경과 전 19.2N에서 연신률 31.6%를 나타내었고, 부직포의 50시간 경과 후 9.0N에서 연신률 21.0%을 나타내었으며, 부직포의 75시간 경과 후 5.9N에서 연신률 9.5%를 나타내었다. 즉, 펄프의 부식은 진행되었으나, 폴리 에틸렌(PE)과, 폴리 프로필렌(PP)이 그대로 존재하였다.
이와 같이 본 발명은 생분해 특성을 갖는 제 1 PLA층, 펄프층, 제 2 PLA층을 적층하여 부직포를 제조함으로써 펄프층의 부드러운 특성과 흡수성과 부피감이 향상되고, PLA층이 펄프층을 잡아주고 보호하게 되어 실제 사용시 필요한 기계적 강도가 향상되는 부직포를 제공하게 된다.
또한, 펄프를 이용함으로써 제조비용을 절감시킬 수 있고, 폐기 후 100% 생분해가 이루어짐에 따라 환경문제를 유발시키지 않는 부직포를 제공하게 된다.
또한, 발암물질이나 위생에 해로운 물질을 방출하지 않고, 통기성과 청량감이 우수하여 위생성 및 안전성이 향상되는 부직포를 제공하게 된다.
또한, PLA층이 펄프층의 표면을 잡고 있어서 세척이 가능하고 이로 인하여 여러번 반복 사용이 가능한 부직포를 제공하게 된다.
[부호의 설명]
100: 제 1 PLA섬유제조기 200: 펄프공급부
210: 소면기 300: 제 2 PLA섬유제조기
110,310: 압출기 120,320: 필터장치
130,330: 분사노즐 140,340: 열풍기
150,350: 냉각기 160,360: 절단기
170,370: 분사구 171,220,371: 밸브
400: 메쉬드럼 500: 메쉬벨트
600: 제어부 700: 열융착부

Claims (14)

