WO2016006144A1 - 水耕栽培装置 - Google Patents
水耕栽培装置 Download PDFInfo
- Publication number
- WO2016006144A1 WO2016006144A1 PCT/JP2015/001979 JP2015001979W WO2016006144A1 WO 2016006144 A1 WO2016006144 A1 WO 2016006144A1 JP 2015001979 W JP2015001979 W JP 2015001979W WO 2016006144 A1 WO2016006144 A1 WO 2016006144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ground
- unit
- light source
- light
- underground
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/02—Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
Definitions
- the present invention relates to a hydroponic cultivation apparatus for cultivating plants without using soil.
- hydroponic cultivation has been performed in plant factories and the like. Also, in recent years, in addition to leafy vegetables that have been hydroponically cultivated before, hydroponic culture of plants such as medicinal plants and root vegetables is also carried out. Plants such as medicinal plants and root vegetables grow in the underground in the soil. Therefore, hydroponic cultivation of medicinal plants and root crops requires a technique different from that of hydroponic cultivation of leafy vegetables, which has an enlarged above-ground part. Conventional hydroponic cultivation techniques are disclosed, for example, in the following Patent Documents 1-8.
- None of the conventional hydroponic cultivation apparatuses as disclosed in the above-mentioned Patent Documents 1 to 8 are equipped with equipment for managing the peripheral environment of a plant at the time of germination. Therefore, the plants are germinated in another facility, and then the germinated plants are moved into the hydroponic cultivation apparatus, whereby the plants are raised and cultivated in the hydroponic cultivation apparatus. That is, the conventional hydroponic cultivation apparatus can not consistently produce, cultivate, and grow plants.
- this invention is made in view of the above-mentioned problem, and is providing the hydroponic cultivation apparatus which can carry out the sprouting of a plant, a seedling raising, and cultivation consistently.
- the hydroponic cultivation apparatus comprises a cultivation room basement having a basement space where the basement of the plant grows, and an above ground space where the above ground part of the plant grows, And a ground surface part that divides the underground space and the above-ground space in the cultivation room, and has a through hole through which the above-ground part of the plant can pass. And a light source unit disposed in the cultivation room and irradiating light to at least one of the underground portion and the above-ground portion.
- the hydroponic cultivation apparatus comprises a cultivation room basement having an underground space where the basement of the plant grows, and an above ground space where the above ground part of the plant grows, the cultivation room basement And a ground surface part that divides the underground space and the above-ground space in the cultivation room, and has a through hole through which the above-ground part of the plant can pass.
- a humidity detection unit disposed in the basement of the cultivation room and detecting the humidity of the atmosphere in the underground space, a humidity controller adjusting the humidity of the atmosphere in the underground space, and the humidity detected by the humidity detection unit And a controller configured to control the humidity regulator based on the information of
- hydroponic cultivation apparatus of the present invention it is possible to consistently carry out plant germination, seedling raising and cultivation.
- FIG. 2A is a front view of the ground surface portion.
- B) of FIG. 2 is a plan view of the ground surface portion.
- C) of FIG. 2 is a side view of the ground surface portion.
- FIG. 2D is a bottom view of the ground surface. It is a figure which shows the state which the light source part of an example of the hydroponic cultivation apparatus of embodiment of this invention irradiates with light to either an underground part and an above-ground part according to the growth stage of a plant.
- the light source part of the other example of the hydroponic cultivation apparatus of embodiment of this invention is a figure which shows the state which is irradiating light to the underground part of a plant. It is a figure which shows the state which the light source part of the other example of the hydroponic cultivation apparatus of embodiment of this invention is irradiating light to the ground part of a plant. It is a figure for demonstrating the lighting switching process performed in the control part of the water culture apparatus of embodiment of this invention. It is a figure for demonstrating each step in which a potato of an example of root vegetables grows.
- FIG. 1 It is a figure for contrasting the process of plant cultivation by the water culture apparatus of an embodiment of the invention, and the process of plant cultivation in the water culture method of comparative example 1. It is a figure for demonstrating the hydroponic cultivation apparatus of the comparative example 2. FIG. It is a figure for demonstrating the hydroponic cultivation apparatus of the comparative example 3. FIG. It is a figure which shows the state which the humidity regulator of the hydroponic cultivation apparatus of embodiment of this invention has stopped. It is a figure which shows the state which the humidity regulator of the hydroponic cultivation apparatus of embodiment of this invention is driving. It is a figure explaining that the humidity regulator of the hydroponic cultivation apparatus of embodiment of this invention changes from the state currently stopped according to each growth stage of a plant to the state currently driven.
- the plant 10 to be subjected to the hydroponic culture of the present embodiment is, as shown in FIG. 1, root vegetables such as a potato in which the underground part 10B is enlarged.
- the underground light source unit 2 for irradiating the underground unit 10B with light is installed on the lower surface of the ground surface unit 50. Therefore, the plant 10 can be grown in the same hydroponic cultivation apparatus at all of the bath light sprouting time A, the nursery season B, and the cultivation time C.
- the hydroponic cultivation apparatus 100 of the present embodiment can be applied to hydroponic cultivation of any plant in which the underground part 10B is enlarged.
- the hydroponic cultivation apparatus 100 of the present embodiment can be applied to the cultivation of any plant that requires bath light germination.
- the hydroponic cultivation apparatus 100 of this Embodiment can be applied also to cultivation of any plant which needs adjustment of the humidity of atmosphere in underground space.
- the hydroponic cultivation apparatus 100 of the present embodiment includes a cultivation room 112.
- the cultivation room 112 is provided with the cultivation room above-ground part 101 and the cultivation room basement part 102.
- Cultivation room above-ground part 101 has above-ground space 101A where above-ground part 10A of plant 10 grows.
- Cultivation room underground part 102 has underground space 102A where underground part 10B of plant 10 grows.
- Cultivation room above-ground part 101 and cultivation room basement part 102 constitute cultivation room 112 in one.
- the above-ground space 101A and the underground space 102A in the cultivation room 112 are shielded from the external space by the casing structure constituted by the cultivation room underground part 102 and the cultivation room above-ground part 101, respectively. Therefore, external light does not enter the hydroponic cultivation apparatus 100. Moreover, the external atmosphere and the atmosphere in the hydroponic cultivation apparatus 100 are in a state in which they are difficult to move with each other unless forced ventilation is performed.
- the hydroponic cultivation apparatus 100 includes the ground surface unit 50.
- the ground surface unit 50 divides the underground space 102A and the ground space 101A in the cultivation room 112.
- the ground surface unit 50 functions as a light blocking member that blocks light between the underground space 102A and the ground space 101A. The blocking of the light irradiated to the underground part 10B of the plant 10 by the ground surface part 50 is required at the cultivation time C described later.
- an installation spacer part 11 for seed meal is arranged on the bottom of the cultivation room basement part 102, at a position where the basement part 10B is placed.
- the height of the installation spacer part 11 may be what extent, when the plant 10 is a potato, about 10 mm is ideal. It is because it is desirable that the height of the installation spacer part 11 is a small value within the predetermined range, when stacking the hydroponic cultivation apparatus 100 up and down.
- the hydroponic cultivation apparatus 100 includes the ground light source unit 1 and the underground light source unit 2.
- the terrestrial light source unit 1 is disposed in the cultivation room above-ground part 101 and irradiates the above-ground part 10A of the plant 10 with light.
- the ground light source unit 1 is attached to the ceiling surface of the cultivation room above-ground unit 101.
- the underground light source unit 2 is disposed in the cultivation room basement part 102 and irradiates light to the basement part 10B of the plant 10.
- the underground light source unit 2 is attached to the lower side surface of the ground surface unit 50.
- the ground light source unit 1 and the underground light source unit 2 may be any light source such as a fluorescent lamp or a light emitting diode (LED) as long as each of them has a light emitter.
- the distance h2 from the upper surface of the ground surface portion 50 to the ceiling surface of the cultivation room above-ground portion 101 is preferably about 300 mm to about 500 mm.
- the distance h2 from the upper surface of the ground surface unit 50 to the ground light source unit 1 may be smaller than 300 mm. It is desirable that the distance h1 from the bottom of the cultivation room basement 102 to the bottom of the ground surface 50 be about 150 mm to about 200 mm.
- the hydroponic cultivation apparatus 100 of the present embodiment includes not only the ground light source unit 1 but also the underground light source unit 2 as a light source unit.
- the hydroponic cultivation apparatus 100 can not only irradiate light to the above-ground part 10A of the plant 10, but can also irradiate light to the underground part 10B of the plant 10. Therefore, the growth of the underground part 10B of the plant 10 can be promoted by bath light sprouting. Therefore, according to the hydroponic cultivation apparatus 100, as described later, the growth of the plant 10 can be managed not only at the breeding season B and the cultivation time C but also at the bath light emergence time A.
- the ground light source unit 1 and the underground light source unit 2 as light source units may be turned on or off by a worker, or may be automatically turned on or off by the control unit 6. Moreover, the light source unit may increase or decrease its output as well as turn it on and off. Also, instead of the ground light source unit 1 and the underground light source unit 2, one light source unit moving between the underground space 102A and the ground space 101A may be provided. Also by this, light can be irradiated not only to the ground part 10A but also to the underground part 10B.
- the ground surface portion 50 is formed with an opening for movement of the one light source. Further, the opening is provided with a door that closes the opening when the movement of one light source unit is completed.
- the system for cultivating the plant 10 may be a thin film hydroponic culture system in which the culture solution is allowed to flow down little by little on the ground surface portion 50 having a gentle slope of about 1%. That is, NFT (Nutrient Film Technique or Nutrient Flow Technique) may be used.
- the method of cultivating the plant 10 is a liquid-sinking type hydroponic cultivation method of cultivating the plant 10 only with the nutrient solution 9 without using soil by storing the nutrient solution 9 in which the fertilizer is dissolved in the cultivation bed. It may be. That is, DFT (Deep Flow Technique) may be used.
- the cultivation method may be any method other than those described above. In the case of hydroponics which sprays the nutrient solution 9 on the plant 10, it is desirable for lighting apparatuses, such as the ground light source part 1 and the underground light source part 2, to have a waterproof function.
- the hydroponic cultivation apparatus 100 of the present embodiment includes a humidity controller 20 and a humidity detection unit 4.
- the humidity regulator 20 includes a main body 20C, a pipe 20A extending from the main body 20C, and a nozzle 20B attached to the end of the pipe 20A.
- the control unit 6 has a timer 6A that counts time. Although described in detail below, the control unit 6 controls the humidity adjuster 20 based on the information of the humidity detected by the humidity detection unit 4.
- the control unit 6 is configured to maintain the humidity of the atmosphere around the underground part 10B of the plant 10 detected by the humidity detection unit 4 within a predetermined range until the bath raising time B described later elapses.
- the humidity controller 20 is controlled.
- the control unit 6 stops the control of the humidity regulator 20 when the seedling raising time B has elapsed. However, the control unit 6 may continue control of the humidity regulator 20 even after the nursery season B has passed.
- the hydroponic cultivation apparatus 100 of the present embodiment includes a nutrient solution tank 7 and a pump 8 for supplying the nutrient solution 9 in the nutrient solution tank 7 into the cultivation room basement 102.
- the nutrient solution tank 7 and the pump 8 constitute a supply mechanism for feeding the nutrient solution 9 into the underground room 102 of the cultivation room.
- the control unit 6 drives the pump 8 when it is determined that the breeding season B has passed, and thereby the nutrient solution 9 stored in the nutrient solution tank 7 is grown underground. It supplies into the part 102.
- the ground surface portion 50 has a through hole 50A through which the above-ground portion 10A of the plant 10 can pass.
- the through hole 50A has a round shape of a size that allows the above-ground part 10A of the plant 10, for example, a stem and a leaf to pass.
- the underground light source unit 2 is attached on the lower surface of the ground surface unit 50.
- the ground part detection unit 3 is attached on the upper surface of the ground surface unit 50.
- the ground part detection unit 3 detects the ground part 10A that has passed through the through hole 50A.
- a sensor which detects the ground part 10A of the plant 10 using infrared rays specifically, a photomicro sensor transmission type etc. can be considered.
- the culture medium 51 is filled between the through hole 50A and the stem of the above-ground part 10A.
- the hydroponic cultivation apparatus 100 includes a control unit 6.
- the control unit 6 controls the ground light source unit 1 and the underground light source unit 2 based on the information indicating the presence / absence of detection of the ground unit 10A sent from the ground unit detection unit 3.
- the control unit 6 can obtain information on whether the ground unit 10A has passed through the through hole 50A based on the signal sent from the ground unit detection unit 3.
- the control unit 6 independently controls lighting, extinguishing, and output increase and decrease of each of the underground light source unit 2 and the ground light source unit 1 based on the information.
- the control part 6 irradiates light to at least any one of irradiation of the light to the underground part 10B, and the above-ground part 10A.
- the control unit 6 lights the underground light source unit 2 until the ground unit detection unit 3 detects the ground unit 10A. Therefore, light can be automatically irradiated to the underground part 10B of the plant 10 in the bath light sprouting time A and the seedling raising time B.
- the control unit 6 turns off the ground light source unit 1 when the underground light source unit 2 is turned on, that is, at the bath light sprouting time A and the seedling raising time B described later. Therefore, generation of unnecessary power consumption can be prevented.
- the control unit 6 causes the underground light source unit 2 to be extinguished after the above ground part detection unit 3 detects the above ground part 10A passing through the through hole 50A at the cultivation time C, and The light source unit 1 is turned on. Therefore, to the above-ground part 10A required for cultivation time C while automatically reducing the amount of light irradiated to the underground part 10B which became unnecessary after bath light sprouting time A and seedling raising time B Can be performed. Since irradiation of light to the underground part 10B suppresses the generation of stolons, in the present embodiment, the underground light source unit 2 is turned off at the cultivation time C.
- control unit 6 controls the underground light source unit 2 and the ground light source unit 1 based on timing information of the timer 6A which starts timing from a predetermined time point after cultivation of the plant 10 is started. May be controlled.
- the control unit 6 independently turns on, off, and increases / decreases the output of the underground light source unit 2 and the ground light source unit 1 based on timing information from a predetermined time point after cultivation of the plant 10 is started.
- control it is possible to control the irradiation of light to the underground part 10B and the irradiation of light to the above-ground part 10A according to the growth stage of the plant 10.
- control unit 6 turns on the underground light source unit 2 until the timer 6A measures a predetermined time.
- the predetermined time is set to correspond to the period from the start of the bathing light emergence period A to the end of the nursery period B. Thereby, light can be automatically irradiated to underground part 10B of plant 10 in bath light sprouting time A and nursery season B.
- the control unit 6 turns off the underground light source unit 2 and turns on the ground light source unit 1.
- the predetermined time is set to correspond to the period from the start of the bathing light sprouting period A to the end of the nursery period B.
- the growing period of the plant 10 is divided into a bath light sprouting time A, a seedling raising time B, and a growing time C.
- the bath light sprouting time A is about 30 days to about 40 days from the start of the growth of the plant 10.
- Bath light sprouting is also performed in soil culture using sunlight, and aims to improve the uniformity of growth of multiple plants 10 by promoting strong shoot growth, and increases yield. It is done for the purpose of When the plant 10 is a potato, it is a time until the sprout extends about 5 mm from the seed pod by irradiating the underground part 10B of the plant 10 with light at the bath light sprouting time A.
- the seedling raising time B is a period after the bath light sprouting time A to a setting period, and means a period from seeding to formation of stolon.
- Cultivation time C means the period until the harvest of the plant 10 after the breeding season B.
- the underground portion 10B of the plant 10 is irradiated with the light of the underground light source unit 2.
- a root 10C and a stem emerge from a seed pod. That is, the plant 10 sprouts from a seed meal.
- the light of the underground light source unit 2 is irradiated to the underground part 10B of the plant 10.
- the root 10C and the stem extend.
- the ground light source unit 1 is turned off at any of the bath light sprouting time A and the seedling raising time B.
- the stem extends toward the above-ground space 101A and passes through the through hole 50A.
- the ground part detection unit 3 detects the ground part 10A.
- the control unit 6 determines that the plant 10 is at the cultivation time C, and turns on the ground light source unit 1 and turns off the underground light source unit 2.
- the culture medium 51 is filled by the worker between the through hole 50A and the stem of the above-ground part 10A.
- the light emitted from the ground light source unit 1 is not irradiated to the underground part 10B, but is irradiated to only the ground part 10A.
- the culture medium 51 is formed of a material having flexibility and water retention like a sponge.
- the culture medium 51 may be one in which a light-shielding solid such as a hydroball described later is placed in a knitted container.
- the sensor signal input is a signal indicating that the ground detection unit 3 has detected the ground unit 10A.
- the illumination signal 1 output is a signal indicating whether the ground light source unit 1 is to be turned on or off.
- the illumination signal 2 output is a signal indicating whether the underground light source unit 2 is to be turned on or off.
- Table 2 shows the relationship between bath light sprouting time A, seedling raising time B, and cultivation time C, and light / dark of the above-ground part 10A and the below-ground part 10B.
- “bright” means that light is irradiated.
- “dark” means that light is not irradiated.
- the hydroponic cultivation apparatus 100 includes a light collecting unit 12B that collects light emitted from the ground light source unit 1 and a light transmission unit 12A that guides the light collected by the light collecting unit 12B to the underground light source unit 2. May be provided.
- the control unit 6 controls the ground light source unit 1 and the light collecting unit 12B without controlling the underground light source unit 2.
- the control unit 6 is based on the information indicating the presence / absence of detection of the ground unit 10A transmitted from the ground unit detecting unit 3. Control the ground light source unit 1 and the light collecting unit 12B. Further, when the light collecting unit 12B and the light transmitting unit 12A shown in FIGS. 4 to 6 are used, the control unit 6 starts timer 6A from a predetermined time point after cultivation of the plant 10 is started. The ground light source unit 1 and the light collecting unit 12B may be controlled based on the timing information.
- Control part 6 distinguishes whether management of growth of plant 10 was started in hydroponic cultivation device 100 in Step S1.
- the start point of the management of growth in the hydroponic cultivation apparatus 100 may be, for example, a point when the underground part 10B of the plant 10 such as a potato such as a potato is placed in the underground space 102A.
- a switch for sending a signal notifying the start of control by the control unit 6 is pressed by the judgment of the worker, and the control unit It may be the time when it is recognized that 6 has received the signal.
- a sensor is provided in the installation spacer part 11,
- the underground part 10B of the plant 10 is mounted in the installation spacer part 11 by the sensor It may be a point in time when the control unit 6 recognizes that an event has been detected.
- the starting point of the management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is any point in time when the starting point of the timekeeping of the timer 6A is determined by the control unit 6 receiving any signal. May be
- step S1 If management of the growth of the plant 10 is not started in step S1, the control part 6 is waiting until the cultivation of the plant 10 is started. On the other hand, if management of the growth of the plant 10 is started in step S1, the control part 6 makes the underground light source part 2 light in step S2. At this time, the ground light source unit 1 is preferably turned off from the viewpoint of reducing the power consumption, but may be turned on.
- the underground light source unit 2 is turned on, for example, after a predetermined time has elapsed from when the control unit 6 recognizes that the sensor actually detects that the underground unit 10B of the plant 10 is placed on the installation spacer unit 11. May be controlled. Depending on the type of plant 10, it is preferable that irradiation of light to underground part 10B is started at a time suitable for light to be irradiated to underground part 10B.
- step S3 the control unit 6 turns off the ground light source unit 1.
- the underground light source unit 2 is on, only the underground unit 10B is present, and the ground unit 10A is not yet present, so the unnecessary on-ground light source unit 1 is turned off.
- step S4 the above-ground part 10A is detected by the above-ground part detection unit 3 or a predetermined time has elapsed from the start of cultivation.
- the timings of the steps S2 to S4 correspond to the bath light emergence timing A and the seedling emergence timing B shown in FIG.
- step S4 the control unit 6 determines whether or not the ground unit 10A is detected by the ground unit detection unit 3.
- step S4 when the control unit 6 recognizes that the ground unit 10A is detected by the ground unit detection unit 3, the control unit 6 turns off the underground light source unit 2 in step S5, and turns on the ground light source unit 1 in step S6. Let Thereby, the irradiation of the light to the unnecessary underground part 10B is stopped, and the irradiation of the light to the required ground part 10A is performed.
- the timing of this step S5 to step S7 corresponds to the cultivation time C shown in FIG.
- step S4 the control unit 6 may determine whether a predetermined time has elapsed since the start of cultivation of the plant 10.
- step S7 the control unit 6 determines whether it is time to finish managing the growth of the plant 10. If it is determined in step S7 that it is not time to finish managing the growth of the plant 10, the control unit 6 turns off the underground light source unit 2 in step S5, and turns on the ground light source unit 1 in step S6. To continue. When it is determined in step S7 that it is time to finish the management of the growth of the plant 10, the control unit 6 ends the illumination switching process.
- a signal indicating that it is time to terminate the management of the growth of the plant 10 is sent to the control unit 6 whether or not it is the time to finish the management of the growth of the plant 10, and the control unit 6 outputs the signal It may be determined by whether or not it recognizes that it has received. In addition, it is determined whether or not the control of the growth of the plant 10 should be ended by whether or not the timer 6A has counted time until the time when the control of the growth of the plant 10 has been input. May be
- the growth process of the plant 10 is generally divided into a budding stage I, a laying stage II, a stolon elongation stage III, and a tuber hypertrophy stage IV.
- Germination stage I and germination stage II correspond generally to bath light emergence stage A and nursery stage B.
- Stron elongation stage III and tuber hypertrophy stage IV correspond approximately to the above-mentioned cultivation stage C.
- the hydroponic cultivation method of the comparative example 1 As shown in FIG. 9, the growing process of the plant 10 in hydroponic culture is divided into a bath light emergence time A, a seedling time B, and a cultivation time C. In the hydroponic cultivation of Comparative Example 1 shown in FIG. 9, a medium called hydroball 200 is used. Therefore, in the nursery season B, the underground part 10B of the plant 10, for example, a seed meal is embedded in the hydroball 200 which is laid in a container.
- the plants 10 are grown with separate facilities in each of the bathing light emergence time A, the nursery time B, and the cultivation time C. Therefore, according to the hydroponic cultivation method of Comparative Example 1, when transitioning from bath light emergence period A to nursery period B and when transitioning from nursery period B to cultivation period C, plant 10 is one. It is necessary to transfer from one facility to another.
- the hydroponic cultivation apparatus 100 of the present embodiment as shown on the lower side of FIG. 9, the plant 10 is used in all periods of the bathing light emergence time A, the nursery life B and the cultivation time C. They can be grown in one device without being transferred to another facility or device.
- the hydroponic cultivation apparatus of the comparative example 2 The internal structure of the hydroponic cultivation apparatus 100 of the comparative example 2 is shown by FIG. As FIG. 10 shows, the hydroponic cultivation apparatus 100 of the comparative example 2 is not equipped with the structure corresponded to the ground surface part 50 mentioned above. Therefore, the light emitted from the terrestrial light source unit 1 is irradiated to the underground part 10B regardless of the stage of growth of the plant 10. Therefore, even when it is desired to promote the extension of the stolon, if the leaf is irradiated with light, the light is also irradiated to the underground part 10B. As a result, extension of stolon can not be promoted in the hydroponic cultivation apparatus 100. As a result, since the rhizomes grow and the tubers do not grow, the value of the plant 10 as a crop decreases.
- the hydroponic cultivation apparatus of the comparative example 3 is shown by FIG. As shown in FIG. 11, although the hydroponic cultivation apparatus 100 of Comparative Example 3 includes the ground surface portion 50, the light source portion for irradiating light to the underground portion 10 ⁇ / b> B of the plant 10 is the ground surface portion 50. I have not prepared for the lower side. Therefore, when using the hydroponic cultivation apparatus 100 of the comparative example 3, it is not possible to perform bath light sprouting on a plant. Therefore, it is necessary to perform bath light sprouting using equipment different from the hydroponic cultivation apparatus 100.
- the hydroponic cultivation apparatus 100 of the present embodiment includes not only the above-ground light source section 1 but also the underground light source section 2. Therefore, not only light can be irradiated to the above-ground part 10A of the plant 10, but also light can be irradiated to the underground part 10B of the plant 10. Moreover, when irradiating light to the above-ground part 10A of the plant 10, it can prevent that light is irradiated to the underground part 10B.
- the hydroponic cultivation apparatus 100 the growth of the plant 10 can be efficiently promoted by bath light emergence.
- the plant 10 can be grown in one hydroponic cultivation apparatus 100 in all the periods of bath light sprouting time A, seedling raising time B and cultivation time C.
- Table 3 below shows the comparison of the number of processes between the hydroponic cultivation apparatus of the present embodiment and the hydroponic cultivation apparatuses of Comparative Examples 1 and 3.
- the hydroponic cultivation apparatuses disclosed in the above-mentioned Patent Documents 1 to 8 are not provided with a device for adjusting the humidity of the underground space where the underground part of the plant grows. Therefore, in these hydroponic cultivation apparatuses, there exists a problem that the humidity of the atmosphere around the underground part of a plant can not be adjusted in a sprouting time. It is required to control the humidity of the atmosphere around the underground part of the plant at the bath light sprouting time. Therefore, as shown in FIG. 1, FIG. 12 and FIG. 13, the hydroponic cultivation apparatus 100 of the present embodiment is provided with the humidity adjusting device 20 for adjusting the humidity of the atmosphere in the underground space 102A. Thus, according to the hydroponic cultivation apparatus 100 of the present embodiment, the humidity of the atmosphere around the plant 10 can be adjusted at the bath light emergence time A.
- the hydroponic cultivation apparatus 100 includes a humidity adjustment unit 20 and a humidity detection unit 4.
- the humidity regulator 20 regulates the humidity of the atmosphere of the underground space 102A.
- the humidity regulator 20 includes a humidifier and a dehumidifier inside its main body 20C.
- the humidity regulator 20 includes a main body 20C, a pipe 20A extending from the main body 20C, and a nozzle 20B attached to the end of the pipe 20A.
- the humidity detection unit 4 is disposed in the cultivation room basement part 102, and detects the humidity of the atmosphere of the basement space 102A.
- the control unit 6 controls the humidity adjuster 20 based on the information of the humidity detected by the humidity detection unit 4.
- the control unit 6 drives the dehumidifier in the main body 20C in order to dehumidify.
- the atmosphere in the underground space 102A is discharged from the nozzle 20B to the external space through the pipe 20A.
- air with a lower humidity from the outside space flows into the underground space 102A.
- the control unit 6 drives the humidifier in the main body 20C to humidify.
- the atmosphere with higher humidity generated by the humidifier in the main body 20C is sent to the underground space 102A through the pipe 20A and the nozzle 20B.
- the surrounding environment of the plant 10 can be managed in the hydroponic cultivation apparatus 100 by adjusting the humidity of the underground space 102A.
- the control unit 6 determines that the bath light sprouting time A is determined by experiments or past cultivation records before the start of cultivation, for example, from about 30 days to about 40 days after cultivation start. Does not drive the pump 8. That is, the control unit 6 does not supply the nutrient solution 9 in the nutrient solution tank 7 into the cultivation room basement part 102.
- the control unit 6 causes the pump 8 to be driven to supply the nutrient solution 9 in the nutrient solution tank 7 into the cultivation room basement 102. If the nutrient solution 9 is present in the cultivation room basement 102 at the nursery season B, the nutrient solution 9 evaporates into the underground space 102A, which is advantageous in increasing the humidity of the atmosphere of the underground space 102A.
- the control unit 6 drives the pump 8 when the cultivation time C comes, and transfers the nutrient solution 9 in the nutrient solution tank 7 into the cultivation room basement part 102. It is preferable to supply.
- the control unit 6 drives the pump 8 when it is determined that the nursery seeding time B has come from the time clocked by the timer 6A therein after the bath light sprouting time A has passed. Thereby, the nutrient solution 9 in the nutrient solution tank 7 is supplied into the cultivation room basement part 102. As a result, the underground part 10B of the plant 10, for example, the tip of the root of the seed meal is immersed in the nutrient solution 9.
- the water retention of the seed coat epidermis is maintained, and the root extends from the seed coat.
- the root of the seed meal is different in position from the bottom of the cultivation room basement 102 depending on the individual. Therefore, it is desirable to change the height of the nutrient solution 9 such that a predetermined period of time elapses in order to realize the uniform growth of the roots of the plant 10.
- the stems extend from the seed meal. Thereafter, the stalk as the underground portion 10B passes through the through holes 50A of the ground surface portion 50 and becomes the above-ground portion 10A of the plant 10.
- the ground part detection unit 3 installed on the upper surface of the ground surface part 50 detects that the ground part 10A of the plant 10 has passed through the through hole 50A. Accordingly, as described above, the control unit 6 turns off the underground light source unit 2 and turns on the ground light source unit 1.
- the upper surface of the nutrient solution 9 in the lower part 102 of the cultivation room is provided with the installation spacer portion in order to prevent the rot of the seed meal and to prevent the enlargement of the peel of the tuber on which the tuber is formed. Adjusted to a height less than 11 heights.
- the control unit 6 sets the humidity of the atmosphere in the cultivation room underground unit 102 detected by the humidity detection unit 4 to a predetermined value until the above-ground unit 10A is detected by the ground unit detection unit 3.
- the humidity controller 20 is controlled to be maintained. Therefore, the humidity of the atmosphere around the underground part 10B of the plant 10 can be automatically adjusted to an appropriate value at the bath light sprouting time A.
- the optimum humidity of the underground space 102A may be any humidity at which all the epidermis of the seed meal is retained, but for example, it is preferable that it is 70% or more.
- the predetermined value is not limited to one specific value, and may be a plurality of values within a predetermined range.
- the control unit 6 stops the humidity regulator 20 after the ground unit detection unit 3 detects the ground unit 10A. Therefore, it is possible to automatically stop the adjustment of the humidity of the atmosphere around the underground part 10B which has become unnecessary, at the cultivation time C after the bath light sprouting time A and the seedling raising time B.
- the control unit 6 may control the humidity adjusting device 20 so that the humidity of the atmosphere of the underground space 102A becomes a specific value lower than a predetermined value.
- step SS1 the control unit 6 determines whether or not a predetermined period has elapsed after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started. If it is determined in SS1 that the predetermined period has not elapsed after management of the growth of the plant 10 in the hydroponic cultivation apparatus 100 has been started, the control unit 6 stands by until the predetermined period has elapsed. That is, in order to prevent unnecessary power consumption, the control unit 6 stands by without performing humidity adjustment until it is necessary to adjust the humidity. In SS1, after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started, it may be determined that a predetermined period has passed.
- control unit 6 acquires the value of the humidity detected by the humidity detection unit 4 in step SS2.
- the worker pushes a switch for transmitting a signal indicating the start, and the control unit 6 outputs the signal. And so on.
- step SS3 the control unit 6 determines whether the value of the humidity detected by the humidity detection unit 4 is smaller than the lower limit value. If it is determined in step SS3 that the humidity value detected by the humidity detection unit 4 is equal to or greater than the lower limit value, the control unit 6 executes the process of step SS7. On the other hand, in step SS3, it may be determined that the value of the humidity detected by the humidity detection unit 4 is smaller than the lower limit value. In this case, in step SS4, the control unit 6 controls the humidity regulator 20 to increase the humidity of the atmosphere in the underground space 102A.
- step SS5 the control unit 6 determines whether or not a predetermined period has elapsed since the start of the humidification by the humidity regulator 20. In step SS5, it may be determined that the predetermined period has elapsed since the start of the humidification by the humidity regulator 20. In this case, in SS6, the control unit 6 executes the process of step SS7 after acquiring the value of the humidity detected by the humidity detection unit 4.
- step SS7 the control unit 6 determines whether the value of the humidity detected by the humidity detection unit 4 is larger than the upper limit value. When it is determined in step SS7 that the humidity value detected by the humidity detection unit 4 is equal to or less than the upper limit value, the control unit 6 executes the process of step SS10. On the other hand, in step SS7, it may be determined that the value of the humidity detected by the humidity detection unit 4 is larger than the upper limit value. In this case, in step SS8, the control unit 6 controls the humidity adjuster 20 to reduce the humidity of the atmosphere of the underground space 102A.
- step SS9 the control unit 6 determines whether or not a predetermined period has elapsed since the start of the dehumidification by the humidity regulator 20.
- step SS9 when it is determined that the predetermined period has elapsed since the start of the dehumidification by the humidity regulator 20, the control unit 6 executes the process of step SS10.
- control unit 6 determines whether or not ground detection unit 3 has detected ground unit 10A. However, instead of this, the control unit 6 may determine whether or not a predetermined period has elapsed after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started. This predetermined period is a period that means that the time to end the management of the plant 10 has passed.
- the control unit 6 stops the humidity adjustment unit 20. Moreover, after the management of the growth of the plant 10 is started in step SS10, the control unit 6 also stops the humidity regulator 20 even when it is determined that the predetermined period has elapsed. At this time, the control unit 6 starts the supply of the nutrient solution 9 by the pump P. Thereafter, the control unit 6 repeats the processing of step SS1 to step SS10.
- control is performed to stop the humidity controller 20. That is, for example, the control unit 6 switches the humidity adjustment unit 20 from the humidified state to the non-humidified state.
- the control unit 6 controls the humidity regulator 20 so that the humidity of the atmosphere in the underground space 102A is maintained at a specific value smaller than the predetermined value between the upper limit value and the lower limit value described above. It is also good.
- the atmosphere of the underground space 102A may be maintained at a lower humidity than the bath light emergence time A and the nursery time B.
- the mechanism part that manages the height of the nutrient solution 9 in the cultivation room underground part 102 becomes unnecessary.
- the position of the bud is different for each individual seed bud, even in such a case, it is possible to maintain the moisture of the atmosphere around the underground part 10B and the water retentivity of the epidermis of the seed bud as even as possible.
- step SS10 it may be determined that the ground part detection unit 3 has not detected the ground part 10A.
- the control unit 6 executes the process of step SS2 in a state in which the humidity regulator 20 is driven and in a state in which the supply of the nutrient solution 9 by the pump P is not started.
- step SS10 the control unit 6 may determine whether or not a predetermined period has elapsed after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started. Thus, when it is determined that the predetermined period described above has not elapsed, the control unit 6 operates the humidity regulator 20 and does not start the supply of the nutrient solution 9 by the pump P.
- the process of step SS2 may be performed.
- the controller 6 controls the bath light sprouting time A and the breeding time B, which are stored in advance based on the time kept by the timer 6A.
- the pump 8 is driven. That is, when it is recognized that the cultivation time C has come, the control unit 6 drives the pump 8. Thereby, the nutrient solution 9 stored in the nutrient solution tank 7 is supplied into the cultivation room basement 102.
- another example culture medium 51 includes a substantially cylindrical container-like structure 300 having a diameter of about 150 mm.
- the outer shape of the container-like structure 300 is formed by the bottom surface 70 and the wall surface 90.
- the bottom surface portion 70 is constituted by a plurality of frame-shaped members 700 in the form of concentric circles, and has a circular outer shape in a plan view.
- Each of the plurality of frame members 700 is provided with a discontinuous portion as a partial notch of a circle.
- a plurality of discontinuities are arranged in a straight line as a whole. Therefore, the plurality of discontinuities aligned in a straight line function as an insertion path of a plurality of stems of the plant 10.
- the stem of the plant 10 inserted into the insertion path may be inserted into a penetration area which is a space between the frame members 700.
- the wall surface portion 90 is formed of a grid-like member and has a cylindrical shape.
- the bottom portion 70 is moved in the direction indicated by the arrow I, and is attached to the wall portion 90 by an attachment member 400 formed in a cross shape.
- Hook portions 110 a and 110 b are provided at both ends of the two linear members 110 constituting the mounting member 400.
- the hooks 110 a and 110 b of the two linear members 110 are moved in the directions indicated by arrows II and III and hooked on the lattice of the wall 90.
- the gravity of the light shielding solid 30 described later is applied to the mounting member 400. Therefore, the mounting member 400 does not come off the wall surface portion 90. Therefore, the plurality of concentric frame-like members 700 constituting the bottom surface portion 70 are fixed to the lattice-like wall surface portion 90 in a state of being supported by the mounting member 400 formed in a cross shape.
- a group of light shielding solid 30 is laid in the container-like structure 300.
- the light path from the space around ground portion 10A to the space around underground portion 10B is completely blocked by a predetermined number of light blocking solids 30.
- light emitted from the ground light source unit 1 is prevented from entering the underground space 102A via the ground space 101A. That is, even if the light emitted from the terrestrial light source unit 1 is irradiated to the above-ground portion 10A of the plant 10, it is not irradiated to the underground portion 10B. As a result, it is prevented that the formation of the seed meal as a tuber on the stolon which grows from underground part 10B in cultivation time C is adversely affected.
- the culture medium 51 is attached to the ground surface 50 of the hydroponic cultivation apparatus 100. Specifically, the culture medium 51 is inserted into a through hole 50A provided at a predetermined position on the ground surface 50 installed in the cultivation room basement 102.
- the through holes 50A of the ground surface portion 50 shown in FIGS. 17 and 18 are larger than the through holes 50A of the ground surface portion 50, and large enough to allow a plurality of stems extending from one plant 10 to pass through the through holes 50A.
- the through holes 50A have a circular shape in plan view. Further, as shown in FIG. 17, the through hole 50A has a stepped portion 50B in a cross sectional view. The lower side portion of the step portion 50B constitutes a culture medium support unit for supporting the culture medium 51.
- the structure of the through holes 50A may be any structure as long as the above-ground space 101A in which the above-ground part 10A of the plant 10 grows and the underground space 102A in which the below-ground part 10B of the plant 10 grows.
- the structure of the through hole 50A may be any structure as long as the medium 51 can be supported.
- the shape of the through hole 50A is substantially the same as the shape of the wall surface portion of the culture medium 51 in plan view so that no gap is formed between the through hole 50A and the culture medium 51.
- the seed tuber as tubers of the plant 10 is placed on the bottom plate of the cultivation tank of the hydroponic cultivation apparatus 100 so that the root extended from the stem is immersed in the nutrient solution 9 Placed on top of the In this state, the plant 10 can absorb the nutrient solution 9 stored in the cultivation room underground part 102 from the root.
- the upper surface of the nutrient solution 9 is positioned below the upper surface of the installation spacer portion 11 in the cultivation room basement part 102 of the hydroponic cultivation apparatus 100 so that the seed meal will not be soaked in the nutrient solution 9. ing.
- the culture medium 51 shown in FIG. 17 and FIG. 18 described above may be inserted into the through hole 50A of the ground surface portion 50 in a state where the plant 10 is not inserted.
- the tip end of the stem of the plant 10 grown in the underground space 102A passes through the stitches of the container-like structure 300, and grows toward the ground space 101A while pushing away the light shielding solid 30.
- the operation and effort of inserting the plant 10 into the culture medium 51 can be omitted.
- the plants to be recently cultivated in the above-mentioned hydroponic culture are mainly vegetables such as leafy vegetables or tomatoes. Furthermore, efforts are also being made to cultivate new commercial plants such as high value-added medicinal plants or root crops.
- the hydroponic cultivation apparatuses of Comparative Examples 1 to 3 described above mainly target leafy vegetables. Therefore, it is not a hydroponic cultivation apparatus suitable for cultivation of root vegetables or medicinal plants.
- the seed of a plant is grown in a culture medium for hydroponic cultivation such as urethane sponge, and then the seedlings grown from the seed are transplanted to a hydroponic cultivation apparatus.
- the damage given to the roots when transplanting the root vegetables from the culture medium for hydroponic culture to the hydroponic culture apparatus may have a great adverse effect on the growth of the subsequent root vegetables.
- a plant having a tuber such as potato as a seed it is necessary to maintain a constant water retention state of a seed meal having a diameter of 50 mm or more.
- the raising of the seedling using the culture medium for hydroponic cultivation is generally performed.
- the raising of this plant is carried out in a separate facility from bath light germination and cultivation of the plant. Therefore, according to the hydroponic cultivation of the comparative example, it is not possible to execute all of the bath light emergence step, the raising seedling step, and the cultivation step in the same equipment.
- plants such as medicinal plants or root vegetables are those whose underground part enlarges in the soil. Therefore, in order to cultivate those plants, it is necessary to cultivate the above-mentioned above-ground part by a technique which is greatly different from the leaf vegetables which enlarge. For example, potato is started to manage its growth from the condition of seedling for its breeding. In order to sprout from a seed meal, it is necessary to maintain the surrounding environment in a desired water retention state.
- plants such as root vegetables whose underground parts are enlarged must shield the underground parts such as the rhizomes from light.
- This shielding is required, for example, in the case of potatoes after the setting period in which stolons are generated from the rhizomes.
- stolons grow as aboveground stems, not tubers, if they are not shielded. Therefore, it becomes necessary to shield the underground from light in order to begin to transfer starch produced by photosynthesis in the leaves as the above-ground part to the underground and to promote tuber enlargement.
- the hydroponic cultivation apparatus 100 of the present embodiment it is possible to consistently manage all the processes from bath light emergence, through raising seedlings to cultivation in the same apparatus.
- the hydroponic cultivation apparatus 100 of this embodiment is provided with the cultivation room basement part 102 which has the basement space 102A in which the basement part 10B of the plant 10 grows.
- the hydroponic cultivation apparatus 100 has an above-ground space 101A in which the above-ground part 10A of the plant 10 grows, and is provided with a cultivation room above-ground part 101 which constitutes a cultivation room 112 integrally with the cultivation room underground part 102.
- the hydroponic cultivation apparatus 100 has a through hole 50A through which the above-ground part 10A of the plant 10 can pass, and is provided with a ground surface part 50 that divides the underground space 102A and the ground space 101A in the cultivation room 112.
- the hydroponic cultivation apparatus 100 is disposed in the cultivation room 112, and includes a light source unit that emits light to at least one of the underground unit 10B and the above-ground unit 10A.
- the light source unit can not only irradiate light to the above-ground part 10A of the plant 10, but can also irradiate light to the underground part 10B of the plant 10. Therefore, in the hydroponic cultivation apparatus 100, the growth of the underground part 10B of the plant 10 of the bath light emergence time A can be promoted. In addition, when the above-ground part 10A of the plant 10 is irradiated with light, the underground part 10B is not irradiated with light. Therefore, according to the above configuration, it is possible to consistently carry out plant germination, seedling raising and cultivation.
- the light source unit described above may be turned on or off by a worker, or may be automatically turned on or off by the control unit 6. Further, the light source unit described above may not only turn on and off but also increase or decrease the output thereof.
- the light source unit described above may irradiate light to at least one of the underground portion 10B and the ground portion 10A by moving between the underground space 102A and the ground space 101A. Further, the light source unit described above may be configured such that one light emitter can change the posture to the ground surface unit 50 unit. According to this, the light is irradiated to the underground part 10B or the ground part 10A by the change of the posture of the light emitter.
- the space in the cultivation room 112 is shielded from light from the space outside the hydroponic cultivation apparatus 100 by a casing structure constituted by the cultivation room basement part 102 and the cultivation room above-ground part 101.
- the above-mentioned light source part is arranged in the cultivation room basement part 102, and is provided in the underground light source part 2 which irradiates light to the basement part 10B, and is disposed in the cultivation room above-ground part 101, And the above-mentioned ground light source unit 1 may be included.
- the hydroponic cultivation apparatus 100 may be provided with the above-ground part detection unit 3 that detects the above-ground part 10A that has passed through the through hole 50A.
- the hydroponic cultivation apparatus 100 includes the control unit 6 that controls the underground light source unit 2 and the ground light source unit 1 based on the information indicating whether the ground unit 10A is detected by the ground unit detection unit 3 or not. Is preferred.
- the control unit 6 turns on, off, and increases / decreases the output of the underground light source unit 2 and the ground light source unit 1 based on the information as to whether the ground unit 10A has passed through the through hole 50A. Can be controlled independently. Therefore, according to the growth stage of the plant 10, the aspect of light irradiation to the underground part 10B and the aspect of light irradiation to the above-ground part 10A can be changed.
- the above-mentioned light source part includes the underground light source part 2 which irradiates light to the underground part 10B, and the ground light source part 1 which is disposed in the cultivation room above-ground part 101 and which illuminates the above-ground part 10A It is also good.
- the light source unit described above may include a light collecting unit 12B that collects light emitted from the ground light source unit 1 and a light transmission unit 12A that guides the light collected by the light collecting unit 12B to the underground light source unit 2. It is preferable that the hydroponic cultivation apparatus 100 includes a control unit 6 that controls the light collecting unit 12B and the ground light source unit 1.
- the control unit 6 when the control unit 6 turns on the ground light source unit 1 in a state where the control unit 6 causes the light collection unit 12B to collect light, light emitted from the ground light source unit 1 is collected by the light collection unit 12B.
- the light source unit 2 may be sent to the underground light source unit 2 through the light transmission unit 12A, whereby the underground light source unit 2 may be turned on.
- the control unit 6 lights the ground light source unit 1 in a state where the light collecting unit 12B does not collect light, the underground light source unit 2 may be turned off.
- the hydroponic cultivation apparatus 100 may be provided with the above-ground part detection unit 3 that detects the above-ground part 10A that has passed through the through hole 50A.
- the control unit 6 controls the ground light source unit 1 and the light collecting unit 12B based on information indicating whether or not the ground unit 10A is detected by the ground unit detection unit 3.
- the above configuration it is possible to control lighting, extinguishing, and increase / decrease of the output of the underground light source unit 2 and the ground light source unit 1 based on the information on whether or not the ground unit 10A has passed through the through hole 50A. it can. Therefore, according to the growth stage of the plant 10, irradiation of light to the above-ground part 10A and irradiation of light to the underground part 10B can be changed. Further, according to the above configuration, since the underground light source unit 2 is lit by the light emitted from the ground light source unit 1, the configuration of the underground light source unit 2 can be simplified as compared to the ground light source unit 1. it can.
- the control unit 6 preferably lights the underground light source unit 2 when the ground unit 10A is not detected by the ground unit detection unit 3.
- light can be automatically irradiated to the underground part 10B of the plant 10 in bath light sprouting time A and seedling raising time B.
- the control unit 6 may turn off the ground light source unit 1 when the underground light source unit 2 is turned on. This can prevent the generation of unnecessary power consumption.
- control unit 6 turn off the underground light source unit 2 and turn on the ground light source unit 1 when the ground unit 10A is detected by the ground unit detection unit 3.
- the output of the underground light source unit 2 may be reduced.
- the output of the underground light source unit 2 may be reduced.
- the above-mentioned light source part is arranged in the cultivation room basement part 102, and the underground light source part 2 which irradiates light to the basement part 10B, and is arranged in the cultivation room above-ground part 101, irradiates light to the above-ground part 10A
- the above-mentioned ground light source unit 1 may be included.
- the hydroponic cultivation apparatus 100 uses the underground light source unit 2 and the underground light source unit 2 based on the timing information of the timer 6A which starts timing from a predetermined time point after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started.
- a control unit 6 that controls the ground light source unit 1 may be provided.
- the control unit 6 controls the underground light source unit 2 and the ground light source unit 1 based on timing information from a predetermined time point after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started.
- Each lighting, extinguishing, and output increase / decrease can be controlled independently. Therefore, according to the growth stage of the plant 10, the aspect of light irradiation to the underground part 10B and the aspect of light irradiation to the above-ground part 10A can be changed.
- the above-mentioned light source part is arranged in the cultivation room basement part 102, and the underground light source part 2 which irradiates light to the basement part 10B, and is arranged in the cultivation room above-ground part 101, irradiates light to the above-ground part 10A
- the above-mentioned ground light source unit 1 may be included.
- the light source unit described above may include a light collecting unit 12B for collecting light emitted by the ground light source unit 1, and a light transmission unit 12A for guiding the light collected by the light collecting unit 12B to the underground light source unit 2.
- the hydroponic cultivation apparatus 100 may include the control unit 6 that controls the light collecting unit 12B and the ground light source unit 1.
- the control unit 6 when the control unit 6 turns on the ground light source unit 1 with the light collection unit 12B functioning, light emitted from the ground light source unit 1 is collected by the light collection unit 12B, and then light is emitted. It may be sent to the underground light source unit 2 through the transmission unit 12A, whereby the underground light source unit 2 may be turned on.
- the control unit 6 lights the ground light source unit 1 in a state in which the light collecting unit 12B is not functioned, the underground light source unit 2 may be turned off.
- the control unit 6 controls the ground light source unit 1 and the light source unit 1 based on timing information of the timer 6A that starts timing from a predetermined time point after management of growth of the plant 10 in the hydroponic cultivation apparatus 100 is started. It is preferable to control the part 12B.
- each of the underground light source unit 2 and the ground light source unit 1 are controlled based on timing information from a predetermined time point after cultivation of the plant 10 is started. be able to. Therefore, according to the growth stage of the plant 10, irradiation of light to the above-ground part 10A and irradiation of light to the underground part 10B can be controlled.
- the configuration of the underground light source unit 2 can be simplified as compared to the ground light source unit 1. it can.
- the control unit 6 preferably lights the underground light source unit 2 until the timer 6A measures a predetermined time.
- control unit 6 turn off the underground light source unit 2 and turn on the ground light source unit 1 after the timer 6A measures a predetermined time.
- the predetermined time to correspond to the period from the start of bathing light germination time A to the end of nursery time B, it became automatically unnecessary at cultivation time C. Irradiation of light to underground part 10B can be stopped. In addition, it is possible to start the required light irradiation to the ground part 10A. Therefore, irradiation of light suitable for each of the growth stages of the plant 10 can be automatically performed by control by the control unit 6. Instead of turning off the underground light source unit 2, the light output of the underground light source unit 2 may be reduced.
- the hydroponic cultivation apparatus 100 of the other example of this Embodiment is equipped with the cultivation room basement part 102 which has the basement space 102A where the basement part 10B of the plant 10 grows.
- the hydroponic cultivation apparatus 100 has an above-ground space 101A in which the above-ground part 10A of the plant 10 grows, and is provided with a cultivation room above-ground part 101 which constitutes a cultivation room 112 integrally with the cultivation room underground part 102.
- the hydroponic cultivation apparatus 100 has a through hole 50A through which the above-ground part 10A of the plant 10 can pass, and is provided with a ground surface part 50 that divides the underground space 102A and the ground space 101A in the cultivation room 112.
- the hydroponic cultivation apparatus 100 is provided in the cultivation room basement part 102, and is provided with the humidity detection part 4 which detects the humidity of the atmosphere of the basement space 102A.
- the hydroponic cultivation apparatus 100 includes a humidity adjustment device 20 that adjusts the humidity of the atmosphere of the underground space 102A.
- the hydroponic cultivation apparatus 100 includes a control unit 6 that controls the humidity adjuster 20 based on the information on the humidity detected by the humidity detection unit 4.
- the humidity around the underground part 10B of the plant 10 can be managed.
- the surrounding environment of the plant 10 at the bath light sprouting time A can be managed in the hydroponic cultivation apparatus 100. Therefore, according to the above configuration, it is possible to consistently carry out plant germination, seedling raising and cultivation.
- the hydroponic cultivation apparatus 100 of the other example of this Embodiment is provided with the terrestrial part detection part 3 which detects the terrestrial part 10A which passed through-hole 50A.
- the control unit 6 controls the humidity regulator 20 such that the humidity of the atmosphere in the underground space 102A is maintained at a predetermined value when the ground unit 10A is not detected by the ground unit detection unit 3.
- the predetermined value may be a single value or a plurality of values within the range between the upper limit value and the lower limit value.
- the humidity of the atmosphere around the underground part 10B of the plant 10 at the nursery season B can be automatically adjusted to an appropriate value.
- the control unit 6 controls the humidity adjuster 20 such that the humidity of the atmosphere in the underground space is maintained at a specific value smaller than a predetermined value when the ground unit 10A is detected by the ground unit detection unit 3. It is preferable to control. In this case, the humidity of the atmosphere of the underground space 102A detected by the humidity detection unit 4 may be maintained at a specific value smaller than a predetermined value.
- Each of the predetermined value and the specific value may be a single value or a plurality of values within a range between the upper limit value and the lower limit value.
- the humidity of the atmosphere of the underground space 102A at the cultivation time C can be reduced as compared to the humidity of the underground space 102A at the breeding season B. Therefore, the humidity of the underground space 102A can be adjusted to the humidity suitable for the cultivation time C.
- the hydroponic cultivation apparatus 100 includes a supply mechanism (nutrient storage tank 7, pump 8) for supplying the nutrient solution 9 for the plant 10 into the cultivation room basement part 102.
- a supply mechanism for supplying the nutrient solution 9 for the plant 10 into the cultivation room basement part 102.
- the control part 6 starts supply of the nutrient solution 9 to the cultivation room basement part 102 by the supply mechanism (the nutrient solution tank 7, pump 8). It is preferable to
- the nutrient solution 9 is supplied into the cultivation room basement 102 only at the cultivation time C. Therefore, it is not necessary to circulate the nutrient solution 9 by the supply mechanism in order to prevent the decay of the nutrient solution 9 in the cultivation room basement part 102 at the bathing light emergence period A and the nursery period B. As a result, the power required to drive the supply mechanism can be reduced.
- both the humidity adjustment mechanism and the supply mechanism can be controlled by one ground detection unit 3.
- the control unit 6 preferably controls the humidity adjuster 20 so that the humidity of the atmosphere in the underground space 102A is maintained at a predetermined value.
- the predetermined value may be a single value or a plurality of values between the upper limit value and the lower limit value.
- the predetermined time point can be set to the start time of the nursery timing B, and the specific time can be set to the time from the predetermined time point until the nursery timing B ends.
- the humidity of the atmosphere around the underground part 10B of the plant 10 can be automatically adjusted to an appropriate value at the nursery season B.
- the timer may measure a specific time.
- the control unit 6 preferably controls the humidity adjuster 20 so that the humidity of the atmosphere in the underground space 102A is maintained at a specific value smaller than a predetermined value.
- the humidity of the atmosphere of the underground space 102A detected by the humidity detection unit 4 may be maintained at a specific value smaller than a predetermined value by stopping the humidity adjuster 20.
- the predetermined value may be a single value or a plurality of values within the range between the upper limit value and the lower limit value.
- the humidity of the atmosphere of the underground space 102A at the cultivation time C can be reduced as compared to the humidity of the underground space 102A at the breeding season B. Therefore, the humidity of the underground space 102A can be adjusted to the humidity suitable for the cultivation time C.
- a hydroponic cultivation apparatus 100 is provided with a feeding mechanism (nutritional fluid tank 7, pump 8) for feeding the nutrient solution 9 for the plant 10 into the cultivation room basement part 102.
- a feeding mechanism nutritional fluid tank 7, pump 8
- the control unit 6 cause the supply mechanism (the nutrient solution tank 7 and the pump 8) to start the supply of the nutrient solution 9 to the cultivation room underground unit 102.
- the nutrient solution 9 is supplied into the cultivation room basement 102 only at the cultivation time C. Therefore, it is not necessary to circulate the nutrient solution 9 by the supply mechanism in order to prevent the decay of the nutrient solution 9 in the cultivation room basement part 102 at the bathing light emergence period A and the nursery period B. As a result, the power required to drive the supply mechanism can be reduced.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Hydroponics (AREA)
- Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
Abstract
水耕栽培装置(100)は、植物(10)の地下部(10B)が成長する地下空間(102A)を有する栽培室地下部(102)を備えている。水耕栽培装置(100)は、植物(10)の地上部(10A)が成長する地上空間(101A)を有し、栽培室地下部(102)と一体となって栽培室(112)を構成する栽培室地上部(101)を備えている。水耕栽培装置(100)は、植物(10)の地上部(10A)が通過し得る貫通孔(50A)を有し、栽培室(112)内において、地下空間(102A)と地上空間(101A)とを仕切る地表面部(50)を備えている。水耕栽培装置(100)は、栽培室(112)内に配置され、地下部(10B)および地上部(10A)の少なくともいずれか一方に光を照射する光源部を備えている。
Description
本発明は、土壌を使用せずに植物を栽培するための水耕栽培装置に関する。
従来から、植物工場等において水耕栽培が行われている。また、近年においては、以前から水耕栽培されていた葉菜類に加えて、薬用植物や根菜類などの植物の水耕栽培も行われている。薬用植物や根菜類などの植物は、土壌中でその地下部が肥大する。そのため、薬用植物や根菜類の水耕栽培には、地上部が肥大する葉菜類の水耕栽培の技術とは異なる技術が必要とされる。従来の水耕栽培技術は、たとえば、次の特許文献1~8に開示されている。
上記した特許文献1~8に開示されているような従来の水耕栽培装置は、いずれも、発芽する時期にある植物の周辺環境を管理する設備を備えていない。そのため、別の設備内において植物を発芽させ、その後、発芽した植物を水耕栽培装置内へ移動させ、それにより、水耕栽培装置内で植物の育苗および栽培を行っている。つまり、従来の水耕栽培装置は、植物の催芽、育苗、および栽培を一貫して行うことはできない。
そこで、本発明は、上述の問題に鑑みてなされたものであり、植物の催芽、育苗、および栽培を一貫して行うことができる水耕栽培装置を提供することである。
本発明の第1の態様の水耕栽培装置は、植物の地下部が成長する地下空間を有する栽培室地下部と、前記植物の地上部が成長する地上空間を有し、前記栽培室地下部と一体となって栽培室を構成する栽培室地上部と、前記植物の前記地上部が通過し得る貫通孔を有し、前記栽培室内において前記地下空間と前記地上空間とを仕切る地表面部と、前記栽培室内に配置され、前記地下部および前記地上部の少なくともいずれか一方に光を照射する光源部と、を備えている。
本発明の第2の態様の水耕栽培装置は、植物の地下部が成長する地下空間を有する栽培室地下部と、前記植物の地上部が成長する地上空間を有し、前記栽培室地下部と一体となって栽培室を構成する栽培室地上部と、前記植物の前記地上部が通過し得る貫通孔を有し、前記栽培室内において前記地下空間と前記地上空間とを仕切る地表面部と、前記栽培室地下部内に配置され、前記地下空間の雰囲気の湿度を検出する湿度検出部と、前記地下空間の雰囲気の湿度を調整する湿度調整機と、前記湿度検出部により検出された前記湿度の情報に基づいて、前記湿度調整機を制御する制御部と、を備えている。
本発明の水耕栽培装置によれば、植物の催芽、育苗、および栽培を一貫して行うことができる。
以下、本発明の実施形態の水耕栽培装置を、図面を参照しながら詳細に説明する。
(水耕栽培の概要)
本実施の形態の水耕栽培の対象となる植物10は、図1に示されるように、地下部10Bが肥大する馬鈴薯のような根菜類等である。本実施の形態の水耕栽培装置100は、地表面部50の下面上に地下部10Bに光を照射する地下光源部2が設置されている。そのため、浴光催芽時期A、育苗時期B、および栽培時期Cの全てにおいて、植物10を同一の水耕栽培装置において育成することができる。
本実施の形態の水耕栽培の対象となる植物10は、図1に示されるように、地下部10Bが肥大する馬鈴薯のような根菜類等である。本実施の形態の水耕栽培装置100は、地表面部50の下面上に地下部10Bに光を照射する地下光源部2が設置されている。そのため、浴光催芽時期A、育苗時期B、および栽培時期Cの全てにおいて、植物10を同一の水耕栽培装置において育成することができる。
ただし、本実施の形態の水耕栽培装置100は、地下部10Bが肥大するいかなる植物の水耕栽培にも適用され得るものである。たとえば、本実施の形態の水耕栽培装置100は、浴光催芽を必要とするいかなる植物の栽培にも適用され得るものである。また、本実施の形態の水耕栽培装置100は、地下空間において雰囲気の湿度の調整を必要とするいかなる植物の栽培にも適用され得るものである。
(実施の形態の水耕栽培装置の一例の構成)
図1に示されるように、本実施の形態の水耕栽培装置100は、栽培室112を備えている。栽培室112は、栽培室地上部101と栽培室地下部102とを備えている。栽培室地上部101は、植物10の地上部10Aが成長する地上空間101Aを有している。栽培室地下部102は、植物10の地下部10Bが成長する地下空間102Aを有している。栽培室地上部101と栽培室地下部102とは、一体となって栽培室112を構成している。
図1に示されるように、本実施の形態の水耕栽培装置100は、栽培室112を備えている。栽培室112は、栽培室地上部101と栽培室地下部102とを備えている。栽培室地上部101は、植物10の地上部10Aが成長する地上空間101Aを有している。栽培室地下部102は、植物10の地下部10Bが成長する地下空間102Aを有している。栽培室地上部101と栽培室地下部102とは、一体となって栽培室112を構成している。
栽培室112内の地上空間101Aおよび地下空間102Aは、それぞれ、栽培室地下部102および栽培室地上部101によって構成された筐体構造によって、外部空間から遮断されている。したがって、外部の光は、水耕栽培装置100内には入らない。また、外部の雰囲気と水耕栽培装置100内の雰囲気とは、強制的に換気しないかぎり、互いに移動し難い状態が形成されている。
水耕栽培装置100は、地表面部50を備えている。地表面部50は、栽培室112内において、地下空間102Aと地上空間101Aとを仕切っている。地表面部50は、地下空間102Aと地上空間101Aとの間で光を遮る遮光部材として機能している。地表面部50による植物10の地下部10Bへ照射される光の遮断は、後述される栽培時期Cに必要になる。
栽培室地下部102の底面部上には、地下部10Bが載置される位置には、種芋のための設置スペーサ部11が配置されている。設置スペーサ部11の高さは、いかなる程度であってもよいが、植物10が馬鈴薯である場合には、10mm程度が理想的である。水耕栽培装置100を上下方向に積み重ねる場合に、設置スペーサ部11の高さが所定の範囲内の小さな値であることが望ましいからである。
水耕栽培装置100は、地上光源部1と地下光源部2とを備えている。地上光源部1は、栽培室地上部101内に配置され、植物10の地上部10Aに光を照射する。地上光源部1は、栽培室地上部101の天井面に取り付けられている。地下光源部2は、栽培室地下部102内に配置され、植物10の地下部10Bに光を照射する。地下光源部2は、地表面部50の下側面に取り付けられている。
地上光源部1および地下光源部2は、いずれも、発光体を有していれば、蛍光灯またはLED(Light Emitting Diode)等のいかなる光源であってもよい。地表面部50の上面から栽培室地上部101の天井面までの距離h2は、約300mm程度~約500mm程度であることが好ましい。植物10が矮性品種である場合には、地表面部50の上面から地上光源部1までの距離h2は、300mmより小さくてもよい。栽培室地下部102の底面から地表面部50の下面までの距離h1は、約150mm~200mm程度であることが望ましい。
前述のように、本実施の形態の水耕栽培装置100は、光源部として、地上光源部1だけでなく、地下光源部2も備えている。水耕栽培装置100は、植物10の地上部10Aに光を照射することができるだけでなく、植物10の地下部10Bに光を照射することもできる。そのため、浴光催芽によって植物10の地下部10Bの成長を促進させることができる。したがって、水耕栽培装置100によれば、後述されるように、育苗時期Bおよび栽培時期Cだけでなく、浴光催芽時期Aにおいても、植物10の成長を管理することができる。
光源部としての地上光源部1および地下光源部2は、作業員が点灯または消灯するものであっても、制御部6によって自動的に点灯または消灯されるものであってもよい。また、光源部は、点灯および消灯のみならず、その出力が増減されてもよい。また、地上光源部1および地下光源部2の代わりに、地下空間102Aと地上空間101Aとの間を移動する1つの光源部が設けられていてもよい。これによっても、地上部10Aだけでなく、地下部10Bにも光を照射することができる。1つの光源部が地下空間102Aと地上空間101Aとの間を移動する場合、地表面部50には、その1つの光源部の移動用の開口が形成されている。また、その開口は、1つの光源部の移動が終了すると、その開口を閉ざす扉が設けられている。
植物10を栽培する方式は、1%程度の緩やかな傾斜を持つ地表面部50上に、培養液を少量ずつ流下させる薄膜水耕栽培方式であってよい。つまり、NFT(Nutrient Film Technique または Nutrient Flow Technique)が用いられてもよい。また、植物10を栽培する方式は、栽培ベッドに肥料が溶けた養液9を溜めておくことにより、土を使わずに養液9のみで植物10を栽培する湛液型水耕栽培方式であってもよい。つまり、DFT(Deep Flow Technique)が用いられてもよい。ただし、栽培方式は、前述のもの以外のいかなるものであってもよい。養液9を植物10に噴霧する水耕栽培の場合、地上光源部1および地下光源部2等の照明機器が防水機能を有していることが望ましい。
本実施の形態の水耕栽培装置100は、湿度調整機20と湿度検出部4とを備えている。湿度調整機20は、本体20Cと、本体20Cから延びる配管20Aと、配管20Aの先端に取り付けられたノズル20Bとを含んでいる。制御部6は、時間を計時するタイマ6Aを有している。以下に詳細に説明されるが、制御部6は、湿度検出部4により検出された湿度の情報に基づいて、湿度調整機20を制御する。制御部6は、後述される浴育苗時期Bが経過するまでは、湿度検出部4により検出された植物10の地下部10Bの周辺の雰囲気の湿度が所定の範囲内の値に維持されるように、湿度調整機20を制御する。本実施の形態においては、タイマ6Aが計時する時間に基づいて、育苗時期Bが経過すると、制御部6は、湿度調整機20の制御を停止する。ただし、育苗時期Bが経過した後も、制御部6は、湿度調整機20の制御を継続してもよい。
本実施の形態の水耕栽培装置100は、養液タンク7と養液タンク7内の養液9を栽培室地下部102内へ供給するポンプ8とを備えている。養液タンク7とポンプ8とは、栽培室地下部102内へ養液9を供給する供給機構を構成している。以下に詳細に説明されるが、制御部6は、育苗時期Bが経過したと判定した場合に、ポンプ8を駆動することにより、養液タンク7に蓄えられている養液9を栽培室地下部102内へ供給する。
図1および図2に示されるように、地表面部50は、植物10の地上部10Aが通過し得る貫通孔50Aを有している。貫通孔50Aは、植物10の地上部10A、たとえば茎および葉が通過する程度の大きさの円形を有している。地表面部50の下面上には、地下光源部2が取り付けられている。地表面部50の上面上には、地上部検出部3が取り付けられている。地上部検出部3は、貫通孔50Aを通過した地上部10Aを検出する。地上部検出部3としては、赤外線を利用して植物10の地上部10Aを検出するセンサ、具体的には、フォトマイクロセンサ透過型などが考えられる。植物10が栽培されるときには、貫通孔50Aと地上部10Aの茎との間には培地51が充填される。
(実施の形態の水耕栽培装置の制御の一例)
図1に示されるように、水耕栽培装置100は、制御部6を備えている。制御部6は、地上部検出部3から送られてきた地上部10Aの検出の有無を示す情報に基づいて、地上光源部1および地下光源部2を制御する。制御部6は、地上部検出部3から送られてきた信号によって、地上部10Aが貫通孔50Aを通過したか否かの情報を得ることができる。それにより、制御部6は、その情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を独立して制御する。それにより、制御部6は、植物10の成長段階に応じて、地下部10Bへの光の照射および地上部10Aの少なくともいずれか一方へ光を照射する。
図1に示されるように、水耕栽培装置100は、制御部6を備えている。制御部6は、地上部検出部3から送られてきた地上部10Aの検出の有無を示す情報に基づいて、地上光源部1および地下光源部2を制御する。制御部6は、地上部検出部3から送られてきた信号によって、地上部10Aが貫通孔50Aを通過したか否かの情報を得ることができる。それにより、制御部6は、その情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を独立して制御する。それにより、制御部6は、植物10の成長段階に応じて、地下部10Bへの光の照射および地上部10Aの少なくともいずれか一方へ光を照射する。
図3に示されるように、制御部6は、地上部検出部3によって地上部10Aが検出されるまで、地下光源部2を点灯させる。そのため、浴光催芽時期Aおよび育苗時期Bにおいて植物10の地下部10Bに光を自動的に照射することができる。制御部6は、地下光源部2を点灯させているときに、すなわち、後述される浴光催芽時期Aおよび育苗時期Bにおいて地上光源部1を消灯させている。そのため、無駄な消費電力の発生を防止することができる。
図3に示されるように、制御部6は、栽培時期Cにおいて、地上部検出部3によって貫通孔50Aを通過した地上部10Aが検出された後、地下光源部2を消灯させ、かつ、地上光源部1を点灯させる。そのため、浴光催芽時期Aおよび育苗時期Bの後、自動的に、不要になった地下部10Bへ照射される光の量を低減する一方で、栽培時期Cに必要とされる地上部10Aへの光の照射を実行することができる。地下部10Bへの光の照射は、ストロンの発生を抑制するので、本実施の形態においては、栽培時期Cには、地下光源部2を消灯させている。
地下部10Bに対して光が照射されるのを防止する必要があるのは、地下茎からストロンが伸長する着蕾期以後である。着蕾期以後においては、地上部10Aの葉で光合成によって生成されたデンプンが、地下部10Bへ転流し始める。その結果、塊茎の肥大化が促進される。ストロンに光が照射されてしまうと、地下部10Bとしてのストロンが地上茎として成長してしまうため、植物は、塊茎を形成することができない。したがって、後述されるように、栽培時期Cになると、地下部10Bに対する光の照射を防止することが好ましい。
(実施の形態の水耕栽培装置の制御の他の例)
上記の制御の一例の代わりに、制御部6は、植物10の栽培が開始された後の所定の時点から計時を開始するタイマ6Aの計時情報に基づいて、地下光源部2および地上光源部1を制御してもよい。この場合、制御部6は、植物10の栽培が開始された後の所定の時点からの計時情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を独立して制御する。この制御によっても、植物10の成長段階に応じて地下部10Bへの光の照射および地上部10Aへ光の照射を制御することができる。
上記の制御の一例の代わりに、制御部6は、植物10の栽培が開始された後の所定の時点から計時を開始するタイマ6Aの計時情報に基づいて、地下光源部2および地上光源部1を制御してもよい。この場合、制御部6は、植物10の栽培が開始された後の所定の時点からの計時情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を独立して制御する。この制御によっても、植物10の成長段階に応じて地下部10Bへの光の照射および地上部10Aへ光の照射を制御することができる。
たとえば、制御部6は、タイマ6Aが所定時間を計時するまで、地下光源部2を点灯させる。この場合、所定時間を浴光催芽時期Aの開始から育苗時期Bの終わりまでの期間に対応するように設定しておく。それにより、浴光催芽時期Aおよび育苗時期Bにおいて植物10の地下部10Bに光を自動的に照射することができる。
また、制御部6は、タイマ6Aが所定時間を計時した後においては、地下光源部2を消灯させ、かつ、地上光源部1を点灯させる。その場合も、所定時間を浴光催芽時期Aの開始から育苗時期Bの終わりまでの期間に対応するように設定しておく。それにより、浴光催芽時期Aおよび育苗時期Bの後の栽培時期Cに、自動的に、不要になった地下部10Bへ照射される光の量を低減する一方で、必要とされる地上部10Aへの光の照射を実行することができる。そのため、制御部6は、植物10の成長段階のそれぞれに適した光の照射を自動的に実行することができる。
(植物の成長過程と光源部の点灯および消灯との関係)
図3に示されるように、植物10の育成期間は、浴光催芽時期A、育苗時期B、および栽培時期Cに分けられる。浴光催芽時期Aは、植物10の育成開始から約30日~約40日程度である。浴光催芽は、日光を使用した土耕栽培においても行われており、丈夫な芽の成長を促進させることによって、複数の植物10の成長の斉一性を向上させる目的、および、収穫量を増加させる目的で行われる。植物10が馬鈴薯である場合、浴光催芽時期Aにおいては、植物10の地下部10Bに光が照射されることにより、種芋から芽が5mm程度伸長するまでの時期である。育苗時期Bは、浴光催芽時期Aの後、着蕾期までの期間であって、種芋からストロンが形成されるまでの期間を意味している。栽培時期Cは、育苗時期B以降の植物10の収穫までの期間を意味している。
図3に示されるように、植物10の育成期間は、浴光催芽時期A、育苗時期B、および栽培時期Cに分けられる。浴光催芽時期Aは、植物10の育成開始から約30日~約40日程度である。浴光催芽は、日光を使用した土耕栽培においても行われており、丈夫な芽の成長を促進させることによって、複数の植物10の成長の斉一性を向上させる目的、および、収穫量を増加させる目的で行われる。植物10が馬鈴薯である場合、浴光催芽時期Aにおいては、植物10の地下部10Bに光が照射されることにより、種芋から芽が5mm程度伸長するまでの時期である。育苗時期Bは、浴光催芽時期Aの後、着蕾期までの期間であって、種芋からストロンが形成されるまでの期間を意味している。栽培時期Cは、育苗時期B以降の植物10の収穫までの期間を意味している。
図3に示されるように、浴光催芽時期Aにおいては、植物10の地下部10Bに地下光源部2の光が照射される。それにより、たとえば、馬鈴薯のような植物10であれば、種芋から根10Cおよび茎が出る。つまり、植物10は、種芋から発芽する。
図3に示されるように、育苗時期Bにおいても、植物10の地下部10Bに地下光源部2の光が照射される。それにより、根10Cおよび茎が伸びる。浴光催芽時期Aおよび育苗時期Bのいずれにおいても、地上光源部1は消灯している。
図3に示されるように、栽培時期Cにおいては、茎が地上空間101Aへ向かって伸び、貫通孔50Aを通過する。それにより、地上部検出部3が地上部10Aを検出する。それにより、制御部6は、植物10は栽培時期Cにあると判断して、地上光源部1を点灯させ、地下光源部2を消灯させる。
このとき、貫通孔50Aと地上部10Aの茎との間に、培地51が作業員によって充填される。この状態では、地上光源部1から発せられた光は、地下部10Bには照射されず、地上部10Aのみに照射される。培地51は、スポンジのような柔軟性および保水性を有する材料で形成されている。ただし、培地51は、後述されるハイドロボールのような遮光性の固体が編み目状の容器に入れられたものであってもよい。
次の表1には、センサ信号入力、照明信号1出力、および照明信号2出力と各栽培時期との関係が示されている。センサ信号入力は、地上部検出部3が地上部10Aを検出したことを示す信号である。照明信号1出力は、地上光源部1を点灯(ON)および消灯(OFF)のいずれの状態にするかを示す信号である。また、照明信号2出力は、地下光源部2を点灯(ON)および消灯(OFF)のいずれの状態にするかを示す信号である。
図4に示されるように、水耕栽培装置100は、地上光源部1が発する光を集める集光部12Bと、集光部12Bが集めた光を地下光源部2まで導く光伝送部12Aとを備えるものであってもよい。この場合、制御部6は、地下光源部2を制御せず、地上光源部1および集光部12Bを制御する。
図5に示されるように、制御部6が、集光部12Bに光を集めさせた状態で、地上光源部1を点灯させるときには、地上光源部1から発せられた光は、集光部12Bで集められる。その後、集光部12Bで集められた光は、光伝送部12Aを通じて地下光源部2へ送られる。それにより、地下光源部2が点灯している。一方、図6に示されるように、制御部6が、集光部12Bに光を集めさせない状態で、地上光源部1を点灯させるときには、地下光源部2は消灯している。
図4~図6に示される集光部12Bと光伝送部12Aとが用いられる場合、制御部6は、地上部検出部3から送られてきた地上部10Aの検出の有無を示す情報に基づいて、地上光源部1および集光部12Bを制御する。また、図4~図6に示される集光部12Bと光伝送部12Aとが用いられる場合、制御部6は、植物10の栽培が開始された後の所定の時点から計時を開始するタイマ6Aの計時情報に基づいて、地上光源部1および集光部12Bを制御してもよい。
(実施の形態の水耕栽培装置の制御部の照明切替処理)
次に、図7を用いて、制御部6において実行される照明切替処理を説明する。
次に、図7を用いて、制御部6において実行される照明切替処理を説明する。
制御部6は、ステップS1において、水耕栽培装置100において植物10の成長の管理が開始されたか否かを判別する。この水耕栽培装置100における成長の管理の開始の時点は、たとえば、地下空間102Aに馬鈴薯等の種芋のような植物10の地下部10Bが載置された時点であってもよい。具体的には、水耕栽培装置100における植物10の成長の管理の開始の時点は、たとえば、作業員の判断により、制御部6による制御の開始を知らせる信号を送るスイッチが押され、制御部6がその信号を受けとったと認識した時点であってもよい。また、水耕栽培装置100における植物10の成長の管理の開始の時点は、設置スペーサ部11にセンサが設けられており、そのセンサが設置スペーサ部11に植物10の地下部10Bが載置されたことを検出したと制御部6が認識した時点であってもよい。水耕栽培装置100における植物10の成長の管理の開始の時点は、制御部6が何らかの信号を受信することにより、タイマ6Aの計時の起算点が決定される時点であれば、いかなる時点であってもよい。
ステップS1において、植物10の成長の管理が開始されていなければ、植物10の栽培が開始されるまで、制御部6は、待機している。一方、ステップS1において、植物10の成長の管理が開始されていれば、ステップS2において、制御部6は、地下光源部2を点灯させる。このとき、地上光源部1は、電力消費量の低減の観点からは消灯していることが好ましいが、点灯していてもよい。
地下光源部2は、たとえば、実際にセンサが設置スペーサ部11に植物10の地下部10Bが載置されたことを検出したと制御部6が認識した時点から所定時間だけ経過した後に、点灯するように制御されてもよい。植物10の種類に応じて、地下部10Bに光が照射されるのに適した時点に地下部10Bへの光の照射が開始されることが好ましい。
ステップS3において、制御部6は、地上光源部1を消灯させている。地下光源部2が点灯しているときは、地下部10Bのみが存在し、地上部10Aは未だ存在しないため、不必要な地上光源部1は消灯されている。この状態は、ステップS4で、地上部10Aが地上部検出部3によって検出されるか、または、栽培開始から所定時間が経過するまで、継続される。このステップS2~S4の時期は、図3に示される浴光催芽時期Aおよび育苗時期Bに相当する。
その後、ステップS4において、制御部6は、地上部10Aが地上部検出部3によって検出されたか否かを判別する。ステップS4において、制御部6は、地上部10Aが地上部検出部3によって検出されたと認識した場合には、ステップS5において、地下光源部2を消灯させ、ステップS6において、地上光源部1を点灯させる。これにより、不要となった地下部10Bへの光の照射が停止され、必要になった地上部10Aへの光の照射が行われる。この時期ステップS5~ステップS7の時期は、図3に示される栽培時期Cに相当する。
実験や過去のデータから、植物10の地上部10Aが貫通孔50Aを通過するまでの速度が、ある程度の範囲内の一定期間であるということは判明している場合がある。この場合には、ステップS4において、制御部6は、植物10の栽培の開始から所定時間が経過したか否かを判別してもよい。
その後、ステップS7において、制御部6は、植物10の成長の管理を終了すべき時期か否かを判別する。ステップS7において、植物10の成長の管理を終了すべき時期ではないと判定されれば、制御部6は、ステップS5において地下光源部2を消灯させ、ステップS6において地上光源部1を点灯させる制御を継続する。ステップS7において、制御部6は、植物10の成長の管理を終了すべき時期であると判定された場合には、照明切替処理を終了する。
植物10の成長の管理の終了すべき時期か否かは、作業員が植物10の成長の管理を終了すべき時期であることを示す信号を制御部6へ送信し、制御部6がその信号を受け取ったことを認識したか否かによって決定されてもよい。また、植物10の成長の管理の終了すべき時期か否かは、制御部6が予め入力された植物10の成長の管理を終了すべき時期までタイマ6Aが計時し終えたか否かによって決定されてもよい。
(植物の成長過程)
図8に示されるように、土耕栽培においては、植物10の成長の過程は、一般に、萌芽期I、着蕾期II、ストロン伸長期III、および塊茎肥大期IVに分けられる。萌芽期Iおよび着蕾期II、全体として、おおよそ、浴光催芽時期Aおよび育苗時期Bに対応している。ストロン伸長期IIIおよび塊茎肥大期IVは、おおよそ前述の栽培時期Cに対応している。
図8に示されるように、土耕栽培においては、植物10の成長の過程は、一般に、萌芽期I、着蕾期II、ストロン伸長期III、および塊茎肥大期IVに分けられる。萌芽期Iおよび着蕾期II、全体として、おおよそ、浴光催芽時期Aおよび育苗時期Bに対応している。ストロン伸長期IIIおよび塊茎肥大期IVは、おおよそ前述の栽培時期Cに対応している。
(比較例1の水耕栽培方法)
図9に示されるように、水耕栽培における植物10の育成過程は、浴光催芽時期A、育苗時期B、および栽培時期Cに分けられる。図9に示される比較例1の水耕栽培においては、ハイドロボール200と呼ばれる培地が使用されている。そのため、育苗時期Bにおいて、容器の中に敷き詰められたハイドロボール200の中に植物10の地下部10B、たとえば、種芋が埋められている。
図9に示されるように、水耕栽培における植物10の育成過程は、浴光催芽時期A、育苗時期B、および栽培時期Cに分けられる。図9に示される比較例1の水耕栽培においては、ハイドロボール200と呼ばれる培地が使用されている。そのため、育苗時期Bにおいて、容器の中に敷き詰められたハイドロボール200の中に植物10の地下部10B、たとえば、種芋が埋められている。
図9の上側に示される比較例1の水耕栽培方法においては、浴光催芽時期A、育苗時期B、および栽培時期Cをそれぞれにおいて、別々の設備で植物10を育成している。したがって、比較例1の水耕栽培方法によれば、浴光催芽時期Aから育苗時期Bへ移行するとき、および、育苗時期Bから栽培時期Cへ移行するときのそれぞれにおいて、植物10を1の設備から他の設備へ移し替える必要がある。しかしながら、本実施の形態の水耕栽培装置100によれば、図9の下側に示されるように、浴光催芽時期A、育苗時期B、および栽培時期Cの全ての期間において、植物10を他の設備や装置に移し替えることなく、1つの装置内で育成することができる。
(比較例2の水耕栽培装置)
図10には、比較例2の水耕栽培装置100の内部構造が示されている。図10に示されるように、比較例2の水耕栽培装置100は、上記した地表面部50に相当する構成を備えていない。したがって、地上光源部1から発せられた光は、植物10の成長の段階にかかわらず、地下部10Bに照射されてしまう。したがって、ストロンの伸長を促したい時期においても、葉に光が照射されると、その光は地下部10Bにも照射されてしまう。その結果、水耕栽培装置100内において、ストロンの伸長を促すことができない。その結果、地下茎が成長し、塊茎が成長しないため、植物10の作物としての価値は低下する。
図10には、比較例2の水耕栽培装置100の内部構造が示されている。図10に示されるように、比較例2の水耕栽培装置100は、上記した地表面部50に相当する構成を備えていない。したがって、地上光源部1から発せられた光は、植物10の成長の段階にかかわらず、地下部10Bに照射されてしまう。したがって、ストロンの伸長を促したい時期においても、葉に光が照射されると、その光は地下部10Bにも照射されてしまう。その結果、水耕栽培装置100内において、ストロンの伸長を促すことができない。その結果、地下茎が成長し、塊茎が成長しないため、植物10の作物としての価値は低下する。
(比較例3の水耕栽培装置)
図11には、比較例3の水耕栽培装置100が示されている。図11に示されるように、比較例3の水耕栽培装置100は、地表面部50を備えているが、植物10の地下部10Bに光を照射するための光源部を地表面部50の下側に備えていない。そのため、比較例3の水耕栽培装置100を用いる場合、植物に浴光催芽を施すことができない。したがって、浴光催芽を水耕栽培装置100とは別の設備を用いて実行する必要がある。
図11には、比較例3の水耕栽培装置100が示されている。図11に示されるように、比較例3の水耕栽培装置100は、地表面部50を備えているが、植物10の地下部10Bに光を照射するための光源部を地表面部50の下側に備えていない。そのため、比較例3の水耕栽培装置100を用いる場合、植物に浴光催芽を施すことができない。したがって、浴光催芽を水耕栽培装置100とは別の設備を用いて実行する必要がある。
(実施の形態の水耕栽培装置の利点)
上記の比較例1~3の水耕栽培装置100とは異なり、本実施の形態の水耕栽培装置100は、地上光源部1だけでなく、地下光源部2をも備えている。そのため、植物10の地上部10Aに光を照射することができるだけでなく、植物10の地下部10Bに光を照射することもできる。また、植物10の地上部10Aに光を照射するときに、地下部10Bへ光が照射されることを防止することができる。それにより、浴光催芽時期A、育苗時期B、および栽培時期Cの全ての期間において、植物10の光の照射を必要とする部分にのみ光を照射することができる。そのため、水耕栽培装置100内において、浴光催芽により植物10の成長を効率的に促進させることができる。その結果、浴光催芽時期A、育苗時期B、および栽培時期Cの全ての期間において、植物10を1つの水耕栽培装置100内において成長させることができる。
上記の比較例1~3の水耕栽培装置100とは異なり、本実施の形態の水耕栽培装置100は、地上光源部1だけでなく、地下光源部2をも備えている。そのため、植物10の地上部10Aに光を照射することができるだけでなく、植物10の地下部10Bに光を照射することもできる。また、植物10の地上部10Aに光を照射するときに、地下部10Bへ光が照射されることを防止することができる。それにより、浴光催芽時期A、育苗時期B、および栽培時期Cの全ての期間において、植物10の光の照射を必要とする部分にのみ光を照射することができる。そのため、水耕栽培装置100内において、浴光催芽により植物10の成長を効率的に促進させることができる。その結果、浴光催芽時期A、育苗時期B、および栽培時期Cの全ての期間において、植物10を1つの水耕栽培装置100内において成長させることができる。
次の表3に、本実施の形態の水耕栽培装置と比較例1および3の水耕栽培装置との工程数の対比を示す。
上記した特許文献1~8に開示された水耕栽培装置は、植物の地下部が成長する地下空間の湿度を調整する機器を備えていない。そのため、それらの水耕栽培装置において、催芽時期において植物の地下部の周辺の雰囲気の湿度を調節することができないという問題がある。浴光催芽時期において植物の地下部の周辺の雰囲気の湿度を調節することが求められている。そこで、本実施の形態の水耕栽培装置100は、図1、図12、および図13に示されるように、地下空間102A内の雰囲気の湿度を調整する湿度調整機20を備えている。それにより、本実施の形態の水耕栽培装置100によれば、浴光催芽時期Aにおいて植物10の周辺の雰囲気の湿度を調節することができる。
(実施の形態の水耕栽培装置の湿度調整のための構成)
図1、図12、および図13に示されるように、水耕栽培装置100は、湿度調整機20と湿度検出部4とを備えている。湿度調整機20は、地下空間102Aの雰囲気の湿度を調整する。そのために、湿度調整機20は、その本体20Cの内部に加湿機および除湿機を含んでいる。湿度調整機20は、本体20Cと、本体20Cから延びる配管20Aと、配管20Aの先端に取り付けられたノズル20Bとを含んでいる。湿度検出部4は、栽培室地下部102内に配置され、地下空間102Aの雰囲気の湿度を検出する。制御部6は、湿度検出部4により検出された湿度の情報に基づいて、湿度調整機20を制御する。
図1、図12、および図13に示されるように、水耕栽培装置100は、湿度調整機20と湿度検出部4とを備えている。湿度調整機20は、地下空間102Aの雰囲気の湿度を調整する。そのために、湿度調整機20は、その本体20Cの内部に加湿機および除湿機を含んでいる。湿度調整機20は、本体20Cと、本体20Cから延びる配管20Aと、配管20Aの先端に取り付けられたノズル20Bとを含んでいる。湿度検出部4は、栽培室地下部102内に配置され、地下空間102Aの雰囲気の湿度を検出する。制御部6は、湿度検出部4により検出された湿度の情報に基づいて、湿度調整機20を制御する。
たとえば、湿度検出部4により検出された湿度が所望の湿度より高いときは、除湿するために、制御部6は、本体20C内の除湿機を駆動する。それにより、地下空間102A内の雰囲気が、ノズル20Bから配管20Aを通じて外部空間へ放出される。その結果、図12に示されるように、外部空間から湿度がより低い空気が地下空間102Aへ流入する。
一方、湿度検出部4により検出された湿度が所望の湿度より低いときは、加湿するために、制御部6は、本体20C内の加湿機を駆動する。それにより、図13に示されるように、本体20C内の加湿機によって生成された湿度がより高い雰囲気が、配管20Aおよびノズル20Bを通じて、地下空間102Aへ送り込まれる。
この構成によれば、地下空間102Aの湿度を調節することにより、植物10の周辺環境を水耕栽培装置100内で管理することができる。
(実施の形態の水耕栽培装置の地下空間の湿度調整のための制御)
図14に示されるように、制御部6は、栽培の開始前に実験または過去の栽培記録によって把握された浴光催芽時期A、たとえば、栽培開始から約30日から約40日が経過するまでは、ポンプ8を駆動させない。つまり、制御部6は、養液タンク7内の養液9を栽培室地下部102内へ供給しない。制御部6は、育苗時期Bになると、ポンプ8駆動させて、養液タンク7内の養液9を栽培室地下部102内へ供給する。育苗時期Bに養液9が栽培室地下部102内に存在すれば、養液9が地下空間102A中へ蒸発するため、地下空間102Aの雰囲気の湿度を高める場合に、利点がある。
図14に示されるように、制御部6は、栽培の開始前に実験または過去の栽培記録によって把握された浴光催芽時期A、たとえば、栽培開始から約30日から約40日が経過するまでは、ポンプ8を駆動させない。つまり、制御部6は、養液タンク7内の養液9を栽培室地下部102内へ供給しない。制御部6は、育苗時期Bになると、ポンプ8駆動させて、養液タンク7内の養液9を栽培室地下部102内へ供給する。育苗時期Bに養液9が栽培室地下部102内に存在すれば、養液9が地下空間102A中へ蒸発するため、地下空間102Aの雰囲気の湿度を高める場合に、利点がある。
ただし、育苗時期Bに養液9が栽培室地下部102内に長期間貯留されていると、養液9中の酸素不足が原因となって、根の腐敗を引き起こすおそれがある。そのため、栽培室地下部102、養液タンク7、およびポンプ8からなる循環路において循環させることが必要になる。その結果、水耕栽培装置100の電力消費量を増加させてしまう。したがって、電力消費量を低減する観点からは、制御部6は、栽培時期Cになったときに、ポンプ8を駆動させて、養液タンク7内の養液9を栽培室地下部102内へ供給することが好ましい。
制御部6は、浴光催芽時期Aが経過し、その内部のタイマ6Aにより計時されている時間から育苗時期Bになっていると判定した場合に、ポンプ8を駆動する。それにより、養液タンク7内の養液9が栽培室地下部102内へ供給される。その結果、植物10の地下部10B、たとえば、種芋の根の先端が養液9内に浸る。
この状態では、種芋表皮の保水性が維持されており、種芋から根が伸長する。種芋の根は個体により、栽培室地下部102の底面からの位置が異なっているのが一般的である。そのため、植物10の根の伸長の斉一化を実現させるために、養液9の高さを所定期間が経過することに変化させることが望ましい。育苗時期Bにおいては、種芋の周辺の雰囲気の湿度を一定に維持することが望ましい。
その後、種芋から茎が伸長する。その後、地下部10Bとしての茎は、地表面部50の貫通孔50Aを通過し、植物10の地上部10Aとなる。このとき、地表面部50の上面上に設置された地上部検出部3によって、植物10の地上部10Aが貫通孔50Aを通過したことが検出される。それにより、前述のように、制御部6は、地下光源部2を消灯させ、地上光源部1を点灯させる。本実施の形態においては、栽培室地下部102内の養液9の上面は、種芋の腐敗を防止するため、および、塊茎が形成された芋の皮目の肥大を防止するため、設置スペーサ部11の高さより低い高さに調節される。
図14に示されるように、制御部6は、地上部検出部3によって地上部10Aが検出されるまで、湿度検出部4により検出された栽培室地下部102内の雰囲気の湿度が所定値に維持されるように、湿度調整機20を制御する。そのため、浴光催芽時期Aにおいて植物10の地下部10Bの周辺の雰囲気の湿度を自動的に適切な値に調整することができる。植物10が馬鈴薯である場合、地下空間102Aの最適な湿度は、種芋の表皮が全て保水されている湿度であればよいが、たとえば、70%以上であること好ましい。ただし、この所定値は、特定の1つの値に限定されず、所定の範囲内の複数の値であってもよい。
制御部6は、地上部検出部3によって地上部10Aが検出された後においては、湿度調整機20を停止させる。そのため、浴光催芽時期Aおよび育苗時期Bの後の栽培時期Cに、自動的に、不要になった地下部10Bの周辺の雰囲気の湿度の調整を停止することができる。ただし、湿度調整機20を停止させることの代わりに、制御部6は、地下空間102Aの雰囲気の湿度が所定値より低い特定値となるように、湿度調整機20を制御してもよい。
(実施の形態の水耕栽培装置の制御部における湿度調整処理)
図15を用いて、制御部6において実行される湿度調整処理を説明する。
図15を用いて、制御部6において実行される湿度調整処理を説明する。
ステップSS1において、制御部6は、水耕栽培装置100における植物10の成長の管理が開始された後において所定期間が経過したか否かを判別する。SS1において、水耕栽培装置100における植物10の成長の管理が開始された後において所定期間が経過していないと判定されれば、制御部6は、所定期間が経過するまで待機する。つまり、制御部6は、無駄な電力消費を防止するため、湿度調整が必要になる時期まで、湿度調整を行わずに待機している。SS1において、水耕栽培装置100における植物10の成長の管理が開始された後において所定期間が経過していると判定される場合がある。この場合には、ステップSS2において、制御部6は、湿度検出部4によって検出された湿度の値を取得する。水耕栽培装置100における植物10の成長の管理の開始の時点は、前述されたように、たとえば、作業員によってその開始を示す信号を送信するためのスイッチが押され、制御部6がその信号を受信したと認識した時点等である。
次に、ステップSS3において、制御部6は、湿度検出部4によって検出された湿度の値が下限値よりも小さいか否かを判別する。ステップSS3において、湿度検出部4によって検出された湿度の値が下限値以上であると判定されると、制御部6は、ステップSS7の処理を実行する。一方、ステップSS3において、湿度検出部4によって検出された湿度の値が下限値よりも小さいと判定される場合がある。この場合には、ステップSS4において、制御部6は、地下空間102Aに雰囲気の湿度を増加させるように湿度調整機20を制御する。
その後、ステップSS5において、制御部6は、湿度調整機20による加湿が開始されてから所定期間が経過したか否かを判別する。ステップSS5において、湿度調整機20による加湿が開始されてから所定期間が経過したと判定される場合がある。この場合には、SS6において、制御部6は、湿度検出部4により検出された湿度の値を取得した後、ステップSS7の処理を実行する。
ステップSS7においては、制御部6は、湿度検出部4によって検出された湿度の値が上限値よりも大きいか否かを判別する。ステップSS7において、湿度検出部4によって検出された湿度の値が上限値以下であると判定されると、制御部6は、ステップSS10の処理を実行する。一方、ステップSS7において、湿度検出部4によって検出された湿度の値が上限値よりも大きいと判定される場合がある。この場合には、ステップSS8において、制御部6は、地下空間102Aの雰囲気の湿度を低減させるように湿度調整機20を制御する。
その後、ステップSS9において、制御部6は、湿度調整機20による除湿が開始されてから所定期間が経過したか否かを判別する。ステップSS9においては、湿度調整機20による除湿が開始されてから所定期間が経過したと判定されれば、制御部6は、ステップSS10の処理を実行する。
ステップSS10においては、制御部6は、地上部検出部3が地上部10Aを検出したか否かを判別する。ただし、その代わりに、制御部6は、水耕栽培装置100における植物10の成長の管理が開始された後、所定期間が経過した否かを判別してもよい。この所定期間は、植物10の管理を終了すべき時間が経過したことを意味する期間である。ステップSS10においては、地上部検出部3が地上部10Aを検出したと判定された場合、制御部6は、湿度調整機20を停止する。また、ステップSS10において、植物10の成長の管理が開始された後、所定期間が経過したと判定された場合においても、制御部6は、湿度調整機20を停止する。このとき、制御部6は、ポンプPによる養液9の供給を開始する。その後、制御部6は、ステップSS1~ステップSS10の処理を繰り返す。
ステップSS11においては、湿度調整機20を停止する制御を行っている。つまり、制御部6は、たとえば、湿度調整機20を加湿状態から加湿しない状態へ切り替えている。これによれば、栽培時期Cにおいて、浴光催芽時期Aおよび育苗時期Bよりも低い湿度に地下空間102Aの雰囲気を維持することができる。その代わりに、制御部6は、地下空間102Aの雰囲気の湿度を前述の上限値と下限値との間の所定値よりも小さい特定値に維持されるように、湿度調整機20を制御してもよい。この場合も、栽培時期Cにおいて、浴光催芽時期Aおよび育苗時期Bよりも低い湿度に地下空間102Aの雰囲気を維持することができればよい。
上記のように、地下空間102Aの雰囲気の湿度を調整することにより、栽培室地下部102内の養液9の高さを管理する機構部が不要になる。また、個々の種芋ごとに、芽の位置が異なるが、そのような場合においても、地下部10Bの周辺の雰囲気の湿度および種芋の表皮の保水性を極力均一に維持することできる。
一方、ステップSS10において、地上部検出部3が地上部10Aを検出していないと判定される場合がある。この場合、制御部6は、湿度調整機20を駆動させた状態で、かつ、ポンプPによる養液9の供給を開始しない状態で、ステップSS2の処理を実行する。ステップSS10において、制御部6は、水耕栽培装置100における植物10の成長の管理が開始された後、所定期間が経過しているか否かを判別してもよい。それにより、前述の所定期間が経過していないと判定された場合に、制御部6は、湿度調整機20を駆動させた状態で、かつ、ポンプPによる養液9の供給を開始しない状態で、ステップSS2の処理を実行してもよい。
つまり、本実施の形態の水耕栽培装置100によれば、制御部6は、タイマ6Aにより計時されている時間に基づいて、その内部に予め記憶されている浴光催芽時期Aおよび育苗時期Bが経過したと判定した場合に、ポンプ8を駆動する。つまり、制御部6は、栽培時期Cになったと認識したときに、ポンプ8を駆動している。それにより、養液タンク7に蓄えられている養液9が栽培室地下部102内へ供給される。
(培地の他の例)
次に、図16~図18を用いて、本実施の形態の水耕栽培装置100において使用され得る他の例の培地51が説明される。
次に、図16~図18を用いて、本実施の形態の水耕栽培装置100において使用され得る他の例の培地51が説明される。
図16に示されるように、他の例の培地51は、直径約150mmの実質的に円筒形状を有する容器状の構造体300を備えている。容器状の構造体300は、底面部70と壁面部90とによってその外形が形作られている。
底面部70は、同心円状の複数の枠状部材700によって構成されており、平面視において、円形の外形を有している。複数の枠状部材700は、それぞれ、円の一部の切欠きとしての不連続部が設けられている。複数の不連続部が全体として一直状に並べられている。したがって、一直線上に並べられた複数の不連続部は、植物10の複数の茎の挿入経路として機能する。挿入経路に挿入された植物10の茎は、枠状部材700同士の間の空間である貫通領域に挿入され得る。
壁面部90は、格子状の部材によって構成され、円筒形状を有している。底面部70は、矢印Iで示される方向に移動されて、十字に形成された取付部材400によって、壁面部90に取り付けられている。取付部材400を構成する2つの線状部材110のそれぞれの両端には、フック部110aおよび110bが設けられている。2つの線状部材110のフック部110aおよび110bは、矢印IIおよびIIIで示される方向に移動されて、壁面部90の格子に引っかけられている。取付部材400には、後述される遮光性固体30の重力が加えられる。そのため、取付部材400は、壁面部90から外れない。したがって、底面部70を構成する同心円状の複数の枠状部材700は、十字に形成された取付部材400によって支持された状態で、格子状の壁面部90に固定されている。
容器状の構造体300内には、矢印IVで示されるように、一群の遮光性固体30が敷き詰められる。それにより、所定数の遮光性固体30によって地上部10Aの周囲の空間から地下部10Bの周囲の空間への光の経路が完全に遮断されている。したがって、地上光源部1から発せられた光が、地上空間101Aを経由して、地下空間102Aへ進入することが防止されている。つまり、地上光源部1から発せられた光は、植物10の地上部10Aには照射されても、地下部10Bには照射されない。その結果、栽培時期Cにおいて地下部10Bから成長するストロンに塊茎としての種芋が形成されることに悪影響が及ぼされることが防止されている。
図17および図18に示されるように、培地51が水耕栽培装置100の地表面部50に取り付けられる。具体的には、培地51が栽培室地下部102に設置されている地表面部50の所定の位置に設けられた貫通孔50Aに挿入される。図17および図18に示される地表面部50の貫通孔50Aは、地表面部50の貫通孔50Aよりも大きく、1つの植物10から延びる複数の茎が全て貫通孔50Aを通過できる程度の大きさを有している。
貫通孔50Aは、平面視において、円形状を有している。また、貫通孔50Aは、図17に示されるように、断面視において、段差部50Bを有している。この段差部50Bの下側部分は、培地51を支持する培地支持部を構成している。ただし、貫通孔50Aの構造は、植物10の地上部10Aが成長する地上空間101Aと植物10の地下部10Bが成長する地下空間102Aとを仕切ることができれば、いかなる構造であってもよい。言い換えれば、貫通孔50Aの構造は、培地51を支持できる構造であれば、いかなる構造であってもよい。
貫通孔50Aと培地51との間に隙間が形成されないように、貫通孔50Aの形状は、平面視において培地51の壁面部の形状と実質的に同一であることが望ましい。
上記の作業の結果、植物10体の塊茎としての種芋は、茎から伸びた根が養液9に浸るように、水耕栽培装置100の栽培槽の底板部上に設置された設置スペーサ部11の上に載置される。この状態で、植物10は、根から栽培室地下部102内に貯留された養液9を吸収することができる。種芋が養液9に浸かってしまうことがないように、水耕栽培装置100を構成する栽培室地下部102内において、養液9の上面は、設置スペーサ部11の上面より下側に位置付けられている。
前述の図17および図18に示される培地51は、植物10が挿入されずに組み立てられた状態で、地表面部50の貫通孔50Aに挿入されてもよい。この場合、地下空間102Aにおいて成長してきた植物10の茎の先端部が、容器状の構造体300の編み目を通過し、遮光性固体30を押しのけながら、地上空間101Aへ向かって成長する。このような水耕栽培の方法によれば、植物10を培地51に挿入する作業手間を省略することができる。
(実施の形態の水耕栽培装置の利点のまとめ)
近年、施設園芸や植物工場の普及により水耕栽培を利用する企業が増加している。その理由は、水耕栽培は土壌を利用しない栽培であるため、土壌に起因する連作障害や病害虫が少ないからである。また、完全閉鎖型植物工場における水耕栽培の場合には、植物の成長状態を管理し易いため、天候不順が植物に与える悪影響を回避することができる。また、一年を通じて安定した収穫を確保することができるという利点もある。
近年、施設園芸や植物工場の普及により水耕栽培を利用する企業が増加している。その理由は、水耕栽培は土壌を利用しない栽培であるため、土壌に起因する連作障害や病害虫が少ないからである。また、完全閉鎖型植物工場における水耕栽培の場合には、植物の成長状態を管理し易いため、天候不順が植物に与える悪影響を回避することができる。また、一年を通じて安定した収穫を確保することができるという利点もある。
上記のような水耕栽培における昨今の栽培対象となる植物は、葉菜類またはトマトなどの野菜類が中心である。さらに、付加価値の高い薬用植物または根菜類などの新たな商用植物の栽培の取り組みも行われている。
しかしながら、上記した比較例1~3の水耕栽培装置は、葉菜類を主な栽培対象としている。そのため、根菜類または薬用植物の栽培に適した水耕栽培装置ではない。たとえば、葉菜類の水耕栽培においては、植物の種子をウレタンスポンジなどの水耕栽培用の培地において成長させた後、種子から成長した幼苗を水耕栽培装置に移植している。この場合、根菜類を水耕栽培用の培地から水耕栽培装置へ移植するときに根に与えられる損傷が、その後の根菜類の成長に大きな悪影響を与えることがある。また、馬鈴薯のような塊茎を種子とする植物の場合においては、直径50mm以上の種芋の保水状態を一定に維持することが必要になる。
そのため、水耕栽培用の培地を利用した育苗が一般的に行われている。この植物の育苗は、植物の浴光催芽および栽培とは別の設備で行われている。したがって、比較例の水耕栽培によれば、浴光催芽工程、育苗工程、および栽培工程の全てを同一の設備において実行することができない。
また、薬用植物または根菜類などの植物は、土壌中でその地下部が肥大するものである。そのため、それらの植物の栽培のためには、上記した地上部が肥大する葉菜類とは大きく異なる技術によって栽培されることを必要とする。たとえば、馬鈴薯は、その繁殖のために、種芋の状態からその成長の管理が開始される。種芋から萌芽させるためには、その周囲環境を所望の保水状態に維持する必要になる。
さらに、地下部が肥大する根菜類等の植物は、地下茎等の地下部を光から遮蔽しなければならない。この遮蔽は、たとえば、馬鈴薯の場合、地下茎からストロンが生成される着蕾期の後に必要となる。その理由は、ストロンは、遮光されていないと、塊茎ではなく、地上茎として成長してしまうためである。したがって、地上部としての葉で光合成によって生成されたデンプンを、地下部へ転流し始め、塊茎の肥大化を促進するためには、地下部を光から遮蔽することが必要になる。
以上をまとめると、従来の水耕栽培装置を用いて根菜類を栽培する場合、根菜類を収穫するときに、根菜類の周囲に設けられた培地を除去する作業が必要である。そのため、その作業中に根菜類の根や芽に損傷を与えるおそれがある。また、培地を除去する作業は、人手に頼らざる得ないため、植物栽培のためのコストの増加してしまう。
さらに、培地を利用する栽培においては、培地の設置および除去は、人手による作業であるため、これらの作業の工程管理を水耕栽培装置の動作の工程管理とは別に行う必要がある。そのため、培地を利用する栽培においては、種芋の播種から作物の収穫まで、植物の栽培工程の全体にわたって一貫した工程管理をすることができない。
以上のようなことから、培地を使用する水耕栽培においては、浴光催芽工程、育苗工程、および栽培工程を個別に管理することが必要である。そのため、前述の各工程の個別管理の負担を軽減するために、育苗工程において培地を使用しないことにより、浴光催芽から育苗を経て栽培までの工程を同一設備によって一貫して管理することを可能にする手段が求められている。
一方、本実施の形態の水耕栽培装置100によれば、浴光催芽から育苗を経て栽培までの全工程を同一装置において一貫して管理することができる。
(実施の形態の水耕栽培装置の構成および効果の要点)
以下、本実施の形態の水耕栽培装置の構成およびそれにより得られる効果を説明する。
以下、本実施の形態の水耕栽培装置の構成およびそれにより得られる効果を説明する。
(1) 本実施の形態の水耕栽培装置100は、植物10の地下部10Bが成長する地下空間102Aを有する栽培室地下部102を備えている。水耕栽培装置100は、植物10の地上部10Aが成長する地上空間101Aを有し、栽培室地下部102と一体となって栽培室112を構成する栽培室地上部101を備えている。水耕栽培装置100は、植物10の地上部10Aが通過し得る貫通孔50Aを有し、栽培室112内において地下空間102Aと地上空間101Aとを仕切る地表面部50を備えている。水耕栽培装置100は、栽培室112内に配置され、地下部10Bおよび地上部10Aの少なくともいずれか一方に光を照射する光源部を備えている。
上記の構成によれば、光源部は、植物10の地上部10Aに光を照射することができるだけでなく、植物10の地下部10Bにも光を照射することができる。そのため、水耕栽培装置100において、浴光催芽時期Aの植物10の地下部10Bの成長を促進させることができる。また、植物10の地上部10Aに光を照射するときに、地下部10Bに光が照射されない。したがって、上記の構成によれば、植物の催芽、育苗、および栽培を一貫して行うことができる。
前述の光源部は、作業員が点灯または消灯するものであっても、制御部6によって自動的に点灯または消灯されるものであってもよい。また、前述の光源部は、点灯および消灯のみならず、その出力の増減がなされてもよい。
前述の光源部は、地下空間102Aと地上空間101Aとの間を移動することにより、地下部10Bおよび地上部10Aの少なくともいずれか一方に光を照射するものであってもよい。また、前述の光源部は、1つの発光体が地表面部50部にその姿勢を変更し得るように構成されたものであってもよい。これによれば、光は、発光体の姿勢の変更により、地下部10Bに照射されたり、地上部10Aに照射されたりする。
栽培室112内の空間は、栽培室地下部102および栽培室地上部101によって構成された筐体構造によって、水耕栽培装置100の外部の空間から遮光されていることが好ましい。
(2) 前述の光源部は、栽培室地下部102内に配置され、地下部10Bに光を照射する地下光源部2と、栽培室地上部101内に配置され、地上部10Aに光を照射する地上光源部1とを含んでいてもよい。水耕栽培装置100は、貫通孔50Aを通過した地上部10Aを検出する地上部検出部3を備えていてもよい。この場合、水耕栽培装置100は、地上部10Aが地上部検出部3に検出されたか否かを示す情報に基づいて、地下光源部2および地上光源部1を制御する制御部6を備えていることが好ましい。
上記の構成によれば、制御部6は、地上部10Aが貫通孔50Aを通過したか否かの情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を独立して制御することができる。したがって、植物10の成長段階に応じて地下部10Bへの光の照射の態様および地上部10Aへ光の照射の態様を変更することができる。
(3) 前述の光源部は、地下部10Bに光を照射する地下光源部2と、栽培室地上部101内に配置され、地上部10Aに光を照射する地上光源部1とを含んでいてもよい。前述の光源部は、地上光源部1が発する光を集める集光部12Bと、集光部12Bが集めた光を地下光源部2まで導く光伝送部12Aとを含んでいてもよい。水耕栽培装置100は、集光部12Bおよび地上光源部1を制御する制御部6を備えていることが好ましい。
この場合、制御部6が、集光部12Bに光を集めさせた状態で、地上光源部1を点灯させるときには、地上光源部1から発せられた光は、集光部12Bで集められた後、光伝送部12Aを通じて地下光源部2へ送られ、それにより、地下光源部2が点灯してもよい。制御部6が、集光部12Bに光を集めさせない状態で、地上光源部1を点灯させるときには、地下光源部2は消灯していてもよい。
水耕栽培装置100は、貫通孔50Aを通過した地上部10Aを検出する地上部検出部3を備えていてもよい。この場合、制御部6は、地上部10Aが地上部検出部3に検出されたか否かを示す情報に基づいて、地上光源部1および集光部12Bを制御することが好ましい。
上記の構成によれば、地上部10Aが貫通孔50Aを通過したか否かの情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を制御することができる。したがって、植物10の成長段階に応じて地上部10Aへの光の照射および地下部10Bへの光の照射を変更することができる。また、上記の構成によれば、地下光源部2は、地上光源部1が発する光によって点灯するものであるため、地上光源部1に比較して地下光源部2の構成を簡略化することができる。
(4) 制御部6は、地上部10Aが地上部検出部3に検出されていない場合に、地下光源部2を点灯させることが好ましい。
上記の構成によれば、浴光催芽時期Aおよび育苗時期Bにおいて植物10の地下部10Bに光を自動的に照射することができる。制御部6は、地下光源部2を点灯させているときに、地上光源部1を消灯させてもよい。これにより、無駄な消費電力の発生を防止することができる。
(5) 制御部6は、地上部10Aが地上部検出部3に検出された場合に、地下光源部2を消灯させ、かつ、地上光源部1を点灯させることが好ましい。
上記の構成によれば、栽培時期Cにおいて不要である地下部10Bへの光の照射を停止する一方で、必要とされる地上部10Aへの光の照射を実行することができる。したがって、水耕栽培装置100の電力消費の効率を向上させることができる。
この場合、地下光源部2を消灯させる代わりに、地下光源部2の出力を低減させてもよい。ただし、光が地下部10Bへ照射されると、植物10の種芋からのストロンの伸長が抑制されるため、栽培時期Cには地下光源部2を消灯させることが望ましい。
(6) 前述の光源部は、栽培室地下部102内に配置され、地下部10Bに光を照射する地下光源部2と、栽培室地上部101内に配置され、地上部10Aに光を照射する地上光源部1とを含んでいてもよい。この場合、水耕栽培装置100は、水耕栽培装置100における植物10の成長の管理が開始された後の所定の時点から計時を開始するタイマ6Aの計時情報に基づいて、地下光源部2および地上光源部1を制御する制御部6を備えていてもよい。
上記の構成によれば、制御部6は、水耕栽培装置100における植物10の成長の管理が開始された後の所定の時点からの計時情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を独立して制御することができる。したがって、植物10の成長段階に応じて地下部10Bへの光の照射の態様および地上部10Aへ光の照射の態様を変更することができる。
(7) 前述の光源部は、栽培室地下部102内に配置され、地下部10Bに光を照射する地下光源部2と、栽培室地上部101内に配置され、地上部10Aに光を照射する地上光源部1とを含んでいてもよい。前述の光源部は、地上光源部1が発する光を集光する集光部12Bと、集光部12Bが集光した光を地下光源部2まで導く光伝送部12Aとを備えていてもよい。この場合、水耕栽培装置100は、集光部12Bおよび地上光源部1を制御する制御部6を備えていてもよい。
この場合、制御部6が、集光部12Bを機能させた状態で、地上光源部1を点灯させるときには、地上光源部1から発せられた光は、集光部12Bで集められた後、光伝送部12Aを通じて地下光源部2へ送られ、それにより、地下光源部2が点灯していてもよい。制御部6が、集光部12Bを機能させない状態で、地上光源部1を点灯させるときには、地下光源部2は消灯していてもよい。この場合、制御部6は、水耕栽培装置100における植物10の成長の管理が開始された後の所定の時点から計時を開始するタイマ6Aの計時情報に基づいて、地上光源部1および集光部12Bを制御することが好ましい。
上記の構成によれば、植物10の栽培が開始された後の所定の時点からの計時情報に基づいて、地下光源部2および地上光源部1のそれぞれの点灯、消灯、および出力増減を制御することができる。したがって、植物10の成長段階に応じて地上部10Aへの光の照射および地下部10Bへの光の照射を制御することができる。
また、上記の構成によれば、地下光源部2は、地上光源部1が発する光によって点灯するものであるため、地上光源部1に比較して地下光源部2の構成を簡略化することができる。
(8) 制御部6は、タイマ6Aが所定時間を計時するまで、地下光源部2を点灯させることが好ましい。
上記の構成によれば、所定時間を浴光催芽時期Aの開始から育苗時期Bの終わりまでの期間に対応するように設定しておくことにより、浴光催芽時期Aおよび育苗時期Bにおいて植物10の地下部10Bに光を自動的に照射することができる。
(9) 制御部6は、タイマ6Aが所定時間を計時した後においては、地下光源部2を消灯させ、かつ、地上光源部1を点灯させることが好ましい。
上記の構成によれば、所定時間を浴光催芽時期Aの開始から育苗時期Bの終わりまでの期間に対応するように設定しておくことにより、栽培時期Cに、自動的に不要になった地下部10Bへの光の照射を停止することができる。加えて、必要とされる地上部10Aへの光の照射を開始することができる。そのため、植物10の成長段階のそれぞれに適した光の照射を制御部6による制御によって自動的に実行することができる。地下光源部2の消灯の代わりに、地下光源部2の光の出力が低減されてもよい。
(10) 本実施の形態の他の例の水耕栽培装置100は、植物10の地下部10Bが成長する地下空間102Aを有する栽培室地下部102を備えている。水耕栽培装置100は、植物10の地上部10Aが成長する地上空間101Aを有し、栽培室地下部102と一体となって栽培室112を構成する栽培室地上部101を備えている。水耕栽培装置100は、植物10の地上部10Aが通過し得る貫通孔50Aを有し、栽培室112内において地下空間102Aと地上空間101Aとを仕切る地表面部50を備えている。
水耕栽培装置100は、栽培室地下部102内に配置され、地下空間102Aの雰囲気の湿度を検出する湿度検出部4を備えている。水耕栽培装置100は、地下空間102Aの雰囲気の湿度を調整する湿度調整機20を備えている。水耕栽培装置100は、湿度検出部4により検出された湿度の情報に基づいて、湿度調整機20を制御する制御部6を備えている。
上記の構成によれば、植物10の地下部10Bの周辺の湿度を管理することができる。特に、浴光催芽時期Aにおける植物10の周辺環境を水耕栽培装置100内で管理することができる。したがって、上記の構成によれば、植物の催芽、育苗、および栽培を一貫して行うことができる。
(11) 本実施の形態の他の例の水耕栽培装置100は、貫通孔50Aを通過した地上部10Aを検出する地上部検出部3を備えていることが好ましい。この場合、制御部6は、地上部10Aが地上部検出部3に検出されていない場合に、地下空間102Aの雰囲気の湿度が所定値に維持されるように、湿度調整機20を制御することが好ましい。所定値は、1つの値であってもよいし、上限値と下限値との間の範囲内の複数の値であってもよい。
上記の構成によれば、育苗時期Bにおける植物10の地下部10Bの周辺の雰囲気の湿度を自動的に適切な値に調整することができる。
(12) 制御部6は、地上部10Aが地上部検出部3に検出された場合に、地下空間の雰囲気の湿度が所定値よりも小さい特定値に維持されるように、湿度調整機20を制御することが好ましい。この場合、湿度検出部4により検出された地下空間102Aの雰囲気の湿度が所定値よりも小さい特定値に維持されてもよい。所定値および特定値は、それぞれ、1つの値であってもよいし、上限値と下限値との間の範囲内の複数の値であってもよい。
上記の構成によれば、栽培時期Cにおける地下空間102Aの雰囲気の湿度を育苗時期Bの地下空間102Aの湿度に比較して低下させることができる。したがって、地下空間102Aの湿度を栽培時期Cに適した湿度に調整することができる。
(13) 本実施の形態の他の例の水耕栽培装置100は、栽培室地下部102内に植物10のための養液9を供給する供給機構(養液タンク7,ポンプ8)を備えていることが好ましい。この場合、制御部6は、地上部10Aが地上部検出部3に検出された場合に、供給機構(養液タンク7,ポンプ8)に養液9の栽培室地下部102への供給を開始させることが好ましい。
上記の構成によれば、栽培時期Cにのみ、養液9を栽培室地下部102内へ供給する。そのため、浴光催芽時期Aおよび育苗時期Bにおいて、栽培室地下部102内での養液9の腐敗を防止するために、供給機構によって養液9を循環させる必要がない。その結果、供給機構の駆動に要する電力を低減することができる。また、1つの地上部検出部3によって湿度調整機構と供給機構との双方を制御することができる。
(14) 水耕栽培装置100における植物10の成長の管理が開始された後の所定の時点から計時を開始するタイマ6Aが特定時間を計時していない場合がある。この場合に、制御部6は、地下空間102Aの雰囲気の湿度が所定値に維持されるように、湿度調整機20を制御することが好ましい。所定値は、1つの値であってもよいし、上限値と下限値との間の複数の値であってもよい。
上記の構成によれば、たとえば、所定の時点を育苗時期Bの開始の時点に設定し、かつ、特定時間を所定時点から育苗時期Bが終了するまでの時間に設定しておくことができる。それにより、育苗時期Bにおいて植物10の地下部10Bの周辺の雰囲気の湿度を自動的に適切な値に調整することができる。
(15) タイマが特定時間を計時した場合がある。この場合に、制御部6は、地下空間102Aの雰囲気の湿度が所定値よりも小さい特定値に維持されるように、湿度調整機20を制御することが好ましい。この場合、湿度調整機20を停止させることによって、湿度検出部4により検出された地下空間102Aの雰囲気の湿度が所定値よりも小さい特定値に維持されてもよい。所定値は、1つの値であってもよいし、上限値と下限値との間の範囲内の複数の値であってもよい。
上記の構成によれば、栽培時期Cにおける地下空間102Aの雰囲気の湿度を育苗時期Bの地下空間102Aの湿度に比較して低下させることができる。したがって、地下空間102Aの湿度を栽培時期Cに適した湿度に調整することができる。
(16) 本実施の形態の他の例の水耕栽培装置100は、栽培室地下部102内に植物10のための養液9を供給する供給機構(養液タンク7,ポンプ8)を備えていることが好ましい。タイマが前述の特定時間を計時した場合がある。この場合に、制御部6は、供給機構(養液タンク7,ポンプ8)に養液9の栽培室地下部102への供給を開始させることが好ましい。
上記の構成によれば、栽培時期Cにのみ、養液9を栽培室地下部102内へ供給する。そのため、浴光催芽時期Aおよび育苗時期Bにおいて、栽培室地下部102内での養液9の腐敗を防止するために、供給機構によって養液9を循環させる必要がない。その結果、供給機構の駆動に要する電力を低減することができる。
なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
また、本出願は、2014年7月7日に出願された日本出願の特願2014-139621号に基づく優先権を主張し、当該日本出願に記載された全ての記載内容を援用するものである。
また、本出願は、2014年7月7日に出願された日本出願の特願2014-139621号に基づく優先権を主張し、当該日本出願に記載された全ての記載内容を援用するものである。
1 地上光源部
2 地下光源部
3 地上部検出部
4 湿度検出部
6 制御部
10 植物
10A 地上部
10B 地下部
12A 光伝送部
12B 集光部
20 湿度調整機
50 地表面部
50A 貫通孔
100 水耕栽培装置
101A 地上空間
102A 地下空間
112 栽培室
2 地下光源部
3 地上部検出部
4 湿度検出部
6 制御部
10 植物
10A 地上部
10B 地下部
12A 光伝送部
12B 集光部
20 湿度調整機
50 地表面部
50A 貫通孔
100 水耕栽培装置
101A 地上空間
102A 地下空間
112 栽培室
Claims (16)
- 植物の地下部が成長する地下空間を有する栽培室地下部と、
前記植物の地上部が成長する地上空間を有し、前記栽培室地下部と一体となって栽培室を構成する栽培室地上部と、
前記植物の前記地上部が通過し得る貫通孔を有し、前記栽培室内において前記地下空間と前記地上空間とを仕切る地表面部と、
前記栽培室内に配置され、前記地下部および前記地上部の少なくともいずれか一方に光を照射する光源部と、を備えた、水耕栽培装置。 - 前記光源部は、
前記栽培室地下部内に配置され、前記地下部に光を照射する地下光源部と、
前記栽培室地上部内に配置され、前記地上部に光を照射する地上光源部と、を含み、
前記水耕栽培装置は、
前記貫通孔を通過した前記地上部を検出する地上部検出部と、
前記地上部が前記地上部検出部に検出されたか否かを示す情報に基づいて、前記地下光源部および前記地上光源部を制御する制御部と、をさらに備えた、請求項1に記載の水耕栽培装置。 - 前記光源部は、
前記栽培室地下部内に配置され、前記地下部に光を照射する地下光源部と、
前記栽培室地上部内に配置され、前記地上部に光を照射する地上光源部と、
前記地上光源部が発する光を集める集光部と、
前記集光部が集めた光を前記地下光源部まで導く光伝送部と、を含み、
前記水耕栽培装置は、前記地上光源部および前記集光部を制御する制御部をさらに備え、
前記制御部が、前記集光部に光を集めさせた状態で、前記地上光源部を点灯させるときには、前記地上光源部から発せられた光は、前記集光部で集められた後、前記光伝送部を通じて前記地下光源部へ送られ、それにより、前記地下光源部が点灯し、
前記制御部が、前記集光部に光を集めさせない状態で、前記地上光源部を点灯させるときには、前記地下光源部は消灯しており、
前記水耕栽培装置は、前記貫通孔を通過した前記地上部を検出する地上部検出部をさらに備え、
前記制御部は、前記地上部が前記地上部検出部に検出されたか否かを示す情報に基づいて、前記地上光源部および前記集光部を制御する、請求項1に記載の水耕栽培装置。 - 前記制御部は、前記地上部が前記地上部検出部に検出されていない場合に、前記地下光源部を点灯させる、請求項2または3に記載の水耕栽培装置。
- 前記制御部は、前記地上部が前記地上部検出部に検出された場合に、前記地下光源部を消灯させ、かつ、前記地上光源部を点灯させる、請求項4に記載の水耕栽培装置。
- 前記光源部は、
前記栽培室地下部内に配置され、前記地下部に光を照射する地下光源部と、
前記栽培室地上部内に配置され、前記地上部に光を照射する地上光源部と、を含み、
前記水耕栽培装置は、前記植物の成長の管理が開始された後の所定の時点から計時を開始するタイマの計時情報に基づいて、前記地下光源部および前記地上光源部を制御する制御部をさらに備えた、請求項1に記載の水耕栽培装置。 - 前記光源部は、
前記栽培室地下部内に配置され、前記地下部に光を照射する地下光源部と、
前記栽培室地上部内に配置され、前記地上部に光を照射する地上光源部と、
前記地上光源部が発する光を集光する集光部と、
前記集光部が集光した光を前記地下光源部まで導く光伝送部と、を含み、
前記水耕栽培装置は、前記地上光源部および前記集光部を制御する制御部をさらに備え、
前記制御部が、前記集光部を機能させた状態で、前記地上光源部を点灯させるときには、前記地上光源部から発せられた光は、前記集光部で集められた後、前記光伝送部を通じて前記地下光源部へ送られ、それにより、前記地下光源部が点灯し、
前記制御部が、前記集光部を機能させない状態で、前記地上光源部を点灯させるときには、前記地下光源部は消灯しており、
前記制御部は、前記水耕栽培装置における前記植物の成長の管理が開始された後の所定の時点から計時を開始するタイマの計時情報に基づいて、前記地上光源部および前記集光部を制御する、請求項1に記載の水耕栽培装置。 - 前記制御部は、前記タイマが所定時間を計時するまで、前記地下光源部を点灯させる、請求項6または7に記載の水耕栽培装置。
- 前記制御部は、前記タイマが前記所定時間を計時した後においては、前記地下光源部を消灯させ、かつ、前記地上光源部を点灯させる、請求項8に記載の水耕栽培装置。
- 植物の地下部が成長する地下空間を有する栽培室地下部と、
前記植物の地上部が成長する地上空間を有し、前記栽培室地下部と一体となって栽培室を構成する栽培室地上部と、
前記植物の前記地上部が通過し得る貫通孔を有し、前記栽培室内において前記地下空間と前記地上空間とを仕切る地表面部と、
前記栽培室地下部内に配置され、前記地下空間の雰囲気の湿度を検出する湿度検出部と、
前記地下空間の雰囲気の湿度を調整する湿度調整機と、
前記湿度検出部により検出された前記湿度の情報に基づいて、前記湿度調整機を制御する制御部と、を備えた、水耕栽培装置。 - 前記水耕栽培装置は、前記貫通孔を通過した前記地上部を検出する地上部検出部をさらに備え、
前記制御部は、前記地上部が前記地上部検出部に検出されていない場合に、前記地下空間の雰囲気の湿度が所定値に維持されるように、前記湿度調整機を制御する、請求項10に記載の水耕栽培装置。 - 前記制御部は、前記地上部が前記地上部検出部に検出された場合に、前記地下空間の雰囲気の湿度が前記所定値よりも小さい特定値に維持されるように、前記湿度調整機を制御する、請求項11に記載の水耕栽培装置。
- 前記栽培室地下部内に前記植物のための養液を供給する供給機構をさらに備え、
前記制御部は、前記地上部が前記地上部検出部に検出された場合に、前記供給機構に前記養液の前記栽培室地下部への供給を開始させる、請求項12に記載の水耕栽培装置。 - 前記制御部は、前記水耕栽培装置における前記植物の成長の管理が開始された後の所定の時点から計時を開始するタイマが特定時間を計時していない場合に、前記地下空間の雰囲気の湿度が所定値に維持されるように、前記湿度調整機を制御する、請求項10に記載の水耕栽培装置。
- 前記制御部は、前記タイマが前記特定時間を計時した場合に、前記地下空間の雰囲気の湿度が前記所定値よりも小さい特定値に維持されるように、前記湿度調整機を制御する、請求項14に記載の水耕栽培装置。
- 前記栽培室地下部内に前記植物のための養液を供給する供給機構をさらに備え、
前記制御部は、前記タイマが前記特定時間を計時した場合に、前記供給機構に前記養液の前記栽培室地下部への供給を開始させる、請求項15に記載の水耕栽培装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-139621 | 2014-07-07 | ||
JP2014139621A JP2016015904A (ja) | 2014-07-07 | 2014-07-07 | 水耕栽培装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016006144A1 true WO2016006144A1 (ja) | 2016-01-14 |
Family
ID=55063807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001979 WO2016006144A1 (ja) | 2014-07-07 | 2015-04-08 | 水耕栽培装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016015904A (ja) |
WO (1) | WO2016006144A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116235732A (zh) * | 2022-06-08 | 2023-06-09 | 中国农业科学院都市农业研究所 | 一种能够调控湿度的种植装置及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020059521A1 (ja) * | 2018-09-19 | 2020-03-26 | パナソニックIpマネジメント株式会社 | 塊茎類の光合成産物の転流状態の推定方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5568224A (en) * | 1978-11-15 | 1980-05-22 | Tokyo Shibaura Electric Co | Mist recirculating type plant culture instrument |
JPS63132558U (ja) * | 1987-02-19 | 1988-08-30 | ||
JPH0785694B2 (ja) * | 1986-05-10 | 1995-09-20 | ▲高▼木産業株式会社 | 植物の養液栽培装置 |
JP2003116379A (ja) * | 2001-10-18 | 2003-04-22 | Matsushita Electric Ind Co Ltd | 植物等栽培装置 |
JP2012196202A (ja) * | 2011-03-08 | 2012-10-18 | Meiji Univ | 植物の栽培方法および植物の栽培装置 |
JP2014100080A (ja) * | 2012-11-19 | 2014-06-05 | Panasonic Corp | 植物育成装置 |
-
2014
- 2014-07-07 JP JP2014139621A patent/JP2016015904A/ja active Pending
-
2015
- 2015-04-08 WO PCT/JP2015/001979 patent/WO2016006144A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5568224A (en) * | 1978-11-15 | 1980-05-22 | Tokyo Shibaura Electric Co | Mist recirculating type plant culture instrument |
JPH0785694B2 (ja) * | 1986-05-10 | 1995-09-20 | ▲高▼木産業株式会社 | 植物の養液栽培装置 |
JPS63132558U (ja) * | 1987-02-19 | 1988-08-30 | ||
JP2003116379A (ja) * | 2001-10-18 | 2003-04-22 | Matsushita Electric Ind Co Ltd | 植物等栽培装置 |
JP2012196202A (ja) * | 2011-03-08 | 2012-10-18 | Meiji Univ | 植物の栽培方法および植物の栽培装置 |
JP2014100080A (ja) * | 2012-11-19 | 2014-06-05 | Panasonic Corp | 植物育成装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116235732A (zh) * | 2022-06-08 | 2023-06-09 | 中国农业科学院都市农业研究所 | 一种能够调控湿度的种植装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016015904A (ja) | 2016-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6760436B2 (ja) | 植物栽培方法及び施設 | |
US20210176934A1 (en) | Integrated hydroponic plant cultivation systems and methods | |
US12010959B2 (en) | Systems and methods for hydroponic plant growth | |
RU2411715C2 (ru) | Система с регулируемой средой и способ быстрого разведения семенного картофеля | |
JP5699460B2 (ja) | 植物育成モデル生成システム、植物栽培プラント及び植物育成モデル生成方法 | |
KR101424058B1 (ko) | 산업용 인삼 수경재배 시스템 | |
KR101287155B1 (ko) | 멀티 수경 재배 장치 | |
CN113395897A (zh) | 对在受控生长环境中二维及三维空间中的植物进行变址 | |
KR102320847B1 (ko) | 분무식 수경 재배장치 | |
JP2015133971A (ja) | 植物栽培プラント | |
WO2016006144A1 (ja) | 水耕栽培装置 | |
RU192183U1 (ru) | Аэропонная установка для промышленного выращивания мини-клубней картофеля | |
JP6477148B2 (ja) | 水耕栽培方法 | |
JP7014996B2 (ja) | 植物の栽培施設の管理システムおよび管理方法 | |
KR101979258B1 (ko) | 식물 재배기의 생장 환경 제어 시스템 및 방법 | |
KR101376095B1 (ko) | 가정용 식물재배장치 | |
CN117479830A (zh) | 果蔬植物的栽培方法 | |
WO2022074668A1 (en) | Moving sheet aeroponics | |
JP2017063765A (ja) | 植物栽培装置 | |
JP7516928B2 (ja) | 樹木栽培方法及び樹木栽培システム | |
KR101864604B1 (ko) | 인공광원을 이용한 육묘장치 | |
CN213095109U (zh) | 一种中药种植用育苗装置 | |
RU2258352C2 (ru) | Многоярусная светоустановка для выращивания предбазисного оздоровленного семенного картофеля и другой сельскохозяйственной продукции | |
WO2022210552A1 (ja) | 苗の育苗方法、育苗システム及び苗 | |
KR101841943B1 (ko) | 육묘장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15818280 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15818280 Country of ref document: EP Kind code of ref document: A1 |