WO2016009712A1 - Solar cell module and solar cell module manufacturing method - Google Patents

Solar cell module and solar cell module manufacturing method Download PDF

Info

Publication number
WO2016009712A1
WO2016009712A1 PCT/JP2015/063978 JP2015063978W WO2016009712A1 WO 2016009712 A1 WO2016009712 A1 WO 2016009712A1 JP 2015063978 W JP2015063978 W JP 2015063978W WO 2016009712 A1 WO2016009712 A1 WO 2016009712A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
bonding material
cell module
solar
Prior art date
Application number
PCT/JP2015/063978
Other languages
French (fr)
Japanese (ja)
Inventor
三宮 仁
土津田 義久
堀中 大
浩一 上遠野
井上 哲修
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016009712A1 publication Critical patent/WO2016009712A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a method for manufacturing the solar cell module.
  • a solar cell has a pn junction formed by diffusing an impurity having a conductivity type opposite to that of a silicon substrate into a light receiving surface of a single crystal or polycrystalline silicon substrate.
  • Double-sided electrode type solar cells manufactured by forming electrodes on the back surface opposite to the light receiving surface are mainly used.
  • a back electrode type solar cell in which an electrode is not formed on the light receiving surface of a silicon substrate and an electrode is formed only on the back surface of the silicon substrate is compatible with the back electrode type solar cell on the film.
  • Solar cell modules installed on a wiring sheet (wiring board) on which wiring to be formed are commercialized.
  • FIG. 8 shows a schematic cross-sectional view of a conventional back electrode type solar cell module.
  • a solar cell module 50 a plurality of p + layers 52 and n + layers 53 are alternately formed along the back surface on the back surface of a semiconductor substrate 51 such as a silicon substrate.
  • a solar cell wafer 56 in which a dotted p electrode 54 is formed on the n + layer 52 and a p wiring 62 and an n wiring 63 are formed on the insulating substrate 61.
  • Wiring board 65 that is provided. Then, the wiring substrate 65 is installed on the back surface of the solar cell wafer 56, the p wiring 62 is connected to the p electrode 54 through the solder 69, and the plurality of dotted p electrodes 54 are electrically connected.
  • an n wiring 63 is connected to the n electrode 55 via a solder 69, and a plurality of dot-like n electrodes 55 are electrically connected.
  • the back electrode of the solar cell is a silver electrode having a thickness of several microns and has a relatively low resistance.
  • the back electrode and the wiring sheet are bonded and electrically connected by a bonding material such as solder or conductive resin.
  • a bonding material such as solder or conductive resin.
  • the metal material contained in the bonding material is alloyed with the silver of the back electrode, and the contact resistance with the silicon substrate is increased, so that the power generation characteristics of the solar battery cell are reduced and the output of the solar battery module is reduced. There was a problem.
  • the solar cell module of the present invention includes a solar cell having a plurality of linear electrodes on the surface opposite to the light receiving surface, and a solar cell having a wiring sheet on which the solar cells are mounted and electrically connected to the electrodes.
  • the solar battery cell and the wiring sheet are electrically connected by a bonding material arranged in a plurality of dots along a linear electrode.
  • the electrodes of the solar cell are a plurality of straight lines parallel to each other, and an insulating resin is disposed between adjacent electrodes.
  • the filling rate of the bonding material is 3% or more.
  • the bonding material includes a solder material.
  • a step of preparing a solar cell having a linear electrode on the surface opposite to the light receiving surface, and a plurality of bonding materials are arranged in a dotted manner along the linear electrode. It includes a process and a process of placing solar cells on a wiring sheet and thermocompression bonding to form a solar cell module.
  • an increase in the contact resistance of the back electrode can be suppressed, and a decrease in output of the solar battery cell and the solar battery module can be reduced.
  • FIG. 1 is a plan view of a solar battery cell used for manufacturing the solar battery module of the present invention, and is a plan view seen from the back surface on the opposite side of the light receiving surface.
  • a linear n-electrode 12 for collecting electrons and a linear p-electrode 13 for collecting holes are collected on the back surface opposite to the light receiving surface of the solar cell substrate 11 formed using a silicon single crystal semiconductor substrate as a base material. They are lined up alternately.
  • the n electrode 12 and the p electrode 13 have a width of 130 ⁇ m and a thickness of about 3 ⁇ m. The distance between the n electrode 12 and the p electrode 13 is 0.75 mm.
  • the n electrode 12 and the p electrode 13 which are back electrodes of the solar battery cell 10 are formed by printing a silver paste on the back surface of the solar battery substrate 11 and then baking it at 400 ° C. or higher.
  • the solar cell substrate 11 has a substantially square shape with a side of about 150 mm.
  • FIG. 2 is a plan view showing a wiring sheet used in the solar cell module of the present invention, and shows a wiring pattern of a portion on which one solar cell is placed.
  • the wiring sheet 20 comb-like copper wirings 22 and copper wirings 23 are formed on a sheet 21 formed of a film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate). Since the thickness of the copper wirings 22 and 23 is 35 mm and the thickness is large, the resistance is lower than that of the n electrode 12 and the p electrode 13 on the solar battery cell.
  • the copper wiring 22 electrically connected to the n-electrode 12 of the solar battery cell 10 includes a comb-tooth portion 22a that contacts the pattern of the linear n-electrode 12 and a base portion 22b that connects the comb-tooth portions. Is connected to the wiring pattern corresponding to the adjacent solar battery cell.
  • the copper wiring 23 electrically connected to the p-electrode 13 of the solar battery cell 10 includes a comb-tooth portion 23a that contacts the linear p-electrode 13 pattern, and a base portion 23b that connects the comb-tooth portions.
  • the base 23b is connected to a wiring pattern corresponding to the adjacent solar battery cell.
  • FIG. 3 is a plan view showing a state in which the bonding material is arranged in the solar battery cell of the present invention.
  • a solder resin bonding material 25 a is arranged in a dotted line along the shape of the linear electrode on the plurality of parallel n-electrodes 12.
  • a solder resin bonding material 25 b is arranged in a dotted line along the shape of the linear electrode on the plurality of parallel p-shaped electrodes 13.
  • An insulating resin 24 is disposed between the n electrode 12 and the p electrode 13 on the back surface of the substrate. As the insulating resin 24, an epoxy resin can be used.
  • the insulating resin 24 is installed between the n-electrode 12 and the p-electrode 13 so that the bonding material does not flow during bonding and short-circuits with the adjacent electrode.
  • the insulating resin 24 and the bonding material 25 of the bonding material can be printed and arranged on the back surface of the solar battery cell using screen printing or the like.
  • a plurality of bonding materials 25 a arranged in a dotted pattern on the n electrode 12 are comb-tooth portions 22 a at intervals of about 3 mm on the comb-tooth portions 22 a of the wiring sheet 20. It will be located along the longitudinal direction. Further, a plurality of bonding materials 25b arranged in a dot shape on the p-electrode 12 are positioned along the longitudinal direction of the comb teeth 22b at intervals of about 3 mm on the comb teeth 22b of the wiring sheet 20. .
  • the bonding material and the bonding resin were printed on the solar battery cells and placed on the wiring sheet.
  • the solar battery cells were placed. May be. After the insulating resin 24 and the bonding material 25 are disposed on the solar battery cell 10 or the wiring sheet 20, the solar battery cell 10 is placed on the wiring sheet 20, and is thermocompression bonded with a back sheet, a sealing resin, and a cover glass with a laminator. A solar cell module is formed.
  • the bonding material 25 disposed on the copper wirings 22 and 23 is made of solder resin.
  • Solder resin is a material in which particles of solder material such as tin or bismuth are dispersed in an insulating resin. The insulating resin is softened by heating and the particles of the solder material are aggregated. Has the property of curing.
  • the bonding material 25a joins the n electrode 12 and the comb tooth portion 22a and electrically connects them.
  • the bonding material 25b bonds the p-electrode 13 and the comb tooth portion 23a and electrically connects them.
  • FIG. 4 is a schematic cross-sectional view showing the solar cell module of the present invention.
  • 4A is a schematic cross-sectional view in the longitudinal direction of the comb-tooth portion
  • FIG. 4B is a schematic cross-sectional view in a direction substantially perpendicular to the comb-tooth portion.
