WO2015040894A1 - Defect viewing device and defect viewing method - Google Patents

Defect viewing device and defect viewing method Download PDF

Info

Publication number
WO2015040894A1
WO2015040894A1 PCT/JP2014/064360 JP2014064360W WO2015040894A1 WO 2015040894 A1 WO2015040894 A1 WO 2015040894A1 JP 2014064360 W JP2014064360 W JP 2014064360W WO 2015040894 A1 WO2015040894 A1 WO 2015040894A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
spatial filter
spatial
distributed
defect observation
Prior art date
Application number
PCT/JP2014/064360
Other languages
French (fr)
Japanese (ja)
Inventor
高木 裕治
祐子 大谷
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015040894A1 publication Critical patent/WO2015040894A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8867Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • G01N2223/6462Specific applications or type of materials flaws, defects microdefects

Definitions

  • the present invention relates to a defect observation apparatus and a defect observation method.
  • defect inspections such as foreign matter defects and pattern defects on semiconductor wafers are performed by defect position detection using a visual inspection device and defect observation using a defect observation device. Narrow down.
  • SEM Sccanning Electron Microscope
  • the appearance inspection device and the SEM observation device are different devices and there is a shift in the stage coordinates, only the defect position information detected by the appearance inspection device is used to locate the defect in the field of view of the SEM observation device. Difficult to do.
  • the semiconductor substrate surface is scanned and irradiated with a larger laser beam spot size for illuminating the semiconductor substrate surface.
  • the accuracy of the position coordinates obtained from the position of the laser beam spot that scans the substrate surface includes a large error component. If a defect is to be observed in detail using the SEM based on the position information of the defect including such a large error component, the defect is in the field of view of the SEM that is observed at a magnification much higher than that of the optical particle inspection apparatus. It becomes difficult to pay.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-106974 discloses a defect position detection using a dark field optical microscope mounted on an observation apparatus when observing a defect of a patternless wafer by SEM. A method of performing imaging of an SEM observation image using the detected position coordinates is disclosed. In addition, as a method for detecting a defect on a non-patterned wafer with high sensitivity, a method for detecting a defect position on a wafer with a distributed polarizing element and a spatial filter on the detection optical path of a dark field microscope is disclosed. .
  • Patent Document 1 discloses a configuration of an electron microscope for defect observation equipped with a dark field optical system having a distributed polarizing element and a spatial filter on the pupil plane of a detection optical path.
  • Patent Document 1 discloses only the detection of a defect with a specific filter. For this reason, although a specific defect can be detected with high sensitivity, the sensitivity of other types of defects is reduced. There was a problem to do.
  • the disclosed mechanical filter switching method has a plurality of detections. There has been a problem that it takes time to acquire images under different conditions.
  • An object of the present invention is to redetect defects detected by a visual inspection apparatus with high sensitivity and high speed regardless of their types in detailed observation by SEM of defects detected by a semiconductor wafer visual inspection apparatus, and based on the redetection position. It is an object of the present invention to provide a defect detection apparatus and method, and a defect observation apparatus using the defect detection apparatus and method, which make it possible to reliably put a defect in the observation field of SEM.
  • the optical microscope includes an irradiation system for irradiating a sample with light and light from the sample irradiated by the irradiation system.
  • a detection system having a distributed polarization element capable of electrically controlling a polarization state and a spatial filter capable of electrically controlling a spatial shape, and the control unit generates a synchronization signal.
  • the control unit Based on the generated synchronization signal, the polarization state of the distributed polarization element and the spatial shape of the spatial filter are controlled and electrically switched, and a combination of the polarization state of the plurality of distributed polarization elements and the spatial shape of the spatial filter An image detected by the detection system is processed.
  • the present invention it is possible to provide a defect observation apparatus and method capable of detecting a defect position with high sensitivity and high speed.
  • Configuration diagram of defect observation apparatus The figure which shows the detailed structure of the optical imaging system control circuit 121 of the defect observation apparatus which concerns on this invention.
  • Flowchart of optical microscope image capturing step in defect observation method according to the present invention Timing chart of optical microscope image capturing in defect observation method according to the present invention
  • the figure which shows the detailed structure of the optical microscope of the defect observation apparatus which concerns on this invention Flowchart of defect coordinate calculation step in the defect observation method according to the present invention.
  • FIG. 1 is a configuration diagram of a defect observation apparatus according to the present invention.
  • the defect observation apparatus of the present embodiment is an apparatus for observing defects on a wafer that occur in a semiconductor device manufacturing process.
  • Reference numeral 101 is a wafer to be inspected.
  • Reference numeral 102 denotes an electron microscope (hereinafter referred to as SEM) for observing the wafer 1 in detail
  • reference numeral 103 denotes an optical microscope that optically detects defects on the wafer 1 and acquires defect position information thereof.
  • Reference numeral 104 denotes a stage on which the wafer 1 can be placed, which allows an arbitrary position of the wafer 1 to be moved within the field of view of the SEM 102 and the optical microscope 103.
  • Reference numeral 105 denotes a vacuum chamber in which the SEM 102, the stage 104, and the objective lens 113 of the optical microscope 103 are housed.
  • Reference numeral 110 denotes an illumination light source.
  • the laser light emitted from the illumination light source 110 passes through the vacuum sealing window 111, is reflected by the mirror 112 that controls the illumination position, and is irradiated to an arbitrary position on the surface of the wafer 101.
  • Reference numeral 113 denotes an objective lens for collecting scattered light reflected from the sample 101. The light passing through the objective lens 113 passes through the vacuum sealing window 114 and is imaged on the image sensor 116 by the imaging optical system 115.
  • the imaging optical system 115 includes a distributed polarizing element 117 and a spatial filter 118 that can electrically control the polarization state and the spatial shape.
  • the control unit 106 includes a stage control circuit 119, an SEM imaging system control circuit 120, an optical system control circuit 121, an external input / output I / F 122, a CPU 123, and a memory 124.
  • Each configuration from the stage control circuit 119 to the memory 124 is as follows. Connected to the bus 125, information can be input and output mutually.
  • the stage control circuit 119 controls the stage 104, and the SEM imaging system control circuit 120 controls the SEM 102 and stores the detected image signal in the memory 124.
  • the optical system control circuit 121 stores the image sensor 116 of the optical microscope 103, the distributed polarization element 117 and the spatial filter 118, and the image signal obtained from the image sensor 116 in the memory 124.
  • the external input / output I / F 122 outputs display information to the terminal 107, information input from the terminal 107, information input / output to the storage device 108, and a defect inspection device or a higher-level management system (not shown) via the network 109. Input / output information.
  • the image data stored in the memory 124 is processed by the CPU 123.
  • the optical microscope 103 redetects the position of the defect on the wafer 101 using the defect position information detected by the defect inspection apparatus (not shown) (hereinafter referred to as “defect inspection apparatus”).
  • the control unit 106 has a function as position correction means for correcting the defect position information based on the defect position information detected by the optical microscope 103, and the SEM 102 is a control unit 106.
  • the defect Based on the defect position information corrected in step (b), the defect has a function of observing the defect.
  • the image signal obtained from the optical microscope stored in the memory 124 is processed by the CPU 123 to detect the position of the defect, whereby the position information of the defect output from the defect inspection apparatus stored in the memory 124 is detected. Correct.
  • the stage 104 is configured to be movable so that defects detected by the optical microscope 103 can be observed by the SEM 102.
  • FIG. 2 is a diagram showing a detailed configuration of the optical imaging system control circuit 121 of the defect observation apparatus according to the present invention.
  • the optical imaging system control circuit 121 includes a data I / F 201, a synchronization signal control circuit 202, an image information storage unit 204, a filter state control circuit 205, a distributed polarization element circuit 206, and a spatial filter control circuit 207, which are internal. It is connected to the bus 208.
  • the data I / F 201 is connected to the internal bus 208 and the bus 125 in the control unit 106, and between the optical imaging system control circuit 121 and other processing units 119 to 124 in the control unit 106. Send and receive data.
  • the synchronization signal generated by the synchronization signal generation circuit 203 in the synchronization signal control circuit 202 is transmitted through the synchronization signal control circuit 202 as a trigger signal for starting imaging of the image sensor 116 and image information stored in the image signal obtained from the image sensor 116. Used as a trigger signal for starting storage in the unit 204.
  • the distributed polarizing element circuit 206 controls the distributed polarizing element 117
  • the spatial filter control circuit 207 controls the spatial filter 118.
  • the filter state control circuit 205 instructs the distributed polarizing element control circuit 206 and the spatial filter control circuit 207 to control the distribution polarizing element 117 and the spatial filter 118 in synchronization with the signal of the synchronization signal control circuit 202. .
  • the filter state P refers to the polarization state of the distributed polarizing element 117 or data to be given to the distributed polarizing element control circuit 206 in order to control the distributed polarizing element 117 to that state
  • the filter state S refers to space.
  • FIG. 4 is a timing chart of optical microscope image capturing in the defect observation method according to the present invention.
  • the synchronization signal shown in FIG. 4 is a signal generated by the synchronization signal generation circuit 203 in FIG. 2, and the command signal is synchronized with the synchronization signal from the synchronization control circuit 202 to the filter state control circuit 205, image information storage. 3 and output to the image sensor 116 to control the processing steps shown in FIG.
  • the polarization state of the distribution polarization element 117 shown in FIG. 4 shows the state of the distribution polarization element 117 at each time, and shows the state from P 1 in P 3. 4
  • the spatial shape of the spatial filter 118 shows the state of the spatial filter 118 at each time is shown in S 3 its state from S 1. Also, the operation of the image sensor 116 shown in FIG.
  • Image data captured by the image sensor 116 is transferred to and stored in the image information storage 204 in synchronization with the next synchronization signal after completion of imaging.
  • the transfer of image data to the memory 124 shown in FIG. 4 indicates the transfer timing of image data from the image information storage unit 204 to the memory 124.
  • the polarization state of the distributed polarization element 117 and the spatial shape of the spatial filter 118 are changed at the falling edge of the synchronization signal, and imaging with the imaging element 118 is started at the same time, but the filter state control is performed at the rising edge of the synchronization signal. Even if the filter state (P k , S k ) is read from the circuit 205, the polarization state of the distributed polarization element 117 and the spatial shape of the spatial filter 118 are changed, and imaging with the image sensor 116 is started from the fall of the synchronization signal. Good. As a result, it can be expected that the imaging can be started after the state of the distributed polarizing element 117 and the filter of the spatial filter 118 is stabilized at the start of imaging by the imaging element 118.
  • FIG. 3 is a flowchart of an optical microscope image capturing step in the defect observation method according to the present invention.
  • the filter states (P k , S k ) are stored in advance in the memory 124, the storage device 108, or a storage medium not shown in FIG. Let
  • the filter state (P k , S k ) is read from the filter state control circuit 205, the filter state data P k is sent to the distributed polarization element control circuit 206, and spatial filter control is performed.
  • the filter state data Sk is output to the circuit 207, and the polarization state of the distributed polarization element 117 and the spatial shape of the spatial filter 118 are simultaneously changed (S303). This change may be made before the start of imaging of the image 1 by the image sensor 116, and the state of the distributed polarization element 117 and the spatial filter 118 may or may not be changed simultaneously.
  • imaging of the wafer 101 is started by the image sensor 116 by irradiation with the light source 110 (image 1 ), and image data of the captured image 1 is stored in the image information storage unit 204 by a command signal at time t 2. (S304).
  • the image data is transferred from the image information storage unit 204 to the memory 124 (S307). ).
  • the transfer timing is shown to start in synchronization with the next synchronization signal after the image data is stored in the image information storage unit 204, but the transfer start is after the image data is stored in the image information storage unit 204. Any time may be used as long as it is not shown in FIG. Also, the transfer time shown in FIG. 4 varies depending on the specifications of hardware such as the image data capacity to be transferred, the internal bus 208, the bus 125, the CPU 123 of the control unit 106, the memory 124, and the like.
  • the image data stored in the memory 124 is processed by the CPU 123, the defect position is specified (S308), and the defect position is written in the memory 124.
  • the CPU 123 reads out the specified defect coordinates (position information) from the memory 124, converts them into stage coordinates, and gives the stage coordinates to the stage control circuit 119, thereby correcting the corrected defect position.
  • the stage can be moved to. .
  • the processing content of S308 will be described later with reference to FIG.
  • S300 The entire processing shown in FIG. 3 is referred to as S300, and is referred to in the processing flow shown in FIG.
  • Patent Document 1 It is disclosed in Patent Document 1 that the characteristics of the distributed polarizing element 117 and the spatial filter 118 need to be determined depending on the type of defect whose defect detection sensitivity is to be improved. For this reason, if an appropriate filter characteristic is set for the detection sensitivity of one type of defect, there is a problem that an optimal detection sensitivity cannot be obtained for another type of defect.
  • the present method and apparatus are biased toward a specific defect type by capturing an image by switching the characteristics of the distributed polarization element 117 and the spatial filter 118 and performing defect detection using a plurality of images. It is possible to obtain a sensitivity without any problems.
  • Defect type variations that must be considered from the perspective of the optical microscope are defects that should be considered when detecting with an optical microscope, not defect types in yield management, such as the types of defects expected to occur in the inspection process. This refers to variations in which the defect shape is roughly classified by shape such as concave or convex, and variations that are largely classified by the optical characteristics of the defect. For this reason, the number of filter states (P k , S k ) to be imaged can be limited.
  • the distribution deflection element 117 As an example of the distribution deflection element 117 that can be electrically controlled, there is one using a liquid crystal whose birefringence changes depending on an applied voltage. By controlling the applied voltage of a liquid crystal element composed of a plurality of pixels to which different voltages can be applied for each pixel, a desired optical axis distribution can be provided within the filter surface.
  • an electrically controllable spatial filter 118 there is a DMD (Digital Mirror Device) or the like.
  • the DMD used as a spatial filter is an optical element that reflects light and cannot transmit light. For this reason, it is necessary to devise an optical path as shown in FIG.
  • FIG. 5 is a diagram showing a detailed configuration of the optical microscope of the defect observation apparatus according to the present invention.
  • an imaging optical system 115 includes a lens 502 that forms an image on the pupil plane 501 of the objective lens 113, a mirror 503 that reflects an optical path to a spatial filter 118 that is a DMD, a distributed polarization element 119, and a lens that forms an image. 504.
  • a distributed polarizing element 119 is placed at a position 505 where the pupil plane 501 of the objective lens 113 forms an image. Since the spatial filter 118 only needs to have a spatial resolution required by the spatial shape to be controlled, the spatial filter 118 can be placed at a position where the pupil plane 501 of the objective lens 113 is defocused on the optical path.
  • the spatial filter 118 is positioned at the position where the pupil plane forms an image 505 and the distributed polarizing element 119 is positioned where the pupil plane forms an image. It may be placed near the optical path 505 or both the spatial filter 118 and the distributed polarizing element 119 may be placed near the position 505 where the pupil plane is imaged on the optical path.
  • FIG. 6 is a flowchart of the defect coordinate calculation step in the defect observation method according to the present invention.
  • FIG. 6 shows details of the processing in S308 of FIG. Therefore, all processing in FIG. 6 is performed by the CPU 123.
  • a pixel average gray value (average value k ) of the image k and a value (3 ⁇ k ) three times the standard deviation are obtained (S602).
  • a normalized image k is generated using the obtained average value k and 3 ⁇ k (S603).
  • ⁇ and ⁇ in the calculation formula shown in S603 are coefficients for keeping the calculation result in a range that can be taken by the pixel value of the normalized image k , and may be arbitrarily determined.
  • the maximum pixel value at the same coordinate (i, j) of the N normalized images k is set as the pixel value of the integrated image (i, j).
  • K specifying the filter state giving the maximum value is stored in the memory 124 as max_k.
  • the SEM observation image for example, the SEM observation image is generated so that the property of the defect corresponding to the filter, for example, the property such as the unevenness, is manifested in the SEM observation image by recording the filter state in which the defect is most apparent.
  • the observation image is generated using the secondary electron image and the reflected electron image detected in step 1, the mixing ratio of each image can be changed for each defect.
  • the integrated image (i, j) is binarized with a predetermined defect detection threshold TH to obtain a binary image (S607).
  • the label area having the maximum area is detected from the label image obtained by labeling the binary image (i, j), and the center of gravity of the maximum area label is set as the defect coordinate (S608, S609).
  • the defect position detected as the last detected image coordinate is converted into stage coordinates (S610).
  • FIG. 7 is an overall flowchart of the defect observation method according to the present invention. The procedure for collecting SEM defect images using the corrected defect coordinates is shown in a flowchart.
  • a wafer to be observed is loaded on the stage 104 shown in FIG. 1 (S701).
  • the defect coordinate data of the defect detected in advance by the inspection apparatus is read into the memory 124 via the external input / output I / F 122 of the overall control unit 106 (S702). Select (S703).
  • the defect selection may be executed by the CPU 123 using a preset program, or may be selected by the operator via the terminal 107.
  • wafer alignment is performed (S704). This is because when the stage 104 is moved based on the position of the defect coordinates described in the coordinates on the wafer, the position of the target defect coordinates is in the center of the field of view of the SEM 102 and the field of view of the optical microscope 103. Therefore, the wafer coordinates and the stage coordinates are associated with each other using positioning marks (alignment marks) whose coordinates on the wafer are known. This association result is stored in the memory 124 as alignment information.
  • defect positions are corrected for defects 1 to M selected as observation targets (S705, S708, S709).
  • the defect m is moved to the field of view of the optical microscope 103 (S706).
  • the CPU 123 calculates the stage coordinates corresponding to the defect m from the defect coordinate data stored in the memory 124 and the alignment information, thereby driving the stage 104 via the stage control circuit 119. Done.
  • the position of the defect m is specified by the process shown in FIG. 3 (S300), and the position of the specified defect is stored in the memory 124 as the corrected defect position m (S707).
  • Some inspection apparatuses output not only the detected defect position coordinates but also information on the feature of the defect. For example, if the defect feature information indicates beforehand whether the defect is convex or concave, the filter state may be changed and set for each defect accordingly. In order to realize this, the filter state corresponding to the defect feature information is stored in the memory 124 as a table in advance. When the defect coordinate data of the defect detected by the above-described inspection apparatus is read into the memory 124, the defect feature information is also read, the defect information is read for each defect by the CPU 123, and the table stored in the memory 124 is stored.
  • the filter state may be determined by collating with the information, and the filter state information may be sent to the filter state control circuit 205.
  • All defects m (m 1, ..., M) after obtaining the corrected defect position m of, reads out the correction defect position m from the memory 124, after converting the position information on the stage coordinate optionally, stage control
  • the defect m is sequentially moved to the field of view of the SEM 102 (S711), and an SEM image of the defect m is captured (S712, S713, S714).
  • S715 When capturing the SEM image of the defect m , after capturing the SEM images of all the defects in the filter state stored in the memory 124, the wafer is unloaded (S715), and the process ends.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 Although highly sensitive at detecting some types of defects, a conventional technique has reduced sensitivity to other types of defects. The conventional technique also has drawbacks in that mechanical switching of filters increases the amount of time taken to acquire a plurality of images under different detection conditions. The present invention is a defect viewing device provided with SEM and optical microscopes, and a control unit, the defect viewing device characterized in that the optical microscope is provided with: a radiating system for radiating light to a sample; and a detection system having a spatial filter, a spatial shape of which can be electrically controlled, and a distributed polarizer, a polarization state of which can be electrically controlled, for detecting a signal based on light from the sample irradiated by the radiating system; and the control unit generates a synchronization signal (202), controls and electrically switches the polarization state of the distributed polarizer and the spatial shape of the spatial filter on the basis of the generated synchronization signal (207, 206), and processes an image detected by the detection system in a plurality of combinations of polarization states of the distributed polarizer and spatial shapes of the spatial filter (123).

Description

欠陥観察装置およびその方法Defect observation apparatus and method
 欠陥観察装置および欠陥観察方法に関する。 The present invention relates to a defect observation apparatus and a defect observation method.
 半導体製造工程における、半導体ウェーハ上の異物欠陥、パターン欠陥などの欠陥検査は、外観検査装置による欠陥位置検出と、欠陥観察装置による欠陥観察により行われ、欠陥の観察結果に基づき対策すべき工程を絞り込んでいる。半導体パターンの微細化が進み、微細な欠陥も歩留まりに影響を与えるため、、観察装置にはSEM(Scanning Electron Microscope:走査型電子顕微鏡)が使われる。外観検査装置とSEM式の観察装置は別の装置でありステージ座標のズレがあるため、外観検査装置で検出した欠陥位置情報のみを使って、SEM式の観察装置の視野に欠陥の位置出しを行うことは難しい。 In semiconductor manufacturing processes, defect inspections such as foreign matter defects and pattern defects on semiconductor wafers are performed by defect position detection using a visual inspection device and defect observation using a defect observation device. Narrow down. SEM (Scanning Electron Microscope) is used as an observation apparatus because semiconductor patterns are miniaturized and fine defects also affect the yield. Since the appearance inspection device and the SEM observation device are different devices and there is a shift in the stage coordinates, only the defect position information detected by the appearance inspection device is used to locate the defect in the field of view of the SEM observation device. Difficult to do.
 特にパターン無しウェーハの検査装置では、検査のスループットを上げるために、半導体基板表面を暗視野照明するためのレーザビームのスポットサイズを大きくして半導体基板表面を走査して照射しているため、半導体基板表面を走査するレーザビームスポットの位置から求める位置座標の精度は、大きな誤差成分を含む。このような大きな誤差成分を含んだ欠陥の位置情報に基づいてSEMを用いて欠陥を詳細に観察しようとすると、光学式の異物検査装置よりも遥かに高い倍率で観察するSEMの視野内に欠陥を納めることは困難になる。 In particular, in patternless wafer inspection equipment, in order to increase the inspection throughput, the semiconductor substrate surface is scanned and irradiated with a larger laser beam spot size for illuminating the semiconductor substrate surface. The accuracy of the position coordinates obtained from the position of the laser beam spot that scans the substrate surface includes a large error component. If a defect is to be observed in detail using the SEM based on the position information of the defect including such a large error component, the defect is in the field of view of the SEM that is observed at a magnification much higher than that of the optical particle inspection apparatus. It becomes difficult to pay.
 これを解決する方法として特許文献1(特開2011-106974号公報)には、SEMによるパターン無しウェーハの欠陥観察を行うに際して、観察装置に搭載された、暗視野光学顕微鏡で欠陥の位置検出を行い、検出した位置座標を用いてSEMの観察像の撮像を行う方法が開示されている。またパターン無しウェーハ上にある欠陥を高感度に検出する方法として、暗視野顕微鏡の検出光路上に分布偏光素子、空間フィルターを入れた上でウェーハ上の欠陥位置を検出する方法が開示されている。 As a method for solving this, Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-106974) discloses a defect position detection using a dark field optical microscope mounted on an observation apparatus when observing a defect of a patternless wafer by SEM. A method of performing imaging of an SEM observation image using the detected position coordinates is disclosed. In addition, as a method for detecting a defect on a non-patterned wafer with high sensitivity, a method for detecting a defect position on a wafer with a distributed polarizing element and a spatial filter on the detection optical path of a dark field microscope is disclosed. .
特開2011-106974号公報JP 2011-106974 A
 SEMによるパターン無しウェーハの欠陥観察は、光学顕微鏡による欠陥位置出しのための再検出が、あらゆる欠陥種に対して高感度に、かつ高スループットに実行可能であることが望まれている。 For defect observation of a patternless wafer by SEM, it is desired that redetection for defect positioning by an optical microscope can be performed with high sensitivity and high throughput for all defect types.
 特許文献1には、分布偏光素子及び空間フィルタを検出光路の瞳面に持つ暗視野光学系を搭載した欠陥観察用の電子顕微鏡の構成が開示されている。 Patent Document 1 discloses a configuration of an electron microscope for defect observation equipped with a dark field optical system having a distributed polarizing element and a spatial filter on the pupil plane of a detection optical path.
 しかしながら、特許文献1には、欠陥の検出は特定のフィルタでの検出しか開示されておらず、このため、ある特定の欠陥は高感度に検出できるものの、それ以外の種類の欠陥は感度が低下するという問題があった。また、フィルタを切り替えて検出条件の異なる画像を撮像する場合、分布偏光素子と空間フィルタの両方を同時に切り替える方法の開示はなく、また開示されている機械的なフィルタの切り替え方法では、複数の検出条件の異なる画像取得に時間がかかるという課題があった。 However, Patent Document 1 discloses only the detection of a defect with a specific filter. For this reason, although a specific defect can be detected with high sensitivity, the sensitivity of other types of defects is reduced. There was a problem to do. In addition, when capturing images with different detection conditions by switching filters, there is no disclosure of a method of switching both the distributed polarization element and the spatial filter at the same time, and the disclosed mechanical filter switching method has a plurality of detections. There has been a problem that it takes time to acquire images under different conditions.
 本発明の目的は、半導体ウェーハ外観検査装置で検出した欠陥のSEMによる詳細観察において、外観検査装置で検出した欠陥を、その種類によらず高感度かつ高速に再検出し、再検出位置に基づいて欠陥をSEMの観察視野内に確実に入れることを可能とする、欠陥検出装置と方法及び、それを利用した欠陥観察装置を提供することにある。   An object of the present invention is to redetect defects detected by a visual inspection apparatus with high sensitivity and high speed regardless of their types in detailed observation by SEM of defects detected by a semiconductor wafer visual inspection apparatus, and based on the redetection position. It is an object of the present invention to provide a defect detection apparatus and method, and a defect observation apparatus using the defect detection apparatus and method, which make it possible to reliably put a defect in the observation field of SEM.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、前記光学顕微鏡は、試料に光を照射する照射系と、前記照射系により照射された該試料からの光に基づく信号を検出し、電気的に偏光状態を制御可能な分布偏光素子と電気的に空間形状を制御可能な空間フィルタとを有する検出系と、を備え、前記制御部は、同期信号を生成し、該生成した同期信号に基づき前記分布偏光素子の偏光状態と前記空間フィルタの空間形状とを制御し電気的に切り替え、複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおける前記検出系により検出した画像を処理することを特徴とする。 The present application includes a plurality of means for solving the above-described problems. For example, the optical microscope includes an irradiation system for irradiating a sample with light and light from the sample irradiated by the irradiation system. And a detection system having a distributed polarization element capable of electrically controlling a polarization state and a spatial filter capable of electrically controlling a spatial shape, and the control unit generates a synchronization signal. , Based on the generated synchronization signal, the polarization state of the distributed polarization element and the spatial shape of the spatial filter are controlled and electrically switched, and a combination of the polarization state of the plurality of distributed polarization elements and the spatial shape of the spatial filter An image detected by the detection system is processed.
 本発明によれば、高感度かつ高速に欠陥位置の検出が可能な欠陥観察装置およびその方法を提供することができる。 According to the present invention, it is possible to provide a defect observation apparatus and method capable of detecting a defect position with high sensitivity and high speed.
本発明に係る欠陥観察装置の構成図Configuration diagram of defect observation apparatus according to the present invention 本発明に係る欠陥観察装置の光学撮像系制御回路121の詳細構成を示す図The figure which shows the detailed structure of the optical imaging system control circuit 121 of the defect observation apparatus which concerns on this invention. 本発明に係る欠陥観察方法における光学顕微鏡画像撮像ステップのフローチャートFlowchart of optical microscope image capturing step in defect observation method according to the present invention 本発明に係る欠陥観察方法における光学顕微鏡画像撮像のタイミングチャートTiming chart of optical microscope image capturing in defect observation method according to the present invention 本発明に係る欠陥観察装置の光学顕微鏡の詳細構成を示す図The figure which shows the detailed structure of the optical microscope of the defect observation apparatus which concerns on this invention 本発明に係る欠陥観察方法における欠陥座標計算ステップのフローチャートFlowchart of defect coordinate calculation step in the defect observation method according to the present invention. 本発明に係る欠陥観察方法の全体フローチャートOverall flow chart of defect observation method according to the present invention
 以下、本発明の実施の形態について適宜図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
 図1は、本発明に係る欠陥観察装置の構成図である。 FIG. 1 is a configuration diagram of a defect observation apparatus according to the present invention.
 本実施形態の欠陥観察装置は、半導体デバイスの製造工程において発生するウェーハ上の欠陥を観察する装置である。 The defect observation apparatus of the present embodiment is an apparatus for observing defects on a wafer that occur in a semiconductor device manufacturing process.
 101は被検査対象のウェーハである。102はウェーハ1を詳細観察する電子顕微鏡(以下SEMと記述)であり、103はウェーハ1上の欠陥を光学的に検出して、その欠陥位置情報を取得する光学顕微鏡である。104はウェーハ1が載置可能なステージであり、ウェーハ1の任意の場所をSEM102及び光学顕微鏡103の視野内に移動可能とするものである。105は真空槽であり、SEM102、ステージ104、光学顕微鏡103の対物レンズ113はこの中に納められている。 101 is a wafer to be inspected. Reference numeral 102 denotes an electron microscope (hereinafter referred to as SEM) for observing the wafer 1 in detail, and reference numeral 103 denotes an optical microscope that optically detects defects on the wafer 1 and acquires defect position information thereof. Reference numeral 104 denotes a stage on which the wafer 1 can be placed, which allows an arbitrary position of the wafer 1 to be moved within the field of view of the SEM 102 and the optical microscope 103. Reference numeral 105 denotes a vacuum chamber in which the SEM 102, the stage 104, and the objective lens 113 of the optical microscope 103 are housed.
 光学顕微鏡103の内部を説明する。110は照明光源である。照明光源110より出射されたレーザ光は真空封止窓111を通り、照明位置を制御するミラー112で反射し、ウェーハ101表面上の任意の位置に照射される。113は試料101より反射した散乱光を採光する為の対物レンズである。対物レンズ113を通った光は真空封止窓114を通り、結像光学系115により撮像素子116に結像される。結像光学系115は偏光状態及び空間形状を電気的に制御可能な分布偏光素子117と空間フィルタ118を備えている。 The inside of the optical microscope 103 will be described. Reference numeral 110 denotes an illumination light source. The laser light emitted from the illumination light source 110 passes through the vacuum sealing window 111, is reflected by the mirror 112 that controls the illumination position, and is irradiated to an arbitrary position on the surface of the wafer 101. Reference numeral 113 denotes an objective lens for collecting scattered light reflected from the sample 101. The light passing through the objective lens 113 passes through the vacuum sealing window 114 and is imaged on the image sensor 116 by the imaging optical system 115. The imaging optical system 115 includes a distributed polarizing element 117 and a spatial filter 118 that can electrically control the polarization state and the spatial shape.
 制御部106は、ステージ制御回路119、SEM撮像系制御回路120、光学系制御回路121、外部入出力I/F122、CPU123、メモリ124より構成され、ステージ制御回路119からメモリ124までの各構成はバス125に接続され、相互に情報の入出力が可能となっている。ステージ制御回路119によりステージ104の制御が行われ、SEM撮像系制御回路120によりSEM102の制御及び検出画像信号のメモリ124への記憶を行う。光学系制御回路121は、光学顕微鏡103の撮像素子116、分布偏光素子117と空間フィルタ118の制御、及び撮像素子116から得られる画像信号をメモリ124へ記憶する。外部入出力I/F122は、端末107への表示情報出力及び、端末107からの情報入力、記憶装置108への情報入出力、ネットワーク109を介して図示しない欠陥検査装置や上位管理システムなどとの情報入出力を行う。メモリ124に記憶された画像データはCPU123により演算処理される。 The control unit 106 includes a stage control circuit 119, an SEM imaging system control circuit 120, an optical system control circuit 121, an external input / output I / F 122, a CPU 123, and a memory 124. Each configuration from the stage control circuit 119 to the memory 124 is as follows. Connected to the bus 125, information can be input and output mutually. The stage control circuit 119 controls the stage 104, and the SEM imaging system control circuit 120 controls the SEM 102 and stores the detected image signal in the memory 124. The optical system control circuit 121 stores the image sensor 116 of the optical microscope 103, the distributed polarization element 117 and the spatial filter 118, and the image signal obtained from the image sensor 116 in the memory 124. The external input / output I / F 122 outputs display information to the terminal 107, information input from the terminal 107, information input / output to the storage device 108, and a defect inspection device or a higher-level management system (not shown) via the network 109. Input / output information. The image data stored in the memory 124 is processed by the CPU 123.
 以上のように構成される欠陥観察装置において、特に、光学顕微鏡103は、欠陥検査装置(図示せず)で検出した欠陥の位置情報を用いて、ウェーハ101上の欠陥の位置を再検出(以下検出と記述)する機能を有し、制御部106は光学顕微鏡103で検出された欠陥の位置情報に基づいて欠陥の位置情報を補正する位置補正手段としての機能を有し、SEM102は制御部106で補正された欠陥位置情報に基づき、欠陥を観察する機能を有する構成となっている。メモリ124にへ記憶されている光学顕微鏡から得られた画像信号を、CPU123で処理して欠陥の位置を検出することで、メモリ124に記憶されている欠陥検査装置から出力された欠陥の位置情報を補正する。ステージ104は、光学顕微鏡103で検出した欠陥がSEM102で観察できるように移動できる構成となっている。 In the defect observation apparatus configured as described above, in particular, the optical microscope 103 redetects the position of the defect on the wafer 101 using the defect position information detected by the defect inspection apparatus (not shown) (hereinafter referred to as “defect inspection apparatus”). The control unit 106 has a function as position correction means for correcting the defect position information based on the defect position information detected by the optical microscope 103, and the SEM 102 is a control unit 106. Based on the defect position information corrected in step (b), the defect has a function of observing the defect. The image signal obtained from the optical microscope stored in the memory 124 is processed by the CPU 123 to detect the position of the defect, whereby the position information of the defect output from the defect inspection apparatus stored in the memory 124 is detected. Correct. The stage 104 is configured to be movable so that defects detected by the optical microscope 103 can be observed by the SEM 102.
 図2は、本発明に係る欠陥観察装置の光学撮像系制御回路121の詳細構成を示す図である。 FIG. 2 is a diagram showing a detailed configuration of the optical imaging system control circuit 121 of the defect observation apparatus according to the present invention.
 光学撮像系制御回路121はデータI/F201、同期信号制御回路202、画像情報記憶部204、フィルタ状態制御回路205、分布偏光素子回路206、空間フィルタ制御回路207を備えて構成され、これらは内部バス208に接続している。データI/F201は、内部バス208と、制御部106内のバス125とに接続され、光学撮像系制御回路121と、制御部106の中の119から124の他の処理部との間でのデータ授受を行う。同期信号制御回路202内にある同期信号発生回路203で発生する同期信号は、同期信号制御回路202を通して、撮像素子116の撮像開始のトリガー信号や、撮像素子116から得られる画像信号の画像情報記憶部204への記憶開始のためのトリガー信号に用いられる。分布偏光素子回路206は、分布偏光素子117の制御を、空間フィルタ制御回路207は空間フィルタ118を制御するものである。フィルタ状態制御回路205は、分布偏光素子制御回路206、空間フィルタ制御回路207に、分布偏光素子117および空間フィルタ118の制御状態を、同期信号制御回路202の信号に同期して指示するものである。 The optical imaging system control circuit 121 includes a data I / F 201, a synchronization signal control circuit 202, an image information storage unit 204, a filter state control circuit 205, a distributed polarization element circuit 206, and a spatial filter control circuit 207, which are internal. It is connected to the bus 208. The data I / F 201 is connected to the internal bus 208 and the bus 125 in the control unit 106, and between the optical imaging system control circuit 121 and other processing units 119 to 124 in the control unit 106. Send and receive data. The synchronization signal generated by the synchronization signal generation circuit 203 in the synchronization signal control circuit 202 is transmitted through the synchronization signal control circuit 202 as a trigger signal for starting imaging of the image sensor 116 and image information stored in the image signal obtained from the image sensor 116. Used as a trigger signal for starting storage in the unit 204. The distributed polarizing element circuit 206 controls the distributed polarizing element 117, and the spatial filter control circuit 207 controls the spatial filter 118. The filter state control circuit 205 instructs the distributed polarizing element control circuit 206 and the spatial filter control circuit 207 to control the distribution polarizing element 117 and the spatial filter 118 in synchronization with the signal of the synchronization signal control circuit 202. .
 図2に示した回路及び光学系の動作を、図3の処理フローと図4のタイミングチャートにより説明する。以降、フィルタ状態Pとは分布偏光素子117の偏光状態、若しくは、分布偏光素子117を、その状態に制御するために分布偏光素子制御回路206に与えるデータのことを指し、フィルタ状態Sとは空間フィルタ118のフィルタの空間形状の状態、若しくは、空間フィルタ118を、その状態に制御するために空間フィルタ制御回路207に与えるデータを指すものとする。また、(Pk,Sk)(k=1、…、N)は、フィルタ状態PkとSkが一組で取り扱われることを明示するための表記であり、フィルタ状態(Pk,Sk)とは、フィルタ状態Pkとフィルタ状態Skを1セットとしたデータを指す。 The operation of the circuit and the optical system shown in FIG. 2 will be described with reference to the processing flow of FIG. 3 and the timing chart of FIG. Hereinafter, the filter state P refers to the polarization state of the distributed polarizing element 117 or data to be given to the distributed polarizing element control circuit 206 in order to control the distributed polarizing element 117 to that state, and the filter state S refers to space. The state of the spatial shape of the filter of the filter 118, or data given to the spatial filter control circuit 207 in order to control the spatial filter 118 to that state. Further, (P k , S k ) (k = 1,..., N) is a notation for clearly indicating that the filter states P k and S k are handled as one set, and the filter states (P k , S k ) indicates data in which the filter state P k and the filter state S k are set as one set.
 図4は、本発明に係る欠陥観察方法における光学顕微鏡画像撮像のタイミングチャートである。 FIG. 4 is a timing chart of optical microscope image capturing in the defect observation method according to the present invention.
 図4に示す同期信号とは、図2の同期信号発生回路203で生成される信号であり、命令信号とは同期信号に同期して、同期制御回路202からフィルタ状態制御回路205、画像情報記憶部204、撮像素子116に出力され、図3に示した処理ステップを制御するものである。図4に示す分布偏光素子117の偏光状態とは、各時刻における分布偏光素子117の状態を示し、その状態をP からP で示している。図4に示す、空間フィルタ118の空間形状とは、各時刻における空間フィルタ118の状態を示し、その状態をS からS で示している。また、図4に示す撮像素子116の動作とは、各時刻における撮像画像の内容を示し、その内容を画像 から画像 と記して示し、画像情報記憶部204の記憶動作とは、各時刻における記憶画像の内容を示し、その内容を画像 から画像 と記して示すものである。撮像素子116で撮像された画像データは、撮像終了後、次の同期信号に同期して画像情報記憶204に転送され記憶される。図4に示す画像データのメモリ124への転送とは、画像データの画像情報記憶部204からメモリ124への転送タイミングを示すものである。 
 図4では同期信号の立下りで、分布偏光素子117の偏光状態、空間フィルタ118の空間形状を変更し、同時に撮像素子118での撮像を開始しているが、同期信号の立上がりでフィルタ状態制御回路205からフィルタ状態(Pk,Sk)を読み出し、分布偏光素子117の偏光状態、空間フィルタ118の空間形状を変更し、同期信号の立下がりから撮像素子116での撮像を開始してもよい。これにより、撮像素子118での撮像開始時点で分布偏光素子117及び、空間フィルタ118のフィルタの状態が安定した後に撮像を開始できることが期待できる。
The synchronization signal shown in FIG. 4 is a signal generated by the synchronization signal generation circuit 203 in FIG. 2, and the command signal is synchronized with the synchronization signal from the synchronization control circuit 202 to the filter state control circuit 205, image information storage. 3 and output to the image sensor 116 to control the processing steps shown in FIG. The polarization state of the distribution polarization element 117 shown in FIG. 4, shows the state of the distribution polarization element 117 at each time, and shows the state from P 1 in P 3. 4, the spatial shape of the spatial filter 118, shows the state of the spatial filter 118 at each time is shown in S 3 its state from S 1. Also, the operation of the image sensor 116 shown in FIG. 4 indicates the contents of the captured image at each time, the contents are indicated as images 1 to 3, and the storage operation of the image information storage unit 204 is at each time The contents of the stored image are shown as images 1 to 3 . Image data captured by the image sensor 116 is transferred to and stored in the image information storage 204 in synchronization with the next synchronization signal after completion of imaging. The transfer of image data to the memory 124 shown in FIG. 4 indicates the transfer timing of image data from the image information storage unit 204 to the memory 124.
In FIG. 4, the polarization state of the distributed polarization element 117 and the spatial shape of the spatial filter 118 are changed at the falling edge of the synchronization signal, and imaging with the imaging element 118 is started at the same time, but the filter state control is performed at the rising edge of the synchronization signal. Even if the filter state (P k , S k ) is read from the circuit 205, the polarization state of the distributed polarization element 117 and the spatial shape of the spatial filter 118 are changed, and imaging with the image sensor 116 is started from the fall of the synchronization signal. Good. As a result, it can be expected that the imaging can be started after the state of the distributed polarizing element 117 and the filter of the spatial filter 118 is stabilized at the start of imaging by the imaging element 118.
 図3は、本発明に係る欠陥観察方法における光学顕微鏡画像撮像ステップのフローチャートである。 FIG. 3 is a flowchart of an optical microscope image capturing step in the defect observation method according to the present invention.
 まず、フィルタ状態制御回路205がフィルタ状態(Pk,Sk)(k=1、…、N)をに記憶する(S301)。フィルタ状態(Pk,Sk)は予めメモリ124、または記憶装置108、またはネットワーク109に繋がれた図1に記載しない記憶媒体に記憶していたものをフィルタ状態制御回路205に転送し、記憶させる。 First, the filter state control circuit 205 stores the filter states (P k , S k ) (k = 1,..., N) (S301). The filter states (P k , S k ) are stored in advance in the memory 124, the storage device 108, or a storage medium not shown in FIG. Let
 次に、図4に示す時刻t1において(S302)、フィルタ状態制御回路205からフィルタ状態(Pk,Sk)を読み出し、分布偏光素子制御回路206にフィルタ状態データPk を、空間フィルタ制御回路207にフィルタ状態データSkを出力し、分布偏光素子117の偏光状態、空間フィルタ118の空間形状を同時に変更する(S303)。この変更は撮像素子116による画像1の撮像開始までに間に合えばよく、分布偏光素子117と、空間フィルタ118の状態の変更は同時であっても、同時でなくても構わない。 Next, at time t 1 shown in FIG. 4 (S 302), the filter state (P k , S k ) is read from the filter state control circuit 205, the filter state data P k is sent to the distributed polarization element control circuit 206, and spatial filter control is performed. The filter state data Sk is output to the circuit 207, and the polarization state of the distributed polarization element 117 and the spatial shape of the spatial filter 118 are simultaneously changed (S303). This change may be made before the start of imaging of the image 1 by the image sensor 116, and the state of the distributed polarization element 117 and the spatial filter 118 may or may not be changed simultaneously.
 同じく時刻t1において、光源110による照射により撮像素子116でウェーハ101の撮像を開始し(画像)、撮像した画像の画像データを時刻tの命令信号により画像情報記憶部204に記憶する(S304)。 Similarly, at time t 1 , imaging of the wafer 101 is started by the image sensor 116 by irradiation with the light source 110 (image 1 ), and image data of the captured image 1 is stored in the image information storage unit 204 by a command signal at time t 2. (S304).
 S303とS304をフィルタ状態(Pk,Sk)(k=1、…、N)の分だけ繰り返す(S305、S306)。この処理の繰り返しは、図4に示すとおり、命令信号に同期して行われる。図4はN=3の例を示しているが、Nは3に限定されるものではない。 S303 and S304 are repeated for the filter states (P k , S k ) (k = 1,..., N) (S305, S306). This process is repeated in synchronization with the command signal as shown in FIG. FIG. 4 shows an example where N = 3, but N is not limited to 3.
 フィルタ状態(Pk,Sk)(k=1、…、N)の画像データの画像情報記憶部204への記憶終了後、画像データは画像情報記憶部204からメモリ124に転送される(S307)。図4では、転送タイミングは、画像情報記憶部204への画像データ記憶後、次の同期信号に同期して開始するよう示しているが、転送開始は画像情報記憶部204への画像データ記憶後であれば任意の時刻で構わず、図4に示す限りでは無い。また、図4に示す転送時間は、転送する画像データ容量、内部バス208、バス125、制御部106のCPU123,メモリ124などのハードウェアの仕様により変化する。 After storing the image data in the filter state (P k , S k ) (k = 1,..., N) in the image information storage unit 204, the image data is transferred from the image information storage unit 204 to the memory 124 (S307). ). In FIG. 4, the transfer timing is shown to start in synchronization with the next synchronization signal after the image data is stored in the image information storage unit 204, but the transfer start is after the image data is stored in the image information storage unit 204. Any time may be used as long as it is not shown in FIG. Also, the transfer time shown in FIG. 4 varies depending on the specifications of hardware such as the image data capacity to be transferred, the internal bus 208, the bus 125, the CPU 123 of the control unit 106, the memory 124, and the like.
 最後に、メモリ124に記憶された画像データをCPU123で処理し、欠陥位置を特定し(S308)、その欠陥位置をメモリ124に書き込む。SEMでの欠陥撮像時には、CPU123は特定された欠陥座標(位置情報)をメモリ124から読み出し、これをステージ座標に変換し、このステージ座標をステージ制御回路119に与えることで、補正された欠陥位置へのステージ移動が可能となる。。S308の処理内容に関しては図6により後述する。 Finally, the image data stored in the memory 124 is processed by the CPU 123, the defect position is specified (S308), and the defect position is written in the memory 124. At the time of defect imaging with the SEM, the CPU 123 reads out the specified defect coordinates (position information) from the memory 124, converts them into stage coordinates, and gives the stage coordinates to the stage control circuit 119, thereby correcting the corrected defect position. The stage can be moved to. . The processing content of S308 will be described later with reference to FIG.
 以上、図3で示した処理全体をS300とし、図7で示す処理フローで参照する。 The entire processing shown in FIG. 3 is referred to as S300, and is referred to in the processing flow shown in FIG.
 分布偏光素子117と、空間フィルタ118の特性は、欠陥検出感度の向上対象となる欠陥種類により決定する必要があることが、特許文献1に開示されている。このため、ある一つの欠陥種類の検出感度に対し適切なフィルタ特性を設定すると、別の種類の欠陥に対しては最適な検出感度が得られないという問題があった。これを解決するために本手法及び装置は、分布偏光素子117と、空間フィルタ118の特性を切り替えて画像を撮像し、複数の画像を用いて欠陥検出を行うことで、特定の欠陥種類に偏ることの無い感度を得ることを実現するものである。 It is disclosed in Patent Document 1 that the characteristics of the distributed polarizing element 117 and the spatial filter 118 need to be determined depending on the type of defect whose defect detection sensitivity is to be improved. For this reason, if an appropriate filter characteristic is set for the detection sensitivity of one type of defect, there is a problem that an optimal detection sensitivity cannot be obtained for another type of defect. In order to solve this problem, the present method and apparatus are biased toward a specific defect type by capturing an image by switching the characteristics of the distributed polarization element 117 and the spatial filter 118 and performing defect detection using a plurality of images. It is possible to obtain a sensitivity without any problems.
 光学顕微鏡の観点から考慮しなければならない欠陥種類のバリエーションとは、検査工程で発生が予想される欠陥の種類のような歩留まり管理における欠陥種類ではなく、光学顕微鏡で検出の際に考慮すべき欠陥の種類のことを指し、欠陥形状が凹か凸のように形状で大別されるバリエーションや、欠陥の光学的特性により大別されるバリエーションを指すものである。このため、撮像すべきフィルタ状態(Pk,Sk)の数は限定できる。 Defect type variations that must be considered from the perspective of the optical microscope are defects that should be considered when detecting with an optical microscope, not defect types in yield management, such as the types of defects expected to occur in the inspection process. This refers to variations in which the defect shape is roughly classified by shape such as concave or convex, and variations that are largely classified by the optical characteristics of the defect. For this reason, the number of filter states (P k , S k ) to be imaged can be limited.
 電気的に制御できる分布偏向素子117の一例としては,印加電圧により複屈折が変化する液晶を用いたものがある。画素毎に異なる電圧を印加可能な複数画素から構成された液晶素子を,印加電圧を制御することで,フィルタ面内で所望の光学軸の分布を持たせることができる。また、電気的に制御可能な空間フィルタ118としてはDMD(Digital Mirror Device)などがある。図1、図2の光学顕微鏡の構成は説明のために簡略化しているが、空間フィルタとして使用するDMDは光を反射させる光学素子であり、光を透過させることはできない。このため、図5のように光路を工夫する必要がある。 As an example of the distribution deflection element 117 that can be electrically controlled, there is one using a liquid crystal whose birefringence changes depending on an applied voltage. By controlling the applied voltage of a liquid crystal element composed of a plurality of pixels to which different voltages can be applied for each pixel, a desired optical axis distribution can be provided within the filter surface. Further, as an electrically controllable spatial filter 118, there is a DMD (Digital Mirror Device) or the like. Although the configuration of the optical microscope in FIGS. 1 and 2 is simplified for the sake of explanation, the DMD used as a spatial filter is an optical element that reflects light and cannot transmit light. For this reason, it is necessary to devise an optical path as shown in FIG.
 図5は、本発明に係る欠陥観察装置の光学顕微鏡の詳細構成を示す図である。 FIG. 5 is a diagram showing a detailed configuration of the optical microscope of the defect observation apparatus according to the present invention.
 図5において、結像光学系115は、対物レンズ113の瞳面501を結像させるレンズ502、光路をDMDである空間フィルタ118に反射させるミラー503、分布偏光素子119、像を結像させるレンズ504から構成されている。対物レンズ113の瞳面501が結像する位置505に分布偏光素子119を置く。空間フィルタ118は、制御すべき空間形状が必要とする空間分解能があればよいので、対物レンズ113の瞳面501が結像する位置505に対し光路上でデフォーカスする位置におくことができる。また、空間フィルタ118、分布偏光素子119により得られる欠陥検出感度に対する効果に支障がないかぎり、空間フィルタ118を瞳面が結像する位置505に、分布偏光素子119を瞳面が結像する位置505の光路上近傍に置く、あるいは、空間フィルタ118と分布偏光素子119の双方を光路上で瞳面が結像する位置505の近傍に置くなどしても構わない。 In FIG. 5, an imaging optical system 115 includes a lens 502 that forms an image on the pupil plane 501 of the objective lens 113, a mirror 503 that reflects an optical path to a spatial filter 118 that is a DMD, a distributed polarization element 119, and a lens that forms an image. 504. A distributed polarizing element 119 is placed at a position 505 where the pupil plane 501 of the objective lens 113 forms an image. Since the spatial filter 118 only needs to have a spatial resolution required by the spatial shape to be controlled, the spatial filter 118 can be placed at a position where the pupil plane 501 of the objective lens 113 is defocused on the optical path. As long as the effect on the defect detection sensitivity obtained by the spatial filter 118 and the distributed polarizing element 119 is not hindered, the spatial filter 118 is positioned at the position where the pupil plane forms an image 505 and the distributed polarizing element 119 is positioned where the pupil plane forms an image. It may be placed near the optical path 505 or both the spatial filter 118 and the distributed polarizing element 119 may be placed near the position 505 where the pupil plane is imaged on the optical path.
 図6は、本発明に係る欠陥観察方法における欠陥座標計算ステップのフローチャートである。 FIG. 6 is a flowchart of the defect coordinate calculation step in the defect observation method according to the present invention.
 図6にフィルタ状態(P,S)(k=1、…、N)で撮像したN枚の画像を用いて欠陥位置を特定する処理方法を示す。図6は、図3のS308の処理の詳細である。よって、図6での処理はすべてCPU123により行われる。 FIG. 6 shows a processing method for specifying a defect position using N images captured in a filter state (P k , S k ) (k = 1,..., N). FIG. 6 shows details of the processing in S308 of FIG. Therefore, all processing in FIG. 6 is performed by the CPU 123.
 画像kの画素平均濃淡値(平均値k)と、標準偏差の3倍の値(3σk)を求める(S602)。 
 得られた平均値kと、3σkを用いて正規化画像kを生成する(S603)。S603に示す計算式におけるα及びβは計算結果を正規化画像kの画素値が取りえる範囲に収めるための係数であり、任意に定めて構わない。
A pixel average gray value (average value k ) of the image k and a value (3σ k ) three times the standard deviation are obtained (S602).
A normalized image k is generated using the obtained average value k and 3σ k (S603). Α and β in the calculation formula shown in S603 are coefficients for keeping the calculation result in a range that can be taken by the pixel value of the normalized image k , and may be arbitrarily determined.
 S602,S603を画像の枚数N分繰り返し、正規化画像k (k=1、…、N)を得る(S605)。S606にてN枚の正規化画像k の同一座標(i,j)の最大画素値を統合画像(i,j)の画素値とする。最大値を与えるフィルタ状態を指定するkをmax_kとしてメモリ124に記憶しておく。欠陥が最も顕在化できたフィルタ状態を記録することで、そのフィルタに対応する欠陥の性質、例えば凹凸などの性質がSEMの観察画像において顕在化されるよう、SEM観察画像の生成において、例えばSEMで検出される二次電子像、反射電子像を用いて観察画像を生成する際に、各画像の混合比を欠陥ごとに変更することが可能となる。 S602 and S603 are repeated for the number N of images, and a normalized image k (k = 1,..., N) is obtained (S605). In S606, the maximum pixel value at the same coordinate (i, j) of the N normalized images k is set as the pixel value of the integrated image (i, j). K specifying the filter state giving the maximum value is stored in the memory 124 as max_k. In the generation of the SEM observation image, for example, the SEM observation image is generated so that the property of the defect corresponding to the filter, for example, the property such as the unevenness, is manifested in the SEM observation image by recording the filter state in which the defect is most apparent. When the observation image is generated using the secondary electron image and the reflected electron image detected in step 1, the mixing ratio of each image can be changed for each defect.
 次に、予め定めた欠陥検出しきい値THで統合画像(i,j)を二値化し、二値画像を得る(S607)。 Next, the integrated image (i, j) is binarized with a predetermined defect detection threshold TH to obtain a binary image (S607).
 この二値画像(i,j)をラベリングしたラベル画像から最大面積のラベル領域を検出し、最大面積ラベルの重心を欠陥座標とする(S608,S609)。 The label area having the maximum area is detected from the label image obtained by labeling the binary image (i, j), and the center of gravity of the maximum area label is set as the defect coordinate (S608, S609).
 最後に検出された画像座標として検出された欠陥位置を、ステージ座標に変換する(S610)。 The defect position detected as the last detected image coordinate is converted into stage coordinates (S610).
 図7は、本発明に係る欠陥観察方法の全体フローチャートである。補正した欠陥座標を用いてSEM欠陥画像を収集する手順をフローチャートで示す。 FIG. 7 is an overall flowchart of the defect observation method according to the present invention. The procedure for collecting SEM defect images using the corrected defect coordinates is shown in a flowchart.
 まず、観察対象であるウェーハを図1に示したステージ104にロードする(S701)。 First, a wafer to be observed is loaded on the stage 104 shown in FIG. 1 (S701).
 次に事前に検査装置で検出された欠陥の欠陥座標データを全体制御部106の外部入出力I/F122を介してメモリ124に読み込み(S702)、そのなかから観察対象とするM点の欠陥を選択する(S703)。欠陥の選択は予め設定されたプログラムによりCPU123が実行してもよいし、端末107を介してオペレータが選択してもよい。 Next, the defect coordinate data of the defect detected in advance by the inspection apparatus is read into the memory 124 via the external input / output I / F 122 of the overall control unit 106 (S702). Select (S703). The defect selection may be executed by the CPU 123 using a preset program, or may be selected by the operator via the terminal 107.
 次にウェーハのアライメントを行う(S704)。これは、ウェーハ上の座標で記述されている欠陥座標の位置に基づいてステージ104を移動したとき、目標である欠陥座標の位置がSEM102の視野、及び光学顕微鏡103の視野の中央にくるようにするため、ウェーハ上の座標が既知の位置決めマーク(アライメントマーク)を用いて、ウェーハ座標とステージ座標とを関連付けるものである。この関連付け結果はアライメント情報としてメモリ124に記憶される。 Next, wafer alignment is performed (S704). This is because when the stage 104 is moved based on the position of the defect coordinates described in the coordinates on the wafer, the position of the target defect coordinates is in the center of the field of view of the SEM 102 and the field of view of the optical microscope 103. Therefore, the wafer coordinates and the stage coordinates are associated with each other using positioning marks (alignment marks) whose coordinates on the wafer are known. This association result is stored in the memory 124 as alignment information.
 次に観察対象として選択された欠陥1からMについて、欠陥位置の補正を行う(S705、S708、S709)。 Next, defect positions are corrected for defects 1 to M selected as observation targets (S705, S708, S709).
 まず、欠陥mを光学顕微鏡103の視野に移動する(S706)。この移動は、メモリ124に記憶されている欠陥座標データと、アライメント情報から、CPU123で欠陥mに対応するステージ座標を計算し、これによりステージ制御回路119を介して、ステージ104を駆動することで行われる。 First, the defect m is moved to the field of view of the optical microscope 103 (S706). In this movement, the CPU 123 calculates the stage coordinates corresponding to the defect m from the defect coordinate data stored in the memory 124 and the alignment information, thereby driving the stage 104 via the stage control circuit 119. Done.
 ステージ移動終了後、図3に示した処理にて欠陥の位置を特定し(S300)、特定した欠陥の位置を補正欠陥位置 としてメモリ124に記憶する(S707)。 After the stage movement is completed, the position of the defect m is specified by the process shown in FIG. 3 (S300), and the position of the specified defect is stored in the memory 124 as the corrected defect position m (S707).
 以上のS706、S300,S707のシーケンスを欠陥m(m=1、…、M)に対し行う。検査装置によっては、検出した欠陥位置座標だけではなく、欠陥の特徴に関する情報を出力する装置もある。例えば、欠陥の特徴情報により欠陥が凸か凹かなどが事前に分かれば、これに合わせてフィルタ状態を欠陥ごとに変更して設定してもよい。これを実現するためには、欠陥の特徴情報に対応するフィルタ状態を予めテーブルにしてメモリ124に記憶しておく。そして、前述した検査装置で検出された欠陥の欠陥座標データをメモリ124に読み込む際に、欠陥の特徴情報も読み込んでおき、CPU123により欠陥ごとに欠陥情報を読み出し、メモリ124に記憶されているテーブル情報と照合してフィルタ状態を決定し、フィルタ状態制御回路205にフィルタ状態情報を送ればよい。一方、全ての欠陥について、適用するフィルタ状態(Pk ,Sk)(k=1、…、N)を同一とするならば、図3に示したS300内の処理S301はS705より前に処理しても構わない。 The above sequence of S706, S300, and S707 is performed on the defect m (m = 1,..., M). Some inspection apparatuses output not only the detected defect position coordinates but also information on the feature of the defect. For example, if the defect feature information indicates beforehand whether the defect is convex or concave, the filter state may be changed and set for each defect accordingly. In order to realize this, the filter state corresponding to the defect feature information is stored in the memory 124 as a table in advance. When the defect coordinate data of the defect detected by the above-described inspection apparatus is read into the memory 124, the defect feature information is also read, the defect information is read for each defect by the CPU 123, and the table stored in the memory 124 is stored. The filter state may be determined by collating with the information, and the filter state information may be sent to the filter state control circuit 205. On the other hand, if the applied filter states (P k , S k ) (k = 1,..., N) are the same for all defects, the process S301 in S300 shown in FIG. 3 is performed before S705. It doesn't matter.
 全ての欠陥m(m=1、…、M)の補正欠陥位置 を取得した後、補正欠陥位置をメモリ124より読み出し、この位置情報を必要に応じてステージ座標に変換の後、ステージ制御回路119に与えることにより欠陥をSEM102の視野に順次移動し(S711)、欠陥のSEM画像を撮像する(S712、S713、S714)。欠陥のSEM画像を撮像する際に、メモリ124に記憶されているフィルタ状態全ての欠陥のSEM画像撮像後、ウェーハをアンロード(S715)し、処理を終了する。 All defects m (m = 1, ..., M) after obtaining the corrected defect position m of, reads out the correction defect position m from the memory 124, after converting the position information on the stage coordinate optionally, stage control By supplying to the circuit 119, the defect m is sequentially moved to the field of view of the SEM 102 (S711), and an SEM image of the defect m is captured (S712, S713, S714). When capturing the SEM image of the defect m , after capturing the SEM images of all the defects in the filter state stored in the memory 124, the wafer is unloaded (S715), and the process ends.
 以上により、検査装置で検出された全ての欠陥種類に対し高感度、かつ高速に欠陥位置の検出が可能となり、説明した光学検出系をSEM欠陥観察装置に搭載することにより、光学検出による欠陥検出位置にてSEM観察を行うことで、SEMの観察視野内に欠陥を確実に入れることが可能となり、検査装置で検出した欠陥のSEM観察画像の自動撮像の成功率が向上し、SEMでの欠陥自動撮像のスループットも向上する。 As described above, it becomes possible to detect the defect position with high sensitivity and high speed for all defect types detected by the inspection apparatus. By installing the optical detection system described above in the SEM defect observation apparatus, defect detection by optical detection is possible. By performing the SEM observation at the position, it becomes possible to reliably put the defect in the observation field of the SEM, and the success rate of the automatic imaging of the SEM observation image of the defect detected by the inspection apparatus is improved. The throughput of automatic imaging is also improved.
101…ウェーハ,102…SEM,103…光学顕微鏡,104…ステージ,105…真空槽,106…制御部,107…端末,108…記憶装置,109…ネットワーク,110…光源,111…真空封止窓,112…ミラー,113…対物レンズ,114…空封止窓,115…結像光学系,116…撮像素子,117…分布偏光素子,118…空間フィルタ,119…ステージ制御回路,120…SEM撮像系制御回路、121… 光学撮像系制御回路、122…外部入出力I/F、123…CPU,124…メモリ、125…バス、201…データI/F、202…同期制御回路、203…同期信号発生回路、204…画像情報記憶部,205…フィルタ状態制御回路、206…分布偏光素子制御回路、207…空間フィルタ制御回路、208…内部バス  DESCRIPTION OF SYMBOLS 101 ... Wafer, 102 ... SEM, 103 ... Optical microscope, 104 ... Stage, 105 ... Vacuum chamber, 106 ... Control part, 107 ... Terminal, 108 ... Storage device, 109 ... Network, 110 ... Light source, 111 ... Vacuum sealing window , 112 ... mirror, 113 ... objective lens, 114 ... empty sealing window, 115 ... imaging optical system, 116 ... imaging element, 117 ... distributed polarization element, 118 ... spatial filter, 119 ... stage control circuit, 120 ... SEM imaging System control circuit 121... Optical imaging system control circuit 122. External input / output I / F, 123 CPU, 124 Memory, 125 Bus, 201 Data I / F 202 Synchronization control circuit 203 Synchronization signal Generator circuit 204 image information storage unit 205 filter state control circuit 206 distributed polarization element control circuit 207 spatial filter control circuit 08 ... internal bus

Claims (12)

  1.  SEMと光学顕微鏡と制御部とを備える欠陥観察装置であって、
     前記光学顕微鏡は、試料に光を照射する照射系と、前記照射系により照射された該試料からの光に基づく信号を検出し、電気的に偏光状態を制御可能な分布偏光素子と電気的に空間形状を制御可能な空間フィルタとを有する検出系と、を備え、
     前記制御部は、同期信号を生成し(202)、該生成した同期信号に基づき前記分布偏光素子の偏光状態と前記空間フィルタの空間形状とを制御し電気的に切り替え(207,206)、複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおける前記検出系により検出した画像を処理する(123)ことを特徴とする欠陥観察装置。
    A defect observation apparatus comprising an SEM, an optical microscope, and a control unit,
    The optical microscope includes an irradiation system for irradiating a sample with light, and a distributed polarizing element capable of detecting a signal based on the light from the sample irradiated by the irradiation system and electrically controlling a polarization state. A detection system having a spatial filter capable of controlling a spatial shape,
    The control unit generates a synchronization signal (202), controls the polarization state of the distributed polarization element and the spatial shape of the spatial filter based on the generated synchronization signal and electrically switches (207, 206), a plurality of the A defect observation apparatus characterized in that an image detected by the detection system in a combination of a polarization state of a distributed polarizing element and a spatial shape of the spatial filter is processed (123).
  2.  請求項1記載の欠陥観察装置であって、
     前記制御部にて複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおける前記検出系により検出した画像を処理することにより欠陥の位置を検出することを特徴とする欠陥観察装置。 
    The defect observation apparatus according to claim 1,
    Defect observation characterized by detecting a position of a defect by processing an image detected by the detection system in a combination of a polarization state of a plurality of distributed polarizing elements and a spatial shape of the spatial filter in the control unit apparatus.
  3.  請求項1記載の欠陥観察装置であって、
     前記制御部は、一定時間間隔で連続的な同期信号を生成し、前記分布偏光素子および前記空間フィルタの制御と前記複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおける前記検出系により検出した画像の検出とを該同期信号に対して連続的に行うことを特徴とする欠陥観察装置。
    The defect observation apparatus according to claim 1,
    The control unit generates a continuous synchronization signal at a constant time interval, in a combination of control of the distributed polarizing element and the spatial filter, a polarization state of the plurality of distributed polarizing elements, and a spatial shape of the spatial filter. A defect observation apparatus characterized in that the detection of an image detected by the detection system is continuously performed on the synchronization signal.
  4.  請求項1記載の欠陥観察装置であって、
     前記制御部では、該複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せに基づき、前記SEMにより検出される二次電子像と反射電子像の混合比を変更することを特徴とする
    欠陥観察装置。
    The defect observation apparatus according to claim 1,
    The control unit changes a mixing ratio of a secondary electron image and a reflected electron image detected by the SEM based on a combination of a polarization state of the plurality of distributed polarizing elements and a spatial shape of the spatial filter. Feature defect observation device.
  5.  請求項1記載の欠陥観察装置であって、
     前記分布偏光素子は液晶フィルタであり、前記空間フィルタはデジタルミラーデバイスであることを特徴とする欠陥観察装置。
    The defect observation apparatus according to claim 1,
    The defect observation apparatus, wherein the distributed polarizing element is a liquid crystal filter, and the spatial filter is a digital mirror device.
  6.  請求項1記載の欠陥観察装置であって、
     前記制御部では、欠陥装置の欠陥情報に基づき前記空間フィルタの状態を決定することを特徴とする欠陥観察装置。
    The defect observation apparatus according to claim 1,
    The defect observing apparatus, wherein the controller determines a state of the spatial filter based on defect information of the defect apparatus.
  7.  SEMと光学顕微鏡と制御部とを備える欠陥観察装置を用いた欠陥観察方法であって、
     試料に光を照射する照射工程と、
     前記照射工程により照射された該試料からの光に基づく信号を検出し、電気的に偏光状態を制御可能な分布偏光素子と電気的に空間形状を制御可能な空間フィルタとを有する検出工程と、
     同期信号を生成し(202)、該生成した同期信号に基づき前記分布偏光素子の偏光状態と前記空間フィルタの空間形状とを制御し電気的に切り替え(207,206)、複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおける前記検出系により検出した画像を処理する(123)制御工程を備える欠陥観察方法。
    A defect observation method using a defect observation apparatus including an SEM, an optical microscope, and a control unit,
    An irradiation step of irradiating the sample with light;
    A detection step having a distributed polarization element capable of electrically controlling a polarization state and a spatial filter capable of electrically controlling a spatial shape, detecting a signal based on light from the sample irradiated in the irradiation step;
    A synchronization signal is generated (202), and the polarization state of the distributed polarization element and the spatial shape of the spatial filter are controlled and electrically switched based on the generated synchronization signal (207, 206), and the polarization of the plurality of distribution polarization elements A defect observation method comprising a control step (123) of processing an image detected by the detection system in a combination of a state and a spatial shape of the spatial filter.
  8.  請求項7記載の欠陥観察方法であって、
     前記制御工程では、複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおいて前記検出工程により検出した画像を処理することにより欠陥の位置を検出することを特徴とする欠陥観察方法。 
    The defect observation method according to claim 7,
    In the control step, a defect position is detected by processing an image detected by the detection step in a combination of a polarization state of the plurality of distributed polarizing elements and a spatial shape of the spatial filter. Method.
  9.  請求項7記載の欠陥観察方法であって、
     前記制御工程では、一定時間間隔で連続的な同期信号を生成し、前記分布偏光素子および前記空間フィルタの制御と前記複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せにおいて前記検出工程により検出した画像の検出とを該同期信号に対して連続的に行うことを特徴とする欠陥観察方法。
    The defect observation method according to claim 7,
    In the control step, a continuous synchronization signal is generated at a constant time interval, and in the combination of the control of the distributed polarizing element and the spatial filter, the polarization state of the plurality of distributed polarizing elements, and the spatial shape of the spatial filter A defect observing method, wherein the detection of the image detected by the detection step is continuously performed on the synchronization signal.
  10.  請求項7記載の欠陥観察方法であって、
     前記制御工程では、該複数の前記分布偏光素子の偏光状態と前記空間フィルタの空間形状との組合せに基づき、前記SEMにより検出される二次電子像と反射電子像の混合比を変更することを特徴とする
    欠陥観察方法。
    The defect observation method according to claim 7,
    In the control step, the mixing ratio of the secondary electron image and the reflected electron image detected by the SEM is changed based on a combination of a polarization state of the plurality of distributed polarizing elements and a spatial shape of the spatial filter. A feature defect observation method.
  11.  請求項7記載の欠陥観察方法であって、
     前記分布偏光素子は液晶フィルタであり、前記空間フィルタはデジタルミラーデバイスであることを特徴とする欠陥観察方法。
    The defect observation method according to claim 7,
    The defect observing method, wherein the distributed polarizing element is a liquid crystal filter, and the spatial filter is a digital mirror device.
  12.  請求項7記載の欠陥観察方法であって、
     前記制御工程では、欠陥装置の欠陥情報に基づき前記空間フィルタの状態を決定することを特徴とする欠陥観察方法。
    The defect observation method according to claim 7,
    In the control step, the state of the spatial filter is determined based on defect information of a defect device.
PCT/JP2014/064360 2013-09-18 2014-05-30 Defect viewing device and defect viewing method WO2015040894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-192532 2013-09-18
JP2013192532A JP2015059776A (en) 2013-09-18 2013-09-18 Device for defect observation and method therefor

Publications (1)

Publication Number Publication Date
WO2015040894A1 true WO2015040894A1 (en) 2015-03-26

Family

ID=52688557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064360 WO2015040894A1 (en) 2013-09-18 2014-05-30 Defect viewing device and defect viewing method

Country Status (3)

Country Link
JP (1) JP2015059776A (en)
TW (1) TW201514479A (en)
WO (1) WO2015040894A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933050A (en) * 2015-12-30 2017-07-07 上海微电子装备有限公司 A kind of litho machine synchronous control system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802841B2 (en) 2018-02-27 2023-10-31 Hitachi High-Tech Corporation Defect detection device, defect detection method, and defect observation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096554A (en) * 2008-10-15 2010-04-30 Hitachi High-Technologies Corp Heightening of sensitivity of method for detecting defect
JP2011106974A (en) * 2009-11-18 2011-06-02 Hitachi High-Technologies Corp Defect detection method, defect detection device, and defect observation device provided with the same
JP2012026733A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Optical defect detection device and method, and defect observation device provided with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096554A (en) * 2008-10-15 2010-04-30 Hitachi High-Technologies Corp Heightening of sensitivity of method for detecting defect
JP2011106974A (en) * 2009-11-18 2011-06-02 Hitachi High-Technologies Corp Defect detection method, defect detection device, and defect observation device provided with the same
JP2012026733A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Optical defect detection device and method, and defect observation device provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933050A (en) * 2015-12-30 2017-07-07 上海微电子装备有限公司 A kind of litho machine synchronous control system and method

Also Published As

Publication number Publication date
JP2015059776A (en) 2015-03-30
TW201514479A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US10719928B2 (en) Pattern inspection apparatus and pattern inspection method
US7301620B2 (en) Inspecting apparatus, image pickup apparatus, and inspecting method
JP4908934B2 (en) Semiconductor wafer inspection apparatus and semiconductor wafer inspection method
JP6236216B2 (en) Inspection apparatus and inspection method
JP2009300426A (en) Reticle defect inspection device and reticle defect inspection method
KR101994524B1 (en) Focusing device, focusing method, and pattern inspection method
JP5497495B2 (en) High-speed inspection method and apparatus
JP2006113020A (en) Inspection device and inspection method
US20090212214A1 (en) Sample inspection apparatus
JP2005156537A (en) Defect observing method and apparatus of the same
JP2007322482A (en) Focusing device, focusing method, and inspection device
WO2014091928A1 (en) Substrate defect inspection method, substrate defect inspection device, and computer storage medium
JP5798099B2 (en) Image quality adjusting method, program, and electron microscope
WO2015040894A1 (en) Defect viewing device and defect viewing method
JP2012049381A (en) Inspection apparatus and inspection method
JP2009150718A (en) Inspecting device and inspection program
JP5250395B2 (en) Inspection device
JP5048558B2 (en) Substrate inspection method and substrate inspection apparatus
JP2006275780A (en) Pattern inspection method
JP4554661B2 (en) Pattern inspection apparatus, pattern inspection method, and program
JP2014228670A (en) Focus position adjustment method and test method
JP2020042035A (en) Pattern inspection device and pattern inspection method
JPH0979991A (en) Pattern inspection device, defect inspection device, and pattern inspection method
JP2014020950A (en) Pattern inspection device
JP2018200185A (en) Pattern inspection device and pattern inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846139

Country of ref document: EP

Kind code of ref document: A1