WO2016006235A1 - 粘弾性特性測定装置及び粘弾性特性測定方法 - Google Patents

粘弾性特性測定装置及び粘弾性特性測定方法 Download PDF

Info

Publication number
WO2016006235A1
WO2016006235A1 PCT/JP2015/003431 JP2015003431W WO2016006235A1 WO 2016006235 A1 WO2016006235 A1 WO 2016006235A1 JP 2015003431 W JP2015003431 W JP 2015003431W WO 2016006235 A1 WO2016006235 A1 WO 2016006235A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement sample
unit
sound wave
viscoelastic property
frequency
Prior art date
Application number
PCT/JP2015/003431
Other languages
English (en)
French (fr)
Inventor
順昭 小俣
Original Assignee
高周波粘弾性株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高周波粘弾性株式会社 filed Critical 高周波粘弾性株式会社
Priority to EP15819161.9A priority Critical patent/EP3168598A4/en
Priority to CN201580017510.2A priority patent/CN106133502A/zh
Priority to US15/129,029 priority patent/US20170168020A1/en
Publication of WO2016006235A1 publication Critical patent/WO2016006235A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • G01N29/075Analysing solids by measuring propagation velocity or propagation time of acoustic waves by measuring or comparing phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/445Rubber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0073Determining flow properties indirectly by measuring other parameters of the system acoustic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/012Phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2692Tyres

Definitions

  • the present invention relates to a viscoelastic property measuring apparatus and a viscoelastic property measuring method.
  • the quality of rubber products is determined based on their viscoelastic properties. For example, in a tire, the performance is determined based on the value of the friction coefficient.
  • Various proposals have been made on techniques for measuring viscoelastic properties of such rubber products.
  • Patent Document 1 discloses a technique for measuring friction characteristics in a viscoelastic body such as a tire.
  • the sensor unit radiates a sound wave that causes vibration in the measurement sample as an incident sound wave.
  • the sensor unit receives reflected sound waves generated when sound waves are reflected by the measurement sample.
  • the arithmetic processing unit derives a loss tangent in the viscoelastic property of the measurement sample based on the reflected sound wave received by the sensor unit.
  • the arithmetic processing unit calculates a friction characteristic based on the loss tangent.
  • Patent Document 2 discloses a technique for measuring dynamic viscoelastic characteristics of a polishing pad by applying periodic vibration to the polishing pad.
  • Patent Document 3 discloses a technique for measuring dynamic viscoelastic characteristics of an object by applying rotational vibration to the object.
  • ⁇ Rubber products such as tires are used in a state where large deformation has occurred due to large stress. It is known that such materials have different material properties (Pain effect) between a state where large deformation has occurred and a state where small deformation (for example, microstrain) has occurred. Specifically, since the material is greatly deformed, breakage between aggregated particles in the material occurs, and the elastic modulus is lowered. Therefore, it is necessary to conduct an experiment (dynamic measurement) for such a material in a state close to actual use.
  • the present invention has been made to solve such problems, and is capable of measuring viscoelastic properties in a state that appropriately reflects the actual usage state of a measurement sample such as a rubber product.
  • An object is to provide a device and a method for measuring viscoelastic properties.
  • the viscoelastic property measuring apparatus includes a sample deforming unit, a first viscoelastic property calculating unit, a radiating unit, a receiving unit, and a second viscoelastic property calculating unit.
  • the sample deforming unit applies an external force to the measurement sample to give periodic deformation.
  • the first viscoelastic property calculation unit calculates the low-frequency viscoelastic property of the measurement sample based on the stress acting on the measurement sample deformed by the sample deformation unit and the distortion of the measurement sample.
  • the radiation unit radiates incident sound waves to the measurement sample deformed by the sample deformation unit.
  • the receiving unit receives a reflected sound wave generated when the incident sound wave radiated from the radiation unit is reflected by the measurement sample, or a transmitted sound wave through which the incident sound wave has passed through the measurement sample.
  • the second viscoelastic property calculation unit calculates the high frequency viscoelastic property of the measurement sample at the frequency of the incident sound wave based on the reflected sound wave or the transmitted sound wave received by the reception unit.
  • the viscoelastic property measurement method includes the following steps (a) to (e).
  • a viscoelastic characteristic measuring apparatus and a viscoelastic characteristic measuring method capable of measuring a viscoelastic characteristic in a state in which an actual usage state of a measurement sample such as a rubber product is appropriately reflected.
  • FIG. 1 is a block diagram illustrating a configuration example of a viscoelastic property measuring apparatus according to a first embodiment.
  • 1 is a block diagram illustrating a configuration example of a sensor according to a first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a processing unit according to the first embodiment.
  • 6 is a diagram illustrating a method for calculating a high-frequency viscoelastic property in Embodiment 1.
  • FIG. 6 is a diagram illustrating a method for calculating a high-frequency viscoelastic property in Embodiment 1.
  • FIG. 4 is a flowchart showing an example of processing of the viscoelastic property measuring apparatus according to Embodiment 1.
  • FIG. 4 is a flowchart showing an example of processing of the viscoelastic property measuring apparatus according to Embodiment 1. It is a block diagram which shows the structural example of the viscoelastic property measuring apparatus concerning Embodiment 2.
  • FIG. 6 is a diagram illustrating a method for calculating a high-frequency viscoelastic property in Embodiment 2.
  • FIG. 6 is a diagram illustrating a method for calculating a high-frequency viscoelastic property in Embodiment 2.
  • FIG. 6 is a diagram illustrating a method for calculating a high-frequency viscoelastic property in Embodiment 2.
  • FIG. 5 is a flowchart showing an example of processing of a viscoelastic property measuring apparatus according to Embodiment 2.
  • FIG. 5 is a flowchart showing an example of processing of a viscoelastic property measuring apparatus according to Embodiment 2. It is a block diagram which shows the structural example of the viscoelastic property measuring apparatus concerning Embodiment 3.
  • FIG. It is the figure which showed the example of a measurement of the high frequency viscoelastic property at the time of applying the bending force to a measurement sample. It is the figure which showed the example of a measurement of the high frequency viscoelastic property at the time of applying the bending force to a measurement sample. It is the figure which showed the example of a measurement of the high frequency viscoelastic property at the time of applying the bending force to a measurement sample.
  • FIG. 1 It is the figure which showed the measurement example of the low frequency viscoelastic property at the time of rotating a measurement sample according to a predetermined frequency centering
  • FIG. 1 It is a block diagram which shows the structural example of the viscoelastic property measuring apparatus concerning Embodiment 4. It is a figure explaining the method of calculating a high frequency viscoelastic property in Embodiment 4.
  • FIG. It is a figure explaining the method of calculating a high frequency viscoelastic property in Embodiment 4.
  • FIG. It is a figure explaining the method of calculating a high frequency viscoelastic property in Embodiment 4.
  • FIG. 1 It is the figure which showed the measurement example of the low frequency viscoelastic property at the time of rotating a measurement sample according to a predetermined frequency centering
  • FIG. 1 It is a block diagram
  • FIG. 6 is a block diagram illustrating a configuration example of a part of a viscoelastic property measuring apparatus according to a fifth embodiment
  • FIG. 1 is a block diagram illustrating a configuration example of a viscoelastic property measuring apparatus 1 according to the first embodiment.
  • the viscoelastic property measuring apparatus 1 includes a rheometer control unit 10, a rheometer unit 11, a sound wave emission unit 12, a sound wave signal generation unit 13, a conversion unit 14, and a processing unit 15.
  • the measurement sample of viscoelastic characteristics will be described as measurement sample S.
  • the measurement sample S may be a solid sample or a liquid sample.
  • the viscoelastic property includes at least one value of a loss tangent tan ⁇ , a storage elastic modulus E ′, and a loss elastic modulus E ′′, which will be described later.
  • the rheometer control unit 10 acquires a control signal that instructs the operation of the rheometer unit 11 from the processing unit 15.
  • the rheometer control unit 10 controls the rheometer unit 11 to apply a predetermined strain to the measurement sample S according to the control signal.
  • the rheometer control unit 10 outputs a drive instruction to the motor 23 of the drive unit 20.
  • the rheometer control unit 10 can control the rheometer unit 11 to rotate about the shaft 21 (rotating jig).
  • the portion on the shaft 21 side of the measurement sample S moves following the rotation of the rheometer unit 11, and the portion on the sound wave emitting portion 12 side (the portion on the opposite side of the shaft 21 side) of the measurement sample S is fixed and moved. Absent. For this reason, the measurement sample S undergoes torsional (shear) deformation.
  • the rheometer control unit 10 may control the measurement sample S to vibrate in the vertical direction by vibrating the shaft 21 in the length direction (vertical direction in FIG. 1, hereinafter referred to as the vertical direction). .
  • the rheometer control unit 10 may control the rotation or vibration of the shaft 21 to generate a sine wave vibration in the measurement sample S.
  • the rheometer control unit 10 can adjust the rotation width and period of the shaft 21 or the amplitude and frequency of the vibration of the shaft 21.
  • the rheometer control unit 10 controls the measurement sample S to rotate or vibrate at a low frequency (for example, about several Hz to 100 Hz).
  • the rheometer control unit 10 may control the motor 23 to compress the measurement sample S by applying a pressure in the vertical direction at a predetermined cycle via the shaft 21. Further, the rheometer control unit 10 may control the motor 23 so that the measurement sample S is pulled up and extended in the vertical direction at a predetermined cycle via the shaft 21. At this time, the rheometer control unit 10 can adjust the magnitude and cycle of the pressure or tension. Further, the rheometer control unit 10 may apply a bending force to the measurement sample S at a predetermined cycle from the width direction of the shaft 21 (left and right direction in FIG. 1; hereinafter referred to as a horizontal direction). As described above, the rheometer control unit 10 controls the rheometer unit to apply an external force to the measurement sample S to give periodic deformation.
  • the operations of the rheometer control unit 10 described above may be executed in combination.
  • the rheometer control unit 10 can be configured by a circuit such as a memory or other IC (Integrated Circuit).
  • the rheometer unit 11 is a sample deformation unit that deforms the measurement sample S by applying an external force under the control of the rheometer control unit 10. The deformation of the measurement sample S that occurs in response to the operation of the rheometer unit 11 is as described above.
  • the rheometer unit 11 and the sound wave radiating unit 12 sandwich the measurement sample S.
  • the rheometer unit 11 includes a drive unit 20, a shaft 21, and an annular plate 22 in detail.
  • the drive unit 20 applies an external force to the measurement sample S via the shaft 21.
  • the drive unit 20 includes a motor 23 and a sensor 24.
  • the motor 23 drives the shaft 21 in response to a drive instruction from the rheometer control unit 10.
  • the shaft 21 is connected to the annular plate 22, and the annular plate 22 moves according to the movement of the shaft 21. Since the annular plate 22 is fixed to one surface of the measurement sample S, the measurement sample S is deformed according to the external force from the drive unit 20.
  • the annular plate 22 is provided with a probe capable of acquiring the temperature of the measurement sample S. Information on the temperature of the measurement sample S acquired by the probe is output to the sensor 24.
  • the sensor 24 measures a measurement amount relating to the state of the measurement sample S and outputs it to the conversion unit 14.
  • the output measurement amount is converted by the conversion unit 14 and then output to the processing unit 15.
  • FIG. 2 is a block diagram illustrating a configuration example of the sensor 24.
  • the sensor 24 includes a stress detection sensor 32 and a temperature detection sensor 33.
  • a stress detection sensor 32 and a temperature detection sensor 33.
  • each part of the sensor 24 will be described.
  • the stress detection sensor 32 detects the stress acting on the measurement sample S based on the drive instruction output by the rheometer control unit 10, and outputs the detected stress data to the conversion unit 14. For example, when the drive instruction from the rheometer control unit 10 applies a vertical vibration based on a sine wave to the measurement sample S, the stress detection sensor 32 detects the data of the stress of the sine wave. The data is output to the conversion unit 14.
  • the stress detection sensor 32 may detect the stress acting on the measurement sample S by detecting the generated torque when a shearing force is applied to the measurement sample S.
  • the temperature detection sensor 33 acquires the temperature of the measurement sample S from the probe provided on the annular plate 22.
  • the temperature detection sensor 33 outputs the acquired temperature data to the conversion unit 14.
  • the sound wave radiating unit 12 contacts the measurement sample S, radiates the high frequency incident sound wave generated by the sound wave signal generation unit 13 to the measurement sample S, and the reflected sound wave (measurement) generated by the reflection of the incident sound wave to the measurement sample S. Amount).
  • the sound wave radiating unit 12 includes a transducer 25 and a delay material 26. Hereinafter, each part will be described.
  • the transducer 25 includes, for example, a piezoelectric element.
  • the transducer 25 is mounted in contact with the delay material 26.
  • the transducer 25 is connected to a direction matching unit 28 to be described later.
  • the transducer 25 converts the electrical signal into a sound wave.
  • the transducer 25 radiates (incides) the converted sound wave to the delay material 26.
  • the delay material 26 delays the emitted sound wave and radiates it to the measurement sample S.
  • the transducer 25 receives a reflected sound wave radiated from the measurement sample S via the delay material 26 (a sound wave generated when the incident sound wave is reflected by the measurement sample S)
  • the transducer 25 converts the reflected sound wave into an electrical signal.
  • the transducer 25 outputs the converted electric signal to the direction matching unit 28.
  • the retarder 26 is provided so that one surface is in close contact with the transducer 25 and the other surface facing the one surface is in contact with the measurement sample S. Due to such an arrangement, the delay member 26 propagates the incident sound wave incident from the transducer 25 to the measurement sample S and propagates the reflected sound wave generated by the reflection of the incident sound wave by the measurement sample S to the transducer 25. it can.
  • the delay member 26 functions to delay the arrival time of the sound wave. Specifically, when the propagation length of the delay member 26 is increased, the time from when the transducer 25 radiates the incident sound wave until the reflected sound wave is received can be increased. For this reason, it is possible to prevent the transducer 25 from receiving the reflected sound wave while the transducer 25 is emitting the incident sound wave.
  • the sound wave signal generation unit 13 generates an electric signal of an incident sound wave and outputs it to the sound wave emission unit 12 in order to calculate a high frequency viscoelastic characteristic.
  • the sound wave signal generation unit 13 receives the electric signal of the reflected sound wave acquired by the sound wave emission unit 12 and outputs the received electric signal to the conversion unit 14.
  • the sound wave signal generator 13 includes a drive waveform generator 27, a direction matching device 28, and a high frequency amplifier 29.
  • the drive waveform generator 27 generates an electrical signal (drive waveform) in accordance with the sound wave radiation instruction signal output from the processing unit 15 and outputs the generated electrical signal to the direction matching unit 28.
  • This electrical signal is a signal for generating a sound wave radiated to the measurement sample S.
  • Specific examples of the sound wave emitted to the measurement sample S include a pulsed sound wave and a sound wave including a predetermined frequency component.
  • the drive waveform generator 27 outputs a trigger signal indicating the output timing of the generated electrical signal to the high-frequency amplifier 29.
  • the direction matching unit 28 is connected to the drive waveform generator 27, the high frequency amplifier 29 and the transducer 25.
  • the direction matching unit 28 outputs the electrical signal received from the drive waveform generator 27 to the transducer 25 and outputs the electrical signal supplied from the transducer 25 to the high frequency amplifier 29.
  • the direction matching unit 28 adjusts the signal transmission direction so that the electric signal output from the drive waveform generator 27 is not output to the high frequency amplifier 29.
  • the high frequency amplifier 29 is supplied with an electrical signal from the direction matching unit 28. This electrical signal is an electrical signal output from the transducer 25.
  • the high frequency amplifier 29 amplifies a high frequency component in the supplied electric signal with a predetermined amplification factor. Then, the high frequency amplifier 29 outputs the amplified electric signal to the conversion unit 14.
  • a high-frequency component for example, 1 MHz to 100 MHz
  • the high frequency amplifier 29 starts receiving the electrical signal supplied from the transducer 25 after receiving the trigger signal from the drive waveform generator 27. Due to the above processing, the high-frequency amplifier 29 does not operate during a period in which the high-frequency viscoelastic characteristics of the measurement sample S are not measured. Therefore, unnecessary operations of the high frequency amplifier 29 can be suppressed.
  • the sound wave radiating unit 12 and the sound wave signal generating unit 13 measure the measurement amount related to the high frequency viscoelastic property of the measurement sample S.
  • the sound wave radiating unit 12 functions as a radiation unit that outputs incident sound waves to the measurement sample S, and also functions as a reception unit that receives reflected sound waves that are generated when the incident sound waves are reflected by the measurement sample S. Such a configuration is often used in nondestructive inspection (ultrasound).
  • the conversion unit 14 converts a signal format communicated between the processing unit 15, the rheometer control unit 10, the drive unit 20, and the sound wave signal generation unit 13.
  • the conversion unit 14 includes a D / A conversion unit 30 and an A / D conversion unit 31.
  • the D / A conversion unit 30 converts the digital control signal output from the processing unit 15 into an analog signal, and outputs the converted control signal to the rheometer control unit 10. Further, the D / A conversion unit 30 converts the digital radiation instruction signal output from the processing unit 15 into an analog signal, and outputs the converted radiation instruction signal to the drive waveform generator 27.
  • the A / D converter 31 converts the electrical signal output from the high-frequency amplifier 29 from an analog signal to a digital signal, and outputs the converted electrical signal to the processing unit 15. Further, the A / D conversion unit 31 converts the electrical signal output from the sensor 24 from an analog signal to a digital signal, and outputs the converted electrical signal to the processing unit 15.
  • the D / A conversion unit 30 is composed of a D / A conversion circuit (converter), and the A / D conversion unit 31 is composed of an A / D conversion circuit (converter).
  • FIG. 3 is a block diagram illustrating a configuration example of the processing unit 15.
  • the processing unit 15 calculates the high-frequency viscoelastic characteristics of the measurement sample S using the measurement amounts measured by the sound wave emission unit 12 and the sound wave signal generation unit 13.
  • the processing unit 15 includes an input unit 34, a calculation unit 35, a time data memory unit 36, a storage unit 37, and a display / output unit 38.
  • the processing unit 15 is composed of, for example, a computer (particularly a personal computer).
  • Each element of the system described in the processing unit 15 as a functional block for performing various processes can be configured by a circuit such as a memory or other IC in terms of hardware, and loaded into the memory in terms of software. It can be realized by a programmed program. Hereinafter, each part will be described.
  • a deformation instruction indicating the type and parameters of deformation of the measurement sample S executed by the rheometer unit 11 is input from the measurer.
  • the measurer can input parameters such as the rotation of the measurement sample S (that is, the rotation of the shaft 21) and the rotation width and period to the input unit 34. The same applies to the case where the measurement sample S is elongated, compressed, or vibrated. Thus, the measurer determines a predetermined strain to be applied to the measurement sample S.
  • a radiation instruction for the sound wave signal generator 13 to emit sound waves may be input to the input unit 34 from the measurer.
  • the input unit 34 is configured with buttons and the like, for example.
  • the calculation unit 35 outputs a control signal to the rheometer control unit 10 when a deformation instruction indicating the type and parameters of deformation of the measurement sample S executed by the rheometer unit 11 is output from the input unit 34.
  • the computing unit 35 controls the operation of the rheometer unit 11 with this control signal.
  • the calculation unit 35 stores in the storage unit 37 the distortion data of the measurement sample S generated in response to the deformation instruction.
  • the sensor 24 outputs measurement amount data (stress acting on the measurement sample S and temperature data of the measurement sample S) to the time data memory unit 36.
  • the calculation unit 35 reads out the data stored in the time data memory unit 36 and the strain data of the measurement sample S stored in the storage unit 37, and low-frequency viscoelastic characteristics (hereinafter, referred to as the measurement sample S). Low frequency viscoelastic properties).
  • the calculation unit 35 outputs a radiation instruction signal to the D / A conversion unit 30 when a sound wave radiation instruction is input from the input unit 34.
  • the D / A converter 30 converts the radiation instruction signal from a digital signal to an analog signal, and outputs the changed radiation instruction signal to the drive waveform generator 27.
  • the calculation unit 35 generates a sound wave radiated to the measurement sample S.
  • these signals output from the calculation unit 35 are digital signals as described above.
  • the drive waveform generator 27 generates an electrical signal for generating a sound wave to be radiated to the measurement sample S according to the radiation instruction signal, and outputs the electrical signal to the direction matching unit 28. In this way, the calculation unit 35 starts measurement of the high-frequency viscoelastic characteristics of the measurement sample S with the sound wave emission instruction from the input unit 34 as a trigger.
  • the calculation unit 35 reads the data.
  • the computing unit 35 performs waveform analysis processing in the frequency domain such as FFT (Fast Fourier Transformation) processing, for example, and acquires the amplitude value and phase at the frequency to be detected.
  • the frequency used as a detection object may be one, and plural may be sufficient as it.
  • the calculation unit 35 reads the reference value stored in the storage unit 37, and uses the reference value and the amplitude value and phase at the frequency to be detected of the reflected sound wave stored in the time data memory unit 36. Based on this, the high frequency viscoelastic property of the measurement sample S is calculated.
  • the data output from the sensor 24 is stored in the time data memory unit 36 at a predetermined cycle.
  • the stored data is data of stress acting on the measurement sample S and temperature of the measurement sample S.
  • time waveform of the electrical signal of the reflected sound wave supplied from the high frequency amplifier 29 is stored in the time data memory unit 36 at a predetermined cycle.
  • the time data memory unit 36 can change the cycle for storing data based on the control of the calculation unit 35.
  • the storage unit 37 stores the strain data of the measurement sample S and stores in advance a reference value necessary for calculating the high-frequency viscoelastic characteristics of the measurement sample S.
  • This reference value is data of an amplitude value and a phase at a frequency to be measured for high frequency viscoelastic characteristics. Details of the reference value will be described later.
  • the calculation unit 35 reads the reference value stored in the storage unit 37.
  • the display / output unit 38 displays or outputs the low-frequency viscoelastic characteristics and high-frequency viscoelastic characteristics of the measurement sample S calculated by the calculation unit 35 to the measurer.
  • the display / output unit 38 is, for example, a display.
  • the calculation unit 35 reads data on stress acting on the measurement sample S from the time data memory unit 36, and reads strain data on the measurement sample S from the storage unit 37. Then, the calculation unit 35 compares the amplitude of the stress acting on the measurement sample S and the distortion amplitude of the measurement sample S, and calculates the amplitude ratio between them. This amplitude ratio is the storage elastic modulus E ′ at a low frequency.
  • the computing unit 35 compares the phase of the stress acting on the measurement sample S and the distortion phase of the measurement sample S, and calculates the phase difference between them.
  • the computing unit 35 calculates a loss tangent tan ⁇ at a low frequency using this phase difference.
  • the loss elastic modulus is E ′′
  • the loss elastic modulus E ′′ can also be calculated by calculating the loss tangent tan ⁇ and the storage elastic modulus E ′.
  • the calculation unit 35 calculates the dynamic low-frequency viscoelastic characteristics. (For example, refer to Patent Document 2).
  • the calculation unit 35 can also calculate the temperature dependence of the low-frequency viscoelastic characteristics using the temperature data of the measurement sample S read from the time data memory unit 36.
  • ⁇ Calculation method of high-frequency viscoelastic properties (surface reflection method)> Furthermore, the case where the viscoelastic property measuring apparatus 1 calculates the high frequency viscoelastic property of the measurement sample S is demonstrated. As this calculation method, a surface reflection method is used (see, for example, Patent Document 1). In this case, the transducer 25 radiates incident sound waves to the measurement sample S. The radiated incident sound wave is reflected on the surface of the measurement sample S to generate a reflected sound wave. The processing unit 15 measures high frequency viscoelastic characteristics based on the reflected sound wave.
  • FIG. 4A and 4B are diagrams illustrating a method for calculating high-frequency viscoelastic characteristics using this surface reflection method.
  • FIG. 4A is a drawing showing the reflection state of the incident sound wave when obtaining the reference value
  • FIG. 4B is a drawing showing the reflection state of the incident sound wave when calculating the high-frequency viscoelastic characteristics of the measurement sample S. is there.
  • acoustic impedance representing the propagation characteristics of the incident sound wave radiated from the transducer 25 of the sound wave radiating unit 12 is used.
  • the reference value is a phase and amplitude value at a frequency to be a measurement sample when the surface of the delay member 26 opposite to the surface on which the transducer 25 is in contact is not in contact with the measurement sample S.
  • the incident sound wave is reflected at the boundary surface between the end of the delay member 26 and the air.
  • the frequency of the incident sound wave and the reflected sound wave is set to f
  • the acoustic impedance of the delay member 26 is expressed as Z B (f) that is a function of the frequency f.
  • the acoustic impedance in the air is expressed as Z A (f) that is a function of the frequency f.
  • the acoustic impedances Z B (f) and Z A (f) are complex values.
  • Z A (f) is sufficiently smaller than Z B (f) at an arbitrary frequency f
  • the reflectance R AB (f) ⁇ 1 from Expression (2). That is, the incident sound wave is totally reflected at the boundary surface between the delay member 26 and the air.
  • the expression of the reflected sound wave incident on the transducer 25 is represented as a 0 (f) exp (i ⁇ 0 (f)).
  • i is an imaginary unit
  • a 0 (f) is a real amplitude value at a target frequency
  • ⁇ 0 (f) is a real number of 0 or more, and represents a phase at each frequency.
  • the amplitude a 0 (f) and the phase ⁇ 0 (f) in Expression (3) are stored in advance as reference values. This reference value is obtained by measurement in advance.
  • the transducer 25 When calculating the high-frequency viscoelastic characteristics of the measurement sample S, the transducer 25 is the same as FIG. 4A according to the output of the electrical signal from the drive waveform generator 27 in the state where the delay material 26 is in close contact with the measurement sample S. Incident sound wave is emitted.
  • the transducer 25 receives the reflected sound wave reflected at the boundary surface between the delay material 26 and the measurement sample S, and the high frequency amplifier 29 amplifies the high frequency component in the electric signal of the reflected sound wave.
  • the calculation unit 35 compares the reflected sound wave with a reference value stored in the storage unit 37 and calculates the loss tangent of the measurement sample S.
  • the expression of the reflected sound wave incident on the transducer 25 is represented as a (f) exp (i ⁇ (f)).
  • i is an imaginary unit
  • a (f) is a real amplitude value at a target frequency
  • ⁇ (f) is a real number equal to or greater than 0 and represents a phase at each frequency.
  • the storage elastic modulus and loss elastic modulus of the measurement sample S which are functions of the frequency f, are E ′ (f) and loss elastic modulus E ′′ (f).
  • E ′ (f) and E "and (f) between the acoustic impedance Z S (f) and the density [rho T of the measurement sample S, the following relationship holds.
  • E ′ + iE ′′ (f) Z S (f) 2 / ⁇ T (9)
  • the storage elastic modulus E ′ (f), the loss elastic modulus E ′′ (f), and the loss tangent tan ⁇ (f) are all a 0 (f), ⁇ 0 (f) Are defined as ⁇ a (f) / a 0 (f) ⁇ , ⁇ (f) ⁇ 0 (f) ⁇ , and the arithmetic unit 35 calculates the amplitude a 0 (f) and the phase characteristic ⁇ 0. (F) is set as a reference value, and the data of the electric signal of the reflected sound wave acquired at the time of measurement of the measurement sample S is compared with the reference value, whereby the high-frequency viscoelastic characteristics of the measurement sample S are compared.
  • the high-frequency viscoelastic property of the measurement sample S depends on the frequency, so that the calculation unit 35 may derive the high-frequency viscoelastic property for each of a plurality of frequency components.
  • the ultrasonic wave is used as the incident sound wave. It may be supplied from the over for 25.
  • the calculation unit 35 can also calculate the temperature dependence of the high-frequency viscoelastic characteristics using the temperature data of the measurement sample S read from the time data memory unit 36.
  • FIG. 5A and FIG. 5B are flowcharts showing an example of processing of the viscoelastic property measuring apparatus 1.
  • FIGS. 5A and 5B are flowcharts showing an example of processing of the viscoelastic property measuring apparatus 1.
  • the entire process of the viscoelastic property measuring apparatus 1 will be described with reference to FIGS. 5A and 5B.
  • the calculation unit 35 determines whether or not an instruction to deform the measurement sample S is received from the input unit 34 (step S1). When the deformation instruction has not been received (No in step S1), the calculation unit 35 does not output a control signal to the rheometer control unit 10 and performs the determination process in step S1 again.
  • the details of the deformation instruction are as described above.
  • the calculation unit 35 When the calculation unit 35 receives an instruction to deform the measurement sample S (Yes in step S1), the calculation unit 35 outputs a control signal to the rheometer control unit 10. The rheometer control unit 10 outputs a drive instruction to the motor 23 of the drive unit 20 in accordance with the control signal. In response to this drive instruction, the motor 23 is driven and the measurement sample S is deformed (step S2). In addition, the calculation unit 35 stores distortion data of the measurement sample S in the storage unit 37.
  • the calculation unit 35 determines whether or not a sound wave emission instruction is received from the input unit 34 (step S3).
  • the calculation unit 35 does not generate the sound wave radiated to the measurement sample S and performs the determination process in step S3 again. Details of the radiation instruction are as described above.
  • the calculation unit 35 When the calculation unit 35 receives a sound wave emission instruction (Yes in step S3), the calculation unit 35 outputs a sound wave emission instruction signal to the drive waveform generator 27.
  • the drive waveform generator 27 generates an electrical signal for generating an incident sound wave radiated to the measurement sample S according to the radiation instruction signal, and outputs the electrical signal to the direction matching unit 28.
  • the transducer 25 converts the supplied electric signal into an incident sound wave, and radiates the incident sound wave to the measurement sample S through the delay material 26 (step S4).
  • the transducer 25 When the transducer 25 receives the reflected sound wave from the measurement sample S via the delay material 26, the transducer 25 converts the reflected sound wave into an electric signal, and outputs the converted electric signal to the direction matching unit 28 (step S5).
  • the direction matching unit 28 outputs the electric signal to the high frequency amplifier 29.
  • the high frequency amplifier 29 amplifies the high frequency component included in the supplied electric signal and outputs the amplified electric signal to the time data memory unit 36.
  • the calculation unit 35 reads the data stored in the time data memory unit 36, performs waveform analysis processing in the frequency domain, and acquires the amplitude value and phase at the frequency to be detected (step S6). Further, the stress detection sensor 32 detects the stress acting on the measurement sample S (step S7).
  • the calculation unit 35 calculates the low-frequency viscoelastic characteristics of the measurement sample S based on the data of stress acting on the measurement sample S and the strain data of the measurement sample S stored in the storage unit 37. Further, the calculation unit 35 reads the reference value stored in the storage unit 37. The computing unit 35 calculates the high-frequency viscoelastic characteristics of the measurement sample S based on the reference value and the amplitude value and phase at the frequency that is the detection target of the reflected sound wave stored in the time data memory unit 36 (step). S8). The details of these calculation methods are as described above.
  • the calculating unit 35 calculates and acquires the low-frequency viscoelastic property for a predetermined time, and extracts a feature amount in the time change of the viscoelastic property (step S9).
  • the feature amount may be at least one of storage elastic modulus E ′ (f), loss elastic modulus E ′′ (f), and loss tangent tan ⁇ (f), or storage elastic modulus E ′ (f), loss elastic modulus E. It may be a ratio of any two values of “(f) and loss tangent tan ⁇ (f)”.
  • the calculation unit 35 may perform differential calculation to detect the peak of time change of the viscoelastic property as a feature amount, or may detect a feature amount that characterizes the degree of increase / decrease tendency of the viscoelastic property. Good. As described above, the calculation unit 35 can calculate the feature amount using a generally known feature amount calculation method. Furthermore, as the feature amount, either a low-frequency viscoelastic property or a high-frequency viscoelastic property may be used, or both the low-frequency viscoelastic property and the high-frequency viscoelastic property may be used. The calculation unit 35 can determine whether or not the measurement sample S has the optimum physical properties in the application of the measurement sample S by calculating an appropriate feature amount among various feature amounts.
  • the spectroscopy of the viscoelastic properties of the measurement sample S may change over time.
  • the measurement sample S is bread dough
  • the measurement sample S is deformed and kneaded
  • the viscoelastic characteristics shift with time. Based on this, it is possible to determine the value of the viscoelastic property optimal for the bread dough.
  • a plurality of bread dough specimens are generated by adding deformation to the measurement sample S of the same material for different times. By baking these plural specimens, the specimen that has the optimum bread hardness at the time of baking is specified.
  • the viscoelastic property data of the specimen is the optimum viscoelastic property value for the bread dough. Even in the other measurement sample S, the optimum value of the viscoelastic property can be determined according to the property.
  • the measurer can determine whether or not the characteristic amount of the measurement sample S acquired in step S9 is within a predetermined range.
  • the measurement sample S is determined to have an optimal viscoelastic property, and if the characteristic amount is outside the predetermined range, it can be determined that the measurement sample S does not have an optimal viscoelastic property. it can.
  • the computing unit 35 calculates the degree of correlation between the high frequency viscoelastic property and the low frequency viscoelastic property using the high frequency viscoelastic property and the low frequency viscoelastic property calculated in step S8 (step S10). ). By calculating this correlation, the characteristics of the measurement sample S can be clarified. For example, when the correlation between the high frequency viscoelastic property and the low frequency viscoelastic property is calculated to be low (for example, a predetermined threshold value or less) in step S10, the high frequency viscoelastic property of the measurement sample S is measured to reduce the This means that a change in the characteristics of the measurement sample S, which was unknown only by measuring the frequency viscoelastic characteristics, can be understood.
  • the feature amount extracted in step S9 uses both the low frequency viscoelastic property and the high frequency viscoelastic property, it is based on the correlation between the low frequency viscoelastic property and the high frequency viscoelastic property instead of the low frequency alone or the high frequency alone. It is possible to know the change of the feature amount.
  • the computing unit 35 Based on the correlation calculated in step S10, the computing unit 35 extracts the influence (features generated in response to the presence of the external field) that the external field (for example, an electric field, a magnetic field, and an electromagnetic field) has on the high-frequency viscoelastic characteristics. (Step S11). Note that the data calculated or extracted in steps S8 to S11 may be displayed or output on the display / output unit 38.
  • the viscoelastic property measuring apparatus 1 measures the high frequency viscoelastic property using the sound wave in a state where the measurement sample S is deformed using the rheometer. Therefore, the high-frequency viscoelasticity characteristic can be measured in a state in which the actual usage state of the measurement sample S is appropriately reflected. For example, during normal driving, the tire is assumed to be deformed at a frequency of several Hz to around 100 Hz. For this reason, when measuring the high-frequency viscoelastic characteristics of a tire or tire material as the measurement sample S, the viscoelastic characteristic measuring apparatus 1 can be used when the tire is running by vibrating the tire or tire material at a frequency of about several Hz to 100 Hz. Can be measured more accurately.
  • the viscoelastic property measuring apparatus 1 can also measure the low frequency viscoelastic properties of the measurement sample S such as rotation and vibration. Therefore, the viscoelastic property measuring apparatus 1 can calculate the correlation between the high frequency viscoelastic property and the low frequency viscoelastic property and the influence of the external field on the high frequency viscoelastic property.
  • a reflected sound wave (hereinafter referred to as a first reflected sound wave) generated when an incident sound wave attempts to enter the measurement sample S and reflected by the surface of the measurement sample, and an incident light transmitted through the surface of the measurement sample.
  • This is a method of measuring a high-frequency viscoelastic property based on a reflected sound wave (hereinafter referred to as a second reflected sound wave) generated by reflection of a sound wave on the surface opposite to the surface (see, for example, Patent Document 1). ).
  • FIG. 6 is a block diagram showing a configuration example of the viscoelastic property measuring apparatus 2 according to the second embodiment.
  • the viscoelastic characteristic measuring apparatus 2 according to the second embodiment is different from the viscoelastic characteristic measuring apparatus 1 according to the first embodiment in that a reflector 39 is newly provided. Since the other components of the viscoelastic property measuring apparatus 2 are the same as those in the first embodiment, description thereof is omitted.
  • the reflection material 39 is provided in the measurement sample S so as to be in contact with the surface opposite to the surface on which the incident sound wave enters the measurement sample S (that is, the surface facing the delay material 26 and the transducer 25). Specifically, the surface of the reflective material 39 that contacts the measurement sample S is parallel to the surface of the delay material 26 that contacts the measurement sample S.
  • the reflective material 39 is provided between the measurement sample S and the annular plate 22.
  • the reflecting material 39 is fixed to the annular plate 22, and the reflecting material 39 moves according to the movement of the shaft 21. For example, when the shaft 21 rotates, the reflecting material 39 also rotates. Therefore, the reflector 39 transmits the external force from the shaft 21 to the measurement sample S.
  • the reflection material 39 and the edge part of the measurement sample S are open
  • the distance between the reflector 39 and the retarder 26 is changed by the operator moving the reflector 39 manually or automatically by the machine.
  • the incident sound wave that has passed through the inside of the measurement sample S is reflected by the reflector 39.
  • the second reflected sound wave reflected by the reflecting material 39 enters the delay material 26.
  • the delay material 26 outputs the second reflected sound wave to the transducer 25, and the transducer 25 converts the second reflected sound wave into an electric signal and supplies it to the direction matching unit 28.
  • the direction matching unit 28 supplies an electric signal to the high frequency amplifier 29.
  • the high frequency amplifier 29 amplifies the high frequency component of the electric signal and supplies it to the processing unit 15.
  • the reflective material 39 has a larger acoustic impedance difference than the measurement sample S. Therefore, the incident sound wave radiated from the transducer 25 is efficiently reflected at the boundary surface.
  • 7A, 7B, and 7C are diagrams illustrating a method for calculating high-frequency viscoelasticity characteristics using a bottom surface reflection method.
  • 7A and 7B are diagrams showing the reflection state of the incident sound wave when obtaining the reference value
  • FIG. 7C shows the reflection state of the incident sound wave when calculating the high-frequency viscoelastic characteristics of the measurement sample S. It is a drawing. In the following description, acoustic impedance representing the propagation characteristics of the incident sound wave radiated from the transducer 25 of the sound wave radiating unit 12 is used.
  • the reference value will be described with reference to FIG. 7A.
  • the transducer 25 radiates incident sound waves.
  • the transducer 25 is reflected sound wave (hereinafter, also referred A 0 wave) generated at the interface between the delay member 26 and the air to receive.
  • the calculation unit 35 acquires an incident sound wave emitted from the transducer 25 through the delay material 26 as a reference value in order to remove an error in the initial state caused by the presence of the delay material 26.
  • the acoustic impedance in the air is sufficiently smaller than that of the delay material 26 and the measurement sample S. Therefore, the incident sound wave radiated from the transducer 25 is totally reflected at the interface between the delay material 26 and the air.
  • the A 0 wave received by the transducer 25 is represented as a 0 (f) exp (i ⁇ 0 (f)).
  • i is an imaginary unit
  • a 0 (f) is an amplitude value (real value) at each frequency
  • ⁇ 0 (f) is a phase (constant of 0 or more) at each frequency.
  • the calculation unit 35 performs FFT processing on the time waveform of the reflected sound wave received by the transducer 25 to calculate the amplitude value a 0 (f) and the phase ⁇ 0 (f) at each frequency.
  • the calculation unit 35 acquires thickness and density data of the reflection material 39. This data may be input from the input unit 34 at the same timing as the radiation instruction, or may be stored in the storage unit 37 in advance.
  • the surface with which the reflective material 39 is in close contact is the opposite side of the surface with which the transducer 25 is in close contact.
  • the computing unit 35 detects a time delay between the A 1 wave and the B 1 wave. Calculation unit 35, based on the time waveform of the A 1 wave and B 1 wave received from the transducer 25 to measure the delay time [Delta] T R with A 1 wave and B 1 wave.
  • the measurement sample S is disposed so as to be in close contact with the retarding material 26 on one surface and in close contact with the reflecting material 39 on the surface opposite to the one surface.
  • the calculation unit 35 receives a sound wave emission instruction from the input unit 34, the calculation unit 35 outputs an electrical signal to the sound wave signal generation unit 13.
  • an incident sound wave is emitted to the measurement sample S.
  • the first and second reflected sound waves that are generated when the incident sound wave is reflected by the measurement sample S are stored in the time data memory unit 36 as in the first embodiment.
  • the calculation part 35 will acquire the data of the thickness and density of the measurement sample S, if the radiation
  • FIG. This data may be input from the input unit 34 at the same timing as the radiation instruction, or may be stored in the storage unit 37 in advance.
  • the transducer 25 radiates an incident sound wave in accordance with the electric signal of the drive waveform generator 27, the incident sound wave is reflected at the boundary surface between the delay material 26 and the measurement sample S, so that the reflected sound wave (hereinafter also referred to as A wave). Occurs. Furthermore, since the incident sound wave is reflected at the boundary surface between the measurement sample S and the reflecting material 39, a reflected sound wave (hereinafter also referred to as B wave) is generated.
  • the calculation unit 35 detects the time delay between the A wave and the B wave, and acquires the amplitude value and phase at each frequency for the A wave and the B wave. Specifically, the calculation unit 35 measures the delay time ⁇ T between the A wave and the B wave based on the time waveform from the transducer 25.
  • the A wave received by the transducer 25 is represented as a (f) exp (i ⁇ A (f)), and the B wave is represented as b (f) exp (i ⁇ B (f)).
  • i is an imaginary unit
  • a (f) and b (f) are real amplitude values at frequencies of A wave and B wave, respectively
  • ⁇ A (f) and ⁇ B (f) are respectively A It is the phase at each frequency of wave and B wave.
  • ⁇ A (f) and ⁇ B (f) are real numbers of 0 or more.
  • the computing unit 35 reads the time waveform data of the A wave and the B wave stored in the time data memory unit 36, and measures the delay time of the second reflected sound wave with respect to the first reflected sound wave. In addition, the calculation unit 35 performs FFT processing on the time waveform of the A wave received by the transducer 25 to obtain the amplitude value a (f) and the phase ⁇ A (f) at each frequency of the A wave. Similarly, the calculation unit 35 performs FFT processing on the time waveform of the B wave received by the transducer 25 to obtain the amplitude value b (f) and the phase ⁇ B (f) at each frequency of the B wave.
  • the phase velocity Vp (f) of the incident sound wave is as follows.
  • V P (f) 2h ⁇ 2 ⁇ f / ( ⁇ B ⁇ A + 2 ⁇ f ⁇ T + 2N ⁇ ) (17)
  • N is an arbitrary positive number.
  • the calculation unit 35 calculates the high frequency viscoelastic characteristics of the measurement sample S by executing the calculations of equations (16) to (20). Further, the calculation unit 35 outputs the calculated high-frequency viscoelastic property of the measurement sample S to the display / output unit 38.
  • FIG. 8A and FIG. 8B are flowcharts showing an example of processing of the viscoelastic property measuring apparatus 2.
  • the entire process of the viscoelastic property measuring apparatus 2 will be described with reference to FIGS. 8A and 8B.
  • Steps S1 to S6 in FIG. 8A are the same as the processes in steps S1 to S6 in FIG.
  • step S8 of FIG. 8A the calculation unit 35 calculates the high-frequency viscoelastic characteristics of the measurement sample S based on the attenuation coefficient ⁇ (f) and the phase velocity Vp (f).
  • the calculation of the low frequency viscoelastic property of the measurement sample S is the same as step S8 shown in FIG. 5A.
  • FIG. 9 is a block diagram illustrating a configuration example of the viscoelastic property measuring apparatus 3 according to the third embodiment.
  • the viscoelastic characteristic measuring device 3 according to the third embodiment is provided with a transducer 40 and a delay member 26 and a direction matching device 28. There is no difference.
  • the other components of the viscoelastic property measuring apparatus 3 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the transducer 40 is provided so that the measurement sample S is in contact with the surface opposite to the surface in contact with the transducer 25. Specifically, the surface of the transducer 40 that contacts the measurement sample S is parallel to the surface of the transducer 25 that contacts the measurement sample S.
  • the transducer 40 is provided between the measurement sample S and the annular plate 22.
  • the transducer 40 converts the electrical signal of the drive waveform generated by the drive waveform generator 27 into a sound wave. The converted sound wave is emitted to the measurement sample S. After being incident, the sound wave (transmitted sound wave) transmitted through the measurement sample S is input to the transducer 25.
  • the processing performed by the transducer 25 is the same as in the first embodiment.
  • the drive waveform electrical signal generated by the drive waveform generator 27 is also output to the A / D converter 31.
  • the A / D converter 31 performs A / D conversion of the electrical signal.
  • the A / D converted electrical signal is stored in the time data memory unit 36. With this processing, the time waveform data of the incident sound wave is stored in the time data memory unit 36. Further, the time waveform data of the transmitted sound wave is also stored in the time data memory unit 36 as in the first embodiment.
  • an incident sound wave is radiated to the measurement sample S when the measurer inputs a radiation instruction of the incident sound wave to the input unit 34. Details of this processing are as described above.
  • the time data memory unit 36 stores time waveform data of incident sound waves and time waveform data of transmitted sound waves.
  • the computing unit 35 reads the time waveform data of the incident sound wave and the time waveform data of the transmitted sound wave stored in the time data memory unit 36, and performs an FFT process on each read time waveform data. By this processing, the calculation unit 35 acquires the amplitude value and phase at each frequency.
  • the computing unit 35 compares the amplitude value and phase at each frequency in the incident sound wave and the transmitted sound wave, and calculates the high frequency viscoelastic characteristic of the measurement sample S. Then, the calculation unit 35 outputs the calculated high frequency viscoelastic property of the measurement sample S to the display / output unit 38. Note that other processes executed by the respective units of the viscoelastic characteristic measuring apparatus 3 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the viscoelastic characteristic measuring device 3 may have a configuration in which the transducer 25 emits incident sound waves and the transducer 40 receives transmitted sound waves.
  • the rheometer unit 11 can rotate the measurement sample S at a predetermined frequency around the rotation axis.
  • This rotation axis is an axis (for example, axis 21) parallel to the direction in which the incident sound wave is radiated.
  • the measurement sample S rotates at a predetermined frequency in a direction perpendicular to the direction in which the incident sound wave is emitted. In this way, the measurement sample S can be twisted.
  • the rheometer unit 11 When the rheometer unit 11 applies a tensile force or a compressive force to the measurement sample S, the measurement sample S is deformed to expand or contract. In addition, the rheometer unit 11 may cause the measurement sample S to vibrate at a predetermined cycle, thereby causing deformation that extends and contracts in the same direction at a predetermined cycle. Here, the rheometer unit 11 may vibrate the measurement sample S at a predetermined frequency in a direction parallel to the direction in which the incident sound wave is emitted. The direction in which the tensile force or compressive force is applied is parallel to the direction in which the incident sound wave is emitted.
  • FIGS. 10A and 10B are diagrams showing measurement examples of high-frequency viscoelastic characteristics when a bending force is applied to the measurement sample S.
  • FIG. 10A is a diagram when the high frequency viscoelastic property is measured using the surface reflection method
  • FIG. 10B is a diagram when the high frequency viscoelastic property is measured using the bottom surface reflection method
  • FIG. 10C is the transmission method. It is a figure at the time of using and measuring a high frequency viscoelastic characteristic.
  • 10A to 10C only the configuration around the measurement sample S and the transducer is shown, and the other components are not shown.
  • FIGS. 10A and 10B incident sound waves are incident from below to above
  • FIG. 10C incident sound waves are incident from above to below.
  • a load is applied to the measurement sample S from the point P1 in the direction of the arrow X at a predetermined cycle. That is, the measurement sample S is applied with a force in the lateral direction (the left direction in FIGS. 10A to 10C).
  • the measurement sample S is supported at points P2 and P3.
  • the points P2 and P3 are in contact with the measurement sample S on the opposite side of the measurement sample S from the point P1 (that is, on the left side in FIGS. 10A to 10C).
  • the point P2 is in contact with the vicinity of the end of the measurement sample S
  • the point P3 is in contact with the vicinity of the end of the measurement sample S on the opposite side of the point P2.
  • the points P2 and P3 suppress the shift of the measurement sample S in the lateral direction as a whole. Due to this configuration, the measurement sample S is bent only in the peripheral portion of the point P1 in a direction in which stress is applied at a predetermined period. In this way, bending deformation can be caused in the measurement sample. In addition, by applying a force in the direction of the arrow X from the point P1 to the measurement sample S at a predetermined cycle (applying sine wave vibration), stress is applied only to the peripheral portion of the point P1 at a predetermined cycle. You may bend it in the direction.
  • FIG. 11 is a diagram illustrating a measurement example of high-frequency viscoelasticity characteristics when the measurement sample S is rotated at a predetermined frequency around the rotation axis and an electric field is applied to the measurement sample S.
  • the high-frequency viscoelasticity characteristic is measured using the surface reflection method, and the incident sound wave is incident from the upper side to the lower side in FIG.
  • FIG. 11 only the configuration around the measurement sample S and the transducer is illustrated, and the other components are not illustrated.
  • An example of the measurement sample S in the measurement example 4 is an ER (Electro-Rheological) fluid, a liquid crystal, or a piezoelectric material.
  • ER Electro-Rheological
  • an electrode 41 is provided between the annular plate 22 and the measurement sample S, and an electrode 42 is provided between the retarder 26 and the measurement sample S.
  • the rheometer control unit 10 can adjust the strength of the electric field applied to the electrode 41 and the electrode 42.
  • the electrode 41, the electrode 42, and the rheometer control unit 10 constitute an electric field applying unit.
  • the calculation unit 35 controls the rheometer control unit 10 to adjust the strength of the electric field as specified based on the acquired information on the strength of the electric field.
  • the measurement sample S may be subjected to random rotation or vibration instead of rotation or vibration at a predetermined frequency.
  • a high-frequency viscoelastic property can be measured by applying a magnetic field to the measurement sample S by disposing a magnet instead of an electrode.
  • an example of the measurement sample S is an MR (Magneto-Rheological) fluid.
  • MR Magnetic-Rheological
  • the measurement sample S may not be rotated, and a deformation that vibrates, extends, or contracts may be applied to the measurement sample S.
  • the measurement sample S rotates around a rotation axis parallel to the direction in which the incident sound wave is emitted.
  • the rotation axis may not be parallel to the direction in which the incident sound wave is emitted. That is, you may make it make a predetermined angle with the radiation direction of an incident sound wave, and a rotating shaft.
  • the direction in which the tensile force or the compressive force is applied may not be a direction parallel to the direction in which the incident sound wave is radiated.
  • the direction in which the bending force is applied may not be a direction perpendicular to the direction in which the incident sound wave is radiated to the measurement sample S.
  • the direction in which the electric field is applied may not be parallel to the direction in which the radiated sound wave is emitted.
  • rotation and vibration parameters in the measurement examples 1 to 4 can be set by the measurer as described above. Further, the deformation of the measurement sample S shown in the first to fourth modifications can be combined as appropriate.
  • the high-frequency viscoelastic characteristics of the measurement sample S are calculated using the bottom surface reflection method.
  • the measurement sample S is scattered by the centrifugal force generated by the rotation of the rheometer unit 11 or bubbles are mixed into the measurement sample S.
  • the measurement sample S is a liquid, particularly such a change in the shape of the measurement sample S may occur. Due to such a change in the shape of the measurement sample S, an error occurs in the measurement value of the measurement sample S, and there is a possibility that the low-frequency and high-frequency viscoelastic characteristics cannot be measured accurately.
  • the reflective material 39 and the measurement sample S are hermetically sealed so that the change in the shape of the measurement sample S is suppressed even if a centrifugal force is applied to the measurement sample S. ing.
  • FIG. 12 is a block diagram showing a configuration example of the viscoelastic property measuring apparatus 4 when the measurement sample S is a liquid.
  • the casing structure 50 seals the annular plate 22, the reflective material 39, and the measurement sample S in a state where there is almost no air inside, so that the air between the reflective material 39 and the measurement sample S is sealed. Is suppressed.
  • the reflective material 39 faces the delay material 26 with the measurement sample S interposed therebetween.
  • description is abbreviate
  • FIGS. 13A to 13C are diagrams illustrating a method for calculating high-frequency viscoelastic characteristics using a bottom surface reflection method.
  • FIG. 13A is a diagram showing a state in which a sound wave is incident on the delay material 26 without the measurement sample S and the reflection material 39.
  • FIG. 13B is a diagram showing a state in which a sound wave is incident on the measurement sample S through the delay material 26 in the absence of the reflective material 39.
  • FIG. 13C is a diagram showing a state in which a sound wave is incident on the measurement sample S through the delay material 26 in a state where the reflective material 39 is present.
  • the acoustic impedance of the delay material 26 is Z B
  • the acoustic impedance of the measurement sample S is Z S.
  • the complex reflectance R BS of the incident wave from the delay material 26 to the measurement sample S can be expressed as follows using Z B and Z S.
  • R BS (Z S ⁇ Z B ) / (Z S + Z B ) (21)
  • the acoustic impedance Z S can be expressed as follows.
  • Z S Z B ⁇ (1 + R BS ) / (1-R BS ) (22)
  • the reflected sound wave (A 0 wave) generated at the boundary surface between the delay material 26 and the air is compared with the reflected sound wave (A wave) generated at the boundary surface between the delay material 26 and the measurement sample S.
  • the B wave is expressed as follows.
  • T BS delay member 26 in the formula (30) to the sample S T SB is the transmittance of the sample S to the delay member 26, are respectively defined as follows.
  • the attenuation coefficient ⁇ can be calculated without obtaining the complex reflectance R SR.
  • the coefficient ⁇ can be calculated.
  • the above calculation can be executed even when the reflector 39 and the measurement sample S are not sealed as in the second embodiment.
  • FIG. 14 is a block diagram illustrating a configuration example of the viscoelastic property measuring apparatus 4 when the measurement sample S is a solid.
  • the casing structure 51 seals the annular plate 22, the reflector 39, and the measurement sample S.
  • the surface of the measurement sample S facing the reflecting material 39 is the surface opposite to the surface of the measurement sample S facing the delay material 26.
  • the liquid L for example, water
  • the casing structure 51 is filled in the casing structure 51, thereby preventing air from entering between the reflective material 39 and the measurement sample S.
  • the vertical axes of the rheometer unit 11 and the sound wave emitting unit 12 are set with respect to the direction of gravity. It is desirable to have the sideways so as to form an angle (preferably a vertical angle). In other words, the sound wave incident from the transducer 25, propagated to the measurement sample S, and reflected by the reflecting material 39 is not parallel to the gravity direction but forms an angle with the gravity direction (preferably a perpendicular angle). Is desirable. Accordingly, even when air is mixed into the liquid measurement sample S in FIG. 12 or the liquid L in FIG. 14, the mixed air does not collect around the contact surface between the reflection material 39 and the measurement sample S. It is possible to prevent air from being mixed between 39 and the measurement sample S.
  • the behavior of the high frequency viscoelastic property when the measurement sample S is greatly deformed can be measured.
  • the high frequency viscoelastic property when measuring the high frequency viscoelastic property of a material whose shape is deformed during use, such as tire rubber, the high frequency viscoelastic property can be measured in a state that appropriately reflects the actual use state.
  • the behaviors of the low-frequency viscoelastic property and the high-frequency viscoelastic property can be simultaneously measured in situ. This makes it possible to compare the difference in viscoelastic characteristics between low frequency and high frequency and the strain dependence.
  • the low frequency is a frequency of about 10 Hz, for example, and the high frequency is a frequency of about 1 MHz to 100 MHz, for example, but the frequency range is not limited to this.
  • the high frequency is a frequency of about 1 MHz to 100 MHz, for example, but the frequency range is not limited to this.
  • a suitable high frequency is about 10 kHz to 100 MHz because of the effectiveness of the wavelength.
  • wavelength effectiveness means that if the wavelength of the sound wave used for measurement becomes longer, the sample propagation length needs to be increased in order to separate the waveform to be measured, so the frequency and wavelength of the sound wave are limited.
  • viscoelastic properties are measured by detecting high-frequency propagation under low-frequency stress applied to the sample.
  • a suitable high frequency is about 10 kHz to 100 kHz from the effectiveness of the wavelength.
  • viscoelastic characteristics are measured by detecting high-frequency propagation during a machining process while low-frequency stress is applied to the sample. At this time, a suitable high frequency is about 10 kHz to 100 MHz due to the effectiveness of the wavelength.
  • FIG. 15 is a graph showing an example of the relationship between strain and stress in a measurement sample having viscoelastic properties.
  • the horizontal axis of the graph is strain, and the vertical axis indicates stress.
  • (a) shows a measurement range covered by measurement using ultrasonic waves
  • (b) shows a measurement range covered by measurement using a rheometer.
  • the measurement range in (a) is a state where strain and stress are small
  • the measurement range in (b) is a state where strain and stress are large.
  • both ranges (a) and (b) can be measured.
  • FIG. 16 is a graph showing an example of the relationship between frequency and viscoelastic properties in a measurement sample having viscoelastic properties.
  • the horizontal axis of the graph is frequency, and the vertical axis indicates viscoelastic characteristics.
  • (a) shows a measurement range covered by measurement using sound waves
  • (b) shows a measurement range covered by measurement using a rheometer.
  • the measurement range in (a) shows viscoelastic properties when the frequency and viscoelastic properties are large, and (b) shows viscoelastic properties when the frequency and viscoelastic properties are small.
  • both ranges (a) and (b) can be measured.
  • the measurement sample S is a material such as bread dough or rubber and the measurement sample S undergoes a reaction such as polymerization in a chemical process under mixing, the measurement sample S is rotated or vibrated, so that Changes in viscoelastic properties over time can be measured. Further, the reaction often proceeds from the surface of the measurement sample S. Therefore, it is assumed that the surface physical properties (viscoelastic properties on the surface) of the measurement sample S and the bulk physical properties (overall viscoelastic properties) of the measurement sample S are different.
  • the surface physical properties of the measurement sample S are calculated, for example, as a result of measurement using the surface reflection method (particularly measurement using ultrasonic waves).
  • the bulk physical properties of the measurement sample S are calculated as a result of measuring the stress acting on the measurement sample S and the distortion of the measurement sample S when the measurement sample S is deformed using a rheometer. Therefore, the progress of the reaction can be determined appropriately by comparing the data of these viscoelastic properties. Furthermore, in the measurement of the high-frequency viscoelastic characteristics, the physical properties can be grasped in three dimensions by performing CT (Computed Tomography) using the aperture synthesis method on the measurement sample S.
  • CT Computer Tomography
  • the aperture synthesis method is a technique for virtually synthesizing a cross-sectional image of the measurement sample S using a phased array method when measurement is performed using ultrasonic waves.
  • the viscoelastic property measuring apparatus has a function in which a rheometer and a high frequency viscoelasticity measuring apparatus are combined. Therefore, the low frequency and high frequency viscoelastic properties can be measured under the same or different strains. Therefore, when the measurement sample S is rubber (tire material), for example, the loss tangent tan ⁇ at a low frequency of the rubber when the load applied to the rubber is small (the strain applied to the rubber by the rheometer unit 11 is small) is measured. Thus, the magnitude of rubber rolling resistance can be measured.
  • the size of the dry grip of the rubber can be measured.
  • the loss tangent tan ⁇ at a high frequency can be measured by transmitting and receiving ultrasonic waves to the rubber from the transducer 25 provided in the chuck device while applying torsional strain to the rubber by the rheometer unit 11.
  • the rubber rolling resistance and grip (dry grip and wet grip) described above are parameters that change the fuel consumption of the tire. By measuring these parameters, there is a possibility that a load-responsive smart material that changes so that the material itself has optimum characteristics by the torque generated by the load can be evaluated efficiently or comprehensively.
  • the loss tangent tan ⁇ at a low frequency of a rubber under a large load is reduced for the purpose of reducing the fuel consumption of the tire, the loss tangent tan ⁇ at a high frequency of the rubber under a large load is also reduced. End up. Therefore, in a so-called fuel-saving tire, the properties of the wet grip are deteriorated.
  • the loss tangent tan ⁇ is less than the original value in rubber to which a large load (large strain) is applied. There is a possibility that the value can be increased (that is, the performance of the tire can be improved).
  • the orientation of the aggregate which is an aggregate of filler particles blended in the rubber, is not irreversibly changed by load strain, but is temporarily cut or moved, the rubber viscosity can be reduced.
  • the elastic characteristics can be changed according to the load (strain) value.
  • the molecular weight of the side chain of the rubber and the molecular weight of the terminal are important as factors relating to the frequency dependence of the loss tangent tan ⁇ .
  • the calculation unit 35 may calculate the friction coefficient of the measurement sample S using the calculated high-frequency viscoelastic characteristics of the measurement sample S.
  • the friction coefficient ⁇ (f) of the measurement sample S as a function of the frequency f is obtained by using the above-described loss tangent tan ⁇ (f) and the storage elastic modulus E ′ (f).
  • ⁇ (f) ⁇ ⁇ E ′ (f) n ⁇ tan ⁇ (f) + ⁇ (37) It is expressed.
  • the mathematical formula for obtaining the friction coefficient ⁇ (f) may be another polynomial or higher order formula using tan ⁇ (f), not the formula (37).
  • the constants ⁇ and ⁇ are values acquired in advance through experiments or the like, and are stored in the storage unit 37.
  • FIG. 17 is a diagram illustrating a partial configuration of the viscoelastic property measuring apparatus 5 according to the sixth embodiment.
  • the viscoelastic characteristic measurement device 5 further includes a light source 60, a high-speed CCD camera 61, and a processing unit 62, as compared with the viscoelastic characteristic measurement device 1.
  • the viscoelastic property measuring device 5 is a device that calculates the high frequency viscoelastic property of the tire T by the surface reflection method, and other components of the viscoelastic property measuring device 5 are the same as those of the viscoelastic property measuring device 1. Therefore, the description is omitted.
  • the surface T1 comes into contact with a part of the surface 26A of the retarder 26. And it rotates, contacting the part of surface 26A by the drive of the motor 23. FIG. Therefore, a shearing force generated by rotation and a frictional force generated by pressing force are generated on the surface T1.
  • the tire T is fixed so as to keep in contact with the retarder 26 even if it continues to rotate (that is, it does not move in the front-rear direction).
  • the surface 26A is a surface of the retarder 26 opposite to the surface with which the transducer 25 is in contact.
  • the light source 60 irradiates the measurement light toward the surface 26A via the delay material 26, and the high-speed CCD camera 61 applies the reflected light generated by the measurement light reflected by the surface 26A to the delay material 26.
  • the delay member 26 is transmissive so that the measurement light from the light source 60 can be reflected by the surface 26 ⁇ / b> A and the reflected light has an intensity that can be detected by the high-speed CCD camera 61.
  • the distinction between the region where the tire T is in contact with the surface 26A and the region where another substance (air or water in this example) is in contact with the surface 26A is as follows: This is possible by adjusting the incident angle of the measurement light incident on the surface 26A from the light source 60. Since the reflectivity of the retarder 26 and the tire T (rubber) is different from the reflectivity of the retarder 26 and air or water, the critical angle ⁇ 1 at the interface between the retarder 26 and the tire T and the retarder 26 is different from the critical angle ⁇ 2 at the interface between the air 26 and air or water.
  • the incident angle of the measurement light is set between the critical angle ⁇ 1 and the critical angle ⁇ 2 and whether or not the measurement light is reflected in each region of the surface 26A is determined by the high-speed CCD camera 61. Detect with. Based on the detection result of the high-speed CCD camera 61, the processing unit 62 identifies whether it is the tire T, air, or water that is in contact with each region of the surface 26A. In this way, the processing unit 62 can measure the contact area of the tire T with the surface 26A.
  • the processing unit 62 is configured by, for example, a computer (particularly a personal computer), like the processing unit 15.
  • the processing unit 62 can identify the slipping portion and the adhesion portion of the tire T with respect to the surface 26A. This is because the sliding portion does not contact the surface 26A in a short time, whereas the adhesion portion contacts the surface 26A for a long time, so that both can be identified by the contact time.
  • the processing unit 62 relates the relationship between the contact area of the tire T to the surface 26A and the low-frequency and high-frequency viscoelastic property measurement results. Can be measured. In addition, you may measure not the tire T but the other substance (for example, sample roller) used for the use of rotation. Further, even when the measurement sample S is not rotated and only a torque is applied in the range of the partial slip or is simply brought into contact with the delay material 26, the measurement sample S and the delay material 26 are It is possible to measure the relationship between the contact area and the measurement results of the low-frequency and high-frequency viscoelastic properties.
  • the transducer 25 does not radiate incident sound waves (for measuring high-frequency viscoelasticity) to the tire T, but is radiated from the measurement sample S via the delay material 26. Only reception of reflected sound waves may be executed.
  • the received reflected sound wave data is output to the processing unit 15 via the conversion unit 14.
  • the processing unit 15 can measure the vibration state on the friction surface of the tire T due to slipping based on the data of the reflected sound wave.
  • the viscoelastic property measuring apparatus 5 can perform more accurate high frequency viscoelasticity measurement.
  • the viscoelastic property measuring apparatus 5 can collect vibration frequency band, spectrum, and waveform data having remarkable characteristics.
  • the viscoelastic characteristic measuring device 5 can determine whether the vibration state of the tire T is a desired state when the measurement sample S is not subjected to frictional force. When in the desired state, the viscoelastic property measuring apparatus 5 can perform the high frequency viscoelasticity measurement of the measurement sample S, so that the conditions for the high frequency viscoelasticity measurement can be made optimal.
  • the surface 26A may be a friction surface having a required surface roughness depending on the measurement.
  • the temperature detection sensor 33 is not necessarily provided.
  • the stress applied to the measurement sample S may be determined in advance to measure the strain.
  • a displacement detection sensor is provided instead of the stress detection sensor 32.
  • the displacement detection sensor detects distortion data of the measurement sample S based on, for example, the longitudinal displacement of the shaft 21 and outputs the acquired distortion data to the processing unit 15.
  • both the stress detection sensor 32 and the displacement detection sensor may be provided in the rheometer unit 11. Further, the deformation of the measurement sample S is not limited to the rheometer.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical disks), CD-ROM, CD-R, CD-R / W Semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media.
  • Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本発明に係る粘弾性特性測定装置(1)は、測定試料(S)に外力を加えて周期的な変形を与える試料変形部(11)と、試料変形部(11)により変形された測定試料(S)に作用する応力及び測定試料(S)の歪みに基づいて、測定試料(S)の低周波の粘弾性特性を算出する第1の粘弾性特性算出部(15)と、測定試料(S)に入射音波を放射する放射部(12)と、放射部(25)が放射した入射音波が測定試料(S)で反射されて生じる反射音波、又は入射音波が測定試料(S)を透過した透過音波を受信する受信部(12)と、受信部(25)が受信した反射音波又は透過音波に基づいて、入射音波の周波数における測定試料(S)の高周波の粘弾性特性を算出する第2の粘弾性特性算出部(15)を備える。

