WO2016008382A1 - 一种单级光伏并网逆变器及其控制方法和应用 - Google Patents

一种单级光伏并网逆变器及其控制方法和应用 Download PDF

Info

Publication number
WO2016008382A1
WO2016008382A1 PCT/CN2015/083628 CN2015083628W WO2016008382A1 WO 2016008382 A1 WO2016008382 A1 WO 2016008382A1 CN 2015083628 W CN2015083628 W CN 2015083628W WO 2016008382 A1 WO2016008382 A1 WO 2016008382A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
grid
inverter
photovoltaic
boost circuit
Prior art date
Application number
PCT/CN2015/083628
Other languages
English (en)
French (fr)
Inventor
孙维
郑群
汪昌友
李浩源
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to ES15821660T priority Critical patent/ES2928308T3/es
Priority to JP2016570352A priority patent/JP6424365B2/ja
Priority to EP15821660.6A priority patent/EP3171478B1/en
Priority to US15/315,210 priority patent/US20170133857A1/en
Publication of WO2016008382A1 publication Critical patent/WO2016008382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to a single-stage photovoltaic grid-connected inverter, in particular to a single-stage photovoltaic grid-connected inverter including a DC-AC inverter circuit, and a control method and application thereof.
  • Photovoltaic grid-connected inverters need to meet certain grid-connected conditions for normal grid-connected power generation.
  • the DC bus voltage of a PV grid-connected inverter is not lower than the peak value of the grid voltage.
  • inverter manufacturers usually configure more solar panels to increase the open circuit voltage of the PV array or to connect DCs with their power capacity in front of the DC-AC inverter circuit.
  • the DC boost circuit is used to meet the grid connection conditions.
  • the conventional design idea is to complete the boost of the output voltage of the photovoltaic array by the DC-DC boost circuit of the previous stage. Functionality, in this case, the solar array configuration of the solar panels does not require a lot.
  • this design idea has the following disadvantages: because the DC-DC boost circuit is matched with the power capacity of the DC-AC inverter circuit, the cost is high; and since the DC-DC boost circuit requires a long time together with the DC-AC inverter circuit Work, so the switching loss is relatively large, and the overall efficiency of the inverter is low.
  • a contactor is connected in parallel on the DC-DC boost circuit.
  • inverter manufacturers In the case of conventional photovoltaic grid-connected inverters including single-stage DC-AC inverter circuits, inverter manufacturers generally consider configuring a larger number of photovoltaic panels to increase the open circuit voltage of the photovoltaic array.
  • the single-stage photovoltaic grid-connected inverter has the advantages of simple circuit, output power up to megawatt level, and low unit power generation cost. Widely used in large-scale photovoltaic power plants.
  • the grid-connected inverters cannot meet the grid-connected conditions, resulting in loss of power generation.
  • the technical problem to be solved by the present application is to provide a single-stage photovoltaic grid-connected inverter capable of increasing power generation compared with a conventional single-stage photovoltaic grid-connected inverter.
  • a single-stage photovoltaic grid-connected inverter provided by the present application includes a DC-AC inverter circuit, an output of the DC-AC inverter circuit is connected to an AC grid, and further includes a series connection between the PV array and the DC- a DC-DC boosting circuit between the AC inverter circuits, and a bypass element; the bypass element is connected in parallel with the DC-DC boosting circuit; the rated power capacity Pdc of the DC-DC boosting circuit is smaller than The rated power capacity Pac of the DC-AC inverter circuit.
  • the rated power capacity Pdc of the DC-DC boosting circuit is smaller than the rated power capacity Pac of the DC-AC inverter circuit, including: Pdc ⁇ 0.5Pac.
  • the single-stage photovoltaic grid-connected inverter further includes a control circuit for controlling disconnection and conduction of the bypass element; when the maximum power point voltage value of the photovoltaic array is Upv_mppt is smaller than The control circuit controls the bypass element to be disconnected when the AC grid voltage peaks, or when the PV array output power Ppv is less than the rated power capacity Pdc of the DC-DC boost circuit, the DC - DC boost circuit operates; when the maximum power point voltage Upv_mppt of the photovoltaic array is not less than the AC grid voltage peak, or when the output power Ppv of the photovoltaic array is not less than the DC-DC boost circuit When the power capacity Pdc is rated, the control circuit controls conduction of the bypass element, and the DC-DC boost circuit does not operate.
  • bypass element comprises an electric switch or a high voltage direct current relay or a high voltage MOSFET or a high voltage IGBT.
  • the DC-AC inverter circuit adopts a two-level topology or a multi-level topology.
  • the DC-AC inverter circuit includes a three-phase or single-phase inverter circuit.
  • the present application also provides a DC-DC boosting circuit applied to the above single-stage photovoltaic grid-connected inverter.
  • the application also provides a photovoltaic power generation system, including a photovoltaic array and the above-mentioned single-stage photovoltaic grid connection Inverter.
  • the present application also provides a control method applied to the above single-stage photovoltaic grid-connected inverter, the control method comprising:
  • controlling whether the bypass element is turned on and off according to the comparison result and whether the DC-DC boosting circuit works comprises:
  • the present invention provides a single-stage photovoltaic grid-connected inverter, and a DC-DC boost circuit and a bypass are connected in series between the photovoltaic array and the DC-AC inverter circuit.
  • the parallel circuit of the component, the rated power capacity Pdc of the DC-DC booster circuit is smaller than the rated power capacity Pac of the DC-AC inverter circuit, and the DC-DC boost is controlled by controlling the irradiance during the day and the like. The circuit does not work and the efficiency is high.
  • the DC-DC boost circuit works to increase the DC bus voltage of the PV grid-connected inverter to meet the grid connection conditions. Net power generation increases the amount of electricity generated. And since the rated power capacity Pdc of the DC-DC booster circuit is smaller than the rated power capacity Pac of the DC-AC inverter circuit, the investment cost is greatly reduced.
  • Embodiment 1 is a schematic diagram of Embodiment 1 of a single-stage photovoltaic grid-connected inverter provided by the present application;
  • Embodiment 2 is a schematic diagram of Embodiment 2 of a single-stage photovoltaic grid-connected inverter provided by the present application;
  • FIG. 3 is a schematic diagram of an embodiment of a DC-DC boost circuit provided by the present application.
  • the present application provides a single-stage photovoltaic grid-connected inverter capable of increasing power generation.
  • the single-stage photovoltaic grid-connected inverter 10 includes a DC-AC inverter circuit 200 and an output of the DC-AC inverter circuit 200. Connected to the AC grid, further comprising a DC-DC boost circuit 100 connected in series between the PV array PV and DC-AC inverter circuit 200, and a bypass element 300 in parallel with the DC-DC boost circuit 100; DC- The power capacity Pdc of the DC boost circuit 100 is smaller than the power capacity Pac of the DC-AC inverter circuit 200.
  • the single-stage photovoltaic grid-connected inverter provided by the embodiment of the present application is connected to a parallel circuit of a DC-DC boost circuit and a bypass component in a front stage of a DC-AC inverter circuit of a conventional single-stage photovoltaic grid-connected inverter.
  • the DC input voltage working range of the photovoltaic grid-connected inverter is expanded.
  • the DC-DC boost circuit works to increase the DC bus voltage of the photovoltaic grid-connected inverter.
  • the rated power capacity Pdc of the DC-DC booster circuit is smaller than the rated power capacity Pac of the DC-AC inverter circuit, which reduces the investment cost.
  • the investment cost recovery benefit is significant.
