WO2016009763A1 - Semiconductor inspection device and method of controlling semiconductor inspection device - Google Patents

Semiconductor inspection device and method of controlling semiconductor inspection device Download PDF

Info

Publication number
WO2016009763A1
WO2016009763A1 PCT/JP2015/067108 JP2015067108W WO2016009763A1 WO 2016009763 A1 WO2016009763 A1 WO 2016009763A1 JP 2015067108 W JP2015067108 W JP 2015067108W WO 2016009763 A1 WO2016009763 A1 WO 2016009763A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
inspection
detector
level voltage
speed
Prior art date
Application number
PCT/JP2015/067108
Other languages
French (fr)
Japanese (ja)
Inventor
今川 健吾
幕内 雅巳
今井 栄治
茂原 廉永
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2016009763A1 publication Critical patent/WO2016009763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to a technique for inspecting, measuring, or observing a semiconductor wafer, a semiconductor device (semiconductor integrated circuit device), a photomask (exposure mask), a liquid crystal panel, and the like.
  • Patent Document 1 As a background technology, there is a technology disclosed in JP 2005-521876 (Patent Document 1). This publication describes the configuration of an inspection system (inspection apparatus) and an outline of a control method (see Patent Document 1 [Background after surgery] and [0015] to [0021]).
  • the pattern and defects formed on the wafer are more complicated and smaller than before.
  • a light source for example, laser light
  • the scattered light from the wafer is also weaker than before.
  • CMOS Complementary Metal Oxide Semiconductor
  • TDI time delay integration
  • this type of inspection apparatus is required to perform high-throughput inspection (high-speed inspection) for the purpose of reducing the manufacturing cost of the inspection object.
  • image sensors that support high-speed operation for example, linear charge coupled devices (CCDs), CMOS sensors, time delay integration (TDI) sensors, etc.
  • TDI time delay integration
  • the present invention has been made in view of the above problems, and provides an inspection apparatus that realizes a high-sensitivity inspection according to an inspection speed (inspection rate) set and selected by an operator of the inspection apparatus, and a control method thereof. .
  • the present invention provides an inspection apparatus suitable for inspection at the time of setting a low-speed inspection speed for inspecting complicated and minute patterns / defects and a control method therefor.
  • a semiconductor inspection apparatus that performs inspection by receiving scattered light generated by irradiating light on an inspection target wafer with a plurality of detectors, and controls the semiconductor inspection apparatus and outputs an inspection speed signal related to an inspection speed.
  • a control unit a signal calculation unit for calculating a detector control signal for controlling the operation of the detector based on the inspection speed signal output from the control unit; and the control of the calculated first detector.
  • a signal generation unit that generates a signal synchronized with a control signal of the second detector;
  • the inspection sensitivity of the inspection apparatus can be improved.
  • FIG. 5 is a diagram showing a schematic configuration of a conventional inspection apparatus.
  • Irradiation light (inspection light) 33 is output from a laser (light source) 32 to irradiate the wafer 30 placed on the stage 31.
  • Irradiation to the wafer 30 may be performed by adjusting a spot, light intensity, or the like by arranging a lens, a mirror, a filter, or the like (not shown) in the optical path or the periphery of the irradiation light 33.
  • the irradiation light 30 generates scattered light 34 and 35 corresponding to the pattern, defect, and foreign matter state of the wafer 30, and the CCD (detectors) 1 and 11 receive the scattered light 34 and 35.
  • the light reception to the CCD may be adjusted by, for example, condensing the light reception to the CCDs 1 and 11 by arranging lenses, mirrors, filters, and the like (not shown) on or around the optical paths of the scattered light 34 and 35.
  • the signal generation unit 22 generates and outputs a control signal for operating the CCDs 1 and 11 based on the control signal from the device control unit 20.
  • This control signal is input to the CCDs 1 and 11 via the driver circuits 2 and 12.
  • the CCD control signal controls the operation such as charge transfer inside the CCD, and is, for example, a vertical transfer signal, a horizontal transfer (shift register transfer) signal, etc., which are all necessary for operating the applied CCD.
  • the control signal is shown.
  • This CCD control signal can be easily determined by the person in charge (CCD designer or manufacturer, CCD application device designer, etc.) (or according to the specifications of the CCD to be applied). ) Will be able to grasp.
  • CCD1 and 11 output a signal corresponding to the amount of received light in accordance with a CCD control signal.
  • the output signal is converted into digital data by the A / D converters 4 and 14 via the detection circuits 3 and 13.
  • the detection circuits 3 and 13 are amplifier circuits having a buffer or gain, and may be omitted depending on the device configuration.
  • the A / D converter is digitized by a sampling clock (not shown) according to a command from the apparatus control unit, and includes a function of correlated double sampling (CDS: Correlated Double Sampling) generally used for detecting a CCD signal. It may be a thing.
  • CDS Correlated Double Sampling
  • the above operation is performed by moving one or more of the stage 31, CCD 1, 11, and laser 32 (or irradiation light 33) in the X, Y, or Z direction, and the inspection area of the wafer 30 preset by the operator. (A part or a plurality of regions or the entire surface of the wafer 30) is inspected.
  • the image processing unit 23 forms an image based on the digitized detection signals from the CCDs 1 and 11 obtained in this way and displays them on a GUI 24 (Graphical User Interface), for example.
  • GUI 24 Graphic User Interface
  • the laser 32 is illustrated as being disposed obliquely with respect to the wafer 30, but is not limited to this, and any configuration that can irradiate the irradiation light 33 to the wafer 30 may be used.
  • the configuration example in which two CCDs are arranged is shown, but the configuration is not limited to two, and any configuration in which a plurality of two or more CCDs are arranged may be used.
  • FIG. 6 is an example of a timing chart at a high inspection rate
  • FIG. 7 is an example of a timing chart of a conventional apparatus at a low inspection rate.
  • a CCD The basic principle and operation of a CCD is a well-known technique, and a number of photodiodes (hereinafter referred to as PD) corresponding to pixels are arranged in a one-dimensional or two-dimensional array. Stores the charge received by the PD for a certain period of time.
  • PD photodiodes
  • T11 and T12 correspond to the light reception time (integration time) (in the inspection apparatus, this time is also called the inspection rate).
  • the electric charge stored by receiving light is transferred to a shift register configured in the CCD by a vertical transfer signal 50.
  • the charges stored in the shift register are sequentially moved by the horizontal transfer signal.
  • the received light charge amount of each PD that has been independent is serialized and transferred.
  • the number to be serialized differs depending on the CCD configuration (number of PDs (number of pixels) and output terminals (also called taps in the CCD)).
  • the CCD output unit converts the charge amount into an electrical signal and outputs an output signal 52.
  • Ta corresponds to a signal for one pixel.
  • the inspection apparatus generates a high-speed vertical transfer signal and a horizontal transfer signal with a narrow pulse width and controls the CCD to perform a high-throughput inspection (inspection when the scattered light is relatively large). is doing.
  • 6 and 7 show general signal outlines of the CCD, and may be signals that match the specifications of the vertical transfer signal and horizontal transfer signal of the CCD to be actually applied. In addition, all necessary control signals and the number of signals may be increased according to the CCD to be applied.
  • a wafer has been described as an inspection object and a CCD has been applied to an image sensor.
  • the present invention is not limited to this, and the inspection object described in the technical field and the summary of the invention is not limited thereto. It may be an object or an image sensor.
  • FIG. 1 is a diagram showing a schematic configuration of an inspection apparatus in the first embodiment.
  • the difference from the conventional inspection apparatus of FIG. 5 is that a signal calculation unit 21 is provided between the apparatus control unit 20 and a signal generation unit 22 that generates a control signal of the CCD.
  • the operator of the inspection apparatus sets or selects an inspection rate in the GUI 24 or a user interface (not shown) (for example, an operation panel, a keyboard, a description file (also referred to as a recipe) of inspection information / conditions, etc.)).
  • the signal calculation unit 21 receives a signal (inspection speed signal) corresponding to the set or selected inspection rate from the apparatus control unit 20, and calculates the pulse width of the CCD control signal based on the received signal.
  • the signal generator 22 generates a control signal synchronized with both the CCDs 1 and 11 based on the calculation result from the signal calculator 21.
  • the purpose of synchronization is to match the timing of the signals output from both the CCDs 1 and 11 and the timing of the two systems as a system such as the A / D converters 4 and 14.
  • the image processing unit 23 has an advantage that signals from the two systems can be easily integrated into an image of the same inspection location on the wafer 30 by synchronization.
  • FIG. 8 is a diagram showing an example of a timing chart at a low inspection rate.
  • a signal like 50 to 52 in FIG. 6 is obtained, and in a high sensitivity inspection (when a low inspection rate is set), 56 to 58 in FIG. Such a signal.
  • the horizontal transfer signal 54 is operated at high speed as shown in FIG. 7, but by applying this embodiment, as shown in FIG.
  • the horizontal transfer signal 57 can be operated at a low speed.
  • the time width of the signal corresponding to one pixel of the CCD output signal also increases from the conventional Ta in FIG. 7 to Tb in FIG.
  • the CCD output signal will be supplemented with reference to FIG.
  • the CCD output signal 59 varies in amplitude between V1 and V2 according to the amount of charge received by the PD. Therefore, for example, the A / D converters 4 and 14 shown in FIG. 1 detect the amplitude of the timings t2 and t3 (or t3 and t4). Since the frequency band from the CCDs 1 and 11 to the A / D converters 4 and 14 is determined by the application circuit, a relatively stable signal waveform can be obtained for a low-speed signal.
  • a stable output signal can be obtained by calculating and controlling the operation of the CCD at a low speed, and as a result, inspection with higher sensitivity than conventional can be realized.
  • the signal calculation unit 21 calculates the optimum pulse width and start time of the signal according to the inspection rate and the CCD specification, the signal calculation unit 21 is shared with the calculation function of the device control unit 20 and the logic circuit of the signal generation unit 20. It is also possible and can be realized at low cost because only the arithmetic function is added.
  • one or more of the stage 31, the CCD 1, 11, and the laser 32 (or irradiation light 33) are changed according to the inspection position of the wafer 30 and the pattern / foreign particle count, thereby changing the partial inspection rate. It may be inspected while changing.
  • the apparatus is configured so that the upper and lower limits of the high inspection rate and the low inspection rate can be set arbitrarily.
  • the preferred format of the signal processing unit is the inspection rate time, the vertical transfer time determined from the CCD specifications to be applied and the configuration factors of the inspection device, the waiting time until the start of horizontal transfer, and other processing and control required by the CCD and device. This is a method of subtracting the time and calculating the value calculated for the number of pixels per output determined by the CCD configuration.
  • the operator can arbitrarily change all rising timings, pulse widths, duty ratios, etc. of the CCD control signal so that the output signal of the CCD can be optimally obtained.
  • the operator can arbitrarily change all rising timings, pulse widths, duty ratios, etc. of the CCD control signal so that the output signal of the CCD can be optimally obtained.
  • the present embodiment firstly, it is possible to improve the inspection sensitivity of an inspection apparatus particularly for complicated and minute size patterns / defects and to suppress the defect rate in the market. Second, by realizing them with inexpensive means and compatible circuit means with a conventional inspection apparatus, investment by a semiconductor manufacturer or the like can be suppressed.
  • FIG. 2 is a diagram showing a schematic configuration of the inspection apparatus in the second embodiment.
  • filter circuits 5 and 15 are provided between the detection circuits 3 and 13 and the A / D converters 4 and 14.
  • the filter circuits 5 and 15 applied here are variable low-pass filters (LPFs) that can change the cutoff frequency according to the inspection rate.
  • LPFs variable low-pass filters
  • the filter circuits 5 and 15 switch to filters having different cutoff frequencies based on the signal from the apparatus control unit 20.
  • the CCD output signal is a high-frequency signal containing a large amount of high-frequency components (52 in FIG. 6).
  • a low-frequency signal (58 in FIG. 9) containing a lot of low-frequency components is set, so that a filter with a low cutoff frequency is set.
  • a filter with a low cut-off frequency can reduce unnecessary noise mixed from a CCD, a detection circuit to be configured, a power supply, etc., compared with a filter with a high cut-off frequency. For this reason, by enabling the optimum filter setting according to the inspection rate, that is, the speed of the CCD output signal, the SN ratio increases particularly in the high sensitivity inspection (when the low inspection rate is set). As a result, it is possible to realize a higher sensitivity inspection than in the first embodiment.
  • the filter circuits 5 and 15 may be arbitrarily designed so that the worker who develops the inspection apparatus does not distort the CCD output waveform in view of the CCD output signal and the inspection rate range.
  • the number of inspection rate settings is not necessarily the same. For example, it is possible to classify the inspection rate in several ranges and devise to reduce the number of filter switching according to the number of classifications.
  • the circuit configuration can be easily realized by combining some or all of resistors, capacitors, inductors, variable resistors, varicaps (variable capacitors), operational amplifiers, switch means, etc. The configuration can easily be imagined.
  • FIG. 3 is a diagram showing a schematic configuration of the inspection apparatus in the third embodiment.
  • a voltage calculation unit 25 and a power supply variable unit 26 are provided.
  • the voltage calculation unit 26 determines the optimum high and low level voltages of the CCD control signal according to the inspection rate based on the signal from the apparatus control unit 20. And outputs the calculation result.
  • the power supply variable unit 25 sets the voltage based on the calculation result and outputs Vcc and Vee.
  • the driver circuits 2 and 12 output high level Vcc and low level Vee signals based on the signal from the signal generation unit 22.
  • the driver circuits 2 and 12 are driven by a fixed voltage from the power supply circuit, which is not shown and described, whereas in the present embodiment, the driver is driven according to the inspection rate.
  • the drive levels 2 and 12 will change.
  • the allowable amount of charge is determined by the potential difference between the high level and low level of the CCD control signal.
  • the light reception time of the PD is long, and it is necessary to store a large amount of charge.
  • the allowable charge amount in the CCD is small, the charge moves to an adjacent pixel, and a CCD output corresponding to PD light reception cannot be obtained, which may cause an error in the inspection result.
  • the pattern may be changed according to the pattern of the wafer 30 to be inspected or the shape of the foreign matter.
  • the defect detection rate increases compared to the conventional case, and the error inspection result.
  • the rate of can be reduced.
  • an inspection apparatus may be used for each pattern forming process, and the charge allowable amount of the CCD may be controlled according to the inspection process.
  • FIG. 4 is a diagram showing a schematic configuration of the inspection apparatus in the fourth embodiment.
  • the present embodiment is a combination of the second embodiment and the third embodiment. Since operations and effects have been described in each embodiment, they are omitted.
  • FIG. 10 is a diagram showing a control flow of the inspection apparatus.
  • the present embodiment is specialized for the control flow of the inspection apparatus related to the above-described first to fifth embodiments made according to the present invention.
  • the inspection / control flow for inspecting using the conventional apparatus is as follows: Illustration and description are omitted.
  • the inspection is first started in flow S1.
  • conditions and parameters necessary for inspection such as inspection conditions and inspection rates are set or selected (details are as described in the first embodiment).
  • signal calculation is performed based on the inspection conditions and inspection parameters set or selected.
  • a signal is generated based on the calculation result of S3.
  • detection control of the inspection apparatus is performed based on the signal generated in S4.
  • the inspection is performed by the detection control in S5 and the control of the entire inspection apparatus (not shown), and the inspection is completed in S6.
  • the flow S6 may be repeatedly inspected by repeating the flow S6 repeatedly or by changing the inspection position.
  • calculation of timing parameters necessary for synchronizing and controlling and driving the plurality of detectors 1 and 11 (S3), and signal generation for synchronizing and controlling and driving the plurality of detectors 1 and 11 (S4) is detection control (S5) by applying a signal to the detectors 1 and 11.
  • the calculation of the parameters necessary for setting or selecting the timing parameter and the cut-off frequency required for synchronizing and controlling and driving the plurality of detectors 1 and 11 (S3), the plurality of detectors 1 and 11 Are the signal generation (S4) for controlling or selecting the control / drive and the cut-off frequency by synchronizing them, and the detection control to the detectors 1 and 11 and the filter units 5 and 15 (S5).
  • timing parameters necessary for synchronizing and controlling and driving the detectors 1 and 11 and voltage parameters for controlling the high level voltage and the low level voltage of signals to be controlled and driven by the detectors 1 and 11 are used.
  • S3 control signal for controlling and driving the plurality of detectors 1 and 11 in synchronization, power supply voltage control or variable of the driver circuits 2 and 12 (S4), signal application to the detectors 1 and 11 Is the detection control (S5).
  • timing parameters necessary for synchronizing and controlling and driving the detectors 1 and 11 and voltage parameters for controlling the high level voltage and the low level voltage of signals to be controlled and driven by the detectors 1 and 11 are used. And calculation of parameters necessary to control or select the cutoff frequency (S3), control signals for synchronizing and controlling the plurality of detectors 1 and 11, and power supply voltage control or variable of the driver circuits 2 and 12; This is signal generation (S4) for controlling or selecting the cutoff number fraction, and detection control to the detectors 1 and 11 and the filter units 5 and 15 (S5).
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the inspection described in each embodiment does not specialize only the inspection, but indicates all ranges that can be confirmed by an inspection apparatus such as measurement and observation.

Abstract

Provided are an inspection device and a method of controlling same, which implement high sensitivity inspection according to the inspection speed (inspection rate). In particular, provided are an inspection device and a method of controlling same, which are suitable for inspection in which a complex and fine sized pattern/defect serves as the target for inspection when a low inspection speed is set. This semiconductor inspection device, which performs inspection by using a plurality of detectors to receive scattered light generated by emitting light onto a wafer to be inspected, is provided with: a signal calculating unit for calculating detector control signals for controlling operation of the detectors; a signal generating unit for generating control signals for the detectors on the basis of the calculated signals; and a control unit for controlling the semiconductor inspection device, and outputting inspection speed signals pertaining to the inspection speed. The signal calculating unit calculates the detector control signals on the basis of the inspection speed signals output from the control unit, and the signal generating unit generates control signals of first and second detectors respectively synchronized in the first and second detectors.

Description

半導体検査装置および半導体検査装置の制御方法Semiconductor inspection apparatus and method for controlling semiconductor inspection apparatus
 本発明は、半導体ウェハ、半導体装置(半導体集積回路装置)、ホトマスク(露光マスク)、液晶パネルなどの検査、計測、または観察を行う技術に関する。 The present invention relates to a technique for inspecting, measuring, or observing a semiconductor wafer, a semiconductor device (semiconductor integrated circuit device), a photomask (exposure mask), a liquid crystal panel, and the like.
 背景技術として、特表2005-521876(特許文献1)の技術がある。この公報には、検査システム(検査装置)の構成や制御方法の概要が記載されている(特許文献1[背景後術]及び[0015]~[0021]参照)。 As a background technology, there is a technology disclosed in JP 2005-521876 (Patent Document 1). This publication describes the configuration of an inspection system (inspection apparatus) and an outline of a control method (see Patent Document 1 [Background after surgery] and [0015] to [0021]).
特表2005-521876Special table 2005-521876
 半導体プロセスの微細化技術により、ウェハ形成するパターンや欠陥も、従来以上に複雑かつ微小サイズなものとなっている。このような複雑かつ微小パターンや欠陥に、光源(例えばレーザ光など)用いて光照射した場合、ウェハからの散乱光も従来以上に微弱なもとなってきている。 Due to the miniaturization technology of the semiconductor process, the pattern and defects formed on the wafer are more complicated and smaller than before. When such a complicated and minute pattern or defect is irradiated with light using a light source (for example, laser light), the scattered light from the wafer is also weaker than before.
 このため、検出器として適用するイメージセンサ(例えば、リニア型の電荷結合素子(CCD:Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサ、時間遅延積分型(TDI:Time Delay Integration)センサなどから得られる検出信号も散乱光量に比例して小さくなり、その結果、検査感度や欠陥検出率が低下し、市場での不良率増加を招いてしまう課題がある。 For this reason, from image sensors (for example, linear charge coupled devices (CCDs), CMOS (Complementary Metal Oxide Semiconductor) sensors, time delay integration (TDI) sensors, etc.) that are used as detectors. The obtained detection signal is also reduced in proportion to the amount of scattered light. As a result, the inspection sensitivity and the defect detection rate are lowered, and there is a problem that the defect rate is increased in the market.
 この課題を解決するため、この種の検査装置においては、様々な工夫と技術的用により、微細化技術に対応した検査感度や欠陥検出率を向上させている。例えば、特許文献1記載の技術も、その一つである。 In order to solve this problem, in this type of inspection device, inspection sensitivity and defect detection rate corresponding to miniaturization technology are improved by various devices and technical uses. For example, the technique described in Patent Document 1 is one of them.
 一方で、この種の検査装置には、検査対象物の製造コスト削減を目的に、高スループット検査(高速検査)が要求されている。このため高速動作に対応したイメージセンサ(例えば、リニア型の電荷結合素子(CCD:Charge Coupled Device)やCMOSセンサ、時間遅延積分型(TDI:Time Delay Integration)センサなど)を適用して、イメージセンサの内部動作を高速に制御することによって、装置のスループット向上を実現している。 On the other hand, this type of inspection apparatus is required to perform high-throughput inspection (high-speed inspection) for the purpose of reducing the manufacturing cost of the inspection object. For this reason, image sensors that support high-speed operation (for example, linear charge coupled devices (CCDs), CMOS sensors, time delay integration (TDI) sensors, etc.) are used as image sensors. The throughput of the apparatus is improved by controlling the internal operation of the apparatus at high speed.
 このように、高感度化と高スループット化の両立が求められるこの種の検査装置において、特許文献1記載の技術を用いた場合、イメージセンサの受光(集光)時間(特許文献1ではこの時間を「積分時間」と定義)を制御してイメージセンサの検出信号量を増加させて検査感度向上を図るものの、イメージセンサの内部動作が高速なため、高感度検出に限界があった。 Thus, in this type of inspection apparatus that requires both high sensitivity and high throughput, when the technique described in Patent Document 1 is used, the light reception (condensation) time of the image sensor (this time is disclosed in Patent Document 1). Is defined as “integration time” to increase the detection signal amount of the image sensor and improve the inspection sensitivity. However, since the internal operation of the image sensor is fast, there is a limit to high sensitivity detection.
 本発明は、上記課題に鑑みてなされたものであり、検査装置の操作者が設定・選択した検査速度(検査レート)に応じて、高感度検査を実現する検査装置とその制御方法を提供する。特に、複雑かつ微小サイズのパターン・欠陥を検査対象とした低速検査速度設定時における検査に好適な検査装置とその制御方法を提供する。 The present invention has been made in view of the above problems, and provides an inspection apparatus that realizes a high-sensitivity inspection according to an inspection speed (inspection rate) set and selected by an operator of the inspection apparatus, and a control method thereof. . In particular, the present invention provides an inspection apparatus suitable for inspection at the time of setting a low-speed inspection speed for inspecting complicated and minute patterns / defects and a control method therefor.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。 The outline of a representative one of the inventions disclosed in the present application will be briefly described as follows.
 検査対象ウェハに光を照射して発生した散乱光を、複数の検出器で受光して検査を行う半導体検査装置であって、前記半導体検査装置を制御し、検査速度に関する検査速度信号を出力する制御部と、前記制御部から出力された前記検査速度信号に基づいて、前記検出器の動作を制御する検出器制御信号を演算する信号演算部と、前記演算された第一の検出器の制御信号と、第二の検出器の制御信号とを、同期化した信号生成する信号生成部と、を備える。 A semiconductor inspection apparatus that performs inspection by receiving scattered light generated by irradiating light on an inspection target wafer with a plurality of detectors, and controls the semiconductor inspection apparatus and outputs an inspection speed signal related to an inspection speed. A control unit; a signal calculation unit for calculating a detector control signal for controlling the operation of the detector based on the inspection speed signal output from the control unit; and the control of the calculated first detector. A signal generation unit that generates a signal synchronized with a control signal of the second detector;
 本発明によれば、検査装置の検査感度を向上させることができる。 According to the present invention, the inspection sensitivity of the inspection apparatus can be improved.
第1の実施例を示す検査装置の概略構成図である。It is a schematic block diagram of the inspection apparatus which shows a 1st Example. 第2の実施例を示す検査装置の概略構成図である。It is a schematic block diagram of the test | inspection apparatus which shows a 2nd Example. 第3の実施例を示す検査装置の概略構成図である。It is a schematic block diagram of the test | inspection apparatus which shows a 3rd Example. 第4の実施例を示す検査装置の概略構成図である。It is a schematic block diagram of the test | inspection apparatus which shows a 4th Example. 従来の検査装置の概略構成図である。It is a schematic block diagram of the conventional inspection apparatus. 高検査レート時におけるタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart at the time of a high test | inspection rate. 低検査レート時における従来装置のタイミングチャートを示す図である。It is a figure which shows the timing chart of the conventional apparatus at the time of a low test | inspection rate. 低検査レート時におけるタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart at the time of a low test | inspection rate. CCD出力信号の概略を示す図である。It is a figure which shows the outline of a CCD output signal. 検査装置の制御方法の一例を示す図である。It is a figure which shows an example of the control method of a test | inspection apparatus.
 本発明が係る各実施例を説明する前に、従来のこの種の検査装置の動作について、図5を用いて簡単に説明する。 Before describing each embodiment according to the present invention, the operation of this type of conventional inspection apparatus will be briefly described with reference to FIG.
 図5は、従来の検査装置の概略構成を示す図である。レーザ(光源)32より照射光(検査光)33を出力し、ステージ31に配置したウェハ30へ照射する。ウェハ30への照射は、図示しないレンズ、ミラー、フィルタ等を照射光33の光路または周囲に配置して、スポットや光強度などを調整してもよい。照射光30により、ウェハ30のパターン、欠陥、異物状況に応じた散乱光34、35が発生し、CCD(検出器)1、11で散乱光34、35を受光する。実際には複数の散乱光が発生するが、一例として2つの場合を示す。CCDへの受光は、図示しないレンズ、ミラー、フィルタ等を散乱光34、35の光路またはその周囲に配置して、CCD1、11への受光を集光するなど調整してもよい。 FIG. 5 is a diagram showing a schematic configuration of a conventional inspection apparatus. Irradiation light (inspection light) 33 is output from a laser (light source) 32 to irradiate the wafer 30 placed on the stage 31. Irradiation to the wafer 30 may be performed by adjusting a spot, light intensity, or the like by arranging a lens, a mirror, a filter, or the like (not shown) in the optical path or the periphery of the irradiation light 33. The irradiation light 30 generates scattered light 34 and 35 corresponding to the pattern, defect, and foreign matter state of the wafer 30, and the CCD (detectors) 1 and 11 receive the scattered light 34 and 35. Actually, a plurality of scattered lights are generated, but two cases are shown as an example. The light reception to the CCD may be adjusted by, for example, condensing the light reception to the CCDs 1 and 11 by arranging lenses, mirrors, filters, and the like (not shown) on or around the optical paths of the scattered light 34 and 35.
 信号生成部22は、装置制御部20からの制御信号にもとづき、CCD1、11を動作させるための制御信号を生成し出力する。この制御信号は、ドライバ回路2、12を介して、CCD1、11に入力される。CCDの制御信号とは、CCD内部の電荷転送などの動作を制御するもので、例えば、垂直転送信号、水平転送(シフトレジスタ転送)信号などであり、適用するCCDを動作させるために必要な全ての制御信号を示す。 The signal generation unit 22 generates and outputs a control signal for operating the CCDs 1 and 11 based on the control signal from the device control unit 20. This control signal is input to the CCDs 1 and 11 via the driver circuits 2 and 12. The CCD control signal controls the operation such as charge transfer inside the CCD, and is, for example, a vertical transfer signal, a horizontal transfer (shift register transfer) signal, etc., which are all necessary for operating the applied CCD. The control signal is shown.
 このCCD制御信号は、当該従事者(CCDの設計者やメーカ、CCD適用装置の設計者など)であれば、どのような信号種であるかは、容易に(または適用するCCDの仕様にて)把握することができるであろう。 This CCD control signal can be easily determined by the person in charge (CCD designer or manufacturer, CCD application device designer, etc.) (or according to the specifications of the CCD to be applied). ) Will be able to grasp.
 CCD1、11は、CCD制御信号によって受光量に応じた信号を出力する。出力信号は、検出回路3、13を介してA/Dコンバータ4、14にてデジタルデータに変換される。検出回路3、13はバッファまたはゲインを有したアンプ回路であり、装置構成によっては省略してもよい。 CCD1 and 11 output a signal corresponding to the amount of received light in accordance with a CCD control signal. The output signal is converted into digital data by the A / D converters 4 and 14 via the detection circuits 3 and 13. The detection circuits 3 and 13 are amplifier circuits having a buffer or gain, and may be omitted depending on the device configuration.
 A/Dコンバータは、装置制御部からの命令により、図示しないサンプリングクロックによってデジタル化するものであり、一般にCCD信号を検出するに用いられる相関二重サンプリング(CDS:Correlated Double Sampling)の機能を含むものであってもよい。 The A / D converter is digitized by a sampling clock (not shown) according to a command from the apparatus control unit, and includes a function of correlated double sampling (CDS: Correlated Double Sampling) generally used for detecting a CCD signal. It may be a thing.
 以上の動作を、ステージ31、CCD1、11、レーザ32(または照射光33)のうち1つまたは複数をX、YまたはZの方向に移動させて、操作者が予め設定したウェハ30の検査領域(ウェハ30の一部または複数領域、或いは全面)を検査する。 The above operation is performed by moving one or more of the stage 31, CCD 1, 11, and laser 32 (or irradiation light 33) in the X, Y, or Z direction, and the inspection area of the wafer 30 preset by the operator. (A part or a plurality of regions or the entire surface of the wafer 30) is inspected.
 画像処理部23では、このようにして得られたCCD1、11からのデジタル化した検出信号をもとに画像化して、例えばGUI24(Graphical User Interface)などに表示する。 The image processing unit 23 forms an image based on the digitized detection signals from the CCDs 1 and 11 obtained in this way and displays them on a GUI 24 (Graphical User Interface), for example.
 なお、レーザ32は、ウェハ30に対して、斜めに配置するように図示したが、これに限定されるものではなく、ウェハ30へ照射光33を照射できる構成であれば構わない。また、CCDは2つの配置する構成例を示したが、2つに限定されるもので無く、2つ以上のCCDが複数配置された構成であれば構わない。 The laser 32 is illustrated as being disposed obliquely with respect to the wafer 30, but is not limited to this, and any configuration that can irradiate the irradiation light 33 to the wafer 30 may be used. In addition, the configuration example in which two CCDs are arranged is shown, but the configuration is not limited to two, and any configuration in which a plurality of two or more CCDs are arranged may be used.
 次に、CCDの受光時間制御信号と出力信号の関係について、その動作概略を、図6、7を用いて簡単に説明する。図6は、高検査レート時におけるタイミングチャートの一例、図7は、低検査レート時における従来装置のタイミングチャートの一例、を示す図である。 Next, the outline of the operation of the relationship between the CCD light reception time control signal and the output signal will be briefly described with reference to FIGS. FIG. 6 is an example of a timing chart at a high inspection rate, and FIG. 7 is an example of a timing chart of a conventional apparatus at a low inspection rate.
 CCDの基本原理・動作は、既に知られている公知技術であり、一次元または二次元のアレイ状に、画素に相当する数のフォトダイオード(以下、PDと記す)が配置されており、各PDで一定時間受光した電荷を蓄える。 The basic principle and operation of a CCD is a well-known technique, and a number of photodiodes (hereinafter referred to as PD) corresponding to pixels are arranged in a one-dimensional or two-dimensional array. Stores the charge received by the PD for a certain period of time.
 図6の例では、T11、T12が受光時間(積分時間)に相当する(検査装置では、この時間を検査レートとも呼ぶ)。受光によって蓄えられた電荷は、垂直転送信号50によってCCD内部に構成されたシフトレジスタへ転送される。シフトレジスタに蓄えられた電荷は、水平転送信号によって、順次電荷移動する。この垂直転送、水平転送動作によって、独立していた各PDの受光電荷量をシリアル化して転送する。シリアル化する数は、CCDの構成(PD数(画素数)と出力端子(CCDではタップとも呼ぶ))によって異なる。 In the example of FIG. 6, T11 and T12 correspond to the light reception time (integration time) (in the inspection apparatus, this time is also called the inspection rate). The electric charge stored by receiving light is transferred to a shift register configured in the CCD by a vertical transfer signal 50. The charges stored in the shift register are sequentially moved by the horizontal transfer signal. By this vertical transfer and horizontal transfer operation, the received light charge amount of each PD that has been independent is serialized and transferred. The number to be serialized differs depending on the CCD configuration (number of PDs (number of pixels) and output terminals (also called taps in the CCD)).
 CCD出力部では、電荷量を電気信号に変換し、出力信号52を出力する。出力信号52において、Taが1画素分の信号に相当する。検査装置では、図6のように、パルス幅を狭くした高速な垂直転送信号、水平転送信号を生成してCCDを制御することで高スループット検査(散乱光が比較的大きい場合の検査)を実施している。 The CCD output unit converts the charge amount into an electrical signal and outputs an output signal 52. In the output signal 52, Ta corresponds to a signal for one pixel. As shown in FIG. 6, the inspection apparatus generates a high-speed vertical transfer signal and a horizontal transfer signal with a narrow pulse width and controls the CCD to perform a high-throughput inspection (inspection when the scattered light is relatively large). is doing.
 一方で、高感度検査が必要な検査(散乱光が比較的小さい場合に検査)では、図7のように、微弱な散乱光を多く蓄えるため、受光時間をT21、T22(T21、T22>T11、T12)のように長くすることで、CCD出力信号量を大きくした高感度検査を実施している。 On the other hand, in an inspection that requires a high-sensitivity inspection (inspection when the scattered light is relatively small), a large amount of weak scattered light is stored as shown in FIG. 7, and therefore the light reception time is T21, T22 (T21, T22> T11). , T12), a high-sensitivity inspection is performed by increasing the CCD output signal amount by making the length longer.
 なお、図6、7は、CCDの一般的な信号概略を示したものであり、実際に適用するCCDの垂直転送信号、水平転送信号の仕様に合わせた信号としてよい。また、適用するCCDに合わせて必要な全ての制御信号や信号数を増加させてもよい。なお、この種の検査装置における一例として、検査対象物にウェハ、イメージセンサにCCDを適用した例で説明したが、これに限定されるものではなく、技術分野、発明の概要に記載した検査対象物、イメージセンサであってもよい。 6 and 7 show general signal outlines of the CCD, and may be signals that match the specifications of the vertical transfer signal and horizontal transfer signal of the CCD to be actually applied. In addition, all necessary control signals and the number of signals may be increased according to the CCD to be applied. As an example of this type of inspection apparatus, a wafer has been described as an inspection object and a CCD has been applied to an image sensor. However, the present invention is not limited to this, and the inspection object described in the technical field and the summary of the invention is not limited thereto. It may be an object or an image sensor.
 以下、具体的に本発明の実施例を添付図面に従って説明する。なお、本発明の実施例を説明するための全図において、同一の機能を有する部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, specific examples of the present invention will be described with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the present invention, and the repetitive description thereof will be omitted.
 図1は、第1の実施例における検査装置の概略構成を示す図である。図5の従来の検査装置との差異は、装置制御部20と、CCDの制御信号を生成する信号生成部22との間に信号演算部21を設けた点である。 FIG. 1 is a diagram showing a schematic configuration of an inspection apparatus in the first embodiment. The difference from the conventional inspection apparatus of FIG. 5 is that a signal calculation unit 21 is provided between the apparatus control unit 20 and a signal generation unit 22 that generates a control signal of the CCD.
 検査装置の操作者は、GUI24や、図示を省略したユーザーインターフェース(例えば、操作パネル、キーボード、検査情報・条件等の記載ファイル(レシピとも呼ぶ)など)に、検査レートを設定または選択する。信号演算部21は、設定または選択された検査レートに応じた信号(検査速度信号)を装置制御部20から受信し、この受信信号をもとに、CCD制御信号のパルス幅などを演算する。 The operator of the inspection apparatus sets or selects an inspection rate in the GUI 24 or a user interface (not shown) (for example, an operation panel, a keyboard, a description file (also referred to as a recipe) of inspection information / conditions, etc.)). The signal calculation unit 21 receives a signal (inspection speed signal) corresponding to the set or selected inspection rate from the apparatus control unit 20, and calculates the pulse width of the CCD control signal based on the received signal.
 信号生成部22は、信号演算部21からの演算結果にもとづいて、CCD1、11の両者に対して同期化した制御信号を生成する。同期化は、CCD1、11の両者から出力される信号タイミングや、A/Dコンバータ4、14などシステムとして2系統のタイミングを合わせるためである。また、画像処理部23では、同期化により2系統からの信号を、ウェハ30の同一検査箇所の画像に統合しやすいという利点もある。 The signal generator 22 generates a control signal synchronized with both the CCDs 1 and 11 based on the calculation result from the signal calculator 21. The purpose of synchronization is to match the timing of the signals output from both the CCDs 1 and 11 and the timing of the two systems as a system such as the A / D converters 4 and 14. In addition, the image processing unit 23 has an advantage that signals from the two systems can be easily integrated into an image of the same inspection location on the wafer 30 by synchronization.
 図8は、低検査レート時におけるタイミングチャートの一例を示す図である。本実施例によって、例えば、高スループット検査(高検査レート設定時)では、図6の50~52のような信号となり、高感度検査(低検査レート設定時)では、図8の56~58のような信号となる。 FIG. 8 is a diagram showing an example of a timing chart at a low inspection rate. According to the present embodiment, for example, in a high-throughput inspection (when a high inspection rate is set), a signal like 50 to 52 in FIG. 6 is obtained, and in a high sensitivity inspection (when a low inspection rate is set), 56 to 58 in FIG. Such a signal.
 従来の検査装置では、例えば、受光時間T21、T22の高感度検査では、図7のように水平転送信号54を高速に動作させていたのに対し、本実施例の適用によって、図9のように水平転送信号57を低速に動作させることができる。これによって、CCD出力信号の1画素に相当する信号の時間幅も従来の図7のTaから図9のTbに増加する。 In the conventional inspection apparatus, for example, in the high-sensitivity inspection at the light receiving times T21 and T22, the horizontal transfer signal 54 is operated at high speed as shown in FIG. 7, but by applying this embodiment, as shown in FIG. The horizontal transfer signal 57 can be operated at a low speed. As a result, the time width of the signal corresponding to one pixel of the CCD output signal also increases from the conventional Ta in FIG. 7 to Tb in FIG.
 ここで、CCD出力信号について図9を用いて補足する。図9は、CCD出力信号59は、PDで受光した電荷量に応じてV1-V2間の振幅量が変化する。このため、例えば、t2、t3(またはt3、t4)のタイミングを、図1に示すA/Dコンバータ4、14で振幅を検出する。CCD1、11からA/Dコンバータ4、14までの周波数帯域は適用回路で決まっているため、低速信号な程、比較的安定した信号波形が得られる。 Here, the CCD output signal will be supplemented with reference to FIG. In FIG. 9, the CCD output signal 59 varies in amplitude between V1 and V2 according to the amount of charge received by the PD. Therefore, for example, the A / D converters 4 and 14 shown in FIG. 1 detect the amplitude of the timings t2 and t3 (or t3 and t4). Since the frequency band from the CCDs 1 and 11 to the A / D converters 4 and 14 is determined by the application circuit, a relatively stable signal waveform can be obtained for a low-speed signal.
 すなわち、本実施例のように、低検査レート設定時には、CCDの動作を低速に演算して制御することで、安定した出力信号を得られ、その結果、従来よりも高感度な検査を実現できる。信号演算部21は、検査レートとCCD仕様に応じて最適な信号のパルス幅や開始時間を演算するため、装置制御部20の演算機能と共用化、信号生成部20のロジック回路との共用化も可能で有り、演算機能のみの追加のため、安価に実現することができる。 That is, as in this embodiment, when the low inspection rate is set, a stable output signal can be obtained by calculating and controlling the operation of the CCD at a low speed, and as a result, inspection with higher sensitivity than conventional can be realized. . Since the signal calculation unit 21 calculates the optimum pulse width and start time of the signal according to the inspection rate and the CCD specification, the signal calculation unit 21 is shared with the calculation function of the device control unit 20 and the logic circuit of the signal generation unit 20. It is also possible and can be realized at low cost because only the arithmetic function is added.
 なお、検査レートは、一例として、高検査レートと低検査レートの2つを例に説明したが、複数の検査レートを設定、選択できるようにしてもよい。場合によっては、ウェハ30の検査位置やパターン・異物の計上に応じて、ステージ31、CCD1、11、レーザ32(または照射光33)のうち1つまたは複数を、変化させて、部分的検査レートを可変しながら検査してもよい。 Note that, as an example, two inspection rates, a high inspection rate and a low inspection rate, have been described, but a plurality of inspection rates may be set and selected. In some cases, one or more of the stage 31, the CCD 1, 11, and the laser 32 (or irradiation light 33) are changed according to the inspection position of the wafer 30 and the pattern / foreign particle count, thereby changing the partial inspection rate. It may be inspected while changing.
 装置として望ましくは、高検査レートと低検査レートの上限―下限設定の間を任意に設定できるように装置構成することである。信号演算部の望ましい形式は、検査レート時間から、適用するCCD仕様や検査装置の構成要因から決められた垂直転送時間や、水平転送開始までの待ち時間、その他CCDや装置で必要な処理や制御時間分を差し引き、CCDの構成で決定される1出力当たりの画素数分で計算した値に演算する方法である。 Desirably, the apparatus is configured so that the upper and lower limits of the high inspection rate and the low inspection rate can be set arbitrarily. The preferred format of the signal processing unit is the inspection rate time, the vertical transfer time determined from the CCD specifications to be applied and the configuration factors of the inspection device, the waiting time until the start of horizontal transfer, and other processing and control required by the CCD and device. This is a method of subtracting the time and calculating the value calculated for the number of pixels per output determined by the CCD configuration.
 さらに望ましくは、CCDの出力信号が最適に得られるように、CCD制御信号の全ての立ち上がりタイミングやパルス幅、デューティー比などを任意に操作者が変更できることである。これによって、あらゆるパターンが形成されるウェハにおいても柔軟に対応して、安定した高感度検査を実現することができる。 More desirably, the operator can arbitrarily change all rising timings, pulse widths, duty ratios, etc. of the CCD control signal so that the output signal of the CCD can be optimally obtained. As a result, it is possible to flexibly cope with a wafer on which all patterns are formed, and to realize a stable high-sensitivity inspection.
 本実施例によれば、第一に、特に複雑かつ微小サイズのパターン・欠陥を対象とした検査装置の検査感度を向上し、市場での不良率を抑制することができる。第二に、それらを安価な手段、かつ従来の検査装置との互換回路手段によって実現することで、半導体製造メーカ等の投資を抑制できる。 According to the present embodiment, firstly, it is possible to improve the inspection sensitivity of an inspection apparatus particularly for complicated and minute size patterns / defects and to suppress the defect rate in the market. Second, by realizing them with inexpensive means and compatible circuit means with a conventional inspection apparatus, investment by a semiconductor manufacturer or the like can be suppressed.
 図2は、第2の実施例における検査装置の概略構成を示す図である。実施例1との差異は、検出回路3、13とA/Dコンバータ4、14の間にフィルタ回路5、15を設けたことである。ここで適用するフィルタ回路5、15は、検査レートに応じて遮断周波数を変更することができる可変形のロー・パス・フィルタ(LPF)である。実施例1と同様に、操作者が検査レートを設定または選択すると、装置制御部20からの信号にもとづき、フィルタ回路5、15では遮断周波数の異なるフィルタに切り替える。 FIG. 2 is a diagram showing a schematic configuration of the inspection apparatus in the second embodiment. The difference from the first embodiment is that filter circuits 5 and 15 are provided between the detection circuits 3 and 13 and the A / D converters 4 and 14. The filter circuits 5 and 15 applied here are variable low-pass filters (LPFs) that can change the cutoff frequency according to the inspection rate. As in the first embodiment, when the operator sets or selects the inspection rate, the filter circuits 5 and 15 switch to filters having different cutoff frequencies based on the signal from the apparatus control unit 20.
 CCD出力信号は、例えば、高スループット検査(高検査レート設定時)においては、高周波成分を多く含んだ高速信号(図6の52)のため高域な遮断周波数のフィルタを、高感度検査(低検査レート設定時)では、低周波成分を多く含んだ低速信号(図9の58)のため、低域な遮断周波数のフィルタを設定する。 For example, in a high-throughput inspection (when a high inspection rate is set), the CCD output signal is a high-frequency signal containing a large amount of high-frequency components (52 in FIG. 6). At the time of setting the inspection rate, a low-frequency signal (58 in FIG. 9) containing a lot of low-frequency components is set, so that a filter with a low cutoff frequency is set.
 遮断周波数が低いフィルタでは、遮断周波数が高いフィルタに比べ、CCDや構成する検出回路、および電源等から混入する不要なノイズ分を低減することができる。このため検査レート、即ちCCD出力信号の速度に応じて最適なフィルタ設定を可能とすることで、特に高感度検査(低検査レート設定時)にSN比が増加する。その結果、実施例1よりも高感度検査が実現できる。 A filter with a low cut-off frequency can reduce unnecessary noise mixed from a CCD, a detection circuit to be configured, a power supply, etc., compared with a filter with a high cut-off frequency. For this reason, by enabling the optimum filter setting according to the inspection rate, that is, the speed of the CCD output signal, the SN ratio increases particularly in the high sensitivity inspection (when the low inspection rate is set). As a result, it is possible to realize a higher sensitivity inspection than in the first embodiment.
 フィルタ回路5、15は、検査装置を開発する当該従事者が、CCD出力信号と検査レート範囲とを鑑みて、CCD出力波形が歪まぬよう任意に設計すればよく、遮断周波数の切り替え数と、検査レート設定数とが必ずしも一致している必要はない。例えば、検査レートをいくつかの範囲で分類し、その分類数に合わせてフィルタの切り替え数を低減する工夫をすることも可能である。回路構成は、例えば抵抗、コンデンサ、インダクタ、可変抵抗器、バリキャップ(可変容量)、オペアンプ、スイッチ手段などの幾つか、または全てを組みあわせることで容易に実現でき、アナログ回路設計従事者であれば、その構成は容易に想像できるであろう。 The filter circuits 5 and 15 may be arbitrarily designed so that the worker who develops the inspection apparatus does not distort the CCD output waveform in view of the CCD output signal and the inspection rate range. The number of inspection rate settings is not necessarily the same. For example, it is possible to classify the inspection rate in several ranges and devise to reduce the number of filter switching according to the number of classifications. The circuit configuration can be easily realized by combining some or all of resistors, capacitors, inductors, variable resistors, varicaps (variable capacitors), operational amplifiers, switch means, etc. The configuration can easily be imagined.
 図3は、第3の実施例における検査装置の概略構成を示す図である。実施例1との差異は、電圧演算部25と、電源可変部26を設けたことである。実施例1と同様に、操作者が検査レートを設定または選択すると、装置制御部20からの信号にもとづき、電圧演算部26で検査レートに応じて最適なCCD制御信号のハイレベルとローレベル電圧を演算して、演算結果を出力する。電源可変部25では、演算結果をもとに、電圧を設定してVcc、Vee出力する。ドライバ回路2、12では、信号生成部22からの信号にもとづき、ハイレベルVcc、ローレベルVeeの信号を出力する。 FIG. 3 is a diagram showing a schematic configuration of the inspection apparatus in the third embodiment. The difference from the first embodiment is that a voltage calculation unit 25 and a power supply variable unit 26 are provided. As in the first embodiment, when the operator sets or selects the inspection rate, the voltage calculation unit 26 determines the optimum high and low level voltages of the CCD control signal according to the inspection rate based on the signal from the apparatus control unit 20. And outputs the calculation result. The power supply variable unit 25 sets the voltage based on the calculation result and outputs Vcc and Vee. The driver circuits 2 and 12 output high level Vcc and low level Vee signals based on the signal from the signal generation unit 22.
 すなはち、実施例1、2では、図示と説明を省略した電源回路からの固定電圧でドライバ回路2、12が駆動していたのに対し、本実施例では、検査レートに応じて、ドライバ2、12の駆動レベルが変化することになる。 In other words, in the first and second embodiments, the driver circuits 2 and 12 are driven by a fixed voltage from the power supply circuit, which is not shown and described, whereas in the present embodiment, the driver is driven according to the inspection rate. The drive levels 2 and 12 will change.
 CCD1、11のPDやシフトレジスタ(図示なし)では、一般的にCCD制御信号のハイレベル、ローレベルとの電位差によって蓄えられる電荷の許容量(電荷の井戸の深さ)が決まる。特に、高感度検査(低検査レート設定時)では、PDの受光時間が長く、多くの電荷を蓄える必要がある。このとき、CCD内部の電荷許容量が少ないと、隣接し画素へ電荷が移動してしまい、PD受光に応じたCCD出力が得られなくなり、検査結果に誤りを与え兼ねない。 In the PDs and shift registers (not shown) of the CCDs 1 and 11, generally, the allowable amount of charge (depth of the charge well) is determined by the potential difference between the high level and low level of the CCD control signal. In particular, in high-sensitivity inspection (when a low inspection rate is set), the light reception time of the PD is long, and it is necessary to store a large amount of charge. At this time, if the allowable charge amount in the CCD is small, the charge moves to an adjacent pixel, and a CCD output corresponding to PD light reception cannot be obtained, which may cause an error in the inspection result.
 このため、検査レートに応じて、CCD内部の電荷許容量を制御することで、より正確な高感度検査を実現することができる。また、検査レート以外にも、検査対象であるウェハ30のパターンや異物形状に応じて変更するようにしても良い。 Therefore, more accurate high-sensitivity inspection can be realized by controlling the allowable charge amount in the CCD according to the inspection rate. In addition to the inspection rate, the pattern may be changed according to the pattern of the wafer 30 to be inspected or the shape of the foreign matter.
 例えば、ウェハ30からの散乱光が比較的大きなパターンや異物の場合、CCD内部の電荷量は大きいため、本実施例を応用適用することで、従来よりも欠陥検出率が増加し、誤り検査結果の率が低減することができる。さらに半導体の検査では、パターンを形成する工程毎に検査装置を用いて検査することがあり、検査工程に応じてCCDの電荷許容量を制御するように構成することもできる。 For example, when the scattered light from the wafer 30 is a relatively large pattern or foreign matter, the charge amount inside the CCD is large. Therefore, by applying this embodiment, the defect detection rate increases compared to the conventional case, and the error inspection result. The rate of can be reduced. Further, in the semiconductor inspection, an inspection apparatus may be used for each pattern forming process, and the charge allowable amount of the CCD may be controlled according to the inspection process.
 図4は、第4の実施例における検査装置の概略構成を示す図である。本実施例は、実施例2と実施例3との組み合わせである。動作や効果については各実施例で説明済みのため、省略する。 FIG. 4 is a diagram showing a schematic configuration of the inspection apparatus in the fourth embodiment. The present embodiment is a combination of the second embodiment and the third embodiment. Since operations and effects have been described in each embodiment, they are omitted.
 本実施例を適用することにより、従来の検査装置よりも、高感度検査が実現できるばかりでなく、検査対象のウェハのパターンや異物、或いは半導体を形成する工程に応じて好適な検査設定を実現でき、操作者の利便性が増すとともに欠陥検出率の向上と、誤り検出率の低減を図ることができる。 By applying this example, not only high-sensitivity inspection can be realized, but also suitable inspection settings can be realized according to the pattern, foreign matter, or semiconductor forming process of the wafer to be inspected. It is possible to increase the convenience of the operator, improve the defect detection rate, and reduce the error detection rate.
 図10は、検査装置の制御フローを示す図である。なお、本実施例は、本発明によってなされる上述の実施例1~5に関連する検査装置の制御フローに特化したものであり、従来装置を用いて検査するための検査・制御フローは、図示および説明を省略する。 FIG. 10 is a diagram showing a control flow of the inspection apparatus. The present embodiment is specialized for the control flow of the inspection apparatus related to the above-described first to fifth embodiments made according to the present invention. The inspection / control flow for inspecting using the conventional apparatus is as follows: Illustration and description are omitted.
 図10において、まずフローS1で検査をスタートする。フローS2では、検査条件や検査レートなど検査に必要な条件やパラメータが設定または選択される(詳細は実施例1記載の通り)。フローS3では、設定または選択された検査条件、検査パラメータにもとづき信号演算を行う。フローS4では、S3の演算結果にもとづき、信号を生成する。フローS5では、S4で生成された信号にもとづき、検査装置の検出制御を行う。フローS6では、S5の検出制御と、図示を省略した検査装置全体の制御により検査が行われ、S6で検査が完了する。 In FIG. 10, the inspection is first started in flow S1. In the flow S2, conditions and parameters necessary for inspection such as inspection conditions and inspection rates are set or selected (details are as described in the first embodiment). In the flow S3, signal calculation is performed based on the inspection conditions and inspection parameters set or selected. In flow S4, a signal is generated based on the calculation result of S3. In flow S5, detection control of the inspection apparatus is performed based on the signal generated in S4. In the flow S6, the inspection is performed by the detection control in S5 and the control of the entire inspection apparatus (not shown), and the inspection is completed in S6.
 なお、検査の条件に応じては、フローS6を繰り返し複数回検査する場合や検査位置などを変えてフローS6を検査を繰り返すこともある。 In addition, depending on the inspection conditions, the flow S6 may be repeatedly inspected by repeating the flow S6 repeatedly or by changing the inspection position.
 次に、フローS3~S5について、具体例を実施例1~4に沿って説明する。 Next, specific examples of the flows S3 to S5 will be described according to the first to fourth embodiments.
 実施例1では、複数の検出器1、11を同期化して制御・駆動するに必要なタイミングパラメータの演算(S3)、複数の検出器1、11を同期化して制御・駆動するための信号生成(S4)、検出器1、11への信号印加による検出制御(S5)である。 In the first embodiment, calculation of timing parameters necessary for synchronizing and controlling and driving the plurality of detectors 1 and 11 (S3), and signal generation for synchronizing and controlling and driving the plurality of detectors 1 and 11 (S4) is detection control (S5) by applying a signal to the detectors 1 and 11.
 実施例2では、複数の検出器1、11を同期化して制御・駆動するに必要なタイミングパラメータと遮断周波数を設定または選択するに必要なパラメータの演算(S3)、複数の検出器1、11を同期化して制御・駆動と遮断周波数を制御または選択するための信号生成(S4)、検出器1、11およびフィルタ部5、15への検出制御(S5)である。 In the second embodiment, the calculation of the parameters necessary for setting or selecting the timing parameter and the cut-off frequency required for synchronizing and controlling and driving the plurality of detectors 1 and 11 (S3), the plurality of detectors 1 and 11 Are the signal generation (S4) for controlling or selecting the control / drive and the cut-off frequency by synchronizing them, and the detection control to the detectors 1 and 11 and the filter units 5 and 15 (S5).
 実施例3では、複数の検出器1、11を同期化して制御・駆動するに必要なタイミングパラメータと検出器1、11の制御・駆動する信号のハイレベル電圧とローレベル電圧を制御する電圧パラメータの演算(S3)、複数の検出器1、11を同期化して制御・駆動するための制御信号とドライバ回路2、12の電源電圧制御または可変(S4)、検出器1、11への信号印加による検出制御(S5)である。 In the third embodiment, timing parameters necessary for synchronizing and controlling and driving the detectors 1 and 11 and voltage parameters for controlling the high level voltage and the low level voltage of signals to be controlled and driven by the detectors 1 and 11 are used. (S3), control signal for controlling and driving the plurality of detectors 1 and 11 in synchronization, power supply voltage control or variable of the driver circuits 2 and 12 (S4), signal application to the detectors 1 and 11 Is the detection control (S5).
 実施例4では、複数の検出器1、11を同期化して制御・駆動するに必要なタイミングパラメータと検出器1、11の制御・駆動する信号のハイレベル電圧とローレベル電圧を制御する電圧パラメータと遮断周波数を制御または選択するに必要なパラメータの演算(S3)、複数の検出器1、11を同期化して制御・駆動するための制御信号とドライバ回路2、12の電源電圧制御または可変と遮断数端数を制御または選択するための信号生成(S4)、検出器1、11およびフィルタ部5、15への検出制御(S5)である。 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。また、各実施例で説明した検査とは、検査のみ特化するものではなく、例えば計測、観察など検査装置で確認できる全て範囲を示す。 In the fourth embodiment, timing parameters necessary for synchronizing and controlling and driving the detectors 1 and 11 and voltage parameters for controlling the high level voltage and the low level voltage of signals to be controlled and driven by the detectors 1 and 11 are used. And calculation of parameters necessary to control or select the cutoff frequency (S3), control signals for synchronizing and controlling the plurality of detectors 1 and 11, and power supply voltage control or variable of the driver circuits 2 and 12; This is signal generation (S4) for controlling or selecting the cutoff number fraction, and detection control to the detectors 1 and 11 and the filter units 5 and 15 (S5). In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD. In addition, the inspection described in each embodiment does not specialize only the inspection, but indicates all ranges that can be confirmed by an inspection apparatus such as measurement and observation.
1、11 CCD(イメージセンサ)
2、12 ドライバ回路
3、13 検出回路
4、14 A/Dコンバータ
5、15 フィルタ部
21 信号演算部
20 装置制御部
22 信号生成部
23 画像処理部
24 GUI
25 電圧演算部
26 電源可変部
30 ウェハ(検査対象物)
31 ステージ
32 レーザ(光源)
1,11 CCD (image sensor)
2, 12 Driver circuit 3, 13 Detection circuit 4, 14 A / D converter 5, 15 Filter unit 21 Signal calculation unit 20 Device control unit 22 Signal generation unit 23 Image processing unit 24 GUI
25 Voltage Calculation Unit 26 Power Supply Variable Unit 30 Wafer (Inspection Object)
31 Stage 32 Laser (light source)

Claims (14)

  1.  検査対象ウェハに光を照射して発生した散乱光を、複数の検出器で受光して検査を行う半導体検査装置であって、
     前記半導体検査装置を制御し、検査速度に関する検査速度信号を出力する制御部と、
     前記制御部から出力された前記検査速度信号に基づいて、前記検出器の動作を制御する検出器制御信号を演算する信号演算部と、
     前記演算された第一の検出器の制御信号と、第二の検出器の制御信号とを、同期化した信号生成する信号生成部と、
    を備える半導体検査装置。
    A semiconductor inspection apparatus for performing inspection by receiving scattered light generated by irradiating light on an inspection target wafer with a plurality of detectors,
    A control unit for controlling the semiconductor inspection apparatus and outputting an inspection speed signal relating to an inspection speed;
    Based on the inspection speed signal output from the control unit, a signal calculation unit for calculating a detector control signal for controlling the operation of the detector;
    A signal generation unit that generates a signal that synchronizes the calculated control signal of the first detector and the control signal of the second detector;
    A semiconductor inspection apparatus.
  2.  請求項1記載の半導体検査装置であって、
     前記検出器制御信号とは、前記検出器の電荷転送の動作を制御する水平転送信号および垂直転送信号であり、
     前記検査速度信号が、第一の検査速度信号と、前記第一の検査速度信号より遅い第二の検査速度信号と、である場合、
     前記信号演算部は、前記第一の検査速度信号に基づいて、第一の水平転送信号を演算し、前記第二の検査速度信号に基づいて、第二の水平転送信号を演算し、
     前記第一の水平転送信号の速度は、前記第二の水平転送信号の速度より速い、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 1,
    The detector control signal is a horizontal transfer signal and a vertical transfer signal that control the charge transfer operation of the detector,
    When the inspection speed signal is a first inspection speed signal and a second inspection speed signal that is slower than the first inspection speed signal,
    The signal calculation unit calculates a first horizontal transfer signal based on the first inspection speed signal, calculates a second horizontal transfer signal based on the second inspection speed signal,
    The speed of the first horizontal transfer signal is faster than the speed of the second horizontal transfer signal,
    A semiconductor inspection apparatus.
  3.  請求項1に記載の半導体検査装置であって、
     前記検出器で検出した検出信号が入力し、前記制御部から出力された前記検査速度に応じて遮断周波数を変化させる可変フィルタ部を備える、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 1,
    A detection signal detected by the detector is input, and a variable filter unit that changes a cutoff frequency according to the inspection speed output from the control unit is provided.
    A semiconductor inspection apparatus.
  4.  請求項3に記載の半導体検査装置であって、
     前記可変フィルタ部は、前記検査速度が高速である場合は、遮断周波数を高域とし、前記検査速度が低速である場合は、遮断周波数を低域とする、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 3,
    When the inspection speed is high, the variable filter unit has a high cut-off frequency, and when the inspection speed is low, the cut-off frequency is low.
    A semiconductor inspection apparatus.
  5.  請求項1に記載の半導体検査装置であって、
     前記信号生成部から出力された前記検出器制御信号に基づいて前記検出器を駆動させる駆動回路と、
     前記制御部から出力された前記検査速度に応じて前記検出器制御信号のハイレベル電圧およびローレベル電圧を演算する電圧演算部と、
     前記電圧演算部により演算されたハイレベル電圧およびローレベル電圧を設定して出力する電圧可変部と、
    を備え、
     前記駆動回路は、前記検出器制御信号に応じて、前記電圧可変部で設定され、出力されたハイレベル電圧またはローレベル電圧を、前記検出器に出力する、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 1,
    A drive circuit for driving the detector based on the detector control signal output from the signal generator;
    A voltage calculation unit for calculating a high level voltage and a low level voltage of the detector control signal according to the inspection speed output from the control unit;
    A voltage variable unit for setting and outputting the high level voltage and the low level voltage calculated by the voltage calculation unit;
    With
    The drive circuit outputs a high level voltage or a low level voltage set and output by the voltage variable unit according to the detector control signal to the detector.
    A semiconductor inspection apparatus.
  6.  請求項5に記載の半導体検査装置であって、
     前記電圧演算部は、前記検査速度が高速である場合の前記ハイレベル電圧と前記ローレベル電圧との電位差は、前記検査速度が低速である場合の前記ハイレベル電圧と前記ローレベル電圧との電位差よりも小さい、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 5,
    The voltage calculation unit is configured such that a potential difference between the high level voltage and the low level voltage when the inspection speed is high is a potential difference between the high level voltage and the low level voltage when the inspection speed is low. Smaller than,
    A semiconductor inspection apparatus.
  7.  請求項1に記載の半導体検査装置であって、
     前記検出器で検出した検出信号が入力し、前記制御部から出力された前記検査速度に応じて遮断周波数を変化させる可変フィルタ部と、
     前記信号生成部から出力された前記検出器制御信号に基づいて前記検出器を駆動させる駆動回路と、
     前記制御部から出力された前記検査速度に応じて前記検出器制御信号のハイレベル電圧およびローレベル電圧を演算する電圧演算部と、
     前記電圧演算部により演算されたハイレベル電圧およびローレベル電圧を設定して出力する電圧可変部と、
    を備え、
     前記駆動回路は、前記検出器制御信号に応じて、前記電圧可変部で設定され、出力されたハイレベル電圧またはローレベル電圧を、前記検出器に出力する、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 1,
    A variable filter unit that receives a detection signal detected by the detector and changes a cut-off frequency according to the inspection speed output from the control unit;
    A drive circuit for driving the detector based on the detector control signal output from the signal generator;
    A voltage calculation unit for calculating a high level voltage and a low level voltage of the detector control signal according to the inspection speed output from the control unit;
    A voltage variable unit for setting and outputting the high level voltage and the low level voltage calculated by the voltage calculation unit;
    With
    The drive circuit outputs a high level voltage or a low level voltage set and output by the voltage variable unit according to the detector control signal to the detector.
    A semiconductor inspection apparatus.
  8.  請求項7に記載の半導体検査装置であって、
     前記可変フィルタ部は、前記検査速度が高速である場合は、遮断周波数を高域とし、前記検査速度が低速である場合は、遮断周波数を低域とする、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 7,
    When the inspection speed is high, the variable filter unit has a high cut-off frequency, and when the inspection speed is low, the cut-off frequency is low.
    A semiconductor inspection apparatus.
  9.  請求項7に記載の半導体検査装置であって、
     前記電圧演算部は、前記検査速度が高速である場合の前記ハイレベル電圧と前記ローレベル電圧との電位差は、前記検査速度が低速である場合の前記ハイレベル電圧と前記ローレベル電圧との電位差よりも小さい、
    ことを特徴とする半導体検査装置。
    The semiconductor inspection apparatus according to claim 7,
    The voltage calculation unit is configured such that a potential difference between the high level voltage and the low level voltage when the inspection speed is high is a potential difference between the high level voltage and the low level voltage when the inspection speed is low. Smaller than,
    A semiconductor inspection apparatus.
  10.  検査対象ウェハに光を照射して発生した散乱光を、複数の検出器で受光して検査を行う半導体検査装置の制御方法であって、
     前記検出器を制御し、検査速度に関する検査速度信号を出力する制御ステップと、
     前記制御ステップから出力された前記検査速度信号に基づいて、前記検出器の動作を制御する検出器制御信号を演算する信号演算ステップと、
     前記演算された第一の検出器の制御信号と、第二の検出器の制御信号とを、同期化した信号を生成する信号生成ステップと、
    を備える半導体検査装置の制御方法。
    A method of controlling a semiconductor inspection apparatus that performs inspection by receiving scattered light generated by irradiating light on an inspection target wafer with a plurality of detectors,
    A control step of controlling the detector and outputting an inspection speed signal relating to the inspection speed;
    Based on the inspection speed signal output from the control step, a signal calculation step for calculating a detector control signal for controlling the operation of the detector;
    A signal generation step of generating a signal obtained by synchronizing the calculated control signal of the first detector and the control signal of the second detector;
    A method for controlling a semiconductor inspection apparatus comprising:
  11.  請求項10記載の半導体検査装置の制御方法であて、
     前記検出器制御信号とは、前記検出器の電荷転送の動作を制御する水平転送信号および垂直転送信号であり、
     前記検査速度信号が、第一の検査速度信号と、前記第一の検査速度信号より遅い第二の検査速度信号と、である場合、
     前記信号演算ステップでは、前記第一の検査速度信号に基づいて、第一の水平転送信号を演算し、前記第二の検査速度信号に基づいて、第二の水平転送信号を演算し、
     前記第一の水平転送信号の速度は、前記第二の水平転送信号の速度より速い、
    ことを特徴とする半導体検査装置の制御方法。
    A method for controlling a semiconductor inspection apparatus according to claim 10, comprising:
    The detector control signal is a horizontal transfer signal and a vertical transfer signal that control the charge transfer operation of the detector,
    When the inspection speed signal is a first inspection speed signal and a second inspection speed signal that is slower than the first inspection speed signal,
    In the signal calculation step, a first horizontal transfer signal is calculated based on the first inspection speed signal, a second horizontal transfer signal is calculated based on the second inspection speed signal,
    The speed of the first horizontal transfer signal is faster than the speed of the second horizontal transfer signal,
    A method for controlling a semiconductor inspection apparatus.
  12.  請求項10に記載の半導体検査装置の制御方法であって、
     前記検出器で検出した検出信号を、前記検査速度に応じて遮断周波数を変化させるステップを備える、
    ことを特徴とする半導体検査装置の制御方法。
    It is a control method of the semiconductor inspection device according to claim 10,
    The detection signal detected by the detector comprises a step of changing a cutoff frequency according to the inspection speed.
    A method for controlling a semiconductor inspection apparatus.
  13.  請求項10に記載の半導体検査装置の制御方法であって、
     前記信号生成ステップで生成された前記検出器制御信号に基づいて前記検出器を駆動させる駆動ステップと、
     前記検査速度に応じて前記検出器制御信号のハイレベル電圧およびローレベル電圧を演算する電圧演算ステップと、
     前記電圧演算ステップにより演算されたハイレベル電圧およびローレベル電圧を設定する電圧可変ステップと、
    を備え、
     前記駆動ステップでは、前記検出器制御信号に応じて、前記電圧可変ステップで設定されハイレベル電圧またはローレベル電圧を、前記検出器に出力する、
    ことを特徴とする半導体検査装置の制御方法。
    It is a control method of the semiconductor inspection device according to claim 10,
    A driving step of driving the detector based on the detector control signal generated in the signal generating step;
    A voltage calculating step for calculating a high level voltage and a low level voltage of the detector control signal according to the inspection speed;
    A voltage variable step for setting the high level voltage and the low level voltage calculated in the voltage calculation step;
    With
    In the driving step, according to the detector control signal, a high level voltage or a low level voltage set in the voltage variable step is output to the detector.
    A method for controlling a semiconductor inspection apparatus.
  14.  請求項10に記載の半導体検査装置の制御方法であって、
     前記検出器で検出した検出信号を、前記検査速度に応じて遮断周波数を変化させるステップと、
     前記信号生成ステップで生成された前記検出器制御信号に基づいて前記検出器を駆動させる駆動ステップと、
     前記検査速度に応じて前記検出器制御信号のハイレベル電圧およびローレベル電圧を演算する電圧演算ステップと、
     前記電圧演算ステップにより演算されたハイレベル電圧およびローレベル電圧を設定する電圧可変ステップと、
    を備え、
     前記駆動ステップでは、前記検出器制御信号に応じて、前記電圧可変ステップで設定されハイレベル電圧またはローレベル電圧を、前記検出器に出力する、
    ことを特徴とする半導体検査装置の制御方法。
    It is a control method of the semiconductor inspection device according to claim 10,
    Detecting a detection signal detected by the detector, and changing a cutoff frequency according to the inspection speed;
    A driving step of driving the detector based on the detector control signal generated in the signal generating step;
    A voltage calculating step for calculating a high level voltage and a low level voltage of the detector control signal according to the inspection speed;
    A voltage variable step for setting the high level voltage and the low level voltage calculated in the voltage calculation step;
    With
    In the driving step, according to the detector control signal, a high level voltage or a low level voltage set in the voltage variable step is output to the detector.
    A method for controlling a semiconductor inspection apparatus.
PCT/JP2015/067108 2014-07-18 2015-06-15 Semiconductor inspection device and method of controlling semiconductor inspection device WO2016009763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014147313A JP2016023999A (en) 2014-07-18 2014-07-18 Semiconductor inspection device and method for controlling semiconductor inspection device
JP2014-147313 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016009763A1 true WO2016009763A1 (en) 2016-01-21

Family

ID=55078264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067108 WO2016009763A1 (en) 2014-07-18 2015-06-15 Semiconductor inspection device and method of controlling semiconductor inspection device

Country Status (2)

Country Link
JP (1) JP2016023999A (en)
WO (1) WO2016009763A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314937A (en) * 2016-05-18 2019-02-05 瑞典爱立信有限公司 Method for sending the control information for system access or monitoring within network nodes, and the method for receiving the control information for system access or monitoring in a wireless device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458924B2 (en) 2016-07-04 2019-10-29 Hitachi High-Technologies Corporation Inspection apparatus and inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152314A (en) * 1994-11-29 1996-06-11 Hitachi Ltd Inspection equipment for electronic device
JP2003153084A (en) * 2001-11-08 2003-05-23 Sony Corp Controller of solid-state image pickup device and control method thereof
JP2007205828A (en) * 2006-02-01 2007-08-16 Advanced Mask Inspection Technology Kk Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method
JP2010048587A (en) * 2008-08-20 2010-03-04 Hitachi High-Technologies Corp Pattern defect inspecting device and method
JP2012137350A (en) * 2010-12-27 2012-07-19 Hitachi High-Technologies Corp Defect inspection method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152314A (en) * 1994-11-29 1996-06-11 Hitachi Ltd Inspection equipment for electronic device
JP2003153084A (en) * 2001-11-08 2003-05-23 Sony Corp Controller of solid-state image pickup device and control method thereof
JP2007205828A (en) * 2006-02-01 2007-08-16 Advanced Mask Inspection Technology Kk Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method
JP2010048587A (en) * 2008-08-20 2010-03-04 Hitachi High-Technologies Corp Pattern defect inspecting device and method
JP2012137350A (en) * 2010-12-27 2012-07-19 Hitachi High-Technologies Corp Defect inspection method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314937A (en) * 2016-05-18 2019-02-05 瑞典爱立信有限公司 Method for sending the control information for system access or monitoring within network nodes, and the method for receiving the control information for system access or monitoring in a wireless device

Also Published As

Publication number Publication date
JP2016023999A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
KR102179984B1 (en) A low-noise sensor and an inspection system using a low-noise sensor
JP6670337B2 (en) Multi-mode configurable spectrometer
WO2010113228A1 (en) Examining apparatus and examining method
JP2008211111A (en) Sample inspection device and creation method for specimen current image
WO2016009763A1 (en) Semiconductor inspection device and method of controlling semiconductor inspection device
US7032208B2 (en) Defect inspection apparatus
JP2014002835A (en) Charged particle beam device
JP6312822B2 (en) TDI imaging system with variable voltage readout clock signal
JP4740705B2 (en) Pattern defect inspection system
JP4851960B2 (en) Foreign matter inspection method and foreign matter inspection device
KR102081647B1 (en) Inspection device and inspection method
JP5317138B2 (en) Inspection apparatus and defect inspection method
KR101489110B1 (en) Defect inspection method and defect inspection device
JP5453208B2 (en) Photoelectric conversion element, defect inspection apparatus, and defect inspection method
WO2017013771A1 (en) Inspection device and inspection method
WO2015040894A1 (en) Defect viewing device and defect viewing method
JP4677628B2 (en) Defect detection apparatus, defect detection method, and pattern substrate manufacturing method
JP2009129746A (en) Inspection device, and deflection control circuit
JP4720292B2 (en) Receiver
JP2009156574A (en) Inspection apparatus and inspection method
WO2014069293A1 (en) Inspection device and inspection method
JP2001208694A (en) Sample processing device and method and method of manufacturing for photomask
JPH08152314A (en) Inspection equipment for electronic device
JP6259669B2 (en) Inspection device and measuring device
KR101116593B1 (en) System for measurement optical shape of an object and method for measurement thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822123

Country of ref document: EP

Kind code of ref document: A1