Description

粘弾性特性測定装置及び粘弾性特性測定方法
 本発明は粘弾性特性測定装置及び粘弾性特性測定方法に関する。
 ゴム製品は、その粘弾性特性に基づいて、品質が決定される。例えばタイヤでは、その摩擦係数の値に基づいて性能が決定される。このようなゴム製品の粘弾性特性を測定する技術について、種々の提案がなされている。
 例えば、特許文献1には、タイヤ等の粘弾性体における摩擦特性を測定する技術が開示されている。この特許文献1では、センサ部が、測定試料に振動を生じさせる音波を入射音波として放射する。また、センサ部は、測定試料で音波が反射されて生じる反射音波を受信する。そして、演算処理部は、センサ部で受信される反射音波に基づいて、測定試料の粘弾性特性における損失正接を導出する。演算処理部は、その損失正接に基づいて摩擦特性を算出する。なお、特許文献2には、研磨パッドに周期的な振動を加えて、研磨パッドの動的粘弾性特性を測定する技術が開示されている。また、特許文献3には、対象物に回転振動を加えて、対象物の動的粘弾性特性を測定する技術が開示されている。
特開2007-47130号公報 特開2004-228265号公報 特開2010-48722号公報
 タイヤ等のゴム製品は、大きな応力が加わるために大変形が生じた状態で使用される。このような材料は、大変形が生じた状態と、小変形(例えば微小ひずみ)が生じた状態とで、その物質特性が異なること(ペイン効果)が知られている。具体的には、材料が大きく変形するため、材料内の凝集粒子間の破壊が起こり、弾性率の低下が生じる。従って、このような材料については、実際の使用に近い状態で実験(動的計測)を行う必要がある。
 ゴム素材の摩擦特性は、凝着摩擦とヒステリシス摩擦の2つの要因が存在する。そのうち、ヒステリシス摩擦は、高周波の粘弾性特性(以下、高周波粘弾性特性と記載)が大きく寄与するといわれている。上述の通り、タイヤ等においてヒステリシス摩擦を測定する場合には、実際の使用状態に近い状態(大変形が生じるような状態)で測定する必要がある。しかしながら、特許文献1では、測定試料にそのような変形を生じさせることについて何ら開示されていない。例えば、超音波を用いてタイヤの高周波粘弾性の測定を行った場合には、超音波波動のために生じるゴム素材の振幅は1ミクロン程度であるため、実際の大きな変形のひずみを再現できない。
 本発明は、このような問題点を解決するためになされたものであり、ゴム製品等の測定試料の実際の使用状態を適切に反映させた状態で粘弾性特性を測定可能な粘弾性特性測定装置及び粘弾性特性測定方法を提供することを目的とする。
 本発明の第1の態様における粘弾性特性測定装置は、試料変形部と、第1の粘弾性特性算出部と、放射部と、受信部と、第2の粘弾性特性算出部を備える。試料変形部は、測定試料に外力を加えて周期的な変形を与える。第1の粘弾性特性算出部は、試料変形部により変形された測定試料に作用する応力及び測定試料の歪みに基づいて、測定試料の低周波の粘弾性特性を算出する。放射部は、試料変形部により変形された測定試料に入射音波を放射する。受信部は、放射部が放射した入射音波が測定試料で反射されて生じる反射音波、又は入射音波が測定試料を透過した透過音波を受信する。第2の粘弾性特性算出部は、受信部が受信した反射音波又は透過音波に基づいて、入射音波の周波数における測定試料の高周波の粘弾性特性を算出する。
 本発明の第2の態様における粘弾性特性測定方法は、以下のステップ(a)~(e)を備える。
(a)測定試料に外力を加えて周期的な変形を与える変形ステップ、
(b)変形された前記測定試料に作用する応力及び前記測定試料の歪みに基づいて、前記測定試料の低周波の粘弾性特性を算出する第1の算出ステップ、
(c)変形された測定試料に入射音波を放射する放射ステップと、
(d)放射した入射音波が測定試料で反射されて生じる反射音波、又は入射音波が測定試料を透過した透過音波を受信する受信ステップ、及び
(e)受信した前記反射音波又は前記透過音波に基づいて、前記入射音波の周波数における前記測定試料の高周波の粘弾性特性を算出する第2の算出ステップ。
 本発明により、ゴム製品等の測定試料の実際の使用状態を適切に反映させた状態で粘弾性特性を測定可能な粘弾性特性測定装置及び粘弾性特性測定方法を提供することができる。
実施の形態1にかかる粘弾性特性測定装置の構成例を示すブロック図である。 実施の形態1にかかるセンサの構成例を示すブロック図である。 実施の形態1にかかる処理部の構成例を示すブロック図である。 実施の形態1において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態1において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態1における粘弾性特性測定装置の処理の一例を示したフローチャートである。 実施の形態1における粘弾性特性測定装置の処理の一例を示したフローチャートである。 実施の形態2にかかる粘弾性特性測定装置の構成例を示すブロック図である。 実施の形態2において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態2において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態2において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態2における粘弾性特性測定装置の処理の一例を示したフローチャートである。 実施の形態2における粘弾性特性測定装置の処理の一例を示したフローチャートである。 実施の形態3にかかる粘弾性特性測定装置の構成例を示すブロック図である。 測定試料に曲がる力を加えた場合の高周波粘弾性特性の測定例を示した図である。 測定試料に曲がる力を加えた場合の高周波粘弾性特性の測定例を示した図である。 測定試料に曲がる力を加えた場合の高周波粘弾性特性の測定例を示した図である。 回転軸を中心に、所定の周波数に従って測定試料を回転させると共に、測定試料に電界を印加した場合の低周波粘弾性特性の測定例を示した図である。 実施の形態4にかかる粘弾性特性測定装置の構成例を示すブロック図である。 実施の形態4において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態4において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態4において高周波粘弾性特性を算出する方法を説明した図である。 実施の形態4にかかる粘弾性特性測定装置の構成例を示すブロック図である。 粘弾性特性を有する測定試料における、歪みと応力の関係の一例を示したグラフである。 粘弾性特性を有する測定試料における、周波数と粘弾性の関係の一例を示したグラフである。 実施の形態5にかかる粘弾性特性測定装置の一部の構成例を示すブロック図である。
[実施の形態1]
 以下、図面を参照して本発明の実施の形態1について説明する。図1は、実施の形態1にかかる粘弾性特性測定装置1の構成例を示したブロック図である。粘弾性特性測定装置1は、レオメータ制御部10とレオメータ部11と音波放射部12と音波信号発生部13と変換部14と処理部15を備える。以下の説明において、粘弾性特性の測定試料は測定試料Sとして説明する。測定試料Sは、固体の試料であってもよいし、液体の試料であってもよい。また、粘弾性特性は、後述の損失正接tanδ、貯蔵弾性率E’及び損失弾性率E”の少なくともいずれか1つの値を含む。
 まず、レオメータ制御部10について説明する。レオメータ制御部10は、処理部15から、レオメータ部11の動作を指示する制御信号を取得する。レオメータ制御部10は、その制御信号に応じて、レオメータ部11が測定試料Sに所定の歪みを印加するよう制御する。具体的には、レオメータ制御部10は、駆動部20のモータ23に対して駆動指示を出力する。
 例えば、レオメータ制御部10は、レオメータ部11に対し、軸21(回転治具)を中心に回転するように制御することができる。ここで、測定試料Sの軸21側の部分はレオメータ部11の回転に追従して動き、測定試料Sの音波放射部12側の部分(軸21側の反対側の部分)は固定されて動かない。このため、測定試料Sにはねじれ(せん断)の変形が生じる。また、レオメータ制御部10は、軸21を長さ方向(図1における上下方向。以下、縦方向と記載)に振動させることで、測定試料Sを縦方向に振動させるように制御してもよい。例えば、レオメータ制御部10は、軸21の回転又は振動を制御して、測定試料Sに正弦波振動を発生させてもよい。
 以上の場合において、レオメータ制御部10は、軸21の回転の幅及び周期、又は軸21の振動の振幅及び周波数を調整できる。なお、レオメータ制御部10は、低周波数(例えば数Hz~100Hz程度)で測定試料Sを回転又は振動させるように制御する。
 さらに、レオメータ制御部10は、モータ23が軸21を介して、測定試料Sに所定の周期で縦方向に圧力をかけて圧縮するように制御してもよい。また、レオメータ制御部10は、モータ23が軸21を介して、測定試料Sを所定の周期で縦方向に引っ張り上げて伸長させるように制御してもよい。このとき、レオメータ制御部10は、圧力又は張力の大きさ及び周期を調整することができる。さらに、レオメータ制御部10は、軸21の幅方向(図1における左右方向。以下、横方向と記載)から所定の周期で測定試料Sに曲げる力をかけてもよい。このように、レオメータ制御部10は、レオメータ部を制御して、測定試料Sに外力を加えて周期的な変形を与える。
 以上に示したレオメータ制御部10の動作は、組み合わせて実行されてもよい。レオメータ制御部10は、例えばメモリやその他のIC(Integrated Circuit)等の回路で構成することができる。
 レオメータ部11は、レオメータ制御部10の制御に応じて、測定試料Sに外力を加えて変形させる試料変形部である。レオメータ部11の動作に応じて生じる測定試料Sの変形は上述の通りである。レオメータ部11と音波放射部12は、測定試料Sを挟み込んでいる。
 レオメータ部11は、詳細には、駆動部20と軸21と環状板22を有する。駆動部20は、軸21を介して外力を測定試料Sにかける。駆動部20は、詳細には、モータ23とセンサ24を有する。モータ23は、レオメータ制御部10からの駆動指示に応じて、軸21を駆動させる。軸21は環状板22と接続されており、軸21の動きに応じて環状板22が動く。環状板22は測定試料Sの一面に固定されているため、測定試料Sは駆動部20からの外力に応じて変形する。
 また、環状板22には、測定試料Sの温度を取得可能なプローブが設けられる。プローブが取得した測定試料Sの温度の情報は、センサ24に出力される。
 センサ24は、測定試料Sの状態に関する測定量を測定し、変換部14に出力する。出力された測定量は、変換部14で変換された後、処理部15に出力される。
 図2は、センサ24の構成例を示したブロック図である。センサ24は、詳細には応力検出センサ32と温度検出センサ33を備える。以下、センサ24の各部について説明する。
 応力検出センサ32は、レオメータ制御部10が出力した駆動指示に基づいて、測定試料Sに作用している応力を検出し、検出した応力のデータを変換部14に出力する。例えば、レオメータ制御部10からの駆動指示が、正弦波に基づく縦方向の振動を測定試料Sにかけるものである場合には、応力検出センサ32は、その正弦波の応力のデータを検出して変換部14に出力する。なお、応力検出センサ32は、測定試料Sにせん断力が加えられている場合には、発生したトルクを検出することで、測定試料Sに作用している応力を検出してもよい。
 温度検出センサ33は、環状板22に設けられたプローブから測定試料Sの温度を取得する。温度検出センサ33は、取得した温度のデータを変換部14に出力する。
 図1に戻り、説明を続ける。音波放射部12は、測定試料Sに接触し、音波信号発生部13が発生した高周波の入射音波を測定試料Sに放射するとともに、入射音波が測定試料Sに反射されて生じた反射音波(測定量)を取得する。音波放射部12は、詳細には、トランスデューサ25と遅延材26を備える。以下、各部について説明する。
 トランスデューサ25は、例えば圧電素子を含んで構成される。トランスデューサ25は、遅延材26と接触するように取付けられている。トランスデューサ25は、後述する方向整合器28と接続され、方向整合器28から電気信号が供給されると、この電気信号を音波に変換する。トランスデューサ25は、変換された音波を遅延材26に放射(入射)する。遅延材26は、放射された音波を遅延させて測定試料Sに放射する。さらに、トランスデューサ25は、遅延材26を介して測定試料Sから放射された反射音波(入射音波が測定試料Sで反射されて生じる音波)を受信すると、その反射音波を電気信号に変換する。トランスデューサ25は、変換後の電気信号を、方向整合器28に出力する。
 遅延材26は、一方の面がトランスデューサ25と密着しており、一方の面と対向する他方の面は、測定試料Sと接触するように設けられている。このような配置のため、遅延材26は、トランスデューサ25から入射された入射音波を測定試料Sに伝搬させるとともに、入射音波が測定試料Sで反射されて生じる反射音波をトランスデューサ25に伝搬させることができる。遅延材26は、音波の到達時間を遅延させる働きをする。具体的には、遅延材26の伝搬長を長くすると、トランスデューサ25が入射音波を放射してから反射音波を受信するまでの時間を長くすることができる。このため、トランスデューサ25が入射音波を放射している間に、トランスデューサ25が反射音波を受信することを回避することができる。
 次に、音波信号発生部13について説明する。音波信号発生部13は、高周波粘弾性特性の算出のため、入射音波の電気信号を発生して音波放射部12に出力する。また、音波信号発生部13は、音波放射部12が取得した反射音波の電気信号を受信し、受信した電気信号を変換部14に出力する。音波信号発生部13は、詳細には、駆動波形発生器27と方向整合器28と高周波増幅器29を有する。以下、各部について説明する。
 駆動波形発生器27は、処理部15から出力された音波の放射指示信号に応じて、電気信号(駆動波形)を生成し、生成した電気信号を方向整合器28に出力する。この電気信号は、測定試料Sに放射する音波を生成させるための信号である。測定試料Sに放射する音波の具体例としては、パルス状の音波や、所定の周波数成分を含むような音波が挙げられる。さらに、駆動波形発生器27は、上述の電気信号を生成して出力する場合、生成した電気信号の出力タイミングを示すトリガ信号を高周波増幅器29に出力する。
 方向整合器28は、駆動波形発生器27、高周波増幅器29及びトランスデューサ25に接続されている。方向整合器28は、駆動波形発生器27から受信した電気信号をトランスデューサ25に出力するとともに、トランスデューサ25から供給された電気信号を高周波増幅器29に出力する。ここで方向整合器28は、駆動波形発生器27から出力された電気信号が高周波増幅器29に出力されないように信号の伝送方向を調節している。
 高周波増幅器29は、方向整合器28から電気信号が供給される。この電気信号は、トランスデューサ25が出力した電気信号である。高周波増幅器29は、供給された電気信号における高周波成分を所定の増幅率で増幅する。そして、高周波増幅器29は、増幅後の電気信号を、変換部14に出力する。高周波増幅器29が増幅する電気信号中の高周波成分(例えば1MHz~100MHz)には、高周波粘弾性特性を算出するのに必要となる測定量が含まれている。なお、高周波増幅器29は、駆動波形発生器27からトリガ信号を受信後、トランスデューサ25から供給される電気信号の受信を開始する。以上の処理のため、高周波増幅器29は、測定試料Sの高周波粘弾性特性を測定しない期間、動作を行わない。そのため、高周波増幅器29の不要な動作を抑制することができる。
 このようにして、音波放射部12及び音波信号発生部13は、測定試料Sの高周波粘弾性特性に関する測定量を測定する。また、音波放射部12は、測定試料Sに入射音波を出力する放射部として機能するとともに、入射音波が測定試料Sで反射されて生じる反射音波を受信する受信部として機能する。このような構成は、非破壊検査(超音波)でよく使われている。
 次に、変換部14について説明する。変換部14は、処理部15と、レオメータ制御部10、駆動部20及び音波信号発生部13との間で通信される信号形式の変換を行う。変換部14は、詳細には、D/A変換部30及びA/D変換部31を有する。D/A変換部30は、処理部15から出力されたデジタルの制御信号をアナログ信号に変換し、変換後の制御信号をレオメータ制御部10に出力する。さらにD/A変換部30は、処理部15から出力されたデジタルの放射指示信号をアナログ信号に変換し、変換後の放射指示信号を駆動波形発生器27に出力する。
 また、A/D変換部31は、高周波増幅器29から出力された電気信号を、アナログ信号からデジタル信号に変換し、変換後の電気信号を処理部15に出力する。さらにA/D変換部31は、センサ24から出力された電気信号を、アナログ信号からデジタル信号に変換し、変換後の電気信号を処理部15に出力する。なお、D/A変換部30は、D/A変換回路(コンバータ)から構成され、A/D変換部31は、A/D変換回路(コンバータ)から構成される。以上のように、変換部14が、処理部15に出力された信号をA/D変換し、処理部15から出力された信号をD/A変換することについては、以降の説明では適宜記載を省略する。
 次に、処理部15(第1の粘弾性特性算出部及び第2の粘弾性特性算出部)について説明する。図3は、処理部15の構成例を示したブロック図である。処理部15は、音波放射部12及び音波信号発生部13が測定した測定量を用いて、測定試料Sの高周波粘弾性特性を算出する。処理部15は、詳細には、入力部34と演算部35と時間データメモリ部36と記憶部37と表示/出力部38を有する。処理部15は、例えばコンピュータ(特にパーソナルコンピュータ)から構成される。様々な処理を行う機能ブロックとして処理部15に記載されたシステムの各要素は、ハードウェア的には、メモリやその他のIC等の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現することができる。以下、各部について説明する。
 入力部34には、測定者から、レオメータ部11が実行する測定試料Sの変形の種類及びパラメータを示す変形指示が入力される。例えば、測定者は、測定試料Sを回転させること(即ち軸21を回転させること)と回転の幅や周期といったパラメータについて、入力部34に入力することができる。測定試料Sを伸長若しくは圧縮、又は振動させる場合でも同様である。このように、測定者は、測定試料Sに印加する所定の歪みを決定する。
 さらに、入力部34には、音波信号発生部13が音波を放射するための放射指示が測定者から入力されてもよい。入力部34は、例えば、ボタン等で構成される。
 演算部35は、入力部34から、レオメータ部11が実行する測定試料Sの変形の種類及びパラメータを示す変形指示が出力された際、レオメータ制御部10に制御信号を出力する。演算部35は、この制御信号で、レオメータ部11の動作を制御する。また、演算部35は、変形指示に応じて生じる測定試料Sの歪みのデータを記憶部37に格納する。
 ここで、センサ24は、時間データメモリ部36に測定量のデータ(測定試料Sに作用している応力及び測定試料Sの温度のデータ)を出力する。演算部35は、時間データメモリ部36に格納されたそのデータと、記憶部37に格納された測定試料Sの歪みのデータとを読み出して、測定試料Sの低周波の粘弾性特性(以下、低周波粘弾性特性と記載)を算出する。
 さらに、演算部35は、入力部34から音波の放射指示が入力された際、D/A変換部30に放射指示信号を出力する。D/A変換部30は、放射指示信号をデジタル信号からアナログ信号に変換して、変化後の放射指示信号を駆動波形発生器27に出力する。このようにして、演算部35は、測定試料Sに放射する音波を生成させる。なお、演算部35が出力するこれらの信号は、上述の通り、デジタル信号である。駆動波形発生器27は放射指示信号に応じて、測定試料Sに放射する音波を生成させるための電気信号を生成し、方向整合器28に出力する。このようにして、演算部35は、入力部34からの音波の放射指示をトリガとして、測定試料Sにおける高周波粘弾性特性の測定を開始する。
 演算部35は、時間データメモリ部36に反射音波の時間波形データが格納されると、そのデータを読み出す。演算部35は、例えばFFT(Fast Fourier Transformation)処理のような周波数領域での波形解析処理を行ない、検出対象となる周波数における振幅値及び位相を取得する。なお、検出対象となる周波数は、1つであってもよいし、複数であってもよい。次に、演算部35は、記憶部37に格納されている基準値を読み出し、その基準値と、時間データメモリ部36に格納された反射音波の検出対象となる周波数における振幅値及び位相とに基づいて、測定試料Sの高周波粘弾性特性を算出する。
 時間データメモリ部36には、センサ24から出力されたデータが、予め定められた周期で格納される。格納されるデータは、測定試料Sに作用している応力及び測定試料Sの温度のデータである。
 さらに、時間データメモリ部36には、高周波増幅器29から供給された反射音波の電気信号の時間波形が、予め定められた周期で格納される。なお、時間データメモリ部36は、演算部35の制御に基づいて、データを格納する周期を変更することができる。
 記憶部37は、測定試料Sの歪みのデータを格納するとともに、測定試料Sの高周波粘弾性特性を算出するのに必要な基準値を予め格納している。この基準値は、高周波粘弾性特性の測定対象となる周波数における、振幅値および位相のデータである。基準値の詳細については後述する。演算部35は、記憶部37に格納された基準値を読み出す。
 表示/出力部38は、演算部35が算出した測定試料Sの低周波粘弾性特性及び高周波における粘弾性特性を、測定者に対し、表示又は出力する。表示/出力部38は、例えば、ディスプレイである。
 <低周波粘弾性特性の算出方法>
 次に、粘弾性特性測定装置1が測定試料Sの低周波粘弾性特性を算出する場合について、簡単に説明する。演算部35は、時間データメモリ部36から、測定試料Sに作用している応力のデータを読み込み、記憶部37から、測定試料Sの歪みのデータを読み込む。そして、演算部35は、測定試料Sに作用している応力の振幅及び測定試料Sの歪みの振幅を比較して、両者の振幅比を算出する。この振幅比が、低周波における貯蔵弾性率E’である。さらに、演算部35は、測定試料Sに作用している応力の位相及び測定試料Sの歪みの位相を比較して、両者の位相差を算出する。演算部35は、この位相差を用いて、低周波における損失正接tanδを算出する。なお、損失弾性率をE”とすると、損失正接tanδ、貯蔵弾性率E’及び損失弾性率E”には
tanδ=E”/E’・・・(1)
の関係が成立する。そのため、損失正接tanδ及び貯蔵弾性率E’を算出することで、損失弾性率E”も算出することができる。このようにして、演算部35は、動的な低周波粘弾性特性を算出することができる(例えば、特許文献2参照)。
 また、演算部35は、時間データメモリ部36から読み出した測定試料Sの温度のデータも用いて、低周波粘弾性特性の温度依存性を算出することができる。
 <高周波粘弾性特性の算出方法(表面反射法)>
 さらに、粘弾性特性測定装置1が測定試料Sの高周波粘弾性特性を算出する場合について説明する。この算出方法としては、表面反射法が用いられる(例えば、特許文献1参照)。この場合には、トランスデューサ25が入射音波を測定試料Sへ放射する。放射された入射音波が測定試料Sの表面で反射されて、反射音波が生じる。処理部15は、その反射音波に基づいて、高周波粘弾性特性を測定する。
 図4A及び図4Bは、この表面反射法を用いて高周波粘弾性特性を算出する方法を説明した図である。図4Aは、基準値を取得する際の入射音波の反射状況を示した図面であり、図4Bは、測定試料Sの高周波粘弾性特性を算出する際の入射音波の反射状況を示した図面である。なお、以下の説明では、音波放射部12のトランスデューサ25から放射される入射音波の伝搬特性を表す音響インピーダンスを用いる。
 まず、図4Aを参照して、基準値について説明する。基準値は、遅延材26において、トランスデューサ25が接触している面と反対側の面が測定試料Sと接触していない場合の、測定試料となる周波数における位相及び振幅値である。このとき、入射音波は、遅延材26の端と空気との境界面で反射される。以降、入射音波および反射音波の周波数をfとし、遅延材26の音響インピーダンスを、周波数fの関数であるZ(f)と表す。同様に、空気中の音響インピーダンスを、周波数fの関数であるZ(f)と表す。ここで、音響インピーダンスZ(f)とZ(f)は複素数の値である。
 遅延材26と空気中との境界面における入射音波の反射率RBA(f)は
BA(f)=(Z(f)-Z(f))/(Z(f)+Z(f))・・・(2)
となる。このとき、任意の周波数fにおいてZ(f)はZ(f)に比較して十分小さいため、式(2)から、反射率RAB(f)=-1となる。つまり、遅延材26と空気中との境界面においては、入射音波が全反射する。
 以下の説明においては、トランスデューサ25に入射する反射音波の式をa(f)exp(iθ(f))と表す。iは虚数単位、a(f)は対象とする周波数における実数の振幅値であり、θ(f)は0以上の実数であって各周波数における位相を表す。トランスデューサ25から測定試料Sに放射される入射音波の式は、
(f)exp(iθ(f))×RAB(f)=-a(f)exp(iθ(f))・・・(3)
となる。従って、式(3)に示す入射音波が測定試料Sに放射されるとみなすことができる。記憶部37には、基準値として、式(3)における振幅a(f)及び位相θ(f)が予め格納されている。この基準値は、予め測定をして取得される。
 次に、図4Bを参照して、測定試料Sの高周波粘弾性特性を算出する場合について説明する。測定試料Sの高周波粘弾性特性を算出する場合には、遅延材26が測定試料Sと密着した状態で、駆動波形発生器27からの電気信号の出力に応じて、トランスデューサ25から図4Aと同一の入射音波が放射される。トランスデューサ25は、遅延材26と測定試料Sとの境界面において反射される反射音波を受信し、高周波増幅器29は、その反射音波の電気信号における高周波成分を増幅する。演算部35は、この反射音波を、記憶部37に格納された基準値と比較して、測定試料Sの損失正接を算出する。
 ここで、周波数fの関数である測定試料Sの音響インピーダンスをZ(f)とすると、遅延材26と測定試料Sとの境界面における入射音波の反射率RBS(f)は、
BS(f)=(Z(f)-Z(f))/(Z(f)+Z(f))・・・(4)
となる。式(4)から、Z(f)は次のように表される。
(f)=Z(f)×(1+RBS(f))/(1-RBS(f))・・・(5)
 以下の説明においては、トランスデューサ25に入射する反射音波の式をa(f)exp(iθ(f))と表す。iは虚数単位、a(f)は対象とする周波数における実数の振幅値であり、θ(f)は0以上の実数であって各周波数における位相を表す。式(2)における基準値を用いると、反射音波の式は
a(f)exp(iθ(f))=-a(f)exp(iθ(f))×RBS(f)・・・(6)
と表される。式(5)から、入射音波の反射率RBS(f)は
BS(f)=-(a(f)/a(f))×exp(i(θ(f)-θ(f))・・・(7)
と表される。ここで、式(4)に式(6)を代入すると、Z(f)は以下のように得られる。
(f)=Z(f)×(1-(a(f)/a(f))×exp(i(θ(f)-θ(f)))/(1+(a(f)/a(f))×exp(i(θ(f)-θ(f)))・・・(8)
 ここで、周波数fの関数である測定試料Sの貯蔵弾性率及び損失弾性率を、それぞれE’(f)及び損失弾性率E”(f)とする。このとき、E’(f)及びE”(f)と、測定試料Sの音響インピーダンスZ(f)及び密度ρとの間には、次の関係が成り立つ。
E’+iE”(f)=Z(f)/ρ・・・(9)
 式(8)を式(9)に代入し、実数成分と虚数成分とを分離すると、損失正接tanδ(f)は、次のように算出される。
tanδ(f)=E”/E’={4×(a(f)/a(f))×(1-(a(f)/
(f)))×sin(θ(f)-θ(f))}/{(1-(a(f)/a(f))-4×(a(f)/a(f))×sin(θ(f)-θ(f))}・・・(10)
 なお、貯蔵弾性率E’(f)及び損失弾性率E”(f)は、それぞれ次のように算出される。
E’(f)=Re[Z(f)/ρ]=(Z(f)/ρ)×{(1-(a(f)/a(f))-4(a(f)/a(f))×sin(θ(f)-θ(f))}/{1+2(a(f)/a(f))cos(θ(f)-θ(f))+(a(f)/a(f))・・・(11)
E”(f)=Im[Z(f)/ρ]=(Z(f)/ρ)×{4(a(f)/a(f))×(1-(a(f)/a(f)))sin(θ(f)-θ(f))}/{1+2(a(f)/a(f))cos(θ(f)-θ(f))+(a(f)/a(f))・・・(12)
ここで、Re[Z(f)/ρ]はZ(f)/ρの実数成分であり、Im[Z(f)/ρ]はZ(f)/ρの虚数成分である。
 式(10)~(12)の通り、貯蔵弾性率E’(f)、損失弾性率E”(f)及び損失正接tanδ(f)は、いずれもa(f)、θ(f)を基準とする{a(f)/a(f)}、{θ(f)-θ(f)}で定義される。演算部35は、振幅a(f)及び位相特性θ(f)を基準値と設定して、測定試料Sの測定時において取得される反射音波の電気信号のデータとその基準値とを比較する。この処理により、測定試料Sの高周波粘弾性特性を測定できる。また、上述の通り、測定試料Sの高周波粘弾性特性は周波数に依存する。そのため、演算部35は、複数の周波数成分毎に高周波粘弾性特性を導出してもよい。また、高い周波数における損失正接を算出する必要がある場合には、入射音波として、超音波がトランスデューサ25から供給されてもよい。
 また、演算部35は、時間データメモリ部36から読み出した測定試料Sの温度のデータも用いて、高周波粘弾性特性の温度依存性を算出することができる。
 図5A及び図5Bは、粘弾性特性測定装置1の処理の一例を示したフローチャートである。以下、図5A及び図5Bを用いて、粘弾性特性測定装置1の全体処理について説明する。
 まず、演算部35は、入力部34から、測定試料Sの変形指示を受信したか否かを判定する(ステップS1)。変形指示を受信していない場合には(ステップS1のNo)、演算部35は、レオメータ制御部10に制御信号を出力せず、再度ステップS1の判定処理を行う。変形指示の詳細は上述の通りである。
 演算部35が測定試料Sの変形指示を受信した場合には(ステップS1のYes)、演算部35はレオメータ制御部10に制御信号を出力する。レオメータ制御部10はその制御信号に応じて、駆動部20のモータ23に対して駆動指示を出力する。この駆動指示に応じて、モータ23が駆動し、測定試料Sが変形する(ステップS2)。また、演算部35は、測定試料Sの歪みのデータを記憶部37に格納する。
 次に、演算部35は、入力部34から音波の放射指示を受信したか否かを判定する(ステップS3)。放射指示を受信していない場合には(ステップS3のNo)、演算部35は、測定試料Sに放射する音波を生成させず、再度ステップS3の判定処理を行う。放射指示の詳細は上述の通りである。
 演算部35が音波の放射指示を受信した場合には(ステップS3のYes)、演算部35は駆動波形発生器27に音波の放射指示信号を出力する。駆動波形発生器27はその放射指示信号に応じて、測定試料Sに放射する入射音波を生成させるための電気信号を生成し、方向整合器28に出力する。トランスデューサ25は、供給された電気信号を入射音波に変換し、遅延材26を介して入射音波を測定試料Sに放射する(ステップS4)。
 トランスデューサ25は、遅延材26を介して測定試料Sからの反射音波を受信すると、その反射音波を電気信号に変換し、変換後の電気信号を方向整合器28に出力する(ステップS5)。方向整合器28は、その電気信号を高周波増幅器29に出力する。高周波増幅器29は、供給された電気信号に含まれる高周波成分を増幅し、増幅した電気信号を時間データメモリ部36に出力する。
 演算部35は時間データメモリ部36に格納されたデータを読み出し、周波数領域における波形解析処理を行ない、検出対象となる周波数における振幅値および位相を取得する(ステップS6)。また、応力検出センサ32は測定試料Sに作用している応力を検出する(ステップS7)。
 演算部35は、測定試料Sに作用している応力のデータと、記憶部37に記憶された測定試料Sの歪みのデータとに基づいて、測定試料Sの低周波粘弾性特性を算出する。さらに、演算部35は、記憶部37に格納されている基準値を読み出す。演算部35は、その基準値と、時間データメモリ部36に格納された反射音波の検出対象となる周波数における振幅値及び位相とに基づいて、測定試料Sの高周波粘弾性特性を算出する(ステップS8)。これらの算出方法の詳細は上述の通りである。
 演算部35は、所定の時間、低周波粘弾性特性を算出して取得し、粘弾性特性の時間変化における特徴量を抽出する(ステップS9)。特徴量は、貯蔵弾性率E’(f)、損失弾性率E”(f)及び損失正接tanδ(f)の少なくとも1つの値でもよいし、貯蔵弾性率E’(f)、損失弾性率E”(f)及び損失正接tanδ(f)のいずれか2つの値の比率であってもよい。また、演算部35は、微分計算を行って粘弾性特性の時間変化のピークを特徴量として検出してもよいし、粘弾性特性の増大・減少傾向の度合いを特徴付ける特徴量を検出してもよい。このように、演算部35は、一般に知られている特徴量の算出方法を用いて特徴量を算出できる。さらに、特徴量は、低周波粘弾性特性又は高周波粘弾性特性のいずれかの値を用いてもよいし、低周波粘弾性特性及び高周波粘弾性特性の両方の値を用いてもよい。演算部35は、様々な特徴量のうち適切な特徴量を算出することで、測定試料Sの用途において最適な物性を測定試料Sが有するか否かを判定できる。
 測定試料Sが化学プロセスを経て変化する(測定試料Sが化学変化を起こす)際に、時間とともに測定試料Sの粘弾性特性のスペクトロスコピーが変化するような場合がある。例えば、測定試料Sがパン生地である場合、測定試料Sに変形を加えて練っていくと、時間とともに粘弾性特性がシフトする。これに基づいて、パン生地に最適な粘弾性特性の値を決定することができる。具体的には、同じ材料の測定試料Sに、変形をそれぞれ異なる時間加えた複数のパン生地の検体を生成する。それらの複数の検体を焼き上げることで、焼き上がりの際に最適なパンの硬さとなる検体を特定する。その検体の粘弾性特性データが、パン生地に最適な粘弾性特性の値となる。他の測定試料Sでも、その特性に応じて最適な粘弾性特性の値を決定することができる。
 このようにして取得された測定試料Sの最適な粘弾性特性の値(貯蔵弾性率E’(f)、損失弾性率E”(f)及び損失正接tanδ(f)に基づいて、測定試料Sがその用途に最適な粘弾性特性を有するか否かを示す特徴量を決定することができる。例えば、測定者は、ステップS9で取得した測定試料Sの特徴量が所定範囲である場合には、測定試料Sは最適な粘弾性特性を有していると判断し、特徴量が所定範囲外である場合には、測定試料Sは最適な粘弾性特性を有していないと判断することができる。
 さらに、演算部35は、ステップS8で算出した高周波粘弾性特性及び低周波粘弾性特性を用いて、高周波粘弾性特性と低周波粘弾性特性の相関性がどの程度あるかを算出する(ステップS10)。この相関性を算出することにより、測定試料Sの特性を明らかにすることができる。例えば、ステップS10において、高周波粘弾性特性と低周波粘弾性特性の相関性が低い(例えば所定の閾値以下)と算出された場合は、測定試料Sの高周波粘弾性特性を測定することにより、低周波粘弾性特性の測定だけでは不明であった測定試料Sの特性の変化が分かることを意味する。従って、測定試料Sの特性について、新たな発見ができる。ステップS9で抽出した特徴量が低周波粘弾性特性と高周波粘弾性特性の両方を用いるものである場合には、低周波単独や高周波単独ではなく低周波粘弾性特性と高周波粘弾性特性の相関による特徴量の変化を知ることができる。
 演算部35は、ステップS10で算出した相関性に基づいて、外場(例えば電界、磁界、電磁場)が高周波粘弾性特性に与える影響(外場があることに応じて生じた特徴量)を抽出する(ステップS11)。なお、ステップS8~S11で算出又は抽出されたデータは、表示/出力部38に表示又は出力されてもよい。
 このように、粘弾性特性測定装置1は、レオメータを用いて測定試料Sを変形させた状態で、音波を用いて高周波粘弾性特性を測定している。そのため、測定試料Sの実際の使用状態を適切に反映させた状態で、高周波粘弾性特性を測定することができる。例えば、通常走行時においてタイヤは数Hz~100Hz前後の周波数で変形すると想定される。このため、測定試料Sとしてタイヤまたはタイヤ材料の高周波粘弾性特性を測定する場合、タイヤまたはタイヤ材料を数Hz~100Hz前後の周波数で振動させることで、粘弾性特性測定装置1はタイヤの走行時の高周波粘弾性特性を更に正確に測定できる。
 また、粘弾性特性測定装置1は、回転や振動といった測定試料Sの低周波粘弾性特性についても測定することができる。そのため、粘弾性特性測定装置1は、高周波粘弾性特性と低周波粘弾性特性の相関性や、外場が与える高周波粘弾性特性への影響を算出できる。
[実施の形態2]
 以下、図面を参照して本発明の実施の形態2について説明する。実施の形態2では、表面反射法ではなく、底面反射法を用いて、測定試料Sの高周波粘弾性特性の算出を行う例について説明する。底面反射法は、入射音波が測定試料Sに入射しようとする際に測定試料の表面で反射されて生じる反射音波(以下、第1の反射音波と記載)と、測定試料の表面を透過した入射音波が、その表面と反対側の表面で反射されて生じる反射音波(以下、第2の反射音波と記載)とに基づいて、高周波粘弾性特性を測定する方法である(例えば、特許文献1参照)。
 図6は、実施の形態2にかかる粘弾性特性測定装置2の構成例を示したブロック図である。実施の形態2にかかる粘弾性特性測定装置2は、実施の形態1にかかる粘弾性特性測定装置1と比較して、反射材39を新たに設けている点が異なる。その他の粘弾性特性測定装置2の構成要素については、実施の形態1と同様であるため、説明を省略する。
 反射材39は、測定試料Sにおいて、入射音波が測定試料Sに入射される面と反対側の面に接するように設けられている(即ち、遅延材26やトランスデューサ25に対向する面)。詳細には、反射材39の測定試料Sに接する面は、遅延材26が測定試料Sに接する面と平行である。反射材39は、測定試料Sと環状板22の間に設けられている。ここでは、反射材39は環状板22に固定されており、軸21の動きに応じて反射材39が動く。例えば、軸21が回転することにより、反射材39も回転する。そのため、反射材39は測定試料Sに軸21からの外力を伝達する。なお、反射材39と測定試料Sの端部は空中に解放されている。
 反射材39は、測定者が手動で動かすか、又は機械で自動的に動かすことにより、遅延材26との距離が変化する。測定試料S内部を透過した入射音波は、この反射材39で反射される。反射材39で反射された第2の反射音波は、遅延材26に入射する。遅延材26は第2の反射音波をトランスデューサ25に出力し、トランスデューサ25は第2の反射音波を電気信号に変換して方向整合器28に供給する。方向整合器28は、電気信号を高周波増幅器29に供給する。高周波増幅器29は、電気信号の高周波成分を増幅して、処理部15に供給する。
 また、反射材39は、測定試料Sと比較すると、その音響インピーダンス差が大きい。そのため、トランスデューサ25から放射された入射音波は、その境界面において効率よく反射される。
 <高周波粘弾性特性の算出方法(底面反射法)>
 図7A、図7B及び図7Cは、底面反射法を用いて高周波粘弾性特性を算出する方法を説明した図である。図7A及び図7Bは、基準値を取得する際の入射音波の反射状況を示した図面であり、図7Cは、測定試料Sの高周波粘弾性特性を算出する際の入射音波の反射状況を示した図面である。なお、以下の説明では、音波放射部12のトランスデューサ25から放射される入射音波の伝搬特性を表す音響インピーダンスを用いる。
 まず、図7Aを参照して、基準値について説明する。遅延材26が反射材39および測定試料Sのいずれとも密着していない状態において、トランスデューサ25は、入射音波を放射する。すると、トランスデューサ25は、遅延材26と空気中との境界面において生じる反射音波(以降、A波とも記載)を受信する。ここで、演算部35は、遅延材26があるために生じる初期状態の誤差を取除くため、トランスデューサ25から遅延材26を介して放射される入射音波を、基準値として取得する。
 実施の形態1の説明と同様、空気中の音響インピーダンスは、遅延材26及び測定試料Sに比較して十分小さい。従って、トランスデューサ25から放射された入射音波は、遅延材26と空気中との境界面において全反射する。
 ここで、トランスデューサ25が受信するA波を、a(f)exp(iθ(f))と表す。iは虚数単位であり、a(f)は各周波数における振幅値(実数値)であり、θ(f)は各周波数における位相(0以上の定数)である。そして、演算部35は、トランスデューサ25で受信された反射音波の時間波形をFFT処理して、各周波数における振幅値a(f)及び位相θ(f)を算出する。
 次に、図7Bを参照して説明する。演算部35は、入力部34から反射部材参照指令を受けると、反射材39の厚さおよび密度のデータを取得する。このデータは、放射指示と同じタイミングで入力部34から入力されてもよいし、予め記憶部37に格納されていてもよい。図7Bの遅延材26において、反射材39が密着している面は、トランスデューサ25が密着した面の反対側である。トランスデューサ25から入射音波が放射されると、遅延材26と反射材39との境界面において入射音波が反射されるため、反射音波(以降、A波とも記載)が発生する。また、反射材39と空気中との境界面においても入射音波が反射されるため、別の反射音波(以降、B波とも記載)が発生する。
 このとき、演算部35は、A波とB波との時間遅延を検出する。演算部35は、トランスデューサ25から受信したA波とB波との時間波形に基づいて、A波とB波との遅延時間ΔTを測定する。
 反射材39の厚さをh、反射材39の密度をρとすると、反射材39の音響インピーダンスZは、
=2hρ/ΔT・・・(13)
となる。以上から、演算部35は、予め取得した反射材39の厚さh及び反射材39の密度ρのデータと、測定した遅延時間ΔTとに基づいて、式(13)を用い、反射材39の音響インピーダンスZを取得する。演算部35は、以上の計算を行い、高周波粘弾性特性を導出するための基準値を算出する。
 次に、図7Cを参照して、測定試料Sの高周波粘弾性特性の算出について説明する。測定試料Sの損失正接を導出する場合には、測定試料Sは、一方の面で遅延材26に密着し、その一方の面と反対側の面で反射材39と密着するように配置される。演算部35が入力部34から音波の放射指示を受信すると、演算部35は電気信号を音波信号発生部13に出力する。この処理に応じて、測定試料Sに入射音波が放射される。入射音波が測定試料Sで反射されるために生じる第1及び第2の反射音波は、実施の形態1と同様に、時間データメモリ部36に格納される。
 なお、演算部35は、入射音波の放射指示が入力部34から入力されると、測定試料Sの厚さ及び密度のデータを取得する。このデータは、放射指示と同じタイミングで入力部34から入力されてもよいし、予め記憶部37に格納されていてもよい。
 駆動波形発生器27の電気信号に応じてトランスデューサ25が入射音波を放射すると、遅延材26と測定試料Sとの境界面において入射音波が反射されるため、反射音波(以降、A波とも記載)が生じる。さらに、測定試料Sと反射材39との境界面において入射音波が反射されるため、反射音波(以降、B波とも記載)が生じる。演算部35は、A波とB波との時間遅延を検出すると共に、A波及びB波について、各周波数における振幅値及び位相を取得する。詳細には、演算部35は、トランスデューサ25からの時間波形に基づいて、A波とB波との遅延時間ΔTを測定する。
 ここで、測定試料Sの厚さをh、測定試料Sの密度をρとすると、測定試料Sの音響インピーダンスZは、次の通りになる。
=2hρ/ΔT・・・(14)
 式(14)を用いると、測定試料Sと反射材39との境界面における反射音波の反射率Rは、次の通りに表される。
R=(Z-Z)/(Z+Z)=(ZR―2hρ/ΔT)/(ZR+2hρ/ΔT)・・・(15)
以上から、演算部35は、予め取得した測定試料Sの厚さh及び測定試料Sの密度ρのデータ並びに反射材39の音響インピーダンスZと、測定した遅延時間ΔTに基づいて、式(15)を用い、反射音波の反射率Rを取得する。
 ここで、トランスデューサ25で受信されるA波をa(f)exp(iθ(f))と表し、B波をb(f)exp(iθ(f))と表す。但し、iは虚数単位であり、a(f)及びb(f)はそれぞれA波及びB波の各周波数における実数の振幅値であり、θ(f)及びθ(f)はそれぞれA波及びB波の各周波数における位相である。なお、θ(f)、θ(f)は0以上の実数である。
 そして、演算部35は、時間データメモリ部36に格納されたA波及びB波の時間波形データを読出し、第1の反射音波に対する第2の反射音波の遅延時間を計測する。また、演算部35は、トランスデューサ25が受信したA波の時間波形をFFT処理して、A波の各周波数における振幅値a(f)及び位相θ(f)を取得する。同様に、演算部35は、トランスデューサ25が受信したB波の時間波形をFFT処理して、B波の各周波数における振幅値b(f)及び位相θ(f)を取得する。
 A波、A波及びB波の各周波数における振幅値ならびに導出される反射率Rを用いると、入射音波の減衰係数α(f)は、
α(f)=(1/2h)ln(R(a(f)-a(f))/a(f)b(f)))・・・(16)
と表せる。また、A波及びB波の各周波数における振幅値及び位相を用いると、入射音波の位相速度Vp(f)は次の通りになる。
(f)=2h×2πf/(θ-θ+2πfΔT+2Nπ)・・・(17)
但し、Nは任意の正の数である。
 以上の通り導出される減衰係数α(f)及び位相速度Vp(f)を用いると、損失正接tanδ(f)は、次の通り表せる。
tanδ(f)=α(f)×Vp(f)/πf・・・(18)
また、貯蔵弾性率E’(f)及び損失弾性率E”(f)は、次の通り表せる。
E’(f)=ρVp(f)・・・(19)
E”(f)=2αρVp(f)/ω=αVp(f)E’(f)/πf・・・(20)
演算部35は、式(16)~(20)の演算を実行して、測定試料Sの高周波粘弾性特性を算出する。さらに、演算部35は、その算出した測定試料Sの高周波粘弾性特性を表示/出力部38へ出力する。
 図8A及び図8Bは、粘弾性特性測定装置2の処理の一例を示したフローチャートである。以下、図8A及び図8Bを用いて、粘弾性特性測定装置2の全体処理について説明する。
 図8AのステップS1~S6は、図5AのステップS1~S6の処理と同一であるため、説明を省略する。
 図8AのステップS12では、測定試料Sの音響特性である減衰係数α(f)及び位相速度Vp(f)を算出する。音響特性の算出方法は上述の通りである。図8AのステップS8において、演算部35は、減衰係数α(f)及び位相速度Vp(f)に基づいて、測定試料Sの高周波粘弾性特性を算出する。測定試料Sの低周波粘弾性特性の算出については、図5Aに示したステップS8と同様である。
 図8A及び図8BのステップS7~S11は、図5A及び図5BのステップS7~S11の処理と同一であるため、説明を省略する。以上のように、底面反射法を用いても、レオメータが測定試料Sを変形した状態で、音波を用いて高周波粘弾性特性を測定することができる。
 [実施の形態3]
 以下、図面を参照して本発明の実施の形態3について説明する。実施の形態3では、表面反射法や底面反射法ではなく、透過法を用いて、測定試料Sの高周波粘弾性特性の算出を行う例について説明する。透過法では、入射音波の放射を行うトランスデューサと透過音波の受信を行なうトランスデューサが別個に設けられている(例えば、特許文献1参照)。
 図9は、実施の形態3にかかる粘弾性特性測定装置3の構成例を示したブロック図である。実施の形態3にかかる粘弾性特性測定装置3は、実施の形態1にかかる粘弾性特性測定装置1と比較すると、トランスデューサ40が新たに設けられ、遅延材26及び方向整合器28が設けられていない点が異なる。なお、その他の粘弾性特性測定装置3の構成要素については、実施の形態1と同様であるため、説明を省略する。
 トランスデューサ40は、測定試料Sがトランスデューサ25と接する面と反対側の面に接するように設けられている。詳細には、トランスデューサ40の測定試料Sに接する面は、トランスデューサ25が測定試料Sに接する面と平行である。トランスデューサ40は、測定試料Sと環状板22の間に設けられている。トランスデューサ40は、駆動波形発生器27で生成した駆動波形の電気信号を音波に変換する。変換された音波は、測定試料Sに放射される。入射された後、測定試料Sを透過した音波(透過音波)は、トランスデューサ25に入力される。トランスデューサ25の行う処理は実施の形態1と同様である。
 また、駆動波形発生器27で生成した駆動波形の電気信号は、A/D変換部31にも出力される。A/D変換部31は、電気信号のA/D変換を行う。A/D変換された電気信号は、時間データメモリ部36に格納される。この処理により、時間データメモリ部36には、入射音波の時間波形データが格納される。また、透過音波の時間波形データも、実施の形態1と同様に、時間データメモリ部36に格納される。
 実施の形態3において、測定者が入射音波の放射指示を入力部34に入力すると、測定試料Sに入射音波が放射される。この処理の詳細は上述の通りである。時間データメモリ部36には、入射音波の時間波形データと透過音波の時間波形データとが格納される。演算部35は、時間データメモリ部36に格納された入射音波の時間波形データと透過音波の時間波形データとを読出し、読出したそれぞれの時間波形データのFFT処理を行う。この処理により、演算部35は、各周波数における振幅値および位相を取得する。次に、演算部35は、入射音波と透過音波とにおける、各周波数での振幅値及び位相を比較し、測定試料Sの高周波粘弾性特性を算出する。そして、演算部35は、算出した測定試料Sの高周波粘弾性特性を表示/出力部38に出力する。なお、粘弾性特性測定装置3の各部が実行するその他の処理については、実施の形態1と同様であるため、説明を省略する。なお、粘弾性特性測定装置3は、トランスデューサ25が入射音波を放射し、トランスデューサ40が透過音波を受信するような構成を有してもよい。
 以下、実施の形態1~3に記載した方法を用いて、レオメータ部11が実行する測定例について説明する。
[測定例1]
 レオメータ部11は、回転軸を中心に、測定試料Sを所定の周波数で回転させることができる。この回転軸は、入射音波が放射される方向と平行な軸(例えば軸21)である。この構成を用いると、測定試料Sは、入射音波が放射される方向と垂直な方向に所定の周波数で回転する。このようにして、測定試料Sに捩じり変形を生じさせることができる。
[測定例2]
 レオメータ部11が、測定試料Sに対して引張り力又は圧縮力を加えることで、測定試料Sには伸長又は収縮する変形が生じる。また、レオメータ部11は、測定試料Sを所定の周期で振動させることで、同一方向に所定の周期で伸長及び収縮する変形を生じさせてもよい。ここで、レオメータ部11は、入射音波が放射される方向と平行な方向に、所定の周波数で測定試料Sを振動させてもよい。引張り力又は圧縮力を加える方向は、入射音波が放射される方向と平行である。
[測定例3]
 図10A~図10Cは、測定試料Sに曲げ力を加えた場合における、高周波粘弾性特性の測定例を示した図である。図10Aは表面反射法を用いて高周波粘弾性特性を測定した場合の図であり、図10Bは底面反射法を用いて高周波粘弾性特性を測定した場合の図であり、図10Cは透過法を用いて高周波粘弾性特性を測定した場合の図である。なお、図10A~図10Cでは、測定試料Sとトランスデューサ周辺の構成のみを図示しており、その他の構成要素については図示を省略している。なお、図10A及び図10Bでは、下方から上方に入射音波が入射されており、図10Cでは、上方から下方に入射音波が入射されている。
 図10A~図10Cにおいて、測定試料Sは、点P1から矢印Xの方向に所定の周期で荷重が加えられている。つまり、測定試料Sは、横方向(図10A~図10Cでは左側の方向)に向かう力が加えられている。また、測定試料Sは、点P2及び点P3で支持されている。点P2及び点P3は、測定試料Sにおいて点P1と反対側で(つまり図10A~図10Cでは左側で)測定試料Sと接触している。ここで、点P2は測定試料Sの端部近傍に接し、点P3は点P2と反対側の測定試料Sの端部近傍に接している。点P2及び点P3は、測定試料Sが全体で横方向にシフトすることを抑制している。この構成のため、測定試料Sは、点P1の周辺部分のみが、所定の周期で応力が印加される方向に曲がる。このようにして、測定試料に曲げ変形を生じさせることができる。なお、測定試料Sに対し、点P1から所定の周期で矢印Xの方向への力を加える(正弦波振動を加える)ことにより、点P1の周辺部分のみを、所定の周期で応力が印加される方向に曲げてもよい。
[測定例4]
 図11は、回転軸を中心に、所定の周波数で測定試料Sを回転させると共に、測定試料Sに電界を印加した場合における、高周波粘弾性特性の測定例を示した図である。図11では、表面反射法を用いて高周波粘弾性特性を測定しており、図11において上方から下方に入射音波が入射されている。なお、図11では、測定試料Sとトランスデューサ周辺の構成のみを図示しており、その他の構成要素については図示を省略している。測定例4における測定試料Sの一例は、ER(Electro-Rheological)流体、液晶や圧電材料である。
 図11において、環状板22と測定試料Sとの間には電極41が設けられ、遅延材26と測定試料Sとの間には電極42が設けられている。電極41から電極42に電界Eが印加されると、放射音波が放射される方向と平行な方向に、測定試料Sに電界が印加される。なお、レオメータ制御部10は、電極41及び電極42に印加する電界の強さを調整することができる。電極41、電極42及びレオメータ制御部10は、電界印加部を構成する。処理部15の入力部34から測定者が印加する電界の強さが指定されると、演算部35はその情報を取得する。演算部35は、取得した電界の強さの情報に基づいて、レオメータ制御部10に対し、指定された通りに電界の強さを調整するように制御する。以上の処理を行うことで、測定試料Sに印加させる電界の強さを変えて、高周波粘弾性特性を測定することができる。測定試料SがER流体である場合、外場からの電場に応じて粘性が変化するため、電場の強さを変えることで、異なる高周波粘弾性特性のデータを取得することができる。
 なお、測定例1において、測定試料Sには、所定の周波数の回転又は振動ではなく、ランダムな回転又は振動を加えてもよい。ただし、上述の通り、低周波粘弾性特性を算出するためには、測定試料Sに所定の周波数の正弦波回転又は正弦波振動を加えるのが好ましい。
 測定例4において、電極の代わりに磁石を配置することで、測定試料Sに磁界を印加させて高周波粘弾性特性を測定することができる。この場合、測定試料Sの一例はMR(Magneto-Rheological)流体である。また、電極の代わりに電波を放射する電波放射源を配置することで、測定試料Sに電波を放射した状態で高周波粘弾性特性を測定することができる。また、測定例4において、測定試料Sは回転させなくてもよく、振動、伸長又は収縮する変形を測定試料Sに加えてもよい。
 測定例1において、測定試料Sは、入射音波が放射される方向と平行な回転軸を中心に回転する。しかし、回転軸は、入射音波が放射される方向と平行でなくてもよい。つまり、入射音波の放射方向と回転軸とで所定の角度を成すようにしてもよい。同様に、測定例2において、引張り力又は圧縮力が加えられる向きは、入射音波が放射される方向と平行な方向でなくてもよい。測定例3においても、曲がる力が加えられる方向は、測定試料Sに入射音波が放射される方向と垂直な方向でなくてもよい。測定例4においても、電界が加えられる方向は、放射音波が放射される方向と平行な方向でなくてもよい。
 なお、測定例1~4における回転や振動のパラメータは、上述の通り、測定者側で設定することができる。また、変形例1~4に示した測定試料Sの変形は、適宜組み合わせることが可能である。
[実施の形態4]
 実施の形態2では、底面反射法を用いて、測定試料Sの高周波粘弾性特性の算出を行った。ここで、反射材39と測定試料Sとは空気中で接触しているため、レオメータ部11が回転することで生じる遠心力によって、測定試料Sの飛散が生じたり、測定試料Sに気泡が混入したりすることがある。測定試料Sが液体の場合、特にこのような測定試料Sの形状の変化が起こり得る。このような測定試料Sの形状の変化により、測定試料Sの測定値に誤差が生じてしまい、低周波及び高周波の粘弾性特性を正確に測定できない可能性がある。
 実施の形態4では、この課題を解決するため、反射材39と測定試料Sとを密閉することで、測定試料Sに遠心力がかかっても測定試料Sの形状の変化が抑制されるようにしている。
 図12は、測定試料Sが液体の場合における、粘弾性特性測定装置4の構成例を示したブロック図である。図12において、ケーシング構造50は、内部に空気が殆ど無い状態で、環状板22と反射材39と測定試料Sとを密閉しているため、反射材39と測定試料Sとの間への空気の混入を抑制している。反射材39は、測定試料Sを挟んで遅延材26と対向している。粘弾性特性測定装置4の他の構成要素については、粘弾性特性測定装置2と同様であるため、説明を省略する。このようにすることで、レオメータ部11が回転して遠心力が生じても、測定試料Sはケーシング構造50内に密閉されたままなので、測定試料Sの形状の変化が抑制される。
 また、実施の形態4では、入射音波の減衰係数αを算出する別の方法について更に提案する。図13A~図13Cは、底面反射法を用いて高周波粘弾性特性を算出する方法を説明した図である。図13Aは、測定試料S及び反射材39がない状態で音波を遅延材26に入射させた状況を示した図面である。図13Bは、反射材39がない状態で音波を遅延材26を介して測定試料Sに入射させた状況を示した図面である。また、図13Cは、反射材39がある状態で音波を遅延材26を介して測定試料Sに入射させた状況を示した図面である。
 なお、図13A~図13Cでは、遅延材26の音響インピーダンスをZとし、測定試料Sの音響インピーダンスをZとする。また、以降の計算では、遅延材26と測定試料Sとの間の界面における音波の減衰、遅延、多重反射の影響は無視している。
 遅延材26から測定試料Sへの入射波の複素反射率RBSは、Z、Zを用いると次のように表せる。
BS=(Z-Z)/(Z+Z)・・・(21)
式(21)から、音響インピーダンスZは次のように表せる。
=Z・(1+RBS)/(1-RBS)・・・(22)
 ここで、遅延材26と空気中との境界面において生じる反射音波(A波)と、遅延材26と測定試料Sとの境界面において生じる反射音波(A波)とを比較する。A波を
=a・exp(iθ)・・・(23)
と表し、A波を
A=a・exp(iθ)・・・(24)
と表すと、複素反射率RBS
BS=-(A/A)=(a・exp(iθ))/(a・exp(iθ))・・・(25)
と表せる。ここで、複素反射率RBSを振幅成分と位相成分に分けて以下のように定義する。
BS≡-|RBS|exp(-iθBS)・・・(26)
ここで、振幅成分|RBS|、位相成分θBSは以下の値である。
|RBS|=a/a・・・(27)
θBS(f)=θ-θ・・・(28)
 次に、反射材39がある状態で音波を測定試料Sに入射させた状況を考慮する。このとき、測定試料Sと反射材39との境界面において生じる反射音波(B波)を
B=b・exp(iθ)・・・(29)
と表す。また、測定試料Sの音響インピーダンスZと反射材39の音響インピーダンスZとの差に基づいて決定される、測定試料Sから反射材39への入射波の複素反射率をRSRと定義する。ここで、B波は次の通りに表される。
b=a・RSR・TBS・TSB・exp(-2αh)・・・(30)
ここで、hは測定試料Sの厚さであり、式(30)におけるexp(-2αh)の項は測定試料Sによる減衰を示す項である。また、式(30)におけるTBSは遅延材26から測定試料Sへの透過率、TSBは測定試料Sから遅延材26への透過率であり、それぞれ次の通り定義される。
BS≡1-RBS・・・(31)
SB≡1-RSB=1+RBS・・・(32)
SB≡-RBS・・・(33)
このとき、式(27)、式(31)、式(32)から、
BS・TSB=(1-RBS)・(1+RBS)=1-RBS =1-(a/a=(a -a)/a ・・・(34)
となるので、式(34)を式(30)に代入して、入射音波の減衰係数α(f)が
α=(1/2h)・ln(RSR・((a -a)/a・b)・・・(33)
と算出される。この結果は、式(16)と同じ結果である。
 なお、遅延材26の音響インピーダンスZと反射材39の音響インピーダンスZとが同じ値又は略同じ値(計算上同じ値とみなせる値)であるときは、式(21)、(31)を用いると
SR=RSB=-(Z-Z)/(Z+Z)=-RBS・・・(34)
ここで、式(27)を用いると
SR=-RBS=|RBS|exp(-iθBS)・・・(35)
となる。ここで、(35)における位相成分が無視できるものとして、実部のみを考慮すると、
SR=-a/a・・・(36)
として表されるので、減衰係数α(f)は
α(f)=(1/2h)・ln((a-a )a/a ・b)・・・(37)
と求められる。このように、遅延材26の音響インピーダンスZと反射材39の音響インピーダンスZとが同じ値であると、複素反射率RSRを求めることなく減衰係数αを算出できるため、より容易に減衰係数αを算出できる。
 以上の計算は、実施の形態2のように、反射材39と測定試料Sとを密閉していない場合でも実行することができる。
 また、測定試料Sが固体の場合でも、図12と同様に反射材39と測定試料Sとを密閉することができる。図14は、測定試料Sが固体の場合における、粘弾性特性測定装置4の構成例を示したブロック図である。図14において、ケーシング構造51は、環状板22と反射材39と測定試料Sとを密閉している。また、反射材39に対向している測定試料Sの面は、遅延材26に対向している測定試料Sの面と反対側の面である。ここで、ケーシング構造51内に液体L(例えば水)が充填されることで、反射材39と測定試料Sとの間への空気の混入を防いでいる。
 なお、図12、図14において、確実に反射材39と測定試料Sとの間に空気を混入しないようにするためには、レオメータ部11及び音波放射部12の垂直軸を、重力方向に対して角度を成す(好ましくは垂直の角度を成す)ように横向きにするのが望ましい。換言すれば、トランスデューサ25から入射され、測定試料Sに伝搬されて反射材39で反射される音波は、重力方向と平行ではなく、重力方向と角度を成す(好ましくは垂直の角度を成す)のが望ましい。これにより、図12における液体の測定試料S又は図14における液体Lに空気が混入した場合でも、混入した空気は反射材39と測定試料Sとの接触面周辺に溜まらないので、確実に反射材39と測定試料Sとの間に空気を混入しないようにすることができる。
 以上のように、実施の形態1~4の粘弾性特性測定装置においては、測定試料Sを大きく変形した場合の高周波粘弾性特性の挙動を計測することができる。上述の通り、タイヤのゴムといった、使用時に形状が変形する材料の高周波粘弾性特性を測定する場合に、実際の使用状態を適切に反映させた状態で高周波粘弾性特性を測定できる。特に、測定試料Sを低周波で回転又は振動させた場合に、低周波粘弾性特性及び高周波粘弾性特性の挙動を、その場(in situ)で同時に計測できる。これにより、低周波数と高周波数における粘弾性特性の違いや、歪み依存性の比較をすることができる。
 低周波は例えば10Hz程度の周波数であり、高周波は例えば1MHz~100MHz程度の周波数であるが、周波数の範囲はこれに限られない。例えば、粘弾性特性測定装置で生体反応等を測定する際には、サンプルに応力が加えられた下、高周波として1MHzよりも低い周波数の粘弾性特性を測定することが有用の場合もある。このとき、好適な高周波数は、波長の有効性から、10kHz~100MHz程度である。なお、「波長の有効性」とは、測定に用いる音波の波長が長くなると、測定する波形を分離するためにサンプル伝搬長を長くする必要があるため、音波の周波数や波長に制約があることをいう。また、地盤・地質・地震等の研究においては、サンプルに低周波数の応力が加えられた下、高周波の伝搬を検出することで、粘弾性特性が測定される。このとき、好適な高周波は、波長の有効性から10kHz~100kHz程度である。また、化学反応プロセスを測定する場合には、サンプルに低周波数の応力が加えられた下、加工工程中における高周波の伝搬を検出することで、粘弾性特性が測定される。このとき、好適な高周波は、波長の有効性から10kHz~100MHz程度である。
 図15は、粘弾性特性を有する測定試料における、歪みと応力の関係の一例を示したグラフである。図15において、グラフの横軸が歪みであり、縦軸が応力を示す。また、図15において、(a)は超音波を用いる測定がカバーする測定範囲を示し、(b)はレオメータを用いる測定がカバーする測定範囲を示す。(a)における測定範囲は、歪み及び応力が小さい状態であり、(b)における測定範囲は、歪み及び応力が大きい状態である。本発明にかかる粘弾性特性測定装置では、(a)と(b)の両方の範囲を測定することができる。
 図16は、粘弾性特性を有する測定試料における、周波数と粘弾性特性の関係の一例を示したグラフである。図16において、グラフの横軸が周波数であり、縦軸が粘弾性特性を示す。また、図16において、(a)は音波を用いる測定がカバーする測定範囲を示し、(b)はレオメータを用いる測定がカバーする測定範囲を示す。(a)における測定範囲は、周波数及び粘弾性特性が大きい場合の粘弾性特性を示し、(b)は、周波数及び粘弾性特性が小さい場合の粘弾性特性を示している。本発明にかかる粘弾性特性測定装置では、(a)と(b)の両方の範囲を測定することができる。
 測定試料Sがパン生地やゴムといった材料であり、測定試料Sが混合下の化学プロセスにおいて重合等の反応を行う場合、測定試料Sに回転や振動を与えることにより、上述の粘弾性特性測定装置で時間経過に伴う粘弾性特性の変化を測定できる。また、反応は測定試料Sの表面から進行することが多い。そのため、測定試料Sの表面物性(表面における粘弾性特性)と、測定試料Sのバルクの物性(全体の粘弾性特性)とは異なることが想定される。ここで、測定試料Sの表面物性は、例えば表面反射法を用いた測定(特に超音波を用いた測定)の結果、算出される。また、測定試料Sのバルクの物性は、レオメータを用いて測定試料Sを変形させた際に、測定試料Sに作用する応力と測定試料Sの歪みを測定する結果、算出される。従って、これらの粘弾性特性のデータを比較することにより、反応の進行状況を適切に判断できる。さらに、高周波粘弾性特性の測定において、開口合成法を用いたCT(Computed Tomography)を測定試料Sに行うことにより、物性特性の立体的な把握をすることもできる。なお、開口合成法は、超音波で測定を行う場合には、フェーズドアレー方式を用い、測定試料Sの断面イメージをバーチャルに合成する技術をいう。このようにして実験を行うことで、パン生地の最適な捏ねやゴムの最適な混錬を解析することができる。
 また、実施の形態1~4において、粘弾性特性測定装置は、レオメータと高周波粘弾性測定装置とが複合された機能を有する。そのため、低周波及び高周波の粘弾性特性を、同じ又は異なるひずみ下で測定することができる。従って、測定試料Sをゴム(タイヤの材料)とすると、例えば、ゴムに掛ける負荷が小さい(レオメータ部11がゴムに印加する歪みが小さい)ときのゴムの低周波における損失正接tanδを測定することで、ゴムのころがり抵抗の大小を測定できる。また、ゴムに掛ける負荷が大きい(レオメータ部11がゴムに印加する歪みが大きい)ときのゴムの低周波における損失正接tanδを測定することで、ゴムのドライグリップの大小を測定できる。また、ゴムに掛ける負荷が大きい(レオメータ部11がゴムに印加する歪みが大きい)ときのゴムの高周波における損失正接tanδを測定することで、ゴムのウエットグリップの大小を測定できる。具体的には、ゴムにレオメータ部11でねじり歪を加えながら、チャック装置に設けられたトランスデューサ25からゴムに超音波を送受信することで、高周波における損失正接tanδを測定することができる。
 以上に示した、ゴムのころがり抵抗とグリップ(ドライグリップ及びウエットグリップ)とは、タイヤの燃費を変化させるパラメータである。これらのパラメータを計測することで、負荷で発生したトルクで材料自身が最適な特性を有するように変化する負荷応答型のスマートマテリアルを、効率的又は総合的に評価できる可能性がある。
 一般に、タイヤの燃費を少なくする目的で、大きい負荷をかけた状態でのゴムの低周波における損失正接tanδを低減すると、大きい負荷をかけた状態でのゴムの高周波における損失正接tanδも減少してしまう。従って、いわゆる省燃費タイヤでは、ウエットグリップの性質が悪くなってしまう。
 ここで、ペイン効果に見られるような、粘弾性特性がひずみ依存性を有する現象から類推して考えると、大きい負荷(大きな歪み)が印加されたゴムにおいて、損失正接tanδを元の値よりも大きな値にできる(即ち、タイヤの性能を向上できる)可能性がある。具体的には、ゴムに配合されたフィラー粒子の凝集体であるアグリゲートの配向が、負荷歪によって不可逆に変化せず、一時的に切断又は移動するような構成とすることで、ゴムの粘弾性特性を負荷(歪み)の値に応じて変化させることができる。なお、ゴムの側鎖の分子量や末端の分子質量は、損失正接tanδの周波数依存性にかかわる要素として重要となる。
 このように、低周波及び高周波での損失正接tanδの測定だけでなく、ゴムのころがり抵抗とグリップ性能とを実使用温度で用途に応じて最適化する研究についても、実施の形態1~4に係る粘弾性特性測定装置を適用することができる。
[実施の形態5]
 実施の形態1~4において、演算部35は、算出した測定試料Sの高周波粘弾性特性を用いて、測定試料Sの摩擦係数を算出してもよい。例えば、周波数fの関数である測定試料Sの摩擦係数μ(f)は、上述の損失正接tanδ(f)及び貯蔵弾性率E’(f)を用いて、
μ(f)=α×E’(f)×tanδ(f)+β・・・(37)
と表される。α(>0)及びβはタイヤの種類(例えばタイヤの材質)に基づいて変化する固有の定数であり、nは所定の実数である(例えばn=-1/3)。なお、摩擦係数μ(f)を求める数式は、式(37)ではない、tanδ(f)を用いた他の多項式や高次式であってもよい。なお、定数α及びβは、予め実験等で取得される値であり、記憶部37に格納されている。
[実施の形態6]
 実施の形態6では、低周波及び高周波の粘弾性特性を測定するほかに、測定試料Sを光学的に測定する構成を説明する。図17は、実施の形態6の粘弾性特性測定装置5における一部構成を示した図面である。図17では、測定試料SであるタイヤTとトランスデューサ25と遅延材26とが示されている。また、粘弾性特性測定装置5は、粘弾性特性測定装置1に比較して、光源60と高速CCDカメラ61と処理部62とを更に備える。なお、粘弾性特性測定装置5は表面反射法でタイヤTの高周波粘弾性特性を算出する装置であり、粘弾性特性測定装置5のその他の構成要素は、粘弾性特性測定装置1と同じであるため、説明を省略する。
 タイヤTは、押圧力が掛けられることにより、その面T1が遅延材26の面26Aの一部に接触する。そして、モータ23の駆動により、面26Aの一部に接触しながら回転する。そのため、面T1には、回転により生じるせん断力と、押圧力により生じる摩擦力とが生じている。ここで、タイヤTは、回転を続けても遅延材26に接触し続けるよう(即ち、その前後方向に動かないよう)に固定されている。また、面26Aは、遅延材26において、トランスデューサ25が接する面と反対側の面である。
 ここで、光源60は、遅延材26を介して面26Aに向かって測定光を照射し、高速CCDカメラ61は、測定光が面26Aで反射されたことにより生じた反射光を遅延材26を介して検出する。なお、遅延材26は、光源60からの測定光が面26Aで反射可能であり、かつ反射光が高速CCDカメラ61で検出可能な強度を有するように、透過性を有する。
 面26Aで測定光が反射される場合、面26AにおいてタイヤTが接触している領域と、面26Aにおいて別の物質(本例では、空気又は水)が接触している領域との区別は、光源60から面26Aに入射される測定光の入射角を調節することにより可能である。遅延材26とタイヤT(ゴム)との反射率と、遅延材26と空気又は水との反射率とが異なるため、遅延材26とタイヤTとの境界面における臨界角θと、遅延材26と空気又は水との境界面における臨界角θとは異なる。そのため、実施の形態6では、測定光の入射角を臨界角θと臨界角θとの間に設定し、面26Aの各領域で測定光が反射されるか否かを高速CCDカメラ61で検出する。処理部62は、高速CCDカメラ61の検出結果に基づいて、面26Aの各領域に接触しているのがタイヤTであるか、あるいは空気又は水であるかを識別する。このようにして、処理部62は、面26AへのタイヤTの接触面積を測定することができる。なお、処理部62は、処理部15と同様、例えばコンピュータ(特にパーソナルコンピュータ)から構成される。
 また、タイヤTを回転させながらタイヤTの接触面積を測定し続けることで、処理部62は、面26Aに対するタイヤTの滑り箇所と凝着箇所とを識別することができる。滑り箇所では、短時間で面26Aと接触しなくなるのに対し、凝着箇所では、面26Aと長時間接触するため、接触時間による両者の識別が可能であるからである。
 このようにして、面26AへのタイヤTの接触面積を測定することにより、処理部62は、面26AへのタイヤTの接触面積と、低周波及び高周波の粘弾性特性測定結果との関連性を測定することができる。なお、タイヤTではなく、回転の用途に用いる他の物質(例えば試料ローラ)を測定してもよい。また、測定試料Sを回転させず、部分すべりの範囲でトルクを加えるだけ、または単に遅延材26に接触させている場合であっても、上述と同様にして、測定試料Sと遅延材26との接触面積と、低周波及び高周波の粘弾性特性測定結果との関連性を測定することが可能である。
 さらに、図17に係る粘弾性特性測定装置5において、トランスデューサ25は、(高周波粘弾性を測定するための)入射音波をタイヤTに放射せず、遅延材26を介して測定試料Sから放射された反射音波の受信のみを実行してもよい。受信した反射音波のデータは、変換部14を介して処理部15に出力される。処理部15は、この反射音波のデータに基づき、すべりによるタイヤTの摩擦面での振動状態を測定することができる。このことにより、粘弾性特性測定装置5は、より的確な高周波粘弾性の測定ができる。例えば、粘弾性特性測定装置5は、顕著な特徴を有する振動周波数帯域、スペクトルや波形のデータを収集することができる。このデータに基づき、粘弾性特性測定装置5は、測定試料Sに摩擦力がかからない場合に、タイヤTの振動状態が所望の状態であるかを判定することができる。所望の状態である場合に、粘弾性特性測定装置5は、測定試料Sの高周波粘弾性測定を実行することができるため、高周波粘弾性測定の条件を最適な条件にすることができる。なお、面26Aは、測定に応じて必要な表面粗さを持った摩擦面であってもよい。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態1において、温度検出センサ33は必ずしも設けられなくてもよい。また、実施の形態1において、測定試料Sの歪みを予め決定して応力を測定するのではなく、測定試料Sに与える応力を予め決定して歪みを測定してもよい。この場合には、応力検出センサ32の代わりに、変位検出センサが設けられる。この変位検出センサは、例えば軸21の縦方向の変位に基づいて測定試料Sの歪みのデータを検出し、取得した歪みのデータを処理部15に出力する。また、応力検出センサ32と変位検出センサは、レオメータ部11に両方設けられてもよい。また、測定試料Sを変形するのは、レオメータに限られない。
 実施の形態1~6に示した処理は、制御方法の1つとして、コンピュータに実行させることができる。ここで、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 この出願は、2014年7月10日に出願された日本出願特願2014-142270、及び2015年3月26日に出願された日本出願特願2015-064921を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2、3、4 粘弾性特性測定装置
10 レオメータ制御部
11 レオメータ部
12 音波放射部
13 音波信号発生部
14 変換部
15 処理部
20 駆動部
21 軸
22 環状板
23 モータ
24 センサ
25 トランスデューサ
26 遅延材
27 駆動波形発生器
28 方向整合器
29 高周波増幅器
30 D/A変換部
31 A/D変換部
32 応力検出センサ
33 温度検出センサ
34 入力部
35 演算部
36 時間データメモリ部
37 記憶部
38 表示/出力部
39 反射材
40 トランスデューサ
41、42 電極
50、51 ケーシング構造
60 光源
61 高速CCDカメラ
62 処理部

Claims (11)

  1.  測定試料に外力を加えて周期的な変形を与える試料変形部と、
     前記試料変形部により変形された前記測定試料に作用する応力及び前記測定試料の歪みに基づいて、前記測定試料の低周波の粘弾性特性を算出する第1の粘弾性特性算出部と、
     前記試料変形部により変形された前記測定試料に入射音波を放射する放射部と、
     前記放射部が放射した前記入射音波が前記測定試料で反射されて生じる反射音波、又は前記入射音波が前記測定試料を透過した透過音波を受信する受信部と、
     前記受信部が受信した前記反射音波又は前記透過音波に基づいて、前記入射音波の周波数における前記測定試料の高周波の粘弾性特性を算出する第2の粘弾性特性算出部と、を備える、
     粘弾性特性測定装置。
  2.  前記粘弾性特性測定装置は、前記測定試料の低周波の粘弾性特性と、前記測定試料の高周波の粘弾性特性との相関性を算出する、
     請求項1に記載の粘弾性特性測定装置。
  3.  前記試料変形部は、所定の回転軸を中心に所定の周期で前記測定試料を回転させる、
     請求項1又は2に記載の粘弾性特性測定装置。
  4.  前記試料変形部は、所定の方向に所定の周期で前記測定試料を振動させる、
     請求項1ないし3のいずれか一項に記載の粘弾性特性測定装置。
  5.  前記試料変形部は、前記測定試料の所定の方向に所定の周期で引張り力又は圧縮力を加えることで、前記測定試料に伸び又は縮みの変形を生じさせる、
     請求項1ないし4のいずれか一項に記載の粘弾性特性測定装置。
  6.  前記試料変形部は、前記測定試料の所定の方向に曲がる力を所定の周期で加えることにより、前記測定試料に曲げ変形を生じさせる、
     請求項1ないし5のいずれか一項に記載の粘弾性特性測定装置。
  7.  前記粘弾性特性測定装置は、前記測定試料に電界を加える電界印加部をさらに備える、
     請求項1ないし6のいずれか一項に記載の粘弾性特性測定装置。
  8.  前記試料変形部に接続されると共に、前記測定試料に前記外力を伝達し、前記透過音波を反射して前記受信部に受信させる反射部と、
     前記反射部と前記測定試料とを密閉するケーシングと、をさらに備える、
     請求項1ないし7のいずれか一項に記載の粘弾性特性測定装置。
  9.  前記放射部と前記測定試料との間に設けられた遅延部と、
     前記透過音波を反射して前記受信部に受信させる反射部と、を更に備え、
     前記遅延部と前記反射部との音響インピーダンスは略同じ値である、
     請求項1ないし7のいずれか一項に記載の粘弾性特性測定装置。
  10.  前記放射部と前記測定試料との間に設けられ、前記測定試料と接している遅延部と、
     前記遅延部と前記測定試料との接触面に測定光を照射する光源と、
     前記測定光が前記接触面で反射されて生じた反射光を検出する検出部と、
     前記検出部の検出結果に基づいて、前記接触面の面積を算出する算出部と、をさらに備える、
     請求項1ないし7のいずれか一項に記載の粘弾性特性測定装置。
  11.  測定試料に外力を加えて周期的な変形を与える変形ステップと、
     変形された前記測定試料に作用する応力及び前記測定試料の歪みに基づいて、前記測定試料の低周波の粘弾性特性を算出する第1の算出ステップと、
     変形された前記測定試料に入射音波を放射する放射ステップと、
     放射した前記入射音波が前記測定試料で反射されて生じる反射音波、又は前記入射音波が前記測定試料を透過した透過音波を受信する受信ステップと、
     受信した前記反射音波又は前記透過音波に基づいて、前記入射音波の周波数における前記測定試料の高周波の粘弾性特性を算出する第2の算出ステップと、を備える、
     粘弾性特性測定方法。
PCT/JP2015/003431 2014-07-10 2015-07-08 粘弾性特性測定装置及び粘弾性特性測定方法 WO2016006235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15819161.9A EP3168598A4 (en) 2014-07-10 2015-07-08 Viscoelastic property measuring device and viscoelastic property measuring method
CN201580017510.2A CN106133502A (zh) 2014-07-10 2015-07-08 粘弹特性测量装置以及粘弹特性测量方法
US15/129,029 US20170168020A1 (en) 2014-07-10 2015-07-08 Viscoelastic characteristic measurement apparatus and viscoelastic characteristic measurement method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-142270 2014-07-10
JP2014142270 2014-07-10
JP2015-064921 2015-03-26
JP2015064921A JP5862914B1 (ja) 2014-07-10 2015-03-26 粘弾性特性測定装置及び粘弾性特性測定方法

Publications (1)

Publication Number Publication Date
WO2016006235A1 true WO2016006235A1 (ja) 2016-01-14

Family

ID=55063887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003431 WO2016006235A1 (ja) 2014-07-10 2015-07-08 粘弾性特性測定装置及び粘弾性特性測定方法

Country Status (5)

Country Link
US (1) US20170168020A1 (ja)
EP (1) EP3168598A4 (ja)
JP (1) JP5862914B1 (ja)
CN (1) CN106133502A (ja)
WO (1) WO2016006235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015399A1 (zh) * 2017-07-21 2019-01-24 无锡海斯凯尔医学技术有限公司 介质粘弹性的测量方法和装置
WO2024105795A1 (ja) * 2022-11-16 2024-05-23 京セラ株式会社 評価方法および評価装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568946A (en) * 2017-12-01 2019-06-05 Hydramotion Ltd Fluid property measurement by reflection of vibrational waves
CN109520830B (zh) * 2018-11-23 2024-03-08 中国船舶重工集团公司第七一九研究所 一种管路弹性元件声学状态在线监测装置
JP7369960B2 (ja) 2019-08-16 2023-10-27 ジャパンホームシールド株式会社 地盤沈下量を予測するための方法、プログラム、及びシステム
JP7331566B2 (ja) * 2019-09-06 2023-08-23 住友ゴム工業株式会社 タイヤ部材の物性予測方法
CN111751200B (zh) * 2020-06-29 2021-06-15 中国科学院声学研究所 粘弹材料动态模量的测试系统和方法
CN112114122A (zh) * 2020-09-04 2020-12-22 昆明学院 橡胶材料的粘弹性力学性质的表征方法
TWI834112B (zh) * 2022-01-26 2024-03-01 佳世達科技股份有限公司 多功能探頭

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110255A (ja) * 1987-10-23 1989-04-26 Nok Corp 超音波によるゴム加硫度の測定方法ならびにゴム加硫度の測定装置
JP2007121200A (ja) * 2005-10-31 2007-05-17 Omron Corp 粘弾性特性測定装置
JP2012047716A (ja) * 2010-02-04 2012-03-08 Ricoh Co Ltd 粘弾性測定装置、粘弾性測定方法、並びに粘弾性測定プログラム及びこれを記録する記録媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819649A (en) * 1986-11-03 1989-04-11 Georgia Tech Research Corporation Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated
JP2007047130A (ja) * 2005-08-12 2007-02-22 Omron Corp 摩擦特性測定装置およびそれに向けられるタイヤ
JPWO2007034802A1 (ja) * 2005-09-20 2009-03-26 住友電気工業株式会社 弾性粘性測定装置
JP2008151576A (ja) * 2006-12-15 2008-07-03 Omron Corp 音波センサおよびそれを備えた粘弾性測定装置
FR2932887B1 (fr) * 2008-06-24 2016-02-05 Univ Francois Rabelais De Tours Dispositif acoustique de mesure localisee et sans contact des non-linearites elastique et dissipative et de la viscoelasticite
FR2939512B1 (fr) * 2008-12-04 2012-07-27 Echosens Dispositif et procede d'elastographie
CN103476344B (zh) * 2011-04-08 2015-09-23 佳能株式会社 被检体信息获取装置
CN103054552B (zh) * 2012-12-24 2014-12-10 深圳先进技术研究院 生物组织粘弹性测量方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110255A (ja) * 1987-10-23 1989-04-26 Nok Corp 超音波によるゴム加硫度の測定方法ならびにゴム加硫度の測定装置
JP2007121200A (ja) * 2005-10-31 2007-05-17 Omron Corp 粘弾性特性測定装置
JP2012047716A (ja) * 2010-02-04 2012-03-08 Ricoh Co Ltd 粘弾性測定装置、粘弾性測定方法、並びに粘弾性測定プログラム及びこれを記録する記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168598A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015399A1 (zh) * 2017-07-21 2019-01-24 无锡海斯凯尔医学技术有限公司 介质粘弹性的测量方法和装置
WO2024105795A1 (ja) * 2022-11-16 2024-05-23 京セラ株式会社 評価方法および評価装置

Also Published As

Publication number Publication date
JP2016028225A (ja) 2016-02-25
JP5862914B1 (ja) 2016-02-16
EP3168598A1 (en) 2017-05-17
CN106133502A (zh) 2016-11-16
US20170168020A1 (en) 2017-06-15
EP3168598A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP5862914B1 (ja) 粘弾性特性測定装置及び粘弾性特性測定方法
KR102181339B1 (ko) 탄성 검출 방법 및 기기
US20070039371A1 (en) Frictional characteristic measuring apparatus and tire directed thereto
JP2006194591A (ja) 超音波探傷装置
US20160332364A1 (en) Ultrasonic processing device having a force sensor
Kazys et al. Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves
JP4906897B2 (ja) クラック検知支援装置、及び、クラック検知支援方法
Quaegebeur et al. Ultrasonic non-destructive testing of cardboard tubes using air-coupled transducers
JP3725515B2 (ja) 非破壊検査装置
JP2015522163A (ja) 超音波測定
Amjad et al. Determination of the stress dependence of the velocity of Lamb waves in aluminum plates
CN107037128B (zh) 基于零群速度模态评估粘结结构损伤程度的方法和装置
Sait et al. Estimation of thin metal sheets thickness using piezoelectric generated ultrasound
JP7125724B2 (ja) 接着層評価システム及び接着層評価方法
JP6218298B2 (ja) タイヤ及びタイヤの特性評価方法
JP2007271338A (ja) 探傷方法および探傷装置
KR101961267B1 (ko) 이종재료의 비례 보정계수 산출 및 초음파 상대 비선형 파라미터를 이용한 초음파 절대 비선형 파라미터 추정장치 및 방법
Ono et al. NEW CHARACTERIZATION METHODS OF AE SENSORS.
Li et al. Detection of plastic zone at crack tip by non-collinear mixing method
Miqueleti et al. Acoustic impedance measurement method using spherical waves
RU2810679C1 (ru) Ультразвуковой способ определения разности главных механических напряжений в ортотропных конструкционных материалах
KR102557214B1 (ko) 초음파 피로 시험 장치
WO2021044920A1 (ja) 接着層評価システム及び接着層評価方法
RU2655993C1 (ru) Ультразвуковой способ определения внутренних механических напряжений
Shen et al. Detection of internal cracks in rubber composite structures using an impact acoustic modality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15129029

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015819161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819161

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE