WO2017033835A1 - Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor - Google Patents

Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor Download PDF

Info

Publication number
WO2017033835A1
WO2017033835A1 PCT/JP2016/074150 JP2016074150W WO2017033835A1 WO 2017033835 A1 WO2017033835 A1 WO 2017033835A1 JP 2016074150 W JP2016074150 W JP 2016074150W WO 2017033835 A1 WO2017033835 A1 WO 2017033835A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
partition
negative photosensitive
ink
Prior art date
Application number
PCT/JP2016/074150
Other languages
French (fr)
Japanese (ja)
Inventor
川島 正行
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017033835A1 publication Critical patent/WO2017033835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to an organic EL element, a quantum dot display, a negative photosensitive resin composition used for a TFT array or a thin film solar cell, a cured resin film, a partition wall and an optical element (specifically, an organic EL element, a quantum dot display,
  • the present invention relates to a TFT array and a thin film solar cell) and a method for producing the optical element.
  • an organic layer such as a light emitting layer is used as a dot by an inkjet (IJ) method.
  • IJ inkjet
  • a pattern printing method may be used. In such a method, a partition is provided along the outline of the dot to be formed, and an ink containing the material of the organic layer is injected into a partition (hereinafter also referred to as “opening”) surrounded by the partition. This is dried and / or heated to form dots having a desired pattern.
  • the upper surface of the partition wall needs to have ink repellency in order to prevent ink mixing between adjacent dots and to uniformly apply ink in dot formation.
  • the dot forming opening surrounded by the partition including the partition side surface needs to have ink affinity. Therefore, in order to obtain a partition having ink repellency on the upper surface, a method of forming a partition corresponding to a dot pattern by a photolithography method using a photosensitive resin composition containing an ink repellent agent is known. .
  • Patent Document 1 discloses that in an organic EL device or the like, at least one of hydrogen atoms is substituted with an alkali-soluble photosensitive resin having an acidic group and three or more ethylenic double bonds in the molecule.
  • An ink repellent agent comprising a polymer unit having an alkyl group having 20 or less carbon atoms (however, the alkyl group includes those having etheric oxygen) and a polymer unit having an ethylenic double bond;
  • a negative photosensitive resin composition containing a photopolymerization initiator is described.
  • As a photopolymerization initiator 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (IR907) is disclosed.
  • Patent Document 1 requires a high-resolution pattern particularly when the IJ method is applied to a medium-to-small OLED (Organic Light Emitting Diode) display using organic EL. Further, the line width of the partition wall becomes narrower, the partition wall easily peels off during development, and there is a problem that it is difficult to produce a device.
  • OLED Organic Light Emitting Diode
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a negative photosensitive resin composition having a high resolution pattern on the upper surface of the obtained partition wall having good ink repellency. And
  • the present invention also provides an optical element having dots that are accurately formed by uniformly applying ink to openings partitioned by a partition, specifically an organic EL element, a quantum dot display, a TFT array, and a thin-film solar cell, and
  • An object is to provide a method for producing the optical element.
  • the present invention has the gist of [1] to [9] below.
  • An alkali-soluble resin or alkali-soluble monomer (A) having photocurability, a photopolymerization initiator (B), and an ink repellent agent (C), and the photopolymerization initiator (B) Contains a photopolymerization initiator (B1) comprising an acridine compound, a negative photosensitive resin composition for organic EL elements, quantum dot displays, TFT arrays, or thin film solar cells.
  • a photopolymerization initiator (B2) excluding the photopolymerization initiator (B1)
  • B3 The negative photosensitive resin composition according to [1] or [2], further comprising a photopolymerization initiator (B3) that is a thioxanthone compound and has an absorbance at a wavelength of 365 nm of less than 0.2.
  • a photocurable alkali-soluble resin or alkali-soluble monomer (A) is obtained from a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, an epoxy resin having a biphenyl skeleton, and a fluorenyl-substituted bisphenol A type epoxy resin.
  • the negative photosensitive resin composition according to any one of [1] to [4], which is at least one selected.
  • the negative photosensitive resin composition which has a high-resolution pattern can be provided.
  • the optical element of the present invention can provide an optical element having dots that are accurately formed by uniformly applying ink to the openings partitioned by the partition walls.
  • (Meth) acryloyl group is a general term for “methacryloyl group” and “acryloyl group”.
  • the (meth) acryloyloxy group, (meth) acrylic acid, (meth) acrylate, (meth) acrylamide, and (meth) acrylic resin also conform to this.
  • the group represented by the formula (x) may be simply referred to as a group (x).
  • the compound represented by the formula (y) may be simply referred to as the compound (y).
  • the expressions (x) and (y) indicate arbitrary expressions.
  • a resin mainly composed of a certain component or “a resin mainly composed of a certain component” means that the proportion of the component occupies 50% by mass or more based on the total amount of the resin.
  • the “side chain” is a group other than a hydrogen atom or a halogen atom bonded to a carbon atom constituting the main chain in a polymer in which a repeating unit composed of carbon atoms constitutes the main chain.
  • total solid content of the photosensitive resin composition refers to a component that forms a cured film described later among the components contained in the photosensitive resin composition, and the photosensitive resin composition is heated at 140 ° C. for 24 hours. Obtained from the residue from which the solvent has been removed. The total solid content can also be calculated from the charged amount.
  • a film made of a cured product of a composition containing resin as a main component is referred to as a “resin cured film”.
  • a film coated with the photosensitive resin composition is referred to as a “coating film”, and a film obtained by drying the film is referred to as a “dry film”.
  • a film obtained by curing the “dry film” is a “resin cured film”. Further, the “resin cured film” may be simply referred to as “cured film”.
  • the resin cured film may be in the form of a partition formed in a shape that partitions a predetermined region into a plurality of sections. For example, the following “ink” is injected into the partitions partitioned by the partition walls, that is, the openings surrounded by the partition walls to form “dots”.
  • “Ink” is a generic term for liquids that have optical and / or electrical functions after drying, curing, and the like.
  • dots as various constituent elements may be pattern-printed by an ink jet (IJ) method using the ink for forming the dots.
  • IJ ink jet
  • “Ink” includes ink used in such applications.
  • “Ink repellency” is a property of repelling the above ink and has both water repellency and oil repellency.
  • the ink repellency can be evaluated by, for example, a contact angle when ink is dropped.
  • “Ink affinity” is a property opposite to ink repellency, and can be evaluated by the contact angle when ink is dropped as in the case of ink repellency.
  • the ink affinity can be evaluated by evaluating the degree of ink wetting and spreading (ink wetting and spreading property) when ink is dropped on a predetermined standard.
  • the “dot” indicates a minimum area where light modulation is possible in the optical element.
  • Perfect (%) represents mass% unless otherwise specified. Embodiments of the present invention will be described below.
  • the negative photosensitive resin composition of the present invention can be suitably used for organic EL devices, quantum dot displays, TFT arrays, or thin film solar cells.
  • the negative photosensitive resin composition of this invention is photopolymerization containing the photoinitiator (B1) which consists of alkali-soluble resin or alkali-soluble monomer (A) which has photocurability, and a specific compound.
  • An initiator (B) and an ink repellent agent (C) are contained.
  • the negative photosensitive resin composition of the present invention further comprises a photopolymerization initiator (B2), a photopolymerization initiator (B3), a crosslinking agent (D), a colorant (E), and a solvent (F) as necessary.
  • B2 photopolymerization initiator
  • B3 photopolymerization initiator
  • D crosslinking agent
  • E colorant
  • F solvent
  • alkali-soluble resin or alkali-soluble monomer (A))
  • the alkali-soluble resin will be described with a symbol (AP) and the alkali-soluble monomer with a symbol (AM). In the following description, these may be collectively referred to as “alkali-soluble resin (A)”.
  • the alkali-soluble resin (AP) a photosensitive resin having an acidic group and an ethylenic double bond in one molecule is preferable. Since the alkali-soluble resin (AP) has an ethylenic double bond in the molecule, the exposed portion of the negative photosensitive resin composition is polymerized and cured by radicals generated from the photopolymerization initiator (B). A cured film is formed.
  • the exposed area sufficiently cured in this way is not easily removed with an alkaline developer.
  • the alkali-soluble resin (AP) has an acidic group in the molecule
  • the non-exposed portion of the uncured negative photosensitive resin composition can be selectively removed with an alkaline developer.
  • the cured film can be in the form of a partition that partitions a predetermined region into a plurality of sections.
  • Examples of the acidic group include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
  • Examples of the ethylenic double bond include double bonds having an addition polymerization property such as a (meth) acryloyl group, an allyl group, a vinyl group, a vinyloxy group, and a vinyloxyalkyl group. These may be used alone or in combination of two or more.
  • some or all of the hydrogen atoms possessed by the ethylenic double bond may be substituted with an alkyl group such as a methyl group.
  • alkali-soluble resin (AP) having an ethylenic double bond examples include a resin (A-1) having a side chain having an acidic group and a side chain having an ethylenic double bond, and an epoxy group having an acidic group and ethylene. And a resin (A-2) into which an ionic double bond is introduced. These may be used alone or in combination of two or more. As such alkali-soluble resin (AP), those described in the specification of WO2014 / 084279 can be used.
  • alkali-soluble resin (AP) peeling of the cured film during development can be suppressed, and a high-resolution dot pattern can be obtained, and the linearity of the pattern when the dots are linear is good.
  • the resin (A-2) it is preferable to use the resin (A-2).
  • the linearity of a pattern is favorable means that the edge of the partition obtained does not have a chip etc. and is linear.
  • Examples of the resin (A-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton.
  • An epoxy resin having an acidic group and an ethylenic double bond are preferably introduced into the epoxy resin having fluorenyl-substituted bisphenol A type epoxy resin and the epoxy resin described in JP-A-2006-84985.
  • Bisphenol A type epoxy resin, bisphenol F type epoxy resin, epoxy resin having biphenyl skeleton, fluorenyl substituted bisphenol A type epoxy resin, and epoxy resin described in JP-A-2006-84985, respectively, have an acidic group and an ethylenic double bond.
  • a resin into which is introduced is more preferable.
  • bisphenol A type epoxy resins bisphenol F type epoxy resins, epoxy resins having a biphenyl skeleton, and fluorenyl-substituted bisphenol A type epoxy resins are particularly preferable.
  • these resins are used, the interaction with the photopolymerization initiator (B1) is improved, and the adhesion with the substrate is improved.
  • the number of ethylenic double bonds that the alkali-soluble resin (AP) has in one molecule is preferably 3 or more on average, and particularly preferably 6 or more.
  • the number of ethylenic double bonds is at least the lower limit of the above range, the alkali solubility between the exposed and unexposed portions is likely to be different, and a fine pattern can be formed with a smaller exposure amount.
  • the mass average molecular weight (Mw) of the alkali-soluble resin (AP) is preferably 1.5 ⁇ 10 3 to 30 ⁇ 10 3 , particularly preferably 2 ⁇ 10 3 to 15 ⁇ 10 3 .
  • the number average molecular weight (Mn) is preferably 500 to 20 ⁇ 10 3 , and particularly preferably 1.0 ⁇ 10 3 to 10 ⁇ 10 3 .
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) are those measured by a gel permeation chromatography method using polystyrene as a standard substance unless otherwise specified.
  • the acid value of the alkali-soluble resin (AP) is preferably 10 to 300 mgKOH / g, particularly preferably 30 to 150 mgKOH / g. When the acid value is within the above range, the developability of the negative photosensitive composition is improved.
  • alkali-soluble monomer for example, a monomer (A-3) having an acidic group and an ethylenic double bond is preferably used.
  • the acidic group and ethylenic double bond of the alkali-soluble monomer (AM) are the same as those of the alkali-soluble resin (AP).
  • the acid value of the alkali-soluble monomer (AM) is also preferably in the same range as the alkali-soluble resin (AP).
  • Examples of the monomer (A-3) include 2,2,2-triacryloyloxymethylethylphthalic acid.
  • the alkali-soluble resin or alkali-soluble monomer (A) contained in the negative photosensitive resin composition may be used alone or in combination of two or more.
  • the content of the alkali-soluble resin or alkali-soluble monomer (A) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
  • the photopolymerization initiator (B) in the present invention includes a photopolymerization initiator (B1) made of an acridine compound.
  • acridine compounds include 9-phenylacridine and 1,7-bis (9-acridinyl) heptane.
  • a photoinitiator (B1) may be used individually by 1 type, or may use 2 or more types together.
  • the photopolymerization initiator (B) preferably contains a photopolymerization initiator (B2) and / or a photopolymerization initiator (B3) in addition to the photopolymerization initiator (B1).
  • the photopolymerization initiator (B2) in the present invention comprises a compound other than the photopolymerization initiator (B1), and has an absorbance of 0.2 or more at a wavelength of 365 nm.
  • the absorbance at a wavelength of 365 nm is a value when a methanol solution in which the concentration of the photopolymerization initiator (B2) is 1.0 ⁇ 10 ⁇ 3 mass% is measured with a 1 cm square cell.
  • “absorbance” refers to absorbance at a wavelength of 365 nm measured by the method, unless otherwise specified.
  • Examples of the photopolymerization initiator (B2) include 4,4′-bis (dimethylamino) benzophenone (absorbance; 0.8), 4,4′-bis (diethylamino) benzophenone (absorbance; 0.8), and the like. .
  • the taper angle of the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention can be increased, and the shape of the partition also changes. Hateful.
  • the taper angle of a partition means the angle which the cross section of the taper part of a partition forms with respect to a base material. The cross-sectional shape of the partition walls can be observed with a scanning electron microscope (SEM) or the like.
  • the photopolymerization initiator (B3) in the present invention is a thioxanthone compound, and the absorbance at a wavelength of 365 nm is less than 0.2.
  • the absorbance is a value measured under the same conditions as the photopolymerization initiator (B2).
  • Examples of the photopolymerization initiator (B3) include isopropylthioxanthone (absorbance: 0.1), 2,4-diethylthioxanthone (absorbance: 0.1), and the like.
  • the photopolymerization initiator (B) may contain other photopolymerization initiators other than the photopolymerization initiators (B1), (B2), and (B3).
  • Other photopolymerization initiators include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Phenyl) -butan-1-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like.
  • the content of the photopolymerization initiator (B) in the total solid content of the negative photosensitive resin composition is preferably 0.1 to 50% by mass. More preferably, it is 0.5 to 30% by mass, and further preferably 1 to 15% by mass.
  • the content of the photopolymerization initiator (B1) in the total solid content in the negative photosensitive resin composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and 1 to 15% by mass. % Is particularly preferred.
  • the content ratio of (B1) is in the above range, the shape of the partition wall of the negative photosensitive resin composition is stable even when the exposure amount is changed.
  • the content of the photopolymerization initiator (B2) in the total solid content in the composition is preferably 1 to 10% by mass.
  • the taper angle of the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention can be increased, and the partition The shape of is difficult to change.
  • the content of the photopolymerization initiator (B3) in the total solid content in the composition is preferably 1 to 10% by mass.
  • the content ratio of the photopolymerization initiator (B3) is within the above range, the ink repellency of the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention is easily developed even at a low exposure amount. .
  • the fine line formation property at the time of image development of the partition formed from the cured film obtained from the negative photosensitive resin composition of this invention improves.
  • the ink repellent agent (C) in the present invention has a fluorine atom.
  • the ink repellent agent (C) has a property of transferring to the upper surface in the process of forming a cured film using the negative photosensitive resin composition containing the same (upper surface transfer property) and ink repellency.
  • the upper layer portion including the upper surface of the obtained cured film becomes a layer in which the ink repellent agent (C) is present densely (hereinafter also referred to as “ink repellent layer”). Ink repellency is imparted to the upper surface of the cured film.
  • the content of fluorine atoms in the ink repellent agent (C) is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and particularly preferably 10 to 30% by mass. . If the fluorine atom content of the ink repellent agent (C) is at least the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film, and if it is less than the upper limit, the negative photosensitive resin composition Compatibility with other components in the inside is improved.
  • the ink repellent agent (C) is preferably a compound having an ethylenic double bond. Since the ink repellent agent (C) has an ethylenic double bond, radicals act on the ethylenic double bond of the ink repellent agent (C) transferred to the upper surface, and the ink repellent agent (C) or ink repellent Crosslinking by (co) polymerization with the agent (C) and other components having an ethylenic double bond contained in the negative photosensitive resin composition becomes possible.
  • the fixability in the upper layer portion of the cured film of the ink repellent agent (C), that is, the ink repellent layer can be improved.
  • the ink repellent agent (C) can be sufficiently fixed to the ink repellent layer even when the exposure amount during exposure is low.
  • the case where the ink repellent agent (C) has an ethylenic double bond is as described above.
  • the photocurable component mainly composed of the alkali-soluble resin (A) present around the ink repellent agent (C) is sufficiently cured.
  • the ink repellent agent (C) can be sufficiently fixed.
  • Examples of the ink repellent agent (C) include an ink repellent agent (C1) made of a compound in which the main chain is a hydrocarbon chain and the side chain contains a fluorine atom.
  • an ink repellent agent (C2) made of a partially hydrolyzed condensate of a hydrolyzable silane compound containing a hydrolyzable silane compound having a fluorine atom may be used.
  • the ink repellent agent (C1) and the ink repellent agent (C2) are used alone or in combination.
  • the ink repellent agent (C1) from the viewpoint of developing higher ink repellency.
  • an ink repellent agent (C2) it is preferable to use an ink repellent agent (C2).
  • the ink repellent agent (C1) is a compound having a main chain of a hydrocarbon chain and a side chain having a fluorine atom.
  • the mass average molecular weight (Mw) of the ink repellent agent (C1) is preferably from 100 to 200,000, more preferably from 1,000 to 150,000, and particularly preferably from 10,000 to 130,000.
  • Mw mass average molecular weight
  • the ink repellent agent (C1) tends to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition.
  • the opening residue is less than the upper limit, which is preferable.
  • the ink repellent agent (C1) is a polymer containing a side chain comprising a fluoroalkyl group which may contain an etheric oxygen atom and / or a side chain having a fluoroalkyl group which may contain an etheric oxygen atom. Preferably there is.
  • the fluoroalkyl group may be linear or branched.
  • Specific examples of the fluoroalkyl group not containing an etheric oxygen atom include the following structures. -CF 3 , -CF 2 CF 3 , -CF 2 CHF 2 ,-(CF 2 ) 2 CF 3 ,-(CF 2 ) 3 CF 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 ,-(CF 2 ) 9 CF 3 ,-(CF 2 ) 11 CF 3 ,-(CF 2 ) 15 CF 3 .
  • fluoroalkyl group containing an etheric oxygen atom examples include the following structures. -CF (CF 3 ) O (CF 2 ) 5 CF 3 , -CF 2 O (CF 2 CF 2 O) r1 CF 3, —CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r 2 C 6 F 13 , And —CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r3 C 3 F 7 .
  • r1 is an integer of 1 to 8
  • r2 is an integer of 1 to 4
  • r3 is an integer of 1 to 5.
  • the hydrocarbon chain constituting the main chain of the ink repellent agent (C1) specifically, a main chain obtained by polymerization of a monomer having an ethylenic double bond, —Ph—CH 2 — (however, “ Ph ”represents a benzene skeleton.) And a novolak-type main chain composed of repeating units.
  • the ink repellent agent (C1) can include one or more side chains selected from the group consisting of a side chain having an acidic group, a side chain having an ethylenic double bond, and a side chain having an oxyalkylene group.
  • One side chain may contain two or more selected from the group consisting of an acidic group, an ethylenic double bond, and an oxyalkylene group.
  • the ink repellent agent (C1) can contain side chains such as a dimethyl silicone chain, an alkyl group, a glycidyl group, an isobornyl group, an isocyanate group, and a trialkoxysilyl group.
  • the main chain of the ink repellent agent (C1) is a novolak-type main chain composed of repeating units of -Ph-CH 2-
  • the side chain having a fluorine atom in the benzene skeleton (Ph) constituting the main chain is usually used.
  • a polymer having an acidic group, an ethylenic double bond, and an oxyalkylene group are used as the ink repellent agent (C1).
  • ink repellent agent (C1) specifically, for example, in paragraphs [0080] to [0102] of International Publication No. 2014/046209 and in paragraphs [0145] to [0170] of International Publication No. 2014/0669478, for example. What has been described.
  • the ink repellent agent (C2) is a partially hydrolyzed condensate of a hydrolyzable silane compound mixture (hereinafter also referred to as “mixture (M)”).
  • the mixture (M) is a hydrolyzable silane compound having a fluoroalkylene group and / or a fluoroalkyl group and a group in which a hydrolyzable group is bonded to a silicon atom (hereinafter referred to as “hydrolyzable silane compound (s1)”).
  • hydrolyzable silane compound (s1) As an essential component, and optionally a hydrolyzable silane compound other than the hydrolyzable silane compound (s1).
  • hydrolyzable silane compound optionally contained in the mixture (M) examples include the following hydrolyzable silane compound (s2) and hydrolyzable silane compound (s3).
  • hydrolyzable silane compound (s2) is particularly preferable.
  • Hydrolyzable silane compound (s2) a hydrolyzable silane compound in which four hydrolyzable groups are bonded to a silicon atom.
  • Hydrolyzable silane compound (s3) a hydrolyzable silane compound having a group having an ethylenic double bond and a group in which a hydrolyzable group is bonded to a silicon atom, and does not contain a fluorine atom.
  • hydrolyzable silane compound (s1) include the following compounds. F (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 6 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2) 3 OCF ( CF 3) CF 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3, F (CF 2) 2 O ( CF 2) 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3.
  • F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 and F (CF 2 ) 3 OCF (CF 3 ) CF 2 O (CF 2 ) 2 CH 2 CH 2 Si (OCH 3 ) 3 are Particularly preferred.
  • the content of the hydrolyzable silane compound (s1) in the mixture (M) is preferably such that the fluorine atom content in the partially hydrolyzed condensate obtained from the mixture is 1 to 40% by mass. More preferred is 5 to 35% by mass, and particularly preferred is 10 to 30% by mass.
  • the content ratio of the hydrolyzable silane compound (s1) is not less than the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film. Compatibility with the decomposable silane compound is improved.
  • Specific examples of the hydrolyzable silane compound (s2) include the following compounds. Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , A partial hydrolysis condensate of Si (OCH 3 ) 4 , Partially hydrolyzed condensate of Si (OC 2 H 5 ) 4 .
  • the content of the hydrolyzable silane compound (s2) in the mixture (M) is preferably 0.01 to 5 mol, particularly 0.05 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable.
  • the content ratio is not less than the lower limit of the above range, the film forming property of the ink repellent agent (C2) is good, and when it is not more than the upper limit value, the ink repellent property of the ink repellent agent (C2) is good.
  • the content of the hydrolyzable silane compound (s3) in the mixture (M) is preferably 0.1 to 5 mol, particularly 0.5 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable.
  • the content ratio is equal to or more than the lower limit of the above range, the top transferability of the ink repellent agent (C2) is good, and the fixability of the ink repellent agent (C2) in the ink repellent layer including the top surface after shifting to the top surface. Further, the storage stability of the ink repellent agent (C2) is good.
  • the amount is not more than the upper limit, the ink repellency of the ink repellent (C2) is good.
  • the mixture (M) can optionally contain one or more hydrolyzable silane compounds other than the hydrolyzable silane compounds (s1) to (s3).
  • Other hydrolyzable silane compounds include a hydrolyzable silane compound (s4) having only a hydrocarbon group and a hydrolyzable group as a group bonded to a silicon atom, a mercapto group and a hydrolyzable silyl group, Hydrolyzable silane compound (s5) containing no fluorine atom, hydrolyzable silane compound (s6) having an epoxy group and a hydrolyzable silyl group and no fluorine atom, oxyalkylene group and hydrolyzable silyl group Hydrolyzable silane compound (s7) having no fluorine atom, hydrolyzable silane compound (s8) having sulfide and hydrolyzable silyl group, and not containing fluorine atom, ureido group and hydrolyzable silyl Hydrolyzable silane compound (s9) having
  • hydrolyzable silane compound (s4) for example, (CH 3 ) 3 —Si—OCH 3 , (CH 3 CH 2 ) 3 —Si—OC 2 H 5 , (CH 3 ) 3 —Si —OC 2 H 5 , (CH 3 CH 2 ) 3 —Si—OCH 3 , (CH 3 ) 2 —Si— (OCH 3 ) 2 , (CH 3 ) 2 —Si— (OC 2 H 5 ) 2 , ( CH 3 CH 2 ) 2 —Si— (OC 2 H 5 ) 2 , (CH 3 CH 2 ) 2 —Si— (OCH 3 ) 2 , Ph—Si (OC 2 H 5 ) 3 , Ph—Si (OCH 3) ) 3 , C 10 H 21 —Si (OCH 3 ) 3 .
  • Ph represents a phenyl group.
  • hydrolyzable silane compound (s5) for example, HS— (CH 2 ) 3 —Si (OCH 3 ) 3 , HS— (CH 2 ) 3 —Si (CH 3 ) (OCH 3 ) 2 is added with water.
  • Examples of the decomposable silane compound (s6) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycid Xylpropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane are, for example, CH 3 O (C 2 H 4 O) k Si (OCH 3 ) 3 (polyoxy) as the hydrolyzable silane compound (s7).
  • Ethylene group-containing trimethoxysilane (here, k is, for example, about 10), hydrolyzable silane compound (s8) For example, bis (triethoxysilylpropyl) tetrasulfide, hydrolyzable silane compound (s9), for example, 3-ureidopropyltriethoxysilane, hydrolyzable silane compound (s10), for example, N-phenyl-3 -Aminopropyltrimethoxysilane.
  • hydrolyzable silane compound (s8) For example, bis (triethoxysilylpropyl) tetrasulfide
  • hydrolyzable silane compound (s9) for example, 3-ureidopropyltriethoxysilane
  • hydrolyzable silane compound (s10) for example, N-phenyl-3 -Aminopropyltrimethoxysilane.
  • the ink repellent agent (C2) contains a hydrolyzable silane compound (s5) or a hydrolyzable silane compound (s8)
  • the ink repellency is easily exhibited even at a low exposure amount.
  • the ink repellent agent (C2) contains a hydrolyzable silane compound (s7)
  • the dispersion stability and storage stability of the ink repellent agent (C2) are improved, which is preferable.
  • n1 of the hydrolyzable silane compound (s1), n2 of the hydrolyzable silane compound (s2), and n3 of the hydrolyzable silane compound (s3) A hydrolysis condensate is mentioned.
  • n1: n2: n3 corresponds to the charged composition of the hydrolyzable silane compounds (s1), (s2), and (s3) in the mixture (M).
  • the molar ratio of each component is designed from the balance of the effect of each component.
  • n1 is preferably 0.02 to 0.4 in such an amount that the fluorine atom content in the ink repellent agent (C2) falls within the above-mentioned preferable range.
  • n2 is preferably from 0 to 0.98, particularly preferably from 0.05 to 0.6.
  • n3 is preferably 0 to 0.8, particularly preferably 0.2 to 0.5.
  • the mass average molecular weight (Mw) of the ink repellent agent (C2) is preferably 500 or more, preferably less than 1,000,000, and particularly preferably 5000 or less.
  • Mw mass average molecular weight
  • the ink repellent agent (C2) is likely to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition.
  • it is less than the upper limit the opening residue is reduced, which is preferable.
  • the mass average molecular weight (Mw) of the ink repellent agent (C2) can be adjusted by the production conditions.
  • the ink repellent agent (C2) can be produced by subjecting the above-mentioned mixture (M) to hydrolysis and condensation reaction by a known method. This reaction is catalyzed by alkali catalysts such as sodium hydroxide and tetramethylammonium hydroxide (TMAH), inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or organic acids such as acetic acid, oxalic acid and maleic acid. Can be used as Moreover, a well-known solvent can be used for the said reaction.
  • the ink repellent agent (C2) obtained by the above reaction may be blended in a negative photosensitive resin composition in the form of a solution together with a solvent.
  • ink repellent agent (C2) for example, paragraphs [0033] to [0078] of International Publication No. 2014/046209, for example, paragraphs [0027] to [0082] of International Publication No. 2014/046210. And those described in paragraphs [0095] to [0143] of International Publication No. 2014/0669478.
  • the content ratio of the ink repellent agent (C) in the total solid content in the negative photosensitive resin composition is a content ratio at which the surface satisfies the above characteristics in the partition obtained using the same.
  • the content ratio depends on the type of the ink repellent agent (C) to be used, but specifically, it is preferably 0.03 to 10% by mass, more preferably 0.05 to 5% by mass, and 0.10 to 3%. Mass% is particularly preferred.
  • the content ratio is at least the lower limit of the above range, the upper surface of the cured film formed from the negative photosensitive resin composition has excellent ink repellency. Adhesiveness of a cured film and a base material becomes it favorable that it is below the upper limit of the said range.
  • the crosslinking agent (D) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more ethylenic double bonds in one molecule and no acidic group.
  • the curability of the negative photosensitive resin composition at the time of exposure is improved, and a cured film can be formed even with a low exposure amount.
  • At least one of the crosslinking agents (D) has 7 or more ethylenic double bonds.
  • the crosslinking agents (D) has 7 or more ethylenic double bonds.
  • a monomer having a urethane skeleton bonded with (10 functional) is preferred.
  • the number of ethylenic double bonds of the crosslinking agent (D) is more preferably 9 or more, and particularly preferably 10 or more.
  • the content of the crosslinking agent (D) in the total solid content in the negative photosensitive resin composition is preferably 10 to 60% by mass, particularly preferably 20 to 55% by mass.
  • the negative photosensitive resin composition of this invention contains a coloring agent (E), when providing light-shielding property to a cured film, especially a partition, according to a use.
  • a coloring agent (E) in the present invention include various inorganic pigments or organic pigments such as carbon black, aniline black, anthraquinone black pigment, perylene black pigment, and azomethine black pigment.
  • preferred organic pigments include 2-hydroxy-4-n-octoxybenzophenone, methyl-2-cyanoacrylate, 2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4 -Dibutoxyphenyl) -1,3,5-triazine, C.I. I. Pigment black 1, 6, 7, 12, 20, 31, C.I. I. Pigment Blue 15: 6, Pigment Red 254, Pigment Green 36, Pigment Yellow 150, and the like.
  • Coloring agent (E) may be used alone or in combination of two or more.
  • the content of the colorant (E) in the total solid content is preferably 15 to 65% by mass, and 20 to 50%. Mass% is particularly preferred. Further, 15 to 1500% by mass is preferable and 20 to 1000% by mass is more preferable with respect to 100% by mass of the alkali-soluble resin (A).
  • the negative photosensitive resin composition obtained when the colorant (E) is within the above range has good sensitivity, and the formed partition has excellent light shielding properties.
  • solvent (F) When the negative photosensitive resin composition of the present invention contains the solvent (F), the viscosity is reduced, and the negative photosensitive resin composition can be easily applied to the substrate surface. As a result, a coating film of a negative photosensitive resin composition having a uniform film thickness can be formed.
  • a known solvent is used as the solvent (F).
  • a solvent (F) may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the solvent (F) include alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, alcohols, solvent naphtha, and water.
  • at least one solvent selected from the group consisting of alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, and alcohols is preferable.
  • More preferred is at least one solvent selected from the group consisting of monoethyl ether acetate and 2-propanol.
  • a solvent (F) contains water
  • content of water is 10 mass% or less of the whole solvent (F).
  • the water content is more preferably 1 to 10% by mass.
  • the content ratio of the solvent (F) in the negative photosensitive resin composition is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and particularly preferably 65 to 90% by mass with respect to the total amount of the composition. Further, the amount is preferably 0.1 to 3000% by mass, more preferably 0.5 to 2000% by mass with respect to 100% by mass of the alkali-soluble resin (A).
  • the thiol compound (G) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more mercapto groups in one molecule. If the negative photosensitive resin composition of this invention contains a thiol compound (G), the radical of a thiol compound (G) will produce
  • This ene-thiol reaction is different from the usual radical polymerization of ethylenic double bonds, and is not subject to reaction inhibition by oxygen, so it has high chain mobility and also undergoes crosslinking at the same time as polymerization.
  • the shrinkage rate is low, and there is an advantage that a uniform network can be easily obtained.
  • the negative photosensitive resin composition of the present invention contains a thiol compound (G), it can be sufficiently cured even at a low exposure amount as described above, and includes a partition upper surface that is particularly susceptible to reaction inhibition by oxygen. Since the photocuring is sufficiently performed also in the upper layer portion, it is possible to impart good ink repellency to the upper surface of the partition wall.
  • G thiol compound
  • the mercapto group in the thiol compound (G) is preferably contained 2 to 10 in one molecule, more preferably 2 to 8 and even more preferably 2 to 5. From the viewpoint of storage stability of the negative photosensitive resin composition, 3 is particularly preferable.
  • the molecular weight of the thiol compound (G) is not particularly limited.
  • the mercapto group equivalent represented by [molecular weight / number of mercapto groups] is preferably 40 to 1,000, more preferably 40 to 500, and more preferably 40 to 250, from the viewpoint of curability at low exposure. Is particularly preferred.
  • thiol compound (G) examples include tris (2-mercaptopropanoyloxyethyl) isocyanurate, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tristhioglycolate, pentaerythritol tristhioglycol.
  • the content ratio is a mercapto group with respect to 1 mol of the ethylenic double bond of the total solid content in the negative photosensitive resin composition. Is preferably 0.0001 to 1 mol, more preferably 0.0005 to 0.5 mol, and particularly preferably 0.001 to 0.5 mol. Further, the amount is preferably 0.1 to 1200% by mass, more preferably 0.2 to 1000% by mass with respect to 100% by mass of the alkali-soluble resin (A). When the content ratio of the thiol compound (G) is within the above range, the photo-curability and developability of the negative photosensitive resin composition are good even at a low exposure amount.
  • the negative photosensitive resin composition of the present invention can optionally contain a phosphoric acid compound (H) in order to improve the adhesion of the obtained cured film to a substrate, a transparent electrode material such as ITO, and the like.
  • Such a phosphoric acid compound (H) is not particularly limited as long as it can improve the adhesion of a cured film to a substrate, a transparent electrode material, etc., but the ethylenically unsaturated double molecule in the molecule.
  • a phosphoric acid compound having a bond is preferable.
  • a compound having a (meth) acryloyl group which is an ethylenically unsaturated double bond or a vinyl phosphate compound is preferred.
  • Examples of the phosphoric acid (meth) acrylate compound used in the present invention include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and di (2-acryloyloxyethyl). Examples include acid phosphate, tris ((meth) acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) caproate acid phosphate, and the like.
  • phosphoric acid compound (H) phenylphosphonic acid and the like can be used in addition to the phosphoric acid compound having an ethylenically unsaturated double bond in the molecule.
  • the negative photosensitive resin composition of the present invention may contain, as the phosphoric acid compound (H), one kind of compound classified as such, or may contain two or more kinds.
  • the content is preferably 0.01 to 10% by mass with respect to the total solid content in the negative photosensitive resin composition, 0.1 to 5% by mass is particularly preferable. Further, 0.01 to 200% by mass is preferable and 0.1 to 100% by mass is more preferable with respect to 100% by mass of the alkali-soluble resin (A).
  • the content ratio of the phosphoric acid compound (H) is in the above range, the adhesion between the obtained cured film and the substrate is good.
  • the negative photosensitive resin composition in the present invention may further include a polymerization inhibitor, a thermal crosslinking agent, a polymer dispersant, a dispersion aid, a silane coupling agent, fine particles, a curing accelerator, a thickener, if necessary.
  • You may contain 1 or more types of other additives chosen from the group which consists of a plasticizer, an antifoamer, a leveling agent, and a repellency inhibitor.
  • the negative photosensitive resin composition of the present invention can be obtained by mixing predetermined amounts of the above components.
  • the negative photosensitive resin composition of the present invention is for an organic EL element, a quantum dot display, a TFT array or a thin film solar cell.
  • it is used for an organic EL element, a quantum dot display, a TFT array or a thin film solar cell.
  • the negative photosensitive resin composition of the present invention it is possible to produce a cured film having good ink repellency on the upper surface, in particular, a partition wall.
  • the ink repellent agent (C) is sufficiently fixed on the ink repellent layer, and the ink repellent agent (C) present at a low concentration in the partition wall below the ink repellent layer has sufficient partition walls. Since it is photocured, the ink repellent agent (C) is difficult to migrate into the opening surrounded by the partition wall during development, so that an opening where the ink can be applied uniformly can be obtained.
  • the mechanism is not clear, but the photopolymerization initiator (B1) has a high-density benzene ring and has stacking properties.
  • the alkali-soluble resin (A) having photocurability of the negative photosensitive resin composition of the present invention typically has a benzene ring and has photocurability with the photopolymerization initiator (B1).
  • the alkali-soluble resin (A) has good compatibility and is considered to have an action of attracting each other depending on the stacking force. Therefore, at the time of development, the exposed portion is not only photocrosslinked, but the intermolecular interaction can suppress the penetration of the alkaline developer, and fine lines are likely to remain, so that a high-resolution pattern can be obtained. .
  • the partition formed from the negative photosensitive resin composition of the present invention suppresses film shrinkage during curing and reduces internal stress, so that the shape change is small and the adhesion to the substrate is improved.
  • the cured resin film of the embodiment of the present invention is formed using the above-described negative photosensitive resin composition of the present invention.
  • the cured resin film according to the embodiment of the present invention is, for example, coated with the negative photosensitive resin composition of the present invention on the surface of a substrate such as a substrate, dried as necessary to remove the solvent, and then exposed. Is obtained by curing.
  • the cured resin film of the embodiment of the present invention exhibits a particularly remarkable effect when used for an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
  • the partition wall of the present invention is a partition wall made of the above-described cured film of the present invention formed so as to partition the substrate surface into a plurality of sections for dot formation.
  • the partition wall is obtained by masking a portion to be a dot formation partition before exposure, developing after exposure. By development, an unexposed portion is removed by masking, and an opening corresponding to a dot forming section is formed together with a partition.
  • the partition wall according to the embodiment of the present invention is particularly effective when used for an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
  • the manufacturing method of the partition wall is not limited to the following.
  • the following manufacturing methods are demonstrated as a negative photosensitive resin composition containing a solvent (F).
  • a negative photosensitive resin composition is applied to one entire main surface of the substrate 1 to form a coating film 21.
  • the ink repellent agent (C) is totally dissolved and uniformly dispersed in the coating film 21.
  • the ink repellent agent (C) is schematically shown, and does not actually exist in such a particle shape.
  • the coating film 21 is dried to form a dry film 22.
  • the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying.
  • the heating temperature is preferably 50 to 120 ° C. in the case of heat drying.
  • the ink repellent agent (C) moves to the upper layer of the dry film.
  • the upper surface transfer of an ink repellent agent (C) is similarly achieved within a coating film.
  • the dry film 22 is exposed to light through a photomask 30 having a masking portion 31 having a shape corresponding to the opening surrounded by the partition walls.
  • the film after the dry film 22 is exposed is referred to as an exposure film 23.
  • the exposed portion 23 ⁇ / b> A is photocured, and the non-exposed portion 23 ⁇ / b> B is in the same state as the dry film 22.
  • excimer laser such as visible light; ultraviolet light; far ultraviolet light; KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, Kr 2 excimer laser light, KrAr excimer laser light, and Ar 2 excimer laser light.
  • Examples include light; X-ray; electron beam.
  • the light to be irradiated is preferably light having a wavelength of 100 to 600 nm, more preferably light having a wavelength of 300 to 500 nm, particularly preferably light containing i-line (365 nm), h-line (405 nm) or g-line (436 nm). Moreover, you may cut light below 330 nm as needed.
  • the exposure method includes full-surface batch exposure, scan exposure, and the like. You may expose in multiple times with respect to the same location. At this time, the multiple exposure conditions may or may not be the same.
  • Exposure amount In any of the above exposure method, for example, preferably 5 ⁇ 1,000mJ / cm 2, more preferably 5 ⁇ 500mJ / cm 2, more preferably 5 ⁇ 300mJ / cm 2, 5 ⁇ 200mJ / cm 2 is particularly preferable, and 5 to 50 mJ / cm 2 is most preferable.
  • the exposure amount is appropriately optimized depending on the wavelength of light to be irradiated, the composition of the negative photosensitive resin composition, the thickness of the coating film, and the like.
  • the exposure time per unit area is not particularly limited, and is designed from the exposure power of the exposure apparatus to be used, the required exposure amount, and the like. In the case of scan exposure, the exposure time is determined from the light scanning speed.
  • the exposure time per unit area is usually about 1 to 60 seconds.
  • FIG. 1D shows a state after the non-exposed portion 23B is removed by development.
  • the non-exposed portion 23B is dissolved and removed with an alkali developer in a state where the ink repellent agent (C) is transferred to the upper layer portion and the ink repellent agent (C) is hardly present in the lower layer. Therefore, the ink repellent agent (C) hardly remains in the opening 5.
  • the uppermost layer including the upper surface is the ink repellent layer 4A.
  • the ink repellent agent (C) does not have a side chain having an ethylenic double bond
  • the ink repellent agent (C) is present in a high concentration as it is in the uppermost layer and becomes an ink repellent layer.
  • the alkali-soluble resin (A) present around the ink repellent agent (C), the thiol compound (G) optionally contained, and other photocuring components are strongly photocured to cause the ink repellent agent. (C) is fixed to the ink repellent layer.
  • the ink repellent agent (C) When the ink repellent agent (C) has a side chain having an ethylenic double bond, the ink repellent agent (C) is mutually and / or alkali-soluble resin (A), and further optionally contains a thiol compound (G) or It is photocured together with other photocuring components to form an ink repellent layer 4A in which the ink repellent agent (C) is firmly bonded.
  • the ink repellent layer 4A has an ink-repellent layer on the lower side of the ink-repellent layer 4A, in which mainly the alkali-soluble resin (A) and the thiol compound (G) optionally contained, and other photocurable components are photocured.
  • a layer 4B containing almost no agent (C) is formed. In this manner, the ink repellent agent (C) is sufficiently fixed to the partition including the ink repellent layer 4A and the lower layer 4B, and therefore hardly migrates to the opening during development.
  • the partition 4 may be further heated after development.
  • the heating temperature is preferably 130 to 250 ° C.
  • the partition 4 is hardened by heating. Further, the ink repellent agent (C) is more firmly fixed in the ink repellent layer 4A.
  • the cured resin film and the partition 4 of the present invention thus obtained have good ink repellency on the upper surface even when exposure is performed at a low exposure amount.
  • the ink repellent (C) hardly exists in the opening 5 after development, and the uniform coating property of the ink in the opening 5 can be sufficiently secured.
  • the substrate 1 with the partition walls 4 may be subjected to ultraviolet / ozone treatment.
  • the width of the partition formed from the negative photosensitive resin composition of the present invention is preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the distance between adjacent partition walls (pattern width) is preferably 300 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the height of the partition wall is preferably 0.05 to 50 ⁇ m, particularly preferably 0.2 to 10 ⁇ m.
  • the partition formed from the negative photosensitive resin composition of the present invention has few irregularities in the edge portion when formed to the above width, and is excellent in linearity.
  • the high linearity in the partition walls is particularly remarkable when a resin (A-2) in which an acidic group and an ethylenic double bond are introduced into an epoxy resin is used as the alkali-soluble resin.
  • A-2 a resin in which an acidic group and an ethylenic double bond are introduced into an epoxy resin
  • the partition of the present invention can be used as a partition having the opening as an ink injection region when pattern printing is performed by the IJ method.
  • pattern printing is performed by the IJ method
  • the partition wall of the present invention is formed and used so that the opening thereof coincides with a desired ink injection region, the partition top surface has good ink repellency. It is possible to suppress ink from being injected into an undesired opening, that is, an ink injection region beyond the partition wall.
  • the opening surrounded by the partition wall has good ink wetting and spreading properties, it is possible to print the ink uniformly without causing white spots or the like in a desired region.
  • the barrier rib of the present invention is an optical element having a barrier rib positioned between a plurality of adjacent dots on the surface of a substrate on which dots are formed by the IJ method, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar. It is useful as a battery partition.
  • an organic EL element As an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell as an optical element of the present invention, an organic EL element having a plurality of dots and a partition wall of the present invention located between adjacent dots on the substrate surface, Quantum dot display, TFT array or thin film solar cell.
  • the dots are preferably formed by the IJ method.
  • the organic EL element has a structure in which a light emitting layer of an organic thin film is sandwiched between an anode and a cathode.
  • the partition wall of the present invention is used for a partition wall separating an organic light emitting layer, a partition wall partition separating an organic TFT layer, and a coating type oxide semiconductor. It can be used for partitioning applications.
  • the organic TFT array element is a semiconductor layer including a plurality of dots arranged in a matrix in plan view, each pixel having a pixel electrode and a TFT as a switching element for driving it, and including a TFT channel layer.
  • the organic TFT array element is provided as a TFT array substrate in, for example, an organic EL element or a liquid crystal element.
  • an organic EL element for example, an organic EL element, an example in which dots are formed in the opening by the IJ method using the partition obtained above will be described below.
  • the formation method of the dot in optical elements, such as the organic EL element of this invention is not limited to the following.
  • FIG. 2A and 2B schematically show a method of manufacturing an organic EL element using the partition walls 4 formed on the substrate 1 shown in FIG. 1D.
  • the partition 4 on the substrate 1 is formed such that the opening 5 matches the dot pattern of the organic EL element to be manufactured.
  • ink 10 is dropped from the inkjet head 9 into the opening 5 surrounded by the partition wall 4 and a predetermined amount of ink 10 is injected into the opening 5.
  • known inks for organic EL elements are appropriately selected and used in accordance with the function of dots.
  • An optical element (an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell) according to an embodiment of the present invention uses the partition wall of the present invention so that ink is unevenly distributed in an opening partitioned by the partition wall in the manufacturing process. It is an optical element (organic EL element, quantum dot display, TFT array, or thin film solar cell) having dots that are formed with high precision.
  • an organic EL element can be manufactured as follows, for example, it is not limited to this.
  • a light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a light-transmitting substrate such as glass by a sputtering method or the like.
  • the translucent electrode is patterned as necessary.
  • partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • the materials for the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, and the electron injection layer are respectively applied and dried in the dot formation openings by the IJ method.
  • Laminate The kind and number of organic layers formed in the opening for forming dots are appropriately designed.
  • a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
  • the quantum dot display can be manufactured, for example, as follows, but is not limited thereto.
  • a light-transmitting electrode such as ITO is formed on a light-transmitting substrate such as glass by a sputtering method or the like.
  • the translucent electrode is patterned as necessary.
  • partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • the materials for the hole injection layer, the hole transport layer, the quantum dot layer, the hole blocking layer, and the electron injection layer are applied and dried in the dot formation openings by the IJ method.
  • Laminate sequentially. The kind and number of organic layers formed in the opening for forming dots are appropriately designed.
  • a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
  • optical element of the embodiment of the present invention can be applied to, for example, a blue light conversion type quantum dot display manufactured as follows.
  • the negative photosensitive resin composition of the present invention is used for a light-transmitting substrate such as glass, and partition walls are formed in a lattice shape in plan view along the outline of each dot.
  • a liquid crystal display having excellent color reproducibility can be obtained by using a light source that emits blue light as a backlight and using the module as a color filter alternative.
  • the TFT array can be manufactured, for example, as follows, but is not limited thereto.
  • a gate electrode such as aluminum or an alloy thereof is formed on a light-transmitting substrate such as glass by a sputtering method or the like. This gate electrode is patterned as necessary.
  • a gate insulating film such as silicon nitride is formed by a plasma CVD method or the like.
  • a source electrode and a drain electrode may be formed over the gate insulating film.
  • the source electrode and the drain electrode can be produced by forming a metal thin film such as aluminum, gold, silver, copper, or an alloy thereof by, for example, vacuum deposition or sputtering.
  • a resist is coated, exposed and developed to leave the resist in a portion where the electrode is to be formed, and then exposed with phosphoric acid or aqua regia. There is a method of removing the metal and finally removing the resist.
  • the source electrode and the drain electrode may be formed by a method such as ink jet using a metal nanocolloid such as silver or copper.
  • partition walls are formed in a lattice pattern in plan view along the outline of each dot by a photolithography method including coating, exposure, and development.
  • a semiconductor solution is applied in the dot forming openings by the IJ method, and the semiconductor layer is formed by drying the solution.
  • this semiconductor solution an organic semiconductor solution or an inorganic coating type oxide semiconductor solution can also be used.
  • the source electrode and the drain electrode may be formed by using a method such as inkjet after forming the semiconductor layer.
  • a transparent electrode such as ITO is formed by sputtering or the like, and a protective film such as silicon nitride is formed.
  • Examples 1 to 7 are examples, and examples 8 to 12 are comparative examples.
  • PGMEA is an abbreviation for propylene glycol monomethyl ether acetate.
  • A-1 A resin obtained by reacting a cresol novolac type epoxy resin with acrylic acid and then with 1,2,3,6-tetrahydrophthalic anhydride to introduce a acryloyl group and a carboxyl group, and purifying the resin with hexane, solid content 70% by mass, acid value 60 mgKOH / g.
  • A-2 A resin in which a carboxyl group and an ethylenic double bond are introduced into a bisphenol A type epoxy resin, solid content 70% by mass, acid value 60 mgKOH / g.
  • A-3 A resin in which a carboxyl group and an ethylenic double bond are introduced into a bisphenol F type epoxy resin, solid content 70% by mass, acid value 60 mgKOH / g.
  • A-4 A resin in which an ethylenic double bond and an acidic group are introduced into an epoxy resin having a biphenyl skeleton represented by the following formula (Aa), solid content: 50% by mass, acid value 60 mgKOH / g.
  • Photopolymerization initiator (B1)) B1-1 1,7-bis (9-acridinyl) heptane.
  • Photopolymerization initiator (B2)) B2-1 4,4′-bis (diethylamino) benzophenone.
  • MAA methacrylic acid.
  • 2-HEMA 2-hydroxyethyl methacrylate.
  • V-65 2,2′-azobis (2,4-dimethylvaleronitrile).
  • n-DM n-dodecyl mercaptan.
  • BEI 1,1- (bisacryloyloxymethyl) ethyl isocyanate.
  • DBTDL Dibutyltin dilaurate.
  • TBQ t-butyl-p-benzoquinone.
  • MEK 2-butanone.
  • D-1 Dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate.
  • D-2 Monomer (10 functional) having a urethane skeleton in which HDI (hexamethylene diisocyanate) is bonded to dipentaerythritol pentaacrylate.
  • PGME Propylene glycol monomethyl ether.
  • PGMEA Propylene glycol monomethyl ether acetate.
  • EDGAC Diethylene glycol monoethyl ether acetate.
  • EDM Diethylene glycol ethyl methyl ether.
  • Example 1 Production of negative photosensitive resin composition and production of cured resin film and partition wall] (Manufacture of negative photosensitive resin composition) 0.12 g of (C-1) obtained in Synthesis Example 1 above, 20.3 g of A-1 (solid content is 14.2 g, the rest is EDGAC as a solvent), 1.2 g of B1-1, D- 9.5 g of No. 1 and 68.9 g of PGME were placed in a 200 cm 3 stirring vessel and stirred for 5 hours to produce a negative photosensitive resin composition.
  • Table 1 shows the solid content concentration, the content (composition) of each component in the solid content, and the content (composition) of each component in the solvent.
  • the negative photosensitive resin composition was applied to the cleaned ITO substrate surface using a spinner and then dried on a hot plate at 100 ° C. for 2 minutes to form a dry film having a thickness of 2.4 ⁇ m. .
  • a photomask having an opening pattern opening portions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20,
  • the exposure power (exposure output) in terms of 365 nm is 25 mW / cm 2 through a pattern of 30, 40, 50 ⁇ m ⁇ 1000 ⁇ m (with a pattern spacing of 50 ⁇ m repeated in a 20 mm ⁇ 20 mm range).
  • the entire surface was irradiated with UV light from an ultra-high pressure mercury lamp. During the exposure, light of 330 nm or less was cut.
  • the distance between the dry film and the photomask was 50 ⁇ m.
  • the exposure conditions are evaluated such that when the exposure amount is 80 mJ / cm 2 , the exposure time is 3.2 seconds, and when the exposure amount is 150 mJ / cm 2 , the exposure time is 6 seconds. Changed according to the content.
  • the ITO substrate after the exposure treatment was developed by immersing it in a 0.4 mass% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the non-exposed portion was washed away with water and dried.
  • an ITO substrate with a cured film (partition wall) having a pattern corresponding to the opening pattern of the photomask was obtained by heating on a hot plate at 230 ° C. for 60 minutes.
  • a dry film is formed on the ITO substrate surface in the same manner as described above, and a photomask (a light shielding portion size: 100 ⁇ m ⁇ 200 ⁇ m and an opening width: 20 ⁇ m is repeated in a range of 20 mm ⁇ 20 mm).
  • the dry film is exposed at an exposure amount of 150 mJ / cm 2 , then developed under the same conditions as the above development conditions, and heated on a hot plate at 230 ° C. for 60 minutes.
  • an ITO substrate with a cured resin film 2 was obtained in a pattern surrounding the dot forming opening (100 ⁇ m ⁇ 200 ⁇ m) with a partition having a line width of 20 ⁇ m.
  • Examples 2 to 12 A negative photosensitive resin composition, a cured resin film, and a partition wall were produced in the same manner as in Example 1 except that the negative photosensitive resin composition was changed to the compositions shown in Tables 1 and 2.
  • Photomask having an opening pattern of the cured resin film 1 (openings are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, respectively. , 50 ⁇ m ⁇ 1000 ⁇ m)
  • the partition wall obtained with an exposure amount of 150 mJ / cm 2 is observed with a microscope, and when a line with a mask width of less than 10 ⁇ m remains, a line with a width of 10 ⁇ m or more and less than 50 ⁇ m remains.
  • A was present and the case where no pattern of 50 ⁇ m or more was present was designated B.
  • the negative photosensitive resin composition of the present invention can be suitably used as a composition for forming barrier ribs when performing pattern printing by the IJ method in organic EL elements, quantum dot displays, TFT arrays, or thin film solar cells. it can.
  • the barrier ribs of the present invention are barrier ribs (banks) for pattern printing of organic layers such as light-emitting layers by the IJ method in organic EL elements, or quantum dot layers and hole transport layers in the quantum dot display by the IJ method. It can be used as a partition (bank) for pattern printing.
  • the partition wall of the present invention can also be used as a partition wall for printing a conductor pattern or a semiconductor pattern by the IJ method in a TFT array.
  • the partition wall of the present invention can be used as a partition wall for pattern printing of the organic semiconductor layer, the gate electrode, the source electrode, the drain electrode, the gate wiring, the source wiring, and the like forming the channel layer of the TFT by the IJ method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided are: a negative-type photosensitive resin composition that is for an optical element, that has good ink repellency, and that makes it possible to reduce residue in an opening; a cured resin film that is for an optical element and that has good ink repellency; a partition that is for an optical element and that makes it possible to form a highly precise pattern; and an optical element comprising the partition. The negative-type photosensitive resin composition contains a photocurable alkali-soluble resin or alkali-soluble monomer, a photopolymerization initiator comprising an acridine compound, and an ink repellent. The present invention also provides a cured film formed using the negative-type photosensitive resin composition, a partition, an organic EL element comprising a plurality of dots and the partition positioned between adjacent dots on a substrate surface, a quantum dot display, a TFT array, and a thin-film solar cell.

Description

ネガ型感光性樹脂組成物、樹脂硬化膜、隔壁ならびに光学素子およびその製造方法Negative photosensitive resin composition, cured resin film, partition wall, optical element and method for producing the same
 本発明は、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池に用いるネガ型感光性樹脂組成物、樹脂硬化膜、隔壁および光学素子(具体的には、有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池)ならびに該光学素子の製造方法に関する。 The present invention relates to an organic EL element, a quantum dot display, a negative photosensitive resin composition used for a TFT array or a thin film solar cell, a cured resin film, a partition wall and an optical element (specifically, an organic EL element, a quantum dot display, The present invention relates to a TFT array and a thin film solar cell) and a method for producing the optical element.
 有機EL(Electro-Luminescence)素子、量子ドットディスプレイ、TFT(Thin Film Transistor)アレイ、薄膜太陽電池等の光学素子の製造においては、発光層等の有機層をドットとして、インクジェット(IJ)法にてパターン印刷する方法を用いることがある。かかる方法においては、形成しようとするドットの輪郭に沿って隔壁を設け、該隔壁で囲まれた区画(以下、「開口部」ともいう。)内に、有機層の材料を含むインクを注入し、これを乾燥および/または加熱等することにより所望のパターンのドットを形成する。 In the production of optical elements such as organic EL (Electro-Luminescence) elements, quantum dot displays, TFT (Thin Film Transistor) arrays, thin film solar cells, etc., an organic layer such as a light emitting layer is used as a dot by an inkjet (IJ) method. A pattern printing method may be used. In such a method, a partition is provided along the outline of the dot to be formed, and an ink containing the material of the organic layer is injected into a partition (hereinafter also referred to as “opening”) surrounded by the partition. This is dried and / or heated to form dots having a desired pattern.
 インクジェット(IJ)法にてパターン印刷をする際には、隣接するドット間におけるインクの混合防止とドット形成におけるインクの均一塗布のため、隔壁上面は撥インク性を有する必要がある。その一方で、隔壁側面を含む隔壁で囲まれたドット形成用の開口部は親インク性を有する必要がある。そこで、上面に撥インク性を有する隔壁を得るために、撥インク剤を含ませた感光性樹脂組成物を用いてフォトリソグラフィ法によりドットのパターンに対応する隔壁を形成する方法が知られている。 When pattern printing is performed by the inkjet (IJ) method, the upper surface of the partition wall needs to have ink repellency in order to prevent ink mixing between adjacent dots and to uniformly apply ink in dot formation. On the other hand, the dot forming opening surrounded by the partition including the partition side surface needs to have ink affinity. Therefore, in order to obtain a partition having ink repellency on the upper surface, a method of forming a partition corresponding to a dot pattern by a photolithography method using a photosensitive resin composition containing an ink repellent agent is known. .
 例えば、特許文献1には有機EL素子等において酸性基および分子内に3個以上のエチレン性二重結合を有するアルカリ可溶の感光性樹脂と、水素原子の少なくとも1つがフッ素原子に置換された炭素数20以下のアルキル基(ただし、前記アルキル基はエーテル性の酸素を有するものを含む。)を有する重合単位、およびエチレン性二重結合を有する重合単位を有する重合体からなる撥インク剤と、光重合開始剤とを含有するネガ型感光性樹脂組成物が記載されている。光重合開始剤として、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(IR907)が開示されている。 For example, Patent Document 1 discloses that in an organic EL device or the like, at least one of hydrogen atoms is substituted with an alkali-soluble photosensitive resin having an acidic group and three or more ethylenic double bonds in the molecule. An ink repellent agent comprising a polymer unit having an alkyl group having 20 or less carbon atoms (however, the alkyl group includes those having etheric oxygen) and a polymer unit having an ethylenic double bond; A negative photosensitive resin composition containing a photopolymerization initiator is described. As a photopolymerization initiator, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (IR907) is disclosed.
 しかしながら、特許文献1のネガ型感光性樹脂組成物では、特に、有機ELを利用した中小型のOLED(Organic Light Emitting Diode)ディスプレイにIJ法を適用する際には、高解像度のパターンが求められ、さらに隔壁の線幅が細くなり、現像時に隔壁が剥離しやすく、デバイスの作製が困難である問題があった。 However, the negative photosensitive resin composition of Patent Document 1 requires a high-resolution pattern particularly when the IJ method is applied to a medium-to-small OLED (Organic Light Emitting Diode) display using organic EL. Further, the line width of the partition wall becomes narrower, the partition wall easily peels off during development, and there is a problem that it is difficult to produce a device.
国際公開第2004/042474号International Publication No. 2004/042474
 本発明は、上記問題を解決するためになされたものであって、得られる隔壁の上面が良好な撥インク性を有するとともに、高解像度のパターンを有するネガ型感光性樹脂組成物の提供を目的とする。
 本発明は、また、隔壁で仕切られた開口部にインクが均一塗布され精度よく形成されたドットを有する光学素子、具体的には有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池、ならびに該光学素子の製造方法の提供を目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a negative photosensitive resin composition having a high resolution pattern on the upper surface of the obtained partition wall having good ink repellency. And
The present invention also provides an optical element having dots that are accurately formed by uniformly applying ink to openings partitioned by a partition, specifically an organic EL element, a quantum dot display, a TFT array, and a thin-film solar cell, and An object is to provide a method for producing the optical element.
 本発明は、以下[1]~[9]の要旨を有する。
[1]光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)と、光重合開始剤(B)と、撥インク剤(C)とを含有し、該光重合開始剤(B)が、アクリジン系の化合物からなる光重合開始剤(B1)を含むことを特徴とする、有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用のネガ型感光性樹脂組成物。
[2]さらに、波長365nmにおける吸光度が0.2以上である光重合開始剤(B2)(ただし、光重合開始剤(B1)を除く)を含む[1]に記載のネガ型感光性樹脂組成物。
[3]さらに、チオキサントン系化合物であり、波長365nmにおける吸光度が0.2未満である光重合開始剤(B3)を含む[1]または[2]に記載のネガ型感光性樹脂組成物。
[4]さらに7個以上のエチレン性二重結合を有する架橋剤(D)を含む[1]~[3]のいずれかのネガ型感光性樹脂組成物。
[5]光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、およびフルオレニル置換ビスフェノールA型エポキシ樹脂から選ばれる少なくとも1種である、[1]~[4]のいずれかのネガ型感光性樹脂組成物。
[6]前記[1]~[5]のいずれかのネガ型感光性樹脂組成物を用いて形成されることを特徴とする有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用の樹脂硬化膜。
[7]基板表面をドット形成用の複数の区画に仕切る形に形成された隔壁であって、[6]の樹脂硬化膜からなることを特徴とする有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用の隔壁。
[8]基板表面に複数のドットと隣接するドット間に位置する隔壁とを有する光学素子であって、該光学素子は有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池であり、前記隔壁が[7]の隔壁で形成されていることを特徴とする光学素子。
[9]前記ドットをインクジェット法で形成することを特徴とする[8]の光学素子の製造方法。
The present invention has the gist of [1] to [9] below.
[1] An alkali-soluble resin or alkali-soluble monomer (A) having photocurability, a photopolymerization initiator (B), and an ink repellent agent (C), and the photopolymerization initiator (B) Contains a photopolymerization initiator (B1) comprising an acridine compound, a negative photosensitive resin composition for organic EL elements, quantum dot displays, TFT arrays, or thin film solar cells.
[2] The negative photosensitive resin composition according to [1], further including a photopolymerization initiator (B2) (excluding the photopolymerization initiator (B1)) having an absorbance at a wavelength of 365 nm of 0.2 or more. object.
[3] The negative photosensitive resin composition according to [1] or [2], further comprising a photopolymerization initiator (B3) that is a thioxanthone compound and has an absorbance at a wavelength of 365 nm of less than 0.2.
[4] The negative photosensitive resin composition according to any one of [1] to [3], further comprising a crosslinking agent (D) having 7 or more ethylenic double bonds.
[5] A photocurable alkali-soluble resin or alkali-soluble monomer (A) is obtained from a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, an epoxy resin having a biphenyl skeleton, and a fluorenyl-substituted bisphenol A type epoxy resin. The negative photosensitive resin composition according to any one of [1] to [4], which is at least one selected.
[6] An organic EL device, a quantum dot display, a TFT array, or a thin-film solar cell, characterized by being formed using the negative photosensitive resin composition according to any one of [1] to [5] Resin cured film.
[7] A partition formed to partition the substrate surface into a plurality of sections for dot formation, and comprising the cured resin film of [6], for organic EL elements, for quantum dot displays, and for TFTs Bulkhead for arrays or thin film solar cells.
[8] An optical element having a plurality of dots and a partition located between adjacent dots on the surface of the substrate, the optical element being an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell, Is formed of the partition walls of [7].
[9] The method for manufacturing an optical element according to [8], wherein the dots are formed by an inkjet method.
 本発明によれば、得られる隔壁上面が良好な撥インク性を有するとともに、高解像度のパターンを有するネガ型感光性樹脂組成物を提供できる。
 本発明の光学素子は、隔壁で仕切られた開口部にインクが均一塗布され精度よく形成されたドットを有する光学素子を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, while providing the partition upper surface obtained with favorable ink repellency, the negative photosensitive resin composition which has a high-resolution pattern can be provided.
The optical element of the present invention can provide an optical element having dots that are accurately formed by uniformly applying ink to the openings partitioned by the partition walls.
本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の光学素子の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the optical element of embodiment of this invention. 本発明の実施形態の光学素子の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the optical element of embodiment of this invention.
 本明細書において、次の用語は、それぞれ、下記の意味で使用される。
 「(メタ)アクリロイル基」は、「メタクリロイル基」と「アクリロイル基」の総称である。(メタ)アクリロイルオキシ基、(メタ)アクリル酸、(メタ)アクリレート、(メタ)アクリルアミド、および(メタ)アクリル樹脂もこれに準じる。
In the present specification, the following terms are respectively used with the following meanings.
“(Meth) acryloyl group” is a general term for “methacryloyl group” and “acryloyl group”. The (meth) acryloyloxy group, (meth) acrylic acid, (meth) acrylate, (meth) acrylamide, and (meth) acrylic resin also conform to this.
 式(x)で表される基を、単に基(x)と記載することがある。
 式(y)で表される化合物を、単に化合物(y)と記載することがある。
 ここで、式(x)、式(y)は、任意の式を示している。
The group represented by the formula (x) may be simply referred to as a group (x).
The compound represented by the formula (y) may be simply referred to as the compound (y).
Here, the expressions (x) and (y) indicate arbitrary expressions.
 「ある成分を主として構成される樹脂」または「ある成分を主体とする樹脂」とは、該成分の割合が樹脂全量に対して50質量%以上を占めることをいう。 “A resin mainly composed of a certain component” or “a resin mainly composed of a certain component” means that the proportion of the component occupies 50% by mass or more based on the total amount of the resin.
 「側鎖」とは、炭素原子からなる繰り返し単位が主鎖を構成する重合体において、主鎖を構成する炭素原子に結合する、水素原子またはハロゲン原子以外の基である。 The “side chain” is a group other than a hydrogen atom or a halogen atom bonded to a carbon atom constituting the main chain in a polymer in which a repeating unit composed of carbon atoms constitutes the main chain.
 「感光性樹脂組成物の全固形分」とは、感光性樹脂組成物が含有する成分のうち後述する硬化膜を形成する成分を指し、感光性樹脂組成物を140℃で24時間加熱して溶媒を除去した残存物から求める。なお、全固形分量は仕込み量からも計算できる。 The “total solid content of the photosensitive resin composition” refers to a component that forms a cured film described later among the components contained in the photosensitive resin composition, and the photosensitive resin composition is heated at 140 ° C. for 24 hours. Obtained from the residue from which the solvent has been removed. The total solid content can also be calculated from the charged amount.
 樹脂を主成分とする組成物の硬化物からなる膜を「樹脂硬化膜」という。
 感光性樹脂組成物を塗布した膜を「塗膜」、それを乾燥させた膜を「乾燥膜」という。該「乾燥膜」を硬化させて得られる膜は「樹脂硬化膜」である。また、「樹脂硬化膜」を単に「硬化膜」ということもある。
A film made of a cured product of a composition containing resin as a main component is referred to as a “resin cured film”.
A film coated with the photosensitive resin composition is referred to as a “coating film”, and a film obtained by drying the film is referred to as a “dry film”. A film obtained by curing the “dry film” is a “resin cured film”. Further, the “resin cured film” may be simply referred to as “cured film”.
 樹脂硬化膜は、所定の領域を複数の区画に仕切る形に形成された隔壁の形態であってもよい。隔壁で仕切られた区画、すなわち隔壁で囲まれた開口部に、例えば、以下の「インク」が注入され、「ドット」が形成される。 The resin cured film may be in the form of a partition formed in a shape that partitions a predetermined region into a plurality of sections. For example, the following “ink” is injected into the partitions partitioned by the partition walls, that is, the openings surrounded by the partition walls to form “dots”.
 「インク」とは、乾燥、硬化等した後に、光学的および/または電気的な機能を有する液体を総称する用語である。
 有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池においては、各種構成要素としてのドットを、該ドット形成用のインクを用いてインクジェット(IJ)法によりパターン印刷することがある。「インク」には、かかる用途に用いられるインクが含まれる。
“Ink” is a generic term for liquids that have optical and / or electrical functions after drying, curing, and the like.
In an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell, dots as various constituent elements may be pattern-printed by an ink jet (IJ) method using the ink for forming the dots. “Ink” includes ink used in such applications.
 「撥インク性」とは、上記インクをはじく性質であり、撥水性と撥油性の両方を有する。撥インク性は、例えば、インクを滴下したときの接触角により評価できる。「親インク性」は撥インク性と相反する性質であり、撥インク性と同様にインクを滴下したときの接触角により評価できる。または、インクを滴下したときのインクの濡れ広がりの程度(インクの濡れ広がり性)を所定の基準で評価することにより親インク性が評価できる。 “Ink repellency” is a property of repelling the above ink and has both water repellency and oil repellency. The ink repellency can be evaluated by, for example, a contact angle when ink is dropped. “Ink affinity” is a property opposite to ink repellency, and can be evaluated by the contact angle when ink is dropped as in the case of ink repellency. Alternatively, the ink affinity can be evaluated by evaluating the degree of ink wetting and spreading (ink wetting and spreading property) when ink is dropped on a predetermined standard.
 「ドット」とは、光学素子における光変調可能な最小領域を示す。有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池においては、白黒表示の場合に1ドット=1画素であり、カラー表示の場合に例えば3ドット(R(赤)、G(緑)、B(青)等)=1画素である。
 「パーセント(%)」は、特に説明のない場合、質量%を表す。
 以下、本発明の実施の形態を説明する。
The “dot” indicates a minimum area where light modulation is possible in the optical element. In an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell, 1 dot = 1 pixel in the case of black and white display, for example, 3 dots (R (red), G (green), B in the case of color display. (Blue) etc. = 1 pixel.
“Percent (%)” represents mass% unless otherwise specified.
Embodiments of the present invention will be described below.
[ネガ型感光性樹脂組成物]
 本発明のネガ型感光性樹脂組成物は、有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用に好適に使用できる。そして、本発明のネガ型感光性樹脂組成物は、光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)と、特定の化合物からなる光重合開始剤(B1)を含有する光重合開始剤(B)と、撥インク剤(C)と、を含有する。
 本発明のネガ型感光性樹脂組成物は、さらに必要に応じて、光重合開始剤(B2)、光重合開始剤(B3)、架橋剤(D)、着色剤(E)、溶媒(F)、その他の任意成分を含有する。
 以下、各成分について説明する。
[Negative photosensitive resin composition]
The negative photosensitive resin composition of the present invention can be suitably used for organic EL devices, quantum dot displays, TFT arrays, or thin film solar cells. And the negative photosensitive resin composition of this invention is photopolymerization containing the photoinitiator (B1) which consists of alkali-soluble resin or alkali-soluble monomer (A) which has photocurability, and a specific compound. An initiator (B) and an ink repellent agent (C) are contained.
The negative photosensitive resin composition of the present invention further comprises a photopolymerization initiator (B2), a photopolymerization initiator (B3), a crosslinking agent (D), a colorant (E), and a solvent (F) as necessary. And other optional ingredients.
Hereinafter, each component will be described.
(アルカリ可溶性樹脂またはアルカリ可溶性単量体(A))
 アルカリ可溶性樹脂には符号(AP)、アルカリ可溶性単量体には符号(AM)を付して、それぞれ説明する。なお、以下の説明においてこれらを総称して「アルカリ可溶性樹脂(A)」ということもある。
(Alkali-soluble resin or alkali-soluble monomer (A))
The alkali-soluble resin will be described with a symbol (AP) and the alkali-soluble monomer with a symbol (AM). In the following description, these may be collectively referred to as “alkali-soluble resin (A)”.
 アルカリ可溶性樹脂(AP)としては、1分子中に酸性基とエチレン性二重結合とを有する感光性樹脂が好ましい。アルカリ可溶性樹脂(AP)が分子中にエチレン性二重結合を有することで、ネガ型感光性樹脂組成物の露光部は、光重合開始剤(B)から発生したラジカルにより重合して硬化して硬化膜を形成する。 As the alkali-soluble resin (AP), a photosensitive resin having an acidic group and an ethylenic double bond in one molecule is preferable. Since the alkali-soluble resin (AP) has an ethylenic double bond in the molecule, the exposed portion of the negative photosensitive resin composition is polymerized and cured by radicals generated from the photopolymerization initiator (B). A cured film is formed.
 このようにして充分に硬化した露光部はアルカリ現像液にて容易に除去されない。また、アルカリ可溶性樹脂(AP)が分子中に酸性基を有することで、アルカリ現像液にて、硬化していないネガ型感光性樹脂組成物の非露光部を選択的に除去できる。その結果、硬化膜を、所定の領域を複数の区画に仕切る形の隔壁の形態とすることができる。 The exposed area sufficiently cured in this way is not easily removed with an alkaline developer. Moreover, when the alkali-soluble resin (AP) has an acidic group in the molecule, the non-exposed portion of the uncured negative photosensitive resin composition can be selectively removed with an alkaline developer. As a result, the cured film can be in the form of a partition that partitions a predetermined region into a plurality of sections.
 酸性基としては、カルボキシ基、フェノール性水酸基、スルホ基およびリン酸基等が挙げられ、これらは1種を単独で用いても2種以上を併用してもよい。
 エチレン性二重結合としては、(メタ)アクリロイル基、アリル基、ビニル基、ビニルオキシ基およびビニルオキシアルキル基等の付加重合性を有する二重結合が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。なお、エチレン性二重結合が有する水素原子の一部または全てが、メチル基等のアルキル基で置換されていてもよい。
Examples of the acidic group include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
Examples of the ethylenic double bond include double bonds having an addition polymerization property such as a (meth) acryloyl group, an allyl group, a vinyl group, a vinyloxy group, and a vinyloxyalkyl group. These may be used alone or in combination of two or more. In addition, some or all of the hydrogen atoms possessed by the ethylenic double bond may be substituted with an alkyl group such as a methyl group.
 エチレン性二重結合を有するアルカリ可溶性樹脂(AP)としては、酸性基を有する側鎖とエチレン性二重結合を有する側鎖とを有する樹脂(A-1)、およびエポキシ樹脂に酸性基とエチレン性二重結合とが導入された樹脂(A-2)等が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。
 このようなアルカリ可溶性樹脂(AP)としては、WO2014/084279号明細書に記載されているものが使用できる。
Examples of the alkali-soluble resin (AP) having an ethylenic double bond include a resin (A-1) having a side chain having an acidic group and a side chain having an ethylenic double bond, and an epoxy group having an acidic group and ethylene. And a resin (A-2) into which an ionic double bond is introduced. These may be used alone or in combination of two or more.
As such alkali-soluble resin (AP), those described in the specification of WO2014 / 084279 can be used.
 アルカリ可溶性樹脂(AP)としては、現像時の硬化膜の剥離が抑制されて、高解像度のドットのパターンを得ることができる点、ドットが直線状である場合のパターンの直線性が良好である点、平滑な硬化膜表面が得られやすい点で、樹脂(A-2)を用いることが好ましい。なお、パターンの直線性が良好であるとは、得られる隔壁の縁に欠け等がなく直線的であることをいう。 As alkali-soluble resin (AP), peeling of the cured film during development can be suppressed, and a high-resolution dot pattern can be obtained, and the linearity of the pattern when the dots are linear is good. In view of the fact that a smooth cured film surface is easily obtained, it is preferable to use the resin (A-2). In addition, that the linearity of a pattern is favorable means that the edge of the partition obtained does not have a chip etc. and is linear.
 樹脂(A-2)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂、特開2006-84985明細書に記載のエポキシ樹脂にそれぞれ酸性基とエチレン性二重結合とを導入した樹脂が好ましい。 Examples of the resin (A-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton. An epoxy resin having an acidic group and an ethylenic double bond are preferably introduced into the epoxy resin having fluorenyl-substituted bisphenol A type epoxy resin and the epoxy resin described in JP-A-2006-84985.
 ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂、特開2006-84985明細書に記載のエポキシ樹脂にそれぞれ酸性基とエチレン性二重結合とを導入した樹脂がより好ましい。 Bisphenol A type epoxy resin, bisphenol F type epoxy resin, epoxy resin having biphenyl skeleton, fluorenyl substituted bisphenol A type epoxy resin, and epoxy resin described in JP-A-2006-84985, respectively, have an acidic group and an ethylenic double bond. A resin into which is introduced is more preferable.
 中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂、が特に好ましい。これらの樹脂であると、光重合開始剤(B1)との相互作用が向上し、基材との密着力が向上する。 Of these, bisphenol A type epoxy resins, bisphenol F type epoxy resins, epoxy resins having a biphenyl skeleton, and fluorenyl-substituted bisphenol A type epoxy resins are particularly preferable. When these resins are used, the interaction with the photopolymerization initiator (B1) is improved, and the adhesion with the substrate is improved.
 アルカリ可溶性樹脂(AP)が、1分子中に有するエチレン性二重結合の数は、平均3個以上が好ましく、6個以上が特に好ましい。エチレン性二重結合の数が上記範囲の下限値以上であると、露光部分と未露光部分とのアルカリ溶解度に差がつきやすく、より少ない露光量での微細なパターン形成が可能となる。 The number of ethylenic double bonds that the alkali-soluble resin (AP) has in one molecule is preferably 3 or more on average, and particularly preferably 6 or more. When the number of ethylenic double bonds is at least the lower limit of the above range, the alkali solubility between the exposed and unexposed portions is likely to be different, and a fine pattern can be formed with a smaller exposure amount.
 アルカリ可溶性樹脂(AP)の質量平均分子量(Mw)は、1.5×10~30×10が好ましく、2×10~15×10が特に好ましい。また、数平均分子量(Mn)は、500~20×10が好ましく、1.0×10~10×10が特に好ましい。質量平均分子量(Mw)および数平均分子量(Mn)が上記範囲の下限値以上であると、露光時の硬化が充分であり、上記範囲の上限値以下であると、現像性が良好である。 The mass average molecular weight (Mw) of the alkali-soluble resin (AP) is preferably 1.5 × 10 3 to 30 × 10 3 , particularly preferably 2 × 10 3 to 15 × 10 3 . The number average molecular weight (Mn) is preferably 500 to 20 × 10 3 , and particularly preferably 1.0 × 10 3 to 10 × 10 3 . When the mass average molecular weight (Mw) and the number average molecular weight (Mn) are not less than the lower limit of the above range, curing at the time of exposure is sufficient, and when it is not more than the upper limit of the above range, the developability is good.
 なお、本明細書において、数平均分子量(Mn)および質量平均分子量(Mw)は、特に断りのない限り、ゲルパーミエーションクロマトグラフィ法により、ポリスチレンを標準物質として、測定されたものをいう。 In the present specification, the number average molecular weight (Mn) and the mass average molecular weight (Mw) are those measured by a gel permeation chromatography method using polystyrene as a standard substance unless otherwise specified.
 アルカリ可溶性樹脂(AP)の酸価は、10~300mgKOH/gが好ましく、30~150mgKOH/gが特に好ましい。酸価が上記範囲であると、ネガ型用感光性組成物の現像性が良好になる。 The acid value of the alkali-soluble resin (AP) is preferably 10 to 300 mgKOH / g, particularly preferably 30 to 150 mgKOH / g. When the acid value is within the above range, the developability of the negative photosensitive composition is improved.
 アルカリ可溶性単量体(AM)としては、例えば、酸性基とエチレン性二重結合とを有する単量体(A-3)が好ましく用いられる。アルカリ可溶性単量体(AM)が有する酸性基およびエチレン性二重結合は、アルカリ可溶性樹脂(AP)と同様である。アルカリ可溶性単量体(AM)の酸価についても、アルカリ可溶性樹脂(AP)と同様の範囲が好ましい。
 単量体(A-3)としては、2,2,2-トリアクリロイルオキシメチルエチルフタル酸等が挙げられる。
As the alkali-soluble monomer (AM), for example, a monomer (A-3) having an acidic group and an ethylenic double bond is preferably used. The acidic group and ethylenic double bond of the alkali-soluble monomer (AM) are the same as those of the alkali-soluble resin (AP). The acid value of the alkali-soluble monomer (AM) is also preferably in the same range as the alkali-soluble resin (AP).
Examples of the monomer (A-3) include 2,2,2-triacryloyloxymethylethylphthalic acid.
 ネガ型感光性樹脂組成物に含まれるアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)は、1種を単独で用いても2種以上を併用してもよい。
 ネガ型感光性樹脂組成物における全固形分中のアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)の含有割合は、5~80質量%が好ましく、10~60質量%が特に好ましい。含有割合が上記範囲であると、ネガ型感光性樹脂組成物の光硬化性および現像性が良好である。
The alkali-soluble resin or alkali-soluble monomer (A) contained in the negative photosensitive resin composition may be used alone or in combination of two or more.
The content of the alkali-soluble resin or alkali-soluble monomer (A) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
(光重合開始剤(B))
 本発明における光重合開始剤(B)は、アクリジン系の化合物からなる光重合開始剤(B1)を含む。
(Photopolymerization initiator (B))
The photopolymerization initiator (B) in the present invention includes a photopolymerization initiator (B1) made of an acridine compound.
 アクリジン系の化合物としては、9-フェニルアクリジン、1,7-ビス(9-アクリジニル)ヘプタンが挙げられる。
 光重合開始剤(B1)は、1種を単独で用いても2種以上を併用してもよい。
Examples of acridine compounds include 9-phenylacridine and 1,7-bis (9-acridinyl) heptane.
A photoinitiator (B1) may be used individually by 1 type, or may use 2 or more types together.
 光重合開始剤(B)は、光重合開始剤(B1)に加えて、光重合開始剤(B2)および/または光重合開始剤(B3)を含有することが好ましい。
 本発明における光重合開始剤(B2)は、光重合開始剤(B1)以外の化合物からなり、波長365nmにおける吸光度が0.2以上である。波長365nmにおける吸光度は、光重合開始剤(B2)の濃度を1.0×10-3質量%としたメタノール溶液を1cm角のセルで測定したときの値である。以下、「吸光度」は、特に断りのない場合、該方法で測定された波長365nmにおける吸光度をいう。
The photopolymerization initiator (B) preferably contains a photopolymerization initiator (B2) and / or a photopolymerization initiator (B3) in addition to the photopolymerization initiator (B1).
The photopolymerization initiator (B2) in the present invention comprises a compound other than the photopolymerization initiator (B1), and has an absorbance of 0.2 or more at a wavelength of 365 nm. The absorbance at a wavelength of 365 nm is a value when a methanol solution in which the concentration of the photopolymerization initiator (B2) is 1.0 × 10 −3 mass% is measured with a 1 cm square cell. Hereinafter, “absorbance” refers to absorbance at a wavelength of 365 nm measured by the method, unless otherwise specified.
 光重合開始剤(B2)としては、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(吸光度;0.8)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン(吸光度;0.8)等が挙げられる。光重合開始剤(B2)を用いることにより、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁のテーパー角を大きくすることができるとともに、該隔壁の形状も変化しにくい。なお、隔壁のテーパー角とは、基材に対して隔壁のテーパー部の断面の成す角度をいう。隔壁の断面形状は走査型電子顕微鏡(SEM)等で観察可能である。 Examples of the photopolymerization initiator (B2) include 4,4′-bis (dimethylamino) benzophenone (absorbance; 0.8), 4,4′-bis (diethylamino) benzophenone (absorbance; 0.8), and the like. . By using the photopolymerization initiator (B2), the taper angle of the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention can be increased, and the shape of the partition also changes. Hateful. In addition, the taper angle of a partition means the angle which the cross section of the taper part of a partition forms with respect to a base material. The cross-sectional shape of the partition walls can be observed with a scanning electron microscope (SEM) or the like.
 本発明における光重合開始剤(B3)は、チオキサントン系化合物であり、波長365nmにおける吸光度が0.2未満である。吸光度は、前記光重合開始剤(B2)と同じ条件で測定した値である。光重合開始剤(B3)としては、イソプロピルチオキサントン(吸光度;0.1)、2,4-ジエチルチオキサントン(吸光度;0.1)等が挙げられる。光重合開始剤(B3)を用いることにより、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁の撥インク性が向上する。 The photopolymerization initiator (B3) in the present invention is a thioxanthone compound, and the absorbance at a wavelength of 365 nm is less than 0.2. The absorbance is a value measured under the same conditions as the photopolymerization initiator (B2). Examples of the photopolymerization initiator (B3) include isopropylthioxanthone (absorbance: 0.1), 2,4-diethylthioxanthone (absorbance: 0.1), and the like. By using a photoinitiator (B3), the ink repellency of the partition formed from the cured film obtained from the negative photosensitive resin composition of this invention improves.
 また、光重合開始剤(B)は、光重合開始剤(B1)、(B2)、(B3)以外の他の光重合開始剤を含有してもよい。他の光重合開始剤としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などが挙げられる。 The photopolymerization initiator (B) may contain other photopolymerization initiators other than the photopolymerization initiators (B1), (B2), and (B3). Other photopolymerization initiators include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Phenyl) -butan-1-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like.
 ネガ型感光性樹脂組成物における光重合開始剤(B)の全固形分中の含有割合は、0.1~50質量%が好ましい。より好ましくは0.5~30質量%であり、さらに好ましくは1~15質量%である。 The content of the photopolymerization initiator (B) in the total solid content of the negative photosensitive resin composition is preferably 0.1 to 50% by mass. More preferably, it is 0.5 to 30% by mass, and further preferably 1 to 15% by mass.
 ネガ型感光性樹脂組成物における全固形分中の光重合開始剤(B1)の含有割合は、0.1~50質量%が好ましく、0.5~30質量%がより好ましく、1~15質量%が特に好ましい。かかる(B1)の含有割合が上記範囲であると、ネガ型感光性樹脂組成物の隔壁の形状が露光量を変更しても安定する。 The content of the photopolymerization initiator (B1) in the total solid content in the negative photosensitive resin composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and 1 to 15% by mass. % Is particularly preferred. When the content ratio of (B1) is in the above range, the shape of the partition wall of the negative photosensitive resin composition is stable even when the exposure amount is changed.
 ネガ型感光性樹脂組成物が光重合開始剤(B2)を含有する場合、該組成物における全固形分中の光重合開始剤(B2)の含有割合は、1~10質量%が好ましい。光重合開始剤(B2)の含有割合が上記範囲であると、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁のテーパー角を大きくすることができるとともに、該隔壁の形状も変化しにくい。 When the negative photosensitive resin composition contains a photopolymerization initiator (B2), the content of the photopolymerization initiator (B2) in the total solid content in the composition is preferably 1 to 10% by mass. When the content ratio of the photopolymerization initiator (B2) is within the above range, the taper angle of the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention can be increased, and the partition The shape of is difficult to change.
 ネガ型感光性樹脂組成物が光重合開始剤(B3)を含有する場合、該組成物における全固形分中の光重合開始剤(B3)の含有割合は、1~10質量%が好ましい。光重合開始剤(B3)の含有割合が上記範囲であると、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁の撥インク性が低露光量でも発現しやすくなる。また、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁の現像時の細線形成性が向上する。 When the negative photosensitive resin composition contains the photopolymerization initiator (B3), the content of the photopolymerization initiator (B3) in the total solid content in the composition is preferably 1 to 10% by mass. When the content ratio of the photopolymerization initiator (B3) is within the above range, the ink repellency of the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention is easily developed even at a low exposure amount. . Moreover, the fine line formation property at the time of image development of the partition formed from the cured film obtained from the negative photosensitive resin composition of this invention improves.
(撥インク剤(C))
 本発明における撥インク剤(C)は、フッ素原子を有する。フッ素原子を有することで、撥インク剤(C)は、これを含有するネガ型感光性樹脂組成物を用いて硬化膜を形成する過程で上面に移行する性質(上面移行性)および撥インク性を有する。撥インク剤(C)を用いることで、得られる硬化膜の上面を含む上層部は、撥インク剤(C)が密に存在する層(以下、「撥インク層」ということもある。)となり、硬化膜上面に撥インク性が付与される。
(Ink repellent (C))
The ink repellent agent (C) in the present invention has a fluorine atom. By having a fluorine atom, the ink repellent agent (C) has a property of transferring to the upper surface in the process of forming a cured film using the negative photosensitive resin composition containing the same (upper surface transfer property) and ink repellency. Have By using the ink repellent agent (C), the upper layer portion including the upper surface of the obtained cured film becomes a layer in which the ink repellent agent (C) is present densely (hereinafter also referred to as “ink repellent layer”). Ink repellency is imparted to the upper surface of the cured film.
 上面移行性と撥インク性の観点から、撥インク剤(C)中のフッ素原子の含有率は1~40質量%が好ましく、5~35質量%がより好ましく、10~30質量%が特に好ましい。撥インク剤(C)のフッ素原子の含有率が上記範囲の下限値以上であると、硬化膜上面に良好な撥インク性を付与でき、上限値以下であると、ネガ型感光性樹脂組成物中の他の成分との相溶性が良好になる。 From the viewpoint of upper surface migration and ink repellency, the content of fluorine atoms in the ink repellent agent (C) is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and particularly preferably 10 to 30% by mass. . If the fluorine atom content of the ink repellent agent (C) is at least the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film, and if it is less than the upper limit, the negative photosensitive resin composition Compatibility with other components in the inside is improved.
 また、撥インク剤(C)は、エチレン性二重結合を有する化合物が好ましい。撥インク剤(C)がエチレン性二重結合を有することで、上面に移行した撥インク剤(C)のエチレン性二重結合にラジカルが作用して、撥インク剤(C)同士または撥インク剤(C)とネガ型感光性樹脂組成物が含有するエチレン性二重結合を有する他成分と(共)重合による架橋が可能となる。 Further, the ink repellent agent (C) is preferably a compound having an ethylenic double bond. Since the ink repellent agent (C) has an ethylenic double bond, radicals act on the ethylenic double bond of the ink repellent agent (C) transferred to the upper surface, and the ink repellent agent (C) or ink repellent Crosslinking by (co) polymerization with the agent (C) and other components having an ethylenic double bond contained in the negative photosensitive resin composition becomes possible.
 これにより、ネガ型感光性樹脂組成物を硬化してなる硬化膜の製造において、撥インク剤(C)の硬化膜の上層部、すなわち撥インク層における定着性を向上できる。本発明のネガ型感光性樹脂組成物においては、露光の際の露光量が低い場合であっても撥インク剤(C)を撥インク層に充分に定着させることができる。撥インク剤(C)がエチレン性二重結合を有する場合は上記のとおりである。撥インク剤(C)がエチレン性二重結合を有しない場合には、撥インク剤(C)の周辺に存在するアルカリ可溶性樹脂(A)を主体とする光硬化成分の硬化が充分に行われることで、撥インク剤(C)を充分に定着させることができる。 Thereby, in the production of a cured film obtained by curing the negative photosensitive resin composition, the fixability in the upper layer portion of the cured film of the ink repellent agent (C), that is, the ink repellent layer can be improved. In the negative photosensitive resin composition of the present invention, the ink repellent agent (C) can be sufficiently fixed to the ink repellent layer even when the exposure amount during exposure is low. The case where the ink repellent agent (C) has an ethylenic double bond is as described above. When the ink repellent agent (C) does not have an ethylenic double bond, the photocurable component mainly composed of the alkali-soluble resin (A) present around the ink repellent agent (C) is sufficiently cured. Thus, the ink repellent agent (C) can be sufficiently fixed.
 撥インク剤(C)としては、例えば、主鎖が炭化水素鎖であり、側鎖にフッ素原子を含む化合物からなる撥インク剤(C1)が挙げられる。撥インク剤(C)としては、フッ素原子を有する加水分解性シラン化合物を含む加水分解性シラン化合物の部分加水分解縮合物からなる撥インク剤(C2)を用いてもよい。 Examples of the ink repellent agent (C) include an ink repellent agent (C1) made of a compound in which the main chain is a hydrocarbon chain and the side chain contains a fluorine atom. As the ink repellent agent (C), an ink repellent agent (C2) made of a partially hydrolyzed condensate of a hydrolyzable silane compound containing a hydrolyzable silane compound having a fluorine atom may be used.
 撥インク剤(C1)および撥インク剤(C2)は、単独で、または組み合わせて用いられる。本発明のネガ型感光性樹脂組成物においては、より高い撥インク性を発現させる点で、特に撥インク剤(C1)を用いることが好ましい。また、耐紫外線/オゾン性が求められる場合には、撥インク剤(C2)を用いることが好ましい。 The ink repellent agent (C1) and the ink repellent agent (C2) are used alone or in combination. In the negative photosensitive resin composition of the present invention, it is particularly preferable to use the ink repellent agent (C1) from the viewpoint of developing higher ink repellency. In addition, when UV resistance / ozone resistance is required, it is preferable to use an ink repellent agent (C2).
 撥インク剤(C1)は、主鎖が炭化水素鎖であり、フッ素原子を有する側鎖を含む化合物である。撥インク剤(C1)の質量平均分子量(Mw)は、100~200,000が好ましく、1,000~150,000がより好ましく、10,000~130,000が特に好ましい。質量平均分子量(Mw)が下限値以上であると、ネガ型感光性樹脂組成物を用いて硬化膜を形成する際に、撥インク剤(C1)が上面移行しやすい。上限値以下であると開口部残渣が少なくなり好ましい。 The ink repellent agent (C1) is a compound having a main chain of a hydrocarbon chain and a side chain having a fluorine atom. The mass average molecular weight (Mw) of the ink repellent agent (C1) is preferably from 100 to 200,000, more preferably from 1,000 to 150,000, and particularly preferably from 10,000 to 130,000. When the mass average molecular weight (Mw) is at least the lower limit value, the ink repellent agent (C1) tends to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition. The opening residue is less than the upper limit, which is preferable.
 撥インク剤(C1)は、エーテル性酸素原子を含んでいてもよいフルオロアルキル基からなる側鎖および/またはエーテル性酸素原子を含んでいてもよいフルオロアルキル基を有する側鎖を含む重合体であることが好ましい。 The ink repellent agent (C1) is a polymer containing a side chain comprising a fluoroalkyl group which may contain an etheric oxygen atom and / or a side chain having a fluoroalkyl group which may contain an etheric oxygen atom. Preferably there is.
 フルオロアルキル基は直鎖状でもよく、分岐状でもよい。
 エーテル性酸素原子を含まないフルオロアルキル基の具体例としては、以下の構造が挙げられる。
-CF、-CFCF、-CFCHF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CF11CF、-(CF15CF
The fluoroalkyl group may be linear or branched.
Specific examples of the fluoroalkyl group not containing an etheric oxygen atom include the following structures.
-CF 3 , -CF 2 CF 3 , -CF 2 CHF 2 ,-(CF 2 ) 2 CF 3 ,-(CF 2 ) 3 CF 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 ,-(CF 2 ) 9 CF 3 ,-(CF 2 ) 11 CF 3 ,-(CF 2 ) 15 CF 3 .
 エーテル性酸素原子を含むフルオロアルキル基の具体例としては、以下の構造が挙げられる。
-CF(CF)O(CFCF
-CFO(CFCFO)r1CF
-CF(CF)O(CFCF(CF)O)r213
および-CF(CF)O(CFCF(CF)O)r3
 上記式中、r1は1~8の整数、r2は1~4の整数、r3は1~5の整数である。
Specific examples of the fluoroalkyl group containing an etheric oxygen atom include the following structures.
-CF (CF 3 ) O (CF 2 ) 5 CF 3 ,
-CF 2 O (CF 2 CF 2 O) r1 CF 3,
—CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r 2 C 6 F 13 ,
And —CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r3 C 3 F 7 .
In the above formula, r1 is an integer of 1 to 8, r2 is an integer of 1 to 4, and r3 is an integer of 1 to 5.
 撥インク剤(C1)の主鎖を構成する炭化水素鎖として、具体的には、エチレン性二重結合を有する単量体の重合で得られる主鎖、-Ph-CH-(ただし、「Ph」はベンゼン骨格を示す。)の繰り返し単位からなるノボラック型の主鎖等が挙げられる。 As the hydrocarbon chain constituting the main chain of the ink repellent agent (C1), specifically, a main chain obtained by polymerization of a monomer having an ethylenic double bond, —Ph—CH 2 — (however, “ Ph ”represents a benzene skeleton.) And a novolak-type main chain composed of repeating units.
 撥インク剤(C1)は、酸性基を有する側鎖、エチレン性二重結合を有する側鎖、およびオキシアルキレン基を有する側鎖からなる群から選ばれる1種以上の側鎖を含むことができる。1つの側鎖に、酸性基、エチレン性二重結合、およびオキシアルキレン基からなる群から選ばれる2種以上が含まれていてもよい。 The ink repellent agent (C1) can include one or more side chains selected from the group consisting of a side chain having an acidic group, a side chain having an ethylenic double bond, and a side chain having an oxyalkylene group. . One side chain may contain two or more selected from the group consisting of an acidic group, an ethylenic double bond, and an oxyalkylene group.
 また、撥インク剤(C1)は、ジメチルシリコーン鎖、アルキル基、グリシジル基、イソボルニル基、イソシアネート基、トリアルコキシシリル基等の側鎖を含むことができる。 Further, the ink repellent agent (C1) can contain side chains such as a dimethyl silicone chain, an alkyl group, a glycidyl group, an isobornyl group, an isocyanate group, and a trialkoxysilyl group.
 撥インク剤(C1)の主鎖が-Ph-CH-の繰り返し単位からなるノボラック型の主鎖である場合、通常、主鎖を構成するベンゼン骨格(Ph)に、フッ素原子を有する側鎖を有し、および任意に酸性基を有する基、エチレン性二重結合を有する基、オキシアルキレン基が結合した重合体が撥インク剤(C1)として用いられる。 In the case where the main chain of the ink repellent agent (C1) is a novolak-type main chain composed of repeating units of -Ph-CH 2- , the side chain having a fluorine atom in the benzene skeleton (Ph) constituting the main chain is usually used. And a polymer having an acidic group, an ethylenic double bond, and an oxyalkylene group are used as the ink repellent agent (C1).
 撥インク剤(C1)として、具体的には、国際公開第2014/046209号の例えば、段落[0080]~[0102]、国際公開2014/069478号の例えば、段落[0145]~[0170]に記載されたものが挙げられる。 As the ink repellent agent (C1), specifically, for example, in paragraphs [0080] to [0102] of International Publication No. 2014/046209 and in paragraphs [0145] to [0170] of International Publication No. 2014/0669478, for example. What has been described.
 撥インク剤(C2)は、加水分解性シラン化合物混合物(以下、「混合物(M)」ともいう。)の部分加水分解縮合物である。該混合物(M)は、フルオロアルキレン基および/またはフルオロアルキル基、および、ケイ素原子に加水分解性基が結合した基を有する加水分解性シラン化合物(以下、「加水分解性シラン化合物(s1)」ともいう。)を必須成分として含み、任意に加水分解性シラン化合物(s1)以外の加水分解性シラン化合物を含む。混合物(M)が任意に含有する加水分解性シラン化合物としては、以下の加水分解性シラン化合物(s2)、加水分解性シラン化合物(s3)が挙げられる。混合物(M)が任意に含有する加水分解性シラン化合物としては、加水分解性シラン化合物(s2)が特に好ましい。 The ink repellent agent (C2) is a partially hydrolyzed condensate of a hydrolyzable silane compound mixture (hereinafter also referred to as “mixture (M)”). The mixture (M) is a hydrolyzable silane compound having a fluoroalkylene group and / or a fluoroalkyl group and a group in which a hydrolyzable group is bonded to a silicon atom (hereinafter referred to as “hydrolyzable silane compound (s1)”). ) As an essential component, and optionally a hydrolyzable silane compound other than the hydrolyzable silane compound (s1). Examples of the hydrolyzable silane compound optionally contained in the mixture (M) include the following hydrolyzable silane compound (s2) and hydrolyzable silane compound (s3). As the hydrolyzable silane compound optionally contained in the mixture (M), a hydrolyzable silane compound (s2) is particularly preferable.
 加水分解性シラン化合物(s2);ケイ素原子に4個の加水分解性基が結合した加水分解性シラン化合物。
 加水分解性シラン化合物(s3);エチレン性二重結合を有する基とケイ素原子に加水分解性基が結合した基とを有し、フッ素原子を含まない加水分解性シラン化合物。
Hydrolyzable silane compound (s2): a hydrolyzable silane compound in which four hydrolyzable groups are bonded to a silicon atom.
Hydrolyzable silane compound (s3): a hydrolyzable silane compound having a group having an ethylenic double bond and a group in which a hydrolyzable group is bonded to a silicon atom, and does not contain a fluorine atom.
 加水分解性シラン化合物(s1)の具体例としては、以下の化合物が挙げられる。
F(CFCHCHSi(OCH
F(CFCHCHSi(OCH
F(CFCHCHCHSi(OCH
F(CFCHCHSi(OCH
F(CFOCF(CF)CFO(CFCHCHSi(OCH
F(CFO(CFO(CFCHCHSi(OCH
Specific examples of the hydrolyzable silane compound (s1) include the following compounds.
F (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 6 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2) 3 OCF ( CF 3) CF 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3,
F (CF 2) 2 O ( CF 2) 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3.
(CHO)SiCHCH(CFCHCHSi(OCH
(CHO)SiCHCH(CFCHCHSi(OCH
(CHO)SiCHCH(CFCHCHCHSi(OCH
(CHO)SiCHCH(CFOCF(CF)CFO(CFOCF(CF)CFO(CFCHCHSi(OCH
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 6 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2) 2 OCF 2 (CF 3) CFO (CF 2) 2 OCF (CF 3) CF 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3 .
 なかでも、F(CFCHCHSi(OCHおよびF(CFOCF(CF)CFO(CFCHCHSi(OCHが特に好ましい。 Among them, F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 and F (CF 2 ) 3 OCF (CF 3 ) CF 2 O (CF 2 ) 2 CH 2 CH 2 Si (OCH 3 ) 3 are Particularly preferred.
 混合物(M)における加水分解性シラン化合物(s1)の含有割合は、該混合物から得られる部分加水分解縮合物におけるフッ素原子の含有率が1~40質量%となる割合であることが好ましい。より好ましくは5~35質量%、特に好ましくは10~30質量%である。加水分解性シラン化合物(s1)の含有割合が上記範囲の下限値以上であると、硬化膜の上面に良好な撥インク性を付与でき、上限値以下であると、該混合物中の他の加水分解性シラン化合物との相溶性が良好になる。
 加水分解性シラン化合物(s2)の具体例としては、以下の化合物が挙げられる。
Si(OCH、Si(OC
Si(OCHの部分加水分解縮合物、
Si(OCの部分加水分解縮合物。
The content of the hydrolyzable silane compound (s1) in the mixture (M) is preferably such that the fluorine atom content in the partially hydrolyzed condensate obtained from the mixture is 1 to 40% by mass. More preferred is 5 to 35% by mass, and particularly preferred is 10 to 30% by mass. When the content ratio of the hydrolyzable silane compound (s1) is not less than the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film. Compatibility with the decomposable silane compound is improved.
Specific examples of the hydrolyzable silane compound (s2) include the following compounds.
Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 ,
A partial hydrolysis condensate of Si (OCH 3 ) 4 ,
Partially hydrolyzed condensate of Si (OC 2 H 5 ) 4 .
 混合物(M)における加水分解性シラン化合物(s2)の含有割合は、加水分解性シラン化合物(s1)の1モルに対して、0.01~5モルが好ましく、0.05~4モルが特に好ましい。含有割合が上記範囲の下限値以上であると撥インク剤(C2)の造膜性が良好であり、上限値以下であると撥インク剤(C2)の撥インク性が良好である。 The content of the hydrolyzable silane compound (s2) in the mixture (M) is preferably 0.01 to 5 mol, particularly 0.05 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable. When the content ratio is not less than the lower limit of the above range, the film forming property of the ink repellent agent (C2) is good, and when it is not more than the upper limit value, the ink repellent property of the ink repellent agent (C2) is good.
 加水分解性シラン化合物(s3)の具体例としては、以下の化合物が挙げられる。
CH=C(CH)COO(CHSi(OCH
CH=C(CH)COO(CHSi(OC
CH=CHCOO(CHSi(OCH
CH=CHCOO(CHSi(OC
[CH=C(CH)COO(CH]CHSi(OCH
[CH=C(CH)COO(CH]CHSi(OC
CH=CHSi(OCH
CH=CHCSi(OCH
Specific examples of the hydrolyzable silane compound (s3) include the following compounds.
CH 2 = C (CH 3) COO (CH 2) 3 Si (OCH 3) 3,
CH 2 = C (CH 3) COO (CH 2) 3 Si (OC 2 H 5) 3,
CH 2 = CHCOO (CH 2) 3 Si (OCH 3) 3,
CH 2 = CHCOO (CH 2) 3 Si (OC 2 H 5) 3,
[CH 2 = C (CH 3 ) COO (CH 2) 3] CH 3 Si (OCH 3) 2,
[CH 2 = C (CH 3 ) COO (CH 2) 3] CH 3 Si (OC 2 H 5) 2,
CH 2 = CHSi (OCH 3 ) 3 ,
CH 2 = CHC 6 H 4 Si (OCH 3) 3.
 混合物(M)における加水分解性シラン化合物(s3)の含有割合は、加水分解性シラン化合物(s1)の1モルに対して、0.1~5モルが好ましく、0.5~4モルが特に好ましい。含有割合が上記範囲の下限値以上であると、撥インク剤(C2)の上面移行性が良好であり、また、上面移行後に上面を含む撥インク層において撥インク剤(C2)の定着性が良好であり、さらに、撥インク剤(C2)の貯蔵安定性が良好である。上限値以下であると撥インク剤(C2)の撥インク性が良好である。 The content of the hydrolyzable silane compound (s3) in the mixture (M) is preferably 0.1 to 5 mol, particularly 0.5 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable. When the content ratio is equal to or more than the lower limit of the above range, the top transferability of the ink repellent agent (C2) is good, and the fixability of the ink repellent agent (C2) in the ink repellent layer including the top surface after shifting to the top surface. Further, the storage stability of the ink repellent agent (C2) is good. When the amount is not more than the upper limit, the ink repellency of the ink repellent (C2) is good.
 混合物(M)は、任意に加水分解性シラン化合物(s1)~(s3)以外の加水分解性シラン化合物を1種または2種以上含むことができる。
 その他の加水分解性シラン化合物としては、ケイ素原子に結合する基として炭化水素基と加水分解性基のみを有する加水分解性シラン化合物(s4)、メルカプト基と加水分解性シリル基とを有し、フッ素原子を含まない加水分解性シラン化合物(s5)、エポキシ基と加水分解性シリル基とを有し、フッ素原子を含有しない加水分解性シラン化合物(s6)、オキシアルキレン基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s7)、スルフィドと加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s8)、ウレイド基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s9)、アミノ基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s10)等が挙げられる。
The mixture (M) can optionally contain one or more hydrolyzable silane compounds other than the hydrolyzable silane compounds (s1) to (s3).
Other hydrolyzable silane compounds include a hydrolyzable silane compound (s4) having only a hydrocarbon group and a hydrolyzable group as a group bonded to a silicon atom, a mercapto group and a hydrolyzable silyl group, Hydrolyzable silane compound (s5) containing no fluorine atom, hydrolyzable silane compound (s6) having an epoxy group and a hydrolyzable silyl group and no fluorine atom, oxyalkylene group and hydrolyzable silyl group Hydrolyzable silane compound (s7) having no fluorine atom, hydrolyzable silane compound (s8) having sulfide and hydrolyzable silyl group, and not containing fluorine atom, ureido group and hydrolyzable silyl Hydrolyzable silane compound (s9) having a group and no fluorine atom, hydrolysis having an amino group and a hydrolyzable silyl group and no fluorine atom Silane compound (s10), and the like.
 具体的には、加水分解性シラン化合物(s4)として、例えば、(CH-Si-OCH、(CHCH-Si-OC、(CH-Si-OC、(CHCH-Si-OCH、(CH-Si-(OCH、(CH-Si-(OC、(CHCH-Si-(OC、(CHCH-Si-(OCH、Ph-Si(OC、Ph-Si(OCH、C1021-Si(OCHが挙げられる。なお、式中Phはフェニル基を示す。 Specifically, as the hydrolyzable silane compound (s4), for example, (CH 3 ) 3 —Si—OCH 3 , (CH 3 CH 2 ) 3 —Si—OC 2 H 5 , (CH 3 ) 3 —Si —OC 2 H 5 , (CH 3 CH 2 ) 3 —Si—OCH 3 , (CH 3 ) 2 —Si— (OCH 3 ) 2 , (CH 3 ) 2 —Si— (OC 2 H 5 ) 2 , ( CH 3 CH 2 ) 2 —Si— (OC 2 H 5 ) 2 , (CH 3 CH 2 ) 2 —Si— (OCH 3 ) 2 , Ph—Si (OC 2 H 5 ) 3 , Ph—Si (OCH 3) ) 3 , C 10 H 21 —Si (OCH 3 ) 3 . In the formula, Ph represents a phenyl group.
 また、加水分解性シラン化合物(s5)として、例えば、HS-(CH-Si(OCH、HS-(CH-Si(CH)(OCHが、加水分解性シラン化合物(s6)として、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシランが、加水分解性シラン化合物(s7)として、例えば、CHO(CO)Si(OCH(ポリオキシエチレン基含有トリメトキシシラン)(ここで、kは例えば約10である。)、加水分解性シラン化合物(s8)として、例えば、ビス(トリエトキシシリルプロピル)テトラスルフィド、加水分解性シラン化合物(s9)として、例えば、3-ウレイドプロピルトリエトキシシラン、加水分解性シラン化合物(s10)として、例えば、N-フェニル-3-アミノプロピルトリメトキシシランが挙げられる。 In addition, as the hydrolyzable silane compound (s5), for example, HS— (CH 2 ) 3 —Si (OCH 3 ) 3 , HS— (CH 2 ) 3 —Si (CH 3 ) (OCH 3 ) 2 is added with water. Examples of the decomposable silane compound (s6) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycid Xylpropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane are, for example, CH 3 O (C 2 H 4 O) k Si (OCH 3 ) 3 (polyoxy) as the hydrolyzable silane compound (s7). Ethylene group-containing trimethoxysilane (here, k is, for example, about 10), hydrolyzable silane compound (s8) For example, bis (triethoxysilylpropyl) tetrasulfide, hydrolyzable silane compound (s9), for example, 3-ureidopropyltriethoxysilane, hydrolyzable silane compound (s10), for example, N-phenyl-3 -Aminopropyltrimethoxysilane.
 特に撥インク剤(C2)が加水分解性シラン化合物(s5)や加水分解性シラン化合物(s8)を含む場合、低露光量でも撥インク性が発現しやすくなり好ましい。
 特に撥インク剤(C2)が加水分解性シラン化合物(s7)を含む場合、撥インク剤(C2)の分散安定性、貯蔵安定性が向上し、好ましい。
In particular, when the ink repellent agent (C2) contains a hydrolyzable silane compound (s5) or a hydrolyzable silane compound (s8), the ink repellency is easily exhibited even at a low exposure amount.
In particular, when the ink repellent agent (C2) contains a hydrolyzable silane compound (s7), the dispersion stability and storage stability of the ink repellent agent (C2) are improved, which is preferable.
 撥インク剤(C2)の一例として、加水分解性シラン化合物(s1)をn1含み、加水分解性シラン化合物(s2)をn2、加水分解性シラン化合物(s3)をn3含む混合物(M)の部分加水分解縮合物が挙げられる。ここで、n1~n3は構成単位の合計モル量に対する各構成単位のモル分率を示す。n1>0、n2≧0、n3≧0、n1+n2+n3=1である。 As an example of the ink repellent agent (C2), a part of the mixture (M) containing n1 of the hydrolyzable silane compound (s1), n2 of the hydrolyzable silane compound (s2), and n3 of the hydrolyzable silane compound (s3) A hydrolysis condensate is mentioned. Here, n1 to n3 represent the mole fraction of each structural unit relative to the total molar amount of the structural units. n1> 0, n2 ≧ 0, n3 ≧ 0, and n1 + n2 + n3 = 1.
 n1:n2:n3は混合物(M)における加水分解性シラン化合物(s1)、(s2)、(s3)の仕込み組成と一致する。各成分のモル比は、各成分の効果のバランスから設計される。
 n1は、撥インク剤(C2)におけるフッ素原子の含有率が上記好ましい範囲となる量において、0.02~0.4が好ましい。
 n2は、0~0.98が好ましく、0.05~0.6が特に好ましい。
 n3は、0~0.8が好ましく、0.2~0.5が特に好ましい。
n1: n2: n3 corresponds to the charged composition of the hydrolyzable silane compounds (s1), (s2), and (s3) in the mixture (M). The molar ratio of each component is designed from the balance of the effect of each component.
n1 is preferably 0.02 to 0.4 in such an amount that the fluorine atom content in the ink repellent agent (C2) falls within the above-mentioned preferable range.
n2 is preferably from 0 to 0.98, particularly preferably from 0.05 to 0.6.
n3 is preferably 0 to 0.8, particularly preferably 0.2 to 0.5.
 撥インク剤(C2)の質量平均分子量(Mw)は、500以上が好ましく、1,000,000未満が好ましく、5000以下が特に好ましい。
 質量平均分子量(Mw)が下限値以上であると、ネガ型感光性樹脂組成物を用いて硬化膜を形成する際に、撥インク剤(C2)が上面移行しやすい。上限値未満であると、開口部残渣が少なくなり好ましい。
 撥インク剤(C2)の質量平均分子量(Mw)は、製造条件により調節できる。
The mass average molecular weight (Mw) of the ink repellent agent (C2) is preferably 500 or more, preferably less than 1,000,000, and particularly preferably 5000 or less.
When the mass average molecular weight (Mw) is not less than the lower limit, the ink repellent agent (C2) is likely to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition. When it is less than the upper limit, the opening residue is reduced, which is preferable.
The mass average molecular weight (Mw) of the ink repellent agent (C2) can be adjusted by the production conditions.
 撥インク剤(C2)は、上述した混合物(M)を、公知の方法により加水分解および縮合反応させることで製造できる。この反応には、水酸化ナトリウム、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ触媒、塩酸、硫酸、硝酸およびリン酸等の無機酸、あるいは、酢酸、シュウ酸およびマレイン酸等の有機酸を触媒として用いることができる。また、上記反応には公知の溶媒を用いることができる。上記反応で得られる撥インク剤(C2)は、溶媒とともに溶液の性状でネガ型感光性樹脂組成物に配合してもよい。 The ink repellent agent (C2) can be produced by subjecting the above-mentioned mixture (M) to hydrolysis and condensation reaction by a known method. This reaction is catalyzed by alkali catalysts such as sodium hydroxide and tetramethylammonium hydroxide (TMAH), inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or organic acids such as acetic acid, oxalic acid and maleic acid. Can be used as Moreover, a well-known solvent can be used for the said reaction. The ink repellent agent (C2) obtained by the above reaction may be blended in a negative photosensitive resin composition in the form of a solution together with a solvent.
 撥インク剤(C2)として、具体的には、国際公開第2014/046209号の例えば、段落[0033]~[0078]、国際公開第2014/046210号の例えば、段落[0027]~[0082]、国際公開2014/069478号の例えば、段落[0095]~[0143]に記載されたものが挙げられる。 Specifically, as the ink repellent agent (C2), for example, paragraphs [0033] to [0078] of International Publication No. 2014/046209, for example, paragraphs [0027] to [0082] of International Publication No. 2014/046210. And those described in paragraphs [0095] to [0143] of International Publication No. 2014/0669478.
 ネガ型感光性樹脂組成物における全固形分中の撥インク剤(C)の含有割合は、これを用いて得られる隔壁において、表面が上記の特性を満足する含有割合とする。該含有割合は、用いる撥インク剤(C)の種類にもよるが、具体的には、0.03~10質量%が好ましく、0.05~5質量%がより好ましく、0.10~3質量%が特に好ましい。含有割合が上記範囲の下限値以上であると、ネガ型感光性樹脂組成物から形成される硬化膜の上面は優れた撥インク性を有する。上記範囲の上限値以下であると、硬化膜と基材との密着性が良好になる。 The content ratio of the ink repellent agent (C) in the total solid content in the negative photosensitive resin composition is a content ratio at which the surface satisfies the above characteristics in the partition obtained using the same. The content ratio depends on the type of the ink repellent agent (C) to be used, but specifically, it is preferably 0.03 to 10% by mass, more preferably 0.05 to 5% by mass, and 0.10 to 3%. Mass% is particularly preferred. When the content ratio is at least the lower limit of the above range, the upper surface of the cured film formed from the negative photosensitive resin composition has excellent ink repellency. Adhesiveness of a cured film and a base material becomes it favorable that it is below the upper limit of the said range.
(架橋剤(D))
 本発明のネガ型感光性樹脂組成物が任意に含有する架橋剤(D)は、1分子中に2個以上のエチレン性二重結合を有し酸性基を有しない化合物である。ネガ型感光性樹脂組成物が架橋剤(D)を含むことにより、露光時におけるネガ型感光性樹脂組成物の硬化性が向上し、低い露光量でも硬化膜を形成することができる。
(Crosslinking agent (D))
The crosslinking agent (D) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more ethylenic double bonds in one molecule and no acidic group. When the negative photosensitive resin composition contains the crosslinking agent (D), the curability of the negative photosensitive resin composition at the time of exposure is improved, and a cured film can be formed even with a low exposure amount.
 架橋剤(D)としては、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトール(メタ)アクリレート、トリペンタエリスリトール(メタ)アクリレート、テトラペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、トリス-(2-アクリロイルオキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-アクリロイルオキシエチル)イソシアヌレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールヘプタアクリレート、テトラペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ジペンタエリスリトールペンタアクリレートにHDI(ヘキサメチレンジイソシアネート)が結合したウレタン骨格を持つモノマー(10官能)およびウレタンアクリレート等が挙げられる。 As the crosslinking agent (D), diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol (meth) acrylate, dipentaerythritol (meth) acrylate, tripentaerythritol (meth) acrylate, tetrapentaerythritol (Meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethoxylation Isocyanuric acid tri (meth) acrylate, tris- (2-acryloyloxyethyl) isocyanurate, ε-caprolacto Modified tris- (2-acryloyloxyethyl) isocyanurate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol heptaacrylate, tetrapentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, di Examples thereof include a monomer (10 functional) having a urethane skeleton in which HDI (hexamethylene diisocyanate) is bonded to pentaerythritol pentaacrylate and urethane acrylate.
 光反応性の点からは、架橋剤(D)の内少なくとも1つは、7個以上のエチレン性二重結合を有することが好ましい。例えば、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールヘプタアクリレート、テトラペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ジペンタエリスリトールペンタアクリレートにHDI(ヘキサメチレンジイソシアネート)が結合したウレタン骨格を持つモノマー(10官能)が好ましい。
 また、架橋剤(D)の有するエチレン性二重結合の数は、9個以上がより好ましく、10個以上が特に好ましい。
 架橋剤(D)は、1種を単独で用いても2種以上を併用してもよい。
From the viewpoint of photoreactivity, it is preferable that at least one of the crosslinking agents (D) has 7 or more ethylenic double bonds. For example, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol heptaacrylate, tetrapentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, dipentaerythritol pentaacrylate and HDI (hexamethylene diisocyanate) A monomer having a urethane skeleton bonded with (10 functional) is preferred.
Further, the number of ethylenic double bonds of the crosslinking agent (D) is more preferably 9 or more, and particularly preferably 10 or more.
A crosslinking agent (D) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物における全固形分中の架橋剤(D)の含有割合は、10~60質量%が好ましく、20~55質量%が特に好ましい。 The content of the crosslinking agent (D) in the total solid content in the negative photosensitive resin composition is preferably 10 to 60% by mass, particularly preferably 20 to 55% by mass.
(着色剤(E))
 本発明のネガ型感光性樹脂組成物は、用途に応じて、硬化膜、特には隔壁に遮光性を付与する場合に、着色剤(E)を含有する。本発明における着色剤(E)としては、カーボンブラック、アニリンブラック、アントラキノン系黒色顔料、ペリレン系黒色顔料およびアゾメチン系黒色顔料等の各種無機顔料または有機顔料が挙げられる。
 着色剤(E)としては赤色顔料、青色顔料および緑色顔料等の有機顔料および/または無機顔料の混合物を用いることもできる。
(Colorant (E))
The negative photosensitive resin composition of this invention contains a coloring agent (E), when providing light-shielding property to a cured film, especially a partition, according to a use. Examples of the colorant (E) in the present invention include various inorganic pigments or organic pigments such as carbon black, aniline black, anthraquinone black pigment, perylene black pigment, and azomethine black pigment.
As the colorant (E), a mixture of an organic pigment such as a red pigment, a blue pigment and a green pigment and / or an inorganic pigment can also be used.
 好ましい有機顔料の具体例としては、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、メチル-2-シアノアクリレート、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、C.I.ピグメントブラック1、6、7、12、20、31、C.I.ピグメントブルー15:6、ピグメントレッド254、ピグメントグリーン36、ピグメントイエロー150等が挙げられる。 Specific examples of preferred organic pigments include 2-hydroxy-4-n-octoxybenzophenone, methyl-2-cyanoacrylate, 2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4 -Dibutoxyphenyl) -1,3,5-triazine, C.I. I. Pigment black 1, 6, 7, 12, 20, 31, C.I. I. Pigment Blue 15: 6, Pigment Red 254, Pigment Green 36, Pigment Yellow 150, and the like.
 着色剤(E)は、1種を単独で用いても2種以上を併用してもよい。本発明のネガ型感光性樹脂組成物が、着色剤(E)を含有する場合には、全固形分中の着色剤(E)の含有割合は、15~65質量%が好ましく、20~50質量%が特に好ましい。また、アルカリ可溶性樹脂(A)の100質量%に対しては、15~1500質量%が好ましく、20~1000質量%がより好ましい。かかる着色剤(E)の上記範囲であると得られるネガ型感光性樹脂組成物は感度が良好であり、また、形成される隔壁は遮光性に優れる。 Coloring agent (E) may be used alone or in combination of two or more. When the negative photosensitive resin composition of the present invention contains the colorant (E), the content of the colorant (E) in the total solid content is preferably 15 to 65% by mass, and 20 to 50%. Mass% is particularly preferred. Further, 15 to 1500% by mass is preferable and 20 to 1000% by mass is more preferable with respect to 100% by mass of the alkali-soluble resin (A). The negative photosensitive resin composition obtained when the colorant (E) is within the above range has good sensitivity, and the formed partition has excellent light shielding properties.
(溶媒(F))
 本発明のネガ型感光性樹脂組成物は、溶媒(F)を含有することで粘度が低減され、ネガ型感光性樹脂組成物の基材表面への塗布がしやすくなる。その結果、均一な膜厚のネガ型感光性樹脂組成物の塗膜が形成できる。
 溶媒(F)としては公知の溶媒が用いられる。溶媒(F)は、1種を単独で用いても2種以上を併用してもよい。
(Solvent (F))
When the negative photosensitive resin composition of the present invention contains the solvent (F), the viscosity is reduced, and the negative photosensitive resin composition can be easily applied to the substrate surface. As a result, a coating film of a negative photosensitive resin composition having a uniform film thickness can be formed.
A known solvent is used as the solvent (F). A solvent (F) may be used individually by 1 type, or may use 2 or more types together.
 溶媒(F)としては、アルキレングリコールアルキルエーテル類、アルキレングリコールアルキルエーテルアセテート類、アルコール類、ソルベントナフサ類、および水等が挙げられる。なかでも、アルキレングリコールアルキルエーテル類、アルキレングリコールアルキルエーテルアセテート類、およびアルコール類からなる群から選ばれる少なくとも1種の溶媒が好ましく、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテートおよび2-プロパノールからなる群から選ばれる少なくとも1種の溶媒がさらに好ましい。
 なお、溶媒(F)が水を含む場合、水の含有量は溶媒(F)全体の10質量%以下であるのが好ましい。上記範囲であると、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁からなるパターン基板のムラを低減できる。また、水の含有量は1~10質量%であるのがより好ましい。上記範囲であると組成物の分散安定性が良好である。
Examples of the solvent (F) include alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, alcohols, solvent naphtha, and water. Among these, at least one solvent selected from the group consisting of alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, and alcohols is preferable. Propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol More preferred is at least one solvent selected from the group consisting of monoethyl ether acetate and 2-propanol.
In addition, when a solvent (F) contains water, it is preferable that content of water is 10 mass% or less of the whole solvent (F). Within the above range, it is possible to reduce the unevenness of the pattern substrate comprising the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention. The water content is more preferably 1 to 10% by mass. Within the above range, the dispersion stability of the composition is good.
 ネガ型感光性樹脂組成物における溶媒(F)の含有割合は、組成物全量に対して50~99質量%が好ましく、60~95質量%がより好ましく、65~90質量%が特に好ましい。また、アルカリ可溶性樹脂(A)の100質量%に対しては、0.1~3000質量%が好ましく、0.5~2000質量%がより好ましい。 The content ratio of the solvent (F) in the negative photosensitive resin composition is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and particularly preferably 65 to 90% by mass with respect to the total amount of the composition. Further, the amount is preferably 0.1 to 3000% by mass, more preferably 0.5 to 2000% by mass with respect to 100% by mass of the alkali-soluble resin (A).
(その他の成分)
(チオール化合物(G))
 本発明のネガ型感光性樹脂組成物が任意に含有するチオール化合物(G)は、1分子中にメルカプト基を2個以上有する化合物である。本発明のネガ型感光性樹脂組成物がチオール化合物(G)を含有すれば、露光時に光重合開始剤(B)から生成したラジカルによりチオール化合物(G)のラジカルが生成してアルカリ可溶性樹脂(A)やネガ型感光性樹脂組成物が含有するその他成分のエチレン性二重結合に作用する、いわゆるエン-チオール反応が生起する。このエン-チオール反応は、通常のエチレン性二重結合がラジカル重合するのと異なり、酸素による反応阻害を受けないため、高い連鎖移動性を有し、さらに重合と同時に架橋も行うため、硬化物となる際の収縮率も低く、均一なネットワークが得られやすい等の利点を有する。
(Other ingredients)
(Thiol compound (G))
The thiol compound (G) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more mercapto groups in one molecule. If the negative photosensitive resin composition of this invention contains a thiol compound (G), the radical of a thiol compound (G) will produce | generate by the radical produced | generated from the photoinitiator (B) at the time of exposure, and alkali-soluble resin ( A) or so-called ene-thiol reaction that acts on the ethylenic double bond of other components contained in the negative photosensitive resin composition occurs. This ene-thiol reaction is different from the usual radical polymerization of ethylenic double bonds, and is not subject to reaction inhibition by oxygen, so it has high chain mobility and also undergoes crosslinking at the same time as polymerization. The shrinkage rate is low, and there is an advantage that a uniform network can be easily obtained.
 本発明のネガ型感光性樹脂組成物が、チオール化合物(G)を含有する場合には、上述のようにして低露光量でも充分に硬化でき、特に酸素による反応阻害を受け易い隔壁上面を含む上層部においても光硬化が充分に行われることから隔壁上面に良好な撥インク性を付与することが可能となる。 When the negative photosensitive resin composition of the present invention contains a thiol compound (G), it can be sufficiently cured even at a low exposure amount as described above, and includes a partition upper surface that is particularly susceptible to reaction inhibition by oxygen. Since the photocuring is sufficiently performed also in the upper layer portion, it is possible to impart good ink repellency to the upper surface of the partition wall.
 チオール化合物(G)中のメルカプト基は、1分子中に2~10個含むことが好ましく、2~8個がより好ましく、2~5個がさらに好ましい。ネガ型感光性樹脂組成物の保存安定性の観点からは、3個が特に好ましい。 The mercapto group in the thiol compound (G) is preferably contained 2 to 10 in one molecule, more preferably 2 to 8 and even more preferably 2 to 5. From the viewpoint of storage stability of the negative photosensitive resin composition, 3 is particularly preferable.
 チオール化合物(G)の分子量は特に制限されない。チオール化合物(G)における、[分子量/メルカプト基数]で示されるメルカプト基当量は、低露光量での硬化性の観点から、40~1,000が好ましく、40~500がより好ましく、40~250が特に好ましい。 The molecular weight of the thiol compound (G) is not particularly limited. In the thiol compound (G), the mercapto group equivalent represented by [molecular weight / number of mercapto groups] is preferably 40 to 1,000, more preferably 40 to 500, and more preferably 40 to 250, from the viewpoint of curability at low exposure. Is particularly preferred.
 チオール化合物(G)としては、具体的には、トリス(2-メルカプトプロパノイルオキシエチル)イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールトリスチオグリコレート、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ジペンタエリスリトールヘキサ(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサ(3-メルカプトブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリフェノールメタントリス(3-メルカプトプロピオネート)、トリフェノールメタントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、2、4,6-トリメルカプト-S-トリアジン等が挙げられる。
 チオール化合物(G)は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of the thiol compound (G) include tris (2-mercaptopropanoyloxyethyl) isocyanurate, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tristhioglycolate, pentaerythritol tristhioglycol. , Pentaerythritol tetrakisthioglycolate, dipentaerythritol hexathioglycolate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyl) Oxy) -ethyl] -isocyanurate, dipentaerythritol hexa (3-mercaptopropionate), trimethylolpropane tris (3-mercaptobutyrate) ), Pentaerythritol tetrakis (3-mercaptobutyrate), dipentaerythritol hexa (3-mercaptobutyrate), trimethylolpropane tris (2-mercaptoisobutyrate), 1,3,5-tris (3-mercapto) Butyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, triphenolmethane tris (3-mercaptopropionate), triphenolmethane tris (3-mercapto Butyrate), trimethylolethane tris (3-mercaptobutyrate), 2,4,6-trimercapto-S-triazine and the like.
A thiol compound (G) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物がチオール化合物(G)を含有する場合、その含有割合は、ネガ型感光性樹脂組成物中の全固形分が有するエチレン性二重結合の1モルに対してメルカプト基が0.0001~1モルとなる量が好ましく、0.0005~0.5モルがより好ましく、0.001~0.5モルが特に好ましい。また、アルカリ可溶性樹脂(A)の100質量%に対しては、0.1~1200質量%が好ましく、0.2~1000質量%がより好ましい。かかるチオール化合物(G)の含有割合が上記範囲であると、低露光量においてもネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 When the negative photosensitive resin composition contains the thiol compound (G), the content ratio is a mercapto group with respect to 1 mol of the ethylenic double bond of the total solid content in the negative photosensitive resin composition. Is preferably 0.0001 to 1 mol, more preferably 0.0005 to 0.5 mol, and particularly preferably 0.001 to 0.5 mol. Further, the amount is preferably 0.1 to 1200% by mass, more preferably 0.2 to 1000% by mass with respect to 100% by mass of the alkali-soluble resin (A). When the content ratio of the thiol compound (G) is within the above range, the photo-curability and developability of the negative photosensitive resin composition are good even at a low exposure amount.
(リン酸化合物(H))
 本発明のネガ型感光性樹脂組成物は、得られる硬化膜における基材やITO等の透明電極材料等に対する密着性を向上させるために、任意にリン酸化合物(H)を含むことができる。
(Phosphate compound (H))
The negative photosensitive resin composition of the present invention can optionally contain a phosphoric acid compound (H) in order to improve the adhesion of the obtained cured film to a substrate, a transparent electrode material such as ITO, and the like.
 このようなリン酸化合物(H)としては、硬化膜の基材や透明電極材料等に対する密着性を向上できるものであれば特に限定されるものではないが、分子中にエチレン性不飽和二重結合を有するリン酸化合物であることが好ましい。 Such a phosphoric acid compound (H) is not particularly limited as long as it can improve the adhesion of a cured film to a substrate, a transparent electrode material, etc., but the ethylenically unsaturated double molecule in the molecule. A phosphoric acid compound having a bond is preferable.
 分子中にエチレン性不飽和二重結合を有するリン酸化合物としては、リン酸(メタ)アクリレート化合物、すなわち、分子内に少なくともリン酸由来のO=P構造と、(メタ)アクリル酸系化合物由来のエチレン性不飽和二重結合である(メタ)アクリロイル基とを有する化合物やリン酸ビニル化合物が好ましい。 As a phosphoric acid compound having an ethylenically unsaturated double bond in the molecule, a phosphoric acid (meth) acrylate compound, that is, an O = P structure derived from at least phosphoric acid in the molecule and a (meth) acrylic acid compound A compound having a (meth) acryloyl group which is an ethylenically unsaturated double bond or a vinyl phosphate compound is preferred.
 本発明に用いるリン酸(メタ)アクリレート化合物としては、モノ(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2-アクリロイルオキシエチル)アシッドホスフェート、トリス((メタ)アクリロイルオキシエチル)アシッドホスフェート、モノ(2-メタアクリロイルオキシエチル)カプロエートアシッドホスフェート等が挙げられる。 Examples of the phosphoric acid (meth) acrylate compound used in the present invention include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and di (2-acryloyloxyethyl). Examples include acid phosphate, tris ((meth) acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) caproate acid phosphate, and the like.
 また、リン酸化合物(H)としては、分子中にエチレン性不飽和二重結合を有するリン酸化合物以外にも、フェニルホスホン酸などが使用できる。 As the phosphoric acid compound (H), phenylphosphonic acid and the like can be used in addition to the phosphoric acid compound having an ethylenically unsaturated double bond in the molecule.
 本発明のネガ型感光性樹脂組成物は、リン酸化合物(H)として、これに分類される化合物の1種を単独で含有してもよいし、2種以上を含有してもよい。 The negative photosensitive resin composition of the present invention may contain, as the phosphoric acid compound (H), one kind of compound classified as such, or may contain two or more kinds.
 ネガ型感光性樹脂組成物がリン酸化合物(H)を含有する場合、その含有割合は、ネガ型感光性樹脂組成物中の全固形分に対して、0.01~10質量%が好ましく、0.1~5質量%が特に好ましい。また、アルカリ可溶性樹脂(A)の100質量%に対しては、0.01~200質量%が好ましく、0.1~100質量%がより好ましい。かかるリン酸化合物(H)の含有割合が上記範囲であると、得られる硬化膜と基材等との密着性が良好である。 When the negative photosensitive resin composition contains the phosphoric acid compound (H), the content is preferably 0.01 to 10% by mass with respect to the total solid content in the negative photosensitive resin composition, 0.1 to 5% by mass is particularly preferable. Further, 0.01 to 200% by mass is preferable and 0.1 to 100% by mass is more preferable with respect to 100% by mass of the alkali-soluble resin (A). When the content ratio of the phosphoric acid compound (H) is in the above range, the adhesion between the obtained cured film and the substrate is good.
 本発明におけるネガ型感光性樹脂組成物はさらに、必要に応じて、重合禁止剤、熱架橋剤、高分子分散剤、分散助剤、シランカップリング剤、微粒子、硬化促進剤、増粘剤、可塑剤、消泡剤、レベリング剤およびハジキ防止剤からなる群から選ばれる他の添加剤を1種以上含有してもよい。 The negative photosensitive resin composition in the present invention may further include a polymerization inhibitor, a thermal crosslinking agent, a polymer dispersant, a dispersion aid, a silane coupling agent, fine particles, a curing accelerator, a thickener, if necessary. You may contain 1 or more types of other additives chosen from the group which consists of a plasticizer, an antifoamer, a leveling agent, and a repellency inhibitor.
 本発明のネガ型感光性樹脂組成物は、上記各成分の所定量を混合して得られる。本発明のネガ型感光性樹脂組成物は有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用であり、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池に用いる硬化膜や隔壁の形成に用いることで特に効果が発揮できる。本発明のネガ型感光性樹脂組成物を用いれば、上面に良好な撥インク性を有する硬化膜、特には隔壁の製造が可能である。また、撥インク剤(C)のほとんどは、撥インク層に充分に定着しており、撥インク層よりも下の部分の隔壁に低濃度で存在する撥インク剤(C)も隔壁が充分に光硬化しているため、現像時に、撥インク剤(C)が隔壁で囲まれた開口部内にマイグレートしにくく、よってインクが均一に塗布できる開口部が得られる。 The negative photosensitive resin composition of the present invention can be obtained by mixing predetermined amounts of the above components. The negative photosensitive resin composition of the present invention is for an organic EL element, a quantum dot display, a TFT array or a thin film solar cell. For example, it is used for an organic EL element, a quantum dot display, a TFT array or a thin film solar cell. Particularly effective when used for forming a cured film or a partition wall. By using the negative photosensitive resin composition of the present invention, it is possible to produce a cured film having good ink repellency on the upper surface, in particular, a partition wall. Further, most of the ink repellent agent (C) is sufficiently fixed on the ink repellent layer, and the ink repellent agent (C) present at a low concentration in the partition wall below the ink repellent layer has sufficient partition walls. Since it is photocured, the ink repellent agent (C) is difficult to migrate into the opening surrounded by the partition wall during development, so that an opening where the ink can be applied uniformly can be obtained.
 本発明のネガ型感光性樹脂組成物においては、その機構は定かではないが、光重合開始剤(B1)は、高密度のベンゼン環を有しスタッキング性を有する。本発明のネガ型感光性樹脂組成物の光硬化性を有するアルカリ可溶性樹脂(A)は、典型的には、ベンゼン環を有しており、光重合開始剤(B1)と光硬化性を有するアルカリ可溶性樹脂(A)は相溶性が良好で、スタッキング力に依り、互いに引き合う作用を有するものと考えられる。したがって、現像時に、露光された部分は光架橋のみではなく、当該分子間相互作用により、アルカリ現像液の浸透を抑えることができ、細線が残りやすく、高解像度のパターンが得られるものと考えられる。本発明のネガ型感光性樹脂組成物より形成された隔壁は、硬化時の膜収縮が抑制され、内部応力が低減されるので形状変化が小さく、基材との密着性が向上する。 In the negative photosensitive resin composition of the present invention, the mechanism is not clear, but the photopolymerization initiator (B1) has a high-density benzene ring and has stacking properties. The alkali-soluble resin (A) having photocurability of the negative photosensitive resin composition of the present invention typically has a benzene ring and has photocurability with the photopolymerization initiator (B1). The alkali-soluble resin (A) has good compatibility and is considered to have an action of attracting each other depending on the stacking force. Therefore, at the time of development, the exposed portion is not only photocrosslinked, but the intermolecular interaction can suppress the penetration of the alkaline developer, and fine lines are likely to remain, so that a high-resolution pattern can be obtained. . The partition formed from the negative photosensitive resin composition of the present invention suppresses film shrinkage during curing and reduces internal stress, so that the shape change is small and the adhesion to the substrate is improved.
[樹脂硬化膜および隔壁]
 本発明の実施形態の樹脂硬化膜は、上記の本発明のネガ型感光性樹脂組成物を用いて形成される。本発明の実施形態の樹脂硬化膜は、例えば、基板等の基材の表面に本発明のネガ型感光性樹脂組成物を塗布し、必要に応じて乾燥して溶媒等を除去した後、露光することで硬化して得られる。本発明の実施形態の樹脂硬化膜は光学素子、特には、有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池に用いられる場合に特に顕著な効果が発揮される。
[Resin cured film and partition walls]
The cured resin film of the embodiment of the present invention is formed using the above-described negative photosensitive resin composition of the present invention. The cured resin film according to the embodiment of the present invention is, for example, coated with the negative photosensitive resin composition of the present invention on the surface of a substrate such as a substrate, dried as necessary to remove the solvent, and then exposed. Is obtained by curing. The cured resin film of the embodiment of the present invention exhibits a particularly remarkable effect when used for an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
 本発明の隔壁は、基板表面をドット形成用の複数の区画に仕切る形に形成された上記の本発明の硬化膜からなる隔壁である。隔壁は、例えば、上記の樹脂硬化膜の製造において、露光前にドット形成用の区画となる部分にマスキングを施し、露光した後、現像することで得られる。現像によって、マスキングにより非露光の部分が除去されドット形成用の区画に対応する開口部が隔壁とともに形成される。本発明の実施形態の隔壁は、光学素子、特には、有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池に用いられる場合に特に顕著な効果が発揮される。 The partition wall of the present invention is a partition wall made of the above-described cured film of the present invention formed so as to partition the substrate surface into a plurality of sections for dot formation. For example, in the production of the cured resin film described above, the partition wall is obtained by masking a portion to be a dot formation partition before exposure, developing after exposure. By development, an unexposed portion is removed by masking, and an opening corresponding to a dot forming section is formed together with a partition. The partition wall according to the embodiment of the present invention is particularly effective when used for an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
 以下、本発明の実施形態の隔壁の製造方法の一例を、図1A~1Dを用いて説明するが、隔壁の製造方法は以下に限定されない。なお、以下の製造方法は、ネガ型感光性樹脂組成物が溶媒(F)を含有するものとして説明する。 Hereinafter, an example of the manufacturing method of the partition wall according to the embodiment of the present invention will be described with reference to FIGS. 1A to 1D, but the manufacturing method of the partition wall is not limited to the following. In addition, the following manufacturing methods are demonstrated as a negative photosensitive resin composition containing a solvent (F).
 図1Aに示すように、基板1の一方の主面全体にネガ型感光性樹脂組成物を塗布して、塗膜21を形成する。このとき、塗膜21中には撥インク剤(C)が全体的に溶解し、均一に分散している。なお、図1A中、撥インク剤(C)は模式的に示してあり、実際にこのような粒子形状で存在しているわけではない。 As shown in FIG. 1A, a negative photosensitive resin composition is applied to one entire main surface of the substrate 1 to form a coating film 21. At this time, the ink repellent agent (C) is totally dissolved and uniformly dispersed in the coating film 21. In FIG. 1A, the ink repellent agent (C) is schematically shown, and does not actually exist in such a particle shape.
 次に、図1Bに示すように、塗膜21を乾燥させて、乾燥膜22とする。乾燥方法としては、加熱乾燥、減圧乾燥および減圧加熱乾燥等が挙げられる。溶媒(F)の種類にもよるが、加熱乾燥の場合、加熱温度は50~120℃が好ましい。
 この乾燥過程において、撥インク剤(C)は乾燥膜の上層部に移行する。なお、ネガ型感光性樹脂組成物が、溶媒(F)を含有しない場合であっても、塗膜内で撥インク剤(C)の上面移行は同様に達成される。
Next, as shown in FIG. 1B, the coating film 21 is dried to form a dry film 22. Examples of the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying. Although depending on the type of the solvent (F), the heating temperature is preferably 50 to 120 ° C. in the case of heat drying.
In this drying process, the ink repellent agent (C) moves to the upper layer of the dry film. In addition, even if a negative photosensitive resin composition does not contain a solvent (F), the upper surface transfer of an ink repellent agent (C) is similarly achieved within a coating film.
 次に、図1Cに示すように、隔壁に囲まれる開口部に相当する形状のマスキング部31を有するフォトマスク30を介して、乾燥膜22に対して光を照射し露光する。乾燥膜22を露光した後の膜を露光膜23と称す。露光膜23において、露光部23Aは光硬化しており、非露光部23Bは乾燥膜22と同様の状態である。 Next, as shown in FIG. 1C, the dry film 22 is exposed to light through a photomask 30 having a masking portion 31 having a shape corresponding to the opening surrounded by the partition walls. The film after the dry film 22 is exposed is referred to as an exposure film 23. In the exposure film 23, the exposed portion 23 </ b> A is photocured, and the non-exposed portion 23 </ b> B is in the same state as the dry film 22.
 照射する光としては、可視光;紫外線;遠紫外線;KrFエキシマレーザ光、ArFエキシマレーザ光、Fエキシマレーザ光、Krエキシマレーザ光、KrArエキシマレーザ光およびArエキシマレーザ光等のエキシマレーザ光;X線;電子線等が挙げられる。 As the light to be irradiated, excimer laser such as visible light; ultraviolet light; far ultraviolet light; KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, Kr 2 excimer laser light, KrAr excimer laser light, and Ar 2 excimer laser light. Examples include light; X-ray; electron beam.
 照射する光としては、波長100~600nmの光が好ましく、300~500nmの光がより好ましく、i線(365nm)、h線(405nm)またはg線(436nm)を含む光が特に好ましい。また、必要に応じて330nm以下の光をカットしてもよい。 The light to be irradiated is preferably light having a wavelength of 100 to 600 nm, more preferably light having a wavelength of 300 to 500 nm, particularly preferably light containing i-line (365 nm), h-line (405 nm) or g-line (436 nm). Moreover, you may cut light below 330 nm as needed.
 露光方式としては、全面一括露光、スキャン露光等が挙げられる。同一箇所に対して複数回に分けて露光してもよい。この際、複数回の露光条件は同一でも同一でなくても構わない。 The exposure method includes full-surface batch exposure, scan exposure, and the like. You may expose in multiple times with respect to the same location. At this time, the multiple exposure conditions may or may not be the same.
 露光量は、上記いずれの露光方式においても、例えば、5~1,000mJ/cmが好ましく、5~500mJ/cmがより好ましく、5~300mJ/cmがさらに好ましく、5~200mJ/cmが特に好ましく、5~50mJ/cmが最も好ましい。なお、露光量は、照射する光の波長、ネガ型感光性樹脂組成物の組成および塗膜の厚さ等により、適宜好適化される。 Exposure amount, In any of the above exposure method, for example, preferably 5 ~ 1,000mJ / cm 2, more preferably 5 ~ 500mJ / cm 2, more preferably 5 ~ 300mJ / cm 2, 5 ~ 200mJ / cm 2 is particularly preferable, and 5 to 50 mJ / cm 2 is most preferable. The exposure amount is appropriately optimized depending on the wavelength of light to be irradiated, the composition of the negative photosensitive resin composition, the thickness of the coating film, and the like.
 単位面積当たりの露光時間は特に制限されず、用いる露光装置の露光パワーおよび必要な露光量等から設計される。なお、スキャン露光の場合、光の走査速度から露光時間が求められる。
 単位面積当たりの露光時間は通常1~60秒程度である。
The exposure time per unit area is not particularly limited, and is designed from the exposure power of the exposure apparatus to be used, the required exposure amount, and the like. In the case of scan exposure, the exposure time is determined from the light scanning speed.
The exposure time per unit area is usually about 1 to 60 seconds.
 次に、図1Dに示すように、アルカリ現像液を用いた現像を行い、露光膜23の露光部23Aに対応する部位のみからなる隔壁4が形成される。隔壁4で囲まれた開口部5は、露光膜23において非露光部23Bが存在していた部位であり、現像により非露光部23Bが除去された後の状態を、図1Dは示している。非露光部23Bは、上に説明したとおり、撥インク剤(C)が上層部に移行してそれより下の層にほとんど撥インク剤(C)が存在しない状態でアルカリ現像液により溶解、除去されるため、撥インク剤(C)は、開口部5にはほとんど残存しない。 Next, as shown in FIG. 1D, development using an alkali developer is performed to form the partition wall 4 composed only of a portion corresponding to the exposed portion 23A of the exposed film 23. The opening 5 surrounded by the partition wall 4 is a portion where the non-exposed portion 23B exists in the exposure film 23, and FIG. 1D shows a state after the non-exposed portion 23B is removed by development. As described above, the non-exposed portion 23B is dissolved and removed with an alkali developer in a state where the ink repellent agent (C) is transferred to the upper layer portion and the ink repellent agent (C) is hardly present in the lower layer. Therefore, the ink repellent agent (C) hardly remains in the opening 5.
 なお、図1Dに示す隔壁4において、その上面を含む最上層は撥インク層4Aである。撥インク剤(C)がエチレン性二重結合を有する側鎖を有しない場合、露光の際に、撥インク剤(C)はそのまま最上層に高濃度に存在して撥インク層となる。露光の際、撥インク剤(C)の周辺に存在するアルカリ可溶性樹脂(A)、さらに任意に含有するチオール化合物(G)やそれ以外の光硬化成分は、強固に光硬化して撥インク剤(C)は撥インク層に定着する。 In the partition 4 shown in FIG. 1D, the uppermost layer including the upper surface is the ink repellent layer 4A. When the ink repellent agent (C) does not have a side chain having an ethylenic double bond, the ink repellent agent (C) is present in a high concentration as it is in the uppermost layer and becomes an ink repellent layer. At the time of exposure, the alkali-soluble resin (A) present around the ink repellent agent (C), the thiol compound (G) optionally contained, and other photocuring components are strongly photocured to cause the ink repellent agent. (C) is fixed to the ink repellent layer.
 撥インク剤(C)がエチレン性二重結合を有する側鎖を有する場合、撥インク剤(C)は互いにおよび/または、アルカリ可溶性樹脂(A)、さらに任意に含有するチオール化合物(G)やその他の光硬化成分とともに光硬化して、撥インク剤(C)が強固に結合した撥インク層4Aを形成する。 When the ink repellent agent (C) has a side chain having an ethylenic double bond, the ink repellent agent (C) is mutually and / or alkali-soluble resin (A), and further optionally contains a thiol compound (G) or It is photocured together with other photocuring components to form an ink repellent layer 4A in which the ink repellent agent (C) is firmly bonded.
 上記のいずれの場合も、撥インク層4Aの下側には、主としてアルカリ可溶性樹脂(A)および任意に含有するチオール化合物(G)、さらにそれ以外の光硬化成分が光硬化して、撥インク剤(C)をほとんど含有しない層4Bが形成される。
 このようにして、撥インク剤(C)は、撥インク層4Aおよびその下部層4Bを含む隔壁に充分に定着しているため、現像時に開口部にマイグレートすることがほとんどない。
In any of the above cases, the ink repellent layer 4A has an ink-repellent layer on the lower side of the ink-repellent layer 4A, in which mainly the alkali-soluble resin (A) and the thiol compound (G) optionally contained, and other photocurable components are photocured. A layer 4B containing almost no agent (C) is formed.
In this manner, the ink repellent agent (C) is sufficiently fixed to the partition including the ink repellent layer 4A and the lower layer 4B, and therefore hardly migrates to the opening during development.
 現像後、隔壁4をさらに加熱してもよい。加熱温度は130~250℃が好ましい。加熱により隔壁4の硬化がより強固なものとなる。また、撥インク剤(C)は撥インク層4A内により強固に定着する。 The partition 4 may be further heated after development. The heating temperature is preferably 130 to 250 ° C. The partition 4 is hardened by heating. Further, the ink repellent agent (C) is more firmly fixed in the ink repellent layer 4A.
 このようにして得られる本発明の樹脂硬化膜および隔壁4は、露光が低露光量で行われる場合であっても、上面に良好な撥インク性を有する。また、隔壁4においては、現像後、開口部5に撥インク剤(C)が存在することがほとんどなく、開口部5におけるインクの均一な塗工性を充分に確保できる。 The cured resin film and the partition 4 of the present invention thus obtained have good ink repellency on the upper surface even when exposure is performed at a low exposure amount. In the partition 4, the ink repellent (C) hardly exists in the opening 5 after development, and the uniform coating property of the ink in the opening 5 can be sufficiently secured.
 なお、開口部5の親インク性をより確実に得ることを目的として、上記加熱後、開口部5に存在する可能性があるネガ型感光性樹脂組成物の現像残渣等を除去するために、隔壁4付きの基板1に対して紫外線/オゾン処理を施してもよい。 For the purpose of more reliably obtaining the ink affinity of the opening 5, in order to remove the development residue and the like of the negative photosensitive resin composition that may exist in the opening 5 after the heating, The substrate 1 with the partition walls 4 may be subjected to ultraviolet / ozone treatment.
 本発明のネガ型感光性樹脂組成物から形成される隔壁は、例えば、幅が100μm以下であることが好ましく、20μm以下であることが特に好ましい。また、隣接する隔壁間の距離(パターンの幅)は300μm以下であることが好ましく、100μm以下であることが特に好ましい。隔壁の高さは0.05~50μmであることが好ましく、0.2~10μmであることが特に好ましい。 For example, the width of the partition formed from the negative photosensitive resin composition of the present invention is preferably 100 μm or less, and particularly preferably 20 μm or less. The distance between adjacent partition walls (pattern width) is preferably 300 μm or less, and particularly preferably 100 μm or less. The height of the partition wall is preferably 0.05 to 50 μm, particularly preferably 0.2 to 10 μm.
 本発明のネガ型感光性樹脂組成物から形成される隔壁は、上記幅に形成された際の縁の部分に凹凸が少なく直線性に優れる。なお、隔壁における高い直線性の発現は、特に、アルカリ可溶性樹脂としてエポキシ樹脂に酸性基とエチレン性二重結合とが導入された樹脂(A-2)を用いた場合に顕著である。それにより、たとえ微細なパターンであっても精度の高いパターン形成が可能となる。このような精度の高いパターン形成が行えれば、特に、有機EL素子用の隔壁として有用である。 The partition formed from the negative photosensitive resin composition of the present invention has few irregularities in the edge portion when formed to the above width, and is excellent in linearity. The high linearity in the partition walls is particularly remarkable when a resin (A-2) in which an acidic group and an ethylenic double bond are introduced into an epoxy resin is used as the alkali-soluble resin. As a result, even a fine pattern can be formed with high accuracy. If such a highly accurate pattern can be formed, it is particularly useful as a partition for an organic EL element.
 本発明の隔壁は、IJ法にてパターン印刷を行う際に、その開口部をインク注入領域とする隔壁として使用できる。IJ法にてパターン印刷を行う際に、本発明の隔壁を、その開口部が所望のインク注入領域と一致するように形成して用いれば、隔壁上面が良好な撥インク性を有することから、隔壁を超えて所望しない開口部すなわちインク注入領域にインクが注入されることを抑制できる。また、隔壁で囲まれた開口部は、インクの濡れ広がり性が良好であるので、インクを所望の領域に白抜け等が発生することなく均一に印刷することが可能となる。 The partition of the present invention can be used as a partition having the opening as an ink injection region when pattern printing is performed by the IJ method. When pattern printing is performed by the IJ method, if the partition wall of the present invention is formed and used so that the opening thereof coincides with a desired ink injection region, the partition top surface has good ink repellency. It is possible to suppress ink from being injected into an undesired opening, that is, an ink injection region beyond the partition wall. In addition, since the opening surrounded by the partition wall has good ink wetting and spreading properties, it is possible to print the ink uniformly without causing white spots or the like in a desired region.
 本発明の隔壁を用いれば、上記のとおりIJ法によるパターン印刷が精巧に行える。よって、本発明の隔壁は、ドットがIJ法で形成される基板表面に複数のドットと隣接するドット間に位置する隔壁を有する光学素子、特に有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池の隔壁として有用である。 If the partition wall of the present invention is used, pattern printing by the IJ method can be performed with precision as described above. Therefore, the barrier rib of the present invention is an optical element having a barrier rib positioned between a plurality of adjacent dots on the surface of a substrate on which dots are formed by the IJ method, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film solar. It is useful as a battery partition.
[光学素子]
 本発明の光学素子としての有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池としては、基板表面に複数のドットと隣接するドット間に位置する上記本発明の隔壁とを有する有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池である。本発明の光学素子(有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池)において、ドットはIJ法により形成されることが好ましい。
[Optical element]
As an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell as an optical element of the present invention, an organic EL element having a plurality of dots and a partition wall of the present invention located between adjacent dots on the substrate surface, Quantum dot display, TFT array or thin film solar cell. In the optical element of the present invention (organic EL element, quantum dot display, TFT array, or thin film solar cell), the dots are preferably formed by the IJ method.
 有機EL素子とは、有機薄膜の発光層を陽極と陰極で挟んだ構造であり、本発明の隔壁は有機発光層を隔てる隔壁用途、有機TFT層を隔てる隔壁用途、塗布型酸化物半導体を隔てる隔壁用途などに用いることができる。 The organic EL element has a structure in which a light emitting layer of an organic thin film is sandwiched between an anode and a cathode. The partition wall of the present invention is used for a partition wall separating an organic light emitting layer, a partition wall partition separating an organic TFT layer, and a coating type oxide semiconductor. It can be used for partitioning applications.
 また、有機TFTアレイ素子とは、複数のドットが平面視マトリクス状に配置され、各ドットに画素電極とこれを駆動するためのスイッチング素子としてTFTが設けられ、TFTのチャネル層を含む半導体層として有機半導体層が用いられる素子である。有機TFTアレイ素子は、例えば、有機EL素子あるいは液晶素子等に、TFTアレイ基板として備えられる。 In addition, the organic TFT array element is a semiconductor layer including a plurality of dots arranged in a matrix in plan view, each pixel having a pixel electrode and a TFT as a switching element for driving it, and including a TFT channel layer. An element in which an organic semiconductor layer is used. The organic TFT array element is provided as a TFT array substrate in, for example, an organic EL element or a liquid crystal element.
 本発明の実施形態の光学素子、例えば、有機EL素子について、上記で得られた隔壁を用いて、開口部にIJ法によりドットを形成する例を以下に説明する。なお、本発明の有機EL素子等の光学素子におけるドットの形成方法は以下に限定されない。 Referring to the optical element according to the embodiment of the present invention, for example, an organic EL element, an example in which dots are formed in the opening by the IJ method using the partition obtained above will be described below. In addition, the formation method of the dot in optical elements, such as the organic EL element of this invention, is not limited to the following.
 図2Aおよび図2Bは、上記図1Dに示す基板1上に形成された隔壁4を用いて有機EL素子を製造する方法を模式的に示すものである。ここで、基板1上の隔壁4は、開口部5が、製造しようとする有機EL素子のドットのパターンに一致するように形成されたものである。 2A and 2B schematically show a method of manufacturing an organic EL element using the partition walls 4 formed on the substrate 1 shown in FIG. 1D. Here, the partition 4 on the substrate 1 is formed such that the opening 5 matches the dot pattern of the organic EL element to be manufactured.
 図2Aに示すように、隔壁4に囲まれた開口部5に、インクジェットヘッド9からインク10を滴下して、開口部5に所定量のインク10を注入する。インクとしては、ドットの機能に合わせて、有機EL素子用として公知のインクが適宜選択して用いられる。 As shown in FIG. 2A, ink 10 is dropped from the inkjet head 9 into the opening 5 surrounded by the partition wall 4 and a predetermined amount of ink 10 is injected into the opening 5. As the ink, known inks for organic EL elements are appropriately selected and used in accordance with the function of dots.
 次いで、用いたインク10の種類により、例えば、溶媒の除去や硬化のために、乾燥および/または加熱等の処理を施して、図2Bに示すように、隔壁4に隣接する形で所望のドット11が形成された有機EL素子12を得る。 Next, depending on the type of the ink 10 used, for example, a process such as drying and / or heating is performed to remove or cure the solvent, and as shown in FIG. The organic EL element 12 in which 11 is formed is obtained.
 本発明の実施形態の光学素子(有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池)、は、本発明の隔壁を用いることで、製造過程において隔壁で仕切られた開口部にインクがムラなく均一に濡れ広がることが可能であり、これにより精度よく形成されたドットを有する光学素子(有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池)である。 An optical element (an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell) according to an embodiment of the present invention uses the partition wall of the present invention so that ink is unevenly distributed in an opening partitioned by the partition wall in the manufacturing process. It is an optical element (organic EL element, quantum dot display, TFT array, or thin film solar cell) having dots that are formed with high precision.
 なお、有機EL素子は、例えば、以下のように製造できるがこれに限定されない。
 ガラス等の透光性基板にスズドープ酸化インジウム(ITO)等の透光性電極をスパッタ法等によって成膜する。この透光性電極は必要に応じてパターニングされる。
In addition, although an organic EL element can be manufactured as follows, for example, it is not limited to this.
A light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a light-transmitting substrate such as glass by a sputtering method or the like. The translucent electrode is patterned as necessary.
 次に、本発明のネガ型感光性樹脂組成物を用い、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
 次に、ドット形成用開口部内に、IJ法により、正孔注入層、正孔輸送層、発光層、正孔阻止層および電子注入層の材料をそれぞれ塗布および乾燥して、これらの層を順次積層する。ドット形成用開口部内に形成される有機層の種類および数は適宜設計される。
 最後に、アルミニウム等の反射電極、またはITO等の透光性電極を蒸着法等によって形成する。
Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
Next, the materials for the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, and the electron injection layer are respectively applied and dried in the dot formation openings by the IJ method. Laminate. The kind and number of organic layers formed in the opening for forming dots are appropriately designed.
Finally, a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
 また、量子ドットディスプレイは、例えば、以下のように製造できるがこれに限定されない。
 ガラス等の透光性基板にITO等の透光性電極をスパッタ法等によって成膜する。この透光性電極は必要に応じてパターニングされる。
 次に、本発明のネガ型感光性樹脂組成物を用い、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
Further, the quantum dot display can be manufactured, for example, as follows, but is not limited thereto.
A light-transmitting electrode such as ITO is formed on a light-transmitting substrate such as glass by a sputtering method or the like. The translucent electrode is patterned as necessary.
Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
 次に、ドット形成用開口部内に、IJ法により、正孔注入層、正孔輸送層、量子ドット層、正孔阻止層および電子注入層の材料をそれぞれ塗布および乾燥して、これらの層を順次積層する。ドット形成用開口部内に形成される有機層の種類および数は適宜設計される。
 最後に、アルミニウム等の反射電極、またはITO等の透光性電極を蒸着法等によって形成する。
Next, the materials for the hole injection layer, the hole transport layer, the quantum dot layer, the hole blocking layer, and the electron injection layer are applied and dried in the dot formation openings by the IJ method. Laminate sequentially. The kind and number of organic layers formed in the opening for forming dots are appropriately designed.
Finally, a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
 さらに本発明の実施形態の光学素子は、例えば以下のように製造される、青色光変換型の量子ドットディスプレイにも応用可能である。
 ガラス等の透光性基板に本発明のネガ型感光性樹脂組成物を用い、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。
Furthermore, the optical element of the embodiment of the present invention can be applied to, for example, a blue light conversion type quantum dot display manufactured as follows.
The negative photosensitive resin composition of the present invention is used for a light-transmitting substrate such as glass, and partition walls are formed in a lattice shape in plan view along the outline of each dot.
 次に、ドット形成用開口部内に、IJ法により青色光を緑色光に変換するナノ粒子溶液、青色光を赤色光に変換するナノ粒子溶液、必要に応じて青色のカラーインクを塗布、乾燥して、モジュールを作製する。青色を発色する光源をバックライトとして使用し前記モジュールをカラーフィルター代替として使用することにより、色再現性の優れた液晶ディスプレイが得られる。 Next, a nanoparticle solution that converts blue light to green light, a nanoparticle solution that converts blue light to red light, and a blue color ink if necessary are dried in the dot formation opening by the IJ method. To make a module. A liquid crystal display having excellent color reproducibility can be obtained by using a light source that emits blue light as a backlight and using the module as a color filter alternative.
 TFTアレイは、例えば、以下のように製造できるがこれに限定されない。
 ガラス等の透光性基板にアルミニウムやその合金等のゲート電極をスパッタ法等によって成膜する。このゲート電極は必要に応じてパターニングされる。
The TFT array can be manufactured, for example, as follows, but is not limited thereto.
A gate electrode such as aluminum or an alloy thereof is formed on a light-transmitting substrate such as glass by a sputtering method or the like. This gate electrode is patterned as necessary.
 次に、窒化ケイ素等のゲート絶縁膜をプラズマCVD法等によって形成する。ゲート絶縁膜上にソース電極、ドレイン電極を形成してもよい。ソース電極およびドレイン電極は、例えば、真空蒸着やスパッタリングでアルミニウム、金、銀、銅やそれらの合金などの金属薄膜を形成し、作製することができる。ソース電極およびドレイン電極をパターニングする方法としては、金属薄膜を形成後、レジストを塗装し、露光、現像して電極を形成させたい部分にレジストを残し、その後、リン酸や王水などで露出した金属を除去、最後にレジストを除去する手法がある。 Next, a gate insulating film such as silicon nitride is formed by a plasma CVD method or the like. A source electrode and a drain electrode may be formed over the gate insulating film. The source electrode and the drain electrode can be produced by forming a metal thin film such as aluminum, gold, silver, copper, or an alloy thereof by, for example, vacuum deposition or sputtering. As a method of patterning the source electrode and the drain electrode, after forming a metal thin film, a resist is coated, exposed and developed to leave the resist in a portion where the electrode is to be formed, and then exposed with phosphoric acid or aqua regia. There is a method of removing the metal and finally removing the resist.
 また、金などの金属薄膜を形成させた場合は、予めレジストを塗装し、露光、現像して電極を形成させたくない部分にレジストを残し、その後金属薄膜を形成後、金属薄膜と共にフォトレジストを除去する手法もある。また、銀や銅等の金属ナノコロイド等を用いてインクジェット等の手法により、ソース電極およびドレイン電極を形成してもよい。 In addition, when a metal thin film such as gold is formed, a resist is applied in advance, exposed and developed to leave the resist in a portion where it is not desired to form an electrode, and after forming the metal thin film, the photoresist is applied together with the metal thin film. There is also a technique to remove. Further, the source electrode and the drain electrode may be formed by a method such as ink jet using a metal nanocolloid such as silver or copper.
 次に、本発明のネガ型感光性樹脂組成物を用いて、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。 Next, by using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice pattern in plan view along the outline of each dot by a photolithography method including coating, exposure, and development.
 次にドット形成用開口部内に半導体溶液をIJ法によって塗布し、溶液を乾燥させることによって半導体層を形成する。この半導体溶液としては有機半導体溶液、無機の塗布型酸化物半導体溶液も用いることができる。ソース電極、ドレイン電極は、この半導体層形成後にインクジェットなどの手法を用いて形成されてもよい。
 最後にITO等の透光性電極をスパッタ法等によって成膜し、窒化ケイ素等の保護膜を成膜することで形成する。
Next, a semiconductor solution is applied in the dot forming openings by the IJ method, and the semiconductor layer is formed by drying the solution. As this semiconductor solution, an organic semiconductor solution or an inorganic coating type oxide semiconductor solution can also be used. The source electrode and the drain electrode may be formed by using a method such as inkjet after forming the semiconductor layer.
Finally, a transparent electrode such as ITO is formed by sputtering or the like, and a protective film such as silicon nitride is formed.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。なお、例1~7が実施例であり、例8~12が比較例である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 7 are examples, and examples 8 to 12 are comparative examples.
 各測定は以下の方法で行った。
[数平均分子量(Mn)および質量平均分子量(Mw)]
 分子量測定用の標準試料として市販されている重合度の異なる複数種の単分散ポリスチレン重合体のゲルパーミエーションクロマトグラフィ(GPC)を、市販のGPC測定装置(東ソー社製、装置名:HLC-8320GPC)を用いて測定した。ポリスチレンの分子量と保持時間(リテンションタイム)との関係をもとに検量線を作成した。
Each measurement was performed by the following method.
[Number average molecular weight (Mn) and mass average molecular weight (Mw)]
Gel permeation chromatography (GPC) of a plurality of types of monodisperse polystyrene polymers with different degrees of polymerization, which is commercially available as a standard sample for molecular weight measurement, is a commercially available GPC measurement device (manufactured by Tosoh Corporation, device name: HLC-8320GPC). It measured using. A calibration curve was prepared based on the relationship between the molecular weight of polystyrene and the retention time (retention time).
 各試料について、テトラヒドロフランで1.0質量%に希釈し、0.5μmのフィルタを通過させた後、上記装置を用いてGPCを測定した。上記検量線を用いて、GPCスペクトルをコンピュータ解析することにより、試料の数平均分子量(Mn)および質量平均分子量(Mw)を求めた。 Each sample was diluted to 1.0% by mass with tetrahydrofuran, passed through a 0.5 μm filter, and then GPC was measured using the above apparatus. Using the calibration curve, the number average molecular weight (Mn) and the mass average molecular weight (Mw) of the sample were determined by computer analysis of the GPC spectrum.
[PGMEA接触角]
 静滴法により、JIS R3257「基板ガラス表面のぬれ性試験方法」に準拠して、基材上の測定表面の3ヶ所にPGMEA滴を載せ、各PGMEA滴について測定した。液滴は2μL/滴とし、測定は20℃で行った。接触角は、3測定値の平均値(n=3)から求めた。なお、PGMEAは、プロピレングリコールモノメチルエーテルアセテートの略号である。
[PGMEA contact angle]
According to JIS R3257 “Test method for wettability of substrate glass surface”, PGMEA droplets were placed at three locations on the measurement surface on the substrate by the sessile drop method, and each PGMEA droplet was measured. The droplet was 2 μL / droplet, and the measurement was performed at 20 ° C. The contact angle was determined from the average value of three measured values (n = 3). PGMEA is an abbreviation for propylene glycol monomethyl ether acetate.
 各例で用いた化合物の略語は以下の通りである。
(アルカリ可溶性樹脂(A))
 A-1:クレゾールノボラック型エポキシ樹脂をアクリル酸、次いで1,2,3,6-テトラヒドロ無水フタル酸と反応させて、アクリロイル基とカルボキシル基とを導入した樹脂をヘキサンで精製した樹脂、固形分70質量%、酸価60mgKOH/g。
 A-2:ビスフェノールA型エポキシ樹脂にカルボキシル基とエチレン性二重結合を導入した樹脂、固形分70質量%、酸価60mgKOH/g。
 A-3:ビスフェノールF型エポキシ樹脂にカルボキシル基とエチレン性二重結合を導入した樹脂、固形分70質量%、酸価60mgKOH/g。
 A-4:下式(A-a)で表されるビフェニル骨格を有するエポキシ樹脂に、エチレン性二重結合と酸性基とを導入した樹脂、固形分:50質量%、酸価60mgKOH/g。
Abbreviations of the compounds used in each example are as follows.
(Alkali-soluble resin (A))
A-1: A resin obtained by reacting a cresol novolac type epoxy resin with acrylic acid and then with 1,2,3,6-tetrahydrophthalic anhydride to introduce a acryloyl group and a carboxyl group, and purifying the resin with hexane, solid content 70% by mass, acid value 60 mgKOH / g.
A-2: A resin in which a carboxyl group and an ethylenic double bond are introduced into a bisphenol A type epoxy resin, solid content 70% by mass, acid value 60 mgKOH / g.
A-3: A resin in which a carboxyl group and an ethylenic double bond are introduced into a bisphenol F type epoxy resin, solid content 70% by mass, acid value 60 mgKOH / g.
A-4: A resin in which an ethylenic double bond and an acidic group are introduced into an epoxy resin having a biphenyl skeleton represented by the following formula (Aa), solid content: 50% by mass, acid value 60 mgKOH / g.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(光重合開始剤(B1))
 B1-1:1,7-ビス(9-アクリジニル)ヘプタン。
(光重合開始剤(B2))
 B2-1:4,4'-ビス(ジエチルアミノ)ベンゾフェノン。
(光重合開始剤(B3))
 B3-1:イソプロピルチオキサントン。
(光重合開始剤(B4))
 B4-1:2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン。
(Photopolymerization initiator (B1))
B1-1: 1,7-bis (9-acridinyl) heptane.
(Photopolymerization initiator (B2))
B2-1: 4,4′-bis (diethylamino) benzophenone.
(Photopolymerization initiator (B3))
B3-1: Isopropylthioxanthone.
(Photopolymerization initiator (B4))
B4-1: 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
(撥インク剤(C-1)の原料)
C6FMA:CH=C(CH)COOCHCH(CFF。
MAA:メタクリル酸。
2-HEMA:2-ヒドロキシエチルメタクリレート。
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)。
n-DM:n-ドデシルメルカプタン。
BEI:1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート。
DBTDL:ジブチル錫ジラウレート。
TBQ:t-ブチル-p-ベンゾキノン。
MEK:2-ブタノン。
(Ink repellent (C-1) raw material)
C6FMA: CH 2 = C (CH 3) COOCH 2 CH 2 (CF 2) 6 F.
MAA: methacrylic acid.
2-HEMA: 2-hydroxyethyl methacrylate.
V-65: 2,2′-azobis (2,4-dimethylvaleronitrile).
n-DM: n-dodecyl mercaptan.
BEI: 1,1- (bisacryloyloxymethyl) ethyl isocyanate.
DBTDL: Dibutyltin dilaurate.
TBQ: t-butyl-p-benzoquinone.
MEK: 2-butanone.
(撥インク剤(C-2)の原料としての加水分解性シラン化合物)
加水分解性シラン化合物(s1)に相当する化合物(cx-1):F(CFCHCHSi(OCH(公知の方法で製造した。)。
加水分解性シラン化合物(s2)に相当する化合物(cx-2):Si(OC
加水分解性シラン化合物(s3)に相当する化合物(cx-3):CH=CHCOO(CHSi(OCH
加水分解性シラン化合物(s5)に相当する化合物(cx-5):SH(CHSi(OCH
加水分解性シラン化合物(s6)に相当する化合物(cx-6):COCHO(CHSi(OCH
(Hydrolyzable silane compound as a raw material for ink repellent agent (C-2))
Compound (cx-1) corresponding to hydrolyzable silane compound (s1): F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 (produced by a known method).
Compound (cx-2) corresponding to hydrolyzable silane compound (s2): Si (OC 2 H 5 ) 4 .
Compound (cx-3) corresponding to the hydrolyzable silane compound (s3): CH 2 = CHCOO (CH 2 ) 3 Si (OCH 3 ) 3 .
Compound (cx-5) corresponding to hydrolyzable silane compound (s5): SH (CH 2 ) 3 Si (OCH 3 ) 3
Compound (cx-6) corresponding to the hydrolyzable silane compound (s6): C 2 H 3 OCH 2 O (CH 2 ) 3 Si (OCH 3 ) 3 .
(架橋剤(D))
D-1:ジペンタエリスリトールヘキサアクリレートおよびジペンタエリスリトールペンタアクリレート。
D-2:ジペンタエリスリトールペンタアクリレートにHDI(ヘキサメチレンジイソシアネート)が結合したウレタン骨格を持つモノマー(10官能)。
(Crosslinking agent (D))
D-1: Dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate.
D-2: Monomer (10 functional) having a urethane skeleton in which HDI (hexamethylene diisocyanate) is bonded to dipentaerythritol pentaacrylate.
(チオール化合物(G))
G-1:ペンタエリスリトールテトラキス(3-メルカプトブチレート)。
(Thiol compound (G))
G-1: Pentaerythritol tetrakis (3-mercaptobutyrate).
(溶媒(F))
PGME:プロピレングリコールモノメチルエーテル。
PGMEA:プロピレングリコールモノメチルエーテルアセテート。
EDGAC:ジエチレングリコールモノエチルエーテルアセテート。
EDM:ジエチレングリコールエチルメチルエーテル。
(Solvent (F))
PGME: Propylene glycol monomethyl ether.
PGMEA: Propylene glycol monomethyl ether acetate.
EDGAC: Diethylene glycol monoethyl ether acetate.
EDM: Diethylene glycol ethyl methyl ether.
(その他成分:重合禁止剤))
 MHQ:2-メチルハイドロキノン。
(Other components: polymerization inhibitor))
MHQ: 2-methylhydroquinone.
[撥インク剤(C)の合成]
 撥インク剤(C-1)および撥インク剤(C-2)を以下のとおり合成、または準備した。
[Synthesis of ink repellent agent (C)]
The ink repellent agent (C-1) and the ink repellent agent (C-2) were synthesized or prepared as follows.
(合成例1:撥インク剤(C-1)の合成)
 撹拌機を備えた内容積1,000cmのオートクレーブに、MEKの415.1g、C6FMAの81.0g、MAAの18.0g、2-HEMAの81.0g、重合開始剤V-65の5.0gおよびn-DMの4.7gを仕込み、窒素雰囲気下で撹拌しながら、50℃で24時間重合させ、さらに70℃にて5時間加熱し、重合開始剤を不活性化し、共重合体の溶液を得た。共重合体は、数平均分子量が5,540、質量平均分子量が13,200であった。
(Synthesis Example 1: Synthesis of ink repellent agent (C-1))
In an autoclave with an internal volume of 1,000 cm 3 equipped with a stirrer, 415.1 g of MEK, 81.0 g of C6FMA, 18.0 g of MAA, 81.0 g of 2-HEMA, and 5.5 of polymerization initiator V-65. 0 g and 4.7 g of n-DM were charged, polymerized at 50 ° C. for 24 hours with stirring under a nitrogen atmosphere, and further heated at 70 ° C. for 5 hours to inactivate the polymerization initiator, A solution was obtained. The copolymer had a number average molecular weight of 5,540 and a mass average molecular weight of 13,200.
 次いで、撹拌機を備えた内容積300cmのオートクレーブに上記共重合体の溶液の130.0g、BEIの33.5g、DBTDLの0.13g、TBQの1.5gを仕込み、撹拌しながら、40℃で24時間反応させ、粗重合体を合成した。得られた粗重合体の溶液にヘキサンを加えて再沈精製した後、真空乾燥し、撥インク剤(C-1)の65.6gを得た。 Next, 130.0 g of the above copolymer solution, 33.5 g of BEI, 0.13 g of DBTDL, and 1.5 g of TBQ were charged in an autoclave having an internal volume of 300 cm 3 equipped with a stirrer, The reaction was carried out at 24 ° C. for 24 hours to synthesize a crude polymer. Hexane was added to the obtained crude polymer solution for purification by reprecipitation, followed by vacuum drying to obtain 65.6 g of an ink repellent agent (C-1).
 撥インク剤(C-1)は数平均分子量(Mn)7540、質量平均分子量(Mw)16200、フッ素原子の含有率14.8(質量%)、C=Cの含有量3.73(mmol/g)および酸価35.1(mgKOH/g)であった。 The ink repellent agent (C-1) has a number average molecular weight (Mn) of 7540, a mass average molecular weight (Mw) of 16,200, a fluorine atom content of 14.8 (mass%), and a C = C content of 3.73 (mmol / g) and an acid value of 35.1 (mg KOH / g).
(合成例2:撥インク剤(C-2)液の調製)
 撹拌機を備えた1,000cmの三口フラスコに、化合物(cx-1)2.8g、化合物(cx-2)5.5g、化合物(cx-3)4.1g、化合物(cx-5)2.1g、化合物(cx-6)2.5gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを74.4g入れて、原料溶液とした。
(Synthesis Example 2: Preparation of ink repellent (C-2) solution)
In a 1,000 cm 3 three-necked flask equipped with a stirrer, 2.8 g of compound (cx-1), 5.5 g of compound (cx-2), 4.1 g of compound (cx-3), compound (cx-5) 2.1 g and 2.5 g of the compound (cx-6) were added to obtain a hydrolyzable silane compound mixture. Subsequently, 74.4g of PGME was put into this mixture, and it was set as the raw material solution.
 得られた原料溶液に、1%塩酸水溶液を8.6g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(C-2)のPGME溶液(撥インク剤(C-2)濃度:10質量%、以下、「撥インク剤(C-2)溶液」ともいう。)を得た。 8.6 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After completion of the dropping, the mixture was stirred at 40 ° C. for 5 hours to prepare a PGME solution of the ink repellent agent (C-2) (ink repellent agent (C-2) concentration: 10% by mass, hereinafter “ink repellent agent (C-2) Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。
 得られた撥インク剤は、数平均分子量(Mn)950、質量平均分子量(Mw)1150、フッ素原子の含有率15.0(質量%)、C=Cの含有量1.75(mmol/g)であった。
In addition, after completion | finish of reaction, the component of the reaction liquid was measured using the gas chromatography, and it confirmed that each compound as a raw material became below the detection limit.
The obtained ink repellent agent has a number average molecular weight (Mn) of 950, a mass average molecular weight (Mw) of 1150, a fluorine atom content of 15.0 (mass%), and a C = C content of 1.75 (mmol / g). )Met.
[例1:ネガ型感光性樹脂組成物の製造および樹脂硬化膜、隔壁の製造]
(ネガ型感光性樹脂組成物の製造)
 上記合成例1で得られた(C-1)の0.12g、A-1の20.3g(固形分は14.2g、残りは溶媒のEDGAC)、B1-1の1.2g、D-1の9.5g、PGMEの68.9g、を200cmの撹拌用容器に入れ、5時間撹拌してネガ型感光性樹脂組成物を製造した。表1に、固形分濃度と、固形分における各成分の含有量(組成)および溶媒における各成分の含有量(組成)を示す。
[Example 1: Production of negative photosensitive resin composition and production of cured resin film and partition wall]
(Manufacture of negative photosensitive resin composition)
0.12 g of (C-1) obtained in Synthesis Example 1 above, 20.3 g of A-1 (solid content is 14.2 g, the rest is EDGAC as a solvent), 1.2 g of B1-1, D- 9.5 g of No. 1 and 68.9 g of PGME were placed in a 200 cm 3 stirring vessel and stirred for 5 hours to produce a negative photosensitive resin composition. Table 1 shows the solid content concentration, the content (composition) of each component in the solid content, and the content (composition) of each component in the solvent.
(樹脂硬化膜1の製造)
 10cm四方のITO基板(Indium-Tin-Oxideをガラス基板上に成膜したもの)をエタノールで30秒間超音波洗浄し、次いで、5分間のUV/O処理を行った。UV/O処理には、UV/O発生装置としてPL2001N-58(センエンジニアリング社製)を使用した。254nm換算の光パワー(光出力)は10mW/cmであった。なお、以下の全てのUV/O処理においても本装置を使用した。
(Production of cured resin film 1)
A 10 cm square ITO substrate (indium-tin-oxide formed on a glass substrate) was ultrasonically cleaned with ethanol for 30 seconds and then subjected to UV / O 3 treatment for 5 minutes. For the UV / O 3 treatment, PL2001N-58 (manufactured by Sen Engineering Co., Ltd.) was used as a UV / O 3 generator. The optical power (optical output) in terms of 254 nm was 10 mW / cm 2 . Note was also used the device in all the UV / O 3 treatment follows.
 上記洗浄後のITO基板表面に、スピンナを用いて、上記ネガ型感光性樹脂組成物を塗布した後、100℃で2分間ホットプレート上で乾燥させ、膜厚2.4μmの乾燥膜を形成した。得られた乾燥膜に対して、開口パターンを有するフォトマスク(開口部がそれぞれ1、2、3、4、5、6、7、8,9、10、12、14、16、18、20、30、40、50μm×1000μm(パターン間の間隔は50μm)のパターンが20mm×20mmの範囲に繰り返されているもの)を介して、365nm換算の露光パワー(露光出力)が25mW/cmである超高圧水銀ランプのUV光を全面一括照射した。露光の際に、330nm以下の光はカットした。また、乾燥膜とフォトマスクとの離間距離は50μmとした。各例において、露光条件は、露光量が80mJ/cmの場合、露光時間が3.2秒間であり、露光量が150mJ/cmの場合、露光時間が6秒間である、というように評価内容により変更した。 The negative photosensitive resin composition was applied to the cleaned ITO substrate surface using a spinner and then dried on a hot plate at 100 ° C. for 2 minutes to form a dry film having a thickness of 2.4 μm. . A photomask having an opening pattern (opening portions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, The exposure power (exposure output) in terms of 365 nm is 25 mW / cm 2 through a pattern of 30, 40, 50 μm × 1000 μm (with a pattern spacing of 50 μm repeated in a 20 mm × 20 mm range). The entire surface was irradiated with UV light from an ultra-high pressure mercury lamp. During the exposure, light of 330 nm or less was cut. The distance between the dry film and the photomask was 50 μm. In each example, the exposure conditions are evaluated such that when the exposure amount is 80 mJ / cm 2 , the exposure time is 3.2 seconds, and when the exposure amount is 150 mJ / cm 2 , the exposure time is 6 seconds. Changed according to the content.
(樹脂硬化膜2の製造)
 次いで、上記露光処理後のITO基板を0.4質量%テトラメチル水酸化アンモニウム水溶液に40秒間浸漬して現像し、非露光部を水により洗い流し、乾燥させた。次いで、ホットプレート上、230℃で60分間加熱することにより、フォトマスクの開口パターンに対応したパターンを有する硬化膜(隔壁)付ITO基板を得た。
(Production of cured resin film 2)
Subsequently, the ITO substrate after the exposure treatment was developed by immersing it in a 0.4 mass% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the non-exposed portion was washed away with water and dried. Next, an ITO substrate with a cured film (partition wall) having a pattern corresponding to the opening pattern of the photomask was obtained by heating on a hot plate at 230 ° C. for 60 minutes.
 また、上記と同様にしてITO基板表面に乾燥膜を形成し、フォトマスク(遮光部の大きさ:100μm×200μmで、開口部の幅:20μmの格子パターンが20mm×20mmの範囲に繰り返されているもの)を使用して上記露光条件は、露光量が150mJ/cmで乾燥膜を露光し、次いで上記現像条件と同様の条件で現像し、ホットプレート上、230℃で60分間加熱することにより、線幅20μmの隔壁でドット形成用開口部(100μm×200μm)を囲むパターンで樹脂硬化膜2付きITO基板を得た。 Further, a dry film is formed on the ITO substrate surface in the same manner as described above, and a photomask (a light shielding portion size: 100 μm × 200 μm and an opening width: 20 μm is repeated in a range of 20 mm × 20 mm). As for the above exposure conditions, the dry film is exposed at an exposure amount of 150 mJ / cm 2 , then developed under the same conditions as the above development conditions, and heated on a hot plate at 230 ° C. for 60 minutes. As a result, an ITO substrate with a cured resin film 2 was obtained in a pattern surrounding the dot forming opening (100 μm × 200 μm) with a partition having a line width of 20 μm.
[例2~12]
 上記例1において、ネガ型感光性樹脂組成物を表1、表2に示す組成に変更した以外は、同様の方法で、ネガ型感光性樹脂組成物、樹脂硬化膜および隔壁を製造した。
[Examples 2 to 12]
A negative photosensitive resin composition, a cured resin film, and a partition wall were produced in the same manner as in Example 1 except that the negative photosensitive resin composition was changed to the compositions shown in Tables 1 and 2.
(評価)
 例1~12において得られたネガ型感光性樹脂組成物、樹脂硬化膜および隔壁について、以下の評価を実施した。結果を表1、表2の下欄に示す。
(Evaluation)
The following evaluation was performed on the negative photosensitive resin compositions, resin cured films and partition walls obtained in Examples 1 to 12. The results are shown in the lower column of Tables 1 and 2.
<隔壁上面の撥インク性>
 上記樹脂硬化膜1で露光量が80mJ/cmで得られた隔壁上面のPGMEA接触角を上記の方法で測定した。
 S:接触角40度以上
 A:接触角30度以上40度未満
 B:接触角30度未満
<Ink repellency on top of partition wall>
The PGMEA contact angle on the upper surface of the partition wall obtained by the resin cured film 1 with an exposure amount of 80 mJ / cm 2 was measured by the above method.
S: Contact angle of 40 degrees or more A: Contact angle of 30 degrees or more and less than 40 degrees B: Contact angle of less than 30 degrees
<現像密着性>
 上記樹脂硬化膜1の開口パターンを有するフォトマスク(開口部がそれぞれ1、2、3、4、5、6、7、8,9、10、12、14、16、18、20、30、40、50μm×1000μm、)を介して、露光量150mJ/cmで得られた隔壁を顕微鏡で観察し、マスク幅10μm未満のラインが残っている場合をS、10μm以上50μm未満のラインが残っている場合をA、50μm以上のパターン無しの場合をBとした。
<Development adhesion>
Photomask having an opening pattern of the cured resin film 1 (openings are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, respectively. , 50 μm × 1000 μm)), the partition wall obtained with an exposure amount of 150 mJ / cm 2 is observed with a microscope, and when a line with a mask width of less than 10 μm remains, a line with a width of 10 μm or more and less than 50 μm remains. The case where A was present and the case where no pattern of 50 μm or more was present was designated B.
<隔壁のテーパー角の測定>
 上記樹脂硬化膜1で30μmのマスクを介して、露光時の露光量を150mJ/cmとした時のパターン部分の断面形状をSEM(Scaning Electro Microscope)で確認した。上記露光量で形成した隔壁において、基材に対して隔壁のテーパー部の断面の成す角度(テーパー角、例えば、図1Dにおいてαで示す。)を測定した。
<Measurement of taper angle of partition wall>
The cross-sectional shape of the pattern portion when the exposure dose during exposure was 150 mJ / cm 2 was confirmed by SEM (Scanning Electro Microscope) through the 30 μm mask of the cured resin film 1. In the partition formed with the above exposure amount, the angle formed by the cross section of the tapered portion of the partition with respect to the substrate (taper angle, for example, indicated by α in FIG. 1D) was measured.
<PCT密着性>
 上記樹脂硬化膜2付きITO基板について、樹脂硬化膜をカッターにて、2mm間隔でマス目の数が25個となるように、碁盤目状に傷を付けた。次に、この樹脂硬化膜2付きITO基板を121℃、100RH%、2気圧の条件下に24時間曝す、PCT(プレッシャークッカー試験)を実施した。試験後の樹脂硬化膜2付きITO基板の樹脂硬化膜上、カッターでマス目を作った部分に粘着テープ(ニチバン社製、商品名:セロテープ(登録商標))を貼り、直後にこの粘着テープを剥がした。マス目の剥がれが少なかったもの(残っていたマス目が60%以上のもの)をA、マス目の剥がれが多かったもの(残っていたマス目が60%未満のもの)をBとして樹脂硬化膜2の付着状態を評価した。
<PCT adhesion>
About the ITO substrate with the resin cured film 2, the resin cured film was scratched in a grid pattern so that the number of cells was 25 at intervals of 2 mm with a cutter. Next, a PCT (pressure cooker test) was performed in which the ITO substrate with the cured resin film 2 was exposed to the conditions of 121 ° C., 100 RH%, and 2 atmospheres for 24 hours. Adhesive tape (made by Nichiban Co., Ltd., trade name: cello tape (registered trademark)) is pasted on the cured part of the ITO substrate with the cured resin film 2 after the test, on the part where the grid is made with a cutter. I peeled it off. Resin cure with A as the one with less peeling of the squares (with the remaining squares of 60% or more) and B as the one with much peeling of the squares (with less than 60% of the remaining squares) The adhesion state of the film 2 was evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1、表2から明らかなように、実施例に相当する例1~7の、撥インク剤を含有するネガ型感光性樹脂組成物において、光重合開始剤(B)を選定することにより、基板上への隔壁形成において、微細なパターン形成を形成し、かつ隔壁上面が良好な撥インク性を有する。 As is clear from Tables 1 and 2, in the negative photosensitive resin composition containing the ink repellent agent of Examples 1 to 7 corresponding to the Examples, by selecting the photopolymerization initiator (B), In forming the partition wall on the substrate, a fine pattern is formed, and the upper surface of the partition wall has good ink repellency.
 本発明のネガ型感光性樹脂組成物は、有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池において、IJ法によるパターン印刷を行う際の隔壁形成用等の組成物として好適に用いることができる。
 本発明の隔壁は、有機EL素子において、発光層等の有機層をIJ法にてパターン印刷するための隔壁(バンク)、あるいは量子ドットディスプレイにおいて量子ドット層や正孔輸送層などをIJ法にてパターン印刷するための隔壁(バンク)等として利用できる。
 本発明の隔壁はまた、TFTアレイにおいて導体パターンまたは半導体パターンをIJ法にてパターン印刷するための隔壁等として利用できる。
 本発明の隔壁は例えば、TFTのチャネル層をなす有機半導体層、ゲート電極、ソース電極、ドレイン電極、ゲート配線、およびソース配線等をIJ法にてパターン印刷するための隔壁等として利用できる。
The negative photosensitive resin composition of the present invention can be suitably used as a composition for forming barrier ribs when performing pattern printing by the IJ method in organic EL elements, quantum dot displays, TFT arrays, or thin film solar cells. it can.
The barrier ribs of the present invention are barrier ribs (banks) for pattern printing of organic layers such as light-emitting layers by the IJ method in organic EL elements, or quantum dot layers and hole transport layers in the quantum dot display by the IJ method. It can be used as a partition (bank) for pattern printing.
The partition wall of the present invention can also be used as a partition wall for printing a conductor pattern or a semiconductor pattern by the IJ method in a TFT array.
The partition wall of the present invention can be used as a partition wall for pattern printing of the organic semiconductor layer, the gate electrode, the source electrode, the drain electrode, the gate wiring, the source wiring, and the like forming the channel layer of the TFT by the IJ method.
1…基板、21…塗膜、22…乾燥膜、23…露光膜、23A…露光部、23B…非露光部、4…隔壁、4A…撥インク層、5…開口部、31…マスキング部、30…フォトマスク、9…インクジェットヘッド、10…インク、11…ドット、12…有機EL素子。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 21 ... Coating film, 22 ... Dry film, 23 ... Exposure film | membrane, 23A ... Exposure part, 23B ... Non-exposure part, 4 ... Partition, 4A ... Ink-repellent layer, 5 ... Opening part, 31 ... Masking part, DESCRIPTION OF SYMBOLS 30 ... Photomask, 9 ... Inkjet head, 10 ... Ink, 11 ... Dot, 12 ... Organic EL element.

Claims (9)

  1.  光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)と、光重合開始剤(B)と、撥インク剤(C)とを含有し、該光重合開始剤(B)が、アクリジン系の化合物からなる光重合開始剤(B1)を含むことを特徴とする、有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用のネガ型感光性樹脂組成物。 A photocurable alkali-soluble resin or alkali-soluble monomer (A), a photopolymerization initiator (B), and an ink repellent agent (C) are contained, and the photopolymerization initiator (B) is acridine. A negative photosensitive resin composition for an organic EL device, for a quantum dot display, for a TFT array, or for a thin film solar cell, comprising a photopolymerization initiator (B1) made of a compound of the type.
  2.  さらに、波長365nmにおける吸光度が0.2以上である光重合開始剤(B2)(ただし、光重合開始剤(B1)を除く)を含む請求項1に記載のネガ型感光性樹脂組成物。 Furthermore, the negative photosensitive resin composition of Claim 1 containing the photoinitiator (B2) (however, except a photoinitiator (B1)) whose light absorbency in wavelength 365nm is 0.2 or more.
  3.  さらに、チオキサントン系化合物であり、波長365nmにおける吸光度が0.2未満である光重合開始剤(B3)を含む請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, further comprising a photopolymerization initiator (B3) which is a thioxanthone compound and has an absorbance at a wavelength of 365 nm of less than 0.2.
  4.  さらに7個以上のエチレン性二重結合を有する架橋剤(D)を含む請求項1~3のいずれかに記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 3, further comprising a crosslinking agent (D) having 7 or more ethylenic double bonds.
  5.  光硬化性を有するアルカリ可溶性樹脂またはアルカリ可溶性単量体(A)が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、およびフルオレニル置換ビスフェノールA型エポキシ樹脂から選ばれる少なくとも1種である、請求項1~4のいずれかに記載のネガ型感光性樹脂組成物。 The alkali-soluble resin or alkali-soluble monomer (A) having photocurability is at least selected from a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, an epoxy resin having a biphenyl skeleton, and a fluorenyl-substituted bisphenol A type epoxy resin. The negative photosensitive resin composition according to any one of claims 1 to 4, which is one kind.
  6.  前記請求項1~5のいずれかに記載のネガ型感光性樹脂組成物を用いて形成されることを特徴とする有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用の樹脂硬化膜。 A resin for an organic EL device, a quantum dot display, a TFT array or a thin film solar cell, characterized in that it is formed using the negative photosensitive resin composition according to any one of claims 1 to 5. Cured film.
  7.  基板表面をドット形成用の複数の区画に仕切る形に形成された隔壁であって、請求項6に記載の樹脂硬化膜からなることを特徴とする有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池用の隔壁。 A partition formed in a shape for partitioning the substrate surface into a plurality of sections for forming dots, comprising the cured resin film according to claim 6, for organic EL elements, for quantum dot displays, and TFT arrays Bulkhead for use in thin film solar cells.
  8.  基板表面に複数のドットと隣接するドット間に位置する隔壁とを有する光学素子であって、該光学素子は有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池であり、前記隔壁が請求項7に記載の隔壁で形成されていることを特徴とする光学素子。 An optical element having a plurality of dots and a partition located between adjacent dots on the substrate surface, the optical element being an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell, wherein the partition is claimed. An optical element comprising the partition wall according to claim 7.
  9.  前記ドットをインクジェット法で形成することを特徴とする請求項8に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 8, wherein the dots are formed by an inkjet method.
PCT/JP2016/074150 2015-08-21 2016-08-18 Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor WO2017033835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015163787 2015-08-21
JP2015-163787 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033835A1 true WO2017033835A1 (en) 2017-03-02

Family

ID=58100281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074150 WO2017033835A1 (en) 2015-08-21 2016-08-18 Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor

Country Status (1)

Country Link
WO (1) WO2017033835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066948A (en) * 2021-03-18 2021-07-02 京东方科技集团股份有限公司 Mold, preparation method thereof and transfer printing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078890A (en) * 2005-09-12 2007-03-29 Fujifilm Corp Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2007086224A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Pattern forming material, pattern forming apparatus and pattern forming method
JP2009048200A (en) * 2002-11-06 2009-03-05 Asahi Glass Co Ltd Ink repellent agent
JP2011128239A (en) * 2009-12-16 2011-06-30 Jsr Corp Coloring composition, color filter, and color liquid crystal display element
JP2012078414A (en) * 2010-09-30 2012-04-19 Goo Chemical Co Ltd Resin composition for solder resist and printed wiring board
JP2013003508A (en) * 2011-06-21 2013-01-07 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive element using the same, method for forming barrier wall of image display device, and method for manufacturing image display device
WO2014084279A1 (en) * 2012-11-28 2014-06-05 旭硝子株式会社 Negative photosensitive resin composition, cured resin film, partition wall and optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048200A (en) * 2002-11-06 2009-03-05 Asahi Glass Co Ltd Ink repellent agent
JP2007078890A (en) * 2005-09-12 2007-03-29 Fujifilm Corp Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2007086224A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Pattern forming material, pattern forming apparatus and pattern forming method
JP2011128239A (en) * 2009-12-16 2011-06-30 Jsr Corp Coloring composition, color filter, and color liquid crystal display element
JP2012078414A (en) * 2010-09-30 2012-04-19 Goo Chemical Co Ltd Resin composition for solder resist and printed wiring board
JP2013003508A (en) * 2011-06-21 2013-01-07 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive element using the same, method for forming barrier wall of image display device, and method for manufacturing image display device
WO2014084279A1 (en) * 2012-11-28 2014-06-05 旭硝子株式会社 Negative photosensitive resin composition, cured resin film, partition wall and optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066948A (en) * 2021-03-18 2021-07-02 京东方科技集团股份有限公司 Mold, preparation method thereof and transfer printing method

Similar Documents

Publication Publication Date Title
JP6398774B2 (en) Negative photosensitive resin composition, cured resin film, partition and optical element
CN104823108B (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element
KR102528044B1 (en) Curable composition for partition walls, partition walls, method for producing partition walls, method for restoring partition walls, restored partition walls, and optical element
JP6115471B2 (en) Negative photosensitive resin composition, partition, black matrix, and optical element
CN106662815B (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element
JP6593331B2 (en) Ink-repellent agent, negative photosensitive resin composition, partition and optical element
TWI629566B (en) Negative photosensitive resin composition, resin cured film, partition wall and optical element
JP6020557B2 (en) Negative photosensitive resin composition, cured film, partition wall and optical element
JP6065915B2 (en) Negative photosensitive resin composition, cured film, partition, and optical element
WO2015093415A1 (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element
WO2019117018A1 (en) Negative photosensitive resin composition
KR102611589B1 (en) Negative photosensitive resin composition
WO2014046210A1 (en) Partial hydrolysis-condensation product and ink repellent agent using same
JP2017040869A (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element and method for manufacturing the same
WO2017033835A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor
WO2017033834A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor
TW202340301A (en) Curable resin composition, resin cured film, partition wall and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16839182

Country of ref document: EP

Kind code of ref document: A1