  • the solar cell module 1 is obtained by laminating an EVA sheet 32, a wiring sheet 20, a solar cell 10, an EVA sheet 33, and a cover glass 34 in this order on a back sheet 31, and thermocompression-bonding with a laminator. It is.
  • a plurality of bonding materials 25a are arranged in a dot shape, and the n electrode 12 and the copper wiring 22a are bonded and electrically connected via the bonding material 25a. is doing.
  • the insulating resin 24 may flow into the gap in the laminating process to fill the gap between the solar battery cell 10 and the wiring sheet 20, but it is not necessary to fill the gap in particular, and a space may remain.
  • the solder resin bonding material 25a and the n electrode 12 are in contact with each other because the tin contained in the solder resin and the silver forming the n electrode 12 are alloyed, and the contact resistance is increased.
  • the portion of the n-electrode 12 where the bonding material 25a is not disposed is not alloyed and remains low resistance. Therefore, the contact resistance of the entire solar battery cell is lower than that of bonding with a bonding material disposed on all of the n electrodes.
  • FIG. 4B the n-electrode 12 and the p-electrode 13 are joined and electrically connected via the joining materials 25a and 25b, which are conductive materials arranged in the form of dots on the copper wirings 22a and 22b. Yes.
  • An insulating resin 24 made of an epoxy resin is disposed between the adjacent n electrode 12 and p electrode 13 to maintain insulation.
  • FIG. 5 is a schematic plan view showing the relationship between the wiring sheet and the bonding material in the solar cell module of the comparative example.
  • the bonding material 25 ′ made of solder resin is made of copper so as to correspond to the n electrode and the p electrode of the solar battery cell. It is located on the wirings 22 ′ and 23 ′. That is, the bonding material 25a ′ is arranged linearly along the comb tooth portion 22a, and the bonding material 25b ′ is arranged linearly along the comb tooth portion 23a ′.
  • FIG. 6 is a schematic cross-sectional view showing a solar cell module of a comparative example, in which a solar cell module 1 ′ is configured using a linear arrangement of bonding material 25 ′ on a wiring sheet 20 ′.
  • the solar cell module 1 ′ is obtained by sequentially stacking an EVA sheet 32 ′, a wiring sheet 20 ′, a solar cell 10 ′, an EVA sheet 33 ′, and a cover glass 34 ′ on the back sheet 31 ′, and performing thermocompression treatment with a laminator. It is.
  • the linear bonding material 25a ' covers the entire n-electrode 12' and electrically connects the n-electrode 12 'and the comb-teeth portion 22a' of the copper wiring.
  • the linear bonding material 25b ′ covers the entire p electrode 13 ′, and the p electrode 13 ′ and the comb tooth portion 23a ′ of the copper wiring are similarly formed in a linear shape. Are electrically connected.
  • the solder resin is used so as to cover the entire back surface electrode, the adhesion between the back surface electrode of each solar battery cell and the wiring sheet is improved, and the electrical contact area is increased.
  • an alloy of silver, which is a component of the back electrode, and a metal such as tin contained in the bonding material is formed, and the contact resistance between the back electrode and the silicon substrate increases, so that the solar cell The power generation efficiency of the solar cell module decreases.
  • the bonding material is arranged in the form of dots, the amount of the bonding material is reduced, and the portion where the bonding material and the silver electrode are in contact is reduced. Therefore, the part where the contact resistance between the back electrode and the silicon substrate increases due to the alloying of the bonding material and the silver electrode is only the part where the solder resin is arranged, so compared with the solar battery cell where the bonding material is arranged in a straight line. Thus, the increase in contact resistance between the silicon substrate and the back electrode is small. Therefore, it is possible to reduce a decrease in power generation efficiency of the solar cell module due to the bonding material.
  • Table 1 shows the relationship between the filling rate of the solar cell bonding material and the output loss. The characteristics were measured by using one solar cell placed on a wiring sheet to form a small module.
  • the filling rate is a solar cell module in which the bonding material is arranged in a straight line and the entire surface of the back electrode is covered as 100%. The ratio which covers a back electrode of a shape is shown. Therefore, the filling rate of 50% indicates a state in which 50% of the back electrode is covered with the dotted bonding material.
  • the output indicates a relative value when the output of the comparative example is 100%. When the interval at which the dot-shaped bonding material is arranged becomes small, the number of connection points increases and the filling rate increases.
  • the filling rate when the filling rate is about 1%, the output is 80% as compared with the comparative example, but when the filling rate exceeds 3%, the output loss sharply decreases and the output is 98% or more. Can be obtained. Further, when the filling rate is 6.6% to 40%, the output is larger than that of the comparative example, and the power generation efficiency is improved. Even if the filling rate exceeds 40%, the filling rate of the bonding material does not fall below the comparative example.
  • connection points is the number of connection points per linear p-electrode and n-electrode.
  • the filling rate is lowered to reduce the amount of the bonding material and the number of portions to be bonded to the wiring sheet, the contact resistance between the silicon substrate and the n-electrode and the p-electrode as the back electrode decreases.
  • the back electrode is thin, the resistance is greater than that of the wiring sheet. Therefore, if the distance between the portions to be joined to the wiring sheet is increased, the distance that the charge moves on the back electrode increases, and the resistance loss increases.
  • the filling rate is about 1%, the influence of the resistance loss of the back electrode is large.
  • the filling rate exceeds 3%, the distance between the portions to be joined to the wiring sheet is shortened, the distance that the charge moves on the back electrode is reduced, and the resistance loss in the cell back electrode is reduced.
  • the conductive output is improved.
  • the amount of the bonding material used is the same as the filling rate, it is reduced to 3% compared to the conventional case.
  • the interval between the connection points when the filling rate is 6.6% is 4.5 mm. Furthermore, as the filling rate increases, the interval between connection points decreases.
  • FIG. 7 is a diagram showing the output of the solar cell module.
  • the bonding material is arranged linearly (hereinafter referred to as “Line type”), and the bonding material is dotted as in the first and second embodiments.
  • Dot type a diagram showing the module output of what is arranged in (hereinafter referred to as “Dot type”), where the average output of the Line type is 100 and the output is shown as a relative value.
  • the first group shows the distribution of the outputs of 18 line type output modules.
  • the second group shows the output distribution of 10 Dot type modules, and the third group shows the output distribution of 12 Line type output modules.
  • the filling rate of the bonding material of the Dot type output module is 20%. As a result, it has been found that the output of the Dot type is about 0.7% higher than that of the Line type on average.
  • Table 2 shows a comparison of the characteristics of the Dot type and Line type solar cell modules.
  • Table 2 the average values of the characteristics of the Line type and Dot type solar cell modules are shown. The value is a relative value when the average value of each characteristic of the Line type is 100%.
  • the Pt maximum output
  • Isc short-circuit current
  • Voc open-circuit voltage
  • FF curve factor
  • the Dot type is Pm (maximum output), Isc (short-circuit current), FF (curve).
  • the factor value is improved, and it can be seen that the power generation characteristics are improved.
  • a silver paste can also be used as a bonding material.
  • This silver paste is not a type of silver paste that is baked at a high temperature to form the back electrode of a solar battery cell, but the back electrode and copper wiring are joined by heating at a relatively low temperature of about 150 ° C. to 160 ° C. with a laminator. And is made of a mixture of metal mainly composed of resin and silver particles.
  • the amount of the bonding material used for electrical connection between the back electrode of the n-electrode solar cell and the copper wiring of the wiring sheet can be reduced, it contributes to the effective use of the material.
  • SYMBOLS 1 Solar cell module, 10 ... Solar cell, 12 ... N electrode, 13 ... P electrode, 20 ... Wiring sheet, 21 ... Sheet, 22 ... Copper wiring, 22a ... Comb tooth part, 22b ... Base, 23 ... Copper wiring , 23a ... comb tooth part, 23b ... base part, 24 ... insulating resin, 25 ... bonding material, 25a ... bonding material, 25b ... bonding material, 31 ... back sheet, 32 ... EVA sheet, 33 ... EVA sheet, 34 ... cover glass

Abstract

This solar cell module has: a solar cell having a plurality of linear electrodes on a surface on the reverse side of a light receiving surface; and a wiring sheet, which has the solar cell disposed thereon, and which is electrically connected to the electrodes. The solar cell and the wiring sheet are electrically connected to each other by means of a bonding material disposed in a dotted line along the electrodes, thereby suppressing a contact resistance increase of the rear surface electrodes, and reducing output deterioration of the solar cell and the solar cell module due to the contact resistance increase.

Description

太陽電池モジュールおよび太陽電池モジュールの製造方法Solar cell module and method for manufacturing solar cell module
 本発明は、太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。 The present invention relates to a solar cell module and a method for manufacturing the solar cell module.
 近年、エネルギ資源の枯渇の問題や大気中のCOの増加のような地球環境問題などからクリーンなエネルギの開発が望まれており、半導体装置の中でも特に太陽電池セルを用いた太陽光発電が新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。 In recent years, development of clean energy has been demanded due to the problem of depletion of energy resources and global environmental problems such as an increase in CO 2 in the atmosphere. Among semiconductor devices, solar power generation using solar cells is particularly important. It has been developed and put into practical use as a new energy source and is on the path of development.
 太陽電池セルは、従来からたとえば、単結晶または多結晶のシリコン基板の受光面にシリコン基板の導電型と反対の導電型となる不純物を拡散することによってpn接合を形成し、シリコン基板の受光面と受光面の反対側の裏面にそれぞれ電極を形成して製造された両面電極型太陽電池セルが主流となっている。また、両面電極型太陽電池セルにおいては、シリコン基板の裏面にシリコン基板と同じ導電型の不純物を高濃度で拡散することによって、裏面電界効果による高出力化を図ることも一般的となっている。 Conventionally, for example, a solar cell has a pn junction formed by diffusing an impurity having a conductivity type opposite to that of a silicon substrate into a light receiving surface of a single crystal or polycrystalline silicon substrate. Double-sided electrode type solar cells manufactured by forming electrodes on the back surface opposite to the light receiving surface are mainly used. In a double-sided electrode type solar cell, it is also common to increase the output by the back surface field effect by diffusing impurities of the same conductivity type as the silicon substrate at a high concentration on the back surface of the silicon substrate. .
 また、特許文献1に示されるように、シリコン基板の受光面に電極を形成せず、シリコン基板の裏面のみに電極を形成した裏面電極型太陽電池セルをフィルム上に裏面電極型太陽電池セル対応する配線を形成した配線シート(配線基板)上に設置した太陽電池モジュールが商品化されている。 Moreover, as shown in Patent Document 1, a back electrode type solar cell in which an electrode is not formed on the light receiving surface of a silicon substrate and an electrode is formed only on the back surface of the silicon substrate is compatible with the back electrode type solar cell on the film. Solar cell modules installed on a wiring sheet (wiring board) on which wiring to be formed are commercialized.
 図8に、従来の裏面電極型の太陽電池モジュールの模式的な断面図を示す。この太陽電池モジュール50は、シリコン基板などの半導体基板51の裏面にp+層52とn+層53とが裏面に沿って交互に間隔をあけてそれぞれ複数形成されており、p+層52上に点状のp電極54が形成され、n+層52上に点状のn電極55が形成されている太陽電池ウエハ56と、p配線62とn配線63とが絶縁性基板61上に形成されている配線基板65とを含む。そして、太陽電池ウエハ56の裏面上に配線基板65が設置され、p電極54上に、はんだ69を介してp配線62が接続されて、複数の点状のp電極54が電気的に接続され、また、n電極55上に、はんだ69を介してn配線63が接続されて、複数の点状のn電極55が電気的に接続されている。 FIG. 8 shows a schematic cross-sectional view of a conventional back electrode type solar cell module. In this solar cell module 50, a plurality of p + layers 52 and n + layers 53 are alternately formed along the back surface on the back surface of a semiconductor substrate 51 such as a silicon substrate. A solar cell wafer 56 in which a dotted p electrode 54 is formed on the n + layer 52 and a p wiring 62 and an n wiring 63 are formed on the insulating substrate 61. Wiring board 65 that is provided. Then, the wiring substrate 65 is installed on the back surface of the solar cell wafer 56, the p wiring 62 is connected to the p electrode 54 through the solder 69, and the plurality of dotted p electrodes 54 are electrically connected. In addition, an n wiring 63 is connected to the n electrode 55 via a solder 69, and a plurality of dot-like n electrodes 55 are electrically connected.
特開2005-340362号公報JP 2005-340362 A
 太陽電池セルの裏面電極は、数ミクロンの厚みの銀電極であり比較的低抵抗である。この裏面電極と配線シートは、半田や導電性樹脂などの接合材料によって接合され、かつ電気的に接続される。この際、接合材料に含まれる金属材料が裏面電極の銀と合金化し、シリコン基板との接触抵抗が増加することにより、太陽電池セルの発電特性が低下し、太陽電池モジュールの出力が低下するという問題があった。 The back electrode of the solar cell is a silver electrode having a thickness of several microns and has a relatively low resistance. The back electrode and the wiring sheet are bonded and electrically connected by a bonding material such as solder or conductive resin. At this time, the metal material contained in the bonding material is alloyed with the silver of the back electrode, and the contact resistance with the silicon substrate is increased, so that the power generation characteristics of the solar battery cell are reduced and the output of the solar battery module is reduced. There was a problem.
 本発明の太陽電池モジュールは、受光面の反対側の面に複数の線状の電極を有する太陽電池セルと、太陽電池セルを載置して電極に電気的に接続する配線シートを有する太陽電池モジュールであって、太陽電池セルと配線シートは、線状の電極に沿って点状に複数配置された接合材料によって電気的に接続されてなるものである。 The solar cell module of the present invention includes a solar cell having a plurality of linear electrodes on the surface opposite to the light receiving surface, and a solar cell having a wiring sheet on which the solar cells are mounted and electrically connected to the electrodes. In the module, the solar battery cell and the wiring sheet are electrically connected by a bonding material arranged in a plurality of dots along a linear electrode.
 また、本発明の太陽電池モジュールは、太陽電池セルの電極は互いに平行な複数の直線状であり、隣り合う電極間に絶縁樹脂が配置されてなるものである。 Further, in the solar cell module of the present invention, the electrodes of the solar cell are a plurality of straight lines parallel to each other, and an insulating resin is disposed between adjacent electrodes.
 また、本発明の太陽電池モジュールは、接合材料の充填率は3%以上であるものである。 In the solar cell module of the present invention, the filling rate of the bonding material is 3% or more.
 また、本発明の太陽電池モジュールは、接合材料は半田材料を含むものである。
 本発明の太陽電池モジュールの製造方法は、受光面の反対側の面に線状の電極を有する太陽電池セルを準備する工程と、線状の電極に沿って点状に接合材料を複数配置する工程と、配線シート上に太陽電池セルを載置し、熱圧着して太陽電池モジュールを形成する工程を含むものである。
In the solar cell module of the present invention, the bonding material includes a solder material.
In the method for manufacturing a solar cell module of the present invention, a step of preparing a solar cell having a linear electrode on the surface opposite to the light receiving surface, and a plurality of bonding materials are arranged in a dotted manner along the linear electrode. It includes a process and a process of placing solar cells on a wiring sheet and thermocompression bonding to form a solar cell module.
 本発明により、裏面電極の接触抵抗の増加を抑制することができ、太陽電池セルおよび太陽電池モジュールの出力低下を小さくすることができる。 According to the present invention, an increase in the contact resistance of the back electrode can be suppressed, and a decrease in output of the solar battery cell and the solar battery module can be reduced.
本発明の太陽電池モジュールの製造に使用される太陽電池セルを示す平面図である。It is a top view which shows the photovoltaic cell used for manufacture of the solar cell module of this invention. 本発明の太陽電池モジュールに使用される配線シートを示す平面図である。It is a top view which shows the wiring sheet used for the solar cell module of this invention. 本発明の太陽電池セルに接合材料を配置した状態を示す平面図である。It is a top view which shows the state which has arrange | positioned joining material to the photovoltaic cell of this invention. 本発明の太陽電池モジュールを示す断面模式図である。It is a cross-sectional schematic diagram which shows the solar cell module of this invention. 比較例の太陽電池モジュールに使用される配線シートと接合材料との位置関係を示す平面図である。It is a top view which shows the positional relationship of the wiring sheet and joining material which are used for the solar cell module of a comparative example. 比較例の太陽電池モジュールを示す断面模式図である。It is a cross-sectional schematic diagram which shows the solar cell module of a comparative example. 太陽電池モジュールの出力を示すグラフである。It is a graph which shows the output of a solar cell module. 従来例の太陽電池モジュールを示す断面模式図である。It is a cross-sectional schematic diagram which shows the solar cell module of a prior art example.