  • the configuration relationship between the DC-DC boosting circuit and the rated power capacity of the DC-AC inverter circuit may be: Pdc ⁇ 0.5Pac, which is determined according to factors such as the irradiance of the installation site and the historical weather conditions.
  • Pdc ⁇ 0.5Pac which is determined according to factors such as the irradiance of the installation site and the historical weather conditions.
  • the traditional idea of the technical problem of grid-connected power generation is to configure a power-matched DC-DC boost circuit.
  • the rated power capacity of the DC-DC booster circuit is in the range of 0-50 KW, which can be 10 KW.
  • the solution for configuring a power-matched DC-DC boost circuit greatly reduces the investment cost while increasing the amount of power generated.
  • a second-stage photovoltaic grid-connected inverter provided in the present application is a second embodiment.
  • the single-stage photovoltaic grid-connected inverter 20 further includes a control circuit 400 for controlling the bypass component. 300 disconnection and conduction.
  • the control circuit 400 controls the bypass element 300 when the maximum power point voltage value Upv_mppt of the photovoltaic array PV is less than the AC grid voltage peak, or when the PV array PV output power Ppv is less than the rated power capacity Pdc of the DC-DC boost circuit 100. Disconnected, the DC-DC boost circuit 100 operates; when the maximum power point voltage Upv_mppt of the PV array PV is not less than the peak value of the AC grid voltage or when the output power Ppv of the PV array is not less than the rated power capacity Pdc of the DC-DC boost circuit At this time, the control circuit 400 controls the conduction of the bypass element 300, and the DC-DC boosting circuit 100 does not operate.
  • FIG. 3 is a schematic diagram of a first embodiment of a DC-DC boosting circuit provided by the present application.
  • a DC bus capacitor C and a DC-DC boost are connected between the DC-DC boosting circuit 100A and the DC-AC inverter circuit 200 .
  • the circuit 100A includes an inductor L, a diode D, and a first switch S.
  • the first end of the inductor L and the first end of the bypass element 300 are connected as an input positive pole 203 of the DC-DC boost circuit 100A, and the DC-DC boost circuit
  • the input anode 203 of 100A is connected to the anode of the PV array PV
  • the second end of the inductor L is connected to the anode of the diode D
  • the cathode of the diode D is connected to the second end of the bypass element 300 as the output of the DC-DC booster circuit 100A.
  • the positive pole, the output positive pole of the DC-DC boost circuit 100A is connected to the DC bus positive pole 201 of the DC-AC inverter circuit 200, and the first end of the first switch S is connected to the common connection point of the inductor L and the diode D, and the first switch S
  • the second end is connected to the negative pole of the DC-DC boosting circuit 100A, and the negative pole of the DC-DC boosting circuit 100A is connected to the negative pole of the photovoltaic array PV and the DC bus negative pole 202 of the DC-AC inverter circuit 200.
  • the DC-DC boost circuit can also be a non-isolated forward, non-isolated flyback, non-isolated push-pull circuit, and the like, which can complete the boosting function, which is not limited in this application.
  • the bypass element 300 may select an electric switch, or a high voltage direct current relay, or a high voltage MOSFET, or a high voltage IGBT, etc., which can realize the function of turning on or off the circuit, or all of the same can be realized. Functional circuit.
  • the DC-AC inverter circuit of all embodiments of the present application may adopt any circuit topology that converts direct current to alternating current, for example, a two-level topology may be employed, or a multi-level topology may be employed, for example
  • a two-level topology may be employed, or a multi-level topology may be employed, for example
  • the three-level topology and the five-level topology are not limited in this application.
  • the DC-AC inverter circuit of all the embodiments of the present application may be a single-phase inverter circuit or a three-phase inverter circuit, which is not limited in this application.
  • the embodiment of the present application further provides a DC-DC boosting circuit applied to the above single-stage photovoltaic grid-connected inverter.
  • a DC-DC boosting circuit applied to the above single-stage photovoltaic grid-connected inverter.
  • the embodiment of the present application further provides a control method for the single-stage photovoltaic grid-connected inverter, which includes the following steps S11 to S15.
  • S15 controlling whether the bypass element 300 is turned on or off according to the comparison result to control whether the DC-DC boost circuit works or not comprises:
  • the control bypass element 300 is turned on, DC-DC rises. The voltage circuit does not work.
  • the embodiment of the present application further provides a photovoltaic power generation system, including a photovoltaic array and the single-stage photovoltaic grid-connected inverter in the above embodiment.
  • the rated power capacity of the inverter circuit is at least 100KW; if a traditional power matching boost is configured
  • the two-stage photovoltaic grid-connected inverter of the circuit (DC-DC) and the inverter circuit (INV) (referred to as symmetric DC-DC+INV), the rated power capacity of the booster circuit and the inverter circuit must match and at least 100KW;
  • the single-stage photovoltaic grid-connected inverter provided by the embodiment of the present application abbreviated as asymmetric DC-DC+INV
  • the rated power capacity of the inverter circuit is at least 100KW
  • the rated power capacity of the booster circuit is assumed to be 8KW.
  • the cost of the booster circuit is 0.1 yuan / watt, and the cost of the inverter circuit is 0.2 yuan / watt.
  • the output power of the photovoltaic array can reach 8KW. Since the single INV system does not have DC-DC and does not meet the grid-connected conditions, the single INV cannot be connected to the grid, but the symmetry Both DC-DC+INV and asymmetric DC-DC+INV can generate electricity normally. Assuming 365 days a year, the daily PV system irradiation conditions are the same. On average, the PV array output power is not negligible every day, but the total duration of the single INV grid-connected condition is 1 hour. 1.5 yuan / watt to calculate, single INV, symmetrical DC-DC + INV, asymmetric DC-DC + INV design parameters and power generation are as follows:
  • the single INV system is the cheapest, the symmetric DC-DC+INV is the most expensive, the single INV annual multi-generation revenue is 0, the asymmetric DC-DC+INV and the symmetric DC-DC+INV multi-generation revenue equal. It can be seen that the photovoltaic power generation system using asymmetric DC-DC+INV has the highest cost performance and the fastest recovery of investment cost.
  • the present invention provides a single-stage photovoltaic grid-connected inverter, and a DC-DC boost circuit and a bypass are connected in series between the photovoltaic array and the DC-AC inverter circuit.
  • the parallel circuit of the component, the rated power capacity Pdc of the DC-DC booster circuit is smaller than the rated power capacity Pac of the DC-AC inverter circuit, and the DC-DC boost is controlled by a period of time during which the irradiance is good during the daytime.
  • the single-stage photovoltaic grid-connected inverter has high working efficiency; in the case of poor irradiance such as morning and evening or rain, the DC-DC boost circuit works to improve the DC bus of the photovoltaic grid-connected inverter.
  • the voltage makes it meet the grid-connected conditions, and it can be connected to the grid to generate electricity, which increases the amount of power generated.
  • the rated power capacity Pdc of the DC-DC booster circuit is smaller than the rated power capacity Pac of the DC-AC inverter circuit, the investment cost is greatly reduced, and the recovery speed is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种单级光伏并网逆变器,包括输出连接至交流电网的DC-AC逆变电路,还包括串联连接在光伏阵列和DC-AC逆变电路之间的DC-DC升压电路和旁路元件的并联电路;所述DC-DC升压电路的额定功率容量Pdc小于所述DC-AC逆变电路的额定功率容量Pac。

Description

一种单级光伏并网逆变器及其控制方法和应用
本申请要求于2014年7月15日提交中国专利局、申请号为201410335465.2、发明名称为“一种单级光伏并网逆变器及其控制方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种单级光伏并网逆变器,具体为一种包括DC-AC逆变电路的单级光伏并网逆变器及其控制方法和应用。
背景技术
光伏并网逆变器进行正常的并网发电都需要满足一定的并网条件,例如光伏并网逆变器的直流母线电压不低于电网电压的峰值。为了提高光伏并网逆变器的工作效率,逆变器厂商通常配置较多的太阳能电池板来提升光伏阵列的开路电压或者在DC-AC逆变电路前级接入与其功率容量匹配的DC-DC升压电路来满足并网条件。
对于采用在DC-AC逆变电路前级接入与其功率容量匹配的DC-DC升压电路的情况,常规的设计思路是由前级的DC-DC升压电路完成光伏阵列输出电压的升压功能,这样的话,光伏阵列配置的太阳能电池板不需要很多。但是这种设计思路存在以下缺点:由于DC-DC升压电路与DC-AC逆变电路功率容量匹配,成本较高;并且由于DC-DC升压电路需要长时间和DC-AC逆变电路一起工作,因而开关损耗比较大,逆变器整机效率低。作为一种改进,在DC-DC升压电路上并联一接触器,当某些特殊情况下,如日照特别好、满足并网条件时,接触器导通,DC-DC升压电路可以短时间不工作。这种改进虽然降低了开关损耗,转换效率得到改善,但是仍然存在成本高的问题。
对传统采用包括单级DC-AC逆变电路的光伏并网逆变器的情况,逆变器厂商通常考虑配置较多数量的光伏电池板以提升光伏阵列的开路电压。这种单级光伏并网逆变器具有电路简单、输出功率可达兆瓦级、单位发电成本低等优点, 在大型光伏电站得到广泛应用。但是尽管光伏电池板配置适量,在早晚或阴雨天气等辐照较低的情况下,仍然不满足并网条件,光伏并网逆变器无法并网发电,导致发电量损失。
发明内容
有鉴于此,本申请要解决的技术问题是提供一种相对于传统单级光伏并网逆变器,能够增加发电量的单级光伏并网逆变器。
本申请提供的一种单级光伏并网逆变器,包括DC-AC逆变电路,所述DC-AC逆变电路的输出连接至交流电网,还包括串联连接在光伏阵列和所述DC-AC逆变电路之间的DC-DC升压电路,以及旁路元件;所述旁路元件与所述DC-DC升压电路并联;所述DC-DC升压电路的额定功率容量Pdc小于所述DC-AC逆变电路的额定功率容量Pac。
进一步地,所述DC-DC升压电路的额定功率容量Pdc小于所述DC-AC逆变电路的额定功率容量Pac包括:Pdc≤0.5Pac。
进一步地,所述单级光伏并网逆变器还包括控制电路,所述控制电路用来控制所述旁路元件的断开和导通;当所述光伏阵列的最大功率点电压值Upv_mppt小于所述交流电网电压峰值时,或者,当所述光伏阵列输出功率Ppv小于所述DC-DC升压电路的额定功率容量Pdc时,所述控制电路控制所述旁路元件断开,所述DC-DC升压电路工作;当所述光伏阵列的最大功率点电压Upv_mppt不小于所述交流电网电压峰值时,或者,当所述光伏阵列的输出功率Ppv不小于所述DC-DC升压电路的额定功率容量Pdc时,所述控制电路控制所述旁路元件的导通,所述DC-DC升压电路不工作。
进一步地,所述旁路元件包括电动开关或高压直流继电器或高压MOSFET或高压IGBT。
进一步地,所述DC-AC逆变电路采用两电平拓扑或多电平拓扑。
进一步地,所述DC-AC逆变电路包括三相或单相逆变电路。
本申请还提供了一种应用于上述单级光伏并网逆变器中的DC-DC升压电路。
本申请还提供了一种光伏发电系统,包括光伏阵列以及上述单级光伏并网 逆变器。
本申请还提供了一种应用于上述单级光伏并网逆变器的控制方法,所述控制方法包括:
获得所述光伏阵列的最大功率点电压值Upv_mppt;
获得所述光伏阵列的输出功率Ppv;
比较所述光伏阵列的最大功率点电压值Upv_mppt与所述交流电网电压峰值的大小;
比较所述光伏阵列的输出功率Ppv与所述DC-DC升压电路的额定功率容量Pdc的大小;
根据比较结果控制所述旁路元件的导通和断开以及所述DC-DC升压电路是否工作。
进一步地,根据比较结果控制所述旁路元件的导通和断开以及所述DC-DC升压电路是否工作包括:
当所述光伏阵列的最大功率点电压值Upv_mppt小于所述交流电网电压峰值时,或者,当所述光伏阵列输出功率Ppv小于所述DC-DC升压电路的额定功率容量Pdc时,控制所述旁路元件断开,所述DC-DC升压电路工作;
当所述光伏阵列的最大功率点电压Upv_mppt不小于所述交流电网电压峰值时,或者,当所述光伏阵列的输出功率Ppv不小于所述DC-DC升压电路的额定功率容量Pdc时,控制所述旁路元件导通,所述DC-DC升压电路不工作。
与现有技术相比,本申请具有以下优点:
相对于传统单级光伏并网逆变器,本申请提供的一种单级光伏并网逆变器,在光伏阵列和DC-AC逆变电路之间串联连接DC-DC升压电路和旁路元件的并联电路,DC-DC升压电路的额定功率容量Pdc小于和DC-AC逆变电路的额定功率容量Pac,通过控制使得白天等辐照度较好的大时间段,DC-DC升压电路不工作,效率高;而在早晚或阴雨等辐照度较差的情况下,DC-DC升压电路工作,提升光伏并网逆变器的直流母线电压使之满足并网条件,可以并网发电,增加了发电量。并且由于DC-DC升压电路的额定功率容量Pdc小于和DC-AC逆变电路的额定功率容量Pac,投资成本大大降低。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本申请提供的单级光伏并网逆变器实施例一示意图;
图2是本申请提供的单级光伏并网逆变器实施例二示意图;
图3是本申请提供的DC-DC升压电路实施例示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。
相对比现有技术的单级光伏并网逆变器,本申请提供了一种能够提高发电量的单级光伏并网逆变器。
请参见图1,为本申请提供的单级光伏并网逆变器实施例一示意图,单级光伏并网逆变器10包括DC-AC逆变电路200,DC-AC逆变电路200的输出连接至交流电网,还包括串联连接在光伏阵列PV和DC-AC逆变电路200之间的DC-DC升压电路100,以及与DC-DC升压电路100并联的旁路元件300;DC-DC升压电路100的功率容量Pdc小于和DC-AC逆变电路200的功率容量Pac。
本申请实施例提供的单级光伏并网逆变器,在常规单级光伏并网逆变器的DC-AC逆变电路的前级连接DC-DC升压电路和旁路元件的并联电路,扩大了光伏并网逆变器的直流输入电压工作范围,在早晚或阴雨等辐照度较差的情况下,DC-DC升压电路工作,提升光伏并网逆变器的直流母线电压使之满足并网条件,可以并网发电,增加发电量;并且DC-DC升压电路的额定功率容量Pdc小于DC-AC逆变电路的额定功率容量Pac,降低了投资成本。尤其是在需要用多个光伏并网逆变器的大型电站,投资成本回收效益显著。
可选地,DC-DC升压电路与DC-AC逆变电路的额定功率容量的配置关系可以为:Pdc≤0.5Pac,具体根据安装地的辐照度、历史天气情况等因素来决定。以额定功率容量为100KW的DC-AC逆变电路为例,解决早晚或阴雨等辐照度较差 的情况不能并网发电的技术问题的传统思路是配置功率匹配的DC-DC升压电路,而本申请中,配置DC-DC升压电路额定功率容量范围在0-50KW,可以为10KW,相对于配置功率匹配的DC-DC升压电路的解决方案,在提高发电量的同时,大大降低了投资成本。
请参见图2,为本申请提供的单级光伏并网逆变器实施例二,相比于实施例一,单级光伏并网逆变器20还包括控制电路400,用来控制旁路元件300的断开和导通。
当光伏阵列PV的最大功率点电压值Upv_mppt小于交流电网电压峰值时,或者,当光伏阵列PV输出功率Ppv小于DC-DC升压电路100的额定功率容量Pdc时,控制电路400控制旁路元件300断开,DC-DC升压电路100工作;当光伏阵列PV的最大功率点电压Upv_mppt不小于交流电网电压峰值时或者当光伏阵列的输出功率Ppv不小于DC-DC升压电路的额定功率容量Pdc时,控制电路400控制旁路元件300的导通,DC-DC升压电路100不工作。
请参见图3,为本申请提供的DC-DC升压电路实施例一示意图,DC-DC升压电路100A和DC-AC逆变电路200之间连接有直流母线电容C,DC-DC升压电路100A包括电感L、二极管D、第一开关S;电感L的第一端和旁路元件300的第一端相连做为DC-DC升压电路100A的输入正极203,DC-DC升压电路100A的输入正极203与光伏阵列PV的正极相连,电感L的第二端连接二极管D的阳极,二极管D的阴极和旁路元件300的第二端相连做为DC-DC升压电路100A的输出正极,DC-DC升压电路100A的输出正极与DC-AC逆变电路200的直流母线正极201相连,第一开关S的第一端连接电感L和二极管D的公共连接点,第一开关S的第二端连接DC-DC升压电路100A的负极,DC-DC升压电路100A的负极与光伏阵列PV的负极、DC-AC逆变电路200的直流母线负极202相连。
做为替代,DC-DC升压电路还可以为非隔离正激、非隔离反激、非隔离推挽电路等可以完成升压功能的一切电路结构,本申请对此不做限定。
本申请所有实施例中,旁路元件300可以选择电动开关,或高压直流继电器,或高压MOSFET,或高压IGBT等能够实现电路导通或者断开功能的所有电气元件,也可以是所有能实现相同功能的电路。
本申请所有实施例的DC-AC逆变电路可以采用一切实现将直流电转换为交流电的电路拓扑,例如可以采用两电平拓扑,或者可以采用多电平拓扑,例如 三电平拓扑和五电平拓扑,本申请不做任何限定。
进一步地,本申请所有实施例的DC-AC逆变电路可以为单相逆变电路,也可以为三相逆变电路,本申请不做任何限定。
本申请实施例还提供了应用于上述单级光伏并网逆变器的DC-DC升压电路,详细描述请参见上文。
本申请实施例还提供了上述单级光伏并网逆变器的控制方法,包括如下步骤步骤S11至步骤S15。
S11:获得光伏阵列的最大功率点电压值Upv_mppt。
S12:获得光伏阵列的输出功率Ppv。
S13:比较光伏阵列的最大功率点电压值Upv_mppt与交流电网电压峰值的大小。
S14:比较光伏阵列的输出功率Ppv与DC-DC升压电路的额定功率容量Pdc的大小。
S15:根据比较结果控制旁路元件300的导通或断开从而控制DC-DC升压电路是否工作。
进一步地,S15:根据比较结果控制旁路元件300的导通或断开从而控制DC-DC升压电路是否工作包括:
若光伏阵列的最大功率点电压值Upv_mppt小于所述交流电网电压峰值或者光伏阵列输出功率Ppv小于所述DC-DC升压电路的额定功率容量Pdc,控制旁路元件300断开,DC-DC升压电路工作;
若光伏阵列的最大功率点电压Upv_mppt不小于交流电网电压峰值,或者,光伏阵列的输出功率Ppv不小于DC-DC升压电路的额定功率容量Pdc,控制旁路元件300导通,DC-DC升压电路不工作。
本申请实施例还提供了一种光伏发电系统,包括光伏阵列以及上述实施例中的单级光伏并网逆变器。
下面以100KW的光伏发电系统为例来阐述本申请的有益效果:
100KW的光伏发电系统,配置相同的光伏阵列,一台传统单级光伏并网逆变器(简称单INV),则逆变电路的额定功率容量至少100KW;若配置一台传统功率匹配的升压电路(DC-DC)和逆变电路(INV)的两级光伏并网逆变器(简称对称式DC-DC+INV),则升压电路和逆变电路的额定功率容量必须匹配且至少 100KW;本申请实施例提供的单级光伏并网逆变器(简称不对称式DC-DC+INV),逆变电路的额定功率容量至少100KW,升压电路的额定功率容量假定为8KW。升压电路的成本为0.1元/瓦,逆变电路的成本为0.2元/瓦。
假定在早晚或阴雨等辐照度较差的情况下,光伏阵列的输出功率可达到8KW,由于单INV系统不带DC-DC,不满足并网条件,单INV无法并网发电,但对称式DC-DC+INV和不对称DC-DC+INV均可正常发电。假定一年365天,每天光伏发电系统的辐照情况相同,平均下来,每天这种光伏阵列输出功率不可忽略、但不满足单INV并网条件的总时长为1小时,以当前度电补贴为1.5元/瓦来计算,单INV、对称式DC-DC+INV,不对称式DC-DC+INV的设计参数和发电量分别如下:
Figure PCTCN2015083628-appb-000001
三个系统中,单INV系统最便宜,对称式DC-DC+INV最贵,单INV年多发电收益为0,不对称式DC-DC+INV与对称式DC-DC+INV年多发电收益相等。由此可见,采用不对称DC-DC+INV的光伏发电系统的性价比最高,投资成本回收速度最快。
相对于传统单级光伏并网逆变器,本申请提供的一种单级光伏并网逆变器,在光伏阵列和DC-AC逆变电路之间串联连接DC-DC升压电路和旁路元件的并联电路,DC-DC升压电路的额定功率容量Pdc小于和DC-AC逆变电路的额定功率容量Pac,通过控制使得在白天等辐照度较好的时间段,DC-DC升压电路不工作,单级光伏并网逆变器的工作效率高;而在早晚或阴雨等辐照度较差的情况下,DC-DC升压电路工作,提升光伏并网逆变器的直流母线电压使之满足并网条件,可以并网发电,增加了发电量。并且由于DC-DC升压电路的额定功率容量Pdc小于和DC-AC逆变电路的额定功率容量Pac,投资成本大大降低,并且提高了回收速度。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (10)

  1. 一种单级光伏并网逆变器,包括DC-AC逆变电路,所述DC-AC逆变电路的输出连接至交流电网,其特征在于,还包括串联连接在光伏阵列和所述DC-AC逆变电路之间的DC-DC升压电路,以及旁路元件;
    所述旁路元件与所述DC-DC升压电路并联;
    所述DC-DC升压电路的额定功率容量Pdc小于所述DC-AC逆变电路的额定功率容量Pac。
  2. 根据权利要求1所述的单级光伏并网逆变器,其特征在于,
    所述DC-DC升压电路的额定功率容量Pdc小于所述DC-AC逆变电路的额定功率容量Pac包括:Pdc≤0.5Pac。
  3. 根据权利要求1所述的单级光伏并网逆变器,其特征在于,
    所述单级光伏并网逆变器还包括控制电路,所述控制电路用来控制所述旁路元件的断开和导通;
    当所述光伏阵列的最大功率点电压值Upv_mppt小于所述交流电网电压峰值时,或者,当所述光伏阵列输出功率Ppv小于所述DC-DC升压电路的额定功率容量Pdc时,所述控制电路控制所述旁路元件断开,所述DC-DC升压电路工作;
    当所述光伏阵列的最大功率点电压Upv_mppt不小于所述交流电网电压峰值时,或者,当所述光伏阵列的输出功率Ppv不小于所述DC-DC升压电路的额定功率容量Pdc时,所述控制电路控制所述旁路元件的导通,所述DC-DC升压电路不工作。
  4. 根据权利要求1至3中任一项所述的单级光伏并网逆变器,其特征在于,所述旁路元件包括电动开关或高压直流继电器或高压MOSFET或高压IGBT。
  5. 根据权利要求1至3中任一项所述的单级光伏并网逆变器,其特征在于,所述DC-AC逆变电路采用两电平拓扑或多电平拓扑。
  6. 根据权利要求1至3中任一项所述的单级光伏并网逆变器,其特征在于,所述DC-AC逆变电路包括三相或单相逆变电路。
  7. 一种应用于权利要求1至3中任一项所述的单级光伏并网逆变器中的DC-DC升压电路。
  8. 一种光伏发电系统,包括光伏阵列以及权利要求1至3中任一项所述的单级光伏并网逆变器。
  9. 一种应用于权利要求1或2所述的单级光伏并网逆变器的控制方法,其特征在于,所述控制方法包括:
    获得所述光伏阵列的最大功率点电压值Upv_mppt;
    获得所述光伏阵列的输出功率Ppv;
    比较所述光伏阵列的最大功率点电压值Upv_mppt与所述交流电网电压峰值的大小;
    比较所述光伏阵列的输出功率Ppv与所述DC-DC升压电路的额定功率容量Pdc的大小;
    根据比较结果控制所述旁路元件的导通和断开以及所述DC-DC升压电路是否工作。
  10. 根据权利要求9所述的单级光伏并网逆变器的控制方法,其特征在于,根据比较结果控制所述旁路元件的导通和断开以及所述DC-DC升压电路是否工作包括:
    当所述光伏阵列的最大功率点电压值Upv_mppt小于所述交流电网电压峰值时,或者,当所述光伏阵列输出功率Ppv小于所述DC-DC升压电路的额定功率容量Pdc时,控制所述旁路元件断开,所述DC-DC升压电路工作;
    当所述光伏阵列的最大功率点电压Upv_mppt不小于所述交流电网电压峰值时,或者,当所述光伏阵列的输出功率Ppv不小于所述DC-DC升压电路的额定功率容量Pdc时,控制所述旁路元件导通,所述DC-DC升压电路不工作。
PCT/CN2015/083628 2014-07-15 2015-07-09 一种单级光伏并网逆变器及其控制方法和应用 WO2016008382A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES15821660T ES2928308T3 (es) 2014-07-15 2015-07-09 Inversor fotovoltaico conectado a la red y su método de control
JP2016570352A JP6424365B2 (ja) 2014-07-15 2015-07-09 シングルステージ太陽光発電グリッドタイインバータ及びその制御方法、応用
EP15821660.6A EP3171478B1 (en) 2014-07-15 2015-07-09 Photovoltaic grid-connected inverter and control method thereof
US15/315,210 US20170133857A1 (en) 2014-07-15 2015-07-09 Single-stage photovoltaic grid-connected inverter and control method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410335465.2 2014-07-15
CN201410335465.2A CN104158208A (zh) 2014-07-15 2014-07-15 一种单级光伏并网逆变器及其控制方法和应用

Publications (1)

Publication Number Publication Date
WO2016008382A1 true WO2016008382A1 (zh) 2016-01-21

Family

ID=51883651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083628 WO2016008382A1 (zh) 2014-07-15 2015-07-09 一种单级光伏并网逆变器及其控制方法和应用

Country Status (6)

Country Link
US (1) US20170133857A1 (zh)
EP (1) EP3171478B1 (zh)
JP (1) JP6424365B2 (zh)
CN (1) CN104158208A (zh)
ES (1) ES2928308T3 (zh)
WO (1) WO2016008382A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787891A (zh) * 2017-03-06 2017-05-31 云南电网有限责任公司电力科学研究院 一种五电平逆变器
CN113725903A (zh) * 2021-08-30 2021-11-30 南京邮电大学 一种基于5g通讯的分布式光伏组件工作模式切换方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158208A (zh) * 2014-07-15 2014-11-19 阳光电源股份有限公司 一种单级光伏并网逆变器及其控制方法和应用
CN104638971B (zh) * 2015-02-13 2018-04-03 河海大学 一种光伏并网逆变器及其控制方法
CN105337520A (zh) * 2015-12-11 2016-02-17 珠海格力电器股份有限公司 光伏并网变换器、光伏供电系统和电器
CN107546836B (zh) * 2016-06-23 2019-11-26 维谛技术有限公司 一种ups电源
CN107565600B (zh) * 2017-09-15 2020-04-03 华为数字技术(苏州)有限公司 光伏功率优化器及其控制方法、装置、光伏发电系统
CN107800184B (zh) * 2017-11-10 2020-11-17 湖南省保利光电科技有限责任公司 一种用于小型12v光伏应用系统的准mppt充电装置
CN107959433B (zh) * 2017-12-21 2020-08-28 阳光电源股份有限公司 一种抑制漏电流的逆变器及逆变系统
US10381834B1 (en) * 2018-03-08 2019-08-13 Omron Corporation Power conditioner and power system
JP7416729B2 (ja) 2018-06-19 2024-01-17 ベクトン・ディキンソン・アンド・カンパニー 検出器アレイのための可変多重化スイッチ、システム、およびその使用方法
EP3814748A4 (en) 2018-06-28 2022-03-30 Becton, Dickinson and Company LIGHT DETECTION SYSTEMS WITH INTEGRATED PREAMPLIFIER AND METHODS OF USE THEREOF
EP3611832A1 (de) * 2018-08-13 2020-02-19 FRONIUS INTERNATIONAL GmbH Photovoltaik-wechselrichter und verfahren zum betreiben eines solchen photovoltaik-wechselrichters
US20200056979A1 (en) 2018-08-15 2020-02-20 Becton, Dickinson And Company Flowrate and vacuum controlled fluid management system for a flow type particle analyzer
CN109039061B (zh) * 2018-08-29 2020-03-24 阳光电源股份有限公司 一种多电平boost装置
EP3844482A4 (en) 2018-08-30 2022-05-25 Becton, Dickinson and Company CHARACTERIZATION AND SORTING FOR PARTICLE ANALYZERS
CN112805548A (zh) 2018-10-30 2021-05-14 贝克顿·迪金森公司 具有对准窗口的颗粒分选模块、系统及其使用方法
KR20210097807A (ko) 2018-12-28 2021-08-09 벡톤 디킨슨 앤드 컴퍼니 샘플의 형광단을 스펙트럼 분해하기 위한 방법 및 이를 위한 시스템
EP3893380A4 (en) * 2018-12-29 2021-11-24 Huawei Technologies Co., Ltd. INVERTER
EP3921622A4 (en) 2019-02-08 2022-11-09 Becton, Dickinson and Company DECISION MODULES FOR SORTING DROPLET, SYSTEMS AND METHODS OF USE THEREOF
WO2020205200A1 (en) 2019-03-29 2020-10-08 Becton, Dickinson And Company Parameters for use in particle discrimination
US11275026B2 (en) 2019-05-14 2022-03-15 Becton, Dickinson And Company Phase-calibration for imaging flow cytometry
SG11202110459RA (en) 2019-05-30 2021-10-28 Becton Dickinson Co Phase-correction of radiofrequency-multiplexed signals
CN112117920B (zh) 2019-06-20 2022-02-22 台达电子工业股份有限公司 电源供应器及其控制方法及电源供应系统
JP7561822B2 (ja) 2019-07-10 2024-10-04 ベクトン・ディキンソン・アンド・カンパニー 細胞選別分類を調整するための再構成可能な集積回路
CN110932310A (zh) * 2019-11-08 2020-03-27 华为技术有限公司 一种光伏控制装置、方法及系统
WO2021101692A1 (en) 2019-11-20 2021-05-27 Becton, Dickinson And Company A light detection module with adjustable sensitivity
CN111082686B (zh) * 2020-01-13 2022-04-08 阳光电源股份有限公司 一种多路mppt逆变器及其控制方法
US20210278333A1 (en) 2020-01-31 2021-09-09 Becton, Dickinson And Company Methods and systems for adjusting a training gate to accommodate flow cytometer data
US11821830B2 (en) 2020-02-07 2023-11-21 Becton, Dickinson And Company Clustered wavelength division light detection systems and methods of using the same
US11592386B2 (en) 2020-02-26 2023-02-28 Becton, Dickinson And Company Light detection systems having a secondary light scatter detector and methods for using same
EP4111169A4 (en) 2020-02-27 2023-08-09 Becton, Dickinson and Company METHODS FOR IDENTIFICATION OF SATURATED DATA SIGNALS IN CELL SORTING AND SYSTEMS THEREFOR
WO2021188435A1 (en) 2020-03-17 2021-09-23 Becton, Dickinson And Company Gain matched amplifiers for light detection
US20210325292A1 (en) 2020-04-16 2021-10-21 Becton, Dickinson And Company Systems for light detection array multiplexing and methods for same
CN115735111A (zh) 2020-04-28 2023-03-03 贝克顿·迪金森公司 用于对独特表型进行索引分选的方法及用于其的系统
CN115917293A (zh) 2020-04-29 2023-04-04 贝克顿·迪金森公司 在流式细胞仪中调节和同步检测的方法及系统
CN115917315A (zh) 2020-05-05 2023-04-04 贝克顿·迪金森公司 用于确定流式细胞仪中检测器增益的方法
WO2021225792A1 (en) 2020-05-06 2021-11-11 Becton, Dickinson And Company Methods and systems for characterizing spillover spreading in flow cytometer data
CN113630088A (zh) * 2020-05-08 2021-11-09 台达电子工业股份有限公司 太阳能发电系统及检测方法
US20210358566A1 (en) 2020-05-18 2021-11-18 Becton, Dickinson And Company Resolution indices for detecting heterogeneity in data and methods of use thereof
US11754487B2 (en) 2020-06-24 2023-09-12 Becton, Dickinson And Company Flow cytometric droplet dispensing systems and methods for using the same
US11680889B2 (en) 2020-06-26 2023-06-20 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same
CN112234649A (zh) * 2020-10-15 2021-01-15 珠海格力电器股份有限公司 自适应的光伏供电系统及其控制方法、空调机组
EP4232790A4 (en) 2020-10-20 2024-04-17 Becton, Dickinson and Company FLOW CYTOMETERS INCLUDING OPTICAL TILT BEAM SHAPING COMPONENTS, AND METHODS OF USE THEREOF
CN116583735A (zh) 2020-10-30 2023-08-11 贝克顿·迪金森公司 用于表征和编码光检测系统的方法和系统
EP4184788A4 (en) * 2020-11-24 2023-09-27 Huawei Digital Power Technologies Co., Ltd. MOTOR CONTROLLER, HEAT EXCHANGE SYSTEM AND CURRENT INJECTION METHOD
CN113205664B (zh) * 2021-05-08 2022-09-16 杭州华电半山发电有限公司 一种基于9fa燃气-蒸汽联合循环机组的检测与报警方法
US20230053122A1 (en) 2021-08-10 2023-02-16 Becton, Dickinson And Company Clamps for operably coupling an optical component to a mounting block, and methods and systems for using the same
EP4134655A1 (en) 2021-08-10 2023-02-15 Becton, Dickinson and Company Outlet fittings for reducing bubbles at the interface with a flow cell, and flow cytometers and methods using the same
KR102716720B1 (ko) * 2022-07-20 2024-10-15 한국에너지기술연구원 태양광발전시스템의 스마트 인버터 기능을 제공하는 자율적인 유무효전력 제어 방법 및 시스템
US20240312191A1 (en) 2023-03-14 2024-09-19 Becton, Dickinson And Company Methods for determining image filters for classifying particles of a sample and systems and methods for using same
US20240344983A1 (en) 2023-03-30 2024-10-17 Becton, Dickinson And Company Methods and systems for visualizing spectral signatures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352761Y (zh) * 2009-02-05 2009-11-25 合肥阳光电源有限公司 一种升压电路拓扑结构
CN201479008U (zh) * 2009-09-01 2010-05-19 合肥阳光电源有限公司 一种用于提高光伏阵列电压利用率的电路
CN202364144U (zh) * 2011-11-24 2012-08-01 上海煦达新能源科技有限公司 两级光伏逆变器旁路二极管及旁路dc/dc变换器
US20120319489A1 (en) * 2011-06-15 2012-12-20 Mccaslin Shawn R Power Shuffling Solar String Equalization System
CN104158208A (zh) * 2014-07-15 2014-11-19 阳光电源股份有限公司 一种单级光伏并网逆变器及其控制方法和应用
CN204243781U (zh) * 2014-07-15 2015-04-01 阳光电源股份有限公司 一种单级光伏并网逆变器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310789B1 (en) * 1999-06-25 2001-10-30 The Procter & Gamble Company Dynamically-controlled, intrinsically regulated charge pump power converter
US7719865B2 (en) * 2005-02-25 2010-05-18 Mitsubishi Electric Corporation Power conversion apparatus
EP1852964B1 (en) * 2005-02-25 2012-01-18 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
US10693415B2 (en) * 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US7781908B2 (en) * 2007-07-19 2010-08-24 Igo, Inc. Output power port management control
DE102008004675B3 (de) * 2007-10-12 2009-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Steuerbare Umschaltvorrichtung für ein Solarmodul
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8378656B2 (en) * 2008-09-19 2013-02-19 General Electric Company Quasi-AC, photovoltaic module for unfolder photovoltaic inverter
JP2010093978A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 電力変換装置
US20100116325A1 (en) * 2008-11-12 2010-05-13 Mehrdad Nikoonahad High efficiency solar panel and system
JP5302096B2 (ja) * 2009-05-15 2013-10-02 株式会社Nttファシリティーズ 太陽光発電システム及び制御方法
US8184460B2 (en) * 2009-05-28 2012-05-22 General Electric Company Solar inverter and control method
US8390261B2 (en) * 2010-05-21 2013-03-05 Infineon Technologies Austria Ag Maximum power point tracker bypass
JP2013055794A (ja) * 2011-09-05 2013-03-21 Mitsubishi Electric Corp 電力変換装置
WO2013069326A1 (ja) * 2011-11-07 2013-05-16 三菱電機株式会社 電力変換装置
WO2014028873A2 (en) * 2012-08-16 2014-02-20 Perfect Galaxy International Limited Dc to ac power converter
CN202978746U (zh) * 2012-12-21 2013-06-05 京东方科技集团股份有限公司 一种逆变器及一种并网发电系统
CN103116383B (zh) * 2012-12-25 2015-01-07 深圳创动科技有限公司 一种双路升压光伏逆变器及其控制方法
CN103904992A (zh) * 2014-04-16 2014-07-02 姜炳芳 一种组串式汇流箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352761Y (zh) * 2009-02-05 2009-11-25 合肥阳光电源有限公司 一种升压电路拓扑结构
CN201479008U (zh) * 2009-09-01 2010-05-19 合肥阳光电源有限公司 一种用于提高光伏阵列电压利用率的电路
US20120319489A1 (en) * 2011-06-15 2012-12-20 Mccaslin Shawn R Power Shuffling Solar String Equalization System
CN202364144U (zh) * 2011-11-24 2012-08-01 上海煦达新能源科技有限公司 两级光伏逆变器旁路二极管及旁路dc/dc变换器
CN104158208A (zh) * 2014-07-15 2014-11-19 阳光电源股份有限公司 一种单级光伏并网逆变器及其控制方法和应用
CN204243781U (zh) * 2014-07-15 2015-04-01 阳光电源股份有限公司 一种单级光伏并网逆变器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171478A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787891A (zh) * 2017-03-06 2017-05-31 云南电网有限责任公司电力科学研究院 一种五电平逆变器
CN106787891B (zh) * 2017-03-06 2023-07-07 云南电网有限责任公司电力科学研究院 一种五电平逆变器
CN113725903A (zh) * 2021-08-30 2021-11-30 南京邮电大学 一种基于5g通讯的分布式光伏组件工作模式切换方法

Also Published As

Publication number Publication date
JP6424365B2 (ja) 2018-11-21
EP3171478A1 (en) 2017-05-24
EP3171478B1 (en) 2022-10-05
US20170133857A1 (en) 2017-05-11
ES2928308T3 (es) 2022-11-16
EP3171478A4 (en) 2018-03-28
CN104158208A (zh) 2014-11-19
JP2017524323A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
WO2016008382A1 (zh) 一种单级光伏并网逆变器及其控制方法和应用
US8023297B2 (en) High efficiency photovoltaic inverter
EP2897287B1 (en) Photovoltaic module
Du et al. A novel solar panel optimizer with self-compensation for partial shadow condition
Walker et al. PV string per-module maximum power point enabling converters
US9048692B2 (en) Controlled converter architecture with prioritized electricity supply
US20090236917A1 (en) Method for activating a multi-string inverter for photovoltaic plants
US10135252B2 (en) Intra-module DC-DC converter and a PV-module comprising same
MX2014005359A (es) Sistema y metodo para conversion de potencia para fuentes de energia renovables.
Vinnikov et al. Shade-tolerant photovoltaic microinverter with time adaptive seamless PV curve sweep MPPT
Lee et al. Current sensorless MPPT control method for dual-mode PV module-type interleaved flyback inverters
Zapata et al. Partial power dc-dc converter for large-scale photovoltaic systems
CN204243781U (zh) 一种单级光伏并网逆变器
Khan et al. Four-switch buck-boost inverter for stand-alone and grid-connected single-phase PV systems
Lai A single-stage grid-connected pv micro-inverter based on interleaved flyback converter topology
Oshima et al. Mega Solar PCS Incorporating All-SiC Module “PVI1000 AJ-3/1000”
Picault et al. Reducing mismatch losses in grid-connected residential BIPV arrays using active power conversion components
Abolhasani et al. A comparison between buck and boost topologies as module integrated converters to mitigate partial shading effects on PV arrays
Paul et al. Modeling and analysis of PV micro-inverter
KR20130006059A (ko) 모듈 통합형 전력조절기 시스템
Chen et al. Analysis and experimental verification of series-connected micro-converter photovoltaic system
Shah et al. An MPPT-based 31-Level ADC Controlled Micro-Inverter
Pandya et al. Diagonal PV micro-inverter with isolated output
JP7424351B2 (ja) パワーコンディショナ
Ramzan et al. Grid tied solar micro-converter with optimizer-mode operation for weak-grid operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570352

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015821660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15315210

Country of ref document: US

Ref document number: 2015821660

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE