WO2016010077A1 - Negative-type photosensitive resin composition, and resin cured film, partition and optical element - Google Patents

Negative-type photosensitive resin composition, and resin cured film, partition and optical element Download PDF

Info

Publication number
WO2016010077A1
WO2016010077A1 PCT/JP2015/070289 JP2015070289W WO2016010077A1 WO 2016010077 A1 WO2016010077 A1 WO 2016010077A1 JP 2015070289 W JP2015070289 W JP 2015070289W WO 2016010077 A1 WO2016010077 A1 WO 2016010077A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
partition
negative photosensitive
acid
Prior art date
Application number
PCT/JP2015/070289
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀幸
光太郎 山田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016534467A priority Critical patent/JP6536578B2/en
Priority to CN201580038938.5A priority patent/CN106662815B/en
Priority to KR1020177001713A priority patent/KR102411740B1/en
Publication of WO2016010077A1 publication Critical patent/WO2016010077A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention is, for example, a negative photosensitive resin composition, a cured resin film, a partition wall and an optical element used in the production of an optical element such as an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell.
  • the present invention relates to an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, and the like.
  • the partition wall it is possible to form a fine and high-precision pattern by the partition wall by reducing the residue in the opening while maintaining good production efficiency and the top surface of the partition wall having good ink repellency. Furthermore, it is also applicable to flexible applications using plastic substrates, for example, negative photosensitive resin compositions used in the production of optical elements such as organic EL elements, quantum dot displays, TFT arrays, thin film solar cells, etc. Can provide things.
  • the cured resin film of the present invention has good ink repellency on the upper surface, and the partition wall has good ink repellency on the upper surface, and can form a fine and highly accurate pattern.
  • TFT arrays, thin film solar cells, and the like, and in particular, can be suitably used for optical elements including flexible applications using plastic substrates.
  • the group represented by the formula (x) may be simply referred to as a group (x).
  • the compound represented by the formula (y) may be simply referred to as the compound (y).
  • the expressions (x) and (y) indicate arbitrary expressions.
  • the “side chain” is a group other than a hydrogen atom or a halogen atom bonded to a carbon atom constituting the main chain in a polymer in which a repeating unit composed of carbon atoms constitutes the main chain.
  • total solid content of the photosensitive resin composition refers to a component that forms a cured film described later among the components contained in the photosensitive resin composition, and the photosensitive resin composition is heated at 140 ° C. for 24 hours. Obtained from the residue from which the solvent has been removed. The total solid content can also be calculated from the charged amount.
  • “Ink” is a general term for liquids having optical and / or electrical functions after drying, curing, and the like.
  • an optical element such as an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, and a color filter
  • dots as various constituent elements are pattern-printed by ink jet (IJ) method using the ink for forming the dots.
  • IJ ink jet
  • “Ink” includes ink used in such applications.
  • “Ink repellency” is a property of repelling the above ink and has both water repellency and oil repellency.
  • the ink repellency can be evaluated by, for example, a contact angle when ink is dropped.
  • “Ink affinity” is a property opposite to ink repellency, and can be evaluated by the contact angle when ink is dropped as in the case of ink repellency.
  • the ink affinity can be evaluated by evaluating the degree of ink wetting and spreading (ink wetting and spreading property) when ink is dropped on a predetermined standard.
  • the negative photosensitive resin composition of the present invention comprises a photocurable alkali-soluble resin or alkali-soluble monomer (A), a photoradical polymerization initiator (B), a photoacid generator (C), A negative photosensitive resin composition comprising an acid curing agent (D) and an ink repellent agent (E) having a fluorine atom.
  • the acid curing agent (D) refers to a curing agent that reacts with an acidic group such as a carboxylic acid or a phenolic hydroxyl group in the presence of an acid.
  • the alkali-soluble resin or alkali-soluble monomer (A) is polymerized and cured by radicals generated from the photoradical polymerization initiator (B) in the exposed area. A cured film is formed.
  • the alkali-soluble resin or the alkali-soluble monomer (A) does not contain a fluorine atom.
  • the ink repellent agent (E) has a property of shifting to the upper surface in the process of forming a cured film by having fluorine atoms (upper surface transition property), and the ink repellent agent (E) transferred to the upper surface is fixed on the upper surface of the cured film. To do.
  • the negative photosensitive resin composition of the present invention may further comprise a compound (F) having two or more unsaturated double bonds in the molecule and having neither an acidic group nor a fluorine atom, if necessary.
  • crosslinking agent (F) thiol compound (G) having 3 or more mercapto groups in one molecule
  • thiol compound (G) thiol compound having 3 or more mercapto groups in one molecule
  • thiol compound (G) phosphoric acid compound (H)
  • Polymerization inhibitor (I) Polymerization inhibitor
  • solvent (J) colorant (K)
  • alkali-soluble resin or alkali-soluble monomer (A))
  • the alkali-soluble resin will be described with a symbol (AP) and the alkali-soluble monomer with a symbol (AM). In the following description, these may be collectively referred to as “alkali-soluble resin (A)”.
  • the alkali-soluble resin (AP) a photosensitive resin having an acidic group and an ethylenic double bond in one molecule is preferable.
  • the alkali-soluble resin (AP) has an ethylenic double bond in the molecule, and is thus polymerized by the radical generated by the photo radical polymerization initiator (B). Since the alkali-soluble resin (AP) has an acidic group in the molecule, it reacts with the acid curing agent (D) in the presence of the acid generated by the photoacid generator (C). Moreover, it is alkali-soluble by having an acidic group.
  • Examples of the acidic group include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
  • Examples of the ethylenic double bond include double bonds having an addition polymerization property such as a (meth) acryloyl group, an allyl group, a vinyl group, a vinyloxy group, and a vinyloxyalkyl group. These may be used alone or in combination of two or more.
  • some or all of the hydrogen atoms possessed by the ethylenic double bond may be substituted with an alkyl group such as a methyl group.
  • alkali-soluble resin (AP) having an ethylenic double bond examples include a resin (A-1) having a side chain having an acidic group and a side chain having an ethylenic double bond, and an epoxy group having an acidic group and ethylene. And a resin (A-2) into which an ionic double bond is introduced. These may be used alone or in combination of two or more.
  • A-2 into which an ionic double bond is introduced.
  • alkali-soluble resin (AP) peeling of the cured film during development can be suppressed, and a high-resolution dot pattern can be obtained, and the linearity of the pattern when the dots are linear is good.
  • the resin (A-2) it is preferable to use the resin (A-2).
  • the linearity of a pattern is favorable means that the edge of the partition obtained does not have a chip etc. and is linear.
  • Examples of the resin (A-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton.
  • a resin in which an acidic group and an ethylenic double bond are introduced into an epoxy resin such as an epoxy resin or a fluorenyl-substituted bisphenol A type epoxy resin is particularly preferable.
  • the number of ethylenic double bonds that the alkali-soluble resin (AP) has in one molecule is preferably 3 or more on average, and particularly preferably 6 or more.
  • the number of ethylenic double bonds is at least the lower limit of the above range, the alkali solubility between the exposed and unexposed portions is likely to be different, and a fine pattern can be formed with a smaller exposure amount.
  • the mass average molecular weight (Mw) of the alkali-soluble resin (AP) is preferably 1.5 ⁇ 10 3 to 30 ⁇ 10 3 , particularly preferably 2 ⁇ 10 3 to 15 ⁇ 10 3 .
  • the number average molecular weight (Mn) is preferably 500 to 20 ⁇ 10 3 , and particularly preferably 1.0 ⁇ 10 3 to 10 ⁇ 10 3 .
  • the acid value of the alkali-soluble resin (AP) is preferably 10 to 300 mgKOH / g, particularly preferably 30 to 150 mgKOH / g. When the acid value is within the above range, the developability of the negative photosensitive composition is improved.
  • alkali-soluble monomer for example, a monomer (A-3) having an acidic group and an ethylenic double bond is preferably used.
  • the acidic group and the ethylenic double bond are the same as those of the alkali-soluble resin (AP).
  • the acid value of the alkali-soluble monomer (AM) is also preferably in the same range as the alkali-soluble resin (AP).
  • Examples of the monomer (A-3) include 2,2,2-triacryloyloxymethylethylphthalic acid.
  • the alkali-soluble resin or alkali-soluble monomer (A) contained in the negative photosensitive resin composition may be used alone or in combination of two or more.
  • the content of the alkali-soluble resin or alkali-soluble monomer (A) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
  • the radical photopolymerization initiator (B) in the present invention is not particularly limited as long as it is a compound having a function as a radical photopolymerization initiator that generates radicals by actinic rays.
  • the radical photopolymerization initiator (B) is also simply referred to as “photopolymerization initiator (B)”.
  • Examples of the photopolymerization initiator (B) include those described in WO2014 / 046209, for example, paragraphs [0130] and [0131], and WO2014 / 0669478, for example, in paragraphs [0089] and [0090].
  • photopolymerization initiators (B) benzophenones, aminobenzoic acids and aliphatic amines are preferably used together with other radical initiators because they may exhibit a sensitizing effect.
  • a photoinitiator (B) may be used individually by 1 type, or may use 2 or more types together.
  • the content of the photopolymerization initiator (B) in the total solid content in the negative photosensitive resin composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and 1 to 15% by mass. % Is particularly preferred. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
  • the photoacid generator (C) is not particularly limited as long as it is a compound that decomposes to generate an acid upon irradiation with an actinic ray. Generally, any compound can be selected and used from compounds used as a photoacid generator in a photosensitive resin composition using a cationic polymerization type alkali-soluble resin. Hereinafter, the photoacid generator (C) is also simply referred to as “acid generator (C)”.
  • the acid generated from the acid generator (C) is a bond between the alkali-soluble resin (A) and the acid curing agent (D) described below. Involved.
  • the acid generator (C) decomposes upon irradiation with actinic rays to generate an acid.
  • the actinic rays include high energy rays such as ultraviolet light, X-rays, and electron beams.
  • i line (365 nm), h line (405 nm), and g line (436 nm) are used preferably for exposure.
  • the acid generator (C) it is preferable to select an acid generator (C) having a large absorbance at the wavelength of light used for exposure.
  • Those having absorption at 350 to 450 nm are preferred, and those having absorption in light including at least one of i-line (365 nm), h-line (405 nm) and g-line (436 nm) have high curability. preferable.
  • the acid generator (C) include onium salt acid generators and nonionic acid generators.
  • the onium salt acid generator include onium salts and iodonium salt compounds of a compound having a mono to triphenylsulfonium skeleton represented by the following formula (C0).
  • R a1 and R a2 each represents an optionally substituted alkyl group having 1 to 20 carbon atoms or a phenyl group, and R a3 represents a monovalent organic group.
  • w is an integer of 0 to 5.
  • a compound in which R a1 and R a2 are both phenyl groups (which may be substituted) is preferable.
  • an onium salt of a compound having a triphenylsulfonium skeleton represented by the following formula (C1) or (C2) is preferable.
  • a compound in which the hydrogen atom of the phenyl group of the triphenylsulfonium skeleton is substituted in the compound (C1) and the compound (C2) can also be used as the acid generator (C).
  • Xa - and Xb - represents an anion, specifically, X in the above formula (C0) - same anion are exemplified.
  • Xa - and Xb - as the anion of the anion and sulfonic acid salt type of phosphorus-based is preferred.
  • the cation moiety absorbs the irradiated light, and the anion moiety becomes a source of acid generation.
  • Examples of the compound (C0) include an onium salt represented by the following formula (C0-1) as an onium salt of a compound having a monophenylsulfonium skeleton. Further, in the compounds (C1) and (C2) which are onium salts of a compound having a triphenylsulfonium skeleton, for example, as a compound used for performing exposure at i-line (365 nm), the following formula (C1-1) in triphenylsulfonium nonafluorobutanesulfonate represented, triarylsulfonium, PF 6 salts and triarylsulfonium, special phosphorus-based salts represented respectively by the following formula (C2-1) and the following formula (C2-2) Can be mentioned. These compounds are preferable in that they have a large absorbance at a wavelength of 365 nm and are easily available.
  • iodonium salt compound examples include diaryl iodonium salts and triarylsulfonium salts.
  • the triarylsulfonium salt is composed of the cation moiety and the anion moiety, and is composed of a combination of one specific example of the cation moiety and one specific example of the anion moiety.
  • triphenylsulfonium trifluoromethanesulfonate is an example.
  • Such a compound include a naphthalimide skeleton and a nitrobenzene represented by the following formula (C3), the following formula (C4), the following formula (C5), the following formula (C6), and the following formula (C7), respectively.
  • a skeleton (however, when there is one nitro group, the position is the 2nd or 4th position; when there are two nitro groups, the position is the 2nd or 5th position), a diazomethane skeleton, a phenylacetophenone skeleton, Examples thereof include compounds having a thiochitosan skeleton and a structure in which alkanesulfonic acid, arylsulfonic acid or the like is bonded.
  • R b1 to R b5 , R b7 , R b9, and R b11 in formulas (C3) to (C7), (C9), (C10), and (C11) are each independently partially or completely substituted with a fluorine atom. It may be a linear, branched or cyclic (including those having a partial cyclic structure) alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R b6 , R b8, and R b10 in formulas (C8), (C9), and (C10) each independently may have a substituent or an unsaturated bond, and may contain a heterocyclic ring. Is an organic group.
  • Specific examples of the compound having a triazine skeleton and a chlorine atom represented by the above formula (C8) include 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, the following formula (C8-1) 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2-furyl) ethenyl-bis (trichloromethyl) -1,3 5-triazine, 2- (5-methyl-2-furyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine represented by the following formula (C8-2), 3) 2- (4-methoxyphenyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (3,4-dimethoxyphenyl) ethenyl-4,6-bis shown in 3) (Trichlorome Le)
  • R 11 to R 32 are each independently a hydrogen atom, a hydroxymethyl group or an alkoxymethyl group. At least one of R 11 to R 16 , at least one of R 17 to R 20 , at least one of R 21 to R 24 , at least one of R 27 to R 30 , R 31 and R 32 At least one of them is an alkoxymethyl group.
  • R 33 to R 36 are each independently a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxy group, and Xc is a single bond, a methylene group or an oxygen atom.
  • the ink repellent agent (E2) is a compound having a main chain of a hydrocarbon chain and a side chain having a fluorine atom.
  • the mass average molecular weight (Mw) of the ink repellent agent (E2) is preferably from 100 to 1,000,000, particularly preferably from 5,000 to 100,000. When the mass average molecular weight (Mw) is not less than the lower limit, the ink repellent agent (E2) tends to move to the upper surface when a cured film is formed using the negative photosensitive resin composition. The opening residue is less than the upper limit, which is preferable.
  • ink repellent agent (E2) examples include those described in, for example, [0079] to [0102] of WO2014 / 046209 and, for example, [0144] to [0171] of WO2014 / 0669478.
  • the content of the crosslinking agent (F) in the total solid content in the negative photosensitive resin composition is preferably 10 to 60% by mass, particularly preferably 20 to 55% by mass.
  • thiol compound (G) examples include tris (2-mercaptopropanoyloxyethyl) isocyanurate, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tristhioglycolate, pentaerythritol tristhioglycol.
  • the negative photosensitive resin composition of the present invention can optionally contain a phosphoric acid compound (H) in order to improve the adhesion of the obtained cured film to a substrate, a transparent electrode material such as ITO, and the like.
  • Such a phosphoric acid compound (H) is not particularly limited as long as it can improve the adhesion of a cured film to a substrate, a transparent electrode material, etc., but the ethylenically unsaturated double molecule in the molecule.
  • a phosphoric acid compound having a bond is preferable.
  • Examples of the phosphoric acid (meth) acrylate compound used in the present invention include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and di (2-acryloyloxyethyl). Examples include acid phosphate, tris ((meth) acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) caproate acid phosphate, and the like.
  • the content is preferably 0.01 to 10% by mass with respect to the total solid content in the negative photosensitive resin composition, 0.1 to 5% by mass is particularly preferable.
  • the content ratio is in the above range, the adhesion between the obtained cured film and the substrate is good.
  • the content of the polymerization inhibitor (I) in the total solid content in the negative photosensitive resin composition is preferably 0.001 to 20% by mass, more preferably 0.005 to 10% by mass, and 0.01 to 5% by mass. % Is particularly preferred. When the content ratio is in the above range, the development residue of the negative photosensitive resin composition is reduced, and the pattern linearity is good.
  • solvent (J) When the negative photosensitive resin composition of the present invention contains a solvent (J), the viscosity is reduced, and the negative photosensitive resin composition can be easily applied to the substrate surface. As a result, a coating film of a negative photosensitive resin composition having a uniform film thickness can be formed.
  • a known solvent is used as the solvent (J).
  • a solvent (J) may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the solvent (J) include alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, alcohols, and solvent naphtha. Among these, at least one solvent selected from the group consisting of alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, and alcohols is preferable.
  • the negative photosensitive resin composition of the present invention contains a colorant (K) when imparting light-shielding properties to a cured film, particularly a partition wall, depending on the application.
  • a colorant (K) in the present invention include carbon black, aniline black, anthraquinone black pigment, and perylene black pigment. I. Pigment black 1, 6, 7, 12, 20, 31 etc. are mentioned. Mixtures of organic pigments such as red pigments, blue pigments and green pigments and / or inorganic pigments can also be used.
  • the negative photosensitive resin composition of the present invention can be obtained by mixing predetermined amounts of the above components.
  • the negative photosensitive resin composition of this invention can be used for manufacture of optical elements, such as an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, a color filter, for example. Specifically, the effect can be exhibited particularly when used for forming a cured film or a partition used for an optical element such as an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell.
  • the negative photosensitive resin composition of the present invention it is possible to produce a cured film having good ink repellency on the upper surface, in particular, a partition wall.
  • the cured resin film of the embodiment of the present invention is formed using the above-described negative photosensitive resin composition of the present invention.
  • the cured resin film according to the embodiment of the present invention is, for example, coated with the negative photosensitive resin composition of the present invention on the surface of a substrate such as a substrate, dried as necessary to remove the solvent, and then exposed. Is obtained by curing.
  • the cured resin film according to the embodiment of the present invention is particularly effective when used for optical elements, particularly organic EL elements, quantum dot displays, TFT arrays, and thin film solar cells.
  • the partition wall of the present invention is a partition wall made of the above-described cured film of the present invention formed so as to partition the substrate surface into a plurality of sections for dot formation.
  • the partition wall is obtained by masking a portion to be a dot formation partition before exposure, developing after exposure. By development, an unexposed portion is removed by masking, and an opening corresponding to a dot forming section is formed together with a partition.
  • the partition wall according to the embodiment of the present invention exhibits a particularly remarkable effect when used in an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
  • the partition wall of the embodiment of the present invention does not necessarily require high-temperature treatment in the production process, and thus can be applied to flexible applications using a plastic substrate such as polyethylene terephthalate (PET) or polycarbonate. is there.
  • PET polyethylene terephthalate
  • polycarbonate polycarbonate
  • a negative photosensitive resin composition is applied to one entire main surface of the substrate 1 to form a coating film 21.
  • the ink repellent agent (E) is totally dissolved and uniformly dispersed in the coating film 21.
  • the ink repellent agent (E) is schematically shown, and does not actually exist in such a particle shape.
  • the coating film 21 is dried to form a dry film 22.
  • the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying.
  • the heating temperature is preferably 50 to 120 ° C.
  • the ink repellent agent (E) moves to the upper layer of the dry film.
  • the upper surface transfer of an ink repellent agent (E) is similarly achieved within a coating film.
  • the exposure method includes full-surface batch exposure, scan exposure, and the like. You may expose in multiple times with respect to the same location. At this time, the multiple exposure conditions may or may not be the same.
  • the acid generator (C) in the exposed portion, the acid generator (C) generates an acid by exposure in parallel with radical polymerization of the alkali-soluble resin (A) during exposure.
  • the acid curing agent (D) reacts with an acidic group such as a carboxylic acid of the alkali-soluble resin (A).
  • the cured film in particular, the curing property of the alkali-soluble resin (A) on the upper surface of the cured film and the fixing property of the ink repellent agent (E) are improved.
  • a membrane is obtained.
  • a cured film having a curability equivalent to that of a conventional cured film, in particular, a curability on the upper surface can be obtained even with a low exposure amount.
  • FIG. 1D shows a state after the non-exposed portion 23B is removed by development.
  • the non-exposed portion 23B is dissolved and removed by an alkali developer in a state where the ink repellent agent (E) has moved to the upper layer portion and the ink repellent agent (E) is hardly present in the lower layer. Therefore, the ink repellent agent (E) hardly remains in the opening 5.
  • the uppermost layer including the upper surface is the ink repellent layer 4A.
  • the ink repellent agent (E) does not have a side chain having an ethylenic double bond
  • the ink repellent agent (E) is present in a high concentration as it is in the uppermost layer and becomes an ink repellent layer.
  • the alkali-soluble resin (A) present around the ink repellent agent (E) is strongly photocured with the acid curing agent (D), particularly in the presence of an acid generated by the acid generator (C).
  • the ink repellent agent (E) is fixed to the ink repellent layer.
  • the negative photosensitive resin composition optionally contains the thiol compound (G)
  • the reaction by the ethylenic double bond is promoted, and the ink repellent layer is cured more firmly.
  • the ink-repellent layer 4A has mainly an alkali-soluble resin (A), an acid curing agent (D), and an optionally contained thiol compound (G), and other photocuring components.
  • A alkali-soluble resin
  • D acid curing agent
  • G thiol compound
  • other photocuring components are photocured by radical polymerization by radicals generated by the photopolymerization initiator (B) and cationic polymerization in the presence of acid generated by the acid generator (C), and the layer hardly contains the ink repellent agent (E). 4B is formed.
  • the ink repellent agent (E) is sufficiently fixed to the partition including the ink repellent layer 4A and the lower layer 4B, and therefore hardly migrates to the opening during development.
  • the surface and the inside of the cured film are sufficiently cured by combining the radical polymerization reaction by light and the curing reaction in the presence of acid by light. . Therefore, the hardened portion which is the exposed portion has resistance to erosion and peeling by the alkaline developer during development. Therefore, the exposed portion is not easily affected by long-time development, which is advantageous for removing the residue at the opening.
  • the partition 4 may be further heated after development.
  • the heating temperature is preferably 80 to 250 ° C.
  • the partition 4 is hardened by heating.
  • the ink repellent agent (E) is more firmly fixed in the ink repellent layer 4A.
  • the composition of the present invention can exhibit high liquid repellency even when cured at low temperature, and can also have high liquid repellency even after being immersed in a chemical such as an acid or an organic solvent.
  • the heating temperature needs to be set low.
  • the heating temperature is preferably set to 150 ° C. or lower, particularly preferably 120 ° C. or lower.
  • the composition of the present invention maintains liquid repellency and has excellent chemical resistance even when heated at a low temperature as described above.
  • the cured resin film and the partition 4 of the present invention thus obtained have good ink repellency on the upper surface even when exposure is performed at a low exposure amount.
  • the ink repellent (E) hardly exists in the opening 5 after development, and the uniform coating property of the ink in the opening 5 can be sufficiently ensured.
  • the substrate 1 with the partition walls 4 may be subjected to ultraviolet / ozone treatment.
  • the width of the partition formed from the negative photosensitive resin composition of the present invention is preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the distance between adjacent partition walls (pattern width) is preferably 300 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the height of the partition wall is preferably 0.05 to 50 ⁇ m, particularly preferably 0.2 to 10 ⁇ m.
  • the partition formed from the negative photosensitive resin composition of the present invention has few irregularities in the edge portion when formed to the above width, and is excellent in linearity.
  • the high linearity in the partition walls is particularly remarkable when a resin (A-2) in which an acidic group and an ethylenic double bond are introduced into an epoxy resin is used as the alkali-soluble resin.
  • A-2 a resin in which an acidic group and an ethylenic double bond are introduced into an epoxy resin
  • an epoxy resin is used as the alkali-soluble resin.
  • the partition of the present invention can be used as a partition having the opening as an ink injection region when pattern printing is performed by the IJ method.
  • pattern printing is performed by the IJ method
  • the partition wall of the present invention is formed and used so that the opening thereof coincides with a desired ink injection region, the partition top surface has good ink repellency. It is possible to suppress ink from being injected into an undesired opening, that is, an ink injection region beyond the partition wall.
  • the opening surrounded by the partition wall has good ink wetting and spreading properties, it is possible to print the ink uniformly without causing white spots or the like in a desired region.
  • the barrier rib of the present invention is an optical element having a barrier rib positioned between a plurality of adjacent dots on a substrate surface on which dots are formed by the IJ method, particularly an organic EL element, a quantum dot display, a TFT array, and a thin film solar. It is useful as a battery partition.
  • optical element of the present invention in particular, an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell is an optical element having a plurality of dots and a partition wall of the present invention located between adjacent dots on the substrate surface. is there.
  • the dots are preferably formed by the IJ method.
  • An organic EL element has a structure in which a light emitting layer of an organic thin film is sandwiched between an anode and a cathode. It can be used for partitioning applications.
  • the organic TFT array element is a semiconductor layer including a plurality of dots arranged in a matrix in plan view, each pixel having a pixel electrode and a TFT as a switching element for driving it, and including a TFT channel layer.
  • the organic TFT array element is provided as a TFT array substrate in, for example, an organic EL element or a liquid crystal element.
  • ink 10 is dropped from the inkjet head 9 into the opening 5 surrounded by the partition wall 4 and a predetermined amount of ink 10 is injected into the opening 5.
  • known inks for organic EL elements are appropriately selected and used in accordance with the function of dots.
  • the optical element of the embodiment of the present invention uses the partition wall of the present invention, so that an ink is formed in an opening partitioned by the partition wall in the manufacturing process.
  • an optical element having dots formed with high accuracy in particular, an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
  • an organic EL element can be manufactured as follows, for example, it is not limited to this.
  • a light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a plastic light-transmitting substrate such as glass or PET by sputtering or the like.
  • the translucent electrode is patterned as necessary.
  • partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • the materials of the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, and the electron injection layer are applied and dried in the dots by the IJ method, and these layers are sequentially stacked.
  • the kind and number of organic layers formed in the dots are appropriately designed.
  • a reflective electrode such as aluminum is formed by vapor deposition or the like.
  • the quantum dot display can be manufactured, for example, as follows, but is not limited thereto.
  • a light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a plastic light-transmitting substrate such as glass or PET by sputtering or the like.
  • the translucent electrode is patterned as necessary.
  • partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • the materials of the hole injection layer, the hole transport layer, the quantum dot layer, the hole blocking layer, and the electron injection layer are respectively applied and dried in the dots by the IJ method, and these layers are sequentially stacked. .
  • the kind and number of organic layers formed in the dots are appropriately designed.
  • a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
  • a nanoparticle solution that converts blue light into green light by the IJ method, a nanoparticle solution that converts blue light into red light, and a blue color ink as necessary are coated in the dots and dried. Is made.
  • a liquid crystal display with excellent color reproducibility can be obtained by using a light source that emits blue as a backlight and using the module as a color filter alternative.
  • the TFT array can be manufactured, for example, as follows, but is not limited thereto.
  • a gate electrode such as aluminum or an alloy thereof is formed on a light-transmitting substrate made of plastic such as glass or PET by a sputtering method or the like. This gate electrode is patterned as necessary.
  • a gate insulating film such as silicon nitride is formed by a plasma CVD method or the like.
  • a source electrode and a drain electrode may be formed over the gate insulating film.
  • the source electrode and the drain electrode can be formed by forming a metal thin film such as aluminum, gold, silver, copper, or an alloy thereof by, for example, vacuum deposition or sputtering.
  • a resist is coated, exposed and developed to leave the resist in a portion where the electrode is to be formed, and then exposed with phosphoric acid or aqua regia. There is a method of removing the metal and finally removing the resist.
  • the source electrode and the drain electrode may be formed by a method such as ink jet using a metal nanocolloid such as silver or copper.
  • partition walls are formed in a lattice pattern in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • a semiconductor solution is applied in the dots by the IJ method, and the solution is dried to form a semiconductor layer.
  • an organic semiconductor solution or an inorganic coating type oxide semiconductor solution can also be used.
  • the source electrode and the drain electrode may be formed by using a method such as inkjet after forming the semiconductor layer.
  • a transparent electrode such as ITO is formed by sputtering or the like, and a protective film such as silicon nitride is formed.
  • Examples 1 to 10 are examples, and examples 11 to 13 are comparative examples.
  • the column is maintained at 37 ° C., tetrahydrofuran is used as the eluent, the flow rate is 0.2 mL / min, and a 0.5% tetrahydrofuran solution of the measurement sample is used. 40 ⁇ L was injected.
  • fluorine atom content The content of fluorine atoms was calculated by 19 F NMR measurement using 1,4-ditrifluoromethylbenzene as a standard substance.
  • Alkali-soluble resin (A) Alkali-soluble resin (A1) composition: A cresol novolac epoxy resin is reacted with acrylic acid and then 1,2,3,6-tetrahydrophthalic anhydride, and a resin into which an acryloyl group and a carboxy group are introduced is purified with hexane Composition (alkali-soluble resin (A1), acid value 60 mgKOH / g) (solid content 70% by mass, PGMEA 30% by mass)
  • Alkali-soluble resin (A2) composition a composition (alkali-soluble resin (A2) having an acid value of 100 mgKOH / g) in which a carboxyl group and an ethylenic double bond are introduced into a bisphenol A type epoxy resin (solid content: 70% by mass) , PGMEA 30% by mass).
  • Alkali-soluble resin (A3) composition a resin in which an ethylenic double bond and an acidic group are introduced into an epoxy resin having a biphenyl skeleton represented by the following formula (A-2a) (alkali-soluble resin (A3), acid value) 70 mg KOH / g) (solid content 70% by mass, PGMEA 30% by mass).
  • v is an integer of 1 to 50, preferably an integer of 2 to 10.
  • the hydrogen atoms of the benzene ring are each independently an alkyl group having 1 to 12 carbon atoms or a halogen atom. Or a part of hydrogen atoms may be substituted with a phenyl group which may be substituted with a substituent.
  • Alkali-soluble resin (AR-1) A reaction tank having an internal volume of 1 L equipped with a stirrer was charged with acetone (555 g), AA (acrylic acid) (36.0 g), 2-HEMA (108.0 g), IBMA (72.0 g), chain transfer agent DSH (9.7 g) and polymerization initiator V-70 (5.1 g) were charged and polymerized at 40 ° C. for 18 hours with stirring under a nitrogen atmosphere to obtain an alkali-soluble resin ( A solution of AR-1) was obtained.
  • alkali-soluble resin (AR-1) Water is added to the acetone solution of the obtained alkali-soluble resin (AR-1) to effect reprecipitation purification, then reprecipitation purification with petroleum ether, vacuum drying, and alkali-soluble resin (AR-1) 235 g was obtained.
  • the number average molecular weight (Mn) of the alkali-soluble resin (AR-1) was 5,000, and the acid value of the alkali-soluble resin (AR-1) was 119 mgKOH / g.
  • IR907 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (trade name IRGACURE907, manufactured by BASF).
  • OXE02 Ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF, trade name: OXE02).
  • EAB 4,4′-bis (diethylamino) benzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • PAG-A 2- (5-methyl-2-furyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine (a compound represented by the above formula (C8-2)).
  • PAG-B 2- [2- (n-propylsulfonyloxyimino) thiophene-3 (2H) -ylidene] -2- (2-methylphenyl) acetonitrile (among the compounds represented by the above formula (C11), R a compound wherein b11 is an n-propyl group).
  • WPAG199 bis (p-toluenesulfonyl) diazomethane.
  • SI-150L sulfonium aromatic represented by the formula (C0-1) SbF 6 - salt (Sanshin Chemical Industry Co., Ltd., trade name: San-Aid SI-150L).
  • Epoxy A an epoxy compound containing a dicyclopentane ring represented by the above formula (De1).
  • Epoxy B a naphthalene ring-containing epoxy compound represented by the above formula (De2).
  • Melamine A 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine (compound represented by the above formula (D1-1)).
  • Melamine B 1,3,4,6-tetrakis (methoxymethyl) glycoluril (compound represented by the above formula (D3-1)).
  • V-65 (2,2′-azobis (2,4-dimethylvaleronitrile))
  • V-70 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • DSH n-dodecyl mercaptan
  • BEI 1,1- (bisacryloyloxymethyl) ethyl isocyanate)
  • AOI 2-acryloyloxyethyl isocyanate
  • DBTDL Dibutyltin dilaurate TBQ: t-butyl-p-benzoquinone
  • MEK 2-butanone
  • the agent was inactivated to obtain a solution (solid content concentration: 30% by mass) of a copolymer (ink repellent agent (E-1)).
  • This solution was used for the production of a negative photosensitive resin composition described later.
  • the negative photosensitive resin composition in the state of the solution. Used in the manufacture of the product.
  • the ink repellent agent (E-1) has a number average molecular weight of 14,200, a mass average molecular weight of 21,500, a fluorine atom content of 31.4% by mass, and an acid value of 32.6 (mgKOH / g )Met.
  • the ink repellent agent (E-2) has a number average molecular weight of 7,540, a mass average molecular weight of 16,200, a fluorine atom content of 14.8% by mass, and an acid value of 35.1 (mgKOH / g )Met.
  • the ink repellent agent (E-3) has a number average molecular weight of 14,850, a mass average molecular weight of 22,700, a fluorine atom content of 31.4% by mass, and an acid value of 32.6 (mgKOH / g )Met.
  • ink repellent (E-4)
  • the ink repellent agent (E-4) had a number average molecular weight of 5,700, a mass average molecular weight of 8,800, and a fluorine atom content of 19.0% by mass.
  • the ink repellent agent (E-5) has a number average molecular weight of 8,000, a mass average molecular weight of 10,600, a fluorine atom content of 28.0% by mass, and an acid value of 93.3 (mgKOH / g). )Met.
  • the ink repellent agent (E-6) had a number average molecular weight of 9,000, a mass average molecular weight of 11,700, a fluorine atom content of 14.7% by mass, and an acid value of 65 mgKOH / g.
  • the ink repellent agent (E-7) had a number average molecular weight of 4,500, a mass average molecular weight of 5,590, a fluorine atom content of 12.5% by mass, and an acid value of 33 mgKOH / g.
  • Table 1 summarizes the raw material compositions and properties of the ink repellent agents (E-1) to (E-7) obtained or prepared above.
  • Table 2 shows the amount of raw material hydrolyzable silane compound used in the production of the obtained ink repellent agents ((E-8) to (E-10)).
  • the silane compound means a hydrolyzable silane compound.
  • the number average molecular weight (Mn), mass average molecular weight (Mw), and fluorine atom content (% by mass) of the obtained ink repellent agents ((E-8) to (E-10)) were measured. Table 2 shows.
  • Example 1 Production of negative photosensitive resin composition and production of cured film and partition wall (pattern film)] (Manufacture of negative photosensitive resin composition)
  • the negative photosensitive resin composition 1 was manufactured by stirring for 3 hours.
  • the entire surface of the obtained dried film was irradiated with UV light from an ultrahigh pressure mercury lamp having an exposure power (exposure output) in terms of 365 nm of 300 mW / cm 2 .
  • exposure power exposure output
  • two types of cured films were produced by adjusting the irradiation time so that the exposure amount was 30 mJ / cm 2 or 50 mJ / cm 2 . In all cases, light of 330 nm or less was cut during the exposure.
  • the glass substrate after the exposure treatment was immersed in a 2.38% tetramethylammonium hydroxide aqueous solution for 10 seconds, washed away with water, and then dried. Subsequently, this was heated on a hot plate at 230 ° C. for 60 minutes to obtain a cured film having no opening.
  • the distance between the dry film and the photomask was 50 ⁇ m.
  • the glass substrate after the exposure treatment was developed by immersing in a 2.38% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the non-exposed portion was washed away with water and dried. Next, this was heated on a hot plate at 230 ° C. for 60 minutes to obtain a pattern film 1 as a cured film having an opening corresponding to the masking portion of the photomask.
  • the distance between the dry film and the photomask was 50 ⁇ m.
  • the glass substrate after the exposure treatment was developed by immersing it in a 2.38% tetramethylammonium hydroxide aqueous solution for 200 seconds, and the non-exposed portion was washed with 1.5 MPa high-pressure water for 10 seconds and dried. Next, this was heated on a hot plate at 230 ° C. for 60 minutes to obtain a pattern film 2 as a cured film having an opening corresponding to the masking portion of the photomask.
  • the glass substrate after the exposure treatment was developed by immersing in a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the non-exposed portion was washed away with water and dried.
  • a pattern film 3 was obtained as a cured film having a pattern corresponding to the opening pattern of the photomask.
  • the PGMEA contact angle on the upper surface of the cured film obtained above was measured by the following method to evaluate ink repellency.
  • PGMEA droplets were placed on the upper surface of the cured film by the sessile drop method, and each PGMEA droplet was measured.
  • the droplet was 2 ⁇ L / droplet, and the measurement was performed at 20 ° C.
  • the contact angle was determined from the average value of 3 measurements.
  • the PGMEA contact angle on the upper surface of the cured film obtained above was measured by the above method.
  • the pattern forming property was evaluated according to the following criteria.
  • the line width of the line portion where the line / space was 20 ⁇ m / 50 ⁇ m was measured.
  • Example 2 In Example 1, except that the negative photosensitive resin composition was changed to the composition shown in Table 3, Table 4 or Table 5, a negative photosensitive resin composition, a partition, and a cured film were produced in the same manner. Evaluation similar to Example 1 was performed. The evaluation results of each example are shown in Table 3, Table 4, and Table 5 together with the composition of the negative photosensitive resin composition.
  • Examples 1 to 10 corresponding to the examples of the negative photosensitive resin composition of the present invention, an alkali-soluble resin or alkali-soluble monomer (A) having an unsaturated double bond, a photopolymerization initiator (B), Since the acid generator (C) and the acid curing agent (D) are contained, high liquid repellency was obtained even when the exposure amount was as low as 30 mJ / cm 2 . Further, even when the exposure amount is 50 mJ / cm 2, the line width is not easily increased, and the pattern formability is good.
  • Example 11 and 12 corresponding to the comparative examples since either one of the photopolymerization initiator (B) and the acid generator (C) is not contained, the exposure amount is as low as 30 mJ / cm 2 . In some cases, the liquid repellency was insufficient. For this reason, the upper surface of the cured film has insufficient ink repellency. In Example 13 corresponding to the comparative example, the amount of the photopolymerization initiator (B) was increased, so that the liquid repellency was sufficient. However, since the acid generator (C) was not contained, the exposure amount was 30 mJ / cm 2 . Even in the case of a low exposure amount, the line width tends to be thick, and the pattern formability is insufficient.

Abstract

Provided are: a negative-type photosensitive resin composition for use in the manufacture of an optical element or the like (organic EL element, quantum dot display, TFT array, thin film solar cell) having an upper surface of a partition with good ink repellency and enabling the reduction of residues at an opening; a resin cured film for an optical element having good ink repellency on an upper surface; a partition for an optical element enabling the formation of a fine and highly accurate pattern; and the aforementioned optical element having the partition. The negative type photosensitive resin composition is characterized by comprising a photocurable alkali-soluble resin or alkali-soluble monomer, a photopolymerization initiator, an acid generating agent, an acid curing agent, and an ink repelling agent. The cured film and a partition are formed using the negative type photosensitive resin composition, and the aforementioned optical element has a plurality of dots on a substrate surface and the partition positioned between adjacent dots.

Description

ネガ型感光性樹脂組成物、樹脂硬化膜、隔壁および光学素子Negative photosensitive resin composition, cured resin film, partition and optical element
 本発明は、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等の光学素子の製造に用いるネガ型感光性樹脂組成物、樹脂硬化膜、隔壁および光学素子、具体的には、有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池等に関する。 The present invention is, for example, a negative photosensitive resin composition, a cured resin film, a partition wall and an optical element used in the production of an optical element such as an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell. The present invention relates to an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, and the like.
 有機EL(Electro-Luminescence)素子、量子ドットディスプレイ、TFT(Thin Film Transistor)アレイ、薄膜太陽電池等の光学素子の製造においては、発光層等の有機層または無機層をドットとして、インクジェット(IJ)法にてパターン印刷する方法を用いることがある。かかる方法においては、形成しようとするドットの輪郭に沿って隔壁を設け、該隔壁で囲まれた区画(以下、「開口部」ともいう。)内に、有機層または無機層の材料を含むインクを注入し、これを乾燥および/または加熱等することにより所望のパターンのドットを形成する。 In the manufacture of optical elements such as organic EL (Electro-Luminescence) elements, quantum dot displays, TFT (Thin Film Transistor) arrays, thin film solar cells, etc., inkjet (IJ) A pattern printing method may be used. In this method, a partition is provided along the outline of the dot to be formed, and an ink containing a material of an organic layer or an inorganic layer in a partition (hereinafter also referred to as “opening”) surrounded by the partition. And then drying and / or heating to form dots of a desired pattern.
 インクジェット(IJ)法にてパターン印刷をする際には、隣接するドット間におけるインクの混合防止とドット形成におけるインクの均一塗布のため、隔壁上面は撥インク性を有する必要がある。その一方で、隔壁側面を含む隔壁で囲まれたドット形成用の開口部は親インク性を有する必要がある。そこで、上面に撥インク性を有する隔壁を得るために、撥インク剤を含ませた感光性樹脂組成物を用いてフォトリソグラフィ法によりドットのパターンに対応する隔壁を形成する方法が知られている。 When pattern printing is performed by the inkjet (IJ) method, the upper surface of the partition wall needs to have ink repellency in order to prevent ink mixing between adjacent dots and to uniformly apply ink in dot formation. On the other hand, the dot forming opening surrounded by the partition including the partition side surface needs to have ink affinity. Therefore, in order to obtain a partition having ink repellency on the upper surface, a method of forming a partition corresponding to a dot pattern by a photolithography method using a photosensitive resin composition containing an ink repellent agent is known. .
 また、このような有機EL素子等の光学素子において、近年では、より精度の高い製品を得ることを目的として、例えば、特許文献1では、撥インク性、インク転落性に優れた塗膜を形成することができ、さらには微細なパターン形成が可能な感光性樹脂組成物が提案されている。特許文献1においては、隔壁形成のための感光性樹脂組成物として、(1)酸発生剤と、酸性基と架橋し得る反応性基を2個以上有する化合物である酸硬化剤とを含有する感光性樹脂組成物、または、(2)光ラジカル重合開始剤と、2個以上のエチレン性二重結合を有し、かつ酸性基を有しない化合物であるラジカル架橋剤とを含有する感光性樹脂組成物を用い、これに撥インク剤として特殊なフッ素樹脂を含有させることで上記効果を得ている。 In recent years, in such optical elements such as organic EL elements, for example, in Patent Document 1, a coating film excellent in ink repellency and ink tumbling property is formed in order to obtain a more accurate product. In addition, a photosensitive resin composition capable of forming a fine pattern has been proposed. In Patent Document 1, as a photosensitive resin composition for forming a partition, (1) an acid generator and an acid curing agent that is a compound having two or more reactive groups capable of crosslinking with acidic groups are contained. Photosensitive resin composition or photosensitive resin containing (2) radical photopolymerization initiator and radical crosslinking agent which is a compound having two or more ethylenic double bonds and no acidic group The above effect is obtained by using a composition and containing a special fluororesin as an ink repellent agent.
 しかしながら、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池の製造においては、生産効率を向上させる観点から、撥インク剤を含有する感光性樹脂組成物において、特に、特許文献1における(2)に分類される感光性樹脂組成物においては、より高感度化が求められている。そこで、このような感光性樹脂組成物において、ラジカル開始剤のみ増量すれば、高感度化でき、低い露光量でも上面に撥インク性を有する隔壁は形成可能であるが、線幅が太りやすく、パターン形成性が悪化するという問題があった。 However, in the production of organic EL elements, quantum dot displays, TFT arrays, and thin-film solar cells, from the viewpoint of improving production efficiency, in the photosensitive resin composition containing an ink repellent agent, particularly, (2 In the photosensitive resin composition classified into (1), higher sensitivity is required. Therefore, in such a photosensitive resin composition, if only the radical initiator is increased, the sensitivity can be increased, and a partition wall having ink repellency can be formed on the upper surface even with a low exposure amount, but the line width tends to increase, There was a problem that the pattern forming property deteriorated.
 また、例えば、特許文献2には、高感度、高解像度であり、かつ、その硬化物と基板との密着性に優れ、かつ優れた弾性回復特性を有するアルカリ現像可能なネガ型の感光性樹脂組成物として、親水性エポキシ樹脂(A)、多官能モノマー(B)、カチオン重合性化合物(C)、加水分解性シラン化合物(D)、光ラジカル重合開始剤(E)、酸発生剤(F)を含有する有機EL素子用感光性組成物が提案されている。しかしながら、特許文献2における組成物では、高感度化が難しく、撥液性が不足していた。 Further, for example, Patent Document 2 discloses a negative photosensitive resin capable of alkali development that has high sensitivity, high resolution, excellent adhesion between the cured product and the substrate, and excellent elastic recovery characteristics. As the composition, hydrophilic epoxy resin (A), polyfunctional monomer (B), cationic polymerizable compound (C), hydrolyzable silane compound (D), photo radical polymerization initiator (E), acid generator (F ) Containing a photosensitive composition for organic EL devices has been proposed. However, with the composition in Patent Document 2, it is difficult to achieve high sensitivity and liquid repellency is insufficient.
特開2004-277494号公報JP 2004-277494 A 特開2012-014931号公報JP 2012-014931 A
 本発明は、上記問題を解決するためになされたものであって、生産効率を良好に保ちながら、得られる隔壁による微細で精度の高いパターンの形成を可能とするために、隔壁上面が良好な撥インク性を有するとともに開口部における残渣の低減が可能であり、さらには、プラスチック基板を使用したフレキシブルなアプリケーションにも適用可能な、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等の光学素子の製造に用いられるネガ型感光性樹脂組成物の提供を目的とする。 The present invention has been made to solve the above-described problem, and in order to enable formation of a fine and high-accuracy pattern by the obtained partition wall while maintaining good production efficiency, the partition wall top surface is good. For example, organic EL elements, quantum dot displays, TFT arrays, thin film solar cells, which have ink repellency and can reduce residues in the openings, and can also be applied to flexible applications using plastic substrates. It aims at provision of the negative photosensitive resin composition used for manufacture of optical elements, such as.
 本発明は、上面に良好な撥インク性を有する樹脂硬化膜および上面に良好な撥インク性を有することで微細で精度の高いパターンの形成が可能であり、さらには、プラスチック基板を使用したフレキシブルなアプリケーションにも適用可能な、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等の光学素子用の隔壁の提供を目的とする。 In the present invention, a resin cured film having good ink repellency on the upper surface and a fine ink pattern can be formed on the upper surface by having good ink repellency, and further, flexible using a plastic substrate. An object of the present invention is to provide a partition for an optical element such as an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell, which can be applied to various applications.
 本発明は、また、隔壁で仕切られた開口部にインクが均一塗布され精度よく形成されたドットを有する、有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池等の光学素子、特には、プラスチック基板を使用したフレキシブルなアプリケーションを含む光学素子の提供を目的とする。 The present invention also includes an optical element such as an organic EL element, a quantum dot display, a TFT array, and a thin-film solar cell, which has dots formed by accurately applying ink to the openings partitioned by the partition walls, and in particular, It is an object of the present invention to provide an optical element including a flexible application using a plastic substrate.
 本発明は、以下[1]~[9]の構成を有する、ネガ型感光性樹脂組成物、樹脂硬化膜、隔壁および光学素子を提供する。
 [1]光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)と、光ラジカル重合開始剤(B)と、光酸発生剤(C)と、酸硬化剤(D)と、フッ素原子を有する撥インク剤(E)とを含有することを特徴とするネガ型感光性樹脂組成物。
 [2]分子内に2つ以上の不飽和二重結合を有し、酸性基およびフッ素原子のいずれも有しない化合物(F)をさらに含有することを特徴とする、[1]のネガ型感光性樹脂組成物。
 [3]前記酸硬化剤(D)がメラミン系化合物、尿素系化合物およびエポキシ系化合物から選ばれる、少なくとも1種である、[1]または[2]のネガ型感光性樹脂組成物。
 [4]有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池の製造に用いられる[1]~[3]のいずれかのネガ型感光性樹脂組成物。
 [5]前記[1]~[4]のいずれかのネガ型感光性樹脂組成物を用いて形成されることを特徴とする樹脂硬化膜。
 [6]基板表面をドット形成用の複数の区画に仕切る形に形成された隔壁であって、[5]の樹脂硬化膜からなることを特徴とする隔壁。
 [7]基板表面に複数のドットと隣接するドット間に位置する隔壁とを有する光学素子であって、前記隔壁が[6]の隔壁で形成されていることを特徴とする光学素子。
 [8]前記光学素子は、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池である[7]の光学素子。
 [9]前記ドットがインクジェット法で形成されていることを特徴とする[7]または[8]の光学素子。
The present invention provides a negative photosensitive resin composition, a cured resin film, a partition wall, and an optical element having the following configurations [1] to [9].
[1] Alkali-soluble resin or alkali-soluble monomer (A) having photocurability, photoradical polymerization initiator (B), photoacid generator (C), acid curing agent (D), fluorine A negative photosensitive resin composition comprising an ink repellent (E) having atoms.
[2] The negative photosensitivity according to [1], further comprising a compound (F) having two or more unsaturated double bonds in the molecule and having neither an acidic group nor a fluorine atom Resin composition.
[3] The negative photosensitive resin composition according to [1] or [2], wherein the acid curing agent (D) is at least one selected from melamine compounds, urea compounds, and epoxy compounds.
[4] The negative photosensitive resin composition according to any one of [1] to [3], which is used for producing an organic EL device, a quantum dot display, a TFT array, or a thin film solar cell.
[5] A cured resin film characterized by being formed using the negative photosensitive resin composition according to any one of [1] to [4].
[6] A partition formed by partitioning a substrate surface into a plurality of sections for forming dots, and comprising the cured resin film of [5].
[7] An optical element having a plurality of dots and a partition located between adjacent dots on the surface of the substrate, wherein the partition is formed by the partition of [6].
[8] The optical element according to [7], wherein the optical element is an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
[9] The optical element according to [7] or [8], wherein the dots are formed by an inkjet method.
 本発明によれば、生産効率を良好に保ちながら、得られる隔壁上面が良好な撥インク性を有するとともに開口部における残渣を低減することで、隔壁による微細で精度の高いパターンの形成が可能であり、さらには、プラスチック基板を使用したフレキシブルなアプリケーションにも適用可能な、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等の光学素子の製造に用いられるネガ型感光性樹脂組成物を提供できる。 According to the present invention, it is possible to form a fine and high-precision pattern by the partition wall by reducing the residue in the opening while maintaining good production efficiency and the top surface of the partition wall having good ink repellency. Furthermore, it is also applicable to flexible applications using plastic substrates, for example, negative photosensitive resin compositions used in the production of optical elements such as organic EL elements, quantum dot displays, TFT arrays, thin film solar cells, etc. Can provide things.
 本発明の樹脂硬化膜は上面に良好な撥インク性を有し、隔壁は上面に良好な撥インク性を有するとともに微細で精度の高いパターンの形成が可能であり、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等、特には、プラスチック基板を使用したフレキシブルなアプリケーションを含む光学素子に好適に利用できる。 The cured resin film of the present invention has good ink repellency on the upper surface, and the partition wall has good ink repellency on the upper surface, and can form a fine and highly accurate pattern. , TFT arrays, thin film solar cells, and the like, and in particular, can be suitably used for optical elements including flexible applications using plastic substrates.
 本発明の光学素子は、隔壁で仕切られた開口部にインクが均一塗布され精度よく形成されたドットを有する光学素子、具体的には、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等である。本発明によればプラスチック基板を使用したフレキシブルなアプリケーションを含む光学素子であっても上記効果を達成できる。 The optical element of the present invention is an optical element having dots formed by applying ink uniformly to the openings partitioned by the partition walls, and specifically, an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell. Etc. According to the present invention, the above effect can be achieved even with an optical element including a flexible application using a plastic substrate.
本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の光学素子の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the optical element of embodiment of this invention. 本発明の実施形態の光学素子の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the optical element of embodiment of this invention.
 本明細書において、次の用語は、それぞれ、下記の意味で使用される。
 「(メタ)アクリロイル基」は、「メタクリロイル基」と「アクリロイル基」の総称である。(メタ)アクリロイルオキシ基、(メタ)アクリル酸、(メタ)アクリレート、(メタ)アクリルアミド、および(メタ)アクリル樹脂もこれに準じる。
In the present specification, the following terms are respectively used with the following meanings.
“(Meth) acryloyl group” is a general term for “methacryloyl group” and “acryloyl group”. The (meth) acryloyloxy group, (meth) acrylic acid, (meth) acrylate, (meth) acrylamide, and (meth) acrylic resin also conform to this.
 式(x)で表される基を、単に基(x)と記載することがある。式(y)で表される化合物を、単に化合物(y)と記載することがある。ここで、式(x)、式(y)は、任意の式を示している。 The group represented by the formula (x) may be simply referred to as a group (x). The compound represented by the formula (y) may be simply referred to as the compound (y). Here, the expressions (x) and (y) indicate arbitrary expressions.
 「ある成分を主として構成される樹脂」または「ある成分を主体とする樹脂」とは、該成分の割合が樹脂全量に対して50質量%以上を占めることをいう。 “A resin mainly composed of a certain component” or “a resin mainly composed of a certain component” means that the proportion of the component occupies 50% by mass or more based on the total amount of the resin.
 「側鎖」とは、炭素原子からなる繰り返し単位が主鎖を構成する重合体において、主鎖を構成する炭素原子に結合する、水素原子またはハロゲン原子以外の基である。 The “side chain” is a group other than a hydrogen atom or a halogen atom bonded to a carbon atom constituting the main chain in a polymer in which a repeating unit composed of carbon atoms constitutes the main chain.
 「感光性樹脂組成物の全固形分」とは、感光性樹脂組成物が含有する成分のうち後述する硬化膜を形成する成分を指し、感光性樹脂組成物を140℃で24時間加熱して溶媒を除去した残存物から求める。なお、全固形分量は仕込み量からも計算できる。 The “total solid content of the photosensitive resin composition” refers to a component that forms a cured film described later among the components contained in the photosensitive resin composition, and the photosensitive resin composition is heated at 140 ° C. for 24 hours. Obtained from the residue from which the solvent has been removed. The total solid content can also be calculated from the charged amount.
 樹脂を主成分とする組成物の硬化物からなる膜を「樹脂硬化膜」という。感光性樹脂組成物を塗布した膜を「塗膜」、それを乾燥させた膜を「乾燥膜」という。該「乾燥膜」を硬化させて得られる膜は「樹脂硬化膜」である。また、「樹脂硬化膜」を単に「硬化膜」ということもある。 A film made of a cured product of a composition mainly composed of a resin is referred to as a “resin cured film”. A film coated with the photosensitive resin composition is referred to as a “coating film”, and a film obtained by drying the film is referred to as a “dry film”. A film obtained by curing the “dry film” is a “resin cured film”. Further, the “resin cured film” may be simply referred to as “cured film”.
 樹脂硬化膜は、所定の領域を複数の区画に仕切る形に形成された隔壁の形態であってもよい。隔壁で仕切られた区画、すなわち隔壁で囲まれた開口部に、例えば、以下の「インク」が注入され、「ドット」が形成される。 The resin cured film may be in the form of a partition formed in a shape that partitions a predetermined region into a plurality of sections. For example, the following “ink” is injected into the partitions partitioned by the partition walls, that is, the openings surrounded by the partition walls to form “dots”.
 「インク」とは、乾燥、硬化等した後に、光学的および/または電気的な機能を有する液体を総称する用語である。有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池、カラーフィルタ等の光学素子においては、各種構成要素としてのドットを、該ドット形成用のインクを用いてインクジェット(IJ)法によりパターン印刷することがある。「インク」には、かかる用途に用いられるインクが含まれる。 “Ink” is a general term for liquids having optical and / or electrical functions after drying, curing, and the like. In an optical element such as an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, and a color filter, dots as various constituent elements are pattern-printed by ink jet (IJ) method using the ink for forming the dots. Sometimes. “Ink” includes ink used in such applications.
 「撥インク性」とは、上記インクをはじく性質であり、撥水性と撥油性の両方を有する。撥インク性は、例えば、インクを滴下したときの接触角により評価できる。「親インク性」は撥インク性と相反する性質であり、撥インク性と同様にインクを滴下したときの接触角により評価できる。または、インクを滴下したときのインクの濡れ広がりの程度(インクの濡れ広がり性)を所定の基準で評価することにより親インク性が評価できる。 “Ink repellency” is a property of repelling the above ink and has both water repellency and oil repellency. The ink repellency can be evaluated by, for example, a contact angle when ink is dropped. “Ink affinity” is a property opposite to ink repellency, and can be evaluated by the contact angle when ink is dropped as in the case of ink repellency. Alternatively, the ink affinity can be evaluated by evaluating the degree of ink wetting and spreading (ink wetting and spreading property) when ink is dropped on a predetermined standard.
 「ドット」とは、光学素子における光変調可能な最小領域を示す。有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池、カラーフィルタ等の光学素子においては、白黒表示の場合に1ドット=1画素であり、カラー表示の場合に例えば3ドット(R(赤)、G(緑)、B(青)等)=1画素である。「光学素子」は、エレクトロニクスデバイスを含む用語として用いる。「パーセント(%)」は、特に説明のない場合、質量%を表す。 “Dot” indicates the minimum area where optical modulation is possible in the optical element. In an optical element such as an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, and a color filter, 1 dot = 1 pixel in the case of monochrome display, for example, 3 dots (R (red) in the case of color display) , G (green), B (blue), etc.) = 1 pixel. The “optical element” is used as a term including an electronic device. “Percent (%)” represents mass% unless otherwise specified.
 以下、本発明の実施の形態を説明する。
[ネガ型感光性樹脂組成物]
 本発明のネガ型感光性樹脂組成物は、光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)と、光ラジカル重合開始剤(B)と、光酸発生剤(C)と、酸硬化剤(D)と、フッ素原子を有する撥インク剤(E)とを含有することを特徴とするネガ型感光性樹脂組成物である。本明細書において、酸硬化剤(D)とは、酸の存在下、カルボン酸やフェノール性水酸基等の酸性基と反応する硬化剤をいう。本発明のネガ型感光性樹脂組成物は、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池、カラーフィルタ等の光学素子の製造に好適に使用でき、特に、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池において顕著な効果が期待できる。
Embodiments of the present invention will be described below.
[Negative photosensitive resin composition]
The negative photosensitive resin composition of the present invention comprises a photocurable alkali-soluble resin or alkali-soluble monomer (A), a photoradical polymerization initiator (B), a photoacid generator (C), A negative photosensitive resin composition comprising an acid curing agent (D) and an ink repellent agent (E) having a fluorine atom. In the present specification, the acid curing agent (D) refers to a curing agent that reacts with an acidic group such as a carboxylic acid or a phenolic hydroxyl group in the presence of an acid. The negative photosensitive resin composition of the present invention can be suitably used for the production of optical elements such as organic EL elements, quantum dot displays, TFT arrays, thin film solar cells, and color filters, and in particular, organic EL elements and quantum dot displays. A remarkable effect can be expected in TFT arrays and thin film solar cells.
 通常、ネガ型感光性樹脂組成物は露光により硬化して硬化膜を形成する。この際、マスキング等により所定の形状の露光部と非露光部を形成させれば、非露光部は硬化せずアルカリ現像液にて選択的に除去できる。その結果、硬化膜を、所定の領域を複数の区画に仕切る形の隔壁の形態とすることができる。 Usually, the negative photosensitive resin composition is cured by exposure to form a cured film. At this time, if an exposed portion and a non-exposed portion having a predetermined shape are formed by masking or the like, the non-exposed portion is not cured and can be selectively removed with an alkaline developer. As a result, the cured film can be in the form of a partition that partitions a predetermined region into a plurality of sections.
 本発明のネガ型感光性樹脂組成物は、上記露光部においては、光ラジカル重合開始剤(B)から発生したラジカルによりアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)が重合して硬化して硬化膜を形成する。ここで、アルカリ可溶性樹脂またはアルカリ可溶性単量体(A)はフッ素原子を含有しない。撥インク剤(E)はフッ素原子を有することで硬化膜を形成する過程で上面に移行する性質(上面移行性)を有し、上面に移行した撥インク剤(E)は硬化膜上面に定着する。 In the negative photosensitive resin composition of the present invention, the alkali-soluble resin or alkali-soluble monomer (A) is polymerized and cured by radicals generated from the photoradical polymerization initiator (B) in the exposed area. A cured film is formed. Here, the alkali-soluble resin or the alkali-soluble monomer (A) does not contain a fluorine atom. The ink repellent agent (E) has a property of shifting to the upper surface in the process of forming a cured film by having fluorine atoms (upper surface transition property), and the ink repellent agent (E) transferred to the upper surface is fixed on the upper surface of the cured film. To do.
 ここで、光によるラジカル重合反応においては、硬化膜の大気に接する面ほど酸素による反応阻害を受けやすい。本発明のネガ型感光性樹脂組成物においては、光酸発生剤(C)が露光により酸を発生し、酸硬化剤(D)が、該酸の存在下、アルカリ可溶性樹脂またはアルカリ可溶性単量体(A)のカルボン酸等の酸性基と反応して硬化する。また、その際、酸硬化剤(D)同士が反応して硬化に寄与することも考えられる。該硬化反応は、ラジカル重合反応とは異なり、酸素の影響を受けない。よって、本発明のネガ型感光性樹脂組成物によれば、硬化膜、特に硬化膜の上面におけるアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)の硬化性、および撥インク剤(E)の定着性が向上した硬化膜が得られる。または、低露光量でも従来の硬化膜と同等の硬化性、特に上面における硬化性を有する硬化膜が得られる。 Here, in the radical polymerization reaction by light, the surface of the cured film that is in contact with the air is more susceptible to reaction inhibition by oxygen. In the negative photosensitive resin composition of the present invention, the photoacid generator (C) generates an acid upon exposure, and the acid curing agent (D) is an alkali-soluble resin or an alkali-soluble monomer in the presence of the acid. It hardens by reacting with an acidic group such as carboxylic acid of the body (A). At that time, it is also conceivable that the acid curing agents (D) react with each other and contribute to the curing. Unlike the radical polymerization reaction, the curing reaction is not affected by oxygen. Therefore, according to the negative photosensitive resin composition of the present invention, the curability of the alkali-soluble resin or alkali-soluble monomer (A) on the cured film, particularly the upper surface of the cured film, and the fixing of the ink repellent agent (E). A cured film having improved properties can be obtained. Alternatively, a cured film having a curability equivalent to that of a conventional cured film, in particular, a curability on the upper surface can be obtained even with a low exposure amount.
 上記のとおり、本発明のネガ型感光性樹脂組成物においては、光によるラジカル重合反応と光による酸の存在下での硬化反応を組み合わせることにより硬化膜内部の硬化も充分に行われる。よって、露光部である硬化部分は、現像の際のアルカリ現像液による浸食や剥離に耐性を有する。したがって、露光部が長時間の現像にも影響を受けにくいことから開口部の残渣の除去等に有利である。 As described above, in the negative photosensitive resin composition of the present invention, the inside of the cured film is sufficiently cured by combining the radical polymerization reaction by light and the curing reaction in the presence of acid by light. Therefore, the hardened portion which is the exposed portion has resistance to erosion and peeling by the alkaline developer during development. Therefore, the exposed portion is not easily affected by long-time development, which is advantageous for removing the residue at the opening.
 本発明のネガ型感光性樹脂組成物は、さらに必要に応じて、分子内に2つ以上の不飽和二重結合を有し、酸性基およびフッ素原子のいずれも有しない化合物(F)(以下、「架橋剤(F)」ともいう。)、1分子中にメルカプト基を3個以上有するチオール化合物(G)(以下、「チオール化合物(G)」ともいう。)、リン酸化合物(H)、重合禁止剤(I)、溶媒(J)、着色剤(K)、その他の任意成分を含有する。 The negative photosensitive resin composition of the present invention may further comprise a compound (F) having two or more unsaturated double bonds in the molecule and having neither an acidic group nor a fluorine atom, if necessary. , Also referred to as “crosslinking agent (F)”) thiol compound (G) having 3 or more mercapto groups in one molecule (hereinafter also referred to as “thiol compound (G)”), phosphoric acid compound (H) , Polymerization inhibitor (I), solvent (J), colorant (K), and other optional components.
(アルカリ可溶性樹脂またはアルカリ可溶性単量体(A))
 アルカリ可溶性樹脂には符号(AP)、アルカリ可溶性単量体には符号(AM)を付して、それぞれ説明する。なお、以下の説明においてこれらを総称して「アルカリ可溶性樹脂(A)」ということもある。
(Alkali-soluble resin or alkali-soluble monomer (A))
The alkali-soluble resin will be described with a symbol (AP) and the alkali-soluble monomer with a symbol (AM). In the following description, these may be collectively referred to as “alkali-soluble resin (A)”.
 アルカリ可溶性樹脂(A)は、光硬化性を有する。また、アルカリ可溶性樹脂(A)はフッ素原子を有しない。ネガ型感光性樹脂組成物においては露光により、光ラジカル重合開始剤(B)がラジカルを発生し、光酸発生剤(C)が酸を発生する。その際、アルカリ可溶性樹脂(A)は、上記ラジカルによりそれ自体が重合反応するとともに、上記酸の存在下、酸硬化剤(D)と反応して架橋することで充分に硬化する。なお、酸により、アルカリ可溶性樹脂(A)同士が反応することはない。 The alkali-soluble resin (A) has photocurability. Moreover, alkali-soluble resin (A) does not have a fluorine atom. In the negative photosensitive resin composition, upon exposure, the photoradical polymerization initiator (B) generates radicals, and the photoacid generator (C) generates acids. At that time, the alkali-soluble resin (A) undergoes a polymerization reaction by the radicals, and is sufficiently cured by reacting with the acid curing agent (D) and crosslinking in the presence of the acid. In addition, alkali-soluble resin (A) does not react with an acid.
 ネガ型感光性樹脂組成物は、露光部の硬化が上記のとおり充分に行われる。露光部をこのようにして充分に硬化した露光部はアルカリ現像液にて容易に除去されない。また、アルカリ可溶性樹脂(A)がアルカリ可溶であることで、アルカリ現像液にて、硬化していないネガ型感光性樹脂組成物の非露光部を選択的に除去できる。その結果、硬化膜を、所定の領域を複数の区画に仕切る形の隔壁の形態とすることができる。 In the negative photosensitive resin composition, the exposed portion is sufficiently cured as described above. The exposed portion where the exposed portion is sufficiently cured in this manner is not easily removed with an alkaline developer. Moreover, when the alkali-soluble resin (A) is alkali-soluble, the non-exposed portion of the uncured negative photosensitive resin composition can be selectively removed with an alkali developer. As a result, the cured film can be in the form of a partition that partitions a predetermined region into a plurality of sections.
 アルカリ可溶性樹脂(AP)としては、1分子中に酸性基とエチレン性二重結合とを有する感光性樹脂が好ましい。アルカリ可溶性樹脂(AP)は、分子中にエチレン性二重結合を有することで、上記光ラジカル重合開始剤(B)が発生したラジカルにより重合する。アルカリ可溶性樹脂(AP)は、分子中に酸性基を有することで、上記光酸発生剤(C)が発生した酸の存在下、酸硬化剤(D)と反応する。また、酸性基を有することでアルカリ可溶性である。 As the alkali-soluble resin (AP), a photosensitive resin having an acidic group and an ethylenic double bond in one molecule is preferable. The alkali-soluble resin (AP) has an ethylenic double bond in the molecule, and is thus polymerized by the radical generated by the photo radical polymerization initiator (B). Since the alkali-soluble resin (AP) has an acidic group in the molecule, it reacts with the acid curing agent (D) in the presence of the acid generated by the photoacid generator (C). Moreover, it is alkali-soluble by having an acidic group.
 酸性基としては、カルボキシ基、フェノール性水酸基、スルホ基およびリン酸基等が挙げられ、これらは1種を単独で用いても2種以上を併用してもよい。
 エチレン性二重結合としては、(メタ)アクリロイル基、アリル基、ビニル基、ビニルオキシ基およびビニルオキシアルキル基等の付加重合性を有する二重結合が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。なお、エチレン性二重結合が有する水素原子の一部または全てが、メチル基等のアルキル基で置換されていてもよい。
Examples of the acidic group include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
Examples of the ethylenic double bond include double bonds having an addition polymerization property such as a (meth) acryloyl group, an allyl group, a vinyl group, a vinyloxy group, and a vinyloxyalkyl group. These may be used alone or in combination of two or more. In addition, some or all of the hydrogen atoms possessed by the ethylenic double bond may be substituted with an alkyl group such as a methyl group.
 エチレン性二重結合を有するアルカリ可溶性樹脂(AP)としては、酸性基を有する側鎖とエチレン性二重結合を有する側鎖とを有する樹脂(A-1)、およびエポキシ樹脂に酸性基とエチレン性二重結合とが導入された樹脂(A-2)等が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。
 このようなアルカリ可溶性樹脂(AP)としては、国際公開第2014/046209号(以下、WO2014/046209という)の例えば、段落[0108]、[0126]、国際公開第2014/069478号(以下、WO2014/069478という)の例えば、段落[0067][0085]に記載されているものが使用できる。
Examples of the alkali-soluble resin (AP) having an ethylenic double bond include a resin (A-1) having a side chain having an acidic group and a side chain having an ethylenic double bond, and an epoxy group having an acidic group and ethylene. And a resin (A-2) into which an ionic double bond is introduced. These may be used alone or in combination of two or more.
As such an alkali-soluble resin (AP), for example, paragraphs [0108] and [0126] of International Publication No. 2014/046209 (hereinafter referred to as WO2014 / 046209), International Publication No. 2014/0669478 (hereinafter referred to as WO2014). / 069478), for example, those described in paragraphs [0067] and [0085] can be used.
 アルカリ可溶性樹脂(AP)としては、現像時の硬化膜の剥離が抑制されて、高解像度のドットのパターンを得ることができる点、ドットが直線状である場合のパターンの直線性が良好である点、平滑な硬化膜表面が得られやすい点で、樹脂(A-2)を用いることが好ましい。なお、パターンの直線性が良好であるとは、得られる隔壁の縁に欠け等がなく直線的であることをいう。 As alkali-soluble resin (AP), peeling of the cured film during development can be suppressed, and a high-resolution dot pattern can be obtained, and the linearity of the pattern when the dots are linear is good. In view of the fact that a smooth cured film surface is easily obtained, it is preferable to use the resin (A-2). In addition, that the linearity of a pattern is favorable means that the edge of the partition obtained does not have a chip etc. and is linear.
 樹脂(A-2)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂等のエポキシ樹脂にそれぞれ酸性基とエチレン性二重結合とを導入した樹脂が特に好ましい。 Examples of the resin (A-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton. A resin in which an acidic group and an ethylenic double bond are introduced into an epoxy resin such as an epoxy resin or a fluorenyl-substituted bisphenol A type epoxy resin is particularly preferable.
 アルカリ可溶性樹脂(AP)が、1分子中に有するエチレン性二重結合の数は、平均3個以上が好ましく、6個以上が特に好ましい。エチレン性二重結合の数が上記範囲の下限値以上であると、露光部分と未露光部分とのアルカリ溶解度に差がつきやすく、より少ない露光量での微細なパターン形成が可能となる。 The number of ethylenic double bonds that the alkali-soluble resin (AP) has in one molecule is preferably 3 or more on average, and particularly preferably 6 or more. When the number of ethylenic double bonds is at least the lower limit of the above range, the alkali solubility between the exposed and unexposed portions is likely to be different, and a fine pattern can be formed with a smaller exposure amount.
 アルカリ可溶性樹脂(AP)の質量平均分子量(Mw)は、1.5×10~30×10が好ましく、2×10~15×10が特に好ましい。また、数平均分子量(Mn)は、500~20×10が好ましく、1.0×10~10×10が特に好ましい。質量平均分子量(Mw)および数平均分子量(Mn)が上記範囲の下限値以上であると、露光時の硬化が充分であり、上記範囲の上限値以下であると、現像性が良好である。 The mass average molecular weight (Mw) of the alkali-soluble resin (AP) is preferably 1.5 × 10 3 to 30 × 10 3 , particularly preferably 2 × 10 3 to 15 × 10 3 . The number average molecular weight (Mn) is preferably 500 to 20 × 10 3 , and particularly preferably 1.0 × 10 3 to 10 × 10 3 . When the mass average molecular weight (Mw) and the number average molecular weight (Mn) are not less than the lower limit of the above range, curing at the time of exposure is sufficient, and when it is not more than the upper limit of the above range, the developability is good.
 なお、本明細書において、数平均分子量(Mn)および質量平均分子量(Mw)は、特に断りのない限り、ゲルパーミエーションクロマトグラフィ法により、ポリスチレンを標準物質として、測定されたものをいう。 In the present specification, the number average molecular weight (Mn) and the mass average molecular weight (Mw) are those measured by a gel permeation chromatography method using polystyrene as a standard substance unless otherwise specified.
 アルカリ可溶性樹脂(AP)の酸価は、10~300mgKOH/gが好ましく、30~150mgKOH/gが特に好ましい。酸価が上記範囲であると、ネガ型用感光性組成物の現像性が良好になる。 The acid value of the alkali-soluble resin (AP) is preferably 10 to 300 mgKOH / g, particularly preferably 30 to 150 mgKOH / g. When the acid value is within the above range, the developability of the negative photosensitive composition is improved.
 アルカリ可溶性単量体(AM)としては、例えば、酸性基とエチレン性二重結合とを有する単量体(A-3)が好ましく用いられる。酸性基およびエチレン性二重結合は、アルカリ可溶性樹脂(AP)と同様である。アルカリ可溶性単量体(AM)の酸価についても、アルカリ可溶性樹脂(AP)と同様の範囲が好ましい。
 単量体(A-3)としては、2,2,2-トリアクリロイルオキシメチルエチルフタル酸等が挙げられる。
As the alkali-soluble monomer (AM), for example, a monomer (A-3) having an acidic group and an ethylenic double bond is preferably used. The acidic group and the ethylenic double bond are the same as those of the alkali-soluble resin (AP). The acid value of the alkali-soluble monomer (AM) is also preferably in the same range as the alkali-soluble resin (AP).
Examples of the monomer (A-3) include 2,2,2-triacryloyloxymethylethylphthalic acid.
 ネガ型感光性樹脂組成物に含まれるアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)は、1種を単独で用いても2種以上を併用してもよい。
 ネガ型感光性樹脂組成物における全固形分中のアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)の含有割合は、5~80質量%が好ましく、10~60質量%が特に好ましい。含有割合が上記範囲であると、ネガ型感光性樹脂組成物の光硬化性および現像性が良好である。
The alkali-soluble resin or alkali-soluble monomer (A) contained in the negative photosensitive resin composition may be used alone or in combination of two or more.
The content of the alkali-soluble resin or alkali-soluble monomer (A) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
(光ラジカル重合開始剤(B))
 本発明における光ラジカル重合開始剤(B)は、活性光線によりラジカルを発生する光ラジカル重合開始剤としての機能を有する化合物であれば特に制限されない。以下、光ラジカル重合開始剤(B)を単に「光重合開始剤(B)」ともいう。
(Photoradical polymerization initiator (B))
The radical photopolymerization initiator (B) in the present invention is not particularly limited as long as it is a compound having a function as a radical photopolymerization initiator that generates radicals by actinic rays. Hereinafter, the radical photopolymerization initiator (B) is also simply referred to as “photopolymerization initiator (B)”.
 光重合開始剤(B)としては、WO2014/046209の例えば、段落[0130]、[0131]、WO2014/069478の例えば、段落[0089][0090]に記載したもの等が挙げられる。 Examples of the photopolymerization initiator (B) include those described in WO2014 / 046209, for example, paragraphs [0130] and [0131], and WO2014 / 0669478, for example, in paragraphs [0089] and [0090].
 光重合開始剤(B)のなかでも、ベンゾフェノン類、アミノ安息香酸類および脂肪族アミン類は、その他のラジカル開始剤と共に用いると、増感効果を発現することがあり好ましい。光重合開始剤(B)は、1種を単独で用いても2種以上を併用してもよい。 Among the photopolymerization initiators (B), benzophenones, aminobenzoic acids and aliphatic amines are preferably used together with other radical initiators because they may exhibit a sensitizing effect. A photoinitiator (B) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物における全固形分中の光重合開始剤(B)の含有割合は、0.1~50質量%が好ましく、0.5~30質量%がより好ましく、1~15質量%が特に好ましい。含有割合が上記範囲であると、ネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 The content of the photopolymerization initiator (B) in the total solid content in the negative photosensitive resin composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and 1 to 15% by mass. % Is particularly preferred. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
(酸発生剤(C))
 光酸発生剤(C)は、活性光線を照射することで、分解して酸を発生する化合物であれば、特に制限されない。一般に、カチオン重合型のアルカリ可溶性樹脂を用いた感光性樹脂組成物において光酸発生剤として用いられる化合物の中から、任意の化合物を選択して使用することができる。以下、光酸発生剤(C)を単に「酸発生剤(C)」ともいう。
(Acid generator (C))
The photoacid generator (C) is not particularly limited as long as it is a compound that decomposes to generate an acid upon irradiation with an actinic ray. Generally, any compound can be selected and used from compounds used as a photoacid generator in a photosensitive resin composition using a cationic polymerization type alkali-soluble resin. Hereinafter, the photoacid generator (C) is also simply referred to as “acid generator (C)”.
 上記のとおり本発明のネガ型感光性樹脂組成物においては、酸発生剤(C)から生成される酸は、上記アルカリ可溶性樹脂(A)と以下に説明する酸硬化剤(D)の結合に係わる。 As described above, in the negative photosensitive resin composition of the present invention, the acid generated from the acid generator (C) is a bond between the alkali-soluble resin (A) and the acid curing agent (D) described below. Involved.
 酸発生剤(C)は活性光線の照射により分解して酸を発生する。該活性光線として、具体的には、紫外光、X線、電子線等の高エネルギー線が挙げられる。ネガ型感光性樹脂組成物を用いて光学素子用の隔壁を製造する場合、露光には、i線(365nm)、h線(405nm)およびg線(436nm)が好ましく用いられる。酸発生剤(C)としては、露光に用いられる光線の波長において吸光度の大きい酸発生剤(C)を選択することが好ましい。350~450nmに吸収を有するものが好ましく、特に、i線(365nm)、h線(405nm)およびg線(436nm)のうちの少なくとも1つを含む光線に吸収があるものが、硬化性が高く好ましい。 The acid generator (C) decomposes upon irradiation with actinic rays to generate an acid. Specific examples of the actinic rays include high energy rays such as ultraviolet light, X-rays, and electron beams. When manufacturing the partition for optical elements using a negative photosensitive resin composition, i line (365 nm), h line (405 nm), and g line (436 nm) are used preferably for exposure. As the acid generator (C), it is preferable to select an acid generator (C) having a large absorbance at the wavelength of light used for exposure. Those having absorption at 350 to 450 nm are preferred, and those having absorption in light including at least one of i-line (365 nm), h-line (405 nm) and g-line (436 nm) have high curability. preferable.
 酸発生剤(C)として具体的には、オニウム塩系酸発生剤や非イオン系酸発生剤が挙げられる。オニウム塩系酸発生剤としては、例えば、下式(C0)で表されるモノ~トリフェニルスルホニウム骨格を有する化合物のオニウム塩やヨードニウム塩系化合物等が挙げられる。 Specific examples of the acid generator (C) include onium salt acid generators and nonionic acid generators. Examples of the onium salt acid generator include onium salts and iodonium salt compounds of a compound having a mono to triphenylsulfonium skeleton represented by the following formula (C0).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(C0)中、Ra1およびRa2は、置換基を有してもよい、炭素数1~20のアルキル基またはフェニル基を示し、Ra3は1価の有機基を示す。wは0~5の整数である。Xはアニオンを示し、具体的には、SbF 、リン系のアニオン、例えば、PF 、(Rf1PF6―n (Rf1はフロロアルキル基、nは1~3)やスルホン酸塩系のアニオン、例えば、RSO (Rは一部または全部がフッ素原子で置換されていてもよい炭素数1~12のアルキル基または炭素数6~18のアリール基)等が挙げられる。RSO のRとしては、例えば、-CF、-C、-C17等のペルフルオロアルキル基、-C等のペルフルオロアリール基、-Ph-CH(ただし、Phはフェニル基を示す。)等のアリール基等が挙げられる。 In formula (C0), R a1 and R a2 each represents an optionally substituted alkyl group having 1 to 20 carbon atoms or a phenyl group, and R a3 represents a monovalent organic group. w is an integer of 0 to 5. X represents an anion, specifically, SbF 6 , a phosphorus anion such as PF 6 , (R f1 ) n PF 6-n (R f1 is a fluoroalkyl group, n is 1 to 3 ) Or a sulfonate-based anion such as R a SO 3 (R a is an alkyl group having 1 to 12 carbon atoms or aryl having 6 to 18 carbon atoms, which may be partially or entirely substituted with fluorine atoms. Group) and the like. R a SO 3 - The a R a, for example, -CF 3, -C 4 F 9 , perfluoroalkyl groups such as -C 8 F 17, -C 6 F 5 , etc. perfluoroalkyl aryl group, -Ph-CH 3 (However, Ph represents a phenyl group.) And the like.
 化合物(C0)としては、Ra1およびRa2が共にフェニル基(置換されていてもよい)である化合物が好ましい。具体的には、下式(C1)または、下式(C2)で表されるトリフェニルスルホニウム骨格を有する化合物のオニウム塩が好ましい。なお、化合物(C1)および化合物(C2)においてトリフェニルスルホニウム骨格のフェニル基の水素原子が置換された化合物も酸発生剤(C)として使用可能である。 As the compound (C0), a compound in which R a1 and R a2 are both phenyl groups (which may be substituted) is preferable. Specifically, an onium salt of a compound having a triphenylsulfonium skeleton represented by the following formula (C1) or (C2) is preferable. A compound in which the hydrogen atom of the phenyl group of the triphenylsulfonium skeleton is substituted in the compound (C1) and the compound (C2) can also be used as the acid generator (C).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(C1)および式(C2)中、XaおよびXbはアニオンを示し、具体的には、上記式(C0)におけるXと同様のアニオンが挙げられる。XaおよびXbとしてはリン系のアニオンやスルホン酸塩系のアニオンが好ましい。
 なお、これらのオニウム塩においては、カチオン部が照射された光を吸収し、アニオン部が酸の発生源となる。
Wherein (C1) and the formula (C2), Xa - and Xb - represents an anion, specifically, X in the above formula (C0) - same anion are exemplified. Xa - and Xb - as the anion of the anion and sulfonic acid salt type of phosphorus-based is preferred.
In these onium salts, the cation moiety absorbs the irradiated light, and the anion moiety becomes a source of acid generation.
 化合物(C0)としては、モノフェニルスルホニウム骨格を有する化合物のオニウム塩として、下式(C0-1)で表されるオニウム塩が挙げられる。
 また、トリフェニルスルホニウム骨格を有する化合物のオニウム塩である化合物(C1)および化合物(C2)において、例えば、露光をi線(365nm)で行うのに用いられる化合物として、下式(C1-1)で表されるトリフェニルスルホニウム・ノナフルオロブタンスルホネート、下式(C2-1)および下式(C2-2)でそれぞれ表されるトリアリールスルホニウム・PF塩およびトリアリールスルホニウム・特殊リン系塩が挙げられる。これらの化合物は、波長365nmにおける吸光度が大きい点や入手がしやすい点で好ましい。
Examples of the compound (C0) include an onium salt represented by the following formula (C0-1) as an onium salt of a compound having a monophenylsulfonium skeleton.
Further, in the compounds (C1) and (C2) which are onium salts of a compound having a triphenylsulfonium skeleton, for example, as a compound used for performing exposure at i-line (365 nm), the following formula (C1-1) in triphenylsulfonium nonafluorobutanesulfonate represented, triarylsulfonium, PF 6 salts and triarylsulfonium, special phosphorus-based salts represented respectively by the following formula (C2-1) and the following formula (C2-2) Can be mentioned. These compounds are preferable in that they have a large absorbance at a wavelength of 365 nm and are easily available.
Figure JPOXMLDOC01-appb-C000003
 式(C2-2)中、Rf1はフロロアルキル基、nは1~3である。
Figure JPOXMLDOC01-appb-C000003
In the formula (C2-2), R f1 is a fluoroalkyl group, and n is 1 to 3.
 ヨードニウム塩系化合物としては、ジアリールヨードニウム塩、トリアリールスルホニウム塩が挙げられる。 Examples of the iodonium salt compound include diaryl iodonium salts and triarylsulfonium salts.
 ジアリールヨードニウム塩のカチオン部分の具体例としては、ジフェニルヨードニウム、4-メトキシフェニルフェニルヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム等が挙げられる。ジアリールヨードニウム塩のアニオン部分の具体例としては、トリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、p-トルエンスルホネート、ペンタフルオロベンゼンスルホネート、ヘキサフルオロホスフェート、テトラフルオロボレート、ヘキサフルオロアンチモネート等が挙げられる。 Specific examples of the cation moiety of the diaryliodonium salt include diphenyliodonium, 4-methoxyphenylphenyliodonium, bis (4-tert-butylphenyl) iodonium, and the like. Specific examples of the anion moiety of the diaryliodonium salt include trifluoromethanesulfonate, nonafluorobutanesulfonate, p-toluenesulfonate, pentafluorobenzenesulfonate, hexafluorophosphate, tetrafluoroborate, hexafluoroantimonate and the like.
 ジアリールヨードニウム塩は前記カチオン部分とアニオン部分とからなり、上記カチオン部分の具体例の1種とアニオン部分の具体例の1種との組み合わせからなる。例えば、ビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネートが一例となる。 The diaryl iodonium salt is composed of the cation part and the anion part, and is composed of a combination of one kind of the specific example of the cation part and one kind of the specific example of the anion part. For example, bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate is an example.
 トリアリールスルホニウム塩のカチオン部分の具体例としては、トリフェニルスルホニウム、ジフェニル-4-メチルフェニルスルホニウム、ジフェニル-2,4,6-トリメチルフェニルスルホニウム等が挙げられる。トリアリールスルホニウム塩のアニオン部分の具体例としては、前記ジアリールヨードニウム塩のアニオン部分の具体例が挙げられる。 Specific examples of the cation moiety of the triarylsulfonium salt include triphenylsulfonium, diphenyl-4-methylphenylsulfonium, diphenyl-2,4,6-trimethylphenylsulfonium, and the like. Specific examples of the anion moiety of the triarylsulfonium salt include specific examples of the anion moiety of the diaryl iodonium salt.
 トリアリールスルホニウム塩は前記カチオン部分とアニオン部分とからなり、上記カチオン部分の具体例の1種とアニオン部分の具体例の1種との組み合わせからなる。例えば、トリフェニルスルホニウムトリフルオロメタンスルホネートが一例となる。 The triarylsulfonium salt is composed of the cation moiety and the anion moiety, and is composed of a combination of one specific example of the cation moiety and one specific example of the anion moiety. For example, triphenylsulfonium trifluoromethanesulfonate is an example.
 非イオン系の酸発生剤としては、例えば、ナフタルイミド骨格、ニトロベンゼン骨格、ジアゾメタン骨格、フェニルアセトフェノン骨格、チオキトサン骨格、トリアジン骨格を有し、塩素原子、アルカンスルホン酸、アリールスルホン酸等が結合した構造を有する化合物が挙げられる。 Nonionic acid generators include, for example, naphthalimide skeleton, nitrobenzene skeleton, diazomethane skeleton, phenylacetophenone skeleton, thiochitosan skeleton, triazine skeleton, and a structure in which chlorine atom, alkane sulfonic acid, aryl sulfonic acid, etc. are bonded The compound which has is mentioned.
 このような化合物として具体的には、下式(C3)、下式(C4)、下式(C5)、下式(C6)、下式(C7)でそれぞれ表される、ナフタルイミド骨格、ニトロベンゼン骨格(ただし、ニトロ基が1個の場合、その位置は2位または4位であり、ニトロ基が2個の場合、その位置は2,5位である。)、ジアゾメタン骨格、フェニルアセトフェノン骨格、チオキトサン骨格を有し、アルカンスルホン酸、アリールスルホン酸等が結合した構造を有する化合物が挙げられる。また、下式(C8)に示されるトリアジン骨格と塩素原子を有する化合物が挙げられる。さらに、下式(C9)で示されるジアルキルグリオキシムのスルホニル化合物、(C10)で示されるスルホニルオキシイミノアセトニトリル化合物、(C11)で示される(スルホニルオキシイミノ)チオフェン-3(2H)-イリデン-2-(2-メチルフェニル)アセトニトリル化合物等が挙げられる。
 なお、化合物(C3)、(C4)、(C6)、(C7)、(C11)においては、各化合物の骨格を形成するベンゼン環の水素原子が置換された化合物も酸発生剤として機能可能である。
Specific examples of such a compound include a naphthalimide skeleton and a nitrobenzene represented by the following formula (C3), the following formula (C4), the following formula (C5), the following formula (C6), and the following formula (C7), respectively. A skeleton (however, when there is one nitro group, the position is the 2nd or 4th position; when there are two nitro groups, the position is the 2nd or 5th position), a diazomethane skeleton, a phenylacetophenone skeleton, Examples thereof include compounds having a thiochitosan skeleton and a structure in which alkanesulfonic acid, arylsulfonic acid or the like is bonded. In addition, a compound having a triazine skeleton and a chlorine atom represented by the following formula (C8) can be given. Furthermore, a sulfonyl compound of dialkylglyoxime represented by the following formula (C9), a sulfonyloxyiminoacetonitrile compound represented by (C10), (sulfonyloxyimino) thiophene-3 (2H) -ylidene-2 represented by (C11) -(2-methylphenyl) acetonitrile compound and the like.
In the compounds (C3), (C4), (C6), (C7), and (C11), compounds in which the hydrogen atom of the benzene ring forming the skeleton of each compound is substituted can also function as an acid generator. is there.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(C3)~(C7)、(C9)、(C10)、(C11)におけるRb1~Rb5、Rb7、Rb9およびRb11はそれぞれ独立に一部または全部がフッ素原子で置換されていてもよい、直鎖状、分岐状または環状(ただし、部分的に環状構造を有するものも含む)の炭素数1~12のアルキル基または炭素数6~18のアリール基である。式(C8)、(C9)、(C10)におけるRb6、Rb8およびRb10は、それぞれ独立に置換基や不飽和結合を有してもよく、複素環を含んでもよい炭素数1~18の有機基である。 R b1 to R b5 , R b7 , R b9, and R b11 in formulas (C3) to (C7), (C9), (C10), and (C11) are each independently partially or completely substituted with a fluorine atom. It may be a linear, branched or cyclic (including those having a partial cyclic structure) alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 18 carbon atoms. R b6 , R b8, and R b10 in formulas (C8), (C9), and (C10) each independently may have a substituent or an unsaturated bond, and may contain a heterocyclic ring. Is an organic group.
 上記式(C4)で示されるニトロベンゼン骨格(ただし、ニトロ基が1個の場合、その位置は2位または4位であり、ニトロ基が2個の場合、その位置は2,5位である。)を有する化合物として、具体的には、2-ニトロベンジルp-トルエンスルホネート等が挙げられる。 The nitrobenzene skeleton represented by the above formula (C4) (however, when there is one nitro group, the position is the 2nd or 4th position, and when there are 2 nitro groups, the position is the 2nd or 5th position). Specific examples of the compound having) include 2-nitrobenzyl p-toluenesulfonate.
 上記式(C5)で示されるビススルホニルジアゾメタン化合物として、具体的には、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン等が挙げられる。 Specific examples of the bissulfonyldiazomethane compound represented by the above formula (C5) include bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (tert -Butylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) And diazomethane.
 上記式(C8)に示されるトリアジン骨格と塩素原子を有する化合物の具体例としては、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、下記式(C8-1)に示される2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(2-フリル)エテニル-ビス(トリクロロメチル)-1,3,5-トリアジン、下記式(C8-2)に示される2-(5-メチル-2-フリル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、下記式(C8-3)に示される2-(4-メトキシフェニル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4-ジメトキシフェニル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等が挙げられる。 Specific examples of the compound having a triazine skeleton and a chlorine atom represented by the above formula (C8) include 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, the following formula (C8-1) 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2-furyl) ethenyl-bis (trichloromethyl) -1,3 5-triazine, 2- (5-methyl-2-furyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine represented by the following formula (C8-2), 3) 2- (4-methoxyphenyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (3,4-dimethoxyphenyl) ethenyl-4,6-bis shown in 3) (Trichlorome Le) -1,3,5-triazine.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(C10)に示されるスルホニルオキシイミノアセトニトリル化合物の具体例としては、α-(メチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(メチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(エチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(プロピルスルホニルオキシイミノ)-4-メチルフェニルアセトニトリル、α-(メチルスルホニルオキシイミノ)-4-ブロモフェニルアセトニトリル等が挙げられる。 Specific examples of the sulfonyloxyiminoacetonitrile compound represented by the above formula (C10) include α- (methylsulfonyloxyimino) -phenylacetonitrile, α- (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, α- (tri Fluoromethylsulfonyloxyimino) -phenylacetonitrile, α- (trifluoromethylsulfonyloxyimino) -4-methoxyphenylacetonitrile, α- (ethylsulfonyloxyimino) -4-methoxyphenylacetonitrile, α- (propylsulfonyloxyimino) -4-methylphenylacetonitrile, α- (methylsulfonyloxyimino) -4-bromophenylacetonitrile, and the like.
 上記式(C11)で示される(スルホニルオキシイミノ)チオフェン-3(2H)-イリデン-2-(2-メチルフェニル)アセトニトリル化合物として具体的には、Rb11がn-プロピル基である2-[2-(n-プロピルスルホニルオキシイミノ)チオフェン-3(2H)-イリデン]-2-(2-メチルフェニル)アセトニトリル)、Rb11がn-オクチル基である2-[2-(n-オクチルスルホニルオキシイミノ)チオフェン-3(2H)-イリデン]-2-(2-メチルフェニル)アセトニトリル、Rb11が4-メチルフェニル基である2-[2-(4-メチルフェニルスルホニルオキシイミノ)チオフェン-3(2H)-イリデン]-2-(2-メチルフェニル)アセトニトリル等が挙げられる。 Specifically, as the (sulfonyloxyimino) thiophene-3 (2H) -ylidene-2- (2-methylphenyl) acetonitrile compound represented by the above formula (C11), Rb11 is an n-propyl group. 2- (n-propylsulfonyloxyimino) thiophene-3 (2H) -ylidene] -2- (2-methylphenyl) acetonitrile), 2- [2- (n-octylsulfonyl) wherein R b11 is an n-octyl group Oxyimino) thiophene-3 (2H) -ylidene] -2- (2-methylphenyl) acetonitrile, 2- [2- (4-methylphenylsulfonyloxyimino) thiophene-3 wherein R b11 is a 4-methylphenyl group (2H) -ylidene] -2- (2-methylphenyl) acetonitrile and the like.
 なお、これらの非イオン系の酸発生剤においては、塩素原子、アルカンスルホン酸、アリールスルホン酸等が結合した部分が酸の発生源となる。 In these nonionic acid generators, a portion where a chlorine atom, alkanesulfonic acid, arylsulfonic acid, or the like is bonded is a source of acid generation.
 非イオン系の酸発生剤としては、例えば、露光をi線(365nm)で行うのに用いられる化合物としては、下式(C3-1)で表されるN-トリフルオロメタンスルホン酸-1,8-ナフタルイミド、下式(C6-1)で表される2-Phenyl-2-(p-toluenesulfonyloxy)acetophenone、および上記式(C8-3)で表される2-(4-メトキシフェニル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等が波長365nmにおける吸光度が大きい点や入手がしやすい点で好ましい。 Examples of the nonionic acid generator include N-trifluoromethanesulfonic acid-1,8 represented by the following formula (C3-1) as a compound used for performing exposure with i-line (365 nm). -Naphthalimide, 2-phenyl-2- (p-toluenesulfonyxy) acetophenone represented by the following formula (C6-1), and 2- (4-methoxyphenyl) ethenyl- represented by the above formula (C8-3) 4,6-bis (trichloromethyl) -1,3,5-triazine and the like are preferable in terms of high absorbance at a wavelength of 365 nm and easy availability.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 非イオン系の酸発生剤として、例えば、露光を、i線(365nm)、h線(405nm)およびg線(436nm)のうちの少なくとも1つを含む光線で行うのに用いられる化合物としては、上記式(C8)に示されるトリアジン骨格と塩素原子を有する化合物、上記式(C-11)で示される(スルホニルオキシイミノ)チオフェン-3(2H)-イリデン-2-(2-メチルフェニル)アセトニトリル化合物等が挙げられる。特には、2-(2-フリル)エテニル-ビス(トリクロロメチル)-1,3,5-トリアジン、式(C8-2)に示される2-(5-メチル-2-フリル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、式(C8-3)に示される2-(4-メトキシフェニル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4-ジメトキシフェニル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、式(C-11)中、Rb11がn-プロピル基、n-オクチル基、または4-メチルフェニル基である化合物等が波長405nmよび/または436nmにおける吸光度が大きい点や入手がしやすい点で好ましい。 As a nonionic acid generator, for example, as a compound used for performing exposure with light containing at least one of i-line (365 nm), h-line (405 nm) and g-line (436 nm), A compound having a triazine skeleton and a chlorine atom represented by the above formula (C8), (sulfonyloxyimino) thiophene-3 (2H) -ylidene-2- (2-methylphenyl) acetonitrile represented by the above formula (C-11) Compounds and the like. In particular, 2- (2-furyl) ethenyl-bis (trichloromethyl) -1,3,5-triazine, 2- (5-methyl-2-furyl) ethenyl-4, represented by formula (C8-2), 6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5 represented by the formula (C8-3) -Triazine, 2- (3,4-dimethoxyphenyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, in formula (C-11), wherein R b11 is an n-propyl group, n A compound such as an octyl group or a 4-methylphenyl group is preferable in that it has a large absorbance at a wavelength of 405 nm and / or 436 nm and is easily available.
 また、これらのオニウム塩系酸発生剤および非イオン系酸発生剤から光の作用で発生する酸は、塩酸、アルカンスルホン酸、アリールスルホン酸、部分的にまたは完全にフッ素化されたアリールスルホン酸、アルカンスルホン酸等である。 Acids generated by the action of light from these onium salt acid generators and nonionic acid generators are hydrochloric acid, alkanesulfonic acid, arylsulfonic acid, partially or fully fluorinated arylsulfonic acid. And alkanesulfonic acid.
 酸発生剤(C)は、上記化合物の1種からなってもよく、2種以上からなってもよい。ネガ型感光性樹脂組成物における全固形分中の酸発生剤(C)の含有量は、0.01~10質量%が好ましく、0.1~5質量%がより好ましく、0.3~3質量%が特に好ましい。酸発生剤(C)の含有量を上記範囲とすることで、上面に充分な撥インク性を有する微細で精度の高いパターンの形成が可能な隔壁が得られる。 The acid generator (C) may be composed of one or more of the above compounds. The content of the acid generator (C) in the total solid content in the negative photosensitive resin composition is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and 0.3 to 3%. Mass% is particularly preferred. By setting the content of the acid generator (C) in the above range, a partition wall having sufficient ink repellency and capable of forming a fine and accurate pattern can be obtained.
 なお、下記増感剤と併用することにより、感度が高くなり好ましい。酸発生剤に対する増感剤としては、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシシアントラセン、9,10-ビス(2-エチルヘキシロイキシ)アントラセン、9,10-ビス(オクタノイロキシ)アントラセンなどがあげられる。 In addition, it is preferable to use in combination with the following sensitizer because the sensitivity is increased. Sensitizers for acid generators include 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutoxycyantracene, 9,10-bis (2-ethylhexyloxy) anthracene, 9,10-bis (octanoyloxy) anthracene and the like.
(酸硬化剤(D))
 酸硬化剤(D)は酸の存在下、カルボン酸やフェノール性水酸基等の酸性基と反応する化合物であれば特に制限されない。
(Acid curing agent (D))
The acid curing agent (D) is not particularly limited as long as it is a compound that reacts with an acidic group such as a carboxylic acid or a phenolic hydroxyl group in the presence of an acid.
 酸硬化剤(D)としては、アミノ樹脂、エポキシ化合物、オキサゾリン化合物からなる群から選ばれる少なくとも1種であることが好ましい。これらの化合物は単独で用いてもよいし、2種以上を併用してもよい。 The acid curing agent (D) is preferably at least one selected from the group consisting of amino resins, epoxy compounds, and oxazoline compounds. These compounds may be used alone or in combination of two or more.
 アミノ樹脂としては、メラミン化合物、グアナミン化合物、尿素化合物等のアミノ基の一部もしくはすべてをヒドロキシメチル化した化合物、または該ヒドロキシメチル化した化合物のヒドロキシル基の一部もしくはすべてをメタノール、エタノール、n-ブチルアルコール、2-メチル-1-プロパノール等でエーテル化した、下記式(D1)で示されるメラミン系化合物、下記式(D2)で示されるグアナミン系化合物、下記式(D3)、(D4)または(D5)で示される尿素系化合物もしくはその樹脂等が挙げられる。 As the amino resin, a compound obtained by hydroxymethylating a part or all of the amino group such as a melamine compound, a guanamine compound or a urea compound, or a part or all of the hydroxyl group of the hydroxymethylated compound is methanol, ethanol, n A melamine compound represented by the following formula (D1), a guanamine compound represented by the following formula (D2), a guanamine compound represented by the following formula (D2), and the following formulas (D3) and (D4) etherified with butyl alcohol or 2-methyl-1-propanol Or the urea type compound shown by (D5), its resin, etc. are mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(D1)~(D5)においてR11~R32は、それぞれ独立に水素原子、ヒドロキシメチル基またはアルコキシメチル基である。R11~R16のうち少なくとも1個、R17~R20のうち少なくとも1個、R21~R24のうち少なくとも1個、R27~R30のうち少なくとも1個、R31およびR32のうち少なくとも1個、はアルコキシメチル基である。R33~R36はそれぞれ独立して、水素原子、水酸基、アルキル基またはアルコキシ基であり、Xcは、単結合、メチレン基または酸素原子である In formulas (D1) to (D5), R 11 to R 32 are each independently a hydrogen atom, a hydroxymethyl group or an alkoxymethyl group. At least one of R 11 to R 16 , at least one of R 17 to R 20 , at least one of R 21 to R 24 , at least one of R 27 to R 30 , R 31 and R 32 At least one of them is an alkoxymethyl group. R 33 to R 36 are each independently a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxy group, and Xc is a single bond, a methylene group or an oxygen atom.
 R11~R32がアルコキシメチル基の場合のアルコキシ基の炭素数は1~6が好ましく、1~3がより好ましい。R33~R36がアルコキシ基の場合、その炭素数は1~6が好ましく、1~3がより好ましい。アルコキシ基となるアルコールとしては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、tert-ブチルアルコール、2-メチル-1-プロパノール等が挙げられる。 When R 11 to R 32 are alkoxymethyl groups, the alkoxy group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms. When R 33 to R 36 are alkoxy groups, the carbon number thereof is preferably 1 to 6, and more preferably 1 to 3. Examples of the alcohol that becomes an alkoxy group include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol, 2-methyl-1-propanol, and the like.
 化合物(D1)~(D4)においては、それぞれに有する置換基の全てが同一のアルコキシメチル基であることが、製造のし易さの点から好ましい。
 上記式(D5)で示される尿素系化合物として、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
In the compounds (D1) to (D4), it is preferable from the viewpoint of ease of production that all the substituents possessed by each are the same alkoxymethyl group.
Examples of the urea compound represented by the above formula (D5) include the following compounds.
Figure JPOXMLDOC01-appb-C000008
 酸硬化剤(D)がアミノ樹脂である場合、以下の式(D1-1)で示される2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジンまたはその樹脂、式(D3-1)で示される1,3,4,6-テトラキス(メトキシメチル)グリコールウリルまたはその樹脂等が好ましい。 When the acid curing agent (D) is an amino resin, 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine represented by the following formula (D1-1) or a resin thereof 1,3,4,6-tetrakis (methoxymethyl) glycoluril represented by the formula (D3-1) or a resin thereof is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 エポキシ系化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、臭素化エポキシ樹脂等のグリシジルエーテル類、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ビス(2,3-エポキシシクロペンチル)エーテルなどの脂環式エポキシ樹脂、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート、ジグリシジルフタレート等のグリシジルエステル類、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール等のグリシジルアミン類、トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂などが挙げられる。 Epoxy compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, trisphenolmethane type epoxy resin, bromine. Glycidyl ethers such as epoxidized epoxy resins, alicyclic epoxy resins such as 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis (2,3-epoxycyclopentyl) ether, diglycidyl hexahydrophthalate, Diglycidyl tetrahydrophthalate, glycidyl esters such as diglycidyl phthalate, tetraglycidyl diaminodiphenylmethane, triglycidyl paraaminophenol, etc. Rishijiruamin acids, and heterocyclic epoxy resins such as triglycidyl isocyanurate.
 エポキシ系化合物として、例えば、以下の式(De1)で示されるジシクロペンタジエン型エポキシ樹脂、以下の式(De2)で示されるナフタレン型エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(De1)中、nは0~30の整数である。)
Figure JPOXMLDOC01-appb-C000011
As the epoxy compound, for example, a dicyclopentadiene type epoxy resin represented by the following formula (De1) and a naphthalene type epoxy resin represented by the following formula (De2) are preferable.
Figure JPOXMLDOC01-appb-C000010
(In the formula (De1), n is an integer of 0 to 30.)
Figure JPOXMLDOC01-appb-C000011
 オキサゾリン化合物としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン等の重合性単量体の共重合体を挙げることができる。 Examples of the oxazoline compound include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl Mention may be made of copolymers of polymerizable monomers such as -4-methyl-2-oxazoline.
 酸硬化剤(D)としては、これらのなかでも、メラミン系化合物、尿素系化合物、エポキシ系化合物が好ましい。なお、酸硬化剤(D)は、上記化合物の1種からなってもよく、2種以上からなってもよい。ネガ型感光性樹脂組成物における酸硬化剤(D)の含有量は、上記アルカリ可溶性樹脂(A)の100質量部に対して0.1~100質量部が好ましく、1~50質量部がより好ましく、5~20質量部が特に好ましい。酸硬化剤(D)の含有量を上記範囲とすることで、上面に充分な撥インク性を有する微細で精度の高いパターンの形成が可能な隔壁が得られる。また、特に酸硬化剤(D)の上記含有量が5~20質量部の範囲であると、ネガ型感光性樹脂組成物における貯蔵安定性が良好となり、該組成物からはパターンの直線性に優れる隔壁が得られる。 Among these, the acid curing agent (D) is preferably a melamine compound, a urea compound, or an epoxy compound. The acid curing agent (D) may be composed of one or more of the above compounds. The content of the acid curing agent (D) in the negative photosensitive resin composition is preferably 0.1 to 100 parts by mass and more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the alkali-soluble resin (A). 5 to 20 parts by mass is preferable. By setting the content of the acid curing agent (D) within the above range, a partition wall having sufficient ink repellency and capable of forming a fine and accurate pattern can be obtained. In particular, when the content of the acid curing agent (D) is in the range of 5 to 20 parts by mass, the storage stability in the negative photosensitive resin composition is improved, and the linearity of the pattern is improved from the composition. An excellent partition is obtained.
(撥インク剤(E))
 本発明における撥インク剤(E)は分子内にフッ素原子を有する。これにより、撥インク剤(E)は、これを含有するネガ型感光性樹脂組成物を用いて硬化膜を形成する過程で上面に移行する性質(上面移行性)および撥インク性を有する。撥インク剤(E)を用いることで、得られる硬化膜の上面を含む上層部は、撥インク剤(E)が密に存在する層(以下、「撥インク層」ということもある。)となり、硬化膜上面に撥インク性が付与される。
(Ink repellent agent (E))
The ink repellent agent (E) in the present invention has a fluorine atom in the molecule. Thereby, ink repellent agent (E) has the property (upper surface transfer property) and ink repellency which transfer to an upper surface in the process of forming a cured film using the negative photosensitive resin composition containing this. By using the ink repellent agent (E), the upper layer portion including the upper surface of the resulting cured film becomes a layer in which the ink repellent agent (E) is present densely (hereinafter also referred to as “ink repellent layer”). Ink repellency is imparted to the upper surface of the cured film.
 撥インク剤(E)中のフッ素原子の含有率は1~40質量%が好ましく、5~35質量%がより好ましく、10~32質量%が特に好ましい。撥インク剤(E)のフッ素原子の含有率が上記範囲の下限値以上であると、硬化膜上面に良好な撥インク性を付与でき、上限値以下であると、ネガ型感光性樹脂組成物中の他の成分との相溶性が良好になる。 The content of fluorine atoms in the ink repellent agent (E) is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and particularly preferably 10 to 32% by mass. When the fluorine atom content of the ink repellent agent (E) is not less than the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film, and when it is not more than the upper limit, the negative photosensitive resin composition Compatibility with other components in the inside is improved.
 撥インク層において撥インク剤(E)は、それ自体が反応性でない場合には、ネガ型感光性樹脂組成物中のアルカリ可溶性樹脂(A)、酸硬化剤(D)等の光硬化成分の重合、架橋反応により得られる硬化樹脂中に埋め込まれる形で存在する。通常、エチレン性二重結合がラジカル重合する場合、硬化膜や隔壁の大気に接する面ほど酸素による反応阻害を受けやすい。撥インク層は大気に接することから、撥インク層部分でアルカリ可溶性樹脂(A)が光硬化する際のラジカル重合については反応阻害を受けやすい。しかしながら、本発明のネガ型感光性樹脂組成物における、アルカリ可溶性樹脂(A)と酸硬化剤(D)との反応は酸素による反応阻害が殆どなく、撥インク層部分でも充分に行われる。これにより、撥インク層における撥インク剤(E)の定着性は充分に確保される。 When the ink repellent agent (E) is not reactive in the ink repellent layer, it is a photocurable component such as an alkali-soluble resin (A) or an acid hardener (D) in the negative photosensitive resin composition. It exists in the form embedded in the cured resin obtained by polymerization and crosslinking reaction. Usually, when the ethylenic double bond undergoes radical polymerization, the surface of the cured film or partition that contacts the air is more susceptible to reaction inhibition by oxygen. Since the ink repellent layer is in contact with the atmosphere, radical polymerization when the alkali-soluble resin (A) is photocured in the ink repellent layer portion is susceptible to reaction inhibition. However, the reaction between the alkali-soluble resin (A) and the acid curing agent (D) in the negative photosensitive resin composition of the present invention has almost no reaction inhibition by oxygen, and is sufficiently performed even in the ink repellent layer portion. Thereby, the fixability of the ink repellent agent (E) in the ink repellent layer is sufficiently ensured.
 すなわち、撥インク層における撥インク剤(E)の定着性を向上させるためには、上記アルカリ可溶性樹脂(A)と酸硬化剤(D)との硬化反応を充分に行わせることが重要である。そのために、特に低露光量での硬化に際しては、酸発生剤(C)として、比較的長波長(350~450nm)の活性光線で酸を発生する硬化性の高い酸発生剤(C)を使用することが有利と言える。 That is, in order to improve the fixability of the ink repellent agent (E) in the ink repellent layer, it is important to sufficiently perform the curing reaction between the alkali-soluble resin (A) and the acid curing agent (D). . For this reason, a highly curable acid generator (C) that generates an acid with an actinic ray having a relatively long wavelength (350 to 450 nm) is used as the acid generator (C) particularly when curing at a low exposure amount. It can be said that it is advantageous.
 また、撥インク層への撥インク剤(E)の定着性を向上させる観点から、撥インク剤(E)は、エチレン性二重結合を有する化合物が好ましい。撥インク剤(E)がエチレン性二重結合を有することで、上面に移行した撥インク剤(E)のエチレン性二重結合にラジカルが作用して、撥インク剤(E)同士または撥インク剤(E)とネガ型感光性樹脂組成物が含有するエチレン性二重結合を有する他成分と(共)重合による架橋が可能となる。なお、この反応は任意に含有するチオール化合物(G)(後述する)により促進される。 Further, from the viewpoint of improving the fixability of the ink repellent agent (E) to the ink repellent layer, the ink repellent agent (E) is preferably a compound having an ethylenic double bond. Since the ink repellent agent (E) has an ethylenic double bond, radicals act on the ethylenic double bond of the ink repellent agent (E) transferred to the upper surface, and the ink repellent agents (E) or the ink repellent Crosslinking by (co) polymerization with the agent (E) and other components having an ethylenic double bond contained in the negative photosensitive resin composition becomes possible. In addition, this reaction is accelerated | stimulated by the thiol compound (G) (it mentions later) contained arbitrarily.
 これにより、ネガ型感光性樹脂組成物を硬化してなる硬化膜の製造において、撥インク剤(E)の硬化膜の上層部、すなわち撥インク層における定着性を向上できる。本発明のネガ型感光性樹脂組成物においては、特にチオール化合物(G)を含有する場合には、露光の際の露光量が低い場合であっても撥インク剤(E)を撥インク層に充分に定着させることができる。 Thereby, in the production of a cured film obtained by curing the negative photosensitive resin composition, the fixability in the upper layer portion of the cured film of the ink repellent agent (E), that is, the ink repellent layer can be improved. In the negative photosensitive resin composition of the present invention, particularly when the thiol compound (G) is contained, the ink repellent agent (E) is applied to the ink repellent layer even when the exposure amount during exposure is low. It can be sufficiently fixed.
 上記のとおり、通常、エチレン性二重結合がラジカル重合する場合、硬化膜や隔壁の大気に接する面ほど酸素による反応阻害を受けやすいが、チオール化合物(G)によるラジカル反応は酸素による阻害はほとんど受けないため、低露光量での撥インク剤(E)の定着に特に有利である。さらに、隔壁製造においては、現像を行う際に、撥インク剤(E)が撥インク層から脱離したり、撥インク層の上面が剥がれたりするのを充分に抑制できる。 As described above, when an ethylenic double bond undergoes radical polymerization, the surface of the cured film or partition that is in contact with the air is more susceptible to reaction inhibition by oxygen, but the radical reaction by the thiol compound (G) is hardly inhibited by oxygen. Therefore, it is particularly advantageous for fixing the ink repellent agent (E) at a low exposure amount. Further, in the production of the partition walls, it is possible to sufficiently suppress the ink repellent agent (E) from being detached from the ink repellent layer or peeling off the upper surface of the ink repellent layer during development.
 撥インク剤(E)としては、例えば、加水分解性シラン化合物の部分加水分解縮合物が挙げられる。加水分解性シラン化合物は、1種を単独で用いても2種以上を併用してもよい。加水分解性シラン化合物の部分加水分解縮合物からなり、かつフッ素原子を有する撥インク剤(E)として、具体的には、以下の撥インク剤(E1)が挙げられる。フッ素原子を有する撥インク剤(E)として、主鎖が炭化水素鎖であり、側鎖にフッ素原子を含む化合物からなる撥インク剤(E2)を用いてもよい。
 撥インク剤(E1)および撥インク剤(E2)は、単独で、または組み合わせて用いられる。本発明のネガ型感光性樹脂組成物においては、耐紫外線/オゾン性の点に優れる点で、特に撥インク剤(E1)を用いることが好ましい。
As an ink repellent agent (E), the partial hydrolysis-condensation product of a hydrolysable silane compound is mentioned, for example. A hydrolysable silane compound may be used individually by 1 type, or may use 2 or more types together. Specific examples of the ink repellent agent (E) made of a partially hydrolyzed condensate of a hydrolyzable silane compound and having a fluorine atom include the following ink repellent agent (E1). As the ink repellent agent (E) having a fluorine atom, an ink repellent agent (E2) made of a compound having a main chain of a hydrocarbon chain and a side chain containing a fluorine atom may be used.
The ink repellent agent (E1) and the ink repellent agent (E2) are used alone or in combination. In the negative photosensitive resin composition of the present invention, it is particularly preferable to use the ink repellent agent (E1) from the viewpoint of excellent ultraviolet resistance / ozone resistance.
<撥インク剤(E1)>
 撥インク剤(E1)は、加水分解性シラン化合物混合物(以下、「混合物(M)」ともいう。)の部分加水分解縮合物である。該混合物(M)は、フルオロアルキレン基および/またはフルオロアルキル基、および、ケイ素原子に加水分解性基が結合した基とを有する加水分解性シラン化合物(以下、「加水分解性シラン化合物(s1)」ともいう。)を必須成分として含み、任意に加水分解性シラン化合物(s1)以外の加水分解性シラン化合物を含む。混合物(M)が任意に含有する加水分解性シラン化合物としては、以下の加水分解性シラン化合物(s2)、(s3)が挙げられる。混合物(M)が任意に含有する加水分解性シラン化合物としては、加水分解性シラン化合物(s2)が特に好ましい。
<Ink repellent agent (E1)>
The ink repellent agent (E1) is a partially hydrolyzed condensate of a hydrolyzable silane compound mixture (hereinafter also referred to as “mixture (M)”). The mixture (M) is a hydrolyzable silane compound having a fluoroalkylene group and / or fluoroalkyl group and a group in which a hydrolyzable group is bonded to a silicon atom (hereinafter referred to as “hydrolyzable silane compound (s1)”). Is also included as an essential component, and optionally includes a hydrolyzable silane compound other than the hydrolyzable silane compound (s1). Examples of the hydrolyzable silane compound optionally contained in the mixture (M) include the following hydrolyzable silane compounds (s2) and (s3). As the hydrolyzable silane compound optionally contained in the mixture (M), a hydrolyzable silane compound (s2) is particularly preferable.
 加水分解性シラン化合物(s2);ケイ素原子に4個の加水分解性基が結合した加水分解性シラン化合物。
 加水分解性シラン化合物(s3);エチレン性二重結合を有する基とケイ素原子に加水分解性基が結合した基とを有し、フッ素原子を含まない加水分解性シラン化合物。
Hydrolyzable silane compound (s2): a hydrolyzable silane compound in which four hydrolyzable groups are bonded to a silicon atom.
Hydrolyzable silane compound (s3): a hydrolyzable silane compound having a group having an ethylenic double bond and a group in which a hydrolyzable group is bonded to a silicon atom, and does not contain a fluorine atom.
 混合物(M)は、任意に加水分解性シラン化合物(s1)~(s3)以外の加水分解性シラン化合物を1種または2種以上含むことができる。 The mixture (M) can optionally contain one or more hydrolyzable silane compounds other than the hydrolyzable silane compounds (s1) to (s3).
 その他の加水分解性シラン化合物としては、ケイ素原子に結合する基として炭化水素基と加水分解性基のみを有する加水分解性シラン化合物(s4)、メルカプト基と加水分解性基とを有し、フッ素原子を含まない加水分解性シラン化合物(s5)、エポキシ基と加水分解性基とを有し、フッ素原子を含有しない加水分解性シラン化合物(s6)、オキシアルキレン基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s7)等が挙げられる。 Other hydrolyzable silane compounds include hydrolyzable silane compounds (s4) having only hydrocarbon groups and hydrolyzable groups as groups bonded to silicon atoms, mercapto groups and hydrolyzable groups, fluorine Hydrolyzable silane compound (s5) containing no atom, hydrolyzable silane compound (s6) having an epoxy group and a hydrolyzable group and not containing a fluorine atom, having an oxyalkylene group and a hydrolyzable silyl group And hydrolyzable silane compounds (s7) that do not contain fluorine atoms.
 加水分解性シラン化合物(s1)~(s3)およびその他の加水分解性シラン化合物としては、WO2014/046209の例えば、段落[0034]~[0072]、WO2014/069478の例えば、段落[0096]~[0136]に記載されたもの等が挙げられる。 Examples of the hydrolyzable silane compounds (s1) to (s3) and other hydrolyzable silane compounds include, for example, paragraphs [0034] to [0072] of WO2014 / 046209 and, for example, paragraphs [0096] to [0096] of WO2014 / 069478. [0136] and the like.
 撥インク剤(E1)の一例として、化合物(s1)をn1含み、化合物(s2)をn2、(s3)をn3含む混合物(M)の部分加水分解縮合物が挙げられる。
 ここで、n1~n3は構成単位の合計モル量に対する各構成単位のモル分率を示す。n1>0、n2≧0、n3≧0、n1+n2+n3=1である。
As an example of the ink repellent agent (E1), a partial hydrolysis condensate of a mixture (M) containing n1 of the compound (s1), n2 of the compound (s2), and n3 of (s3) may be mentioned.
Here, n1 to n3 represent the mole fraction of each structural unit relative to the total molar amount of the structural units. n1> 0, n2 ≧ 0, n3 ≧ 0, and n1 + n2 + n3 = 1.
 n1:n2:n3は混合物(M)における化合物(s1)、(s2)、(s3)の仕込み組成と一致する。
 各成分のモル比は、各成分の効果のバランスから設計される。
 n1は、撥インク剤(E1)におけるフッ素原子の含有率が上記好ましい範囲となる量において、0.02~0.4が好ましい。
 n2は、0~0.98が好ましく、0.05~0.6が特に好ましい。
 n3は、0~0.8が好ましく、0.2~0.5が特に好ましい。
n1: n2: n3 corresponds to the charged composition of the compounds (s1), (s2), and (s3) in the mixture (M).
The molar ratio of each component is designed from the balance of the effect of each component.
n1 is preferably 0.02 to 0.4 in such an amount that the fluorine atom content in the ink repellent agent (E1) falls within the above preferred range.
n2 is preferably from 0 to 0.98, particularly preferably from 0.05 to 0.6.
n3 is preferably 0 to 0.8, particularly preferably 0.2 to 0.5.
 撥インク剤(E1)の質量平均分子量(Mw)は、500以上が好ましく、1,000,000未満が好ましく、5,000以下が特に好ましい。
 質量平均分子量(Mw)が下限値以上であると、ネガ型感光性樹脂組成物を用いて硬化膜を形成する際に、撥インク剤(E1)が上面移行しやすい。上限値未満であると、開口部残渣が少なくなり好ましい。
 撥インク剤(E1)の質量平均分子量(Mw)は、製造条件により調節できる。
The mass average molecular weight (Mw) of the ink repellent agent (E1) is preferably 500 or more, preferably less than 1,000,000, and particularly preferably 5,000 or less.
When the mass average molecular weight (Mw) is equal to or higher than the lower limit, the ink repellent agent (E1) easily moves to the upper surface when a cured film is formed using the negative photosensitive resin composition. When it is less than the upper limit, the opening residue is reduced, which is preferable.
The mass average molecular weight (Mw) of the ink repellent agent (E1) can be adjusted by the production conditions.
 撥インク剤(E1)は、上述した混合物(M)を、公知の方法により加水分解および縮合反応させることで製造できる。
 この反応には、通常用いられる塩酸、硫酸、硝酸およびリン酸等の無機酸、あるいは、酢酸、シュウ酸およびマレイン酸等の有機酸を触媒として用いることが好ましい。また、必要に応じて水酸化ナトリウム、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ触媒を用いてもよい。
 上記反応には公知の溶媒を用いることができる。
 上記反応で得られる撥インク剤(E1)は、溶媒とともに溶液の性状でネガ型感光性樹脂組成物に配合してもよい。
The ink repellent agent (E1) can be produced by subjecting the mixture (M) described above to hydrolysis and condensation reaction by a known method.
In this reaction, it is preferable to use a commonly used inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or an organic acid such as acetic acid, oxalic acid and maleic acid as a catalyst. Moreover, you may use alkali catalysts, such as sodium hydroxide and tetramethylammonium hydroxide (TMAH), as needed.
A known solvent can be used for the above reaction.
The ink repellent agent (E1) obtained by the above reaction may be blended in a negative photosensitive resin composition in the form of a solution together with a solvent.
<撥インク剤(E2)>
 撥インク剤(E2)は、主鎖が炭化水素鎖であり、フッ素原子を有する側鎖を含む化合物である。撥インク剤(E2)の質量平均分子量(Mw)は、100~1,000,000が好ましく、5,000~100,000が特に好ましい。質量平均分子量(Mw)が下限値以上であると、ネガ型感光性樹脂組成物を用いて硬化膜を形成する際に、撥インク剤(E2)が上面移行しやすい。上限値以下であると開口部残渣が少なくなり好ましい。
<Ink repellent agent (E2)>
The ink repellent agent (E2) is a compound having a main chain of a hydrocarbon chain and a side chain having a fluorine atom. The mass average molecular weight (Mw) of the ink repellent agent (E2) is preferably from 100 to 1,000,000, particularly preferably from 5,000 to 100,000. When the mass average molecular weight (Mw) is not less than the lower limit, the ink repellent agent (E2) tends to move to the upper surface when a cured film is formed using the negative photosensitive resin composition. The opening residue is less than the upper limit, which is preferable.
 撥インク剤(E2)として、具体的には、WO2014/046209の例えば[0079]~[0102]、WO2014/069478の例えば[0144]~[0171]に記載されたもの等が挙げられる。 Specific examples of the ink repellent agent (E2) include those described in, for example, [0079] to [0102] of WO2014 / 046209 and, for example, [0144] to [0171] of WO2014 / 0669478.
 ネガ型感光性樹脂組成物における全固形分中の撥インク剤(E)の含有割合は、0.01~15質量%が好ましく、0.01~5質量%がより好ましく、0.03~1.5質量%が特に好ましい。含有割合が上記範囲の下限値以上であると、ネガ型感光性樹脂組成物から形成される硬化膜の上面は優れた撥インク性を有する。上記範囲の上限値以下であると、硬化膜と基材との密着性が良好になる。 The content ratio of the ink repellent agent (E) in the total solid content in the negative photosensitive resin composition is preferably 0.01 to 15% by mass, more preferably 0.01 to 5% by mass, and 0.03 to 1%. .5% by mass is particularly preferred. When the content ratio is at least the lower limit of the above range, the upper surface of the cured film formed from the negative photosensitive resin composition has excellent ink repellency. Adhesiveness of a cured film and a base material becomes it favorable that it is below the upper limit of the said range.
(架橋剤(F))
 本発明のネガ型感光性樹脂組成物が任意に含有する架橋剤(F)は、1分子中に2個以上の不飽和二重結合、すなわちエチレン性二重結合を有し、酸性基およびフッ素原子のいずれも有しない化合物である。ネガ型感光性樹脂組成物が架橋剤(F)を含むことにより、露光時におけるネガ型感光性樹脂組成物の硬化性が向上し、低い露光量でも硬化膜を形成することができる。
(Crosslinking agent (F))
The crosslinking agent (F) optionally contained in the negative photosensitive resin composition of the present invention has two or more unsaturated double bonds, that is, ethylenic double bonds in one molecule, and has an acidic group and fluorine. A compound that does not have any of the atoms. When the negative photosensitive resin composition contains the crosslinking agent (F), the curability of the negative photosensitive resin composition at the time of exposure is improved, and a cured film can be formed even with a low exposure amount.
 架橋剤(F)としては、具体的には、WO2014/046209の例えば[0137]、[0138]、WO2014/069478の例えば[0194]、[0195]に記載されたもの等が挙げられる。
 架橋剤(F)は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of the crosslinking agent (F) include those described in WO2014 / 046209, for example, [0137] and [0138], and WO2014 / 0669478, for example, [0194] and [0195].
A crosslinking agent (F) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物における全固形分中の架橋剤(F)の含有割合は、10~60質量%が好ましく、20~55質量%が特に好ましい。 The content of the crosslinking agent (F) in the total solid content in the negative photosensitive resin composition is preferably 10 to 60% by mass, particularly preferably 20 to 55% by mass.
(チオール化合物(G))
 本発明のネガ型感光性樹脂組成物が任意に含有するチオール化合物(G)は、1分子中にメルカプト基を2個以上有する化合物である。本発明のネガ型感光性樹脂組成物がチオール化合物(G)を含有すれば、露光時に光重合開始剤(B)から生成したラジカルによりチオール化合物(G)のラジカルが生成してアルカリ可溶性樹脂(A)のエチレン性二重結合に作用する、いわゆるエン-チオール反応が生起する。このエン-チオール反応は、通常のエチレン性二重結合がラジカル重合するのと異なり、酸素による反応阻害を受けないため、高い連鎖移動性を有し、さらに重合と同時に架橋も行うため、硬化物となる際の収縮率も低く、均一なネットワークが得られやすい等の利点を有する。
(Thiol compound (G))
The thiol compound (G) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more mercapto groups in one molecule. If the negative photosensitive resin composition of this invention contains a thiol compound (G), the radical of a thiol compound (G) will produce | generate by the radical produced | generated from the photoinitiator (B) at the time of exposure, and alkali-soluble resin ( A so-called ene-thiol reaction occurs on the ethylenic double bond of A). This ene-thiol reaction is different from the usual radical polymerization of ethylenic double bonds, and is not subject to reaction inhibition by oxygen, so it has high chain mobility and also undergoes crosslinking at the same time as polymerization. The shrinkage rate is low, and there is an advantage that a uniform network can be easily obtained.
 本発明のネガ型感光性樹脂組成物が、チオール化合物(G)を含有する場合には、上述のようにして低露光量でも充分に硬化でき、特に酸素による反応阻害を受け易い隔壁上面を含む上層部においても光硬化が充分に行われることから隔壁上面に良好な撥インク性を付与することが可能となる。 When the negative photosensitive resin composition of the present invention contains a thiol compound (G), it can be sufficiently cured even at a low exposure amount as described above, and includes a partition upper surface that is particularly susceptible to reaction inhibition by oxygen. Since the photocuring is sufficiently performed also in the upper layer portion, it is possible to impart good ink repellency to the upper surface of the partition wall.
 チオール化合物(G)中のメルカプト基は、1分子中に2~10個含むことが好ましく、3~8個がより好ましく、3~5個がさらに好ましい。 The mercapto group in the thiol compound (G) is preferably contained 2 to 10 in one molecule, more preferably 3 to 8 and even more preferably 3 to 5.
 チオール化合物(G)の分子量は特に制限されない。チオール化合物(G)における、[分子量/メルカプト基数]で示されるメルカプト基当量(以下、「SH当量」ともいう。)は、低露光量での硬化性の観点から、40~1,000が好ましく、40~500がより好ましく、40~250が特に好ましい。 The molecular weight of the thiol compound (G) is not particularly limited. In the thiol compound (G), the mercapto group equivalent (hereinafter also referred to as “SH equivalent”) represented by [molecular weight / number of mercapto groups] is preferably 40 to 1,000 from the viewpoint of curability at a low exposure amount. 40 to 500 are more preferable, and 40 to 250 are particularly preferable.
 チオール化合物(G)としては、具体的には、トリス(2-メルカプトプロパノイルオキシエチル)イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールトリスチオグリコレート、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ジペンタエリスリトールヘキサ(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサ(3-メルカプトブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリフェノールメタントリス(3-メルカプトプロピオネート)、トリフェノールメタントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、2,4,6-トリメルカプト-S-トリアジン、1,4-ビス(3-メルカプトブチリルオキシ)ブタン等が挙げられる。
 チオール化合物(G)は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of the thiol compound (G) include tris (2-mercaptopropanoyloxyethyl) isocyanurate, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tristhioglycolate, pentaerythritol tristhioglycol. , Pentaerythritol tetrakisthioglycolate, dipentaerythritol hexathioglycolate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyl) Oxy) -ethyl] -isocyanurate, dipentaerythritol hexa (3-mercaptopropionate), trimethylolpropane tris (3-mercaptobutyrate) ), Pentaerythritol tetrakis (3-mercaptobutyrate), dipentaerythritol hexa (3-mercaptobutyrate), trimethylolpropane tris (2-mercaptoisobutyrate), 1,3,5-tris (3-mercapto) Butyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, triphenolmethane tris (3-mercaptopropionate), triphenolmethane tris (3-mercapto Butyrate), trimethylolethane tris (3-mercaptobutyrate), 2,4,6-trimercapto-S-triazine, 1,4-bis (3-mercaptobutyryloxy) butane, and the like.
A thiol compound (G) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物がチオール化合物(G)を含有する場合、その含有割合は、ネガ型感光性樹脂組成物中の全固形分が有するエチレン性二重結合の1モルに対してメルカプト基が0.0001~1モルとなる量が好ましく、0.0005~0.5モルがより好ましく、0.001~0.5モルが特に好ましい。含有割合が上記範囲であると、低露光量においてもネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 When the negative photosensitive resin composition contains the thiol compound (G), the content ratio is a mercapto group with respect to 1 mol of the ethylenic double bond of the total solid content in the negative photosensitive resin composition. Is preferably 0.0001 to 1 mol, more preferably 0.0005 to 0.5 mol, and particularly preferably 0.001 to 0.5 mol. When the content ratio is in the above range, the photo-curability and developability of the negative photosensitive resin composition are good even at a low exposure amount.
 なお、チオール化合物(G)の使用は、撥インク層における低露光量での撥インク剤(E)の定着には非常に有効であるが、同様に低露光量での撥インク剤(E)の定着効果を有する酸発生剤(C)および酸硬化剤(D)の使用に比べて、(A)由来のカルボン酸が反応により消費されにくく、パターン形成性の向上には効果が少ない傾向にある。したがって、ネガ型感光性樹脂組成物がチオール化合物(G)を含有する場合においても、酸発生剤(C)および酸硬化剤(D)については、上記所定量を含有することが好ましい。 The use of the thiol compound (G) is very effective for fixing the ink repellent agent (E) at a low exposure amount in the ink repellent layer, but similarly the ink repellent agent (E) at a low exposure amount. Compared to the use of an acid generator (C) and an acid curing agent (D) having a fixing effect of (A), the carboxylic acid derived from (A) is less likely to be consumed by the reaction and tends to be less effective in improving pattern formation. is there. Therefore, even when the negative photosensitive resin composition contains the thiol compound (G), it is preferable that the acid generator (C) and the acid curing agent (D) contain the predetermined amount.
(リン酸化合物(H))
 本発明のネガ型感光性樹脂組成物は、得られる硬化膜における基材やITO等の透明電極材料等に対する密着性を向上させるために、任意にリン酸化合物(H)を含むことができる。
(Phosphate compound (H))
The negative photosensitive resin composition of the present invention can optionally contain a phosphoric acid compound (H) in order to improve the adhesion of the obtained cured film to a substrate, a transparent electrode material such as ITO, and the like.
 このようなリン酸化合物(H)としては、硬化膜の基材や透明電極材料等に対する密着性を向上できるものであれば特に限定されるものではないが、分子中にエチレン性不飽和二重結合を有するリン酸化合物であることが好ましい。 Such a phosphoric acid compound (H) is not particularly limited as long as it can improve the adhesion of a cured film to a substrate, a transparent electrode material, etc., but the ethylenically unsaturated double molecule in the molecule. A phosphoric acid compound having a bond is preferable.
 分子中にエチレン性不飽和二重結合を有するリン酸化合物としては、リン酸(メタ)アクリレート化合物、すなわち、分子内に少なくともリン酸由来のO=P構造と、(メタ)アクリル酸系化合物由来のエチレン性不飽和二重結合である(メタ)アクリロイル基とを有する化合物やリン酸ビニル化合物が好ましい。 As a phosphoric acid compound having an ethylenically unsaturated double bond in the molecule, a phosphoric acid (meth) acrylate compound, that is, an O = P structure derived from at least phosphoric acid in the molecule and a (meth) acrylic acid compound A compound having a (meth) acryloyl group which is an ethylenically unsaturated double bond or a vinyl phosphate compound is preferred.
 本発明に用いるリン酸(メタ)アクリレート化合物としては、モノ(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2-アクリロイルオキシエチル)アシッドホスフェート、トリス((メタ)アクリロイルオキシエチル)アシッドホスフェート、モノ(2-メタアクリロイルオキシエチル)カプロエートアシッドホスフェート等が挙げられる。 Examples of the phosphoric acid (meth) acrylate compound used in the present invention include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and di (2-acryloyloxyethyl). Examples include acid phosphate, tris ((meth) acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) caproate acid phosphate, and the like.
 本発明のネガ型感光性樹脂組成物は、リン酸化合物(H)として、これに分類される化合物の1種を単独で含有してもよいし、2種以上を含有してもよい。 The negative photosensitive resin composition of the present invention may contain, as the phosphoric acid compound (H), one kind of compound classified as such, or may contain two or more kinds.
 ネガ型感光性樹脂組成物がリン酸化合物(H)を含有する場合、その含有割合は、ネガ型感光性樹脂組成物中の全固形分に対して、0.01~10質量%が好ましく、0.1~5質量%が特に好ましい。含有割合が上記範囲であると、得られる硬化膜と基材等との密着性が良好である。 When the negative photosensitive resin composition contains the phosphoric acid compound (H), the content is preferably 0.01 to 10% by mass with respect to the total solid content in the negative photosensitive resin composition, 0.1 to 5% by mass is particularly preferable. When the content ratio is in the above range, the adhesion between the obtained cured film and the substrate is good.
(重合禁止剤(I))
 本発明における重合禁止剤(I)は、重合禁止剤としての機能を有する化合物であれば特に制限されず、アルカリ可溶性樹脂(A)の反応を阻害するラジカルを発生する化合物が好ましい。本発明のネガ型感光性樹脂組成物においては、露光時に照射される光の量を重合禁止剤(I)が調整し、重合を制御することで、該組成物の硬化を穏やかに進行させることが可能となる。これにより、非露光部における硬化の進行が抑制され、開口部の現像残渣の減少に寄与できる。さらに、高解像度のドットのパターンが得られるとともに、パターンの直線性の向上に寄与できる。
(Polymerization inhibitor (I))
The polymerization inhibitor (I) in the present invention is not particularly limited as long as it is a compound having a function as a polymerization inhibitor, and a compound that generates a radical that inhibits the reaction of the alkali-soluble resin (A) is preferable. In the negative photosensitive resin composition of the present invention, the polymerization inhibitor (I) adjusts the amount of light irradiated at the time of exposure, and the polymerization is controlled so that curing of the composition proceeds gently. Is possible. As a result, the progress of curing in the non-exposed area is suppressed, which can contribute to a reduction in the development residue in the opening. In addition, a high-resolution dot pattern can be obtained, and the pattern linearity can be improved.
 重合禁止剤(I)として具体的には、ジフェニルピクリルヒドラジド、トリ-p-ニトロフェニルメチル、p-ベンゾキノン、p-tert-ブチルカテコール、ピクリン酸、塩化銅、メチルハイドロキノン、4-メトキシフェノール、tert-ブチルハイドロキノン、2-tert-ブチル-1,4-ベンゾキノン、2,6-ジ-tert-ブチル-p-クレゾール等の一般的な反応の重合禁止剤を用いることができる。なかでも、2-メチルハイドロキノン、2,6-ジ-tert-ブチル-p-クレゾール、4-メトキシフェノール等が好ましい。さらに、保存安定性の点からハイドロキノン系、キノン系重合禁止剤が好ましく、2-メチルハイドロキノン、2-tert-ブチル-1,4-ベンゾキノンを用いるのが特に好ましい。 Specific examples of the polymerization inhibitor (I) include diphenylpicrylhydrazide, tri-p-nitrophenylmethyl, p-benzoquinone, p-tert-butylcatechol, picric acid, copper chloride, methylhydroquinone, 4-methoxyphenol, A general reaction polymerization inhibitor such as tert-butylhydroquinone, 2-tert-butyl-1,4-benzoquinone, 2,6-di-tert-butyl-p-cresol, and the like can be used. Of these, 2-methylhydroquinone, 2,6-di-tert-butyl-p-cresol, 4-methoxyphenol and the like are preferable. Furthermore, hydroquinone and quinone polymerization inhibitors are preferred from the viewpoint of storage stability, and 2-methylhydroquinone and 2-tert-butyl-1,4-benzoquinone are particularly preferred.
 ネガ型感光性樹脂組成物における全固形分中の重合禁止剤(I)の含有割合は0.001~20質量%が好ましく、0.005~10質量%がより好ましく、0.01~5質量%が特に好ましい。含有割合が上記範囲であると、ネガ型感光性樹脂組成物の現像残渣が低減され、パターン直線性が良好である。 The content of the polymerization inhibitor (I) in the total solid content in the negative photosensitive resin composition is preferably 0.001 to 20% by mass, more preferably 0.005 to 10% by mass, and 0.01 to 5% by mass. % Is particularly preferred. When the content ratio is in the above range, the development residue of the negative photosensitive resin composition is reduced, and the pattern linearity is good.
(溶媒(J))
 本発明のネガ型感光性樹脂組成物は、溶媒(J)を含有することで粘度が低減され、ネガ型感光性樹脂組成物の基材表面への塗布がしやすくなる。その結果、均一な膜厚のネガ型感光性樹脂組成物の塗膜が形成できる。
 溶媒(J)としては公知の溶媒が用いられる。溶媒(J)は、1種を単独で用いても2種以上を併用してもよい。
(Solvent (J))
When the negative photosensitive resin composition of the present invention contains a solvent (J), the viscosity is reduced, and the negative photosensitive resin composition can be easily applied to the substrate surface. As a result, a coating film of a negative photosensitive resin composition having a uniform film thickness can be formed.
A known solvent is used as the solvent (J). A solvent (J) may be used individually by 1 type, or may use 2 or more types together.
 溶媒(J)としては、アルキレングリコールアルキルエーテル類、アルキレングリコールアルキルエーテルアセテート類、アルコール類、ソルベントナフサ類等が挙げられる。なかでも、アルキレングリコールアルキルエーテル類、アルキレングリコールアルキルエーテルアセテート類、およびアルコール類からなる群から選ばれる少なくとも1種の溶媒が好ましく、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテートおよび2-プロパノールからなる群から選ばれる少なくとも1種の溶媒がさらに好ましい。 Examples of the solvent (J) include alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, alcohols, and solvent naphtha. Among these, at least one solvent selected from the group consisting of alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, and alcohols is preferable. Propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol More preferred is at least one solvent selected from the group consisting of monoethyl ether acetate and 2-propanol.
 ネガ型感光性樹脂組成物における溶媒(J)の含有割合は、組成物全量に対して50~99質量%が好ましく、60~95質量%がより好ましく、65~90質量%が特に好ましい。 The content ratio of the solvent (J) in the negative photosensitive resin composition is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and particularly preferably 65 to 90% by mass with respect to the total amount of the composition.
(着色剤(K))
 本発明のネガ型感光性樹脂組成物は、用途に応じて、硬化膜、特には隔壁に遮光性を付与する場合に、着色剤(K)を含有する。本発明における着色剤(K)としては、カーボンブラック、アニリンブラック、アントラキノン系黒色顔料およびペリレン系黒色顔料、具体的には、C.I.ピグメントブラック1、6、7、12、20、31等が挙げられる。赤色顔料、青色顔料および緑色顔料等の有機顔料および/または無機顔料の混合物を用いることもできる。
(Colorant (K))
The negative photosensitive resin composition of the present invention contains a colorant (K) when imparting light-shielding properties to a cured film, particularly a partition wall, depending on the application. Examples of the colorant (K) in the present invention include carbon black, aniline black, anthraquinone black pigment, and perylene black pigment. I. Pigment black 1, 6, 7, 12, 20, 31 etc. are mentioned. Mixtures of organic pigments such as red pigments, blue pigments and green pigments and / or inorganic pigments can also be used.
 着色剤(K)は、1種を単独で用いても2種以上を併用してもよい。本発明のネガ型感光性樹脂組成物が、着色剤(K)を含有する場合には、全固形分中の着色剤(K)の含有割合は、5~65質量%が好ましく、10~50質量%が特に好ましい。上記範囲であると得られるネガ型感光性樹脂組成物は感度が良好であり、また、形成される隔壁は遮光性に優れる。 Coloring agent (K) may be used alone or in combination of two or more. When the negative photosensitive resin composition of the present invention contains the colorant (K), the content of the colorant (K) in the total solid content is preferably 5 to 65% by mass, and 10 to 50%. Mass% is particularly preferred. The negative photosensitive resin composition obtained when it is in the above range has good sensitivity, and the formed partition has excellent light shielding properties.
(その他の成分)
 本発明におけるネガ型感光性樹脂組成物はさらに、必要に応じて、熱架橋剤、高分子分散剤、分散助剤、シランカップリング剤、微粒子、硬化促進剤、増粘剤、可塑剤、消泡剤、レベリング剤およびハジキ防止剤等の他の添加剤を1種または2種以上含有してもよい。
(Other ingredients)
The negative photosensitive resin composition in the present invention may further include a thermal crosslinking agent, a polymer dispersant, a dispersion aid, a silane coupling agent, fine particles, a curing accelerator, a thickener, a plasticizer, an extinguishing agent, if necessary. You may contain 1 type (s) or 2 or more types of other additives, such as a foaming agent, a leveling agent, and a repellency inhibitor.
 本発明のネガ型感光性樹脂組成物は、上記各成分の所定量を混合して得られる。本発明のネガ型感光性樹脂組成物は、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池、カラーフィルタ等の光学素子の製造に使用可能である。具体的には、有機EL素子、量子ドットディスプレイ、TFTアレイ、薄膜太陽電池等の光学素子に用いる硬化膜や隔壁の形成に用いることで特に効果が発揮できる。本発明のネガ型感光性樹脂組成物を用いれば、上面に良好な撥インク性を有する硬化膜、特には隔壁の製造が可能である。また、撥インク剤(E)のほとんどは、撥インク層に充分に定着しており、撥インク層よりも下の部分の隔壁に低濃度で存在する撥インク剤(E)も隔壁が充分に光硬化しているため、現像時に、撥インク剤(E)が隔壁で囲まれた開口部内にマイグレートしにくく、よってインクが均一に塗布できる開口部が得られる。 The negative photosensitive resin composition of the present invention can be obtained by mixing predetermined amounts of the above components. The negative photosensitive resin composition of this invention can be used for manufacture of optical elements, such as an organic EL element, a quantum dot display, a TFT array, a thin film solar cell, a color filter, for example. Specifically, the effect can be exhibited particularly when used for forming a cured film or a partition used for an optical element such as an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell. By using the negative photosensitive resin composition of the present invention, it is possible to produce a cured film having good ink repellency on the upper surface, in particular, a partition wall. Further, most of the ink repellent agent (E) is sufficiently fixed on the ink repellent layer, and the ink repellent agent (E) present at a low concentration in the partition wall below the ink repellent layer also has sufficient partition walls. Since it is photocured, the ink repellent agent (E) is difficult to migrate into the opening surrounded by the partition wall during development, so that an opening where the ink can be applied uniformly can be obtained.
[樹脂硬化膜および隔壁]
 本発明の実施形態の樹脂硬化膜は、上記の本発明のネガ型感光性樹脂組成物を用いて形成される。本発明の実施形態の樹脂硬化膜は、例えば、基板等の基材の表面に本発明のネガ型感光性樹脂組成物を塗布し、必要に応じて乾燥して溶媒等を除去した後、露光することで硬化して得られる。本発明の実施形態の樹脂硬化膜は、光学素子、特には、有機EL素子や量子ドットディスプレイ、TFTアレイ、薄膜太陽電池に用いられる場合に特に顕著な効果が発揮される。
[Resin cured film and partition walls]
The cured resin film of the embodiment of the present invention is formed using the above-described negative photosensitive resin composition of the present invention. The cured resin film according to the embodiment of the present invention is, for example, coated with the negative photosensitive resin composition of the present invention on the surface of a substrate such as a substrate, dried as necessary to remove the solvent, and then exposed. Is obtained by curing. The cured resin film according to the embodiment of the present invention is particularly effective when used for optical elements, particularly organic EL elements, quantum dot displays, TFT arrays, and thin film solar cells.
 本発明の隔壁は、基板表面をドット形成用の複数の区画に仕切る形に形成された上記の本発明の硬化膜からなる隔壁である。隔壁は、例えば、上記の樹脂硬化膜の製造において、露光前にドット形成用の区画となる部分にマスキングを施し、露光した後、現像することで得られる。現像によって、マスキングにより非露光の部分が除去されドット形成用の区画に対応する開口部が隔壁とともに形成される。本発明の実施形態の隔壁は、光学素子、特には、有機EL素子や量子ドットディスプレイ、TFTアレイ、薄膜太陽電池に用いられる場合に特に顕著な効果が発揮される。 The partition wall of the present invention is a partition wall made of the above-described cured film of the present invention formed so as to partition the substrate surface into a plurality of sections for dot formation. For example, in the production of the cured resin film described above, the partition wall is obtained by masking a portion to be a dot formation partition before exposure, developing after exposure. By development, an unexposed portion is removed by masking, and an opening corresponding to a dot forming section is formed together with a partition. The partition wall according to the embodiment of the present invention exhibits a particularly remarkable effect when used in an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
 本発明の実施形態の隔壁は、例えば、以下に示すとおり、製造過程において高温処理を必ずしも必要としないため、ポリエチレンテレフタレート(PET)やポリカーボネート等のプラスチック基板を使用したフレキシブルなアプリケーションにも適用可能である。 For example, as shown below, the partition wall of the embodiment of the present invention does not necessarily require high-temperature treatment in the production process, and thus can be applied to flexible applications using a plastic substrate such as polyethylene terephthalate (PET) or polycarbonate. is there.
 以下、本発明の実施形態の隔壁の製造方法の一例を、図1A~1Dを用いて説明するが、隔壁の製造方法は以下に限定されない。なお、以下の製造方法は、ネガ型感光性樹脂組成物が溶媒(J)を含有するものとして説明する。 Hereinafter, an example of the manufacturing method of the partition wall according to the embodiment of the present invention will be described with reference to FIGS. 1A to 1D, but the manufacturing method of the partition wall is not limited to the following. In addition, the following manufacturing methods are demonstrated as a negative photosensitive resin composition containing a solvent (J).
 図1Aに示すように、基板1の一方の主面全体にネガ型感光性樹脂組成物を塗布して、塗膜21を形成する。このとき、塗膜21中には撥インク剤(E)が全体的に溶解し、均一に分散している。なお、図1A中、撥インク剤(E)は模式的に示してあり、実際にこのような粒子形状で存在しているわけではない。 As shown in FIG. 1A, a negative photosensitive resin composition is applied to one entire main surface of the substrate 1 to form a coating film 21. At this time, the ink repellent agent (E) is totally dissolved and uniformly dispersed in the coating film 21. In FIG. 1A, the ink repellent agent (E) is schematically shown, and does not actually exist in such a particle shape.
 次に、図1Bに示すように、塗膜21を乾燥させて、乾燥膜22とする。乾燥方法としては、加熱乾燥、減圧乾燥および減圧加熱乾燥等が挙げられる。溶媒(J)の種類にもよるが、加熱乾燥の場合、加熱温度は50~120℃が好ましい。
 この乾燥過程において、撥インク剤(E)は乾燥膜の上層部に移行する。なお、ネガ型感光性樹脂組成物が、溶媒(J)を含有しない場合であっても、塗膜内で撥インク剤(E)の上面移行は同様に達成される。
Next, as shown in FIG. 1B, the coating film 21 is dried to form a dry film 22. Examples of the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying. Depending on the type of solvent (J), in the case of heat drying, the heating temperature is preferably 50 to 120 ° C.
In this drying process, the ink repellent agent (E) moves to the upper layer of the dry film. In addition, even if a negative photosensitive resin composition does not contain a solvent (J), the upper surface transfer of an ink repellent agent (E) is similarly achieved within a coating film.
 次に、図1Cに示すように、隔壁に囲まれる開口部に相当する形状のマスキング部31を有するフォトマスク30を介して、乾燥膜22に対して光を照射し露光する。乾燥膜22を露光した後の膜を露光膜23と称す。露光膜23において、露光部23Aは光硬化しており、非露光部23Bは乾燥膜22と同様の状態である。 Next, as shown in FIG. 1C, the dry film 22 is exposed to light through a photomask 30 having a masking portion 31 having a shape corresponding to the opening surrounded by the partition walls. The film after the dry film 22 is exposed is referred to as an exposure film 23. In the exposure film 23, the exposed portion 23 </ b> A is photocured, and the non-exposed portion 23 </ b> B is in the same state as the dry film 22.
 照射する光としては、可視光;紫外線;遠紫外線;KrFエキシマレーザ光、ArFエキシマレーザ光、Fエキシマレーザ光、Krエキシマレーザ光、KrArエキシマレーザ光およびArエキシマレーザ光等のエキシマレーザ光;X線;電子線等が挙げられる。
 照射する光としては、波長100~600nmの光が好ましく、300~500nmの光がより好ましく、i線(365nm)、h線(405nm)またはg線(436nm)を含む光が特に好ましい。また、必要に応じて330nm以下の光をカットしてもよい。
As the light to be irradiated, excimer laser such as visible light; ultraviolet light; far ultraviolet light; KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, Kr 2 excimer laser light, KrAr excimer laser light, and Ar 2 excimer laser light. Examples include light; X-ray; electron beam.
The light to be irradiated is preferably light having a wavelength of 100 to 600 nm, more preferably light having a wavelength of 300 to 500 nm, and particularly preferably light containing i-line (365 nm), h-line (405 nm), or g-line (436 nm). Moreover, you may cut light below 330 nm as needed.
 なお、露光時に照射する光としては、ネガ型感光性樹脂組成物が含有する、光重合開始剤(B)および酸発生剤(C)について、それぞれを活性化する波長の光線を選択することが必要とされる。 In addition, as light irradiated at the time of exposure, it is possible to select a light beam having a wavelength that activates each of the photopolymerization initiator (B) and the acid generator (C) contained in the negative photosensitive resin composition. Needed.
 露光方式としては、全面一括露光、スキャン露光等が挙げられる。同一箇所に対して複数回に分けて露光してもよい。この際、複数回の露光条件は同一でも同一でなくても構わない。 The exposure method includes full-surface batch exposure, scan exposure, and the like. You may expose in multiple times with respect to the same location. At this time, the multiple exposure conditions may or may not be the same.
 露光量は、上記いずれの露光方式においても、例えば、5~1,000mJ/cmが好ましく、5~500mJ/cmがより好ましく、5~300mJ/cmがさらに好ましく、5~200mJ/cmが特に好ましく、5~50mJ/cmが最も好ましい。なお、露光量は、照射する光の波長、ネガ型感光性樹脂組成物の組成および塗膜の厚さ等により、適宜好適化される。 Exposure amount, In any of the above exposure method, for example, preferably 5 ~ 1,000mJ / cm 2, more preferably 5 ~ 500mJ / cm 2, more preferably 5 ~ 300mJ / cm 2, 5 ~ 200mJ / cm 2 is particularly preferable, and 5 to 50 mJ / cm 2 is most preferable. The exposure amount is appropriately optimized depending on the wavelength of light to be irradiated, the composition of the negative photosensitive resin composition, the thickness of the coating film, and the like.
 単位面積当たりの露光時間は特に制限されず、用いる露光装置の露光パワーおよび必要な露光量等から設計される。なお、スキャン露光の場合、光の走査速度から露光時間が求められる。
 単位面積当たりの露光時間は通常1~60秒程度である。
The exposure time per unit area is not particularly limited, and is designed from the exposure power of the exposure apparatus to be used, the required exposure amount, and the like. In the case of scan exposure, the exposure time is determined from the light scanning speed.
The exposure time per unit area is usually about 1 to 60 seconds.
 本発明のネガ型感光性樹脂組成物によれば、上記露光部において、露光時にアルカリ可溶性樹脂(A)のラジカル重合が行われるのと並行して、酸発生剤(C)が露光により酸を発生し、該酸の存在下、酸硬化剤(D)がアルカリ可溶性樹脂(A)のカルボン酸等の酸性基と反応する。これにより、本発明のネガ型感光性樹脂組成物によれば、硬化膜、特に硬化膜の上面におけるアルカリ可溶性樹脂(A)の硬化性、および撥インク剤(E)の定着性が向上した硬化膜が得られる。または、低露光量でも従来の硬化膜と同等の硬化性、特に上面における硬化性を有する硬化膜が得られる。 According to the negative photosensitive resin composition of the present invention, in the exposed portion, the acid generator (C) generates an acid by exposure in parallel with radical polymerization of the alkali-soluble resin (A) during exposure. In the presence of the acid, the acid curing agent (D) reacts with an acidic group such as a carboxylic acid of the alkali-soluble resin (A). Thus, according to the negative photosensitive resin composition of the present invention, the cured film, in particular, the curing property of the alkali-soluble resin (A) on the upper surface of the cured film and the fixing property of the ink repellent agent (E) are improved. A membrane is obtained. Alternatively, a cured film having a curability equivalent to that of a conventional cured film, in particular, a curability on the upper surface can be obtained even with a low exposure amount.
 次に、図1Dに示すように、アルカリ現像液を用いた現像を行い、露光膜23の露光部23Aに対応する部位のみからなる隔壁4が形成される。隔壁4で囲まれた開口部5は、露光膜23において非露光部23Bが存在していた部位であり、現像により非露光部23Bが除去された後の状態を、図1Dは示している。非露光部23Bは、上に説明したとおり、撥インク剤(E)が上層部に移行してそれより下の層にほとんど撥インク剤(E)が存在しない状態でアルカリ現像液により溶解、除去されるため、撥インク剤(E)は、開口部5にはほとんど残存しない。 Next, as shown in FIG. 1D, development using an alkali developer is performed to form the partition wall 4 composed only of a portion corresponding to the exposed portion 23A of the exposed film 23. The opening 5 surrounded by the partition wall 4 is a portion where the non-exposed portion 23B exists in the exposure film 23, and FIG. 1D shows a state after the non-exposed portion 23B is removed by development. As described above, the non-exposed portion 23B is dissolved and removed by an alkali developer in a state where the ink repellent agent (E) has moved to the upper layer portion and the ink repellent agent (E) is hardly present in the lower layer. Therefore, the ink repellent agent (E) hardly remains in the opening 5.
 なお、図1Dに示す隔壁4において、その上面を含む最上層は撥インク層4Aである。撥インク剤(E)がエチレン性二重結合を有する側鎖を有しない場合、露光の際に、撥インク剤(E)はそのまま最上層に高濃度に存在して撥インク層となる。露光の際、撥インク剤(E)の周辺に存在するアルカリ可溶性樹脂(A)は、特に酸発生剤(C)の発生する酸の存在下、酸硬化剤(D)と強固に光硬化し、撥インク剤(E)は撥インク層に定着する。さらにネガ型感光性樹脂組成物がチオール化合物(G)を任意に含有する場合には、エチレン性二重結合による反応が促進されて撥インク層の硬化がより強固に行われる。 In the partition 4 shown in FIG. 1D, the uppermost layer including the upper surface is the ink repellent layer 4A. When the ink repellent agent (E) does not have a side chain having an ethylenic double bond, the ink repellent agent (E) is present in a high concentration as it is in the uppermost layer and becomes an ink repellent layer. Upon exposure, the alkali-soluble resin (A) present around the ink repellent agent (E) is strongly photocured with the acid curing agent (D), particularly in the presence of an acid generated by the acid generator (C). The ink repellent agent (E) is fixed to the ink repellent layer. Further, when the negative photosensitive resin composition optionally contains the thiol compound (G), the reaction by the ethylenic double bond is promoted, and the ink repellent layer is cured more firmly.
 撥インク剤(E)がエチレン性二重結合を有する側鎖を有する場合においても、アルカリ可溶性樹脂(A)は、酸発生剤(C)の発生する酸の存在下、酸硬化剤(D)と強固に光硬化すると同時に、撥インク剤(E)は、互いにおよび/または、アルカリ可溶性樹脂(A)、さらに任意に含有するチオール化合物(G)やその他の光硬化成分とともに光硬化して、撥インク剤(E)が強固に結合した撥インク層4Aを形成する。 Even when the ink repellent agent (E) has a side chain having an ethylenic double bond, the alkali-soluble resin (A) is an acid curing agent (D) in the presence of an acid generated by the acid generator (C). At the same time, the ink repellent agent (E) is photocured with each other and / or the alkali-soluble resin (A), and optionally with the thiol compound (G) and other photocuring components, An ink repellent layer 4A in which the ink repellent agent (E) is firmly bonded is formed.
 上記のいずれの場合も、撥インク層4Aの下側には、主としてアルカリ可溶性樹脂(A)、酸硬化剤(D)、および任意に含有するチオール化合物(G)、さらにそれ以外の光硬化成分が、光重合開始剤(B)の発生するラジカルによるラジカル重合および酸発生剤(C)が発生する酸の存在下のカチオン重合により光硬化して、撥インク剤(E)をほとんど含有しない層4Bが形成される。
 このようにして、撥インク剤(E)は、撥インク層4Aその下部層4Bを含む隔壁に充分に定着しているため、現像時に開口部にマイグレートすることがほとんどない。
In any of the above cases, the ink-repellent layer 4A has mainly an alkali-soluble resin (A), an acid curing agent (D), and an optionally contained thiol compound (G), and other photocuring components. Are photocured by radical polymerization by radicals generated by the photopolymerization initiator (B) and cationic polymerization in the presence of acid generated by the acid generator (C), and the layer hardly contains the ink repellent agent (E). 4B is formed.
In this manner, the ink repellent agent (E) is sufficiently fixed to the partition including the ink repellent layer 4A and the lower layer 4B, and therefore hardly migrates to the opening during development.
 このように、本発明のネガ型感光性樹脂組成物においては、光によるラジカル重合反応と光による酸の存在下での硬化反応を組み合わせることにより硬化膜の表面および内部の硬化が充分に行われる。よって、露光部である硬化部分は、現像の際のアルカリ現像液による浸食や剥離に耐性を有する。したがって、露光部が長時間の現像にも影響を受けにくいことから開口部の残渣の除去等に有利である。 Thus, in the negative photosensitive resin composition of the present invention, the surface and the inside of the cured film are sufficiently cured by combining the radical polymerization reaction by light and the curing reaction in the presence of acid by light. . Therefore, the hardened portion which is the exposed portion has resistance to erosion and peeling by the alkaline developer during development. Therefore, the exposed portion is not easily affected by long-time development, which is advantageous for removing the residue at the opening.
 現像後、隔壁4をさらに加熱してもよい。加熱温度は80~250℃が好ましい。加熱により隔壁4の硬化がより強固なものとなる。また、撥インク剤(E)は撥インク層4A内により強固に定着する。本発明の組成は、低温硬化した場合でも、高い撥液性を発現することができ、さらに酸や有機溶媒などの薬品に浸漬後も、高い撥液性を有することができる。特にPETフィルムやポリカーボネートといったプラスチック基材を使用する場合は、加熱温度を低く設定する必要がある。その場合、好ましくは、150℃以下、特に好ましくは120℃以下の加熱温度が設定される。本発明の組成は、前記の様な低温で加熱する場合においても、撥液性が維持され、耐薬品も優れる。 The partition 4 may be further heated after development. The heating temperature is preferably 80 to 250 ° C. The partition 4 is hardened by heating. The ink repellent agent (E) is more firmly fixed in the ink repellent layer 4A. The composition of the present invention can exhibit high liquid repellency even when cured at low temperature, and can also have high liquid repellency even after being immersed in a chemical such as an acid or an organic solvent. In particular, when using a plastic substrate such as PET film or polycarbonate, the heating temperature needs to be set low. In that case, the heating temperature is preferably set to 150 ° C. or lower, particularly preferably 120 ° C. or lower. The composition of the present invention maintains liquid repellency and has excellent chemical resistance even when heated at a low temperature as described above.
 このようにして得られる本発明の樹脂硬化膜および隔壁4は、露光が低露光量で行われる場合であっても、上面に良好な撥インク性を有する。また、隔壁4においては、現像後、開口部5に撥インク剤(E)が存在することがほとんどなく、開口部5におけるインクの均一な塗工性を充分に確保できる。 The cured resin film and the partition 4 of the present invention thus obtained have good ink repellency on the upper surface even when exposure is performed at a low exposure amount. In the partition 4, the ink repellent (E) hardly exists in the opening 5 after development, and the uniform coating property of the ink in the opening 5 can be sufficiently ensured.
 なお、開口部5の親インク性をより確実に得ることを目的として、上記加熱後、開口部5に存在する可能性があるネガ型感光性樹脂組成物の現像残渣等を除去するために、隔壁4付きの基板1に対して紫外線/オゾン処理を施してもよい。 For the purpose of more reliably obtaining the ink affinity of the opening 5, in order to remove the development residue and the like of the negative photosensitive resin composition that may exist in the opening 5 after the heating, The substrate 1 with the partition walls 4 may be subjected to ultraviolet / ozone treatment.
 本発明のネガ型感光性樹脂組成物から形成される隔壁は、例えば、幅が100μm以下であることが好ましく、20μm以下であることが特に好ましい。また、隣接する隔壁間の距離(パターンの幅)は300μm以下であることが好ましく、100μm以下であることが特に好ましい。隔壁の高さは0.05~50μmであることが好ましく、0.2~10μmであることが特に好ましい。 For example, the width of the partition formed from the negative photosensitive resin composition of the present invention is preferably 100 μm or less, and particularly preferably 20 μm or less. The distance between adjacent partition walls (pattern width) is preferably 300 μm or less, and particularly preferably 100 μm or less. The height of the partition wall is preferably 0.05 to 50 μm, particularly preferably 0.2 to 10 μm.
 本発明のネガ型感光性樹脂組成物から形成される隔壁は、上記幅に形成された際の縁の部分に凹凸が少なく直線性に優れる。なお、隔壁における高い直線性の発現は、特に、アルカリ可溶性樹脂としてエポキシ樹脂に酸性基とエチレン性二重結合とが導入された樹脂(A-2)を用いた場合に顕著である。それにより、たとえ微細なパターンであっても精度の高いパターン形成が可能となる。このような精度の高いパターン形成が行えれば、特に、有機EL素子や量子ドットディスプレイ、TFTアレイ、薄膜太陽電池用の隔壁として有用である。 The partition formed from the negative photosensitive resin composition of the present invention has few irregularities in the edge portion when formed to the above width, and is excellent in linearity. The high linearity in the partition walls is particularly remarkable when a resin (A-2) in which an acidic group and an ethylenic double bond are introduced into an epoxy resin is used as the alkali-soluble resin. As a result, even a fine pattern can be formed with high accuracy. If such a highly accurate pattern can be formed, it is particularly useful as a partition for organic EL elements, quantum dot displays, TFT arrays, and thin film solar cells.
 本発明の隔壁は、IJ法にてパターン印刷を行う際に、その開口部をインク注入領域とする隔壁として利用できる。IJ法にてパターン印刷を行う際に、本発明の隔壁を、その開口部が所望のインク注入領域と一致するように形成して用いれば、隔壁上面が良好な撥インク性を有することから、隔壁を超えて所望しない開口部すなわちインク注入領域にインクが注入されることを抑制できる。また、隔壁で囲まれた開口部は、インクの濡れ広がり性が良好であるので、インクを所望の領域に白抜け等が発生することなく均一に印刷することが可能となる。 The partition of the present invention can be used as a partition having the opening as an ink injection region when pattern printing is performed by the IJ method. When pattern printing is performed by the IJ method, if the partition wall of the present invention is formed and used so that the opening thereof coincides with a desired ink injection region, the partition top surface has good ink repellency. It is possible to suppress ink from being injected into an undesired opening, that is, an ink injection region beyond the partition wall. In addition, since the opening surrounded by the partition wall has good ink wetting and spreading properties, it is possible to print the ink uniformly without causing white spots or the like in a desired region.
 本発明の隔壁を用いれば、上記のとおりIJ法によるパターン印刷が精巧に行える。よって、本発明の隔壁は、ドットがIJ法で形成される基板表面に複数のドットと隣接するドット間に位置する隔壁を有する光学素子、特に有機EL素子や量子ドットディスプレイ、TFTアレイ、薄膜太陽電池の隔壁として有用である。 If the partition wall of the present invention is used, pattern printing by the IJ method can be performed with precision as described above. Therefore, the barrier rib of the present invention is an optical element having a barrier rib positioned between a plurality of adjacent dots on a substrate surface on which dots are formed by the IJ method, particularly an organic EL element, a quantum dot display, a TFT array, and a thin film solar. It is useful as a battery partition.
[光学素子]
 本発明の光学素子、特には、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池は、基板表面に複数のドットと隣接するドット間に位置する上記本発明の隔壁とを有する光学素子である。本発明の光学素子、特には、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池においてドットはIJ法により形成されることが好ましい。
[Optical element]
The optical element of the present invention, in particular, an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell is an optical element having a plurality of dots and a partition wall of the present invention located between adjacent dots on the substrate surface. is there. In the optical element of the present invention, in particular, in an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell, the dots are preferably formed by the IJ method.
 有機EL素子とは、有機薄膜の発光層を陽極と陰極で挟んだ構造であり、本発明の隔壁は有機発光層を隔てる隔壁用途、有機TFT層を隔てる隔壁用途、塗布型酸化物半導体を隔てる隔壁用途などに用いることができる。 An organic EL element has a structure in which a light emitting layer of an organic thin film is sandwiched between an anode and a cathode. It can be used for partitioning applications.
 また、有機TFTアレイ素子とは、複数のドットが平面視マトリクス状に配置され、各ドットに画素電極とこれを駆動するためのスイッチング素子としてTFTが設けられ、TFTのチャネル層を含む半導体層として有機半導体層が用いられる素子である。有機TFTアレイ素子は、例えば、有機EL素子あるいは液晶素子等に、TFTアレイ基板として備えられる。 In addition, the organic TFT array element is a semiconductor layer including a plurality of dots arranged in a matrix in plan view, each pixel having a pixel electrode and a TFT as a switching element for driving it, and including a TFT channel layer. An element in which an organic semiconductor layer is used. The organic TFT array element is provided as a TFT array substrate in, for example, an organic EL element or a liquid crystal element.
 本発明の実施形態の光学素子、例えば、有機EL素子について、上記で得られた隔壁を用いて、開口部にIJ法によりドットを形成する例を以下に説明する。なお、本発明の有機EL素子等の光学素子におけるドットの形成方法は以下に限定されない。
 図2Aおよび図2Bは、上記図1Dに示す基板1上に形成された隔壁4を用いて有機EL素子を製造する方法を模式的に示すものである。ここで、基板1上の隔壁4は、開口部5が、製造しようとする有機EL素子のドットのパターンに一致するように形成されたものである。
With respect to the optical element of the embodiment of the present invention, for example, an organic EL element, an example in which dots are formed in the opening by the IJ method using the partition obtained above will be described below. In addition, the formation method of the dot in optical elements, such as the organic EL element of this invention, is not limited to the following.
2A and 2B schematically show a method of manufacturing an organic EL element using the partition walls 4 formed on the substrate 1 shown in FIG. 1D. Here, the partition 4 on the substrate 1 is formed such that the opening 5 matches the dot pattern of the organic EL element to be manufactured.
 図2Aに示すように、隔壁4に囲まれた開口部5に、インクジェットヘッド9からインク10を滴下して、開口部5に所定量のインク10を注入する。インクとしては、ドットの機能に合わせて、有機EL素子用として公知のインクが適宜選択して用いられる。 As shown in FIG. 2A, ink 10 is dropped from the inkjet head 9 into the opening 5 surrounded by the partition wall 4 and a predetermined amount of ink 10 is injected into the opening 5. As the ink, known inks for organic EL elements are appropriately selected and used in accordance with the function of dots.
 次いで、用いたインク10の種類により、例えば、溶媒の除去や硬化のために、乾燥および/または加熱等の処理を施して、図2Bに示すように、隔壁4に隣接する形で所望のドット11が形成された有機EL素子12を得る。 Next, depending on the type of the ink 10 used, for example, a process such as drying and / or heating is performed to remove or cure the solvent, and as shown in FIG. The organic EL element 12 in which 11 is formed is obtained.
 本発明の実施形態の光学素子、特には、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池、は、本発明の隔壁を用いることで、製造過程において隔壁で仕切られた開口部にインクがムラなく均一に濡れ広がることが可能であり、これにより精度よく形成されたドットを有する光学素子、特には、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池である。 The optical element of the embodiment of the present invention, in particular, an organic EL element, a quantum dot display, a TFT array, or a thin-film solar cell, uses the partition wall of the present invention, so that an ink is formed in an opening partitioned by the partition wall in the manufacturing process. Is an optical element having dots formed with high accuracy, in particular, an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
 なお、有機EL素子は、例えば、以下のように製造できるがこれに限定されない。
 ガラスやPETなどのプラスチックの透光性基板にスズドープ酸化インジウム(ITO)等の透光性電極をスパッタ法等によって成膜する。この透光性電極は必要に応じてパターニングされる。
 次に、本発明のネガ型感光性樹脂組成物を用い、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
 次に、ドット内に、IJ法により、正孔注入層、正孔輸送層、発光層、正孔阻止層および電子注入層の材料をそれぞれ塗布および乾燥して、これらの層を順次積層する。ドット内に形成される有機層の種類および数は適宜設計される。
 最後に、アルミニウム等の反射電極を蒸着法等によって形成する。
In addition, although an organic EL element can be manufactured as follows, for example, it is not limited to this.
A light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a plastic light-transmitting substrate such as glass or PET by sputtering or the like. The translucent electrode is patterned as necessary.
Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
Next, the materials of the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, and the electron injection layer are applied and dried in the dots by the IJ method, and these layers are sequentially stacked. The kind and number of organic layers formed in the dots are appropriately designed.
Finally, a reflective electrode such as aluminum is formed by vapor deposition or the like.
 また、量子ドットディスプレイは、例えば、以下のように製造できるがこれに限定されない。
 ガラスやPETなどのプラスチックの透光性基板にスズドープ酸化インジウム(ITO)等の透光性電極をスパッタ法等によって成膜する。この透光性電極は必要に応じてパターニングされる。
 次に、本発明のネガ型感光性樹脂組成物を用い、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
 次に、ドット内に、IJ法により、正孔注入層、正孔輸送層、量子ドット層、正孔阻止層および電子注入層の材料をそれぞれ塗布および乾燥して、これらの層を順次積層する。ドット内に形成される有機層の種類および数は適宜設計される。
 最後に、アルミニウム等の反射電極、またはITO等の透光性電極を蒸着法等によって形成する。
Further, the quantum dot display can be manufactured, for example, as follows, but is not limited thereto.
A light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a plastic light-transmitting substrate such as glass or PET by sputtering or the like. The translucent electrode is patterned as necessary.
Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
Next, the materials of the hole injection layer, the hole transport layer, the quantum dot layer, the hole blocking layer, and the electron injection layer are respectively applied and dried in the dots by the IJ method, and these layers are sequentially stacked. . The kind and number of organic layers formed in the dots are appropriately designed.
Finally, a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
 さらに本発明の実施形態の光学素子は、例えば以下のように製造される、青色光変換型の量子ドットディスプレイにも応用可能である。
 ガラスやPETなどのプラスチックの透光性基板に本発明のネガ型感光性樹脂組成物を用い、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
Furthermore, the optical element of the embodiment of the present invention can be applied to, for example, a blue light conversion type quantum dot display manufactured as follows.
The negative photosensitive resin composition of the present invention is used for a transparent substrate made of plastic such as glass or PET, and partition walls are formed in a lattice pattern in plan view along the outline of each dot.
 次に、ドット内に、IJ法により青色光を緑色光に変換するナノ粒子溶液、青色光を赤色光に変換するナノ粒子溶液、必要に応じて青色のカラーインクを塗布、乾燥して、モジュールを作製する。青色を発色する光源をバックライトとして使用し前記モジュールをカラーフィルタ代替として使用することにより、色再現性の優れた液晶ディスプレイが得られる。 Next, a nanoparticle solution that converts blue light into green light by the IJ method, a nanoparticle solution that converts blue light into red light, and a blue color ink as necessary are coated in the dots and dried. Is made. A liquid crystal display with excellent color reproducibility can be obtained by using a light source that emits blue as a backlight and using the module as a color filter alternative.
 TFTアレイは、例えば、以下のように製造できるがこれに限定されない。
 ガラスやPETなどのプラスチックの透光性基板にアルミニウムやその合金等のゲート電極をスパッタ法等によって成膜する。このゲート電極は必要に応じてパターニングされる。
The TFT array can be manufactured, for example, as follows, but is not limited thereto.
A gate electrode such as aluminum or an alloy thereof is formed on a light-transmitting substrate made of plastic such as glass or PET by a sputtering method or the like. This gate electrode is patterned as necessary.
 次に、窒化ケイ素等のゲート絶縁膜をプラズマCVD法等によって形成する。ゲート絶縁膜上にソース電極、ドレイン電極を形成してもよい。ソース電極およびドレイン電極は、例えば、真空蒸着やスパッタリングでアルミニウム、金、銀、銅やそれらの合金などの金属薄膜を形成し、作成することができる。ソース電極およびドレイン電極をパターニングする方法としては、金属薄膜を形成後、レジストを塗装し、露光、現像して電極を形成させたい部分にレジストを残し、その後、リン酸や王水などで露出した金属を除去、最後にレジストを除去する手法がある。また、金などの金属薄膜を形成させた場合は、予めレジストを塗装し、露光、現像して電極を形成させたくない部分にレジストを残し、その後金属薄膜を形成後、金属薄膜と共にフォトレジストを除去する手法もある。また、銀や銅等の金属ナノコロイド等を用いてインクジェット等の手法により、ソース電極およびドレイン電極を形成してもよい。 Next, a gate insulating film such as silicon nitride is formed by a plasma CVD method or the like. A source electrode and a drain electrode may be formed over the gate insulating film. The source electrode and the drain electrode can be formed by forming a metal thin film such as aluminum, gold, silver, copper, or an alloy thereof by, for example, vacuum deposition or sputtering. As a method of patterning the source electrode and the drain electrode, after forming a metal thin film, a resist is coated, exposed and developed to leave the resist in a portion where the electrode is to be formed, and then exposed with phosphoric acid or aqua regia. There is a method of removing the metal and finally removing the resist. In addition, when a metal thin film such as gold is formed, a resist is applied in advance, exposed and developed to leave the resist in a portion where it is not desired to form an electrode, and after forming the metal thin film, the photoresist is applied together with the metal thin film. There is also a technique to remove. Further, the source electrode and the drain electrode may be formed by a method such as ink jet using a metal nanocolloid such as silver or copper.
 次に、本発明のネガ型感光性樹脂組成物を用いて、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
 次にドット内に半導体溶液をIJ法によって塗布し、溶液を乾燥させることによって半導体層を形成する。この半導体溶液としては有機半導体溶液、無機の塗布型酸化物半導体溶液も用いることができる。ソース電極、ドレイン電極は、この半導体層形成後にインクジェットなどの手法を用いて形成されてもよい。
 最後にITO等の透光性電極をスパッタ法等によって成膜し、窒化ケイ素等の保護膜を成膜することで形成する。
Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice pattern in plan view along the outline of each dot by photolithography including coating, exposure and development.
Next, a semiconductor solution is applied in the dots by the IJ method, and the solution is dried to form a semiconductor layer. As this semiconductor solution, an organic semiconductor solution or an inorganic coating type oxide semiconductor solution can also be used. The source electrode and the drain electrode may be formed by using a method such as inkjet after forming the semiconductor layer.
Finally, a transparent electrode such as ITO is formed by sputtering or the like, and a protective film such as silicon nitride is formed.
 以下、実施例に基づいて本発明を説明するが、本発明はこれらに限定されるものではない。例1~10が実施例、例11~13が比較例である。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. Examples 1 to 10 are examples, and examples 11 to 13 are comparative examples.
 各測定は以下の方法で行った。
[数平均分子量(Mn)、質量平均分子量(Mw)]
 ゲルパーミエーションクロマトグラフィ法により、ポリスチレンを標準物質として、数平均分子量(Mn)および質量平均分子量(Mw)を測定した。ゲルパーミエーションクロマトグラフィとしては、HPLC-8220GPC(東ソー社製)を使用した。カラムとしては、shodex LF-604を3本、接続したものを使用した。検出器としては、RI検出器を使用した。標準物質としては、EasiCal PS1(Polymer Laboratories社製)を使用した。さらに、数平均分子量および質量平均分子量を測定する際は、カラムを37℃で保持し、溶離液としては、テトラヒドロフランを用い、流速を0.2mL/分とし、測定サンプルの0.5%テトラヒドロフラン溶液40μLを注入した。
Each measurement was performed by the following method.
[Number average molecular weight (Mn), mass average molecular weight (Mw)]
The number average molecular weight (Mn) and the mass average molecular weight (Mw) were measured by gel permeation chromatography using polystyrene as a standard substance. As the gel permeation chromatography, HPLC-8220GPC (manufactured by Tosoh Corporation) was used. As the column, a column in which three shodex LF-604s were connected was used. An RI detector was used as the detector. As a standard substance, EasiCal PS1 (manufactured by Polymer Laboratories) was used. Further, when measuring the number average molecular weight and the mass average molecular weight, the column is maintained at 37 ° C., tetrahydrofuran is used as the eluent, the flow rate is 0.2 mL / min, and a 0.5% tetrahydrofuran solution of the measurement sample is used. 40 μL was injected.
[フッ素原子の含有率]
 フッ素原子の含有率は、1,4-ジトリフルオロメチルベンゼンを標準物質として、19F NMR測定により算出した。
[Fluorine atom content]
The content of fluorine atoms was calculated by 19 F NMR measurement using 1,4-ditrifluoromethylbenzene as a standard substance.
[酸価]
 酸価は、原料の配合割合から理論的に算出した。
 以下の各例において用いた化合物の略号を以下に示す。
[Acid value]
The acid value was theoretically calculated from the blending ratio of the raw materials.
The abbreviations of the compounds used in the following examples are shown below.
(アルカリ可溶性樹脂(A))
 アルカリ可溶性樹脂(A1)組成物:クレゾールノボラック型エポキシ樹脂をアクリル酸、次いで1,2,3,6-テトラヒドロ無水フタル酸を反応させて、アクリロイル基とカルボキシ基とを導入した樹脂をヘキサンで精製した樹脂(アルカリ可溶性樹脂(A1)、酸価60mgKOH/g)の組成物(固形分70質量%、PGMEA30質量%)
(Alkali-soluble resin (A))
Alkali-soluble resin (A1) composition: A cresol novolac epoxy resin is reacted with acrylic acid and then 1,2,3,6-tetrahydrophthalic anhydride, and a resin into which an acryloyl group and a carboxy group are introduced is purified with hexane Composition (alkali-soluble resin (A1), acid value 60 mgKOH / g) (solid content 70% by mass, PGMEA 30% by mass)
 アルカリ可溶性樹脂(A2)組成物:ビスフェノールA型エポキシ樹脂にカルボキシル基とエチレン性二重結合を導入した樹脂(アルカリ可溶性樹脂(A2)、酸価100mgKOH/g)の組成物(固形分70質量%、PGMEA30質量%)。
 アルカリ可溶性樹脂(A3)組成物:下記式(A-2a)で表されるビフェニル骨格を有するエポキシ樹脂にエチレン性二重結合と酸性基とを導入した樹脂(アルカリ可溶性樹脂(A3)、酸価70mgKOH/g)の組成物(固形分70質量%、PGMEA30質量%)。
Alkali-soluble resin (A2) composition: a composition (alkali-soluble resin (A2) having an acid value of 100 mgKOH / g) in which a carboxyl group and an ethylenic double bond are introduced into a bisphenol A type epoxy resin (solid content: 70% by mass) , PGMEA 30% by mass).
Alkali-soluble resin (A3) composition: a resin in which an ethylenic double bond and an acidic group are introduced into an epoxy resin having a biphenyl skeleton represented by the following formula (A-2a) (alkali-soluble resin (A3), acid value) 70 mg KOH / g) (solid content 70% by mass, PGMEA 30% by mass).
Figure JPOXMLDOC01-appb-C000012
 (式(A-2a)中、vは1~50の整数であり、2~10の整数が好ましい。またベンゼン環の水素原子はそれぞれ独立に、炭素原子数1~12のアルキル基、ハロゲン原子、または、一部の水素原子が置換基で置換されていてもよいフェニル基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (A-2a), v is an integer of 1 to 50, preferably an integer of 2 to 10. The hydrogen atoms of the benzene ring are each independently an alkyl group having 1 to 12 carbon atoms or a halogen atom. Or a part of hydrogen atoms may be substituted with a phenyl group which may be substituted with a substituent.)
 アルカリ可溶性樹脂(A-R-1):撹拌機を備えた内容積1Lの反応槽に、アセトン(555g)、AA(アクリル酸)(36.0g)、2-HEMA(108.0g)、IBMA(72.0g)、連鎖移動剤DSH(9.7g)および重合開始剤V-70(5.1g)を仕込み、窒素雰囲気下に撹拌しながら、40℃で18時間重合させ、アルカリ可溶性樹脂(A-R-1)の溶液を得た。得られたアルカリ可溶性樹脂(A-R-1)のアセトン溶液に水を加え再沈精製し、次いで石油エーテルにて再沈精製し、真空乾燥し、アルカリ可溶性樹脂(A-R-1)の235gを得た。アルカリ可溶性樹脂(A-R-1)の数平均分子量(Mn)は5,000であり、アルカリ可溶性樹脂(A-R-1)の酸価は、119mgKOH/gであった。 Alkali-soluble resin (AR-1): A reaction tank having an internal volume of 1 L equipped with a stirrer was charged with acetone (555 g), AA (acrylic acid) (36.0 g), 2-HEMA (108.0 g), IBMA (72.0 g), chain transfer agent DSH (9.7 g) and polymerization initiator V-70 (5.1 g) were charged and polymerized at 40 ° C. for 18 hours with stirring under a nitrogen atmosphere to obtain an alkali-soluble resin ( A solution of AR-1) was obtained. Water is added to the acetone solution of the obtained alkali-soluble resin (AR-1) to effect reprecipitation purification, then reprecipitation purification with petroleum ether, vacuum drying, and alkali-soluble resin (AR-1) 235 g was obtained. The number average molecular weight (Mn) of the alkali-soluble resin (AR-1) was 5,000, and the acid value of the alkali-soluble resin (AR-1) was 119 mgKOH / g.
(光重合開始剤(B))
 IR907:2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(BASF社製、商品名IRGACURE907。)。
OXE02:エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASF社製、商品名:OXE02。)。
 EAB:4,4'-ビス(ジエチルアミノ)ベンゾフェノン(東京化成工業社製)。
(Photopolymerization initiator (B))
IR907: 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (trade name IRGACURE907, manufactured by BASF).
OXE02: Ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF, trade name: OXE02).
EAB: 4,4′-bis (diethylamino) benzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.).
(酸発生剤(C))
 PAG-A:2-(5-メチル-2-フリル)エテニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン(上記式(C8-2)で示される化合物)。
 PAG-B:2-[2-(n-プロピルスルホニルオキシイミノ)チオフェン-3(2H)-イリデン]-2-(2-メチルフェニル)アセトニトリル(上記式(C11)で示される化合物のうち、Rb11がn-プロピル基である化合物)。
 WPAG199:ビス(p-トルエンスルホニル)ジアゾメタン。
 SI-150L:上記式(C0-1)で示される芳香族スルホニウムSbF 塩(三新化学工業社製、商品名:サンエイドSI-150L)。
(Acid generator (C))
PAG-A: 2- (5-methyl-2-furyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine (a compound represented by the above formula (C8-2)).
PAG-B: 2- [2- (n-propylsulfonyloxyimino) thiophene-3 (2H) -ylidene] -2- (2-methylphenyl) acetonitrile (among the compounds represented by the above formula (C11), R a compound wherein b11 is an n-propyl group).