 以下、図面を参照しつつ、本発明の実施の形態を説明する。以下の説明では同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについて詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 (実施の形態1)
 図1は、本発明の太陽電池モジュールの製造に使用される太陽電池セルの平面図であり、受光面の反対側である裏面から見た平面図である。シリコン単結晶半導体基板を母材として形成された太陽電池基板11の受光面の反対側である裏面に電子を収集する直線状のn電極12と、正孔を収集する直線状のp電極13が交互に並んでいる。n電極12およびp電極13の幅は130μmであり、厚さは3μm程度である。n電極12とp電極13の間隔は0.75mmである。太陽電池セル10の裏面電極であるn電極12およびp電極13は、銀ペーストを太陽電池基板11裏面に印刷した後、400℃以上で焼成して形成する。太陽電池基板11は、一辺150mm程度の略正方形状である。
(Embodiment 1)
FIG. 1 is a plan view of a solar battery cell used for manufacturing the solar battery module of the present invention, and is a plan view seen from the back surface on the opposite side of the light receiving surface. A linear n-electrode 12 for collecting electrons and a linear p-electrode 13 for collecting holes are collected on the back surface opposite to the light receiving surface of the solar cell substrate 11 formed using a silicon single crystal semiconductor substrate as a base material. They are lined up alternately. The n electrode 12 and the p electrode 13 have a width of 130 μm and a thickness of about 3 μm. The distance between the n electrode 12 and the p electrode 13 is 0.75 mm. The n electrode 12 and the p electrode 13 which are back electrodes of the solar battery cell 10 are formed by printing a silver paste on the back surface of the solar battery substrate 11 and then baking it at 400 ° C. or higher. The solar cell substrate 11 has a substantially square shape with a side of about 150 mm.
 図2は、本発明の太陽電池モジュールに使用される配線シートを示す平面図であり、1枚の太陽電池セルを載置する部分の配線パターンを示したものである。配線シート20において、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)などフィルムで形成されたシート21の上に、櫛歯状の銅配線22と銅配線23が形成されている。銅配線22,23の厚さは35mmであり、厚さが大きいので、太陽電池セルの上のn電極12、p電極13よりも低抵抗である。 FIG. 2 is a plan view showing a wiring sheet used in the solar cell module of the present invention, and shows a wiring pattern of a portion on which one solar cell is placed. In the wiring sheet 20, comb-like copper wirings 22 and copper wirings 23 are formed on a sheet 21 formed of a film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate). Since the thickness of the copper wirings 22 and 23 is 35 mm and the thickness is large, the resistance is lower than that of the n electrode 12 and the p electrode 13 on the solar battery cell.
 太陽電池セル10のn電極12と電気的に接続する銅配線22は、直線状のn電極12のパターンに接触する櫛歯部22aと、各櫛歯部を連結する基部22bからなり、基部22bは隣の太陽電池セルに対応する配線パターンに接続している。また、太陽電池セル10のp電極13と電気的に接続する銅配線23は、直線状のp電極13のパターンに接触する櫛歯部23aと、各櫛歯部を連結する基部23bからなり、基部23bは隣の太陽電池セルに対応する配線パターンに接続している。 The copper wiring 22 electrically connected to the n-electrode 12 of the solar battery cell 10 includes a comb-tooth portion 22a that contacts the pattern of the linear n-electrode 12 and a base portion 22b that connects the comb-tooth portions. Is connected to the wiring pattern corresponding to the adjacent solar battery cell. Moreover, the copper wiring 23 electrically connected to the p-electrode 13 of the solar battery cell 10 includes a comb-tooth portion 23a that contacts the linear p-electrode 13 pattern, and a base portion 23b that connects the comb-tooth portions. The base 23b is connected to a wiring pattern corresponding to the adjacent solar battery cell.
 図3は、本発明の太陽電池セルに接合材料を配置した状態を示す平面図である。太陽電池基板11の裏面に、複数の平行な直線状に形成されたn電極12上において、直線状の電極の形に沿って、半田樹脂の接合材料25aを点線状に配置する。また、太陽電池基板11の裏面に、複数の平行な直線状に形成されたp電極13上において、直線状の電極の形に沿って、半田樹脂の接合材料25bを点線状に配置する。また、基板裏面のn電極12とp電極13の間には絶縁樹脂24が配置される。絶縁樹脂24は、エポキシ系樹脂を用いることができる。絶縁樹脂24は、接合材料が接合時に流れて、隣の電極と短絡しないように、n電極12とp電極13の間に設置するものである。接合材料の絶縁樹脂24および接合材料25は、スクリーン印刷などを用いて太陽電池セルの裏面に印刷して配置することができる。 FIG. 3 is a plan view showing a state in which the bonding material is arranged in the solar battery cell of the present invention. On the back surface of the solar cell substrate 11, a solder resin bonding material 25 a is arranged in a dotted line along the shape of the linear electrode on the plurality of parallel n-electrodes 12. In addition, on the back surface of the solar cell substrate 11, a solder resin bonding material 25 b is arranged in a dotted line along the shape of the linear electrode on the plurality of parallel p-shaped electrodes 13. An insulating resin 24 is disposed between the n electrode 12 and the p electrode 13 on the back surface of the substrate. As the insulating resin 24, an epoxy resin can be used. The insulating resin 24 is installed between the n-electrode 12 and the p-electrode 13 so that the bonding material does not flow during bonding and short-circuits with the adjacent electrode. The insulating resin 24 and the bonding material 25 of the bonding material can be printed and arranged on the back surface of the solar battery cell using screen printing or the like.
 太陽電池セル10を配線シート20に載置すると、n電極12上に点状に複数配置された接合材料25aは、配線シート20の櫛歯部22a上において、3mm程度の間隔で櫛歯部22aの長手方向に沿って位置することになる。また、p電極12上に点状に複数配置された接合材料25bは、配線シート20の櫛歯部22b上において、3mm程度の間隔で櫛歯部22bの長手方向に沿って位置することになる。なお、本実施例において、接合材料および接合樹脂は、太陽電池セルに印刷して配線シート上に載置したが、配線シートに接合材料および接合樹脂を印刷してから太陽電池セルを載置してもよい。
絶縁樹脂24および接合材料25を太陽電池セル10または配線シート20に配置した後、太陽電池セル10を配線シート20に載置し、バックシートや封止樹脂、カバーガラスとともにラミネータで熱圧着して太陽電池モジュールを形成する。
When the solar battery cell 10 is placed on the wiring sheet 20, a plurality of bonding materials 25 a arranged in a dotted pattern on the n electrode 12 are comb-tooth portions 22 a at intervals of about 3 mm on the comb-tooth portions 22 a of the wiring sheet 20. It will be located along the longitudinal direction. Further, a plurality of bonding materials 25b arranged in a dot shape on the p-electrode 12 are positioned along the longitudinal direction of the comb teeth 22b at intervals of about 3 mm on the comb teeth 22b of the wiring sheet 20. . In this example, the bonding material and the bonding resin were printed on the solar battery cells and placed on the wiring sheet. However, after the bonding material and the bonding resin were printed on the wiring sheet, the solar battery cells were placed. May be.
After the insulating resin 24 and the bonding material 25 are disposed on the solar battery cell 10 or the wiring sheet 20, the solar battery cell 10 is placed on the wiring sheet 20, and is thermocompression bonded with a back sheet, a sealing resin, and a cover glass with a laminator. A solar cell module is formed.
 銅配線22,23上に配置される接合材料25は、半田樹脂からなる。半田樹脂とは、錫やビスマスなどの半田材料の粒子を絶縁性樹脂に分散させたものであり、加熱によって、絶縁性樹脂が軟化して半田材料の粒子が凝集し、その後に絶縁性樹脂が硬化する性質を持っている。比較的低温である150℃から160℃でラミネータによって熱処理することにより、接合材料25aは、n電極12と櫛歯部22aを接合してそれぞれを電気的に接続する。また、接合材料25bは、p電極13と櫛歯部23aを接合してそれぞれを電気的に接続する。半田樹脂中の金属粒子が溶融した部分では、裏面電極の銀と合金を形成する。裏面電極が合金化すると、シリコン基板と裏面電極の間の接触抵抗が高くなる。しかし、半田樹脂は、点状に配置されており、半田樹脂に当接しない裏面電極は合金化されないのでシリコン基板と裏面電極の間の接触抵抗は、半田樹脂が当接している部分に比べて低い。したがって、半田樹脂を線状に配置したものに比べて発電効率が高くなる。また、太陽電池モジュールに使用される半田樹脂の量も減らすことができるので、材料の有効利用を図ることができる。 The bonding material 25 disposed on the copper wirings 22 and 23 is made of solder resin. Solder resin is a material in which particles of solder material such as tin or bismuth are dispersed in an insulating resin. The insulating resin is softened by heating and the particles of the solder material are aggregated. Has the property of curing. By performing heat treatment with a laminator at a relatively low temperature of 150 ° C. to 160 ° C., the bonding material 25a joins the n electrode 12 and the comb tooth portion 22a and electrically connects them. Further, the bonding material 25b bonds the p-electrode 13 and the comb tooth portion 23a and electrically connects them. In the part where the metal particles in the solder resin are melted, an alloy is formed with silver on the back electrode. When the back electrode is alloyed, the contact resistance between the silicon substrate and the back electrode increases. However, since the solder resin is arranged in a dot shape and the back electrode that does not contact the solder resin is not alloyed, the contact resistance between the silicon substrate and the back electrode is compared to the portion where the solder resin is in contact. Low. Therefore, the power generation efficiency is higher than that in which the solder resin is arranged in a line. Moreover, since the amount of solder resin used in the solar cell module can be reduced, the material can be effectively used.
 (実施の形態2)
 図4は、本発明の太陽電池モジュールを示す断面模式図である。図4(a)は、櫛歯部の長手方向の断面模式図であり、図4(b)は櫛歯部に対して略直角方向の断面模式図である。図4(a)において、太陽電池モジュール1は、バックシート31上にEVAシート32、配線シート20、太陽電池セル10、EVAシート33およびカバーガラス34を順に積層し、ラミネータで加熱圧着処理したものである。n電極12と、銅配線22aの間には、接合材料25aが点状に複数配置されており、接合材料25aを介して、n電極12と銅配線22aが接合されるとともに、電気的に接続している。なお、絶縁樹脂24は、ラミネート工程で隙間に流れ込んで太陽電池セル10と配線シート20との間隙を埋める場合もあるが、特に隙間を埋める必要はなく、空間が残っていてもよい。
(Embodiment 2)
FIG. 4 is a schematic cross-sectional view showing the solar cell module of the present invention. 4A is a schematic cross-sectional view in the longitudinal direction of the comb-tooth portion, and FIG. 4B is a schematic cross-sectional view in a direction substantially perpendicular to the comb-tooth portion. 4A, the solar cell module 1 is obtained by laminating an EVA sheet 32, a wiring sheet 20, a solar cell 10, an EVA sheet 33, and a cover glass 34 in this order on a back sheet 31, and thermocompression-bonding with a laminator. It is. Between the n electrode 12 and the copper wiring 22a, a plurality of bonding materials 25a are arranged in a dot shape, and the n electrode 12 and the copper wiring 22a are bonded and electrically connected via the bonding material 25a. is doing. The insulating resin 24 may flow into the gap in the laminating process to fill the gap between the solar battery cell 10 and the wiring sheet 20, but it is not necessary to fill the gap in particular, and a space may remain.
 半田樹脂の接合材料25aとn電極12が接触している箇所は、半田樹脂に含まれるスズとn電極12を形成する銀が合金化しており、接触抵抗が増加している。しかし、接合材料25aが配置されていない部分のn電極12は合金化されておらず、低抵抗のままである。したがって、太陽電池セル全体の接触抵抗は、n電極の全部に接合材料を配置して接合するのに比べて低抵抗になる。上記説明においてはn電極との接続について説明したが、p電極と銅配線の接続についても同様である。 The solder resin bonding material 25a and the n electrode 12 are in contact with each other because the tin contained in the solder resin and the silver forming the n electrode 12 are alloyed, and the contact resistance is increased. However, the portion of the n-electrode 12 where the bonding material 25a is not disposed is not alloyed and remains low resistance. Therefore, the contact resistance of the entire solar battery cell is lower than that of bonding with a bonding material disposed on all of the n electrodes. In the above description, the connection to the n-electrode has been described, but the same applies to the connection between the p-electrode and the copper wiring.
 図4(b)において、銅配線22a、22b上に点状に配置された導電性材料である接合材料25a,25bを介してn電極12、p電極13が接合され、電気的に接続されている。隣り合うn電極12とp電極13の間はエポキシ系樹脂からなる絶縁樹脂24が配置されており、絶縁が保たれている。
(比較例)
 図5は、比較例の太陽電池モジュールにおける配線シートと接合材料との関係を示す平面模式図である。シート21’上に櫛歯状の銅配線22’および23’を形成した配線シート20’において、半田樹脂からなる接合材料25’は、太陽電池セルのn電極およびp電極に対応するように銅配線22’および23’上に位置している。すなわち、櫛歯部22aに沿って直線状に接合材料25a’が配置され、また、櫛歯部23a’に添って直線状に接合材料25b’が配置されている。
In FIG. 4B, the n-electrode 12 and the p-electrode 13 are joined and electrically connected via the joining materials 25a and 25b, which are conductive materials arranged in the form of dots on the copper wirings 22a and 22b. Yes. An insulating resin 24 made of an epoxy resin is disposed between the adjacent n electrode 12 and p electrode 13 to maintain insulation.
(Comparative example)
FIG. 5 is a schematic plan view showing the relationship between the wiring sheet and the bonding material in the solar cell module of the comparative example. In the wiring sheet 20 ′ in which comb-like copper wirings 22 ′ and 23 ′ are formed on the sheet 21 ′, the bonding material 25 ′ made of solder resin is made of copper so as to correspond to the n electrode and the p electrode of the solar battery cell. It is located on the wirings 22 ′ and 23 ′. That is, the bonding material 25a ′ is arranged linearly along the comb tooth portion 22a, and the bonding material 25b ′ is arranged linearly along the comb tooth portion 23a ′.
 図6は、比較例の太陽電池モジュールを示す断面模式図であり、配線シート20’上に接合材料25’を直線状に配置したものを用いて太陽電池モジュール1’を構成したものである。太陽電池モジュール1’は、バックシート31’上にEVAシート32’、配線シート20’、太陽電池セル10’、EVAシート33’およびカバーガラス34’を順に積層し、ラミネータで加熱圧着処理したものである。直線状の接合材料25a’は、n電極12’全体を覆っており、n電極12’と銅配線の櫛歯部22a’を電気的に接続している。図示されていないが、直線状の接合材料25b’は、p電極13’全体を覆っており、p電極13’と銅配線の櫛歯部23a’も同様に直線状に形成した接合材料25b’で電気的に接続されている。このように、裏面電極の全部をカバーするように半田樹脂を用いると、それぞれの太陽電池セルの裏面電極と配線シートの密着性が向上し、電気的な接触面積は増える。しかしながら、裏面電極の全体にわたって、裏面電極の成分である銀と接合材料に含まれるスズなどの金属との合金が形成され、裏面電極とシリコン基板との接触抵抗が増大することにより、太陽電池セルの特性が低下し、太陽電池モジュールの発電効率が低下する。 FIG. 6 is a schematic cross-sectional view showing a solar cell module of a comparative example, in which a solar cell module 1 ′ is configured using a linear arrangement of bonding material 25 ′ on a wiring sheet 20 ′. The solar cell module 1 ′ is obtained by sequentially stacking an EVA sheet 32 ′, a wiring sheet 20 ′, a solar cell 10 ′, an EVA sheet 33 ′, and a cover glass 34 ′ on the back sheet 31 ′, and performing thermocompression treatment with a laminator. It is. The linear bonding material 25a 'covers the entire n-electrode 12' and electrically connects the n-electrode 12 'and the comb-teeth portion 22a' of the copper wiring. Although not shown, the linear bonding material 25b ′ covers the entire p electrode 13 ′, and the p electrode 13 ′ and the comb tooth portion 23a ′ of the copper wiring are similarly formed in a linear shape. Are electrically connected. As described above, when the solder resin is used so as to cover the entire back surface electrode, the adhesion between the back surface electrode of each solar battery cell and the wiring sheet is improved, and the electrical contact area is increased. However, over the entire back electrode, an alloy of silver, which is a component of the back electrode, and a metal such as tin contained in the bonding material is formed, and the contact resistance between the back electrode and the silicon substrate increases, so that the solar cell The power generation efficiency of the solar cell module decreases.
 それに対して、本発明においては接合材料を点状に配置し、接合材料の量を減らすとともに、接合材料と銀電極が接する部分を減らしている。そのため、接合材料と銀電極との合金化により裏面電極とシリコン基板との接触抵抗が増大する部分は半田樹脂を配置した部分だけであるので、接合材料を直線状に配置した太陽電池セルに比べて、シリコン基板と裏面電極の間の接触抵抗の増加は小さい。したがって、接合材料による太陽電池モジュールの発電効率の低下を軽減することができる。 On the other hand, in the present invention, the bonding material is arranged in the form of dots, the amount of the bonding material is reduced, and the portion where the bonding material and the silver electrode are in contact is reduced. Therefore, the part where the contact resistance between the back electrode and the silicon substrate increases due to the alloying of the bonding material and the silver electrode is only the part where the solder resin is arranged, so compared with the solar battery cell where the bonding material is arranged in a straight line. Thus, the increase in contact resistance between the silicon substrate and the back electrode is small. Therefore, it is possible to reduce a decrease in power generation efficiency of the solar cell module due to the bonding material.
 表1は、太陽電池セルの接合材料の充填率と、出力損失の関係を示す図である。太陽電池セル1枚を配線シートに載置して小型モジュールを形成したものを用いて、特性を測定したものである。充填率とは、比較例のように、接合材料を直線状に配置し、裏面電極のすべてを覆ったものを100%として、接合材料を点状に配した太陽電池モジュールにおいて、接合材料が線状の裏面電極覆う割合を示したものである。したがって、充填率50%とは、点状の接合材料によって、裏面電極の50%が覆われている状態を示す。また、出力は、比較例の出力を100%とした場合の相対値を示す。点状の接合材料の配置する間隔が小さくなると、接続箇所が増えるとともに充填率は大きくなる。 Table 1 shows the relationship between the filling rate of the solar cell bonding material and the output loss. The characteristics were measured by using one solar cell placed on a wiring sheet to form a small module. As in the comparative example, the filling rate is a solar cell module in which the bonding material is arranged in a straight line and the entire surface of the back electrode is covered as 100%. The ratio which covers a back electrode of a shape is shown. Therefore, the filling rate of 50% indicates a state in which 50% of the back electrode is covered with the dotted bonding material. The output indicates a relative value when the output of the comparative example is 100%. When the interval at which the dot-shaped bonding material is arranged becomes small, the number of connection points increases and the filling rate increases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、充填率が1%程度の場合は、比較例と比較して出力が80%であるが、充填率が3%を越えると、出力損失が急減し、98%以上の出力を得ることができる。また、充填率が6.6%から40%においては、比較例よりも出力が大きくなっており、発電効率が向上する。また、充填率が40%を超えても接合材料の充填率が、比較例を下回ることはない。これは、接合材料のドット間において、配線シートの銅配線と、太陽電池セルのn電極およびp電極との接触状態が良好であり、半田樹脂を太陽電池セルのn電極およびp電極全体にわたって配置するよりも接触抵抗が低くなったものと考えられる。なお、接続点の数は線状のp電極およびn電極1本あたりの接続点の数である。 According to Table 1, when the filling rate is about 1%, the output is 80% as compared with the comparative example, but when the filling rate exceeds 3%, the output loss sharply decreases and the output is 98% or more. Can be obtained. Further, when the filling rate is 6.6% to 40%, the output is larger than that of the comparative example, and the power generation efficiency is improved. Even if the filling rate exceeds 40%, the filling rate of the bonding material does not fall below the comparative example. This is because the contact state between the copper wiring of the wiring sheet and the n-electrode and p-electrode of the solar battery cell is good between the dots of the bonding material, and the solder resin is arranged over the entire n-electrode and p-electrode of the solar battery cell. It is thought that the contact resistance was lower than that. The number of connection points is the number of connection points per linear p-electrode and n-electrode.
 充填率を低くして、接合材料の量および配線シートと接合される箇所を減らすと、シリコン基板と裏面電極であるn電極、p電極との接触抵抗は減少する。一方、裏面電極は薄いため、配線シートよりも抵抗が大きいので、配線シートと接合される箇所の間隔を広げると、裏面電極上を電荷が移動する距離が増加するため、抵抗損失が大きくなる。充填率が1%程度の場合は、裏面電極の抵抗損失の影響が大きい。しかしながら、充填率が3%を超えると、配線シートと接合される箇所の間隔が短くなることにより、電荷が裏面電極上を移動する距離が減少し、セル裏面電極における抵抗損失が少なくなるので、導電性出力が向上する。しかも、接合材料の使用量は充填率と同じなので、従来に比べて3%に減少している。 If the filling rate is lowered to reduce the amount of the bonding material and the number of portions to be bonded to the wiring sheet, the contact resistance between the silicon substrate and the n-electrode and the p-electrode as the back electrode decreases. On the other hand, since the back electrode is thin, the resistance is greater than that of the wiring sheet. Therefore, if the distance between the portions to be joined to the wiring sheet is increased, the distance that the charge moves on the back electrode increases, and the resistance loss increases. When the filling rate is about 1%, the influence of the resistance loss of the back electrode is large. However, if the filling rate exceeds 3%, the distance between the portions to be joined to the wiring sheet is shortened, the distance that the charge moves on the back electrode is reduced, and the resistance loss in the cell back electrode is reduced. The conductive output is improved. Moreover, since the amount of the bonding material used is the same as the filling rate, it is reduced to 3% compared to the conventional case.
 さらに、少なくとも、接合材料の充填率が6.6%以上において、接合材料の使用量を減らしつつ、比較例以上の出力を得ることができることが確かめられた。充填率が6.6%のときの接続点の間隔は4.5mmである。さらに、充填率が大きくなると接続点の間隔は小さくなる。 Furthermore, it was confirmed that at least when the filling rate of the bonding material is 6.6% or more, an output higher than that of the comparative example can be obtained while reducing the amount of the bonding material used. The interval between the connection points when the filling rate is 6.6% is 4.5 mm. Furthermore, as the filling rate increases, the interval between connection points decreases.
 図7は太陽電池モジュールの出力を示す図であり、比較例のように接合材料を線状に配置したもの(以下Lineタイプという)と本実施の形態1、2のように接合材料を点線状に配置したもの(以下Dotタイプという)のモジュール出力を示した図であり、Lineタイプの平均出力を100として、出力を相対値で示してある。第1群は、Lineタイプの出力のモジュール18台の出力の分布を示している。また、第2群は、Dotタイプのモジュール10台の出力の分布を示したものであり、また、第3群は、Lineタイプの出力のモジュール12台の出力の分布を示したものである。Dotタイプの出力のモジュールの接合材料の充填率は20%である。その結果、Dotタイプの出力がLineタイプよりも平均して0.7%程度出力が向上していることがわかった。表2にDotタイプとLineタイプの太陽電池モジュールの特性を比較したもの示す。 FIG. 7 is a diagram showing the output of the solar cell module. In the comparative example, the bonding material is arranged linearly (hereinafter referred to as “Line type”), and the bonding material is dotted as in the first and second embodiments. Is a diagram showing the module output of what is arranged in (hereinafter referred to as “Dot type”), where the average output of the Line type is 100 and the output is shown as a relative value. The first group shows the distribution of the outputs of 18 line type output modules. The second group shows the output distribution of 10 Dot type modules, and the third group shows the output distribution of 12 Line type output modules. The filling rate of the bonding material of the Dot type output module is 20%. As a result, it has been found that the output of the Dot type is about 0.7% higher than that of the Line type on average. Table 2 shows a comparison of the characteristics of the Dot type and Line type solar cell modules.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、Lineタイプ、Dotタイプの太陽電池モジュールの特性の平均値をしめす。値はLineタイプの各特性の平均値を100%としたときの相対値である。太陽電池のPm(最大出力)、Isc(短絡電流)、Voc(開放電圧)、FF(曲線因子)を比較して、Dotタイプは、Pm(最大出力)、Isc(短絡電流)、FF(曲線因子)の値が向上しており、発電特性が向上していることがわかる。 In Table 2, the average values of the characteristics of the Line type and Dot type solar cell modules are shown. The value is a relative value when the average value of each characteristic of the Line type is 100%. The Pt (maximum output), Isc (short-circuit current), Voc (open-circuit voltage), and FF (curve factor) of the solar cell are compared. The Dot type is Pm (maximum output), Isc (short-circuit current), FF (curve). The factor) value is improved, and it can be seen that the power generation characteristics are improved.
 (実施の形態3)
 また、接合材料として、銀ペーストを使うこともできる。この銀ペーストは、太陽電池セルの裏面電極を作成するための高温で焼成するタイプの銀ペーストではなく、ラミネータによる150℃~160℃程度の比較的低音の加熱によって裏面電極と銅配線を接合して電気的に接続するものであり、樹脂と銀粒子を主とする金属の混合物からなるものである。
(Embodiment 3)
A silver paste can also be used as a bonding material. This silver paste is not a type of silver paste that is baked at a high temperature to form the back electrode of a solar battery cell, but the back electrode and copper wiring are joined by heating at a relatively low temperature of about 150 ° C. to 160 ° C. with a laminator. And is made of a mixture of metal mainly composed of resin and silver particles.
 このような接合材料として銀ペーストを用いた場合には、合金化による接触抵抗の増加は発生しない。しかしながら、点線状に配置することにより、接合材料の使用量を減らすことができる。尚、銀ペーストを点状に配置した場合、半田樹脂と同様、充填率が3%以上であれば、銀ペーストを裏面電極に沿ってライン状に配置したものと同等の発電効率を有する。 ¡When silver paste is used as such a bonding material, contact resistance does not increase due to alloying. However, the amount of bonding material used can be reduced by arranging them in a dotted line. When the silver paste is arranged in a dot shape, as in the case of the solder resin, if the filling rate is 3% or more, the power generation efficiency is the same as that in which the silver paste is arranged in a line along the back electrode.
 さらに、n電極太陽電池セルの裏面電極と配線シートの銅配線の電気的接続に使用される接合材料の使用量を減少させることができるため、材料の有効利用に寄与する。 Furthermore, since the amount of the bonding material used for electrical connection between the back electrode of the n-electrode solar cell and the copper wiring of the wiring sheet can be reduced, it contributes to the effective use of the material.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1…太陽電池モジュール、10…太陽電池セル、12…n電極、13…p電極、20…配線シート、21…シート、22…銅配線、22a…櫛歯部、22b…基部、23…銅配線、23a…櫛歯部、23b…基部、24…絶縁樹脂、25…接合材料、25a…接合材料、25b…接合材料、31…バックシート、32…EVAシート、33…EVAシート、34…カバーガラス DESCRIPTION OF SYMBOLS 1 ... Solar cell module, 10 ... Solar cell, 12 ... N electrode, 13 ... P electrode, 20 ... Wiring sheet, 21 ... Sheet, 22 ... Copper wiring, 22a ... Comb tooth part, 22b ... Base, 23 ... Copper wiring , 23a ... comb tooth part, 23b ... base part, 24 ... insulating resin, 25 ... bonding material, 25a ... bonding material, 25b ... bonding material, 31 ... back sheet, 32 ... EVA sheet, 33 ... EVA sheet, 34 ... cover glass

Claims (5)

  1.  受光面の反対側の面に複数の線状の電極を有する太陽電池セルと、前記太陽電池セルを載置して前記電極に電気的に接続する配線シートを有する太陽電池モジュールであって、
     前記太陽電池セルと前記配線シートは、前記線状の電極に沿って点状に複数配置された接合材料によって電気的に接続されてなる太陽電池モジュール。
    A solar battery module having a solar battery cell having a plurality of linear electrodes on the surface opposite to the light receiving surface, and a wiring sheet for placing the solar battery cell and electrically connecting to the electrode,
    The solar battery module, wherein the solar battery cell and the wiring sheet are electrically connected by a bonding material that is arranged in a plurality of dots along the linear electrode.
  2.  前記太陽電池セルの電極は互いに平行な複数の直線状であり、隣り合う電極間に絶縁樹脂が配置された請求項1記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the electrodes of the solar battery cell have a plurality of straight lines parallel to each other, and an insulating resin is disposed between adjacent electrodes.
  3.  前記接合材料の充填率は3%以上である請求項1または請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein a filling rate of the bonding material is 3% or more.
  4.  前記接合材料は半田材料を含む請求項1から3のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the bonding material includes a solder material.
  5.  受光面の反対側の面に線状の電極を有する太陽電池セルを準備する工程と、
     線状の前記電極に沿って点状に接合材料を複数配置する工程と、
     配線シート上に前記太陽電池セルを載置し、熱圧着して太陽電池モジュールを形成する工程を含む太陽電池モジュールの製造方法。
    Preparing a solar cell having a linear electrode on the surface opposite to the light receiving surface;
    A step of arranging a plurality of bonding materials in a dotted manner along the linear electrodes;
    A method for manufacturing a solar cell module, comprising a step of placing the solar cell on a wiring sheet and thermocompression-bonding to form a solar cell module.
PCT/JP2015/063978 2014-07-14 2015-05-15 Solar cell module and solar cell module manufacturing method WO2016009712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-144358 2014-07-14
JP2014144358A JP6325925B2 (en) 2014-07-14 2014-07-14 Solar cell module and method for manufacturing solar cell module

Publications (1)

Publication Number Publication Date
WO2016009712A1 true WO2016009712A1 (en) 2016-01-21

Family

ID=55078216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063978 WO2016009712A1 (en) 2014-07-14 2015-05-15 Solar cell module and solar cell module manufacturing method

Country Status (2)

Country Link
JP (1) JP6325925B2 (en)
WO (1) WO2016009712A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622743B1 (en) * 2017-02-13 2024-01-10 상라오 신위안 웨동 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 solar cell and solar cell module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253475A (en) * 2003-02-18 2004-09-09 Sharp Corp Solar cell module, its producing process and heat source for use therein
JP2011054660A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Solar-cell string and solar-cell module using the same
JP2014011232A (en) * 2012-06-28 2014-01-20 Hitachi Chemical Co Ltd Solar cell element, method of manufacturing solar cell element, method of manufacturing solar cell module, and solar cell module
WO2014068496A2 (en) * 2012-10-30 2014-05-08 Ebfoil S.R.L. Method of production of a back-contact back-sheet for photovoltaic modules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253475A (en) * 2003-02-18 2004-09-09 Sharp Corp Solar cell module, its producing process and heat source for use therein
JP2011054660A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Solar-cell string and solar-cell module using the same
JP2014011232A (en) * 2012-06-28 2014-01-20 Hitachi Chemical Co Ltd Solar cell element, method of manufacturing solar cell element, method of manufacturing solar cell module, and solar cell module
WO2014068496A2 (en) * 2012-10-30 2014-05-08 Ebfoil S.R.L. Method of production of a back-contact back-sheet for photovoltaic modules

Also Published As

Publication number Publication date
JP6325925B2 (en) 2018-05-16
JP2016021478A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5445419B2 (en) Solar cell module and manufacturing method thereof
US10115840B2 (en) Solar cell and method for producing thereof
JP6050661B2 (en) Photovoltaic generator manufacturing method
US20120192932A1 (en) Solar cell and its electrode structure
WO2016095859A1 (en) Solar cell slice, solar cell assembly and assembling method for bypass diode
TW201236177A (en) Solar battery and solar battery module
JP5879512B2 (en) Solar cell module
JP5299975B2 (en) Back electrode type solar cell, wiring sheet, solar cell with wiring sheet and solar cell module
JP2014063978A (en) Solar cell module and manufacturing method therefor
WO2014045909A1 (en) Solar cell module, and method for producing same
WO2012117765A1 (en) Solar cell module
JP2015207598A (en) Solar cell module, solar cell, and inter-element connection body
US20220271190A1 (en) Shingled solar cell panel and method of manufacturing the same
WO2012128284A1 (en) Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module
JP6325925B2 (en) Solar cell module and method for manufacturing solar cell module
KR20180079228A (en) Solar cell having a plurality of sub-cells coupled by cell level interconnection
JP5942136B2 (en) Solar cell module and manufacturing method thereof
JP2005167161A (en) Method of manufacturing solar battery module
KR102410785B1 (en) Shingled high power module and manufacturing method thereof
JP5906422B2 (en) Solar cell and solar cell module
JP6412427B2 (en) Solar cell module, wiring sheet for solar cell module, and method for manufacturing the same
JP2013030627A (en) Photoelectric conversion device
US20160093753A1 (en) Solar cell manufacturing method
JP5934984B2 (en) Solar cell manufacturing method and solar cell
JP2014041940A (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821832

Country of ref document: EP

Kind code of ref document: A1