WO2016008234A1 - 有机电致发光器件及其制备方法 - Google Patents

有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2016008234A1
WO2016008234A1 PCT/CN2014/089973 CN2014089973W WO2016008234A1 WO 2016008234 A1 WO2016008234 A1 WO 2016008234A1 CN 2014089973 W CN2014089973 W CN 2014089973W WO 2016008234 A1 WO2016008234 A1 WO 2016008234A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
electroluminescent device
layers
layer
electron transport
Prior art date
Application number
PCT/CN2014/089973
Other languages
English (en)
French (fr)
Inventor
白娟娟
金泰逵
吴海东
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/769,368 priority Critical patent/US9673414B2/en
Publication of WO2016008234A1 publication Critical patent/WO2016008234A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an organic electroluminescent device and a method for fabricating the same.
  • the hole mobility of a hole transporting material is much larger than that of an electron transporting material, which causes an imbalance in the number of electrons and holes in the composite region. , reducing the recombination probability of excitons, resulting in low current efficiency and power efficiency of the OLED.
  • the N-type doping method is employed in the electron transport layer: as shown in FIG. 1, the N-type dopant 11 is doped in the electron transport material 12 in a certain ratio. This is achieved by co-evaporation, but requires an accurate doping ratio of the N-type dopant to the electron transport material. This is more difficult to control in practice and the repeatability of the experiment is also poor.
  • a method of using a dual electron injection layer although the method can reduce the electron injection barrier and facilitate the direct injection of electrons, it does not improve the mobility of electrons in the transport layer.
  • the technical problem to be solved by the present invention is to improve the injection and transmission capability of electrons in an OLED device, thereby balancing carrier concentration, increasing exciton utilization, and thereby improving the photoelectric performance of the OLED device.
  • the present invention provides an organic electroluminescence device.
  • the organic electroluminescent device provided by the present invention includes at least a light-emitting layer between an anode and a cathode, and further includes at least two electron transport layers disposed between the light-emitting layer and the cathode, and is disposed in each of two An N-type doped layer between adjacent electron transport layers.
  • a ratio of a sum of thicknesses of the at least two electron transport layers to a sum of thicknesses of all of the N-type doped layers included in the organic electroluminescent device is within a predetermined ratio range
  • the predetermined ratio range is greater than or equal to 5 and less than or equal to 10.
  • the sum of the thicknesses of the at least two electron transport layers is within a predetermined thickness range.
  • the predetermined thickness ranges from greater than or equal to 25 nm and less than or equal to 35 nm.
  • the sum of the thicknesses of all of the N-type doped layers included in the organic electroluminescent device is greater than or equal to 3.5 nm and less than or equal to 5.0 nm.
  • the organic electroluminescent device comprises an electron transport layer having a number of layers of 2, 3 or 4 layers.
  • the organic electroluminescent device of the present invention further includes a hole injection layer and a hole transport layer disposed in sequence between the anode and the light-emitting layer, disposed at the cathode and closest to the cathode An electron injection layer between the electron transport layers, and a glass substrate; the anode is disposed on the glass substrate.
  • the present invention also provides a method of producing an organic electroluminescent device comprising at least a light-emitting layer between an anode and a cathode.
  • the method for preparing an organic electroluminescent device comprises: forming at least two electron transport layers between the light emitting layer and the cathode;
  • An N-type doped layer is formed between every two adjacent electron transport layers.
  • a ratio of a sum of thicknesses of the at least two electron transport layers to a sum of thicknesses of all of the N-type doped layers included in the organic electroluminescent device is within a predetermined ratio range
  • the predetermined ratio range is greater than or equal to 5 and less than or equal to 10.
  • the sum of the thicknesses of the at least two electron transport layers is within a predetermined thickness range.
  • the predetermined thickness ranges from greater than or equal to 25 nm to less than or equal to 35 nm.
  • the sum of the thicknesses of all of the N-type doped layers included in the organic electroluminescent device is greater than or equal to 3.5 nm and less than or equal to 5.0 nm.
  • the organic electroluminescent device comprises an electron transport layer having a number of layers of 2, 3 or 4 layers.
  • the method for preparing the organic electroluminescent device of the present invention further includes:
  • a hole injection layer and a hole transport layer are sequentially disposed between the anode and the light emitting layer;
  • An electron injection layer is disposed between the cathode and an electron transport layer closest to the cathode.
  • the organic electroluminescent device of the present invention employs at least two electron transport layers, and an N-type doped layer is disposed between every two adjacent electron transport layers, that is, an electron transport material. And the N-type dopants are sequentially vapor-deposited, and an N-type doping effect is formed by the interface doping effect and the diffusion of the N-type dopant to improve the electron injection and transfer ability, thereby balancing the carrier concentration and improving Exciton utilization, which in turn improves the optoelectronic performance of OLED devices.
  • FIG. 1 is a schematic view showing a conventional method of using N-type doping in an electron transport layer
  • FIG. 2 is a structural diagram of an N-type doped electron transport layer included in an organic electroluminescent device according to an embodiment of the present invention
  • FIG. 3 is a structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • the organic electroluminescent device includes at least a light emitting layer between the anode and the cathode, and the organic electroluminescent device further includes at least two electron transports disposed between the light emitting layer and the cathode a layer, and an N-type doped layer disposed between each two adjacent electron transport layers.
  • the sum of the thicknesses of the at least two electron transport layers is within a predetermined thickness range A.
  • the embodiment of the invention employs at least two electron transport layers and is in every two adjacent electron transport layers.
  • An N-type doping layer is disposed between the electron transporting material and the N-type dopant sequentially, and an N-type doping effect is formed by the interface doping effect and the diffusion of the N-type dopant to improve electron injection. And transfer capacity, thereby balancing carrier concentration, increasing exciton utilization, and improving the photoelectric performance of OLED devices.
  • the method for sequentially vapor-depositing the electron transport material and the N-type dopant in the embodiment of the present invention is easier to operate and control.
  • the preparation process is simplified, the balance of electrons and holes is improved, and the photoelectric performance of the OLED device is improved.
  • the predetermined thickness range A is greater than or equal to 25 nm and less than or equal to 35 nm.
  • the sum of the thicknesses of all the N-type doped layers included in the organic electroluminescent device is greater than or equal to 3.5 nm and less than or equal to 5.0 nm.
  • the thickness of the electron-transporting layer is generally not too thick.
  • the sum of the thicknesses of the electron-transporting layers is set to 25 nm to 35 nm.
  • the sum of the thicknesses of the respective N-type dopant layers is set to 3.5 nm to 5 nm, so that the current density, brightness, efficiency, and driving of the device can be made.
  • the photoelectric characteristics such as voltage are well improved.
  • a ratio of a sum of thicknesses of the at least two electron transport layers to a sum of thicknesses of all N-type doped layers included in the organic electroluminescent device is within a predetermined ratio range B;
  • the performance of the OLED device is optimal.
  • the number of layers of the electron transport layer included in the organic electroluminescent device is related to the structure of the organic electroluminescent device, and the organic electroluminescent device
  • the number of layers of the electron transport layer included may range from 2 to 4 layers.
  • the material of the electron transport layer may be 4,7-diphenyl-1,10-phenanthroline (BPhen), 1,3,5-tris[(3-pyridyl)-3-phenyl] Benzene (TmPyPB) or 2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] (OXD-7).
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • TmPyPB 1,3,5-tris[(3-pyridyl)-3-phenyl] Benzene
  • OXD-7 2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole]
  • the material of the electron transport layer is not limited to the materials exemplified above.
  • the material of the N-type doped layer may be an alkali metal salt having a small atomic radius such as sodium hydrogencarbonate (NaHCO 3 ), lithium cobalt oxide (LiCoO 2 ) or lithium carbonate (Li 2 CO 3 ).
  • the organic electroluminescent device includes an N-type doped electron transport layer disposed in a plurality of repeating unit structures between the light emitting layer and the cathode, that is, when the electron transport layer is vapor-deposited
  • the transport material and the N-type dopant are sequentially vapor-deposited.
  • each repeating unit includes two electron transport layers 9 and an N-type doped layer 10 disposed between the two electron transport layers 9.
  • the organic electroluminescent device includes a glass substrate 31 and The anode 32, the hole injection layer 33, the hole transport layer 34, the light-emitting layer 35, the N-type doped electron transport layer 36, the electron injection layer 37 and the cathode 38 are sequentially disposed on the glass substrate 31;
  • Two wires are respectively led out from the anode 32 and the cathode 38, and are connected to an external DC driving power source;
  • the material of the hole injection layer 33 may be an inorganic material, and may be, for example, molybdenum trioxide (MoO 3 ), nickel oxide (NiO x ), vanadium pentoxide (V 2 O 5 ), or the like, and the thickness of the hole injection layer 33.
  • MoO 3 molybdenum trioxide
  • NiO x nickel oxide
  • V 2 O 5 vanadium pentoxide
  • the material of the hole transport layer 34 may be an organic material, for example, N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-di An amine (NPB) or 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA) or the like, the hole transport layer 34 may have a thickness of 30 nm to 40 nm;
  • the material of the luminescent layer 35 is a fluorescent dye or a phosphorescent dye of different colors such as red, green, blue, etc., and the thickness of the luminescent layer 35 is about 20 nm to 25 nm;
  • the material of the electron injection layer 36 is LiF (lithium fluoride), and the thickness of the electron injection layer 36 is about 0.8 nm;
  • the aluminum cathode 38 may have a thickness of 120 nm to 150 nm;
  • the N-type doped electron transport layer 36 includes at least two electron transport layers and an N-type doped layer disposed between each two adjacent electron transport layers;
  • the material of the electron transport layer may be BPhen, TmPyPB or OXD-7, etc., and the electron transport layer may have a thickness of 25 nm to 35 nm;
  • the material of the N-type doped layer is an alkali metal salt having a small atomic radius such as NaHCO 3 , LiCoO 2 , or Li 2 CO 3 , and the thickness of the N-type doped layer is greater than or equal to 3.5 nm and less than or equal to 5.0 nm. For example, it can be 4.5 nm.
  • the N-type doped electron transport layer is a multiple repeating unit structure, including n repeating units (n is an integer greater than or equal to 1); each repeating unit includes two electron transport layers and is disposed between the two electron transport layers The N-type doped layer; regardless of the value of n, the total thickness of all the electron transport layers included in the N-type doped electron transport layer remains unchanged, and the optimum OLED structure is obtained by changing the value of n.
  • the material of the electron transport layer is OXD-7, the total thickness of the electron transport layer is 30 nm, and the N-type dopant used for the N-type doping layer is NaHCO 3 ;
  • the structures of the N-type doped electron transport layers are as follows:
  • n 1: OXD-7 (15 nm) / NaHCO 3 (4.5 nm) / OXD-7 (15 nm);
  • n 2: OXD-7 (10 nm) / NaHCO 3 (2.25 nm) / OXD-7 (10 nm) / NaHCO 3 (2.25 nm) / OXD-7 (10 nm);
  • n 3: OXD-7 ( 7.5nm) / NaHCO 3 (1.5nm) / OXD-7 (7.5nm) / NaHCO 3 (1.5nm) / OXD-7 (7.5nm) / NaHCO 3 (1.5nm) / OXD -7 (7.5 nm);
  • n is preferably 2, 3 or 4, which can lower the driving voltage of the OLED device and improve the photoelectric performance such as brightness and efficiency of the OLED device.
  • An N-type doped layer is formed between every two adjacent electron transport layers.
  • a ratio of a sum of thicknesses of the at least two electron transport layers to a sum of thicknesses of all of the N-type doped layers included in the organic electroluminescent device is within a predetermined ratio range
  • the sum of the thicknesses of the at least two electron transport layers is within a predetermined thickness range.
  • the predetermined thickness ranges from greater than or equal to 25 nm and less than or equal to 35 nm.
  • the sum of the thicknesses of all of the N-type doped layers included in the organic electroluminescent device is greater than or equal to 3.5 nm and less than or equal to 5.0 nm.
  • An electron injecting layer is formed between the cathode and an electron transport layer closest to the cathode.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制备方法。该有机电致发光器件在阳极(32)和阴极(38)之间至少包括发光层(35),该有机电致发光器件还包括设置于该发光层(35)和该阴极(38)之间的至少两电子传输层(9),以及设置于每两相邻的电子传输层(9)之间的N型掺杂层(10)。该有机电致发光器件将电子传输材料和N型掺杂剂依次顺序蒸镀,通过界面掺杂效应与N型掺杂剂的扩散形成类似N型掺杂的效果来提高电子的注入与传输能力,从而平衡载流子浓度,提高激子利用率,提高OLED器件的光电性能。

Description

有机电致发光器件及其制备方法
相关申请的交叉引用
本申请主张在2014年7月14日在中国提交的中国专利申请号No.201410334530.X的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及显示技术领域,尤其涉及一种有机电致发光器件及其制备方法。
背景技术
在有机电致发光器件(Organic Light-Emitting Diode,OLED)中,空穴传输材料的空穴迁移率远大于电子传输材料的电子迁移率,这造成了复合区域内电子与空穴数量的不平衡,降低了激子的复合几率,从而导致OLED的电流效率与功率效率低。
在现有技术中,为了提高OLED中的电子的注入与传输能力,通常采用以下两种方法:
在电子传输层采用N型掺杂的方法:如图1所示,将N型掺杂剂11按照一定的比例掺杂在电子传输材料12中。这通过共蒸镀来实现,但要求N型掺杂剂与电子传输材料的精确的掺杂比例。这在实际操作中较难控制,且实验的重复性也较差。
采用双电子注入层的方法:虽然该方法可以降低电子的注入势垒,利于电子的直接注入,但并不能提高电子在传输层中的迁移率。
发明内容
本发明所要解决的技术问题是提高OLED器件中电子的注入与传输能力,从而平衡载流子浓度,提高激子利用率,进而提高OLED器件的光电性能。
针对上述所要解决的技术问题,本发明提供了一种有机电致发光器件。
本发明所提供的有机电致发光器件,在阳极和阴极之间至少包括发光层,还包括设置于所述发光层和所述阴极之间的至少两个电子传输层,以及设置于每两个相邻的电子传输层之间的N型掺杂层。
实施时,所述至少两电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在预定比值范围之内;
该预定比值范围为大于或等于5且小于或等于10。
实施时,所述至少两电子传输层的厚度之和在预定厚度范围内。
所述预定厚度范围为大于或等于25nm且小于或等于35nm。
实施时,所述有机电子发光器件包括的所有N型掺杂层的厚度之和大于或等于3.5nm且小于或等于5.0nm。
实施时,所述有机电致发光器件包括的电子传输层的层数为2层、3层或4层。
实施时,本发明所述的有机电致发光器件还包括依次设置于所述阳极和所述发光层之间的空穴注入层和空穴传输层,设置于所述阴极和最靠近该阴极的电子传输层之间的电子注入层,以及玻璃基板;所述阳极设置于所述玻璃基板上。
本发明还提供了一种有机电致发光器件的制备方法,所述有机电致发光器件在阳极和阴极之间至少包括发光层。
本发明所提供的有机电致发光器件的制备方法,包括:在所述发光层和所述阴极之间形成至少两电子传输层;
在每两相邻的电子传输层之间形成N型掺杂层。
实施时,所述至少两电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在预定比值范围之内;
该预定比值范围为大于或等于5且小于或等于10。
实施时,所述至少两电子传输层的厚度之和在预定厚度范围内。
所述预定厚度范围为大于或等于25nm而小于或等于35nm。
实施时,所述有机电子发光器件包括的所有N型掺杂层的厚度之和大于或等于3.5nm且小于或等于5.0nm。
实施时,所述有机电致发光器件包括的电子传输层的层数为2层、3层或4层。
实施时,本发明所述的有机电致发光器件的制备方法还包括:
在玻璃基板上形成所述阳极;
在所述阳极和所述发光层之间依次设置空穴注入层和空穴传输层;
在所述阴极和最靠近该阴极的电子传输层之间设置电子注入层。
与现有技术相比,本发明所述的有机电致发光器件采用了至少两个电子传输层,并在每两个相邻的电子传输层之间设置N型掺杂层,即将电子传输材料和N型掺杂剂依次顺序蒸镀,通过界面掺杂效应与N型掺杂剂的扩散形成类似N型掺杂的效果,来提高电子的注入与传输能力,从而平衡载流子浓度,提高激子利用率,进而提高OLED器件的光电性能。
附图说明
图1是现有的在电子传输层采用N型掺杂的方法的示意图;
图2是本发明实施例所述的有机电致发光器件包括的N型掺杂电子传输层的结构图;
图3是本发明实施例所述的有机电致发光器件的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例所述的有机电致发光器件,在阳极和阴极之间至少包括发光层,所述有机电致发光器件还包括设置于所述发光层和所述阴极之间的至少两电子传输层,以及设置于每两相邻的电子传输层之间的N型掺杂层。所述至少两电子传输层的厚度之和在预定厚度范围A内。
为了提高有机电致发光器件的载流子复合区域内的电子与空穴数量的平衡且简化制备工艺,本发明实施例采用了至少两电子传输层并在每两个相邻的电子传输层之间设置N型掺杂层,即将电子传输材料和N型掺杂剂依次顺序蒸镀,通过界面掺杂效应与N型掺杂剂的扩散形成类似N型掺杂的效果,来提高电子的注入与传输能力,从而平衡载流子浓度,提高激子利用率,提高OLED器件的光电性能。
相较于现有技术中的在电子传输层采用N型掺杂的方法,本发明实施例采用的将电子传输材料和N型掺杂剂依次顺序蒸镀的方法更容易操作与控制, 简化了制备工艺,且提高了电子与空穴的平衡,利于OLED器件的光电性能的提升。
在具体实施时,所述预定厚度范围A为大于或等于25nm且小于或等于35nm。
在具体实施时,所述有机电致发光器件包括的所有N型掺杂层的厚度之和为大于或等于3.5nm且小于或等于5.0nm。
在底发光器件制备中,电子传输层的厚度一般不会太厚,本发明实施例根据有机电致发光器件中各层材料的选取,将各电子传输层的厚度之和设为25nm~35nm,之后根据电子传输材料与N型掺杂剂最佳的掺杂比例,将各N型掺杂剂层的厚度之和设置为3.5nm~5nm,这样可以使器件的电流密度、亮度、效率、驱动电压等光电特性参数得到很好地提升。
具体的,所述至少两电子传输层的厚度之和与该有机电致发光器件包括的所有N型掺杂层的厚度之和的比值在预定比值范围B之内;
当该预定比值范围B为大于或等于5且小于或等于10时,OLED器件的性能最佳。
通过测试,由于不同的发光材料具有不同的载流子迁移率,所以所述有机电致发光器件包括的电子传输层的层数与有机电致发光器件的结构有关,所述有机电致发光器件包括的电子传输层的层数的范围可以为2层~4层。
所述电子传输层的材料可以为4,7-二苯基-1,10-邻二氮杂菲(BPhen)、1,3,5-三[(3-吡啶基)-3-苯基]苯(TmPyPB)或2,2′-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑](OXD-7)。所述电子传输层的材料并不限于以上例举的材料。
所述N型掺杂层的材料可以为碳酸氢钠(NaHCO3)、氧化钴锂(LiCoO2)或碳酸锂(Li2CO3)等原子半径较小的碱金属盐。
具体的,所述有机电致发光器件包括设置于所述发光层和所述阴极之间的为多个重复单元结构的N型掺杂电子传输层,即在蒸镀电子传输层时,将电子传输材料和N型掺杂剂依次顺序蒸镀,图2所示,每一重复单元包括两电子传输层9以及设置于该两电子传输层9之间的N型掺杂层10。
如图3所示,本发明实施例所述的有机电致发光器件包括玻璃基板31以及 依次设置在该玻璃基板31上的阳极32、空穴注入层33、空穴传输层34、发光层35、N型掺杂电子传输层36、电子注入层37和阴极38;
所述阳极32与所述阴极38上分别引出两根导线,连接到外界直流驱动电源上;
空穴注入层33的材料可以为无机材料,例如可以为三氧化钼(MoO3)、镍氧化物(NiOx)或五氧化二钒(V2O5)等,空穴注入层33的厚度可以为1nm-5nm;
空穴传输层34的材料可以为有机材料,例如可以为N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺(NPB)或4,4′,4”-三(咔唑-9-基)三苯胺(TCTA)等,空穴传输层34的厚度可以为30nm-40nm;
发光层35的材料为红、绿、蓝等不同颜色的荧光染料或磷光染料,发光层35的厚度约为20nm-25nm;
电子注入层36的材料为LiF(氟化锂),电子注入层36的厚度为约0.8nm;
铝阴极38的厚度可以为120nm-150nm;
所述N型掺杂电子传输层36包括至少两电子传输层以及设置于每两个相邻的电子传输层之间的N型掺杂层;
所述电子传输层的材料可以为BPhen、TmPyPB或OXD-7等,所述电子传输层的厚度可以为25nm-35nm;
所述N型掺杂层的材料为NaHCO3、LiCoO2、Li2CO3等原子半径较小的碱金属盐,所述N型掺杂层的厚度为大于或等于3.5nm且小于或等于5.0nm,例如可以为4.5nm。
所述N型掺杂电子传输层为多重复单元结构,包括n个重复单元(n为大于或等于1的整数);每一重复单元包括两电子传输层以及设置于该两电子传输层之间的N型掺杂层;无论n的数值,所述N型掺杂电子传输层包括的所有电子传输层的总厚度保持不变,通过改变n的值来得到最优的OLED结构。
例如,电子传输层的材料采用OXD-7,电子传输层的总厚度为30nm,N型掺杂层采用的N型掺杂剂为NaHCO3
当n的值为1、2、3时,所述N型掺杂电子传输层的结构分别如下:
n=1:OXD-7(15nm)/NaHCO3(4.5nm)/OXD-7(15nm);
n=2:OXD-7(10nm)/NaHCO3(2.25nm)/OXD-7(10nm)/NaHCO3(2.25nm)/OXD-7(10nm);
n=3:OXD-7(7.5nm)/NaHCO3(1.5nm)/OXD-7(7.5nm)/NaHCO3(1.5nm)/OXD-7(7.5nm)/NaHCO3(1.5nm)/OXD-7(7.5nm);
通过对OLED器件的光电性能测试,找出最佳的n值,n优选为2、3或4,可以降低OLED器件的驱动电压,提高OLED器件的亮度与效率等光电性能。
本发明实施例所述的有机电致发光器件的制备方法包括:
在所述发光层和所述阴极之间形成至少两电子传输层;
在每两相邻的电子传输层之间形成N型掺杂层。
具体的,所述至少两电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在预定比值范围之内;
具体的,所述至少两电子传输层的厚度之和在预定厚度范围内。
所述预定厚度范围为大于或等于25nm且小于或等于35nm。
所述有机电子发光器件包括的所有N型掺杂层的厚度之和大于或等于3.5nm且小于或等于5.0nm。
本发明实施例所述的有机电致发光器件的制备方法,还包括:
在玻璃基板上形成所述阳极;
在所述阳极和所述发光层之间依次形成空穴注入层和空穴传输层;
在该阴极和最靠近所述阴极的电子传输层之间形成电子注入层。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (16)

  1. 一种有机电致发光器件,所述有机电致发光器件在阳极和阴极之间至少包括发光层,其特征在于,所述有机电致发光器件还包括设置于所述发光层和所述阴极之间的至少两个电子传输层以及设置于每两个相邻的电子传输层之间的N型掺杂层。
  2. 如权利要求1所述的有机电致发光器件,其特征在于,所述至少两个电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在预定比值范围之内。
  3. 如权利要求2所述的有机电致发光器件,其特征在于,所述至少两个电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在大于或等于5且小于或等于10的范围之内。
  4. 如权利要求2所述的有机电致发光器件,其特征在于,所述至少两个电子传输层的厚度之和在预定厚度范围内。
  5. 如权利要求4所述的有机电致发光器件,其特征在于,所述预定厚度范围为大于或等于25nm而小于或等于35nm。
  6. 如权利要求4所述的有机电致发光器件,其特征在于,所述有机电子发光器件包括的所有N型掺杂层的厚度之和大于或等于3.5nm且小于或等于5.0nm。
  7. 如权利要求1至6中任一权利要求所述的有机电致发光器件,其特征在于,所述有机电致发光器件包括的电子传输层的层数为2层、3层或4层。
  8. 如权利要求1至6中任一权利要求所述的有机电致发光器件,其特征在于,所述的有机电致发光器件还包括依次设置于所述阳极和所述发光层之间的空穴注入层和空穴传输层,设置于所述阴极和最靠近该阴极的电子传输层之间的电子注入层,以及玻璃基板;所述阳极设置于所述玻璃基板上。
  9. 一种有机电致发光器件的制备方法,所述有机电致发光器件在阳极和阴极之间至少包括发光层,其特征在于,所述制备方法包括:
    在所述发光层和所述阴极之间形成至少两电子传输层;
    在每两相邻的电子传输层之间形成N型掺杂层。
  10. 如权利要求9所述的有机电致发光器件的制备方法,其特征在于,所述至少两电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在预定比值范围之内。
  11. 如权利要求10所述的有机电致发光器件的制备方法,其特征在于,所述至少两个电子传输层的厚度之和与该有机电致发光器件包括的所有的N型掺杂层的厚度之和的比值在大于或等于5且小于或等于10的范围之内。
  12. 如权利要求10所述的有机电致发光器件的制备方法,其特征在于,所述至少两电子传输层的厚度之和在预定厚度范围内。
  13. 如权利要求12所述的有机电致发光器件的制备方法,其特征在于,所述预定厚度范围为大于或等于25nm而小于或等于35nm。
  14. 如权利要求12所述的有机电致发光器件的制备方法,其特征在于,所述有机电子发光器件包括的所有N型掺杂层的厚度之和大于或等于3.5nm且小于或等于5.0nm。
  15. 如权利要求9至14中任一权利要求所述的有机电致发光器件的制备方法,其特征在于,所述有机电致发光器件包括的电子传输层的层数为2层、3层或4层。
  16. 如权利要求9至14中任一权利要求所述的有机电致发光器件的制备方法,其特征在于,还包括:
    在玻璃基板上形成所述阳极;
    在所述阳极和所述发光层之间依次形成空穴注入层和空穴传输层;
    在所述阴极和最靠近该阴极的电子传输层之间形成电子注入层。
PCT/CN2014/089973 2014-07-14 2014-10-31 有机电致发光器件及其制备方法 WO2016008234A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/769,368 US9673414B2 (en) 2014-07-14 2014-10-31 Organic light-emitting diode and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410334530.X 2014-07-14
CN201410334530.XA CN104134754A (zh) 2014-07-14 2014-07-14 有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2016008234A1 true WO2016008234A1 (zh) 2016-01-21

Family

ID=51807353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089973 WO2016008234A1 (zh) 2014-07-14 2014-10-31 有机电致发光器件及其制备方法

Country Status (3)

Country Link
US (1) US9673414B2 (zh)
CN (1) CN104134754A (zh)
WO (1) WO2016008234A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319353B (zh) * 2014-11-07 2016-07-06 京东方科技集团股份有限公司 单色oled、制作方法及oled 显示面板
KR101759294B1 (ko) * 2015-01-05 2017-07-18 코닝정밀소재 주식회사 탠덤형 유기발광소자
CN105679958B (zh) * 2016-04-20 2018-03-13 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
KR102611215B1 (ko) 2018-03-12 2023-12-06 삼성전자주식회사 전계 발광 소자, 및 표시 장치
CN108666432B (zh) * 2018-04-02 2020-02-18 华南理工大学 一种含有多级有机半导体异质结的有机发光二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118775A1 (en) * 2006-11-21 2008-05-22 Samsung Sdi Co., Ltd. Organic light emitting diode and organic light emitting display having the same
CN102456844A (zh) * 2010-10-25 2012-05-16 乐金显示有限公司 有机发光二极管及其制造方法
CN102683604A (zh) * 2011-03-07 2012-09-19 精工爱普生株式会社 发光元件、发光装置、显示装置和电子设备
CN103180993A (zh) * 2010-11-09 2013-06-26 皇家飞利浦电子股份有限公司 有机电致发光器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030554B2 (en) * 2004-02-06 2006-04-18 Eastman Kodak Company Full-color organic display having improved blue emission
US20060240277A1 (en) * 2005-04-20 2006-10-26 Eastman Kodak Company Tandem OLED device
CN101556988B (zh) * 2009-05-21 2011-09-21 电子科技大学 一种具有非掺杂增益层的有机光电子器件及其制备方法
CN103730589A (zh) * 2012-10-11 2014-04-16 海洋王照明科技股份有限公司 顶发射有机电致发光器件及其制备方法
KR102014168B1 (ko) * 2012-10-12 2019-08-27 삼성디스플레이 주식회사 유기 발광 소자, 이의 제조 방법 및 물질층 형성 방법
CN103855312B (zh) * 2012-11-30 2016-06-01 海洋王照明科技股份有限公司 倒置顶发射的有机电致发光装置及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118775A1 (en) * 2006-11-21 2008-05-22 Samsung Sdi Co., Ltd. Organic light emitting diode and organic light emitting display having the same
CN102456844A (zh) * 2010-10-25 2012-05-16 乐金显示有限公司 有机发光二极管及其制造方法
CN103180993A (zh) * 2010-11-09 2013-06-26 皇家飞利浦电子股份有限公司 有机电致发光器件
CN102683604A (zh) * 2011-03-07 2012-09-19 精工爱普生株式会社 发光元件、发光装置、显示装置和电子设备

Also Published As

Publication number Publication date
CN104134754A (zh) 2014-11-05
US20160301025A1 (en) 2016-10-13
US9673414B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
US20180233688A1 (en) Light-Emitting Diode and Manufacturing Method Thereof, Light-Emitting Device
TWI513076B (zh) 有機發光二極體元件
US9130186B2 (en) Organic light emitting diode
US9923031B2 (en) Organic light-emitting diode array substrate and display apparatus
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
US20120032186A1 (en) White organic light emitting device
US20100187552A1 (en) Hybrid white organic light emitttng device and method of manufacturing the same
WO2016008234A1 (zh) 有机电致发光器件及其制备方法
CN106784354B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
CN104241540A (zh) 一种有机电致发光显示器件、其制作方法及显示装置
Tsutsui et al. Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application
KR20090095022A (ko) 백색 유기발광소자
US20140175387A1 (en) Organic light emitting diode
WO2021227719A1 (zh) 有机电致发光器件、显示面板及显示装置
Liu et al. High-performance hybrid white organic light-emitting diodes comprising ultrathin blue and orange emissive layers
US20130062599A1 (en) Organic light emitting devices having graded emission regions
JP4649676B2 (ja) 有機エレクトロルミネッセンス素子
TW201829738A (zh) 有機電致發光裝置
WO2016070503A1 (zh) 单色oled及其制作方法和oled显示面板
WO2011148801A1 (ja) 有機el素子
WO2021238448A1 (zh) 有机电致发光器件及阵列基板
TW201526326A (zh) 有機發光裝置
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
CN100473247C (zh) 电激发光元件
KR100594775B1 (ko) 백색 유기발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14769368

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (23.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14897714

Country of ref document: EP

Kind code of ref document: A1