  1. PLA를 섬유화시키는 제 1 PLA섬유제조기;
    상기 제 1 PLA섬유제조기의 하부에 구비되어 수직 분사되는 제 1 PLA섬유를 웹 형태로 집적하는 메쉬벨트;
    상기 제 1 PLA섬유제조기 일측에 구비되어 상기 메쉬벨트 상에 집적된 제 1 PLA 섬유 상면에 펄프를 적층시키는 펄프공급부;
    상기 펄프공급부의 일측에 구비되어 PLA를 섬유화시키는 제 2 PLA섬유제조기;
    상기 제 2 PLA섬유제조기에서 분사되는 제 2 PLA섬유를 웹 형태로 집적하여 상기 펄프의 상면에 적층시키는 메쉬드럼;
    상기 제 1 PLA섬유, 펄프, 제 2 PLA섬유 순으로 적층된 적층물에 열을 가하여 상기 적층물들을 상호 열융착시키는 열융착부; 및
    상기 제 1, 제 2 PLA섬유제조기, 펄프공급부와 전기적으로 연결되어 상기 제 1, 제 2 PLA섬유제조기에서 제조되는 제 1, 제 2 PLA섬유의 분사량을 제어하고, 상기 펄프공급부의 펄프공급량을 제어하는 제어부;
    를 포함하는 친환경 생분해 부직포 제조장치.
  2. 제 1 항에 있어서,
    상기 제 1, 제 2 PLA섬유제조기는 PLA(생분해성 폴리유산)를 용융 및 압출시키는 압출기와, 상기 압출기에서 용융된 PLA를 분사하는 수백 개의 작은 오리피스(Orifice)가 형성된 분사노즐과, 상기 분사노즐의 양옆에서 고압열풍을 분사하여 분사노즐에서 분사되는 PLA를 연신시키는 열풍기와, 상기 연신된 PLA를 냉각시키는 냉각기와, 상기 연신에 의해 결정된 PLA섬유를 절단하는 절단기와, 상기 절단된 PLA섬유를 분사하는 분사구를 포함하여 구성되는 것을 특징으로 하는 친환경 생분해 부직포 제조장치.
  3. 제 2 항에 있어서,
    상기 압출기와 분사노즐 사이에는 용융된 PLA를 필터링하는 필터장치가 더 포함되는 것을 특징으로 하는 친환경 생분해 부직포 제조장치.
  4. 제 2 항에 있어서,
    상기 압출기는 제 1 내지 제 5 영역으로 구획되고, 제 1 영역은 150∼160℃, 제 2 영역은 200∼210℃, 제 3 영역은 220∼230℃, 제 4 영역은 230∼240℃, 제 5 영역은 250∼260℃의 온도가 설정되는 것을 특징으로 하는 친환경 생분해 부직포 제조장치.
  5. 제 1 항에 있어서,
    상기 펄프공급부에는 시트 또는 매트로 이루어진 펄프섬유를 개별섬유로 분리시키는 소면기가 연결되는 것을 특징으로 하는 친환경 생분해 부직포 제조장치.
  6. 제 1 항에 있어서,
    상기 제어부는 부직포 전체 중량에 대하여 10중량%∼40중량%의 제 1 PLA섬유가 분사되도록 제 1 PLA섬유제조기의 분사량을 제어하고, 부직포 전체 중량에 대하여 25중량%∼80중량%의 펄프가 공급되도록 펄프공급부의 공급량을 제어하며, 부직포 전체 중량에 대하여 10중량%∼40중량%의 제 2 PLA섬유가 분사되도록 제 2 PLA섬유제조기의 분사량을 제어하는 것을 특징으로 하는 친환경 생분해 부직포 제조장치.
  7. PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 상기 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 1 PLA섬유를 제조하는 S10단계;
    상기 제 1 PLA섬유를 메쉬벨트 상에 웹(Web) 형태로 집적하는 S20단계;
    상기 웹 형태로 집적된 제 1 PLA섬유 위에 펄프를 적층시키는 S30단계;
    PLA(생분해성 폴리유산)를 압출기(Extruder)에 넣어 용융시킨 다음 수백 개의 작은 오리피스(Orifice)가 형성된 방사 노즐을 통해 방사하고 상기 방사 노즐 양옆에서 고속으로 분사되는 고압 열풍으로 연신 및 냉각시켜 제 2 PLA섬유를 제조하는 S40단계;
    상기 제 2 PLA섬유를 메쉬드럼 상에 웹(Web) 형태로 집적하는 S50단계;
    상기 웹 형태로 집적된 제 2 PLA섬유를 상기 펄프의 상면에 적층시키는 S60단계; 및
    상기 적층된 제 1 PLA섬유, 펄프, 제 2 PLA섬유를 열융착하여 결합시키는 S70단계;
    를 포함하는 친환경 생분해 부직포 제조방법.
  8. 제 7 항에 있어서,
    상기 압출기는 150∼160℃ 온도가 설정된 제 1 영역, 200∼210℃ 온도가 설정된 제 2 영역, 220∼230℃ 온도가 설정된 제 3 영역, 230∼240℃ 온도가 설정된 제 4 영역, 250∼260℃ 온도가 설정된 제 5 영역으로 구획되고, 상기 PLA는 제 1 내지 제 5 영역을 통과하여 완전용해가 이루어지는 것을 특징으로 하는 친환경 생분해 부직포 제조방법.
  9. 제 7 항에 있어서,
    상기 S10단계 및 S40단계에는 용융된 PLA를 필터링하는 단계가 더 포함되는 것을 특징으로 하는 친환경 생분해 부직포 제조방법.
  10. 제 7 항에 있어서,
    상기 PLA는 폴리-D-유산, 폴리-L-유산, D-유산과 L-유산의 공중합체로 이루어진 군으로부터 선택된 것을 특징으로 하는 친환경 생분해 부직포 제조방법.
  11. 제 7 항에 있어서,
    상기 PLA는 융점이 100℃∼180℃ 이고, 용융지수 75∼120g/10분이며, 용융밀도는 0.98 내지 2.24g/㎤(260℃) 범위의 특성을 갖는 것을 특징으로 하는 친환경 생분해 부직포 제조방법.
  12. 제 7 항에 있어서,
    상기 펄프는 시트 또는 매트로 이루어진 펄프섬유를 소면기에 넣어 개별섬유로 분리시킨 것이 사용되는 것을 특징으로 하는 친환경 생분해 부직포 제조방법.
  13. 제 7 항에 있어서,
    상기 제 1 PLA섬유는 부직포 전체 중량의 10중량%∼40중량% 분사되어 집적되고, 상기 펄프는 부직포 전체 중량의 25중량%∼80중량% 공급되어 집적되며, 제 2 PLA섬유는 부직포 전체 중량의 10중량%∼40중량% 분사되어 집적되는 것을 특징으로 하는 친환경 생분해 부직포 제조방법.
  14. 제 7 항 내지 제 13 항 중 어느 한 항의 제조방법에 의하여, 메쉬벨트 상에서 웹 형태로 집적된 제 1 PLA섬유층; 상기 제 1 PLA섬유층 상부에 적층되는 펄프층; 메쉬드럼 상에 웹(Web) 형태로 집적되어 상기 펄프층 상면에 적층되는 제 2 PLA섬유층이 상호 열융착되어 제조되는 것을 포함하는 친환경 생분해 부직포.
PCT/KR2015/007099 2014-07-14 2015-07-08 친환경 생분해 부직포 및 그 제조장치 및 제조방법 WO2016010302A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140088243A KR101520227B1 (ko) 2014-07-14 2014-07-14 친환경 생분해 부직포 및 그 제조장치 및 제조방법
KR10-2014-0088243 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016010302A1 true WO2016010302A1 (ko) 2016-01-21

Family

ID=53394683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007099 WO2016010302A1 (ko) 2014-07-14 2015-07-08 친환경 생분해 부직포 및 그 제조장치 및 제조방법

Country Status (2)

Country Link
KR (1) KR101520227B1 (ko)
WO (1) WO2016010302A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604536A (zh) * 2017-09-12 2018-01-19 曾林涛 一种蓬松弹性三维微纳米纤维材料的制备方法、装置以及由该方法制备的纤维材料及其应用
US10590577B2 (en) 2016-08-02 2020-03-17 Fitesa Germany Gmbh System and process for preparing polylactic acid nonwoven fabrics
CN112064199A (zh) * 2020-09-07 2020-12-11 杭州恒邦实业有限公司 一种热轧无纺布制备工艺
US11441251B2 (en) 2016-08-16 2022-09-13 Fitesa Germany Gmbh Nonwoven fabrics comprising polylactic acid having improved strength and toughness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112504B1 (ko) 2019-09-17 2020-05-19 심영익 육수용 pla부직포 주머니 제조방법 및 이에 의해 제조된 육수용 pla부직포 주머니
CN111764050B (zh) * 2020-06-19 2021-08-10 北京卫星制造厂有限公司 一种保温板生产线
KR20240003386A (ko) 2022-06-30 2024-01-09 동화 바이텍스 주식회사 생분해성 고분자 pla를 이용한 친환경 항바이러스 부직포 및 필터, 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879170A (en) * 1988-03-18 1989-11-07 Kimberly-Clark Corporation Nonwoven fibrous hydraulically entangled elastic coform material and method of formation thereof
JP2002321298A (ja) * 2000-12-20 2002-11-05 Sca Hygiene Prod Ab 繊維材料の積層体の製造方法、その方法によって製造された積層体及び前記積層体を含む吸収物品
KR20090087516A (ko) * 2006-12-15 2009-08-18 킴벌리-클라크 월드와이드, 인크. 섬유 형성용 생분해성 폴리에스테르
KR20120106031A (ko) * 2011-03-17 2012-09-26 엔브이에이치코리아(주) 자동차 내장용 생분해성 복합패널의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080106609A (ko) * 2007-06-04 2008-12-09 (주) 삼보 피엘에이 단섬유를 이용한 부직포의 제조 방법 및 상기제조 방법에 의해 제조된 부직포 및 상기 부직포가 적용된생분해성 흡수 패드
KR101011593B1 (ko) * 2010-06-11 2011-01-27 김지수 한지시트와 생분해성 수지시트가 결합된 카드 및 그 제조 방법
KR101043567B1 (ko) * 2011-02-07 2011-06-22 (주)자연과학 자연친화적인 식생매트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879170A (en) * 1988-03-18 1989-11-07 Kimberly-Clark Corporation Nonwoven fibrous hydraulically entangled elastic coform material and method of formation thereof
JP2002321298A (ja) * 2000-12-20 2002-11-05 Sca Hygiene Prod Ab 繊維材料の積層体の製造方法、その方法によって製造された積層体及び前記積層体を含む吸収物品
KR20090087516A (ko) * 2006-12-15 2009-08-18 킴벌리-클라크 월드와이드, 인크. 섬유 형성용 생분해성 폴리에스테르
KR20120106031A (ko) * 2011-03-17 2012-09-26 엔브이에이치코리아(주) 자동차 내장용 생분해성 복합패널의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590577B2 (en) 2016-08-02 2020-03-17 Fitesa Germany Gmbh System and process for preparing polylactic acid nonwoven fabrics
US11441251B2 (en) 2016-08-16 2022-09-13 Fitesa Germany Gmbh Nonwoven fabrics comprising polylactic acid having improved strength and toughness
CN107604536A (zh) * 2017-09-12 2018-01-19 曾林涛 一种蓬松弹性三维微纳米纤维材料的制备方法、装置以及由该方法制备的纤维材料及其应用
CN112064199A (zh) * 2020-09-07 2020-12-11 杭州恒邦实业有限公司 一种热轧无纺布制备工艺

Also Published As

Publication number Publication date
KR101520227B1 (ko) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2016010297A1 (ko) 친환경 생분해 부직포 및 그 제조장치 및 제조방법
WO2016010302A1 (ko) 친환경 생분해 부직포 및 그 제조장치 및 제조방법
KR101319183B1 (ko) 개선된 특성을 갖는 복합방사 장섬유 스펀본드 다층 부직포 및 그 제조방법
EP1218170B1 (en) Improved nonwoven with non-symmetrical bonding configuration
EP0754796B1 (en) Nonwoven laminate fabrics and processes of making same
KR101212426B1 (ko) 개선된 특성을 갖는 복합 스펀본드 장섬유 다층 부직포 및 그 제조 방법
KR100746466B1 (ko) 멜트블로운 웹
US20140255672A1 (en) Multi-Layer Nonwoven In Situ Laminates and Method of Producing The Same
JP2016145442A (ja) 繊維を紡糸するため、特に繊維含有不織布を製造するための方法及び装置
JPH07300754A (ja) バリヤ特性を有するポリエチレン溶融吹き込み布
US11920268B2 (en) System and process for preparing polylactic acid nonwoven fabrics
JP2003506582A (ja) 不織複合シート材料
CN101613910A (zh) 一种非织造布
US10767296B2 (en) Multi-denier hydraulically treated nonwoven fabrics and method of making the same
JP2004511664A (ja) メルトブローウェブ
CN111826808A (zh) 用于制造无纺布层压物的方法和无纺布层压物
WO2016010303A1 (ko) 친환경 생분해 부직포 및 그 제조장치 및 제조방법
KR101837204B1 (ko) 우수한 벌키성을 갖는 폴리프로필렌 복합방사 스펀본드 부직포 및 그 제조방법
JP2007009403A (ja) 混合繊維からなる不織布及びその製造方法
JP5602183B2 (ja) 混合繊維からなる不織布及びその製造方法
KR100579438B1 (ko) 복합방사 다층구조 스판본드 부직포
CN110760996A (zh) 包装用阻燃无轧点无纺布的生产方法及应用
KR101240750B1 (ko) 우수한 신축 회복성과 소프트한 촉감을 동시에 가지는 탄성 부직포 및 이의 제조방법
KR20040013756A (ko) 복합 장섬유 부직포 및 이의 제조방법
JP5857645B2 (ja) 複合化シート及び該複合化シートを含む製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822063

Country of ref document: EP

Kind code of ref document: A1