WPAG199: bis (p-toluenesulfonyl) diazomethane.
SI-150L: sulfonium aromatic represented by the formula (C0-1) SbF 6 - salt (Sanshin Chemical Industry Co., Ltd., trade name: San-Aid SI-150L).
(酸硬化剤(D))
 エポキシA:上記式(De1)で示されるジシクロペンタン環含有のエポキシ化合物。
 エポキシB:上記式(De2)で示されるナフタレン環含有のエポキシ化合物。
 メラミンA:2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン(上記式(D1-1)で示される化合物)。
 メラミンB:1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(上記式(D3-1)で示される化合物)。
(Acid curing agent (D))
Epoxy A: an epoxy compound containing a dicyclopentane ring represented by the above formula (De1).
Epoxy B: a naphthalene ring-containing epoxy compound represented by the above formula (De2).
Melamine A: 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine (compound represented by the above formula (D1-1)).
Melamine B: 1,3,4,6-tetrakis (methoxymethyl) glycoluril (compound represented by the above formula (D3-1)).
(撥インク剤(E1)の原料)
 化合物(s1)に相当する化合物(s1-1):F(CFCHCHSi(OCH(公知の方法で製造した。)。
 化合物(s2)に相当する化合物(s2-1):Si(OC(コルコート社製)。
 化合物(s3)に相当する化合物(s3-1):CH=CHCOO(CHSi(OCH(東京化成工業社製)。
(Ink repellent (E1) raw material)
Compound (s1-1) corresponding to compound (s1): F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 (produced by a known method).
Compound (s2-1) corresponding to compound (s2): Si (OC 2 H 5 ) 4 (manufactured by Colcoat).
Compound (s3-1) corresponding to compound (s3): CH 2 ═CHCOO (CH 2 ) 3 Si (OCH 3 ) 3 (manufactured by Tokyo Chemical Industry Co., Ltd.).
 化合物(s5)に相当する化合物(s5-1)
Figure JPOXMLDOC01-appb-C000013
Compound (s5-1) corresponding to Compound (s5)
Figure JPOXMLDOC01-appb-C000013
 化合物(s6)に相当する化合物(s6-1): 
Figure JPOXMLDOC01-appb-C000014
Compound (s6-1) corresponding to compound (s6):
Figure JPOXMLDOC01-appb-C000014
(撥インク剤(E2)の原料)
 C6FMA:CH=C(CH)COOCHCH(CF
 X-174DX:ジメチルシリコーン鎖含有メタクリレート(信越化学工業社製、商品名X-22-174DX)
 X-8201:ジメチルシリコーン鎖含有メタクリレート(信越化学工業社製、商品名X-24-8201)
 C4α-Clアクリレート:CH=C(Cl)COOCHCH(CF
 C8FA:CH=CHCOOCHCH(CF
 CHMA:シクロヘキシルメタクリレート
 MAA:メタクリル酸
 2-HEMA:2-ヒドロキシエチルメタクリレート
 MMA:メタクリル酸メチル
 GMA:グリシジルメタクリレート
 IBMA:イソボルニルメタクリレート
(Raw material of ink repellent agent (E2))
C6FMA: CH 2 = C (CH 3) COOCH 2 CH 2 (CF 2) 6 F
X-174DX: Dimethyl silicone chain-containing methacrylate (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-174DX)
X-8201: Dimethyl silicone chain-containing methacrylate (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-24-8201)
C4α-Cl acrylate: CH 2 ═C (Cl) COOCH 2 CH 2 (CF 2 ) 4 F
C8FA: CH 2 = CHCOOCH 2 CH 2 (CF 2) 8 F
CHMA: cyclohexyl methacrylate MAA: methacrylic acid 2-HEMA: 2-hydroxyethyl methacrylate MMA: methyl methacrylate GMA: glycidyl methacrylate IBMA: isobornyl methacrylate
 V-65:(2,2’-アゾビス(2,4-ジメチルバレロニトリル))
 V-70:2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)
 DSH:n-ドデシルメルカプタン
 BEI:1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート)
 AOI:2-アクリロイルオキシエチルイソシアネート)
 DBTDL:ジブチル錫ジラウレート
 TBQ:t-ブチル-p-ベンゾキノン
 MEK:2-ブタノン
V-65: (2,2′-azobis (2,4-dimethylvaleronitrile))
V-70: 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
DSH: n-dodecyl mercaptan BEI: 1,1- (bisacryloyloxymethyl) ethyl isocyanate)
AOI: 2-acryloyloxyethyl isocyanate)
DBTDL: Dibutyltin dilaurate TBQ: t-butyl-p-benzoquinone MEK: 2-butanone
(架橋剤(F))
 DPHA:ジペンタエリスリトールヘキサアクリレート
(その他)
 KBM403:3-グリシドキシプロピルトリメトキシシラン
 チオール化合物:ペンタエリスリトールテトラキス(3-メルカプトブチレート)
 MHQ:2-メチルハイドロキノン
(溶媒(J))
 PGME:プロピレングリコールモノメチルエーテル
 EDM:ジエチレングリコールエチルメチルエーテル
 IPA:2-プロパノール
 DEGDM:ジエチレングリコールジメチルエーテル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
(Crosslinking agent (F))
DPHA: Dipentaerythritol hexaacrylate (others)
KBM403: 3-glycidoxypropyltrimethoxysilane thiol compound: pentaerythritol tetrakis (3-mercaptobutyrate)
MHQ: 2-methylhydroquinone (solvent (J))
PGME: Propylene glycol monomethyl ether EDM: Diethylene glycol ethyl methyl ether IPA: 2-propanol DEGDM: Diethylene glycol dimethyl ether PGMEA: Propylene glycol monomethyl ether acetate
[撥インク剤(E)の合成]
 撥インク剤(E)を以下のとおり合成、または準備した。
[Synthesis of ink repellent agent (E)]
The ink repellent agent (E) was synthesized or prepared as follows.
(合成例1:撥インク剤(E-1)の合成)
 撹拌機を備えた内容積1,000cmのオートクレーブに、MEKの420.0g、C6FMAの99.0g、MAAの9.0g、2-HEMAの18.0g、MMAの45.0g、IBMAの9.0g、重合開始剤V-65の3.0gおよびDSHの5.0gを仕込み、窒素雰囲気下で撹拌しながら、50℃で24時間重合させ、さらに70℃にて5時間加熱し、重合開始剤を不活性化し、共重合体(撥インク剤(E-1))の溶液(固形分濃度;30質量%)を得た。この溶液を後述するネガ型感光性樹脂組成物の製造に用いた。なお、以下の撥インク剤の合成において、撥インク剤がこれを含む溶液の状態で得られたものについては、固形分濃度を測定または調整した後、該溶液の状態でネガ型感光性樹脂組成物の製造に用いた。
(Synthesis Example 1: Synthesis of ink repellent agent (E-1))
To an autoclave with an internal volume of 1,000 cm 3 equipped with a stirrer, 420.0 g of MEK, 99.0 g of C6FMA, 9.0 g of MAA, 18.0 g of 2-HEMA, 45.0 g of MMA, 9 of IBMA 0.0 g, 3.0 g of polymerization initiator V-65, and 5.0 g of DSH were charged, polymerized at 50 ° C. for 24 hours with stirring under a nitrogen atmosphere, and further heated at 70 ° C. for 5 hours to initiate polymerization. The agent was inactivated to obtain a solution (solid content concentration: 30% by mass) of a copolymer (ink repellent agent (E-1)). This solution was used for the production of a negative photosensitive resin composition described later. In addition, in the synthesis of the following ink repellent agent, for those obtained in the state of a solution containing the ink repellent agent, after measuring or adjusting the solid content concentration, the negative photosensitive resin composition in the state of the solution. Used in the manufacture of the product.
 撥インク剤(E-1)は、数平均分子量が14,200、質量平均分子量が21,500であり、フッ素原子の含有率は31.4質量%、酸価は32.6(mgKOH/g)であった。 The ink repellent agent (E-1) has a number average molecular weight of 14,200, a mass average molecular weight of 21,500, a fluorine atom content of 31.4% by mass, and an acid value of 32.6 (mgKOH / g )Met.
(合成例2:撥インク剤(E-2)の合成)
 撹拌機を備えた内容積1,000cmのオートクレーブに、MEKの415.1g、C6FMAの81.0g、MAAの18.0g、2-HEMAの81.0g、重合開始剤V-65の5.0gおよびDSHの4.7gを仕込み、窒素雰囲気下で撹拌しながら、50℃で24時間重合させ、さらに70℃にて5時間加熱し、重合開始剤を不活性化し、共重合体の溶液を得た。共重合体は、数平均分子量が5,540、質量平均分子量が13,200であった。
(Synthesis Example 2: Synthesis of ink repellent agent (E-2))
In an autoclave with an internal volume of 1,000 cm 3 equipped with a stirrer, 415.1 g of MEK, 81.0 g of C6FMA, 18.0 g of MAA, 81.0 g of 2-HEMA, and 5.5 of polymerization initiator V-65. 0 g and 4.7 g of DSH were charged, polymerized at 50 ° C. for 24 hours with stirring under a nitrogen atmosphere, and further heated at 70 ° C. for 5 hours to inactivate the polymerization initiator, and a copolymer solution was prepared. Obtained. The copolymer had a number average molecular weight of 5,540 and a mass average molecular weight of 13,200.
 次いで、撹拌機を備えた内容積300cmのオートクレーブに上記共重合体の溶液の130.0g、BEIの33.5g、DBTDLの0.13g、TBQの1.5gを仕込み、撹拌しながら、40℃で24時間反応させ、粗重合体を合成した。得られた粗重合体の溶液にヘキサンを加えて再沈精製した後、真空乾燥し、撥インク剤(E-2)を得た。撥インク剤(E-2)は、数平均分子量が7,540、質量平均分子量が16,200であり、フッ素原子の含有率は14.8質量%、酸価は35.1(mgKOH/g)であった。 Next, 130.0 g of the above copolymer solution, 33.5 g of BEI, 0.13 g of DBTDL, and 1.5 g of TBQ were charged in an autoclave having an internal volume of 300 cm 3 equipped with a stirrer, The reaction was carried out at 24 ° C for 24 hours to synthesize a crude polymer. Hexane was added to the resulting crude polymer solution for reprecipitation purification, followed by vacuum drying to obtain an ink repellent agent (E-2). The ink repellent agent (E-2) has a number average molecular weight of 7,540, a mass average molecular weight of 16,200, a fluorine atom content of 14.8% by mass, and an acid value of 35.1 (mgKOH / g )Met.
(合成例3:撥インク剤(E-3)の合成)
 撹拌機を備えた内容積1,000cmのオートクレーブに、MEKの420.0g、C6FMAの99.0g、MAAの9.0g、2-HEMAの18.0g、GMAの18.0g、MMAの36.0g、重合開始剤V-65の3.0gおよびDSHの5.0gを仕込み、窒素雰囲気下で撹拌しながら、50℃で24時間重合させ、さらに70℃にて5時間加熱し、重合開始剤を不活性化し、共重合体(撥インク剤(E-3))の溶液(固形分濃度;30質量%)を得た。
(Synthesis Example 3: Synthesis of ink repellent agent (E-3))
To an autoclave with an internal volume of 1,000 cm 3 equipped with a stirrer, 420.0 g of MEK, 99.0 g of C6FMA, 9.0 g of MAA, 18.0 g of 2-HEMA, 18.0 g of GMA, 36 of MMA 0.0 g, 3.0 g of polymerization initiator V-65, and 5.0 g of DSH were charged, polymerized at 50 ° C. for 24 hours with stirring under a nitrogen atmosphere, and further heated at 70 ° C. for 5 hours to initiate polymerization. The agent was inactivated to obtain a solution (solid content concentration: 30% by mass) of a copolymer (ink repellent agent (E-3)).
 撥インク剤(E-3)は、数平均分子量が14,850、質量平均分子量が22,700であり、フッ素原子の含有率は31.4質量%、酸価は32.6(mgKOH/g)であった。 The ink repellent agent (E-3) has a number average molecular weight of 14,850, a mass average molecular weight of 22,700, a fluorine atom content of 31.4% by mass, and an acid value of 32.6 (mgKOH / g )Met.
(撥インク剤(E-4)の準備)
 撥インク剤(E-4)として、メガファックRS102(商品名、DIC社製:下記式(E2F)で示される繰り返し単位を有する重合体であり、n/m=3~4である。)を準備した。撥インク剤(E-4)は、数平均分子量が5,700、質量平均分子量が8,800であり、フッ素原子の含有率は19.0質量%であった。
(Preparation of ink repellent (E-4))
As the ink repellent agent (E-4), MegaFac RS102 (trade name, manufactured by DIC: a polymer having a repeating unit represented by the following formula (E2F), where n / m = 3 to 4) is used. Got ready. The ink repellent agent (E-4) had a number average molecular weight of 5,700, a mass average molecular weight of 8,800, and a fluorine atom content of 19.0% by mass.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(合成例5:撥インク剤(E-5)の合成)
 撹拌機を備えた内容積2,000cmのオートクレーブに、C4α-Clアクリレートの317.5g、MAAの79.4g、IBMAの47.7g、2-HEMAの52.9g、DSHの4.6g、重合開始剤V-70の2.0g、MEKの1160gを入れ、窒素雰囲気下で撹拌しながら、50℃で24時間重合させ、さらに70℃にて5時間加熱し、重合開始剤を不活性化し、共重合体の溶液を得た。共重合体は、数平均分子量が5,060、質量平均分子量が8,720であった。固形分濃度を測定すると30質量%であった。
(Synthesis Example 5: Synthesis of ink repellent agent (E-5))
In an autoclave with an internal volume of 2,000 cm 3 equipped with a stirrer, 317.5 g of C4α-Cl acrylate, 79.4 g of MAA, 47.7 g of IBMA, 52.9 g of 2-HEMA, 4.6 g of DSH, Polymerization initiator V-70 (2.0 g) and MEK (1160 g) were added, polymerized at 50 ° C. for 24 hours with stirring under a nitrogen atmosphere, and further heated at 70 ° C. for 5 hours to inactivate the polymerization initiator. A solution of the copolymer was obtained. The copolymer had a number average molecular weight of 5,060 and a mass average molecular weight of 8,720. It was 30 mass% when solid content concentration was measured.
 次いで、撹拌機を備えた内容積300cmのオートクレーブに上記共重合体の溶液の130.0g、AOIの3.6g(共重合体の水酸基に対して0.8等量)、DBTDLの0.014g、TBQの0.18gを仕込み、撹拌しながら、40℃で24時間反応させ、粗重合体を合成した。得られた粗重合体の溶液にヘキサンを加えて再沈精製した後、真空乾燥し、撥インク剤(E-5)を得た。撥インク剤(E-5)は、数平均分子量が8,000、質量平均分子量が10,600であり、フッ素原子の含有率は28.0質量%、酸価は93.3(mgKOH/g)であった。 Subsequently, 130.0 g of the above copolymer solution, 3.6 g of AOI (0.8 equivalent to the hydroxyl group of the copolymer), and 0.02 of DBTDL were placed in an autoclave having an internal volume of 300 cm 3 equipped with a stirrer. 014 g and 0.18 g of TBQ were charged and reacted at 40 ° C. for 24 hours with stirring to synthesize a crude polymer. Hexane was added to the resulting crude polymer solution for purification by reprecipitation, followed by vacuum drying to obtain an ink repellent agent (E-5). The ink repellent agent (E-5) has a number average molecular weight of 8,000, a mass average molecular weight of 10,600, a fluorine atom content of 28.0% by mass, and an acid value of 93.3 (mgKOH / g). )Met.
(合成例6:撥インク剤(E-6)の合成)
 撹拌機を備えた内容積1Lのオートクレーブに、アセトンの555.0g、C6FMAの60.0g、X-174DXの120.0g、MAAの24.0g、CHMAの36.0g、連鎖移動剤DSHの5.4gおよび重合開始剤V-70の2.0gを仕込み、窒素雰囲気下に撹拌しながら、40℃で18時間重合させ、撥インク剤(E-6)の溶液を得た。
(Synthesis Example 6: Synthesis of ink repellent agent (E-6))
In an autoclave with an internal volume of 1 L equipped with a stirrer, 555.0 g of acetone, 60.0 g of C6FMA, 120.0 g of X-174DX, 24.0 g of MAA, 36.0 g of CHMA, 5 of chain transfer agent DSH .4 g and 2.0 g of polymerization initiator V-70 were charged and polymerized at 40 ° C. for 18 hours with stirring under a nitrogen atmosphere to obtain a solution of an ink repellent agent (E-6).
 得られた撥インク剤(E-6)のアセトン溶液に水を加え再沈精製し、次いで石油エーテルにて再沈精製し、真空乾燥し、撥インク剤(E-6)を得た。撥インク剤(E-6)は、数平均分子量が9,000、質量平均分子量が11,700であり、フッ素原子の含有率が14.7質量%、酸価が65mgKOH/gであった。 Water was added to the acetone solution of the obtained ink repellent agent (E-6) for purification by reprecipitation, followed by reprecipitation purification with petroleum ether and vacuum drying to obtain an ink repellent agent (E-6). The ink repellent agent (E-6) had a number average molecular weight of 9,000, a mass average molecular weight of 11,700, a fluorine atom content of 14.7% by mass, and an acid value of 65 mgKOH / g.
(合成例7:撥インク剤(E-7)の合成)
 撹拌機を備えた内容積1Lのオートクレーブに、アセトンの555.0g、C8FAの48.0g、X-8201の120.0g、MAAの12.0g、IBMAの60.0g、連鎖移動剤DSHの10.8gおよび重合開始剤V-70の3.0gを仕込み、窒素雰囲気下に撹拌しながら、40℃で18時間重合させ、撥インク剤(E-7)の溶液を得た。
(Synthesis Example 7: Synthesis of ink repellent agent (E-7))
In an autoclave with a 1 L internal volume equipped with a stirrer, 555.0 g of acetone, 48.0 g of C8FA, 120.0 g of X-8201, 12.0 g of MAA, 60.0 g of IBMA, 10 of chain transfer agent DSH .8 g and 3.0 g of polymerization initiator V-70 were charged and polymerized at 40 ° C. for 18 hours with stirring in a nitrogen atmosphere to obtain a solution of an ink repellent agent (E-7).
 得られた撥インク剤(E-7)のアセトン溶液に水を加え再沈精製し、次いで石油エーテルにて再沈精製し、真空乾燥し、撥インク剤(E-7)を得た。撥インク剤(E-7)は、数平均分子量が4,500、質量平均分子量が5,590であり、フッ素原子の含有率が12.5質量%、酸価が33mgKOH/gであった。
 上記で得られたまたは準備した撥インク剤(E-1)~(E-7)の原料組成と特性を表1にまとめて示す。
Water was added to the acetone solution of the obtained ink repellent agent (E-7) for reprecipitation purification, followed by reprecipitation purification with petroleum ether and vacuum drying to obtain an ink repellent agent (E-7). The ink repellent agent (E-7) had a number average molecular weight of 4,500, a mass average molecular weight of 5,590, a fluorine atom content of 12.5% by mass, and an acid value of 33 mgKOH / g.
Table 1 summarizes the raw material compositions and properties of the ink repellent agents (E-1) to (E-7) obtained or prepared above.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(合成例8:撥インク剤(E-8)の合成)
 撹拌機を備えた1,000cmの三口フラスコに、化合物(s1-1)の15.0g、化合物(s2-1)の20.0g、化合物(s3-1)の27.0gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にIPAの284.3gを入れて、原料溶液とした。
(Synthesis Example 8: Synthesis of ink repellent agent (E-8))
In a 1,000 cm 3 three-necked flask equipped with a stirrer, 15.0 g of the compound (s1-1), 20.0 g of the compound (s2-1), and 27.0 g of the compound (s3-1) were placed. A hydrolyzable silane compound mixture was obtained. Next, 284.3 g of IPA was added to this mixture to prepare a raw material solution.
 得られた原料溶液に、1%塩酸水溶液を30.0g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(E-8)のIPA溶液(撥インク剤(E-8)濃度:10質量%)を得た。
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。
To the obtained raw material solution, 30.0 g of 1% hydrochloric acid aqueous solution was dropped. After completion of dropping, the mixture was stirred at 40 ° C. for 5 hours to obtain an IPA solution of the ink repellent agent (E-8) (concentration of ink repellent agent (E-8): 10% by mass).
In addition, after completion | finish of reaction, the component of the reaction liquid was measured using the gas chromatography, and it confirmed that each compound as a raw material became below the detection limit.
(合成例9、10:撥インク剤(E-9)、(E-10)の合成)
 合成例8においてモノマー成分の加水分解性シラン化合物およびその量を表2のように変更した以外は合成例8と同様にして、撥インク剤(E-9)のIPA溶液(撥インク剤(E-9)濃度:10質量%)、撥インク剤(E-10)のIPA溶液(撥インク剤(E-10)濃度:10質量%)を得た。
(Synthesis Examples 9 and 10: Synthesis of ink repellent agents (E-9) and (E-10))
An IPA solution (ink repellent agent (E-9)) of an ink repellent agent (E-9) was prepared in the same manner as in Synthesis Example 8 except that the hydrolyzable silane compound as a monomer component and the amount thereof were changed as shown in Table 2 −9) Concentration: 10% by mass), and an IPA solution of the ink repellent agent (E-10) (concentration of ink repellent agent (E-10): 10% by mass) was obtained.
 得られた撥インク剤((E-8)~(E-10))の製造に用いた原料加水分解性シラン化合物の仕込み量等を表2に示す。表2中、シラン化合物は、加水分解性シラン化合物を意味する。また、得られた撥インク剤((E-8)~(E-10))の数平均分子量(Mn)、質量平均分子量(Mw)、フッ素原子の含有率(質量%)を測定した結果を、表2に示す。 Table 2 shows the amount of raw material hydrolyzable silane compound used in the production of the obtained ink repellent agents ((E-8) to (E-10)). In Table 2, the silane compound means a hydrolyzable silane compound. In addition, the number average molecular weight (Mn), mass average molecular weight (Mw), and fluorine atom content (% by mass) of the obtained ink repellent agents ((E-8) to (E-10)) were measured. Table 2 shows.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[例1:ネガ型感光性樹脂組成物の製造および硬化膜、隔壁(パターン膜)の製造]
(ネガ型感光性樹脂組成物の製造)
 アルカリ可溶性樹脂(A1)組成物を固形分(樹脂(A1))が10.0gとなる量、IR907の0.30g、OXE02の0.10g、EABの0.20g、PAG-Aの0.30g、エポキシAの1.60g、撥インク剤(E-3)の0.05g、DPHAの5.0g、EDMの30.0g、全量が100gとなるようにPGMEを加え、200cmの撹拌用容器に入れ、3時間撹拌してネガ型感光性樹脂組成物1を製造した。
[Example 1: Production of negative photosensitive resin composition and production of cured film and partition wall (pattern film)]
(Manufacture of negative photosensitive resin composition)
The amount of solid content (resin (A1)) of 10.0 g of the alkali-soluble resin (A1) composition, 0.390 g of IR907, 0.10 g of OXE02, 0.20 g of EAB, 0.30 g of PAG-A , 1.60 g of epoxy a, 0.05 g of the ink repellent agent (E-3), 5.0g of DPHA, 30.0 g of EDM, the PGME so the total amount is 100g added, stirred vessel for 200 cm 3 The negative photosensitive resin composition 1 was manufactured by stirring for 3 hours.
(硬化膜の製造)
 10cm四方のガラス基板をエタノールで30秒間超音波洗浄し、次いで、5分間のUV/O処理を行った。UV/O処理には、UV/O発生装置としてPL2001N-58(センエンジニアリング社製)を使用した。254nm換算の光パワー(光出力)は10mW/cmであった。
 上記洗浄後のガラス基板表面に、スピンナを用いて、上記で得られたネガ型感光性樹脂組成物1を塗布した後、100℃で2分間、ホットプレート上で乾燥させ、膜厚2.4μm(例3のみ1.2μm)の乾燥膜を形成した。得られた乾燥膜に対して、365nm換算の露光パワー(露光出力)が300mW/cmである超高圧水銀ランプのUV光を全面一括で照射した。この方法で、露光量が30mJ/cmまたは50mJ/cmとなるように照射時間を調整して2種類の硬化膜を製造した。なお、いずれの場合も露光の際に、330nm以下の光はカットした。
(Manufacture of cured film)
A 10 cm square glass substrate was ultrasonically cleaned with ethanol for 30 seconds, and then subjected to UV / O 3 treatment for 5 minutes. For the UV / O 3 treatment, PL2001N-58 (manufactured by Sen Engineering Co., Ltd.) was used as a UV / O 3 generator. The optical power (optical output) in terms of 254 nm was 10 mW / cm 2 .
After applying the negative photosensitive resin composition 1 obtained as described above to the glass substrate surface after the washing using a spinner, it was dried on a hot plate at 100 ° C. for 2 minutes to obtain a film thickness of 2.4 μm. A dry film (1.2 μm in Example 3 only) was formed. The entire surface of the obtained dried film was irradiated with UV light from an ultrahigh pressure mercury lamp having an exposure power (exposure output) in terms of 365 nm of 300 mW / cm 2 . By this method, two types of cured films were produced by adjusting the irradiation time so that the exposure amount was 30 mJ / cm 2 or 50 mJ / cm 2 . In all cases, light of 330 nm or less was cut during the exposure.
 次いで、上記露光処理後のガラス基板を2.38%テトラメチル水酸化アンモニウム水溶液に10秒間浸漬処理し、水により洗い流した後、乾燥させた。次いで、これをホットプレート上、230℃で60分間加熱することにより、開口部のない硬化膜を得た。 Next, the glass substrate after the exposure treatment was immersed in a 2.38% tetramethylammonium hydroxide aqueous solution for 10 seconds, washed away with water, and then dried. Subsequently, this was heated on a hot plate at 230 ° C. for 60 minutes to obtain a cured film having no opening.
(パターン膜1の製造)
 10cm四方のガラス基板をエタノールで30秒間超音波洗浄し、次いで、5分間のUV/O処理を行った。UV/O処理には、UV/O発生装置としてPL2001N-58(センエンジニアリング社製)を使用した。254nm換算の光パワー(光出力)は10mW/cmであった。
(Manufacture of pattern film 1)
A 10 cm square glass substrate was ultrasonically cleaned with ethanol for 30 seconds, and then subjected to UV / O 3 treatment for 5 minutes. For the UV / O 3 treatment, PL2001N-58 (manufactured by Sen Engineering Co., Ltd.) was used as a UV / O 3 generator. The optical power (optical output) in terms of 254 nm was 10 mW / cm 2 .
 上記洗浄後のガラス基板表面に、スピンナを用いて、上記で得られたネガ型感光性樹脂組成物1を塗布した後、100℃で2分間、ホットプレート上で乾燥させ、膜厚2.4μm(例3のみ1.2μm)の乾燥膜を形成した。得られた乾燥膜に対して、マスキング部(非露光部)が2.5cm×5cmとなるフォトマスクを介して、365nm換算の露光パワー(露光出力)が300mW/cmである超高圧水銀ランプのUV光を全面一括で照射した(露光量は30mJ/cmまたは50mJ/cm)。露光の際に、330nm以下の光はカットした。また、乾燥膜とフォトマスクとの離間距離は50μmとした。フォトマスクは、ライン/スペースが20μm/50μm、10μm/50μm、8μm/50μm、6μm/50μm、4μm/50μmの設計のものを使用した。 After applying the negative photosensitive resin composition 1 obtained as described above to the glass substrate surface after the washing using a spinner, it was dried on a hot plate at 100 ° C. for 2 minutes to obtain a film thickness of 2.4 μm. A dry film (1.2 μm in Example 3 only) was formed. An ultrahigh pressure mercury lamp whose exposure power (exposure output) in terms of 365 nm is 300 mW / cm 2 through a photomask having a masking part (non-exposed part) of 2.5 cm × 5 cm with respect to the obtained dried film. the UV light was irradiated on the whole surface once (exposure amount 30 mJ / cm 2 or 50mJ / cm 2). During the exposure, light of 330 nm or less was cut. The distance between the dry film and the photomask was 50 μm. A photomask having a line / space design of 20 μm / 50 μm, 10 μm / 50 μm, 8 μm / 50 μm, 6 μm / 50 μm, 4 μm / 50 μm was used.
 次いで、上記露光処理後のガラス基板を2.38%テトラメチル水酸化アンモニウム水溶液に40秒間浸漬して現像し、非露光部を水により洗い流し、乾燥させた。次いで、これをホットプレート上、230℃で60分間加熱することにより、フォトマスクのマスキング部に対応した開口部を有する硬化膜としてパターン膜1を得た。 Next, the glass substrate after the exposure treatment was developed by immersing in a 2.38% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the non-exposed portion was washed away with water and dried. Next, this was heated on a hot plate at 230 ° C. for 60 minutes to obtain a pattern film 1 as a cured film having an opening corresponding to the masking portion of the photomask.
(パターン膜2の製造)
 10cm四方のガラス基板をエタノールで30秒間超音波洗浄し、次いで、5分間のUV/O処理を行った。UV/O処理には、UV/O発生装置としてPL2001N-58(センエンジニアリング社製)を使用した。254nm換算の光パワー(光出力)は10mW/cmであった。
(Manufacture of pattern film 2)
A 10 cm square glass substrate was ultrasonically cleaned with ethanol for 30 seconds, and then subjected to UV / O 3 treatment for 5 minutes. For the UV / O 3 treatment, PL2001N-58 (manufactured by Sen Engineering Co., Ltd.) was used as a UV / O 3 generator. The optical power (optical output) in terms of 254 nm was 10 mW / cm 2 .
 上記洗浄後のガラス基板表面に、スピンナを用いて、上記で得られたネガ型感光性樹脂組成物1を塗布した後、100℃で2分間、ホットプレート上で乾燥させ、膜厚2.4μm(例3のみ1.2μm)の乾燥膜を形成した。得られた乾燥膜に対して、マスキング部(非露光部)が2.5cm×5cmとなるフォトマスクを介して、365nm換算の露光パワー(露光出力)が300mW/cmである超高圧水銀ランプのUV光を全面一括で照射した(露光量は30mJ/cmまたは50mJ/cm)。露光の際に、330nm以下の光はカットした。また、乾燥膜とフォトマスクとの離間距離は50μmとした。フォトマスクは、ライン/スペースが20μm/50μm、10μm/50μm、8μm/50μm、6μm/50μm、4μm/50μmの設計のものを使用した。 After applying the negative photosensitive resin composition 1 obtained as described above to the glass substrate surface after the washing using a spinner, it was dried on a hot plate at 100 ° C. for 2 minutes to obtain a film thickness of 2.4 μm. A dry film (1.2 μm in Example 3 only) was formed. An ultrahigh pressure mercury lamp whose exposure power (exposure output) in terms of 365 nm is 300 mW / cm 2 through a photomask having a masking part (non-exposed part) of 2.5 cm × 5 cm with respect to the obtained dried film. the UV light was irradiated on the whole surface once (exposure amount 30 mJ / cm 2 or 50mJ / cm 2). During the exposure, light of 330 nm or less was cut. The distance between the dry film and the photomask was 50 μm. A photomask having a line / space design of 20 μm / 50 μm, 10 μm / 50 μm, 8 μm / 50 μm, 6 μm / 50 μm, 4 μm / 50 μm was used.
 次いで、上記露光処理後のガラス基板を2.38%テトラメチル水酸化アンモニウム水溶液に200秒間浸漬して現像し、非露光部を1.5MPaの高圧水により10秒洗い流し、乾燥させた。次いで、これをホットプレート上、230℃で60分間加熱することにより、フォトマスクのマスキング部に対応した開口部を有する硬化膜としてパターン膜2を得た。 Next, the glass substrate after the exposure treatment was developed by immersing it in a 2.38% tetramethylammonium hydroxide aqueous solution for 200 seconds, and the non-exposed portion was washed with 1.5 MPa high-pressure water for 10 seconds and dried. Next, this was heated on a hot plate at 230 ° C. for 60 minutes to obtain a pattern film 2 as a cured film having an opening corresponding to the masking portion of the photomask.
(パターン膜3の製造)
 ガラス基板上にITO層を有するITO基板を用い、そのITO層上に、スピンナを用いて、上記ネガ型感光性樹脂組成物1を塗布した後、100℃で2分間ホットプレート上で乾燥させ、膜厚2.4μm(例3のみ1.2μm)の乾燥膜を形成した。得られた乾燥膜に対して、開口パターンを有するフォトマスク(遮光部が100μm×200μm、光透過部が20μmの格子状パターン)を介して、365nm換算の露光パワー(露光出力)が300mW/cmである超高圧水銀ランプのUV光を全面一括照射した。露光の際に、330nm以下の光はカットした。また、乾燥膜とフォトマスクとの離間距離は50μmとした。各例において、露光条件は、露光時間が4秒間であり、露光量が100mJ/cmであった。
(Manufacture of pattern film 3)
Using an ITO substrate having an ITO layer on a glass substrate, and applying the negative photosensitive resin composition 1 on the ITO layer using a spinner, it was dried on a hot plate at 100 ° C. for 2 minutes, A dried film having a thickness of 2.4 μm (1.2 μm only in Example 3) was formed. An exposure power (exposure output) in terms of 365 nm is 300 mW / cm through a photomask having an opening pattern (lattice pattern having a light shielding part of 100 μm × 200 μm and a light transmission part of 20 μm) with respect to the obtained dried film. No. 2 UV light from an ultrahigh pressure mercury lamp was irradiated all over the surface. During the exposure, light of 330 nm or less was cut. The distance between the dry film and the photomask was 50 μm. In each example, the exposure conditions were an exposure time of 4 seconds and an exposure amount of 100 mJ / cm 2 .
 次いで、上記露光処理後のガラス基板を2.38質量%テトラメチル水酸化アンモニウム水溶液に40秒間浸漬して現像し、非露光部を水により洗い流し、乾燥させた。次いで、ホットプレート上、230℃で60分間加熱することにより、フォトマスクの開口パターンに対応したパターンを有する硬化膜としてパターン膜3を得た。 Next, the glass substrate after the exposure treatment was developed by immersing in a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the non-exposed portion was washed away with water and dried. Next, by heating on a hot plate at 230 ° C. for 60 minutes, a pattern film 3 was obtained as a cured film having a pattern corresponding to the opening pattern of the photomask.
 得られたネガ型感光性樹脂組成物1および硬化膜、パターン膜1~3について、以下の評価を実施した。評価結果をネガ型感光性樹脂組成物1の組成とともに表3に示す。
(評価)
<硬化膜の膜厚>
 レーザ顕微鏡(キーエンス社製、装置名:VK-8500)を用いて測定した。
The following evaluation was performed on the obtained negative photosensitive resin composition 1, the cured film, and the pattern films 1 to 3. The evaluation results are shown in Table 3 together with the composition of the negative photosensitive resin composition 1.
(Evaluation)
<Film thickness>
Measurement was performed using a laser microscope (manufactured by Keyence Corporation, apparatus name: VK-8500).
<撥インク性>
 上記で得られた硬化膜上面のPGMEA接触角を下記の方法で測定し、撥インク性の評価とした。
 静滴法により、JIS R3257「基板ガラス表面のぬれ性試験方法」に準拠して、硬化膜上面3ヶ所にPGMEA滴を載せ、各PGMEA滴について測定した。液滴は2μL/滴とし、測定は20℃で行った。接触角は、3測定値の平均値から求めた。
 上記で得られた硬化膜上面のPGMEA接触角を上記の方法で測定した。
<Ink repellency>
The PGMEA contact angle on the upper surface of the cured film obtained above was measured by the following method to evaluate ink repellency.
In accordance with JIS R3257 “Testing method for wettability of substrate glass surface”, PGMEA droplets were placed on the upper surface of the cured film by the sessile drop method, and each PGMEA droplet was measured. The droplet was 2 μL / droplet, and the measurement was performed at 20 ° C. The contact angle was determined from the average value of 3 measurements.
The PGMEA contact angle on the upper surface of the cured film obtained above was measured by the above method.
 ◎:接触角45度以上
 ○:接触角40度以上、45度未満
 △:接触角35度以上、40度未満
 ×:接触角35度未満
◎: Contact angle 45 ° or more ○: Contact angle 40 ° or more and less than 45 ° △: Contact angle 35 ° or more and less than 40 ° ×: Contact angle less than 35 °
<パターン形成性>
 パターン膜1に関し、下記の基準でパターン形成性を評価した。ライン/スペースが20μm/50μmのライン部分の線幅を測定した。
 ◎:マスク寸法に対し、±3μm以内の線幅である。
 ○:マスク寸法に対し、±3μm超5μm以内の線幅である。
 ×:マスク寸法に対し、線幅が±5μm超である、または、剥離が生じた。
<Pattern formability>
With respect to the pattern film 1, the pattern forming property was evaluated according to the following criteria. The line width of the line portion where the line / space was 20 μm / 50 μm was measured.
A: The line width is within ± 3 μm with respect to the mask dimension.
○: The line width is more than ± 3 μm and within 5 μm with respect to the mask dimension
X: The line width exceeds ± 5 μm with respect to the mask dimension, or peeling occurred.
<現像時間(200秒)残し解像度>
 パターン膜2に関し、下記の基準で長時間現像に対する耐剥離性を評価した。
 ◎:少なくとも10μmの線幅のラインが残っている。
 ○:少なくとも20μmの線幅のラインが残っている。
 ×:すべてのライン/スペースサンプルにおいてライン部分が剥離した。
<Development time (200 seconds) remaining resolution>
With respect to the pattern film 2, the peel resistance against long-time development was evaluated according to the following criteria.
A: A line having a line width of at least 10 μm remains.
○: A line having a line width of at least 20 μm remains.
X: The line part peeled in all the line / space samples.
<開口部残渣>
 パターン膜3付きのITO基板における開口部の中央部分について以下の条件でX線光電子分光法(XPS)により表面解析を行った。XPSにより測定された開口部表面のF/In値(F1s/In3d5;炭素原子濃度に対するインジウム原子濃度の比の値)が1.0未満のものを「◎」、1.0~2.0のものを「○」、2.0以上のものを「×」とした。
<Opening residue>
Surface analysis was performed by X-ray photoelectron spectroscopy (XPS) on the central portion of the opening in the ITO substrate with the pattern film 3 under the following conditions. When the F / In value (F1s / In3d5; ratio of the indium atom concentration to the carbon atom concentration) on the surface of the opening measured by XPS is less than 1.0, “」 ”, 1.0 to 2.0 The thing was set as "(circle)" and 2.0 or more was set as "x".
[XPSの条件]
 装置:アルバックファイ社製Quantera‐SXM
 X線源:Al Kα
 X線のビームサイズ:約20μmφ
 測定エリア:約20μmφ
 検出角:試料面から45°
 測定ピーク:F1s
 測定時間(Acquired Timeとして):5分以内
 解析ソフト:MultiPak
[Conditions for XPS]
Apparatus: Quantera-SXM manufactured by ULVAC-PHI
X-ray source: Al Kα
X-ray beam size: about 20μmφ
Measurement area: about 20μmφ
Detection angle: 45 ° from the sample surface
Measurement peak: F1s
Measurement time (Acquired Time): within 5 minutes Analysis software: MultiPak
[例2~13]
 例1において、ネガ型感光性樹脂組成物を表3、表4または表5に示す組成に変更した以外は、同様の方法で、ネガ型感光性樹脂組成物および隔壁、硬化膜を製造し、例1と同様の評価を行った。各例の評価結果をそれぞれネガ型感光性樹脂組成物の組成とともに表3、表4および表5に示す。
[Examples 2 to 13]
In Example 1, except that the negative photosensitive resin composition was changed to the composition shown in Table 3, Table 4 or Table 5, a negative photosensitive resin composition, a partition, and a cured film were produced in the same manner. Evaluation similar to Example 1 was performed. The evaluation results of each example are shown in Table 3, Table 4, and Table 5 together with the composition of the negative photosensitive resin composition.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 本発明のネガ型感光性樹脂組成物の実施例に相当する例1~10では、不飽和二重結合を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)、光重合開始剤(B)、酸発生剤(C)および酸硬化剤(D)を含有することから、露光量が30mJ/cmのように低露光量であっても高い撥液性が得られた。また、露光量50mJ/cmあっても線幅が太りにくく、パターン形成性が良好である。 In Examples 1 to 10 corresponding to the examples of the negative photosensitive resin composition of the present invention, an alkali-soluble resin or alkali-soluble monomer (A) having an unsaturated double bond, a photopolymerization initiator (B), Since the acid generator (C) and the acid curing agent (D) are contained, high liquid repellency was obtained even when the exposure amount was as low as 30 mJ / cm 2 . Further, even when the exposure amount is 50 mJ / cm 2, the line width is not easily increased, and the pattern formability is good.
 一方、比較例に相当する例11、12では、光重合開始剤(B)、酸発生剤(C)のいずれか一方を含有しないため、露光量が30mJ/cmのように低露光量の場合に、撥液性が不充分であった。そのため、硬化膜上面は撥インク性が不充分であった。比較例に相当する例13では、光重合開始剤(B)を増量したため、撥液性は十分であったが、酸発生剤(C)を含有しないため露光量が30mJ/cmのように低露光量の場合でも、線幅が太りやすく、パターン形成性が不足していた。 On the other hand, in Examples 11 and 12 corresponding to the comparative examples, since either one of the photopolymerization initiator (B) and the acid generator (C) is not contained, the exposure amount is as low as 30 mJ / cm 2 . In some cases, the liquid repellency was insufficient. For this reason, the upper surface of the cured film has insufficient ink repellency. In Example 13 corresponding to the comparative example, the amount of the photopolymerization initiator (B) was increased, so that the liquid repellency was sufficient. However, since the acid generator (C) was not contained, the exposure amount was 30 mJ / cm 2 . Even in the case of a low exposure amount, the line width tends to be thick, and the pattern formability is insufficient.
1…基板、21…塗膜、22…乾燥膜、23…露光膜、23A…露光部、23B…非露光部、4…隔壁、4A…撥インク層、5…開口部、31…マスキング部、30:フォトマスク、9…インクジェットヘッド、10…インク、11…ドット、12…光学素子。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 21 ... Coating film, 22 ... Dry film, 23 ... Exposure film | membrane, 23A ... Exposure part, 23B ... Non-exposure part, 4 ... Partition, 4A ... Ink-repellent layer, 5 ... Opening part, 31 ... Masking part, 30: Photomask, 9 ... inkjet head, 10 ... ink, 11 ... dot, 12 ... optical element.

Claims (9)

  1.  光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)と、光ラジカル重合開始剤(B)と、光酸発生剤(C)と、酸硬化剤(D)と、フッ素原子を有する撥インク剤(E)とを含有することを特徴とするネガ型感光性樹脂組成物。 Photocurable alkali-soluble resin or alkali-soluble monomer (A), photoradical polymerization initiator (B), photoacid generator (C), acid hardener (D), and fluorine atom A negative photosensitive resin composition comprising an ink repellent agent (E).
  2.  分子内に2つ以上の不飽和二重結合を有し、酸性基およびフッ素原子のいずれも有しない化合物(F)をさらに含有することを特徴とする、請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin according to claim 1, further comprising a compound (F) having two or more unsaturated double bonds in the molecule and having neither an acidic group nor a fluorine atom. Resin composition.
  3.  前記酸硬化剤(D)がメラミン系化合物、尿素系化合物およびエポキシ系化合物から選ばれる、少なくとも1種である、請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, wherein the acid curing agent (D) is at least one selected from melamine compounds, urea compounds, and epoxy compounds.
  4.  有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池の製造に用いられる請求項1~3のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 3, which is used for production of an organic EL element, a quantum dot display, a TFT array or a thin film solar cell.
  5.  請求項1~4のいずれか1項に記載のネガ型感光性樹脂組成物を用いて形成されることを特徴とする樹脂硬化膜。 A cured resin film formed using the negative photosensitive resin composition according to any one of claims 1 to 4.
  6.  基板表面をドット形成用の複数の区画に仕切る形に形成された隔壁であって、請求項5に記載の樹脂硬化膜からなることを特徴とする隔壁。 A partition formed by partitioning the substrate surface into a plurality of sections for forming dots, and comprising the cured resin film according to claim 5.
  7.  基板表面に複数のドットと隣接するドット間に位置する隔壁とを有する光学素子であって、前記隔壁が請求項6に記載の隔壁で形成されていることを特徴とする光学素子。 An optical element having a plurality of dots and a partition located between adjacent dots on the surface of the substrate, wherein the partition is formed by the partition according to claim 6.
  8.  前記光学素子は、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池である請求項7に記載の光学素子。 The optical element according to claim 7, wherein the optical element is an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
  9.  前記ドットがインクジェット法で形成されていることを特徴とする請求項7または8に記載の光学素子。 The optical element according to claim 7 or 8, wherein the dots are formed by an ink-jet method.
PCT/JP2015/070289 2014-07-18 2015-07-15 Negative-type photosensitive resin composition, and resin cured film, partition and optical element WO2016010077A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016534467A JP6536578B2 (en) 2014-07-18 2015-07-15 Negative photosensitive resin composition, cured resin film, partition wall, optical element and method for producing optical element
CN201580038938.5A CN106662815B (en) 2014-07-18 2015-07-15 Negative photosensitive resin composition, resin cured film, partition wall, and optical element
KR1020177001713A KR102411740B1 (en) 2014-07-18 2015-07-15 Negative-type photosensitive resin composition, and resin cured film, partition and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-148345 2014-07-18
JP2014148345 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010077A1 true WO2016010077A1 (en) 2016-01-21

Family

ID=55078564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070289 WO2016010077A1 (en) 2014-07-18 2015-07-15 Negative-type photosensitive resin composition, and resin cured film, partition and optical element

Country Status (5)

Country Link
JP (1) JP6536578B2 (en)
KR (1) KR102411740B1 (en)
CN (1) CN106662815B (en)
TW (1) TWI660239B (en)
WO (1) WO2016010077A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129292A (en) * 2017-02-09 2018-08-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Black photosensitive resin composition, organic light-emitting element derived therefrom, quantum dot light-emitting element, and display device
WO2018155016A1 (en) * 2017-02-21 2018-08-30 日本ゼオン株式会社 Negative photosensitive resin composition
TWI698709B (en) * 2017-09-15 2020-07-11 南韓商Lg化學股份有限公司 Chemically amplified photoresist composition, photoresist pattern, and method for preparing photoresist pattern
WO2021177253A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Positive-type photosensitive resin composition
JP2021162863A (en) * 2020-03-31 2021-10-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light conversion ink composition, color filter, and image display device
WO2022210797A1 (en) * 2021-03-29 2022-10-06 株式会社カネカ Negative photosensitive composition, optical semiconductor device, solid-state imaging device and electronic device
US11690252B2 (en) 2019-05-24 2023-06-27 Samsung Display Co., Ltd. Display apparatus that includes concavo-convex structure on upper surface of pixel defining layer and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469945B1 (en) * 2017-07-14 2022-11-23 삼성디스플레이 주식회사 Display device and manufacturing method thereof
CN110412829A (en) * 2018-04-26 2019-11-05 东友精细化工有限公司 Negative light-sensitive resin combination, photocuring pattern and image display device
KR102311491B1 (en) * 2019-02-13 2021-10-08 삼성에스디아이 주식회사 Composition for double layer partition wall, double layer partition wall using the same and display device including the double layer partition wall
CN111752097A (en) * 2019-03-29 2020-10-09 常州强力电子新材料股份有限公司 Self-luminous photosensitive resin composition, color filter and image display device
KR20230096006A (en) 2020-10-28 2023-06-29 샌트랄 글래스 컴퍼니 리미티드 Fluorine-containing resins, liquid repellents, photosensitive resin compositions, cured products and displays
CN114203748A (en) * 2021-12-10 2022-03-18 Tcl华星光电技术有限公司 Display panel and method for manufacturing the same
KR20240002709A (en) 2022-06-29 2024-01-05 샌트랄 글래스 컴퍼니 리미티드 Photosensitive resin composition, resin film, cured product, dividing wall, organic electroluminescent element, wavelength conversion layer, display, method for producing cured product and method for producing dividing wall

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277494A (en) * 2003-03-13 2004-10-07 Asahi Glass Co Ltd Fluororesin and photosensitive resin composition
JP2005315984A (en) * 2004-04-27 2005-11-10 Asahi Glass Co Ltd Resist composition and film thereof
JP2007002194A (en) * 2005-06-27 2007-01-11 Nippon Kayaku Co Ltd Fluorine-containing polysiloxane, photosensitive resin composition using the same, and cured product thereof
JP2007017458A (en) * 2005-07-05 2007-01-25 Taiyo Ink Mfg Ltd Colored photosensitive resin composition and cured material thereof
JP2009003442A (en) * 2007-05-23 2009-01-08 Mitsubishi Chemicals Corp Photosensitive resin composition, liquid crystal alignment control rib, spacer, color filter and image display device
JP2009251392A (en) * 2008-04-08 2009-10-29 Fujifilm Corp Negative resist composition and pattern forming method
JP2011048064A (en) * 2009-08-26 2011-03-10 Asahi Kasei E-Materials Corp Photosensitive resin composition and laminate, and electromagnetic wave shield and transparent conductive substrate using the same
JP2012014932A (en) * 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd Photosensitive resin composition
WO2012086610A1 (en) * 2010-12-20 2012-06-28 旭硝子株式会社 Photosensitive resin composition, partition wall, color filter, and organic el element
JP2012185430A (en) * 2011-03-08 2012-09-27 Sumitomo Chemical Co Ltd Colored curable resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60318884T2 (en) * 2002-11-06 2009-01-22 Asahi Glass Co., Ltd. Barrier rib and process for its production
KR20110050409A (en) * 2008-07-30 2011-05-13 아사히 가라스 가부시키가이샤 Method for manufacturing substrate with partition walls and pixels formed therein
JP2012014931A (en) 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd Photosensitive resin composition
JP2013167687A (en) * 2012-02-14 2013-08-29 Mitsubishi Chemicals Corp Photosensitive coloring resin composition, color filter, and liquid-crystal display
WO2014084279A1 (en) * 2012-11-28 2014-06-05 旭硝子株式会社 Negative photosensitive resin composition, cured resin film, partition wall and optical element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277494A (en) * 2003-03-13 2004-10-07 Asahi Glass Co Ltd Fluororesin and photosensitive resin composition
JP2005315984A (en) * 2004-04-27 2005-11-10 Asahi Glass Co Ltd Resist composition and film thereof
JP2007002194A (en) * 2005-06-27 2007-01-11 Nippon Kayaku Co Ltd Fluorine-containing polysiloxane, photosensitive resin composition using the same, and cured product thereof
JP2007017458A (en) * 2005-07-05 2007-01-25 Taiyo Ink Mfg Ltd Colored photosensitive resin composition and cured material thereof
JP2009003442A (en) * 2007-05-23 2009-01-08 Mitsubishi Chemicals Corp Photosensitive resin composition, liquid crystal alignment control rib, spacer, color filter and image display device
JP2009251392A (en) * 2008-04-08 2009-10-29 Fujifilm Corp Negative resist composition and pattern forming method
JP2011048064A (en) * 2009-08-26 2011-03-10 Asahi Kasei E-Materials Corp Photosensitive resin composition and laminate, and electromagnetic wave shield and transparent conductive substrate using the same
JP2012014932A (en) * 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd Photosensitive resin composition
WO2012086610A1 (en) * 2010-12-20 2012-06-28 旭硝子株式会社 Photosensitive resin composition, partition wall, color filter, and organic el element
JP2012185430A (en) * 2011-03-08 2012-09-27 Sumitomo Chemical Co Ltd Colored curable resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129292A (en) * 2017-02-09 2018-08-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Black photosensitive resin composition, organic light-emitting element derived therefrom, quantum dot light-emitting element, and display device
CN108415220A (en) * 2017-02-09 2018-08-17 东友精细化工有限公司 Black-colored photosensitive resin composition, by its derivative organic illuminating element, quantum dot light emitting element and display device
WO2018155016A1 (en) * 2017-02-21 2018-08-30 日本ゼオン株式会社 Negative photosensitive resin composition
TWI698709B (en) * 2017-09-15 2020-07-11 南韓商Lg化學股份有限公司 Chemically amplified photoresist composition, photoresist pattern, and method for preparing photoresist pattern
US11042089B2 (en) 2017-09-15 2021-06-22 Lg Chem, Ltd. Chemically amplified photoresist composition, photoresist pattern, and method for preparing photoresist pattern
US11690252B2 (en) 2019-05-24 2023-06-27 Samsung Display Co., Ltd. Display apparatus that includes concavo-convex structure on upper surface of pixel defining layer and method of manufacturing the same
WO2021177253A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Positive-type photosensitive resin composition
JP2021162863A (en) * 2020-03-31 2021-10-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light conversion ink composition, color filter, and image display device
WO2022210797A1 (en) * 2021-03-29 2022-10-06 株式会社カネカ Negative photosensitive composition, optical semiconductor device, solid-state imaging device and electronic device

Also Published As

Publication number Publication date
KR102411740B1 (en) 2022-06-21
CN106662815B (en) 2020-06-16
JP6536578B2 (en) 2019-07-03
TW201619694A (en) 2016-06-01
TWI660239B (en) 2019-05-21
JPWO2016010077A1 (en) 2017-04-27
KR20170032318A (en) 2017-03-22
CN106662815A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6536578B2 (en) Negative photosensitive resin composition, cured resin film, partition wall, optical element and method for producing optical element
JP6905339B2 (en) How to manufacture bulkheads and how to repair bulkheads
JP6398774B2 (en) Negative photosensitive resin composition, cured resin film, partition and optical element
CN104823108B (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element
TW201418885A (en) Radiation-sensitive composition, method for forming cured film for display device, cured film for display device, and display device
JP7375546B2 (en) Negative photosensitive resin composition
KR20150107639A (en) Curable resin composition, cured film for display device, method for forming the same, and display device
KR102378162B1 (en) Negative photosensitive resin composition, partition, and optical element
JP7010240B2 (en) Negative photosensitive resin composition
JP5682572B2 (en) Photosensitive composition, partition and organic EL device
JP2017040869A (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element and method for manufacturing the same
KR101744645B1 (en) Resin composition for forming cured film, the cured film and method for forming the same, and display device
WO2017033835A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor
WO2017033834A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177001713

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15822466

Country of ref document: EP

Kind code of ref document: A1