WO2012128284A1 - Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module - Google Patents

Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module Download PDF

Info

Publication number
WO2012128284A1
WO2012128284A1 PCT/JP2012/057178 JP2012057178W WO2012128284A1 WO 2012128284 A1 WO2012128284 A1 WO 2012128284A1 JP 2012057178 W JP2012057178 W JP 2012057178W WO 2012128284 A1 WO2012128284 A1 WO 2012128284A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin wire
solar cell
electrodes
bus bar
Prior art date
Application number
PCT/JP2012/057178
Other languages
French (fr)
Japanese (ja)
Inventor
三島 孝博
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012128284A1 publication Critical patent/WO2012128284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a back electrode type solar cell in which positive and negative electrodes are arranged on the back side opposite to the light receiving surface and a solar cell module using the back electrode type solar cell.
  • the solar cell constituting the solar cell module is, for example, a layer having a conductivity type opposite to the conductivity type of the silicon substrate on the surface (light receiving surface) on the side where sunlight enters among the surfaces of the single crystal or polycrystalline silicon substrate And a pn junction is formed, and electrodes are formed on the light receiving surface of the silicon substrate and the back surface on the opposite side. Further, it is generally used to increase the output by the back surface field effect by diffusing impurities of the same conductivity type as the silicon substrate at a high concentration on the back surface of the silicon substrate. However, in the solar cell having such a structure, there is a problem that the output of the solar cell is lowered because the electrode formed on the light receiving surface side blocks sunlight incident thereon.
  • a so-called back electrode type solar cell has been developed in which an electrode of a different conductivity type is formed only on the back surface of the silicon substrate without forming an electrode on the light receiving surface of the silicon substrate.
  • a back electrode type solar cell a p-type region and an n-type region are formed on the back surface of the silicon substrate without forming an electrode on the light-receiving surface side of the solar cell, and both positive and negative carriers are taken out in a comb shape.
  • a back-junction solar cell taken out from see, for example, Patent Document 1).
  • a conventional back junction solar cell will be described with reference to FIG.
  • a p-type region and an n-type region are alternately formed at predetermined intervals on the back surface of the n-type silicon substrate 101 opposite to the light-receiving surface.
  • a p-type thin wire electrode 111 is formed on the p-type region, and an n-type thin wire electrode 112 is formed on the n-type region.
  • the p-type fine wire electrode 111 and the n-type fine wire electrode 112 are formed so as to cover substantially the entire silicon substrate 101.
  • a p-type bus bar electrode 113 extending in a direction intersecting with the p-type thin wire electrode 111 is formed at an end portion on the back surface of the silicon substrate 101, and an n-type thin wire is formed at the other end portion on the back surface of the silicon substrate 101.
  • An n-type bus bar electrode 114 extending in a direction intersecting with the electrode 12 is formed.
  • the bus bar electrodes 113 and 114 and the thin wire electrodes 112 or 111 are formed with a predetermined width. For this reason, this area becomes an invalid part from the viewpoint of collecting carriers.
  • This invention makes it the 1st subject to improve the efficiency of the solar cell of a back electrode type solar cell. Moreover, this invention makes it 2nd subject to reduce the resistance of a back surface electrode and to improve the efficiency of a solar cell.
  • the solar cell of the present invention includes a semiconductor substrate and an electrode portion formed on the back surface of the semiconductor substrate, and the electrode portion includes a plurality of first thin wire electrodes formed on the back surface, and the first A plurality of second thin wire electrodes formed adjacent to the thin wire electrodes, and extending in a direction intersecting on the first thin wire electrode and the second thin wire electrode, the plurality of first thin wire electrodes being connected to each other.
  • a plurality of second bus electrodes extending in a direction intersecting the first bus bar electrode, the second thin line electrode, and the first thin line electrode. The thin wire electrodes are connected to each other, and the second bus bar electrodes are insulated from the first thin wire electrodes.
  • a semiconductor substrate is prepared, and on the back surface of the semiconductor substrate, a plurality of ground electrodes for the first thin wire electrodes and the ground electrodes for the first thin wire electrodes are adjacent.
  • the solar cell module of the present invention is a solar cell module including a plurality of electrically connected solar cells, and the solar cell includes a semiconductor substrate and electrodes formed on the back surface of the semiconductor substrate. A plurality of first thin wire electrodes formed on the back surface, a plurality of second thin wire electrodes formed adjacent to the first thin wire electrode, and on the first thin wire electrode.
  • a first bus bar electrode that extends in a direction intersecting on the second thin wire electrode, connects the plurality of first thin wire electrodes to each other, and is insulated from the second thin wire electrode;
  • a second bus bar electrode provided extending in a direction intersecting on the two thin wire electrodes and on the first thin wire electrode, interconnecting the plurality of second thin wire electrodes to each other and insulated from the first thin wire electrode And have.
  • the first fine wire electrode and the second fine wire electrode can be provided up to the bottom of the bus bar electrode. Therefore, the invalid area of the bus bar electrode portion can be reduced, the carrier collection efficiency is improved, and the solar cell Efficiency can be improved.
  • FIG. 1 is a plan view showing a solar cell according to a first embodiment.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1.
  • FIG. 2 is a sectional view taken along line B-B ′ of FIG. 1.
  • FIG. 2 is a sectional view taken along line C-C ′ of FIG. 1.
  • FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the solar cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the solar cell according to the first embodiment.
  • FIG. 3 is a plan view showing a manufacturing process of the solar cell according to the first embodiment.
  • FIG. 8 is a sectional view taken along line D-D ′ of FIG. 7.
  • FIG. 10 is a sectional view taken along line E-E ′ of FIG. 9.
  • FIG. 10 is a sectional view taken along line F-F ′ of FIG. 9.
  • FIG. 3 is a plan view showing a manufacturing process of the solar cell according to the first embodiment.
  • FIG. 13 is a sectional view taken along line G-G ′ of FIG. 12.
  • FIG. 13 is a sectional view taken along line H-H ′ of FIG. 12.
  • FIG. 16 is a sectional view taken along line I-I ′ of FIG. 15. It is a top view of the solar cell concerning 3rd Embodiment.
  • FIG. 10 is a sectional view taken along line E-E ′ of FIG. 9.
  • FIG. 10 is a sectional view taken along line F-F ′ of FIG. 9.
  • FIG. 3 is a plan view showing a manufacturing process of the solar cell according to the first embodiment.
  • FIG. 13 is a sectional view taken along line G-G ′ of FIG. 12.
  • FIG. 18 is a cross-sectional view taken along the line F-F ′ of FIG. 17. It is principal part sectional drawing of the solar cell concerning 4th Embodiment. It is a top view of the solar cell concerning 4th Embodiment.
  • FIG. 21 is a sectional view taken along line G-G ′ of FIG. 20. It is a schematic sectional drawing which shows the back junction type solar cell using the structure which improved the interface of heterojunction. It is a schematic sectional drawing which shows a back electrode type solar cell. It is a schematic sectional drawing which shows the solar cell module using the solar cell concerning each embodiment. It is a schematic plan view which shows the connection of the solar cell concerning each embodiment, and a wiring tab.
  • the “light receiving surface” means a surface of a semiconductor substrate in a solar cell or a solar cell module on the side on which sunlight is mainly incident
  • the “back surface” is a light receiving surface in the semiconductor substrate. Means the opposite surface.
  • FIG. 1 is a plan view showing the solar cell according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line BB ′ in FIG.
  • FIG. 4 is a cross-sectional view taken along the line CC ′.
  • the solar cell 10 is formed by diffusing a plurality of n-type regions 12 and p-type regions 13 alternately spaced along the back surface of an n-type single crystal silicon (Si) substrate 11. Is formed.
  • An n-type thin wire electrode 16 f is formed on the n-type region 12 on the back side of the substrate 11, and a p-type thin wire electrode 17 f is formed on the p-type region 13.
  • a highly conductive material such as silver or aluminum is used so that a current generated in the solar cell can be taken out sufficiently.
  • a material in which copper or the like is grown on the base electrode by plating to form a low resistance electrode is used.
  • copper layers (plating layers) 16c and 17c are grown on the base electrodes 16a and 17a formed by sputtering or the like by plating.
  • a protective film (not shown) such as an insulating film is formed on the substrate 11, and the protective film at predetermined positions on the n-type region 12 and the p-type region 13 is removed.
  • An n-type thin wire electrode 16f connected to the region 12 and a p-type thin wire electrode 17f connected to the p-type region 13 are provided.
  • the n-type bus bar electrode 16i extending in the direction intersecting on the n-type thin wire electrode 16f on the one end side of the substrate 11 and connected to the n-type thin wire electrode 16f is formed in multiple layers.
  • An insulating layer 20 is provided between the n-type bus bar electrode 16 located on the p-type thin wire electrode 17f, and the p-type thin wire electrode 17f and the n-type bus bar electrode 16i are not short-circuited. .
  • an insulating layer 20 having an opening on the base electrode 16a for the n-type thin wire electrode is provided on the substrate 11, a base electrode 16b is provided thereon, and a plating layer 16c is formed on the base electrode 16b. It is constituted by.
  • the n-type electrode 16 is constituted by the n-type thin wire electrode 16f and the bus bar electrode 16i.
  • a p-type bus bar electrode 17i extending in a direction intersecting on the p-type thin wire electrode 17f on the other end side of the substrate 11 and connected to the p-type thin wire electrode 17f is formed in multiple layers.
  • An insulating layer 20 is provided between the p-type bus bar electrode 17i located on the n-type thin wire electrode 16f, and the n-type thin wire electrode 16f and the p-type bus bar electrode 17 are not short-circuited. .
  • an insulating layer 20 having an opening on the base electrode 17a for the p-type thin wire electrode is provided on the substrate 11, a base electrode 17b is provided thereon, and a plating layer 17c is formed on the base electrode 17b. It is constituted by.
  • the p-type electrode 17 is composed of the p-type thin wire electrode 17f and the bus bar electrode 17i.
  • a surface passivation layer 18a made of an n-type doping layer and an antireflection film 18b such as titanium oxide (TiO 2 ) are formed.
  • the thin wire electrodes 16f and 17f described above are electrodes that mainly collect current generated in the solar cell 10.
  • the bus bar electrodes 16i and 17i are electrodes used to collect currents collected by the thin wire electrodes 16f and 17f, respectively, and are mainly used for connection with other solar cells.
  • the n-type thin wire electrode 16f and the p-type thin wire electrode 17f can be provided up to the bottom of the bus bar electrodes 16i and 17i. Can be reduced, carrier collection efficiency can be improved, and solar cell efficiency can be improved.
  • FIGS. 5 and 6 are schematic cross-sectional views showing the manufacturing process of the solar cell according to the first embodiment
  • FIG. 7 is a plan view showing the manufacturing process of the solar cell
  • FIG. 8 is a DD of FIG. 9 is a plan view showing a manufacturing process of the solar cell
  • FIG. 10 is a cross-sectional view taken along the line EE ′ of FIG. 9
  • FIG. 13 is a cross-sectional view taken along the line GG ′ of FIG. 12
  • FIG. 14 is a cross-sectional view taken along the line HH ′ of FIG.
  • the single crystal silicon substrate 11 is obtained by slicing an ingot of silicon crystal. When the substrate 11 is sliced, a damaged layer is formed in the vicinity of the surface thereof. Therefore, it is preferable to remove the damaged layer by etching using an acidic or alkaline solution.
  • the conductivity type of the substrate 11 may be n-type or p-type. In this embodiment, an n-type single crystal silicon substrate is used. Further, the size and thickness of the substrate 11 can be appropriately changed. In this embodiment, a substrate having a thickness of 200 ⁇ m, a size of 100 mm square, and a resistivity of 1 ⁇ cm was used.
  • a pyramidal microstructure called a texture is formed on the light receiving surface of the substrate 11 in order to suppress loss due to reflection of incident sunlight, the surface orientation of the light receiving surface of the substrate 11 is (100). Preferably there is.
  • 13a is attached in a predetermined pattern.
  • means for attaching the paste materials 12a and 13a in a predetermined pattern include screen printing and inkjet printing.
  • the paste materials 12a and 13a are formed on the back surface of the substrate 11 by screen printing.
  • the n-type paste material 12 a and the p-type paste material 13 a are formed along the back surface of the substrate 11 at intervals.
  • the substrate 11 is heated and diffused for 30 minutes at a temperature of about 800 ° C. to 900 ° C., for example, 850 ° C. in this embodiment.
  • the n-type impurity (phosphorus) contained in the n-type paste material 12a and the p-type impurity (boron) contained in the p-type paste material 13a are diffused into the substrate 11, and as shown in FIG.
  • a plurality of n-type regions 12 and p-type regions 13 are alternately formed along the back surface.
  • both the n-type region 12 and the p-type region 13 have a size of 0.8 mm ⁇ 98 mm, a gap of 0.4 mm, and a junction depth of 0.3 ⁇ m.
  • the number of p-type regions 13 is 41 and the number of n-type regions 12 is 40.
  • a number, thickness, etc. differ from an actual thing.
  • the oxide film formed on the surface of the substrate 11 is removed using dilute hydrofluoric acid (2%), and a surface passivation layer 18a made of an n-type doping layer is formed on the light receiving surface.
  • An antireflection film 18b is formed on the passivation layer 18a by thermal CVD (Chemical Vapor Deposition) to a thickness of about 80 nm.
  • the base electrode 16 a for the n-type thin wire electrode and the base electrode 17 a for the p-type thin wire electrode are provided on the n-type region 12 and the p-type region 13 on the back surface side of the substrate 11. Formed.
  • Each of the underlying electrodes 16a and 17a is 0.8 mm ⁇ 98 mm in size, 1 ⁇ m to 4 ⁇ m in thickness, and in this embodiment, 2 ⁇ m of copper is formed by sputtering using a metal mask.
  • rectangular insulating materials 20 each having a width of 10 mm and a length of 100 mm are provided on both ends of the substrate 11 so as to cover the base electrodes 16a and 17a.
  • This insulating material 20 is formed so as to cover all of one electrode end. That is, on the side where the n-type bus bar electrode is provided, an insulating layer 20 is provided which is opened on the base electrode 16a for the n-type thin wire electrode and patterned so as to cover the base electrode 17a for the p-type thin wire electrode. .
  • an insulating layer 20 which is open on the base electrode 17a for the p-type thin wire electrode and patterned so as to cover the base electrode 16a for the n-type thin wire electrode. It is done.
  • the size of each open area is 0.8 mm wide and 2 mm long.
  • the insulating layer 20 was formed by applying a polyimide resin with a film thickness of 1 ⁇ m to 10 ⁇ m, in this embodiment 5 ⁇ m, with a dispenser and heating temperature of 200 ° C. and heating time of 5 minutes.
  • a bus bar base electrode 16b connected to the base electrode 16a and a bus bar base electrode 17b connected to the base electrode 17a are formed on the insulating layer 20.
  • the base electrodes 16b and 17b have a width of 8 mm ⁇ a length of 98 mm, and a branch portion connected to each base electrode has a width of 0.8 mm.
  • the base electrodes 16b and 17b had a thickness of 1 ⁇ m to 4 ⁇ m, and in this embodiment, 2 ⁇ m of copper was formed by sputtering using a metal mask.
  • the base electrodes 16b and 17b are overlapped with each other by about 2 mm in length to ensure electrical connection.
  • the base electrodes 16a, 16b, 17a, and 17b are subjected to electric field plating while being individually fed to form plated layers 16c and 17c.
  • FIGS. Battery 10 is obtained.
  • the anode was phosphor-containing copper
  • the cathode was the base electrode 16a, 16b or 17a, 17b
  • the plating thickness was 10 ⁇ m to 30 ⁇ m, and in this embodiment, 10 ⁇ m.
  • the plating current was 2A
  • the plating solution was copper sulfate
  • the distance between the electrodes was 5 cm
  • the temperature was 40 ° C.
  • the thickness of the electrode can be increased by plating, and the resistance loss can be reduced.
  • Table 1 and FIG. 29 show the simulation results of the relationship between the electrode thickness and the resistance loss. Measurement is based on the assumption that the cell area is 100 cm 2 , the copper resistivity is 1.72 ⁇ cm, the resistance loss occurs in the length direction of the copper electrode, the electrode width is 0.8 mm, the number of electrodes is 41, and the pattern shape is the same as in FIG. did. Since FIG. 1 is simplified as described above, the number of electrodes is different from the number shown in FIG.
  • the base electrodes 16a and 17a for thin wire electrodes and the base electrodes 16b and 17b for bus bar electrodes can be easily and reliably connected. Therefore, when the plating power is supplied, power can be reliably supplied to all the underlying electrodes, and a plating layer having an optimum thickness can be formed on all the underlying electrodes. As a result, the thickness of all the electrodes can be formed to 10 ⁇ m or more, and the power loss at the electrodes can be reduced as much as possible.
  • a vapor-deposited metal film is used as the base electrode.
  • a transparent conductive film made of a mixture of indium oxide and tin oxide, a zinc oxide-based transparent conductive film, or the like is used as the base electrode. It can also be used as an electrode.
  • FIG. 15 is a plan view of a solar cell according to the second embodiment
  • FIG. 16 is a cross-sectional view taken along the line I-I ′ of FIG.
  • the base electrode for the bus bar electrode connected to the base electrode for the fine wire electrode is formed by the sputtering method.
  • the bus bar base electrodes 16h and 17h are connected to the base electrodes 16a and 17a for the thin wire electrodes using the conductive adhesive 21.
  • the bus bar base electrodes 16h and 17h in this embodiment are made of a copper foil plate having a thickness of 5 ⁇ m to 50 ⁇ m. Specifically, in the second embodiment, a copper foil plate having a width of 8 mm, a length of 98 mm, and a thickness of 10 ⁇ m was used. The process until the insulating layer 20 is formed is the same as that in the first embodiment.
  • the conductive resin adhesive 21 includes a resin adhesive component and conductive particles dispersed therein.
  • the conductive adhesive 21 is applied onto the insulating layer 20 with a dispenser, and base electrodes 16h and 17h made of a copper foil plate are placed thereon.
  • the conductive adhesive is cured while pressing the underlying electrodes 16h and 17h, and the underlying electrodes 16h and 17h are connected to the underlying electrodes 16a and 17a, respectively, thereby forming the underlying electrodes.
  • the resin adhesive component of the conductive resin adhesive 21 is composed of a composition containing a thermosetting resin, and for example, epoxy resin, phenoxy resin, acrylic resin, polyimide resin, polyamide resin, and polycarbonate resin can be used. These thermosetting resins are used singly or in combination of two or more, and one or more thermosetting resins selected from the group consisting of epoxy resins, phenoxy resins and acrylic resins are preferable. In addition, it is possible to use an ultraviolet curable resin as a resin adhesive component.
  • Examples of the conductive particles of the conductive resin adhesive 21 include metal particles such as gold particles, silver particles, copper particles, and nickel particles, or conductive or insulating properties such as gold plated particles, copper plated particles, and nickel plated particles. Conductive particles obtained by coating the surfaces of the core particles with a conductive layer such as a metal layer are used.
  • a liquid or a film can be used as the conductive adhesive 21 .
  • the underlying electrodes 16h and 17h made of a copper foil plate are placed on the conductive adhesive 21 and heated at 200 ° C. for 5 minutes under a pressure of about 1 to 2 MPa, for example, to cure the conductive adhesive 21.
  • the base electrodes 16h and 17h are bonded to the base electrodes 16a and 17a, respectively. This heating is preferably performed in a nitrogen atmosphere in order to prevent oxidation of the copper foil.
  • the electrodes 16 and 17 are formed by plating the same as in the first embodiment described above, so that the solar cell of the present invention is formed. Is obtained.
  • the p side and the n side can be plated simultaneously.
  • FIG. 17 is a plan view of a solar cell according to the third embodiment
  • FIG. 18 is a cross-sectional view taken along the line F-F ′ of FIG.
  • the base electrode for the bus bar electrode connected to the base electrode for the fine wire electrode is formed by the sputtering method.
  • the bus bar base electrodes 16d and 17d are connected to the base electrodes 16a and 17a for the thin wire electrodes by using a thermosetting conductive paste. The process until the insulating layer 20 is formed is the same as that in the first embodiment.
  • thermosetting Ag paste is used as the conductive paste, and the thickness is 2 ⁇ m to 20 ⁇ m.
  • the width is 8 mm, the length is 98 mm, and the thickness is 10 ⁇ m.
  • Formed by screen printing. The curing condition is 180 ° C. for 30 minutes.
  • An Ag paste was formed on the insulating layer 20 by screen printing, heated at 200 ° C. for 5 minutes to cure the Ag paste, and formed with an Ag paste connected to the underlying electrodes 16a and 17a for the thin wire electrodes. Bus bar base electrodes 16d and 17d are formed.
  • FIGS. 19 is a cross-sectional view of the main part of the solar cell according to the fourth embodiment
  • FIG. 20 is a plan view of the solar cell according to the fourth embodiment
  • FIG. 21 is a cross-sectional view taken along the line GG ′ of FIG. It is.
  • the base electrode for the bus bar electrode connected to the base electrode for the fine wire electrode is formed by the sputtering method.
  • the copper foil 19 is connected by welding to the base electrodes 16a and 17a for the thin wire electrodes. The process until the insulating layer 20 is formed is the same as that in the first embodiment.
  • each electrode is plated to form a plating layer 19a around the copper foil 19.
  • the electrodes including the bus bar electrodes 16e and 17e are formed.
  • a metal wire may be used for connection by welding, and then plating may be performed.
  • the back surface junction is formed by the diffusion layer.
  • the solar cell shown in FIG. 22 is a back junction solar cell using a so-called Hetero-junction with Intrinsic thin-layer structure in which the heterojunction interface is improved.
  • a passivation film 31 is formed on the light receiving surface of the n-type silicon substrate 11.
  • an intrinsic amorphous silicon layer 30 is formed on substantially the entire surface, and an n-type amorphous silicon layer 12i and a p-type amorphous silicon layer 13i are alternately formed in a comb shape thereon.
  • the n-type and p-type amorphous silicon layers 12i and 13i are provided with thin wire electrodes 16 and 17 for taking out, respectively, and the charges generated in the solar cell are taken out from the p side and the electrons are taken out from the n side.
  • an n-type bus bar electrode extending in a direction intersecting on the thin wire electrode 16 on one end side of the substrate 11 and connected to the thin wire electrode 16 is formed in multiple layers. Yes. An insulating layer is provided between the n-type bus bar electrode and the n-type bus bar electrode positioned on the fine wire electrode 17 so that the p-type fine wire electrode 17 and the n-type bus bar electrode are not short-circuited.
  • a p-type bus bar electrode that extends in the direction intersecting on the thin wire electrode 17 on the other end side of the substrate 11 and is connected to the thin wire electrode 17 is formed in multiple layers.
  • An insulating layer is provided between the n-type thin wire electrode 16 and the p-type bus bar electrode, and the n-type fine wire electrode 16 and the p-type bus bar electrode are not short-circuited.
  • the configuration other than the element structure of the solar cell is the same as that of the above-described embodiment.
  • the above-described solar cell is provided with a semiconductor junction on the back surface side, but the example shown in FIG. 23 is an electrode provided on the back surface side, and the semiconductor junction is provided on the light receiving surface side. That is, the p or n type impurity region 13 is provided on the surface side of the n or p type semiconductor substrate 11.
  • An electrode 16 having the same polarity as that of the substrate 11 is provided on the back side of the substrate 11, and an electrode of the impurity region 13 on the front side is provided on the back side of the substrate 11 through a through hole 31.
  • the electrodes 16 and 17 are the same as the electrodes described above.
  • the base electrode for the fine wire electrode and the base electrode for the bus bar are wired in multiple layers through the insulating layer, as in the above-described embodiment. What is necessary is just to comprise.
  • FIG. 24 is a schematic cross-sectional view showing a solar cell module using the solar cell of each embodiment
  • FIGS. 25 and 26 are schematic plan views showing the connection between the solar cell and a wiring tab.
  • the solar cell module electrically connects the p-side electrode 17 of one solar cell 10 and the n-side electrode 16 of the other solar cell 10 using a wiring tab 50 to form a string shape. Furthermore, as shown in FIG. 26, the solar cell module has a crossover wiring 52 that connects the strings. From the solar cell 10 located at the end, a wiring 52 is connected to the electrode 17 via a wiring tab 51, and this wiring 52 is connected to a terminal of a terminal box (not shown). An insulating sheet 55 is interposed between the wiring 52 and the solar cell 10 to prevent a short circuit between the wiring 52 and the electrode of the solar cell 10. As shown in FIG. 26, the bus bar electrodes of adjacent strings are arranged so as to have different polarities, and are considered so that they can be easily connected when connecting both strings using the crossover wiring 52.
  • the wiring 52 is a copper foil having a thickness of about 100 ⁇ m to 300 ⁇ m and a width of about 6 mm, and its entire surface is solder-coated, cut into a predetermined length, and soldered to a wiring tab or the like.
  • the surface of the output wiring is covered with an insulating film.
  • the solar cell module includes a plurality of solar cell modules connected from the light receiving surface side by a surface protection member 41 such as glass, a light-transmitting sealing material 43 such as EVA, a wiring tab 50, a crossover wiring 52, and the like.
  • the solar cell 10, the rear surface side light-transmitting sealing material 43, and the back surface protection member 42 composed of a back sheet and the like are stacked in this order, laminated and integrated. By this laminating process, the solar cell 10 and the wiring tab 30 are integrated in a connected state.
  • the wiring tab 51 connected to the bus bar electrode 17 (16) is connected to the crossover wiring 52 and is taken out as a lead line.
  • the wiring tab 51 and the transition wiring 52 cross over the n-type electrode 16 and the p-type electrode 17.
  • an insulating sheet 55 made of a filler or an insulating material is sandwiched between the wirings 51 and 52 and the solar cell 10 in order to prevent a short circuit due to the wiring.
  • the n-type electrode 16 and the p-type electrode 17 are connected by the wiring tab 50.
  • the position where the bus bar electrode is provided is not limited to the end.
  • one bus bar electrode 16x can be provided at the end, and the other bus bar electrode 17x can be provided at a predetermined distance from the end.
  • FIG. 28 by separating the bus bar electrode 17 from the end portion by a predetermined distance, a layout that reduces the overlapping of the crossover wirings 52 is possible, and there is an advantage that the overlapping of wirings of the solar cell module can be reduced. can get.
  • the electrode is formed by electrolytic plating, but may be formed by electroless plating.
  • the base electrode may be formed of a metal such as tin or nickel that has a higher ionization tendency than copper.
  • the electroless plating solution for example, a solution containing at least one of cupric sulfate, ethylenediaminetetraacetic acid, formaldehyde, and alkali hydroxide as a main component can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to increase the solar cell efficiency of a rear surface electrode-type solar cell. This solar cell has, on a substrate (11), a light-receiving surface for receiving sunlight and a rear surface provided on the opposite side of the light-receiving surface, and comprises electrode sections (16, 17) formed on the rear surface of the substrate (11). The electrode section has the following: a plurality of n-type fine wire electrodes (16f) formed on the rear surface; a plurality of p-type fine wire electrodes (17f) formed adjacent to the n-type fine wire electrodes (16f); an n-type bus bar electrode (16i) that is provided extending in a direction that intersects the n-type fine wire electrodes (16f) and the p-type fine wire electrodes (17f) and that, while mutually connecting the plurality of n-type fine wire electrodes (16f), is isolated from the p-type fine wire electrodes (17f); and a p-type bus bar electrode (17i) that is provided in a direction that intersects the p-type fine wire electrodes (17f) and the n-type fine wire electrodes (16f) and that, while mutually connecting the plurality of p-type fine wire electrodes (17f), is isolated from the n-type fine wire electrodes (16f).

Description

裏面電極型太陽電池、裏面電極型太陽電池の製造方法及び太陽電池モジュールBack electrode type solar cell, method for manufacturing back electrode type solar cell, and solar cell module
 この発明は、受光面と反対の裏面側に正負の電極が配置される裏面電極型太陽電池及びそれを用いた太陽電池モジュールに関するものである。 The present invention relates to a back electrode type solar cell in which positive and negative electrodes are arranged on the back side opposite to the light receiving surface and a solar cell module using the back electrode type solar cell.
太陽電池モジュールを構成する太陽電池は、例えば、単結晶又は多結晶のシリコン基板の面のうち太陽光が入射する側の面(受光面)にシリコン基板の導電型と反対の導電型となる層を設けてpn接合を形成し、シリコン基板の受光面とその反対側にある裏面にそれぞれ電極を形成して製造される。また、シリコン基板の裏面にはシリコン基板と同じ導電型の不純物を高濃度に拡散することによって、裏面電界効果による高出力化を図ることも一般的用いられている。しかしながら、このような構造の太陽電池においては、受光面側に形成される電極が入射する太陽光を遮るため、太陽電池の出力が低下するという問題があった。 The solar cell constituting the solar cell module is, for example, a layer having a conductivity type opposite to the conductivity type of the silicon substrate on the surface (light receiving surface) on the side where sunlight enters among the surfaces of the single crystal or polycrystalline silicon substrate And a pn junction is formed, and electrodes are formed on the light receiving surface of the silicon substrate and the back surface on the opposite side. Further, it is generally used to increase the output by the back surface field effect by diffusing impurities of the same conductivity type as the silicon substrate at a high concentration on the back surface of the silicon substrate. However, in the solar cell having such a structure, there is a problem that the output of the solar cell is lowered because the electrode formed on the light receiving surface side blocks sunlight incident thereon.
 そこで、シリコン基板の受光面には電極を形成せずに、シリコン基板の裏面のみに異なる導電型の電極を形成するいわゆる裏面電極型太陽電池が開発されている。裏面電極型太陽電池として、太陽電池の受光面側に電極を形成せずに、シリコン基板の裏面にp型領域、n型領域を形成し、正負両キャリアの取り出しを櫛型に形成した取り出し電極から取り出す裏面接合型太陽電池がある(例えば、特許文献1参照)。 Therefore, a so-called back electrode type solar cell has been developed in which an electrode of a different conductivity type is formed only on the back surface of the silicon substrate without forming an electrode on the light receiving surface of the silicon substrate. As a back electrode type solar cell, a p-type region and an n-type region are formed on the back surface of the silicon substrate without forming an electrode on the light-receiving surface side of the solar cell, and both positive and negative carriers are taken out in a comb shape. There is a back-junction solar cell taken out from (see, for example, Patent Document 1).
 図30に従い従来の裏面接合型太陽電池について説明する。裏面接合型太陽電池は、n型のシリコン基板101の受光面側とは反対側の裏面に、p型領域、n型領域とが交互に所定間隔を開けて形成されている。p型領域上にはp型細線電極111が形成され、n型領域上にはn型細線電極112が形成されている。 A conventional back junction solar cell will be described with reference to FIG. In the back junction solar cell, a p-type region and an n-type region are alternately formed at predetermined intervals on the back surface of the n-type silicon substrate 101 opposite to the light-receiving surface. A p-type thin wire electrode 111 is formed on the p-type region, and an n-type thin wire electrode 112 is formed on the n-type region.
 太陽電池の出力を向上させる観点から、p型細線電極111とn型細線電極112とがシリコン基板101の略全体を覆うように形成されている。そして、シリコン基板101の裏面上における端部に、p型細線電極111と交差する方向に延在するp型バスバー電極113が形成され、シリコン基板101の裏面上における他端部に、n型細線電極12と交差する方向に延在するn型バスバー電極114が形成されている。 From the viewpoint of improving the output of the solar cell, the p-type fine wire electrode 111 and the n-type fine wire electrode 112 are formed so as to cover substantially the entire silicon substrate 101. A p-type bus bar electrode 113 extending in a direction intersecting with the p-type thin wire electrode 111 is formed at an end portion on the back surface of the silicon substrate 101, and an n-type thin wire is formed at the other end portion on the back surface of the silicon substrate 101. An n-type bus bar electrode 114 extending in a direction intersecting with the electrode 12 is formed.
 この裏面接合型太陽電池の受光面に太陽光が入射すると、シリコン基板101の受光面近傍で生じたキャリアが裏面に形成されたpn接合まで到達し、p型細線電極111およびn型細線電極112に電流として収集される。この電流が外部に取り出されて太陽電池の出力となる。 When sunlight is incident on the light-receiving surface of the back junction solar cell, carriers generated in the vicinity of the light-receiving surface of the silicon substrate 101 reach the pn junction formed on the back surface, and the p-type thin wire electrode 111 and the n-type thin wire electrode 112. Collected as current. This current is taken out and becomes the output of the solar cell.
特開2006-120944号JP 2006-120944 A
 上記した従来の裏面接合型太陽電池においては、それぞれのバスバー電極113および114と細線電極112または111とが所定の幅を持って形成されている。このため、この領域はキャリアを収集する点からみると、無効部分となる。 In the conventional back junction solar cell described above, the bus bar electrodes 113 and 114 and the thin wire electrodes 112 or 111 are formed with a predetermined width. For this reason, this area becomes an invalid part from the viewpoint of collecting carriers.
 太陽電池においては、キャリアの収集効率を向上させることは,太陽電池の効率を向上させる点から重要なファクタである。 In solar cells, improving carrier collection efficiency is an important factor from the standpoint of improving solar cell efficiency.
 この発明は、裏面電極型太陽電池の太陽電池の効率を向上させることを第1の課題とする。また、この発明は、裏面電極の抵抗を低減させ、太陽電池の効率を向上させることを第2の課題とする。 This invention makes it the 1st subject to improve the efficiency of the solar cell of a back electrode type solar cell. Moreover, this invention makes it 2nd subject to reduce the resistance of a back surface electrode and to improve the efficiency of a solar cell.
 この発明の太陽電池は、半導体基板と、前記半導体基板の裏面上に形成された電極部とを備え、前記電極部は、前記裏面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、前記第1細線電極及び前記第2細線電極上で交差する方向に延在して設けられ、前記複数の第1細線電極を互い接続するとともに、前記第2細線電極とは絶縁された第1バスバー電極と、前記第2細線電極上及び前記第1細線電極上で交差する方向に延在して設けられ、前記複数の第2細線電極を互い接続するとともに、前記第1細線電極とは絶縁された第2バスバー電極と、を有する。 The solar cell of the present invention includes a semiconductor substrate and an electrode portion formed on the back surface of the semiconductor substrate, and the electrode portion includes a plurality of first thin wire electrodes formed on the back surface, and the first A plurality of second thin wire electrodes formed adjacent to the thin wire electrodes, and extending in a direction intersecting on the first thin wire electrode and the second thin wire electrode, the plurality of first thin wire electrodes being connected to each other. A plurality of second bus electrodes extending in a direction intersecting the first bus bar electrode, the second thin line electrode, and the first thin line electrode. The thin wire electrodes are connected to each other, and the second bus bar electrodes are insulated from the first thin wire electrodes.
 また、この発明の太陽電池の製造方法は、半導体基板を用意し、前記半導体基板の裏面上に、複数の第1細線電極用の下地電極と、前記第1細線電極用の下地電極に隣接する複数の第2細線電極用の下地電極を形成し、前記第1細線電極用の下地電極及び第2細線電極用の下地電極上で交差する方向に延在する方向に配置され、、前記複数の第1細線電極用の下地電極を互い接続するとともに、前記第2細線電極用の下地電極とは絶縁された第1バスバー電極用の下地電極を形成し、前記第2細線電極用の下地電極及び第1細線電極用の下地電極上で交差する方向に延在する方向に配置され、前記複数の第2細線電極用の下地電極を互い接続するとともに、前記第1細線電極用の下地電極とは絶縁された第2バスバー電極用の下地電極を形成し、前記各下地電極にメッキを行い、第1細線電極、第1バスバー電極、第2細線電極及び第2バスバー電極を形成する。 In the method for manufacturing a solar cell according to the present invention, a semiconductor substrate is prepared, and on the back surface of the semiconductor substrate, a plurality of ground electrodes for the first thin wire electrodes and the ground electrodes for the first thin wire electrodes are adjacent. Forming a plurality of base electrodes for the second thin wire electrode, arranged in a direction extending in a direction intersecting on the base electrode for the first thin wire electrode and the base electrode for the second thin wire electrode, A ground electrode for the first thin wire electrode is connected to each other, and a ground electrode for the first bus bar electrode is formed insulated from the ground electrode for the second thin wire electrode, and the ground electrode for the second thin wire electrode and Arranged in a direction extending in a direction intersecting on the base electrode for the first thin wire electrode, the plurality of base electrodes for the second thin wire electrode are connected to each other, and the base electrode for the first thin wire electrode is Form an insulated base electrode for the second bus bar electrode And performs plating on the respective underlying electrodes, the first fine-line electrodes, the first bus bar electrode, forming a second thin wire electrode and the second bus bar electrode.
 また、この発明の太陽電池モジュールは、電気的に接続されている複数の太陽電池を含む太陽電池モジュールであって、前記太陽電池は、半導体基板と、前記半導体基板の裏面上に形成された電極部を備え、前記電極部は、前記裏面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、前記第1細線電極上及び前記第2細線電極上で交差する方向に延在して設けられ、前記複数の第1細線電極を互い接続するとともに、前記第2細線電極とは絶縁された第1バスバー電極と、前記第2細線電極上及び前記第1細線電極上で交差する方向に延在して設けられ、前記複数の第2細線電極を互い接続するとともに、前記第1細線電極とは絶縁された第2バスバー電極と、を有している。 Moreover, the solar cell module of the present invention is a solar cell module including a plurality of electrically connected solar cells, and the solar cell includes a semiconductor substrate and electrodes formed on the back surface of the semiconductor substrate. A plurality of first thin wire electrodes formed on the back surface, a plurality of second thin wire electrodes formed adjacent to the first thin wire electrode, and on the first thin wire electrode. And a first bus bar electrode that extends in a direction intersecting on the second thin wire electrode, connects the plurality of first thin wire electrodes to each other, and is insulated from the second thin wire electrode; A second bus bar electrode provided extending in a direction intersecting on the two thin wire electrodes and on the first thin wire electrode, interconnecting the plurality of second thin wire electrodes to each other and insulated from the first thin wire electrode And have.
 この発明の太陽電池は、第1細線電極、第2細線電極をバスバー電極の下まで設けることができるので、バスバー電極の部分の無効領域を削減でき、キャリアの収集効率を向上させ、太陽電池の効率を向上させることができる。 In the solar cell of the present invention, the first fine wire electrode and the second fine wire electrode can be provided up to the bottom of the bus bar electrode. Therefore, the invalid area of the bus bar electrode portion can be reduced, the carrier collection efficiency is improved, and the solar cell Efficiency can be improved.
第1の実施形態にかかる太陽電池を示す平面図である。1 is a plan view showing a solar cell according to a first embodiment. 図1のA-A’線断面図である。FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. 図1のB-B’線断面図である。FIG. 2 is a sectional view taken along line B-B ′ of FIG. 1. 図1のC-C’線断面図である。FIG. 2 is a sectional view taken along line C-C ′ of FIG. 1. 第1の実施形態にかかる太陽電池の製造工程を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the solar cell according to the first embodiment. 第1の実施形態にかかる太陽電池の製造工程を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the solar cell according to the first embodiment. 第1の実施形態にかかる太陽電池の製造工程を示す平面図である。FIG. 3 is a plan view showing a manufacturing process of the solar cell according to the first embodiment. 図7のD-D’線断面図である。FIG. 8 is a sectional view taken along line D-D ′ of FIG. 7. この発明の太陽電池の製造工程を示す平面図である。It is a top view which shows the manufacturing process of the solar cell of this invention. 図9のE-E’線断面図である。FIG. 10 is a sectional view taken along line E-E ′ of FIG. 9. 図9のF-F’線断面図である。FIG. 10 is a sectional view taken along line F-F ′ of FIG. 9. 第1の実施形態にかかる太陽電池の製造工程を示す平面図である。FIG. 3 is a plan view showing a manufacturing process of the solar cell according to the first embodiment. 図12のG-G’線断面図である。FIG. 13 is a sectional view taken along line G-G ′ of FIG. 12. 図12のH-H’線断面図である。FIG. 13 is a sectional view taken along line H-H ′ of FIG. 12. 第2の実施形態にかかる太陽電池の平面図である。It is a top view of the solar cell concerning 2nd Embodiment. 図15のI-I’線断面図である。FIG. 16 is a sectional view taken along line I-I ′ of FIG. 15. 第3の実施形態にかかる太陽電池の平面図である。It is a top view of the solar cell concerning 3rd Embodiment. 図17のF-F’線断面図である。FIG. 18 is a cross-sectional view taken along the line F-F ′ of FIG. 17. 第4の実施形態にかかる太陽電池の要部断面図である。It is principal part sectional drawing of the solar cell concerning 4th Embodiment. 第4の実施形態にかかる太陽電池の平面図である。It is a top view of the solar cell concerning 4th Embodiment. 図20のG-G’線断面図である。FIG. 21 is a sectional view taken along line G-G ′ of FIG. 20. ヘテロ接合の界面を改善した構造を用いた裏面接合型太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows the back junction type solar cell using the structure which improved the interface of heterojunction. 裏面電極型太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows a back electrode type solar cell. 各実施形態にかかる太陽電池を用いた太陽電池モジュールを示す概略断面図である。It is a schematic sectional drawing which shows the solar cell module using the solar cell concerning each embodiment. 各実施形態にかかる太陽電池と配線タブとの接続を示す模式的平面図である。It is a schematic plan view which shows the connection of the solar cell concerning each embodiment, and a wiring tab. この発明の太陽電池と配線タブとの接続を示す模式的平面図である。It is a typical top view which shows the connection of the solar cell of this invention, and a wiring tab. 実施形態の変形例の太陽電池を示す模式的平面図である。It is a typical top view which shows the solar cell of the modification of embodiment. 実施形態の変形例の太陽電池を用いた太陽電池モジュールの配線状態を示す模式的平面図である。It is a typical top view which shows the wiring state of the solar cell module using the solar cell of the modification of embodiment. 銅電極厚と抵抗損失との関係を示す図である。It is a figure which shows the relationship between a copper electrode thickness and resistance loss. 従来の裏面電極型の太陽電池を示す平面図である。It is a top view which shows the conventional back electrode type solar cell.
 この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in order to avoid duplication of description.
 尚、本願明細書において、「受光面」とは、太陽電池または太陽電池モジュールにおける半導体基板の太陽光が主として入射する側の表面を意味し、「裏面」とは、上記半導体基板における受光面と反対側の表面を意味する。 In the present specification, the “light receiving surface” means a surface of a semiconductor substrate in a solar cell or a solar cell module on the side on which sunlight is mainly incident, and the “back surface” is a light receiving surface in the semiconductor substrate. Means the opposite surface.
 図1は、第1の実施形態にかかる太陽電池を示す平面図、図2は、図1のA-A’線断面図、図3は、図1のB-B’線断面図、図4は、C-C’線断面図である。 1 is a plan view showing the solar cell according to the first embodiment, FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1, FIG. 3 is a cross-sectional view taken along the line BB ′ in FIG. FIG. 4 is a cross-sectional view taken along the line CC ′.
 図1~図4に示すように、太陽電池10は、n型単結晶シリコン(Si)基板11の裏面に沿って複数のn型領域12およびp型領域13が交互に間隔をあけて拡散により形成されている。そして、基板11の裏面側のn型領域12上に、n型細線電極16f、p型領域13上にp型細線電極17fがそれぞれ形成されている。この電極16f、17fの材料としては、太陽電池に発生する電流を外部に十分に取り出すことができるように、銀又はアルミニウムなどの高導電材料が用いられる。さらに、メッキにより銅などを下地電極上に成長させ、低抵抗の電極を形成したものが用いられる。この実施形態では、スパッタなどにより形成した下地電極16a、17a上にメッキにより銅層(メッキ層)16c、17cを成長させたものを用いている。 As shown in FIGS. 1 to 4, the solar cell 10 is formed by diffusing a plurality of n-type regions 12 and p-type regions 13 alternately spaced along the back surface of an n-type single crystal silicon (Si) substrate 11. Is formed. An n-type thin wire electrode 16 f is formed on the n-type region 12 on the back side of the substrate 11, and a p-type thin wire electrode 17 f is formed on the p-type region 13. As the material of the electrodes 16f and 17f, a highly conductive material such as silver or aluminum is used so that a current generated in the solar cell can be taken out sufficiently. Further, a material in which copper or the like is grown on the base electrode by plating to form a low resistance electrode is used. In this embodiment, copper layers (plating layers) 16c and 17c are grown on the base electrodes 16a and 17a formed by sputtering or the like by plating.
 基板11上には、絶縁膜などの保護膜(図示せず)が形成され、n型領域12、p型領域13上の所定の箇所の保護膜が除去され、その部分に合わせて、n型領域12と接続するn型細線電極16f、p型領域13と接続するp型細線電極17fが設けられている。 A protective film (not shown) such as an insulating film is formed on the substrate 11, and the protective film at predetermined positions on the n-type region 12 and the p-type region 13 is removed. An n-type thin wire electrode 16f connected to the region 12 and a p-type thin wire electrode 17f connected to the p-type region 13 are provided.
 そして、基板11の一端部側にn型細線電極16f上で交差する方向に延在して、n型細線電極16fと接続するn型バスバー電極16iが多層に形成されている。p型細線電極17f上に位置するn型バスバー電極16との間には絶縁層20が設けられ、p型細線電極17fとn型バスバー電極16iとが短絡することが無いように構成されている。このバスバー電極16iは、n型細線電極用の下地電極16a上が開口した絶縁層20を基板11上に設け、この上に下地電極16bを設け、この下地電極16b上にメッキ層16cを形成することにより構成されている。n型細線電極16fとバスバー電極16iとでn型電極16が構成される。 The n-type bus bar electrode 16i extending in the direction intersecting on the n-type thin wire electrode 16f on the one end side of the substrate 11 and connected to the n-type thin wire electrode 16f is formed in multiple layers. An insulating layer 20 is provided between the n-type bus bar electrode 16 located on the p-type thin wire electrode 17f, and the p-type thin wire electrode 17f and the n-type bus bar electrode 16i are not short-circuited. . In this bus bar electrode 16i, an insulating layer 20 having an opening on the base electrode 16a for the n-type thin wire electrode is provided on the substrate 11, a base electrode 16b is provided thereon, and a plating layer 16c is formed on the base electrode 16b. It is constituted by. The n-type electrode 16 is constituted by the n-type thin wire electrode 16f and the bus bar electrode 16i.
 また、基板11の他端側にp型細線電極17f上で交差する方向に延在して、p型細線電極17fと接続するp型バスバー電極17iが多層に形成されている。n型細線電極16f上に位置するp型バスバー電極17iとの間には絶縁層20が設けられ、n型細線電極16fとp型バスバー電極17とが短絡することが無いように構成されている。このバスバー電極17iは、p型細線電極用の下地電極17a上が開口した絶縁層20を基板11上に設け、この上に下地電極17bを設け、この下地電極17b上にメッキ層17cを形成することにより構成されている。p型細線電極17fとバスバー電極17iとでp型電極17が構成される。 Further, a p-type bus bar electrode 17i extending in a direction intersecting on the p-type thin wire electrode 17f on the other end side of the substrate 11 and connected to the p-type thin wire electrode 17f is formed in multiple layers. An insulating layer 20 is provided between the p-type bus bar electrode 17i located on the n-type thin wire electrode 16f, and the n-type thin wire electrode 16f and the p-type bus bar electrode 17 are not short-circuited. . In this bus bar electrode 17i, an insulating layer 20 having an opening on the base electrode 17a for the p-type thin wire electrode is provided on the substrate 11, a base electrode 17b is provided thereon, and a plating layer 17c is formed on the base electrode 17b. It is constituted by. The p-type electrode 17 is composed of the p-type thin wire electrode 17f and the bus bar electrode 17i.
 また、基板11の受光面側には、n型のドーピング層からなる表面パッシベーション層18a、及び酸化チタン(TiO)等の反射防止膜18bが形成されている。 On the light receiving surface side of the substrate 11, a surface passivation layer 18a made of an n-type doping layer and an antireflection film 18b such as titanium oxide (TiO 2 ) are formed.
 上記した細線電極16f、17fは、主として、太陽電池10に発生した電流を収集する電極である。また、バスバー電極16i、17iは、細線電極16f、17fがそれぞれ収集した電流を集め、主に他の太陽電池との接続に用いられる電極である。 The thin wire electrodes 16f and 17f described above are electrodes that mainly collect current generated in the solar cell 10. The bus bar electrodes 16i and 17i are electrodes used to collect currents collected by the thin wire electrodes 16f and 17f, respectively, and are mainly used for connection with other solar cells.
 このように、この実施形態にかかる太陽電池10は、n型細線電極16f、p型細線電極17fがバスバー電極16i、17iの下まで設けることができるので、バスバー電極16i、17iの部分の無効領域を削減でき、キャリアの収集効率を向上させ、太陽電池の効率を向上させることができる。 Thus, in the solar cell 10 according to this embodiment, the n-type thin wire electrode 16f and the p-type thin wire electrode 17f can be provided up to the bottom of the bus bar electrodes 16i and 17i. Can be reduced, carrier collection efficiency can be improved, and solar cell efficiency can be improved.
 更に、各細線電極の下地電極16a、17aと接続するバスバー用の下地電極16b、17bを設けてメッキによる電極形成を行うことができるので、メッキの際に各細線電極との間の接続不良を防ぎ、良好なメッキ電極が形成できる。この結果、電極の抵抗を小さくでき、抵抗損失が減少する。 Furthermore, since it is possible to perform electrode formation by plating by providing base electrodes 16b and 17b for bus bars that are connected to the base electrodes 16a and 17a of the thin wire electrodes, poor connection between the thin wire electrodes during plating can be achieved. It can prevent and form a good plating electrode. As a result, the resistance of the electrode can be reduced and the resistance loss is reduced.
 次に、上記した太陽電池10を製造する方法につき、図5~図14を参照して説明する。図5及び図6は、第1の実施形態にかかる太陽電池の製造工程を示す概略断面図、図7は、同太陽電池の製造工程を示す平面図、図8は、図7のD-D’線断面図、図9は、同太陽電池の製造工程を示す平面図、図10は、図9のE-E’線断面図、図11は、図9のF-F’線断面図、図12は、同太陽電池の製造工程を示す平面図、図13は、図12のG-G’線断面図、図14は、図12のH-H’線断面図である。 Next, a method for manufacturing the above-described solar cell 10 will be described with reference to FIGS. 5 and 6 are schematic cross-sectional views showing the manufacturing process of the solar cell according to the first embodiment, FIG. 7 is a plan view showing the manufacturing process of the solar cell, and FIG. 8 is a DD of FIG. 9 is a plan view showing a manufacturing process of the solar cell, FIG. 10 is a cross-sectional view taken along the line EE ′ of FIG. 9, and FIG. 11 is a cross-sectional view taken along the line FF ′ of FIG. 12 is a plan view showing the manufacturing process of the solar cell, FIG. 13 is a cross-sectional view taken along the line GG ′ of FIG. 12, and FIG. 14 is a cross-sectional view taken along the line HH ′ of FIG.
 単結晶シリコン基板11は、シリコン結晶のインゴッドをスライスして得られる。基板11は、スライスの際にその表面近傍にダメージ層が形成される。そこで、酸性またはアルカリ性の溶液を用いて、ダメージ層をエッチング除去することが好ましい。なお、基板11の導電型はn型でもp型でもよいが、この実施形態では、n型単結晶シリコン基板を用いた。また、基板11の大きさや厚みについても適宜変更が可能である。この実施形態では、厚さ200μm、大きさ100mm角、抵抗率1Ωcmの基板を用いた。尚、入射する太陽光の反射による損失を抑制するために基板11の受光面にいわゆるテクスチャと呼ばれるピラミッド状の微細構造を形成する場合には、基板11の受光面の面方位が(100)であることが好ましい。 The single crystal silicon substrate 11 is obtained by slicing an ingot of silicon crystal. When the substrate 11 is sliced, a damaged layer is formed in the vicinity of the surface thereof. Therefore, it is preferable to remove the damaged layer by etching using an acidic or alkaline solution. The conductivity type of the substrate 11 may be n-type or p-type. In this embodiment, an n-type single crystal silicon substrate is used. Further, the size and thickness of the substrate 11 can be appropriately changed. In this embodiment, a substrate having a thickness of 200 μm, a size of 100 mm square, and a resistivity of 1 Ωcm was used. When a pyramidal microstructure called a texture is formed on the light receiving surface of the substrate 11 in order to suppress loss due to reflection of incident sunlight, the surface orientation of the light receiving surface of the substrate 11 is (100). Preferably there is.
 図5に示すように、基板11の受光面の反対側にある裏面にn型不純物(例えば、リン)を含むn型ペースト材12aと、p型不純物(例えば、ボロン)を含むp型ペースト材13aとが所定のパターンで付着される。ペースト材12a、13aを所定のパターンで付着する手段としては、例えばスクリーン印刷やインクジェット印刷などがある。この実施形態では、スクリーン印刷により、ペースト材12a、13aを基板11の裏面上に形成した。ここで、基板11内に発生する少数キャリアを効率良く収集するため、n型ペースト材12aとp型ペースト材13aとが基板11の裏面に沿って交互に間隔を空けて形成される。 As shown in FIG. 5, an n-type paste material 12 a containing an n-type impurity (for example, phosphorus) and a p-type paste material containing a p-type impurity (for example, boron) on the back surface opposite to the light receiving surface of the substrate 11. 13a is attached in a predetermined pattern. Examples of means for attaching the paste materials 12a and 13a in a predetermined pattern include screen printing and inkjet printing. In this embodiment, the paste materials 12a and 13a are formed on the back surface of the substrate 11 by screen printing. Here, in order to efficiently collect the minority carriers generated in the substrate 11, the n-type paste material 12 a and the p-type paste material 13 a are formed along the back surface of the substrate 11 at intervals.
 次に、基板11は、例えば800℃~900℃程度の温度、この実施形態では、850℃の温度で30分間に加熱して熱拡散を行う。これにより、n型ペースト材12aに含まれるn型不純物(リン)およびp型ペースト材13aに含まれるp型不純物(ボロン)が基板11中に拡散され、図6に示すように、基板11の裏面に沿って、複数のn型領域12およびp型領域13が交互に間隔をあけて形成される。裏面側の接合は、例えば、n型領域12、p型領域13ともに、サイズ0.8mm×98mm、ギャップ0.4mm、接合深さ0.3μmである。そして、p型領域13が41本、n型領域12が40本としている。尚、図では、簡略化して記載しているので、本数、厚みなどは,実際のものとは異なっている。 Next, the substrate 11 is heated and diffused for 30 minutes at a temperature of about 800 ° C. to 900 ° C., for example, 850 ° C. in this embodiment. As a result, the n-type impurity (phosphorus) contained in the n-type paste material 12a and the p-type impurity (boron) contained in the p-type paste material 13a are diffused into the substrate 11, and as shown in FIG. A plurality of n-type regions 12 and p-type regions 13 are alternately formed along the back surface. For example, both the n-type region 12 and the p-type region 13 have a size of 0.8 mm × 98 mm, a gap of 0.4 mm, and a junction depth of 0.3 μm. The number of p-type regions 13 is 41 and the number of n-type regions 12 is 40. In addition, in the figure, since it has simplified and described, a number, thickness, etc. differ from an actual thing.
 この後、基板11表面に形成された酸化膜を、希フッ酸(2%)を用いて除去し、そして、受光面に、n型のドーピング層からなる表面パッシベーション層18aを形成し、更に、パッシベーション層18aの上に反射防止膜18bを熱CVD(Chemical Vapor Deposition)にて,約80nm厚さで形成した。 Thereafter, the oxide film formed on the surface of the substrate 11 is removed using dilute hydrofluoric acid (2%), and a surface passivation layer 18a made of an n-type doping layer is formed on the light receiving surface. An antireflection film 18b is formed on the passivation layer 18a by thermal CVD (Chemical Vapor Deposition) to a thickness of about 80 nm.
 続いて、図7及び図8に示すように、基板11の裏面側のn型領域12、p型領域13に、n型細線電極用の下地電極16a、p型細線電極用の下地電極17aを形成した。それぞれの下地用電極16a、17aは、サイズ0.8mm×98mm、厚みは1μm~4μm、この実施形態では、2μmの銅を、メタルマスクを用いたスパッタ法により形成した。 Subsequently, as shown in FIG. 7 and FIG. 8, the base electrode 16 a for the n-type thin wire electrode and the base electrode 17 a for the p-type thin wire electrode are provided on the n-type region 12 and the p-type region 13 on the back surface side of the substrate 11. Formed. Each of the underlying electrodes 16a and 17a is 0.8 mm × 98 mm in size, 1 μm to 4 μm in thickness, and in this embodiment, 2 μm of copper is formed by sputtering using a metal mask.
 図9~図11に示すように、下地用電極16a、17aを覆う形で、幅10mm×長さ100mmの長方形の絶縁材20を基板11の両端にそれぞれ設ける。この絶縁材20は、一方の電極端を全て覆う形で形成されている。すなわち、n型のバスバー電極が設けられる側には、n型細線電極用の下地電極16a上が開口し、p型細線電極用の下地電極17aを覆うようにパターニングされた絶縁層20が設けられる。同様に、p型のバスバー電極が設けられる側には、p型細線電極用の下地電極17a上が開口し、n型細線電極用の下地電極16aを覆うようにパターニングされた絶縁層20が設けられる。なお、それぞれ開口する領域の大きさは幅0.8mm、長さ2mmである。 As shown in FIGS. 9 to 11, rectangular insulating materials 20 each having a width of 10 mm and a length of 100 mm are provided on both ends of the substrate 11 so as to cover the base electrodes 16a and 17a. This insulating material 20 is formed so as to cover all of one electrode end. That is, on the side where the n-type bus bar electrode is provided, an insulating layer 20 is provided which is opened on the base electrode 16a for the n-type thin wire electrode and patterned so as to cover the base electrode 17a for the p-type thin wire electrode. . Similarly, on the side where the p-type bus bar electrode is provided, there is provided an insulating layer 20 which is open on the base electrode 17a for the p-type thin wire electrode and patterned so as to cover the base electrode 16a for the n-type thin wire electrode. It is done. The size of each open area is 0.8 mm wide and 2 mm long.
 この絶縁層20は、ポリイミド樹脂を膜厚1μmから10μm、この実施形態では、5μmの厚さで、ディスペンサーにより塗布し、加熱温度200℃、加熱時間5分で形成した。 The insulating layer 20 was formed by applying a polyimide resin with a film thickness of 1 μm to 10 μm, in this embodiment 5 μm, with a dispenser and heating temperature of 200 ° C. and heating time of 5 minutes.
 続いて、図12~図14に示すように、下地用電極16aと接続するバスバー用の下地電極16bと、下地用電極17aと接続するバスバー用の下地電極17bとを絶縁層20の上に形成した。この下地電極16b、17bは、この実施形態では、幅8mm×長さ98mmで、各下地電極と接続する枝部の幅が0.8mmである。下地用電極16b、17bは、厚みは1μm~4μm、この実施形態では、2μmの銅を、メタルマスクを用いたスパッタ法により形成した。この際、各細線電極用の下地電極16a、17a上で、下地電極16b、17bが長さ2mm程度重なるようにして,電気的接続を確保している。 Subsequently, as shown in FIGS. 12 to 14, a bus bar base electrode 16b connected to the base electrode 16a and a bus bar base electrode 17b connected to the base electrode 17a are formed on the insulating layer 20. did. In this embodiment, the base electrodes 16b and 17b have a width of 8 mm × a length of 98 mm, and a branch portion connected to each base electrode has a width of 0.8 mm. The base electrodes 16b and 17b had a thickness of 1 μm to 4 μm, and in this embodiment, 2 μm of copper was formed by sputtering using a metal mask. At this time, on the base electrodes 16a and 17a for the respective thin wire electrodes, the base electrodes 16b and 17b are overlapped with each other by about 2 mm in length to ensure electrical connection.
 その後、下地電極16a、16b、17a、17bに対して、個別に給電しながら電界メッキを行い、メッキ層16c、17cを形成して、図1~図5に示すように、この実施形態の太陽電池10が得られる。メッキは、アノードを含りん銅、カソードを下地電極16a、16b又は17a、17bとし、メッキ厚10μm~30μm、この実施形態では、10μmとした。メッキ条件は、メッキ電流は2A、メッキ液は硫酸銅、電極間距離は5cm、温度は40℃とした。 Thereafter, the base electrodes 16a, 16b, 17a, and 17b are subjected to electric field plating while being individually fed to form plated layers 16c and 17c. As shown in FIGS. Battery 10 is obtained. In the plating, the anode was phosphor-containing copper, the cathode was the base electrode 16a, 16b or 17a, 17b, and the plating thickness was 10 μm to 30 μm, and in this embodiment, 10 μm. As for the plating conditions, the plating current was 2A, the plating solution was copper sulfate, the distance between the electrodes was 5 cm, and the temperature was 40 ° C.
 このように、メッキで電極の厚みを大きくすることができ、抵抗損失を少なくできる。 Thus, the thickness of the electrode can be increased by plating, and the resistance loss can be reduced.
 表1並びに図29に、電極厚さと抵抗損失の関係をシミュレーションした結果を示す。測定は、セル面積100cm、銅抵抗率1.72μΩcm、抵抗損失は銅電極の長さ方向で生じると仮定、電極幅は0.8mm、電極本数は41本、パターン形状は図1と同様とした。尚、前述と同様に図1は簡略されているので、電極本数は図1に示す本数とは異なる。 Table 1 and FIG. 29 show the simulation results of the relationship between the electrode thickness and the resistance loss. Measurement is based on the assumption that the cell area is 100 cm 2 , the copper resistivity is 1.72 μΩcm, the resistance loss occurs in the length direction of the copper electrode, the electrode width is 0.8 mm, the number of electrodes is 41, and the pattern shape is the same as in FIG. did. Since FIG. 1 is simplified as described above, the number of electrodes is different from the number shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図29より、電極の厚さが10μm以上であると、電極でのパワー損失が発電電力の0.5%以下になり、実用上問題が無くなることが分かる。このように、この実施形態によれば、細線電極用の下地電極16a、17aとバスバー電極用の下地電極16b、17bを簡単にして確実に接続できる。従って、メッキの給電の際に,全下地電極に確実に給電が行え、全下地電極上に最適な厚さのメッキ層を形成することができる。この結果、全ての電極の膜厚を10μm以上に形成することができ、電極でのパワー損失を限りなく小さくできる。 From Table 1 and FIG. 29, it can be seen that when the electrode thickness is 10 μm or more, the power loss at the electrode is 0.5% or less of the generated power, and there is no practical problem. Thus, according to this embodiment, the base electrodes 16a and 17a for thin wire electrodes and the base electrodes 16b and 17b for bus bar electrodes can be easily and reliably connected. Therefore, when the plating power is supplied, power can be reliably supplied to all the underlying electrodes, and a plating layer having an optimum thickness can be formed on all the underlying electrodes. As a result, the thickness of all the electrodes can be formed to 10 μm or more, and the power loss at the electrodes can be reduced as much as possible.
 上記した実施形態においては、下地電極として、蒸着金属膜を用いたが、金属膜以外に、インジウム酸化物とスズ酸化物との混合物からなる透明導電膜、酸化亜鉛系の透明導電膜などを下地電極として用いることも可能である。 In the above-described embodiment, a vapor-deposited metal film is used as the base electrode. However, in addition to the metal film, a transparent conductive film made of a mixture of indium oxide and tin oxide, a zinc oxide-based transparent conductive film, or the like is used as the base electrode. It can also be used as an electrode.
 次に、第2の実施形態につき、図15~図16に従い説明する。図15は、第2の実施形態にかかる太陽電池の平面図、図16は、図15のI-I’線断面図である。 Next, a second embodiment will be described with reference to FIGS. FIG. 15 is a plan view of a solar cell according to the second embodiment, and FIG. 16 is a cross-sectional view taken along the line I-I ′ of FIG.
 上記した第1の実施形態は、細線電極用の下地電極と接続するバスバー電極用下地電極をスパッタ法により形成した。これに対して、この第2の実施形態は、導電性接着剤21を用いてバスバー用下地電極16h、17hをそれぞれの細線電極用の下地電極16a、17aに接続する。この実施形態におけるバスバー用下地電極16h、17hは、厚さ5μm~50μmの銅箔板からなる。具体的には、この第2の実施形態においては、幅8mm、長さ98mm、厚さ10μmの銅箔板を用いた。尚、絶縁層20を形成するまでは、前述した第1の実施形態と同様である。 In the first embodiment described above, the base electrode for the bus bar electrode connected to the base electrode for the fine wire electrode is formed by the sputtering method. On the other hand, in the second embodiment, the bus bar base electrodes 16h and 17h are connected to the base electrodes 16a and 17a for the thin wire electrodes using the conductive adhesive 21. The bus bar base electrodes 16h and 17h in this embodiment are made of a copper foil plate having a thickness of 5 μm to 50 μm. Specifically, in the second embodiment, a copper foil plate having a width of 8 mm, a length of 98 mm, and a thickness of 10 μm was used. The process until the insulating layer 20 is formed is the same as that in the first embodiment.
 導電性樹脂接着剤21は、樹脂接着成分とその中に分散した導電性粒子とを含んで構成される。この導電性接着剤21を絶縁層20の上にディスペンサーにて塗布し、その上に銅箔板からなる下地用電極16h、17hを載せる。下地用電極16h、17hを押圧しながら、導電性接着剤を硬化させ、下地用電極16a、17aにそれぞれ下地電極16h、17hを接続させて下地用電極を形成する。 The conductive resin adhesive 21 includes a resin adhesive component and conductive particles dispersed therein. The conductive adhesive 21 is applied onto the insulating layer 20 with a dispenser, and base electrodes 16h and 17h made of a copper foil plate are placed thereon. The conductive adhesive is cured while pressing the underlying electrodes 16h and 17h, and the underlying electrodes 16h and 17h are connected to the underlying electrodes 16a and 17a, respectively, thereby forming the underlying electrodes.
 導電性樹脂接着剤21の樹脂接着成分は熱硬化性樹脂を含有する組成物からなり、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂を用いることができる。これらの熱硬化性樹脂は、1種を単独で用いるか2種以上を組み合わせて用いられ、エポキシ樹脂、フェノキシ樹脂及びアクリル樹脂からなる群より選ばれる1種以上の熱硬化性樹脂が好ましい。他にも樹脂接着成分として、紫外線硬化型の樹脂を使用することも可能である。 The resin adhesive component of the conductive resin adhesive 21 is composed of a composition containing a thermosetting resin, and for example, epoxy resin, phenoxy resin, acrylic resin, polyimide resin, polyamide resin, and polycarbonate resin can be used. These thermosetting resins are used singly or in combination of two or more, and one or more thermosetting resins selected from the group consisting of epoxy resins, phenoxy resins and acrylic resins are preferable. In addition, it is possible to use an ultraviolet curable resin as a resin adhesive component.
 導電性樹脂接着剤21の導電性粒子としては、例えば、金粒子、銀粒子、銅粒子及びニッケル粒子などの金属粒子、或いは、金メッキ粒子、銅メッキ粒子及びニッケルメッキ粒子などの導電性又は絶縁性の核粒子の表面を金属層などの導電層で被覆してなる導電性粒子が用いられる。 Examples of the conductive particles of the conductive resin adhesive 21 include metal particles such as gold particles, silver particles, copper particles, and nickel particles, or conductive or insulating properties such as gold plated particles, copper plated particles, and nickel plated particles. Conductive particles obtained by coating the surfaces of the core particles with a conductive layer such as a metal layer are used.
 導電性接着剤21としては、液状のものやフィルム状に形成されたものを用いることができる。導電性接着剤21の上に銅箔板からなる下地用電極16h、17hを載せ、例えば、1~2MPaの程度の加圧下で200℃で5分間加熱して、導電性接着剤21を硬化させ、下地用電極16a、17aにそれぞれ下地電極16h、17hを接着させる。尚、この加熱の際には、銅箔の酸化防止のために、窒素雰囲気中で行うことが好ましい。 As the conductive adhesive 21, a liquid or a film can be used. The underlying electrodes 16h and 17h made of a copper foil plate are placed on the conductive adhesive 21 and heated at 200 ° C. for 5 minutes under a pressure of about 1 to 2 MPa, for example, to cure the conductive adhesive 21. The base electrodes 16h and 17h are bonded to the base electrodes 16a and 17a, respectively. This heating is preferably performed in a nitrogen atmosphere in order to prevent oxidation of the copper foil.
 このように、下地電極16a、16h、17a、17hを形成した後、前述した第1の実施形態と同様にして、それぞれにメッキを施して電極16、17を形成して、この発明の太陽電池が得られる。なお、p側とn側は同時にメッキを行うことも可能である。 After forming the base electrodes 16a, 16h, 17a, and 17h in this manner, the electrodes 16 and 17 are formed by plating the same as in the first embodiment described above, so that the solar cell of the present invention is formed. Is obtained. The p side and the n side can be plated simultaneously.
 次に、第3の実施形態につき、図17~図18に従い説明する。図17は、第3の実施形態にかかる太陽電池の平面図、図18は、図17のF-F’線断面図である。 Next, a third embodiment will be described with reference to FIGS. FIG. 17 is a plan view of a solar cell according to the third embodiment, and FIG. 18 is a cross-sectional view taken along the line F-F ′ of FIG.
 上記した第1の実施形態は、細線電極用の下地電極と接続するバスバー電極用下地電極をスパッタ法により形成した。これに対して、この第3の実施形態は、熱硬化型の導電ペーストを用いてバスバー用下地電極16d、17dをそれぞれの細線電極用の下地電極16a、17aに接続する。尚、絶縁層20を形成するまでは、前述した第1の実施形態と同様である。 In the first embodiment described above, the base electrode for the bus bar electrode connected to the base electrode for the fine wire electrode is formed by the sputtering method. In contrast, in the third embodiment, the bus bar base electrodes 16d and 17d are connected to the base electrodes 16a and 17a for the thin wire electrodes by using a thermosetting conductive paste. The process until the insulating layer 20 is formed is the same as that in the first embodiment.
 バスバー用下地電極16d、17dは、導電性ペーストとして,例えば、熱硬化型のAgペーストを用い、厚さ2μm~20μm、この第3の実施形態においては、幅8mm、長さ98mm、厚さ10μmのものスクリーン印刷により形成した。硬化条件は、180℃で30分である。 For the bus bar base electrodes 16d and 17d, for example, a thermosetting Ag paste is used as the conductive paste, and the thickness is 2 μm to 20 μm. In the third embodiment, the width is 8 mm, the length is 98 mm, and the thickness is 10 μm. Formed by screen printing. The curing condition is 180 ° C. for 30 minutes.
 Agペーストを絶縁層20の上にスクリーン印刷により形成し、200℃で5分間加熱して、Agペーストを硬化させ,それぞれの細線電極用の下地電極16a、17aに接続するAgペーストで形成されたバスバー用下地電極16d、17dが形成される。 An Ag paste was formed on the insulating layer 20 by screen printing, heated at 200 ° C. for 5 minutes to cure the Ag paste, and formed with an Ag paste connected to the underlying electrodes 16a and 17a for the thin wire electrodes. Bus bar base electrodes 16d and 17d are formed.
 このように、下地電極16a、16d、17a、17dを形成した後、前述した第1の実施形態と同様にして、それぞれメッキを施して電極16、17を形成して、第3の実施形態の太陽電池が得られる。 In this manner, after forming the base electrodes 16a, 16d, 17a, and 17d, similarly to the first embodiment described above, plating is performed to form the electrodes 16 and 17, respectively. A solar cell is obtained.
 次に、第4の実施形態につき、図19~図21に従い説明する。図19は、第4の実施形態にかかる太陽電池の要部断面図、図20は、第4の実施形態にかかる太陽電池の平面図、図21は、図20のG-G’線断面図である。 Next, a fourth embodiment will be described with reference to FIGS. 19 is a cross-sectional view of the main part of the solar cell according to the fourth embodiment, FIG. 20 is a plan view of the solar cell according to the fourth embodiment, and FIG. 21 is a cross-sectional view taken along the line GG ′ of FIG. It is.
 上記した第1の実施形態は、細線電極用の下地電極と接続するバスバー電極用下地電極をスパッタ法により形成した。これに対して、この第4の実施形態は、図19に示すように、銅箔19をそれぞれの細線電極用の下地電極16a、17aに溶接して接続するものである。尚、絶縁層20を形成するまでは、前述した第1の実施形態と同様である。 In the first embodiment described above, the base electrode for the bus bar electrode connected to the base electrode for the fine wire electrode is formed by the sputtering method. On the other hand, in the fourth embodiment, as shown in FIG. 19, the copper foil 19 is connected by welding to the base electrodes 16a and 17a for the thin wire electrodes. The process until the insulating layer 20 is formed is the same as that in the first embodiment.
 溶接により、それぞれ下地電極16a、17a及び銅箔19を形成した後、図20、図21に示すように、それぞれの電極にメッキを施して、銅箔19の周りにメッキ層19aを形成して、バスバー電極16e,17eを含む電極を形成するものである。銅箔19を溶接しただけでは機械的強度が弱いことが懸念されるが、銅箔19を含め、下地電極16a、17aの周囲にメッキ層19aを形成することで、薄膜19の周りと下地電極16a、17aとの間がメッキ層19aで覆われ、十分な機械的強度が確保できる。 After the base electrodes 16a and 17a and the copper foil 19 are formed by welding, as shown in FIGS. 20 and 21, each electrode is plated to form a plating layer 19a around the copper foil 19. The electrodes including the bus bar electrodes 16e and 17e are formed. Although it is feared that the mechanical strength is weak only by welding the copper foil 19, by forming the plating layer 19a around the base electrodes 16a and 17a including the copper foil 19, the periphery of the thin film 19 and the base electrode A space between 16a and 17a is covered with a plating layer 19a, and sufficient mechanical strength can be secured.
 尚、銅箔19の代わりに金属ワイヤを用いて溶接により接続し、その後メッキを施しても良い。 In addition, instead of the copper foil 19, a metal wire may be used for connection by welding, and then plating may be performed.
 なお、下地電極は、上記した以外に、金属粉末を射出して焼結させた金属粉焼成物を用いることが可能である。 In addition to the above, it is possible to use a fired metal powder obtained by injecting and sintering a metal powder as the base electrode.
 次に、他の実施形態の太陽電池につき説明する。上記した実施形態の太陽電池においては、拡散層により,裏面接合を形成したものである。図22に示す太陽電池は、ヘテロ接合の界面を改善したいわゆるHetero-junction with Intrinsic Thin-layer構造を用いた裏面接合型太陽電池である。n型シリコン基板11の受光面には、パッシベーション膜31を形成している。 Next, solar cells according to other embodiments will be described. In the solar cell of the above-described embodiment, the back surface junction is formed by the diffusion layer. The solar cell shown in FIG. 22 is a back junction solar cell using a so-called Hetero-junction with Intrinsic thin-layer structure in which the heterojunction interface is improved. A passivation film 31 is formed on the light receiving surface of the n-type silicon substrate 11.
 基板11の裏面には、略全面に真性のアモルファスシリコン層30が形成され、その上部にn型アモルファスシリコン層12i、p型アモルファスシリコン層13iが櫛型に交互に形成されている。そして、このn型、p型アモルファスシリコン層12i、13iにそれぞれ取り出し用の細線電極16、17が設けられ、太陽電池で発生した電荷をホールはp側、電子はn側から取り出す。 On the back surface of the substrate 11, an intrinsic amorphous silicon layer 30 is formed on substantially the entire surface, and an n-type amorphous silicon layer 12i and a p-type amorphous silicon layer 13i are alternately formed in a comb shape thereon. The n-type and p-type amorphous silicon layers 12i and 13i are provided with thin wire electrodes 16 and 17 for taking out, respectively, and the charges generated in the solar cell are taken out from the p side and the electrons are taken out from the n side.
 前述した実施形態と同様に、図示はしないが、基板11の一端部側に細線電極16上で交差する方向に延在して、細線電極16と接続するn型バスバー電極が多層に形成されている。細線電極17上に位置するn型バスバー電極との間には絶縁層が設けられ、p型細線電極17とn型バスバー電極とが短絡することが無いように構成されている。 Similar to the above-described embodiment, although not shown, an n-type bus bar electrode extending in a direction intersecting on the thin wire electrode 16 on one end side of the substrate 11 and connected to the thin wire electrode 16 is formed in multiple layers. Yes. An insulating layer is provided between the n-type bus bar electrode and the n-type bus bar electrode positioned on the fine wire electrode 17 so that the p-type fine wire electrode 17 and the n-type bus bar electrode are not short-circuited.
 また、基板11の他端側に細線電極17上で交差する方向に延在して、細線電極17と接続するp型バスバー電極が多層に形成されている。n型細線電極16上に位置するp型バスバー電極との間には絶縁層が設けられ、n型細線電極16とp型バスバー電極とが短絡することが無いように構成されている。 In addition, a p-type bus bar electrode that extends in the direction intersecting on the thin wire electrode 17 on the other end side of the substrate 11 and is connected to the thin wire electrode 17 is formed in multiple layers. An insulating layer is provided between the n-type thin wire electrode 16 and the p-type bus bar electrode, and the n-type fine wire electrode 16 and the p-type bus bar electrode are not short-circuited.
 太陽電池の素子構造以外は前述の実施形態と同様に構成される。 The configuration other than the element structure of the solar cell is the same as that of the above-described embodiment.
 次に更に異なる実施形態の太陽電池につき説明する。上記した太陽電池は,裏面側に半導体接合が設けられているが、図23に示す例は、電極を裏面側に設けたものであり、半導体接合は受光面側に設けている。すなわち、n又はp型の半導体基板11の表面側にp又はn型の不純物領域13が設けられる。基板11の裏面側には、基板11と同極性の電極16が設けられ、表面側の不純物領域13の電極はスルーホール31を介して基板11の裏面側に設けられる。 Next, solar cells of different embodiments will be described. The above-described solar cell is provided with a semiconductor junction on the back surface side, but the example shown in FIG. 23 is an electrode provided on the back surface side, and the semiconductor junction is provided on the light receiving surface side. That is, the p or n type impurity region 13 is provided on the surface side of the n or p type semiconductor substrate 11. An electrode 16 having the same polarity as that of the substrate 11 is provided on the back side of the substrate 11, and an electrode of the impurity region 13 on the front side is provided on the back side of the substrate 11 through a through hole 31.
 この電極16、17は、前述した電極と同様である。図22及び図23に示した太陽電池の裏面側に設けた電極に際して、前述の実施形態と同様に、細線電極用の下地電極とバスバー用の下地電極とを絶縁層を介して多層に配線するように構成すればよい。 The electrodes 16 and 17 are the same as the electrodes described above. In the electrodes provided on the back surface side of the solar cell shown in FIGS. 22 and 23, the base electrode for the fine wire electrode and the base electrode for the bus bar are wired in multiple layers through the insulating layer, as in the above-described embodiment. What is necessary is just to comprise.
 上記の各実施形態の太陽電池を複数個用い、複数の太陽電池を電気的に接続して太陽電池モジュールを形成する。次に、この実施形態の太陽電池を用いた太陽電池モジュールにつき図24~図26を参照して説明する。図24は、各実施形態の太陽電池を用いた太陽電池モジュールを示す概略断面図、図25及び図26は、同太陽電池と配線タブとの接続を示す模式的平面図である。 A plurality of solar cells of each of the above embodiments are used, and a plurality of solar cells are electrically connected to form a solar cell module. Next, a solar cell module using the solar cell of this embodiment will be described with reference to FIGS. FIG. 24 is a schematic cross-sectional view showing a solar cell module using the solar cell of each embodiment, and FIGS. 25 and 26 are schematic plan views showing the connection between the solar cell and a wiring tab.
 太陽電池モジュールは、一方の太陽電池10のp側電極17と他方の太陽電池10のn側電極16とを配線タブ50を用いて電気的に接続し、ストリング状にする。さらに、図26に示すように、太陽電池モジュールには、ストリング間を接続する渡り配線52を有する。端部に位置する太陽電池10からは、電極17に配線タブ51を介して配線52が接続され、この配線52が端子ボックス(図示しない)の端子と接続される。この配線52と太陽電池10との間には絶縁シート55を介在させ、配線52と太陽電池10の電極との短絡を防止している。図26に示すように、隣り合うストリング同士のバスバー電極は極性が異なるように配置され、渡り配線52を用いて両ストリングを接続する際に容易に接続できるように考慮されている。 The solar cell module electrically connects the p-side electrode 17 of one solar cell 10 and the n-side electrode 16 of the other solar cell 10 using a wiring tab 50 to form a string shape. Furthermore, as shown in FIG. 26, the solar cell module has a crossover wiring 52 that connects the strings. From the solar cell 10 located at the end, a wiring 52 is connected to the electrode 17 via a wiring tab 51, and this wiring 52 is connected to a terminal of a terminal box (not shown). An insulating sheet 55 is interposed between the wiring 52 and the solar cell 10 to prevent a short circuit between the wiring 52 and the electrode of the solar cell 10. As shown in FIG. 26, the bus bar electrodes of adjacent strings are arranged so as to have different polarities, and are considered so that they can be easily connected when connecting both strings using the crossover wiring 52.
 配線52は、厚さ100μm~300μm程度、幅6mm程度の銅箔にその全面を半田コートしたものを所定の長さに切断し、配線タブ等に半田付けされている。また、出力配線の表面は、絶縁フィルムによって被覆されている。 The wiring 52 is a copper foil having a thickness of about 100 μm to 300 μm and a width of about 6 mm, and its entire surface is solder-coated, cut into a predetermined length, and soldered to a wiring tab or the like. The surface of the output wiring is covered with an insulating film.
 図24に示すように、太陽電池モジュールは、受光面側からガラス等の表面保護部材41、EVA等の透光性を有する封止材43、配線タブ50、渡り配線52等で接続された複数の太陽電池10、裏面側の透光性の封止材43、バックシートなどからなる裏面保護部材42をこの順序で積み重ね、ラミネートされて一体化される。このラミネート処理により、太陽電池10と配線タブ30とが接続された状態で一体化される。 As shown in FIG. 24, the solar cell module includes a plurality of solar cell modules connected from the light receiving surface side by a surface protection member 41 such as glass, a light-transmitting sealing material 43 such as EVA, a wiring tab 50, a crossover wiring 52, and the like. The solar cell 10, the rear surface side light-transmitting sealing material 43, and the back surface protection member 42 composed of a back sheet and the like are stacked in this order, laminated and integrated. By this laminating process, the solar cell 10 and the wiring tab 30 are integrated in a connected state.
 また、図26に示すように、バスバー電極17(16)に接続した配線タブ51が渡り配線52に接続され、そして、引き出し線として取り出される。このように、配線タブ51、渡り配線52がn型電極16、p型電極17の上を横切ることになる。このような場合には、配線による短絡を防止するために、充填材または絶縁材等からなる絶縁シート55が配線51、52と太陽電池10との間に挟み込まれる。このように、配線51、52と太陽電池10との間に絶縁シート55を挟み込んで配線を行うことで、渡り配線52の配置に余裕ができ、モジュール化が容易になる。 Further, as shown in FIG. 26, the wiring tab 51 connected to the bus bar electrode 17 (16) is connected to the crossover wiring 52 and is taken out as a lead line. Thus, the wiring tab 51 and the transition wiring 52 cross over the n-type electrode 16 and the p-type electrode 17. In such a case, an insulating sheet 55 made of a filler or an insulating material is sandwiched between the wirings 51 and 52 and the solar cell 10 in order to prevent a short circuit due to the wiring. In this manner, by performing the wiring by sandwiching the insulating sheet 55 between the wirings 51 and 52 and the solar cell 10, there is a margin in the arrangement of the transitional wiring 52, and modularization becomes easy.
 そして、図25、26に示すように、太陽電池10、10を直列に接続する場合には、n型電極16とp型電極17が配線タブ50で接続される。 25 and 26, when the solar cells 10 and 10 are connected in series, the n-type electrode 16 and the p-type electrode 17 are connected by the wiring tab 50.
 バスバー電極を設ける位置は、端部には限らない。例えば、図27に示すように、一方のバスバー電極16xは端部に,他方のバスバー電極17xを端部から所定の距離を隔てて設けることができる。図28に示すように、バスバー電極17を端部から所定の距離を隔てることで、渡り配線52の重なりを減らすようなレイアウトが可能になり、太陽電池モジュールの配線の重なりを少なくできるという利点が得られる。 The position where the bus bar electrode is provided is not limited to the end. For example, as shown in FIG. 27, one bus bar electrode 16x can be provided at the end, and the other bus bar electrode 17x can be provided at a predetermined distance from the end. As shown in FIG. 28, by separating the bus bar electrode 17 from the end portion by a predetermined distance, a layout that reduces the overlapping of the crossover wirings 52 is possible, and there is an advantage that the overlapping of wirings of the solar cell module can be reduced. can get.
 また、上記した実施形態においては、電極は、電解メッキを用いて形成しているが、無電解メッキで形成してもよい。なお、電極として無電解メッキで銅を析出させるためには、銅よりイオン化傾向の大きい錫やニッケルなどの金属で下地電極を形成すればよい。また、無電解メッキ液としては、例えば硫酸第二銅、エチレンジアミン四酢酸、ホルムアルデヒド、及び水酸化アルカリの少なくとも一つを主成分としているものを用いることができる。  In the above-described embodiment, the electrode is formed by electrolytic plating, but may be formed by electroless plating. In order to deposit copper by electroless plating as the electrode, the base electrode may be formed of a metal such as tin or nickel that has a higher ionization tendency than copper. In addition, as the electroless plating solution, for example, a solution containing at least one of cupric sulfate, ethylenediaminetetraacetic acid, formaldehyde, and alkali hydroxide as a main component can be used.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 太陽電池
 11 基板
 12 n型領域
 13 p型領域
 16 n型電極
 16f n型細線電極
 16i n型バスバー電極
 17 p型電極
 17f p型細線電極
 17i p型バスバー電極
 20 絶縁層
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Substrate 12 N-type area | region 13 p-type area | region 16 n-type electrode 16f n-type thin wire electrode 16i n-type bus-bar electrode 17 p-type electrode 17f p-type thin-wire electrode 17i p-type bus-bar electrode 20 Insulating layer

Claims (8)

  1.  半導体基板と、
     前記半導体基板の裏面上に形成された電極部とを備え、
     前記電極部は、
     前記裏面上に形成された複数の第1細線電極と、
     前記第1細線電極に隣接して形成された複数の第2細線電極と、
     前記第1細線電極及び前記第2細線電極上で交差する方向に延在して設けられ、前記複数の第1細線電極を互い接続するとともに、前記第2細線電極とは絶縁された第1バスバー電極と、
     前記第2細線電極上及び前記第1細線電極上で交差する方向に延在して設けられ、前記複数の第2細線電極を互い接続するとともに、前記第1細線電極とは絶縁された第2バスバー電極と、
     を有する、太陽電池。
    A semiconductor substrate;
    An electrode portion formed on the back surface of the semiconductor substrate,
    The electrode part is
    A plurality of first thin wire electrodes formed on the back surface;
    A plurality of second thin wire electrodes formed adjacent to the first thin wire electrode;
    A first bus bar that extends in a direction intersecting on the first thin wire electrode and the second thin wire electrode, connects the plurality of first thin wire electrodes to each other, and is insulated from the second thin wire electrode Electrodes,
    The second thin line electrode extends in a direction intersecting on the second thin line electrode and the first thin line electrode, connects the plurality of second thin line electrodes to each other, and is insulated from the first thin line electrode. A busbar electrode;
    A solar cell.
  2.  前記第1バスバー電極と第2バスバー電極とは間隔を開けて形成されている、請求項1に記載の太陽電池。 The solar cell according to claim 1, wherein the first bus bar electrode and the second bus bar electrode are formed with an interval therebetween.
  3.  前記第1細線電極、第1バスバー電極、第2細線電極、及び前記第2バスバー電極は、下地電極上にメッキにより形成された電極である、請求項1又は請求項2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the first thin wire electrode, the first bus bar electrode, the second thin wire electrode, and the second bus bar electrode are electrodes formed on a base electrode by plating.
  4.  前記第1バスバー電極と第2細線電極との間に絶縁層が設けられ、前記第2バスバー電極と第2細線電極との間に絶縁層が設けられている、請求項1~請求項3のいずれか1項に記載の太陽電池。 The insulating layer is provided between the first bus bar electrode and the second thin wire electrode, and the insulating layer is provided between the second bus bar electrode and the second thin wire electrode. The solar cell of any one of Claims.
  5.  前記下地電極は、蒸着金属膜、導電性樹脂、金属箔、金属ワイヤ、透明導電膜又は金属粉焼成物のいずれかから選択されている、請求項3に記載の太陽電池。 The solar cell according to claim 3, wherein the base electrode is selected from any one of a deposited metal film, a conductive resin, a metal foil, a metal wire, a transparent conductive film, and a fired metal powder.
  6.  半導体基板を用意し、
     前記半導体基板の裏面上に、複数の第1細線電極用の下地電極と、前記第1細線電極用の下地電極に隣接する複数の第2細線電極用の下地電極を形成し、
     前記第1細線電極用の下地電極及び第2細線電極用の下地電極上で交差する方向に延在する方向に配置され、前記複数の第1細線電極用の下地電極を互い接続するとともに、前記第2細線電極用の下地電極とは絶縁された第1バスバー電極用の下地電極を形成し、
     前記第2細線電極用の下地電極及び第1細線電極用の下地電極上で交差する方向に延在する方向に配置され、前記複数の第2細線電極用の下地電極を互い接続するとともに、前記第1細線電極用の下地電極とは絶縁された第2バスバー電極用の下地電極を形成し、
    前記各下地電極にメッキを行い、第1細線電極、第1バスバー電極、第2細線電極及び第2バスバー電極を形成する、太陽電池の製造方法。
    Prepare a semiconductor substrate,
    Forming a plurality of ground electrodes for the first thin wire electrode and a plurality of ground electrodes for the second thin wire electrode adjacent to the ground electrode for the first thin wire electrode on the back surface of the semiconductor substrate;
    The base electrode for the first thin wire electrode and the base electrode for the second thin wire electrode are arranged in a direction extending in a crossing direction, and the plurality of base electrodes for the first thin wire electrode are connected to each other, and Forming a base electrode for the first bus bar electrode insulated from the base electrode for the second thin wire electrode;
    Arranged in a direction extending in a direction intersecting on the base electrode for the second thin wire electrode and the base electrode for the first thin wire electrode, and connecting the plurality of base electrodes for the second thin wire electrode to each other, Forming a base electrode for the second bus bar electrode insulated from the base electrode for the first thin wire electrode;
    A method of manufacturing a solar cell, comprising plating each of the base electrodes to form a first thin wire electrode, a first bus bar electrode, a second thin wire electrode, and a second bus bar electrode.
  7.  電気的に接続されている複数の太陽電池を含む太陽電池モジュールであって、
     前記太陽電池は、半導体基板と、前記半導体基板の裏面上に形成された電極部を備え、
     前記電極部は、
     前記裏面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、
     前記第1細線電極上及び前記第2細線電極上で交差する方向に延在して設けられ、前記複数の第1細線電極を互い接続するとともに、前記第2細線電極とは絶縁された第1バスバー電極と、
     前記第2細線電極上及び前記第1細線電極上で交差する方向に延在して設けられ、前記複数の第2細線電極を互い接続するとともに、前記第1細線電極とは絶縁された第2バスバー電極と、
     を有する、太陽電池モジュール。
    A solar cell module including a plurality of solar cells electrically connected,
    The solar cell includes a semiconductor substrate and an electrode portion formed on the back surface of the semiconductor substrate,
    The electrode part is
    A plurality of first thin wire electrodes formed on the back surface; a plurality of second thin wire electrodes formed adjacent to the first thin wire electrode;
    The first thin wire electrode extends in a direction intersecting on the first thin wire electrode and the second thin wire electrode, connects the plurality of first thin wire electrodes to each other, and is insulated from the second thin wire electrode. A busbar electrode;
    The second thin line electrode extends in a direction intersecting on the second thin line electrode and the first thin line electrode, connects the plurality of second thin line electrodes to each other, and is insulated from the first thin line electrode. A busbar electrode;
    A solar cell module.
  8.  前記第1細線電極及び第2細線電極を含む太陽電池上に絶縁材が設けられ、この絶縁材上に前記第1または第2のバスバー電極と接続される配線が設けられる、請求項7に記載の太陽電池モジュール。 The insulating material is provided on the solar cell including the first thin wire electrode and the second thin wire electrode, and the wiring connected to the first or second bus bar electrode is provided on the insulating material. Solar cell module.
PCT/JP2012/057178 2011-03-24 2012-03-21 Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module WO2012128284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-065459 2011-03-24
JP2011065459 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012128284A1 true WO2012128284A1 (en) 2012-09-27

Family

ID=46879426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057178 WO2012128284A1 (en) 2011-03-24 2012-03-21 Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module

Country Status (1)

Country Link
WO (1) WO2012128284A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150083388A (en) * 2014-01-09 2015-07-17 엘지전자 주식회사 Solar cell module
JP2016174191A (en) * 2013-10-29 2016-09-29 エルジー エレクトロニクス インコーポレイティド Solar battery module and manufacturing method for the same
US9911875B2 (en) * 2013-04-23 2018-03-06 Beamreach-Solexel Assets LLC Solar cell metallization
WO2018066273A1 (en) * 2016-10-03 2018-04-12 豊田鉄工株式会社 Method for manufacturing busbar resin molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019440A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solar battery module
WO2007099955A1 (en) * 2006-03-01 2007-09-07 Sanyo Electric Co., Ltd. Solar battery cell and solar battery module using such solar battery cell
JP2009290105A (en) * 2008-05-30 2009-12-10 Sharp Corp Solar battery, method of manufacturing solar battery, and solar battery module
JP2010283231A (en) * 2009-06-05 2010-12-16 Sharp Corp Solar cell module and method of manufacturing the same
JP2011035092A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Back-junction type solar cell and solar cell module using the same
JP2011507245A (en) * 2007-12-11 2011-03-03 インスティトュート フィュル ゾラールエネルギーフォルシュング ゲーエムベーハー Back electrode type solar cell having elongated, interdigitated emitter region and base region on back side, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019440A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solar battery module
WO2007099955A1 (en) * 2006-03-01 2007-09-07 Sanyo Electric Co., Ltd. Solar battery cell and solar battery module using such solar battery cell
JP2011507245A (en) * 2007-12-11 2011-03-03 インスティトュート フィュル ゾラールエネルギーフォルシュング ゲーエムベーハー Back electrode type solar cell having elongated, interdigitated emitter region and base region on back side, and manufacturing method thereof
JP2009290105A (en) * 2008-05-30 2009-12-10 Sharp Corp Solar battery, method of manufacturing solar battery, and solar battery module
JP2010283231A (en) * 2009-06-05 2010-12-16 Sharp Corp Solar cell module and method of manufacturing the same
JP2011035092A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Back-junction type solar cell and solar cell module using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911875B2 (en) * 2013-04-23 2018-03-06 Beamreach-Solexel Assets LLC Solar cell metallization
JP2016174191A (en) * 2013-10-29 2016-09-29 エルジー エレクトロニクス インコーポレイティド Solar battery module and manufacturing method for the same
US9799782B2 (en) 2013-10-29 2017-10-24 Lg Electronics Inc. Solar cell module and method for manufacturing the same
US10636921B2 (en) 2013-10-29 2020-04-28 Lg Electronics Inc. Solar cell module and method for manufacturing the same
KR20150083388A (en) * 2014-01-09 2015-07-17 엘지전자 주식회사 Solar cell module
KR102233893B1 (en) * 2014-01-09 2021-03-30 엘지전자 주식회사 Solar cell module
WO2018066273A1 (en) * 2016-10-03 2018-04-12 豊田鉄工株式会社 Method for manufacturing busbar resin molded article

Similar Documents

Publication Publication Date Title
US10593822B2 (en) Main-gate-free and high-efficiency back-contact solar cell module, main-gate-free and high-efficiency back-contact solar cell assembly, and preparation process thereof
EP3244454B1 (en) Main-gate-free high-efficiency back contact solar cell and assembly and preparation process thereof
CN106409929B (en) Main-grid-free full back contact solar cell module
JP5410050B2 (en) Solar cell module
US10115840B2 (en) Solar cell and method for producing thereof
CN106653912B (en) Grid-line-free full back contact solar cell module
KR101679452B1 (en) Solar battery, solar battery module and solar battery system
JP6189971B2 (en) Solar cell and solar cell module
WO2012043516A1 (en) Solar-cell module and manufacturing method therefor
CN102593204B (en) Solar cell and method for manufacturing the same
JP5014503B2 (en) Solar cell and solar cell module
US20180175223A1 (en) Solar cell and solar cell module
US20160284895A1 (en) Photovoltaic apparatus
JP2008135655A (en) Solar battery module, manufacturing method therefor, and solar battery cell
US9660121B2 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
US9123861B2 (en) Solar battery, manufacturing method thereof, and solar battery module
CN215988787U (en) Solar cell and photovoltaic module
EP2393122B2 (en) Photoelectric conversion cell, photoelectric conversion module, and method for manufacturing photoelectric conversion cell
JP2010239167A (en) Solar cell module
JP2024516468A (en) Back contact solar cell strings and methods, assemblies and systems thereof
JP2015207598A (en) Solar cell module, solar cell, and inter-element connection body
WO2012128284A1 (en) Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module
JP2015230985A (en) Solar battery cell, manufacturing method for the same and solar battery panel
JP5014502B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
CN209981238U (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP