WO2016002618A1 - Slit machining device and slit machining method - Google Patents

Slit machining device and slit machining method Download PDF

Info

Publication number
WO2016002618A1
WO2016002618A1 PCT/JP2015/068326 JP2015068326W WO2016002618A1 WO 2016002618 A1 WO2016002618 A1 WO 2016002618A1 JP 2015068326 W JP2015068326 W JP 2015068326W WO 2016002618 A1 WO2016002618 A1 WO 2016002618A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
meandering
polarization pattern
surface side
width direction
Prior art date
Application number
PCT/JP2015/068326
Other languages
French (fr)
Japanese (ja)
Inventor
廷槐 陳
伸彦 西原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2016531310A priority Critical patent/JPWO2016002618A1/en
Priority to CN201580035025.8A priority patent/CN106662533A/en
Publication of WO2016002618A1 publication Critical patent/WO2016002618A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a slit processing apparatus and a slit processing method.
  • FPR Feilm Patterned Retarder
  • a patterned retardation film called an FPR film is disposed on the surface of a liquid crystal panel in order to separate a right eye image and a left eye image (see Patent Document 1).
  • the FPR film includes a right-eye polarization pattern array and a left-eye polarization pattern array.
  • the right-eye polarization pattern column and the left-eye polarization pattern column are alternately arranged corresponding to the right-eye pixel column and the left-eye pixel column of the liquid crystal panel.
  • the right-eye polarization pattern sequence and the left-eye polarization pattern sequence are orthogonal to each other in the direction of the slow axis.
  • An alignment polarization pattern array may be disposed outside the active area where the right-eye polarization pattern array and the left-eye polarization pattern array are disposed.
  • the FPR film In the FPR film, a large number of polarization pattern rows are formed with a fine width. Therefore, when the FPR film is cut into a predetermined width or shape, or when the FPR film is bonded to the liquid crystal panel, the position of the polarization pattern row is accurately detected, and the FPR film is aligned based on the position. There must be.
  • Patent Literature 1 describes a device for irradiating light from the lower surface side of an FPR film and imaging with a camera from the upper surface side of the FPR film as a polarization pattern array detection device.
  • a polarizing plate is disposed between the FPR film and the light source, and a retardation plate (1 ⁇ 4 wavelength plate) and a polarizing plate are sequentially disposed between the FPR film and the camera from the FPR film side.
  • the right-eye polarization pattern array and the left-eye polarization pattern array extend along the longitudinal direction of the film. These polarization pattern rows are continuously detected as the FPR film is unwound and conveyed.
  • Patent Document 1 since the light source is installed on the lower surface side of the FPR film, the support cannot be disposed on the lower surface side of the FPR film. Therefore, the polarization pattern array must be detected at an unstable position where the FPR film is not supported by the support. Although it is conceivable to provide a through hole in the support, it is not possible to sufficiently illuminate the FPR film with only light passing through the through hole.
  • a protective film such as a protection film or a separator film is provided on the outermost surface of the FPR film.
  • the protective film has birefringence and causes an unintended retardation. If the protective film is not present, the right-eye polarization pattern array and the left-eye polarization pattern array are displayed as a bright pattern and a dark pattern. However, if the protective film is present, the contrast between the bright pattern and the dark pattern is reduced. The two cannot be clearly distinguished. Therefore, it is necessary to devise such as peeling off the protective film before performing the optical measurement.
  • the FPR film is bonded to the surface of the polarizing plate on the display surface side of the liquid crystal panel. Recently, a polarizing plate integrated FPR film in which the polarizing plate and the FPR film are integrated is used on the surface of the liquid crystal panel. Bonding is also being considered. In this configuration, the contrast between the bright pattern and the dark pattern is further lowered due to variations in the optical axis in the plane of the polarizing plate, and it becomes more difficult to distinguish the two from each other.
  • An object of the present invention is to provide a slit machining apparatus and a slit machining method capable of performing slit machining by accurately detecting a polarization pattern array.
  • the slit processing apparatus includes a retardation layer, a polarizer layer, and a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions.
  • a slit processing apparatus for slitting a long optical film provided in this order from the side toward the second surface side, the film supply unit for feeding out the optical film in the longitudinal direction thereof, and the film Based on the first detection device that detects the plurality of polarization pattern rows of the optical film fed out by the supply unit, and the positions of the plurality of polarization pattern rows detected by the first detection device, A first meandering control unit for controlling the meandering in the width direction, and a position downstream of the position where the first meandering control unit controls the meandering in the width direction of the optical film.
  • a cutting section that cuts along a slit line parallel to the transport direction
  • the first detection device has a first support surface that supports the first surface of the optical film, and the first support surface
  • a first support having a first reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side, and at least a part of the first film, and located on the first reflecting surface
  • a first light source unit that irradiates light from the second surface side of the optical film toward the optical film, and a first polarizing plate provided on the optical path of the light from the first light source unit toward the optical film
  • a first imaging unit that captures a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film, and the optical film captured by the first imaging unit.
  • the first reflecting surface Including a first pattern detector for detecting a plurality of polarization pattern sequence located.
  • the first detection device includes a first adjustment unit that adjusts a relative angle between a polarization axis of the first polarizing plate and a slow axis of the polarization pattern array. Can be included.
  • the plurality of polarization pattern rows of the optical film are arranged downstream of the position where the first meandering control unit controls the meandering in the width direction of the optical film.
  • the first meander control unit controls the meandering in the width direction of the optical film.
  • a second meandering control unit that controls meandering in the width direction of the optical film on the downstream side, and the second detection device has a second support surface that supports the first surface of the optical film.
  • a second support having a second reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface; Position on reflective surface A second light source unit that irradiates light from the second surface side of the optical film toward the optical film, and a second polarized light provided on an optical path of the light from the second light source unit toward the optical film A plate, a second imaging unit that captures a reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film, and the optical film imaged by the second imaging unit And a second pattern detecting unit that detects the plurality of polarization pattern rows located on the second reflecting surface based on the reflected light image.
  • the second detection device includes a second adjustment unit that adjusts a relative angle between a polarization axis of the second polarizing plate and a slow axis of the polarization pattern row. Can be included.
  • the first meandering control unit moves the position where the optical film is fed out by the film supply unit in the width direction of the optical film, thereby the optical film.
  • the second meandering control unit is configured to meander the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Can be controlled.
  • the slit processing apparatus includes a retardation layer, a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions, and a polarizer layer, on a first surface.
  • a slit processing apparatus for slitting a long optical film provided in this order from the side toward the second surface side, the film supply unit for feeding out the optical film in the longitudinal direction thereof, and the film Based on the first detection device that detects the plurality of polarization pattern rows of the optical film fed out by the supply unit, and the positions of the plurality of polarization pattern rows detected by the first detection device, A first meandering control unit for controlling meandering in the width direction, and a slip parallel to the transporting direction on the downstream side of the first meandering control unit in the transporting direction of the optical film.
  • a cutting section that cuts along a line, and the first detection device has a first support surface that supports the first surface of the optical film, and is formed on at least a part of the first support surface.
  • the first support having a first reflection surface that reflects light transmitted from the second surface side to the first surface side of the optical film, and toward the optical film located on the first reflection surface
  • a first light source unit for irradiating light from the second surface side of the optical film, and a reflected light image of the optical film located on the first reflecting surface is captured from the second surface side of the optical film.
  • a first pattern detecting unit that detects the plurality of polarization pattern rows located on the first reflecting surface based on the reflected light image of the optical film imaged by the first imaging unit; ,including.
  • the plurality of polarization pattern rows of the optical film are arranged downstream of the position where the first meandering control unit controls the meandering in the width direction of the optical film.
  • the first meander control unit controls the meandering in the width direction of the optical film.
  • a second meandering control unit that controls meandering in the width direction of the optical film on the downstream side, and the second detection device has a second support surface that supports the first surface of the optical film.
  • a second support having a second reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface; Position on reflective surface A second light source unit for irradiating light from the second surface side of the optical film toward the optical film, and a reflected light image of the optical film positioned on the second reflecting surface. Based on the second imaging unit that captures images from two surfaces and the reflected light image of the optical film captured by the second imaging unit, the plurality of polarization pattern rows located on the second reflecting surface are detected. And a second pattern detecting unit.
  • the first meandering control unit moves the position where the optical film is fed out by the film supply unit in the width direction of the optical film, thereby the optical film.
  • the second meandering control unit is configured to meander the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Can be controlled.
  • the slit processing method includes a retardation layer, a polarizer layer, and a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions from each other.
  • a slit processing method for slitting a long optical film provided in this order from the side toward the second surface side, the film supply step of feeding out the optical film in its longitudinal direction, and the film Based on the first detection step of detecting the plurality of polarization pattern rows of the optical film fed out by the supply step, and the positions of the plurality of polarization pattern rows detected by the first detection device, A first meandering control step for controlling the meandering in the width direction, and a position downstream of the position for controlling the meandering in the width direction of the optical film by the first meandering control step.
  • a cutting step of cutting the optical film along a slit line parallel to the transport direction, and the first detection step includes a first support surface that supports the first surface of the optical film. And a first support having a first reflection surface that reflects light transmitted from the second surface side to the first surface side on at least part of the first support surface, A first support step for supporting the first surface of the optical film, and light from the second surface side of the optical film through the first polarizing plate toward the optical film located on the first reflecting surface.
  • the first detection step includes a first adjustment step of adjusting a relative angle between a polarization axis of the first polarizing plate and a slow axis of the polarization pattern row. be able to.
  • the plurality of polarization pattern rows of the optical film are detected downstream from the position where the first meander control step controls the meandering of the optical film in the width direction.
  • a second meandering control step for controlling the meandering of the optical film in the width direction, and the second detecting step has a second support surface for supporting the first surface of the optical film, A second support having a second reflection surface that reflects light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface.
  • a second irradiation step of irradiating light a second imaging step of imaging a reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film, and the second imaging
  • the second detection step includes a second adjustment step of adjusting a relative angle between the polarization axis of the second polarizing plate and the slow axis of the polarization pattern array. be able to.
  • the first meandering control step moves the position where the optical film is fed out by the film supply step in the width direction of the optical film, thereby
  • the meandering in the width direction of the optical film is performed by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Can be controlled.
  • a retardation layer, a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions, and a polarizer layer are first surfaces.
  • a slit processing method for slitting a long optical film provided in this order from the side toward the second surface side, the film supply step of feeding out the optical film in its longitudinal direction, and the film Based on the first detection step of detecting the plurality of polarization pattern rows of the optical film fed out by the supply step, and the positions of the plurality of polarization pattern rows detected by the first detection step, A first meandering control step for controlling the meandering in the width direction, and a position for controlling the meandering in the width direction of the optical film by the first meandering control step.
  • a cutting step of cutting the optical film along a slit line parallel to the conveying direction on the flow side, and the first detecting step supports the first surface of the optical film.
  • a first support having a first reflection surface that reflects light transmitted through the optical film from the second surface side to the first surface side, at least in part within the first support surface.
  • a first imaging step of imaging a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film, and the optical film imaged by the first imaging step On the basis of the reflected light image comprises a first pattern detection step of detecting a plurality of polarization pattern row positioned on the first reflecting surface, a.
  • the plurality of polarization pattern rows of the optical film are arranged downstream of the position where the first meandering control step controls the meandering in the width direction of the optical film.
  • a second meandering control step for controlling meandering in the width direction of the optical film on the downstream side, and the second detecting step has a second support surface for supporting the first surface of the optical film.
  • a second reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface.
  • a second support step for supporting the first surface of the optical film by the holder, and irradiating light from the second surface side of the optical film toward the optical film located on the second reflecting surface.
  • the second imaging step, the second imaging step of imaging the reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film, and the second imaging step And a second pattern detection step of detecting the plurality of polarization pattern rows located on the second reflection surface based on the reflected light image of the optical film.
  • the first meandering control step moves the position in which the optical film is unwound by the film supply step in the width direction of the optical film, whereby the optical film
  • the guide roll supporting the optical film is inclined in the width direction of the optical film by inclining the direction of the rotation axis with respect to the transport direction of the optical film. Can be controlled.
  • a slit processing apparatus and a slit processing method that can detect a polarization pattern row with high accuracy and perform slit processing.
  • FIG. 1 is a schematic view of a slit machining apparatus 100 according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the first detection device 106 provided in the slit processing device 100.
  • FIG. 3 is a conceptual diagram of the first detection device 106.
  • FIG. 4 is a cross-sectional view showing an example of the optical film F1.
  • FIG. 5 is a plan view showing an example of the optical film F1.
  • the slit processing apparatus 100 of this embodiment includes a film supply unit 101, film winding units 102 and 103, an ear winding unit 104, a first meandering control unit 105, a first detection device 106, A two meandering control unit 107, a second detection device 108, a cutting unit 109 and a control device 110 are included.
  • the film supply unit 101 holds the original roll R1 around which the optical film F1 is wound, and feeds the optical film F1 in the longitudinal direction thereof.
  • the first meander control unit 105, the first detection device 106, the second meander control unit 107, the second detection device 108, and the like The cutting part 109 is arrange
  • the slit machining apparatus 100 slits the optical film F1 along the slit lines SL1, SL2, and SL3 (see FIG. 5) while controlling the meandering of the optical film F1 by the first meandering control unit 105 and the second meandering control unit 107. Process.
  • the optical film F1 is a long film including the active area AC and the peripheral area SR alternately in the width direction orthogonal to the longitudinal direction.
  • the active area AC is, for example, a part facing the display area of the liquid crystal panel
  • the peripheral area SR is a part facing the peripheral area located in the peripheral part of the display area of the liquid crystal panel.
  • a plurality of polarization pattern rows DPAa and DPAb having different slow axis directions are provided corresponding to the plurality of pixel rows of the liquid crystal panel.
  • the display area of the liquid crystal panel right-eye pixel columns for displaying right-eye images and left-eye pixel columns for displaying left-eye images are alternately arranged. Therefore, in the active area AC, the right-eye polarization pattern array DPAa corresponding to the right-eye pixel array and the left-eye polarization pattern array DPAb corresponding to the left-eye pixel array are alternately arranged.
  • a first polarization pattern array APAa whose slow axis direction is parallel to the right-eye polarization pattern array DPAa, and a second polarization pattern whose slow axis direction is parallel to the left-eye polarization pattern array DPAb.
  • Rows APAb are alternately arranged.
  • the polarization pattern rows APAa and APAb provided in the peripheral area SR can be used alone or together with the polarization pattern rows DPAa and DPAb provided in the active area AC as a reference for detecting the traveling position of the optical film F1. .
  • the width of at least one polarization pattern row is the polarization pattern provided in the active area AC.
  • the width of the columns DPAa and DPAb can be made wider.
  • the optical film F1 has a width corresponding to a plurality of liquid crystal panels (for example, two in FIG. 5).
  • the optical film F1 is cut along the slit lines SL1, SL2, and SL3 using the slit processing apparatus 100.
  • Slit lines SL1, SL2, and SL3 are set in the peripheral area SR.
  • the slit lines SL1, SL2, and SL3 are set, for example, at the positions of the boundary lines of the polarization pattern rows APAa and APAb provided in the peripheral area SR.
  • disconnected by the slit process of this embodiment will be cut
  • the travel position immediately after the feeding of the optical film F ⁇ b> 1 fed from the film supply unit 101 is detected using the first detection device 106.
  • the first detection device 106 detects a plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb (see FIG. 5) provided on the optical film F1.
  • the control device 110 is based on the positions of the plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb detected by the first detection device 106 (for example, the positions of the boundary lines of the polarization pattern rows APAa, APAb, DPAa, and DPAb).
  • the shift of the traveling position of the optical film F1 is detected, and the first meandering control unit 105 is controlled to control the meandering of the optical film F1 in the width direction.
  • the traveling position of the optical film F ⁇ b> 1 after the meandering is controlled by the first meandering control unit 105 is detected using the second detection device 108.
  • the second detection device 108 detects a plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb (see FIG. 5) provided on the optical film F1.
  • the control device 110 is based on the positions of the plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb detected by the second detection device 108 (for example, the positions of the boundary lines of the polarization pattern rows APAa, APAb, DPAa, and DPAb).
  • the shift of the running position of the optical film F1 is detected, and the second meandering control unit 107 is controlled to control the meandering of the optical film F1 in the width direction.
  • the first meandering control unit 105 detects the position (raw material) where the optical film F1 is fed out by the film supply unit 101 based on the shift of the traveling position of the optical film F1 detected by the first detection device 106 and the control device 110.
  • the position of the roll R1) is moved in the width direction of the optical film F2.
  • the first meandering control unit 105 roughly controls the shift of the traveling position of the optical film F1.
  • the second meandering control unit 107 includes a first guide roll 115 and a second guide that support the optical film F1 based on the shift of the traveling position of the optical film F1 detected by the second detection device 108 and the control device 110.
  • the roll 116 is inclined with respect to the transport direction of the optical film F1.
  • the first guide roll 115 and the second guide roll 116 are arranged with their rotation axes parallel to each other.
  • the second meandering control unit 107 integrally inclines the directions of the rotation axes of the first guide roll 115 and the second guide roll 116 with respect to the traveling direction of the optical film F1. Thereby, the traveling position of the optical film F1 is finely adjusted in the width direction, and the optical film F1 travels at a preset traveling position.
  • the second meandering control unit 107 may be configured such that one guide roll that supports the optical film F1 is inclined in the direction of the rotation axis with respect to the transport direction of the optical film F1.
  • the traveling position of the optical film F ⁇ b> 1 conveyed to the cutting unit 109 is precisely controlled by the first meandering control unit 105 and the second meandering control unit 107.
  • the configurations of the first meandering control unit 105 and the second meandering control unit 107 are not limited to those described above.
  • the first meandering control unit 105 is preferably one that can adjust the traveling position of the optical film F ⁇ b> 1 larger than the second meandering control unit 107.
  • the second meandering control unit 107 is preferably capable of adjusting the traveling position of the optical film F1 more precisely than the first meandering control unit 105.
  • the arrangement of the first meandering control unit 105, the first detection device 106, the second meandering control unit 107, and the second detection device 108 is not limited to the above.
  • the first detection device 106 may be upstream or downstream of the first meander control unit 105.
  • the second detection device 108 may be upstream or downstream of the second meandering control unit 107.
  • the second detection device 108 is on the downstream side of the position where the first meandering control unit 105 controls the meandering of the optical film F1 in the width direction, and on the upstream side of the position where the cutting unit 109 cuts the optical film F1.
  • the second meandering control unit 107 is downstream of the position where the first meandering control unit 105 controls the meandering of the optical film F1 in the width direction, and upstream of the position where the cutting unit 109 cuts the optical film F1. Thus, what is necessary is just to control the meandering in the width direction of the optical film F1.
  • the cutting part 109 cuts the optical film F1 along the slit lines SL1, SL2, and SL3 shown in FIG.
  • the cutting part 109 can be constituted by, for example, a cutting blade or a laser cutter.
  • a plurality of cutting portions 109 are arranged in the width direction of the optical film F1 at the same intervals as the arrangement intervals of the slit lines SL1, SL2, and SL3.
  • the control device 110 controls the travel position of the optical film F ⁇ b> 1 by the first meandering control unit 105 and the second meandering control unit 107 so that the slit lines SL ⁇ b> 1, SL ⁇ b> 2, SL ⁇ b> 3 are arranged immediately below the cutting unit 109.
  • the cutting unit 109 is a slit line parallel to the conveyance direction of the optical film F1 on the downstream side of the position where the first meandering control unit 105 and the second meandering control unit 107 control the meandering in the width direction of the optical film F1. Cut along SL1, SL2, and SL3.
  • the part including the active area AC is wound up by the film winding parts 102 and 103, and is a long film having a width corresponding to one liquid crystal panel.
  • the part not including the active area AC is wound up by the ear winding unit 104 and discarded.
  • the configuration of the first detection device 106 and the second detection device 108 will be described with reference to FIGS. 2 and 3.
  • the configuration of the first detection device 106 and the second detection device 108 is the same. Therefore, in the following description, the configuration of the first detection device 106 will be mainly described.
  • the first detection device 106 of the present embodiment includes a first support 111, a first imaging unit 112, a first pattern detection unit 114, a first adjustment unit 113, including.
  • the first detection device 106 detects polarization pattern rows APAa, APAb, DPAa, and DPAb (see FIG. 5) included in the optical film F1.
  • the optical film F1 includes at least a retardation layer F20, a polarizer layer F16, and a patterned retardation layer F14.
  • the retardation layer F20, the polarizer layer F16, and the patterned retardation layer F14 are provided on the second surface (first support) from the first surface (surface supported by the first support 111) side of the optical film F1. It is provided in this order toward the surface opposite to the side supported by the body 111.
  • the portion excluding the retardation layer F11 is the optical film body F21.
  • the patterned retardation layer F14 includes a plurality of polarization pattern rows F14a and F14b having different directions of the slow axis RTAX.
  • the patterned retardation layer F14 includes, for example, a first polarization pattern row F14a and a second polarization pattern row F14b whose slow axis RTAX directions are orthogonal to each other.
  • the slow axis RTAX of the first polarization pattern row F14a forms an angle of 45 ° clockwise, for example, with respect to the polarization axis (transmission axis) PLAX1 of the polarizer layer F16 when viewed from the normal direction of the optical film F1. .
  • the slow axis RTAX of the second polarization pattern row F14b is, for example, 45 degrees counterclockwise with respect to the polarization axis PLAX1 of the polarizer layer F16 when viewed from the normal direction of the optical film F1.
  • the first polarization pattern row F14a and the second polarization pattern row F14b are alternately arranged in a direction orthogonal to the longitudinal direction.
  • the first polarization pattern column F14a corresponds to the polarization pattern column APAa and the polarization pattern column DPAa in FIG. 5
  • the second polarization pattern column F14b corresponds to the polarization pattern column APAb and the polarization pattern column DPAb in FIG.
  • the retardation layer F20 is detachably provided on the optical film body F21 as a protective film (separator film) for the optical film body F21.
  • the protective film is usually produced by biaxial stretching and has birefringence.
  • the retardation of the protective film is not sufficiently controlled as compared with the patterned retardation layer F14 and the polarizer layer F16. Therefore, the protective film imparts an unintended retardation to the light transmitted through the patterned retardation layer F14.
  • Such a phase difference should be eliminated in order to reduce the accuracy of optical measurement.
  • such a phase difference is positively used to detect the polarization pattern rows F14a and F14b. It is carried out. This point will be described later.
  • the optical film F1 can include layers other than the retardation layer F20, the polarizer layer F16, and the patterned retardation layer F14. In the present embodiment, for example, a part or all of the optical film F2 shown in FIG. 4 can be used as the optical film F1.
  • the optical film F2 in FIG. 4 includes a first retardation layer (protection film) F11, a base material layer F12, a photo-alignment layer F13, a patterned retardation layer F14, a first adhesive layer F15, a polarizer layer F16, and a second adhesive.
  • a layer F17, a polarizer protective layer F18, an adhesive layer F19, and a second retardation layer (separator film) F20 are included in this order in the thickness direction.
  • the portion excluding the first retardation layer F11 and the second retardation layer F20 is the optical film main body F21.
  • the polarizer layer F16 transmits light having a vibration surface in a certain direction out of incident light, and absorbs light having a vibration surface perpendicular to the light. The light emitted through the polarizer layer F16 becomes linearly polarized light.
  • Examples of the polarizer layer F16 include a step of uniaxially stretching a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and a dichroic dye.
  • sucked with a boric-acid aqueous solution, and the process of washing with water after the process by a boric-acid aqueous solution can be used.
  • the polyvinyl alcohol-based resin can be obtained by saponifying a polyvinyl acetate-based resin.
  • the polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the dichroic dye for example, iodine or a dichroic organic dye is used.
  • iodine a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide can be employed.
  • Uniaxial stretching of the polyvinyl alcohol resin film may be performed before dyeing with the dichroic dye, may be performed simultaneously with dyeing with the dichroic dye, or after dyeing with the dichroic dye, It may be performed during the acid treatment.
  • the thickness of the polarizer layer F16 can be, for example, 5 ⁇ m or more and 40 ⁇ m or less in average thickness.
  • the patterned retardation layer F14 emits incident linearly polarized light as light of two types of polarization states.
  • the patterned retardation layer F14 is formed on the photo-alignment layer F13.
  • the photo-alignment layer F13 has an alignment regulating force with respect to a material having liquid crystallinity (hereinafter referred to as a liquid crystal material).
  • the photo-alignment layer F13 is formed using a polymerizable photo-alignment material.
  • a material that exhibits an alignment regulating force when exposed to polarized light is used.
  • maintained the alignment control force is formed by making it superpose
  • a photo-alignment material a conventionally known material can be used.
  • the photo-alignment layer F13 includes, for example, a first alignment region and a second alignment region in which the directions of the alignment regulating force are orthogonal to each other.
  • Each of the first alignment region and the second alignment region extends in a strip shape in a direction parallel to one side of the optical film F2.
  • the first alignment region and the second alignment region are alternately provided in a direction orthogonal to the extending direction of the first alignment region and the second alignment region.
  • the patterned retardation layer F14 includes a first polarization pattern row F14a corresponding to the first alignment region of the photo-alignment layer F13 and a second polarization pattern row F14b corresponding to the second alignment region.
  • the slow axis of the first polarization pattern row F14a and the second polarization pattern row F14b are orthogonal to each other.
  • the first polarization pattern row F14a changes linearly polarized light to first circularly polarized light.
  • the second polarization pattern row F14b changes linearly polarized light into second circularly polarized light having a rotation direction different from that of the first circularly polarized light.
  • the patterned retardation layer F14 is formed using a liquid crystal material having a polymerizable functional group.
  • the patterned retardation layer F14 arranges the liquid crystal material in two directions according to the alignment regulating force of the first alignment region and the second alignment region that the photo-alignment layer F13 has, and further, the polymerizable functional group that the liquid crystal material has Is reacted to maintain the liquid crystal phase of the liquid crystal material to be used and cured.
  • a polymerizable liquid crystal material a conventionally known material can be used.
  • the base material layer F12 is used as a base material that supports the photo-alignment layer F13 and the patterned retardation layer F14.
  • the photo-alignment layer F13 and the patterned retardation F14 are formed by applying a photo-alignment material and a liquid crystal material to the surface of the base material layer F12.
  • Examples of the material for forming the base material layer F12 include triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, cyclic polyolefin resin, and polypropylene resin.
  • TAC triacetyl cellulose
  • Examples thereof include polyolefin resins, polyarylate resins, polyimide resins, and polyamide resins.
  • the thickness of the base material layer F12 can be, for example, 40 ⁇ m or more and 100 ⁇ m or less in average thickness.
  • polarizer protective layer F18 As a material for forming the polarizer protective layer F18, the same material as that of the base material layer F12 described above can be used. Examples of such materials include polyolefins including triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, cyclic polyolefin resin, and polypropylene resin. Resin, polyarylate resin, polyimide resin, polyamide resin and the like.
  • TAC triacetyl cellulose
  • the thickness of the polarizer protective layer F18 can be, for example, 5 ⁇ m or more and 80 ⁇ m or less in average thickness.
  • a material for forming the first adhesive layer F15 and the second adhesive layer F17 is, for example, a composition using a polyvinyl alcohol-based resin or a urethane resin as a main component, dissolved in water, or a water-based adhesive dispersed in water, A solvent-free photocurable adhesive containing a photocurable resin and a cationic photopolymerization initiator can be used.
  • a material for forming the first adhesive layer F15 and the second adhesive layer F17 it is preferable to use a photocurable adhesive from the viewpoint that the volume shrinkage during production is small and the thickness can be easily controlled. It is more preferable to use an adhesive.
  • the ultraviolet curable adhesive various materials conventionally used in the production of polarizing plates can be used as long as they are supplied in a liquid-applicable state.
  • the ultraviolet curable adhesive is a cationically polymerizable compound, for example, an epoxy compound, more specifically, an intramolecular molecule as described in JP-A-2004-245925, from the viewpoint of weather resistance, polymerizability, and the like. It preferably contains an epoxy compound having no aromatic ring as one of the ultraviolet curable components.
  • an epoxy compound for example, a hydrogenation obtained by nuclear hydrogenation of an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound represented by diglycidyl ether of bisphenol A, and converting it to glycidyl ether.
  • an epoxy compound an alicyclic epoxy compound having at least one epoxy group bonded to an alicyclic ring in the molecule, and an aliphatic epoxy compound having a glycidyl ether of an aliphatic polyhydroxy compound as a representative example.
  • polymerization initiators particularly to generate cationic species or Lewis acids upon irradiation with ultraviolet rays, initiate polymerization of cationically polymerizable compounds.
  • the photocationic polymerization initiator is blended.
  • the ultraviolet curable adhesive may contain various additives such as a thermal cationic polymerization initiator that initiates polymerization by heating, and other photosensitizers.
  • the materials for forming the first adhesive layer F15 and the second adhesive layer F17 may be the same or different. However, from the viewpoint of productivity, the first adhesive layer F15 and the second adhesive layer F17 are based on the premise that an appropriate adhesive force can be obtained. The adhesive layer F15 and the second adhesive layer F17 are preferably formed using the same adhesive.
  • the thickness of the 1st adhesion layer F15 and the 2nd adhesion layer F17 can be 0.5 micrometer or more and 5 micrometers or less by average thickness, for example.
  • the adhesive layer F19 is used, for example, to bond the optical film body F21 to the display surface of the liquid crystal panel.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer F19 include those having an acrylic resin, a silicone-based resin, polyester, polyurethane, polyether, or the like as a base resin.
  • acrylic adhesives based on acrylic resins are excellent in optical transparency, retain moderate wettability and cohesion, and are also excellent in weather resistance and heat resistance. It is preferably used because peeling problems such as floating and peeling hardly occur under the conditions.
  • the acrylic resin constituting the acrylic pressure-sensitive adhesive includes an acrylic acid alkyl ester having an ester group having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group, a butyl group, or a 2-ethylhexyl group,
  • An acrylic copolymer with a functional group-containing (meth) acrylic monomer such as (meth) acrylic acid and (meth) acrylic acid-2-hydroxyethyl is preferably used.
  • the pressure-sensitive adhesive layer F19 containing such an acrylic copolymer is relatively free without causing adhesive residue or the like on the glass substrate when it is necessary to peel off after being bonded to the liquid crystal panel. It can be easily peeled off.
  • the acrylic copolymer preferably has a glass transition temperature of 25 ° C. or lower, and more preferably 0 ° C. or lower.
  • the acrylic copolymer usually has a weight average molecular weight of 100,000 or more.
  • the thickness of the adhesive layer F19 can be, for example, 1 ⁇ m or more and 40 ⁇ m or less in average thickness.
  • the first retardation layer (protection film) F11 protects the patterned retardation layer F14 together with the base material layer F12.
  • the first retardation layer F11 is provided to be peelable from the base material layer F12.
  • the first retardation layer F11 is formed by forming an adhesive / peelable resin layer or an adhesive resin layer on a transparent resin film to give weak adhesiveness.
  • the transparent resin film include extruded films of thermoplastic resins such as polyethylene terephthalate, polyethylene naphtholate, polyethylene, and polypropylene, co-extruded films combining them, and films obtained by stretching them uniaxially or biaxially. be able to.
  • the transparent resin film it is preferable to use polyethylene terephthalate or polyethylene uniaxially or biaxially stretched film which is excellent in transparency and homogeneity and is inexpensive.
  • Examples of the adhesive / peelable resin layer include acrylic adhesives, natural rubber adhesives, styrene-butadiene copolymer resin adhesives, polyisobutylene adhesives, vinyl ether resin adhesives, and silicone resin adhesives. And so on.
  • Examples of the adhesive resin layer include an ethylene-vinyl acetate copolymer resin.
  • As the adhesive / peelable resin layer it is preferable to use an acrylic adhesive having excellent transparency.
  • the thickness of the first retardation layer F11 can be, for example, an average thickness of 15 ⁇ m to 75 ⁇ m.
  • the second retardation layer (separator film) F20 covers the adhesive layer F19 and protects the adhesive layer F19.
  • the second retardation layer F20 is provided to be peelable from the adhesive layer F19.
  • a transparent resin film similar to the first retardation layer F11 can be used as the second retardation layer F20.
  • the thickness of the second retardation layer F20 can be, for example, 15 ⁇ m or more and 75 ⁇ m or less in average thickness.
  • the optical film F2 is used as the optical film F1.
  • a film obtained by removing the first retardation layer F11 from the optical film F2 may be used as the optical film F1.
  • the first support 111 has a cylindrical first support surface 111a parallel to the width direction of the optical film F1.
  • the 1st support body 111 is one of the some conveyance rolls which comprise the conveyance path
  • the first support 111 rotates with the conveyance of the optical film F1 while supporting the first surface of the optical film F1 (in this embodiment, for example, the upper surface of the second retardation layer F20 in FIG. 4).
  • the first support 111 has a reflection surface RS (first reflection surface) that reflects light transmitted through the optical film F1 from the second surface side to the first surface side, at least in part within the first support surface 111a.
  • the first support 111 is, for example, a mirror-finished metal roll, and the entire first support surface 111a is a reflective surface RS.
  • the configuration is not limited to this.
  • the material and configuration of the reflective surface RS are not particularly limited.
  • the reflective surface RS may be formed by mirror-finishing the surface of the first support 111, and is formed by disposing a reflective member such as a metal reflective film or a reflective polarizing plate on the surface of the first support 111. May be.
  • the entire first support surface 111a may be the reflection surface RS, or only a part of the first support surface 111a may be the reflection surface RS.
  • the first imaging unit 112 includes a first light source unit 112a, a first imaging unit 112b, and a first polarizing plate 112c.
  • the first imaging unit 112 is configured so that light transmitted through one polarization pattern row and reflected by the reflection surface RS passes through the same polarization pattern row and enters the first imaging unit 112b.
  • the one light source unit 112a and the first imaging unit 112b are held close to each other.
  • the first light source unit 112a irradiates light from the second surface of the optical film F1 (the lower surface of the first retardation layer F11 in FIG. 4) toward the optical film F1 positioned on the reflection surface.
  • the 1st polarizing plate 112c is provided on the optical path of the light which goes to the optical film F1 from the 1st light source part 112a.
  • the light emitted from the first light source unit 112a passes through the first polarizing plate 112c and is converted into linearly polarized light.
  • a known light source such as an LED can be used as the first light source unit 112a.
  • the first light source unit 112a emits white light toward the optical film F1, but the light emitted by the first light source unit 112a is not limited thereto.
  • the light having an appropriate wavelength is first It can irradiate from the light source part 112a.
  • the 1st imaging part 112b images the reflected light image of the optical film F1 located on the reflective surface RS from the 2nd surface side of the optical film F1.
  • known imaging means such as a CCD camera can be used.
  • the first pattern detection unit 114 Based on the reflected light image of the optical film F1, the first pattern detection unit 114 detects the first polarization pattern row F14a (APAa, DPAa) and the second polarization pattern row F14b (APAb, DPAb) located on the reflection surface RS. Then, the position information of the boundary lines of the polarization pattern rows F14a and F14b is extracted.
  • a known image processing unit can be used as the first pattern detection unit 114.
  • the image signal of the reflected light image captured by the first imaging unit 112b is converted into image data converted into digital data by the first pattern detection unit 114, and known image processing such as color extraction processing and binarization processing is performed. Applied.
  • the first polarization pattern row F14a and the second polarization pattern row F14b are different from each other in the direction formed by the slow axis RMAX with respect to the polarization axis (transmission axis) PLAX2 of the first polarizing plate 112c. Therefore, the first polarizing plate 112c, the patterned retardation layer F14, the polarizer layer F16, and the retardation layer F20 are transmitted, reflected by the reflective surface RS, and again the retardation layer F20, the polarizer layer F16, and the patterned retardation.
  • the brightness and color of the light transmitted through the layer F14 are different between the light transmitted through the first polarization pattern array F14a and the light transmitted through the second polarization pattern array F14b.
  • the first pattern detection unit 114 determines the first polarization pattern row F14a and the second polarization pattern row F14b based on the difference in luminance or color between the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b. Is detected.
  • the light that passes through the first polarization pattern array F14a and enters the first imaging unit 112b is as follows.
  • the red light R has a large amount of light
  • the light transmitted through the second polarization pattern array F14b and incident on the first imaging unit 112b has a green color G and a small amount of light.
  • the first pattern detection unit 114 performs known image processing such as color extraction processing and binarization processing on the image data of the reflected light image, thereby the first polarization pattern row F14a and the second polarization pattern row F14b. Is detected.
  • the first pattern detection unit 114 extracts a portion having a brighter color (for example, red R in FIG. 6) from the image data of the reflected light image, and further extracts the extracted image data.
  • the first polarization pattern row F14a and the second polarization pattern row F14b are detected as a bright pattern and a dark pattern.
  • Many algorithms for color extraction processing and binarization processing are known and are not limited to specific detection methods.
  • the first light source unit 112a may irradiate colored light such as red or green.
  • the reflected light image of the second polarization pattern array F14b that hardly includes the red color R is black. Therefore, the ratio between the brightness of the reflected light image of the first polarization pattern array F14a and the brightness of the reflected light image of the second polarization pattern array F14b (hereinafter referred to as “the reflected light image of the first polarization pattern array and the second polarization pattern array).
  • the first polarization pattern row F14a and the second polarization pattern row F14b are examples of the ratio between the brightness of the reflected light image of the first polarization pattern array and the second polarization pattern array.
  • the first light source unit 112a can also emit green G light.
  • the contrast of the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b is better when the first light source unit 112a that emits a brighter color (for example, red R in FIG. 6) is used. It is advantageous in increasing
  • the contrast of the reflected light images of the first polarization pattern array F14a and the second polarization pattern array F14b varies depending on the wavelength of light incident on the optical film F1.
  • the wavelength of the light emitted from the first light source unit 112a is such that the contrast of the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b is relatively larger than when white light is emitted. Can be set to any wavelength.
  • the first adjustment unit 113 adjusts the relative angle between the polarization axis PLAX2 of the first polarizing plate 112c and the slow axis RMAX of the polarization pattern rows F14a and F14b.
  • the first adjustment unit 113 adjusts the angle formed by the slow axis RMAX of the first polarization pattern row F14a and the second polarization pattern row F14b with respect to the polarization axis PLAX2 of the first polarizing plate 112c by the first adjustment unit 113, the first polarization pattern row Asymmetry (difference in color, brightness, etc.) of the reflected light images of F14a and the second polarization pattern row F14b can be increased.
  • the first pattern detection unit 114 can accurately detect the polarization pattern rows F14a and F14b located on the reflection surface.
  • the relative angle between the polarization axis PLAX2 of the first polarizing plate 112c and the slow axis RMAX of the polarization pattern rows F14a and F14b is adjusted by, for example, rotating the first polarizing plate 112c by the first adjustment unit 113.
  • the operator After being attached to a possible jig, the operator checks the reflected light image of the optical film F1 and rotates the first polarizing plate 112c attached to the rotatable jig together with the jig. be able to.
  • the operator rotates the jig while confirming the reflected light image of the optical film F1, and at the position where the asymmetry between the first polarization pattern row F14a and the second polarization pattern row F14b is determined to be the largest.
  • the procedure can be to stop the rotation of the tool.
  • the adjustment of the relative angle can be automatically performed by the first adjusting unit 113 by rotating the jig with a motor (not shown).
  • adjustment of said relative angle may be implemented for every process, when the original fabric roll (refer code
  • the control device 110 acquires the position information of the boundary lines of the polarization pattern rows F14a and F14b extracted by the first pattern detection unit 114.
  • the control device 110 confirms the arrangement position of the optical film F1 relative to the first support 111 based on the positional information on the boundary lines of the polarization pattern rows F14a and F14b.
  • the control device 110 Based on the positions of the polarization pattern rows F14a and F14b (for example, the positions of the boundary lines of the polarization pattern rows F14a and F14b), the control device 110 performs the actual travel position of the optical film F1 with respect to the preset travel position. It is detected how much is shifted.
  • the control device 110 moves the film supply unit 101 in the width direction orthogonal to the transport direction of the optical film F1 by the first meandering control unit 105 shown in FIG. 1 so as to reduce the shift of the traveling position of the optical film F1.
  • the control device 110 includes a computer system.
  • the computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
  • the function of the first pattern detection unit 114 is realized by an arithmetic processing unit.
  • the control device 110 includes an interface capable of executing communication with an external device of the computer system.
  • the film supply unit 101, the film winding units 102 and 103, the ear winding unit 104, the first meandering control unit 105, the first Operations of external devices such as the detection device 106, the second meandering control unit 107, the second detection device 108, and the cutting unit 109 are comprehensively controlled.
  • the configuration of the second detection device 108 is the same as that of the first detection device 106.
  • the second detection device 108 includes a second support member 117, a second imaging unit 118, a second pattern detection unit 120, and a second adjustment unit 119.
  • the second support 117 has the same configuration as the first support 111
  • the second imaging unit 118 has the same configuration as the first imaging unit 112
  • the second pattern detection unit 120 has the same configuration as the first pattern detection unit 114.
  • the second adjustment unit 119 has the same configuration as the first adjustment unit 113.
  • the second detection device 108 captures the reflected light image of the optical film F ⁇ b> 1 reflected by the reflection surface RS (second reflection surface) of the second support 117 with the second imaging unit 118. Then, based on the imaging result, the first polarization pattern array F14a (APAa, DPAa) and the second polarization pattern array F14b (APAb, DPAb) located on the reflection surface RS are detected, and the first polarization pattern array F14a The position information of the boundary line with the second polarization pattern row F14b is extracted.
  • the first polarization pattern array F14a APAa, DPAa
  • the second polarization pattern array F14b APAb, DPAb
  • the first detection apparatus 106 and the second detection apparatus 108 are configured as described above.
  • the light transmitted through the patterned retardation layer F14 and the polarizer layer F16 is incident on the reflection surface RS via the retardation layer F20 and reflected by the reflection surface RS.
  • the light is again incident on the polarizer layer F16 and the patterned retardation layer F14 via the retardation layer F20. Therefore, in the reflected light image captured by the imaging units 112b and 118b, a plurality of pattern rows having different colors and luminances are displayed corresponding to the first polarization pattern row F14a and the second polarization pattern row F14b. Therefore, if image processing such as color extraction processing or binarization processing is performed on the image data of the reflected light image, the first polarization pattern row F14a and the second polarization pattern row F14b can be detected with high accuracy.
  • the retardation layer F20 is not provided between the patterned retardation layer F14 and the reflection surface RS, the reflected light image captured by the imaging units 112b and 118b is a black image. Therefore, the first polarization pattern row F14a and the second polarization pattern row F14b cannot be detected.
  • the retardation layer F20 between the patterned retardation layer F14 and the reflecting surface RS, light leaking from the polarizer layer F16 is generated, and the color and brightness of the light are also different from those of the first polarization pattern array F14a.
  • the transmitted light is different from the transmitted light through the second polarization pattern array F14b.
  • the retardation layer F20 often causes inconveniences in optical measurement because the retardation thereof is not sufficiently controlled as compared with the patterned retardation layer F14 and the polarizer layer F16. Therefore, it is necessary to devise a technique such as peeling the retardation layer in advance before optical measurement. In this embodiment, however, the retardation of the retardation layer F20 is peeled off positively using the retardation of the retardation layer F20. Without detection, the polarization pattern rows F14a and F14b are detected. Therefore, it is possible to provide a detection device and a detection method capable of detecting the polarization pattern rows F14a and F14b with high accuracy and efficiency.
  • the asymmetry of the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b can be increased by the adjustment units 113 and 119. Therefore, the detection accuracy of the polarization pattern rows F14a and F14b is increased.
  • the slit processing apparatus 100 is based on the positions of the polarization pattern rows F14a and F14b detected by the first detection device 106 and the second detection device 108 (for example, the positions of the boundary lines of the polarization pattern rows F14a and F14b).
  • the traveling position of the optical film F1 is controlled. Therefore, the traveling position can be controlled with high accuracy.
  • the travel position is controlled in two steps using the first meandering control unit 105 and the second meandering control unit 107, the shift of the travel position of the optical film F1 can be almost eliminated. Therefore, the possibility that the active area AC is accidentally disconnected due to the shift of the traveling position is reduced, and the yield is improved.
  • working position can be narrowed, the waste of the optical film F1 decreases and manufacturing cost is reduced.
  • FIG. 7 is a conceptual diagram of the first detection device 130 applied to the slit machining device according to the second embodiment of the present invention.
  • components that are the same as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the posture of the optical film F1 supported by the first support 111 is different from that of the first embodiment. Further, based on this difference in posture, the configuration of the first detection device 130 is also different from the first detection device 106 of the first embodiment.
  • the first detection device 130 of the present embodiment includes a first support 111, a first imaging unit 131, and a first pattern detection unit 114.
  • the first support 111 supports the optical film F1 in such a posture that the patterned retardation layer F21 of the optical film F1 is disposed below the polarizer layer F16.
  • the optical film F1 has a first surface when the surface supported by the first support 111 is a first surface, and a surface opposite to the side supported by the first support 111 is a first surface.
  • a first retardation layer F11, a patterned retardation layer F14, and a polarizer layer F16 are included in this order from the surface side to the second surface side.
  • the first imaging unit 131 includes a first light source unit 112a and a first imaging unit 112b.
  • the polarizer layer F16 is disposed between the patterned retardation layer F14 and the first light source unit 112a, a separate polarizing plate is disposed between the first light source unit 112a and the optical film F1. There is no need to do. Therefore, the first polarizing plate 112c and the first adjustment unit 113 shown in the first embodiment are omitted.
  • the first pattern detection unit 114 detects the polarization pattern rows F14a and F14b located on the reflection surface RS based on the reflected light image of the optical film F1, and extracts the position information of the boundary lines of the polarization pattern rows F14a and F14b. To do.
  • the image signal of the reflected light image captured by the first imaging unit 112b is converted into image data converted into digital data by the first pattern detection unit 114, and known image processing such as color extraction processing and binarization processing is performed. Applied.
  • the first polarization pattern row F14a and the second polarization pattern row F14b are different from each other in the direction formed by the slow axis RMAX with respect to the polarization axis PLAX of the polarizer layer F16. Therefore, the light transmitted through the polarizer layer F16, the patterned retardation layer F14, and the retardation layer F11, reflected by the reflecting surface RS, and transmitted again through the retardation layer F11, the patterned retardation layer F14, and the polarizer layer F16.
  • the brightness and color of the light beam are different between the light transmitted through the first polarization pattern array F14a and the light transmitted through the second polarization pattern array F14b.
  • the first pattern detection unit 114 determines the first polarization pattern row F14a and the second polarization pattern row F14b based on the difference in luminance or color between the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b. Is detected.
  • the configuration of the second detection device is the same as that of the first detection device 130. Also in the second detection apparatus, the second polarizing plate 118c and the second adjustment unit 119 described in the first embodiment are omitted. Also in the second detection device, since the posture of the optical film F1 supported by the second support 117 is different from that of the first embodiment, the first polarization pattern row F14a imaged by the second imaging unit 118b and the first Based on the difference in luminance or color of the reflected light image of the two-polarization pattern row F14b, the first polarization pattern row F14a and the second polarization pattern row F14b can be detected.
  • the polarization pattern rows F14a and F14b are detected without actively separating the retardation layer F11 by actively using the retardation of the retardation layer F11. Therefore, it is possible to provide a detection device and a detection method capable of detecting the polarization pattern rows F14a and F14b with high accuracy and efficiency. And by controlling the traveling position of the optical film F1 using such a detecting device and a detecting method, it is possible to provide a slit processing apparatus and a slit processing method capable of accurately controlling the traveling position. .
  • the polarization pattern sequence included in the patterned retardation layer has been described as the polarization pattern sequence included in the patterned retardation layer.
  • the number of polarization pattern sequences included in the patterned retardation layer is not limited to two, and may be three or more.
  • the reflected light images of the plurality of polarization pattern rows are different from each other in luminance and color. Therefore, the pattern detection unit can detect the plurality of polarization pattern rows based on the difference in luminance or color of the reflected light images of the plurality of polarization pattern rows.
  • the slit processing apparatus and the slit processing method according to the present invention it is possible to provide a slit processing apparatus and a slit processing method capable of accurately detecting a polarization pattern array and performing slit processing.
  • SYMBOLS 100 Slit processing apparatus, 101 ... Film supply part, 105 ... 1st meander control part, 106 ... 1st detection apparatus, 107 ... 2nd meander control part, 108 ... 2nd detection apparatus, 109 ... Cutting part, 111 ... 1st One support, 111a ... first support surface, 112a ... first light source unit, 112b ... first imaging unit, 112c ... first polarizing plate, 113 ... first adjustment unit, 114 ... first pattern detection unit, 115 ... first One guide roll, 116 ... second guide roll, 117 ... second support, 117a ... second support surface, 118a ... second light source unit, 118b ...
  • second imaging unit 118c ... second polarizing plate, 119 ... second Adjustment unit, 120 ... second pattern detection unit, F1, F2 ... optical film, F11 ... first retardation layer (retardation layer), F14 ... patterned retardation layer, F14a, F14b, APAa, APAb, DPAa, DPA ... polarization pattern sequence, F16 ... polarizer layer, F20 ... second retardation layer (retardation layer), RS ... reflecting surface, SL1, SL2, SL3 ... slit line

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Polarising Elements (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This slit machining device (100) machines a slit in an optical film (F1) while performing undulation control using a first detection device (106). The first detection device (106) includes: a first support body (111) that supports the first surface of an optical film (F1); a first light source unit (112a) that illuminates light from the second surface side of the optical film (F1) towards the optical film (F1) positioned on a first reflective surface (RS); a first polarizing plate (112c) provided on the optical path of light from the first light source unit (112a) towards the optical film (F1); a first imaging unit (112b) that images the reflected light image of the optical film (F1) positioned on the first reflective surface (RS1) from the second surface side of the optical film (F1); and a first pattern detection unit (114) that detects a plurality of polarized pattern sequences (F14a, F14b) positioned on the first reflective surface (RS) on the basis of the reflected light image of the optical film (F1) imaged by the first imaging unit (112b).

Description

スリット加工装置およびスリット加工方法Slit processing apparatus and slit processing method
 本発明は、スリット加工装置およびスリット加工方法に関するものである。
本出願は、2014年6月30日に日本に出願された特願2014-134629号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a slit processing apparatus and a slit processing method.
This application claims priority based on Japanese Patent Application No. 2014-134629 filed in Japan on June 30, 2014, the contents of which are incorporated herein by reference.
 立体画像を表示する方式として、FPR(Film Patterned Retarder)方式と呼ばれる方式が知られている。FPR方式の3D液晶ディスプレイでは、右眼用画像と左眼用画像とを分離するために、液晶パネルの表面にFPRフィルムと呼ばれるパターン化位相差フィルムが配置される(特許文献1参照)。 As a method for displaying a stereoscopic image, a method called FPR (Film Patterned Retarder) method is known. In an FPR 3D liquid crystal display, a patterned retardation film called an FPR film is disposed on the surface of a liquid crystal panel in order to separate a right eye image and a left eye image (see Patent Document 1).
 FPRフィルムは、右眼用偏光パターン列と左眼用偏光パターン列とを含む。右眼用偏光パターン列と左眼用偏光パターン列とは、液晶パネルの右眼用画素列と左眼用画素列に対応して交互に配置される。右眼用偏光パターン列と左眼用偏光パターン列とは、互いに遅相軸の方向が直交する。右眼用偏光パターン列と左眼用偏光パターン列とが配置されるアクティブエリアの外側には、アライメント用の偏光パターン列が配置されることもある。 The FPR film includes a right-eye polarization pattern array and a left-eye polarization pattern array. The right-eye polarization pattern column and the left-eye polarization pattern column are alternately arranged corresponding to the right-eye pixel column and the left-eye pixel column of the liquid crystal panel. The right-eye polarization pattern sequence and the left-eye polarization pattern sequence are orthogonal to each other in the direction of the slow axis. An alignment polarization pattern array may be disposed outside the active area where the right-eye polarization pattern array and the left-eye polarization pattern array are disposed.
特開2012-32445号公報JP 2012-32445 A
 FPRフィルムには、多数の偏光パターン列が微細な幅で形成される。そのため、FPRフィルムを所定の幅または形状に切断したり、FPRフィルムを液晶パネルに貼合したりするときには、偏光パターン列の位置を正確に検出し、その位置に基づいて、FPRフィルムをアライメントしなければならない。 In the FPR film, a large number of polarization pattern rows are formed with a fine width. Therefore, when the FPR film is cut into a predetermined width or shape, or when the FPR film is bonded to the liquid crystal panel, the position of the polarization pattern row is accurately detected, and the FPR film is aligned based on the position. There must be.
 例えば、特許文献1には、偏光パターン列の検出装置として、FPRフィルムの下面側から光を照射し、FPRフィルムの上面側からカメラで撮像する装置が記載されている。
FPRフィルムと光源との間には偏光板が配置され、FPRフィルムとカメラとの間には、FPRフィルム側から位相差板(1/4波長板)と偏光板が順に配置される。右眼用偏光パターン列と左眼用偏光パターン列は、フィルムの長手方向に沿って延在する。これらの偏光パターン列は、FPRフィルムの巻き出しおよび搬送に伴って連続的に検出される。
For example, Patent Literature 1 describes a device for irradiating light from the lower surface side of an FPR film and imaging with a camera from the upper surface side of the FPR film as a polarization pattern array detection device.
A polarizing plate is disposed between the FPR film and the light source, and a retardation plate (¼ wavelength plate) and a polarizing plate are sequentially disposed between the FPR film and the camera from the FPR film side. The right-eye polarization pattern array and the left-eye polarization pattern array extend along the longitudinal direction of the film. These polarization pattern rows are continuously detected as the FPR film is unwound and conveyed.
しかしながら、特許文献1の構成では、FPRフィルムの下面側に光源が設置されるため、FPRフィルムの下面側には、支持体を配置することができない。よって、FPRフィルムが、支持体によって支持されない不安定な位置で、偏光パターン列の検出を行わなければならない。支持体に貫通孔を設けることも考えられるが、貫通孔を通過する光のみでは、十分にFPRフィルムを照明することはできない。 However, in the configuration of Patent Document 1, since the light source is installed on the lower surface side of the FPR film, the support cannot be disposed on the lower surface side of the FPR film. Therefore, the polarization pattern array must be detected at an unstable position where the FPR film is not supported by the support. Although it is conceivable to provide a through hole in the support, it is not possible to sufficiently illuminate the FPR film with only light passing through the through hole.
また、FPRフィルムの最表面には、プロテクションフィルムやセパレータフィルムなどの保護フィルムが設けられる。保護フィルムは、複屈折性を有しており、意図せぬ位相差を生じさせる。保護フィルムが存在しなければ、右眼用偏光パターン列と左眼用偏光パターン列は、明パターンと暗パターンとして表示されるが、保護フィルムが存在すると、明パターンと暗パターンのコントラストが低下し、両者を明確に区別することができない。そのため、光学測定を行う前に、保護フィルムを剥離するなどの工夫が必要になる。 Further, a protective film such as a protection film or a separator film is provided on the outermost surface of the FPR film. The protective film has birefringence and causes an unintended retardation. If the protective film is not present, the right-eye polarization pattern array and the left-eye polarization pattern array are displayed as a bright pattern and a dark pattern. However, if the protective film is present, the contrast between the bright pattern and the dark pattern is reduced. The two cannot be clearly distinguished. Therefore, it is necessary to devise such as peeling off the protective film before performing the optical measurement.
また、FPRフィルムは、液晶パネルの表示面側の偏光板の表面に貼合されるが、最近では、偏光板とFPRフィルムとを一体化した偏光板一体型のFPRフィルムを液晶パネルの表面に貼合することも検討されている。この構成では、偏光板の面内の光学軸のばらつきにより、上述の明パターンと暗パターンのコントラストがさらに低下し、よりいっそう両者を区別することが困難になる。 The FPR film is bonded to the surface of the polarizing plate on the display surface side of the liquid crystal panel. Recently, a polarizing plate integrated FPR film in which the polarizing plate and the FPR film are integrated is used on the surface of the liquid crystal panel. Bonding is also being considered. In this configuration, the contrast between the bright pattern and the dark pattern is further lowered due to variations in the optical axis in the plane of the polarizing plate, and it becomes more difficult to distinguish the two from each other.
本発明の目的は、偏光パターン列を精度よく検出してスリット加工を行うことが可能なスリット加工装置およびスリット加工方法を提供することにある。 An object of the present invention is to provide a slit machining apparatus and a slit machining method capable of performing slit machining by accurately detecting a polarization pattern array.
 本発明の第一の形態に係るスリット加工装置は、位相差層と、偏光子層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工装置であって、前記光学フィルムを、その長手方向に繰り出すフィルム供給部と、前記フィルム供給部によって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出装置と、前記第一検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御部と、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断部と、を含み、前記第一検出装置は、前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体と、前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第一光源部と、前記第一光源部から前記光学フィルムに向かう前記光の光路上に設けられた第一偏光板と、前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像部と、前記第一撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出部と、を含む。 The slit processing apparatus according to the first aspect of the present invention includes a retardation layer, a polarizer layer, and a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions. A slit processing apparatus for slitting a long optical film provided in this order from the side toward the second surface side, the film supply unit for feeding out the optical film in the longitudinal direction thereof, and the film Based on the first detection device that detects the plurality of polarization pattern rows of the optical film fed out by the supply unit, and the positions of the plurality of polarization pattern rows detected by the first detection device, A first meandering control unit for controlling the meandering in the width direction, and a position downstream of the position where the first meandering control unit controls the meandering in the width direction of the optical film. A cutting section that cuts along a slit line parallel to the transport direction, and the first detection device has a first support surface that supports the first surface of the optical film, and the first support surface A first support having a first reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side, and at least a part of the first film, and located on the first reflecting surface A first light source unit that irradiates light from the second surface side of the optical film toward the optical film, and a first polarizing plate provided on the optical path of the light from the first light source unit toward the optical film A first imaging unit that captures a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film, and the optical film captured by the first imaging unit. Based on the reflected light image, the first reflecting surface Including a first pattern detector for detecting a plurality of polarization pattern sequence located.
 本発明の第一の形態に係るスリット加工装置において、前記第一検出装置は、前記第一偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第一調整部を含むことができる。 In the slit machining apparatus according to the first aspect of the present invention, the first detection device includes a first adjustment unit that adjusts a relative angle between a polarization axis of the first polarizing plate and a slow axis of the polarization pattern array. Can be included.
 本発明の第一の形態に係るスリット加工装置において、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出装置と、前記第二検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御部と、を含み、前記第二検出装置は、前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体と、前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第二光源部と、前記第二光源部から前記光学フィルムに向かう前記光の光路上に設けられた第二偏光板と、前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像部と、前記第二撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出部と、を含むことができる。 In the slit machining apparatus according to the first aspect of the present invention, the plurality of polarization pattern rows of the optical film are arranged downstream of the position where the first meandering control unit controls the meandering in the width direction of the optical film. Based on the second detection device to be detected and the positions of the plurality of polarization pattern rows detected by the second detection device, the first meander control unit controls the meandering in the width direction of the optical film. A second meandering control unit that controls meandering in the width direction of the optical film on the downstream side, and the second detection device has a second support surface that supports the first surface of the optical film. A second support having a second reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface; Position on reflective surface A second light source unit that irradiates light from the second surface side of the optical film toward the optical film, and a second polarized light provided on an optical path of the light from the second light source unit toward the optical film A plate, a second imaging unit that captures a reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film, and the optical film imaged by the second imaging unit And a second pattern detecting unit that detects the plurality of polarization pattern rows located on the second reflecting surface based on the reflected light image.
 本発明の第一の形態に係るスリット加工装置において、前記第二検出装置は、前記第二偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第二調整部を含むことができる。 In the slit machining apparatus according to the first aspect of the present invention, the second detection device includes a second adjustment unit that adjusts a relative angle between a polarization axis of the second polarizing plate and a slow axis of the polarization pattern row. Can be included.
 本発明の第一の形態に係るスリット加工装置において、前記第一蛇行制御部は、前記フィルム供給部によって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、前記第二蛇行制御部は、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御することができる。 In the slit processing apparatus according to the first aspect of the present invention, the first meandering control unit moves the position where the optical film is fed out by the film supply unit in the width direction of the optical film, thereby the optical film. And the second meandering control unit is configured to meander the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Can be controlled.
 本発明の第二の形態に係るスリット加工装置は、位相差層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、偏光子層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工装置であって、前記光学フィルムを、その長手方向に繰り出すフィルム供給部と、前記フィルム供給部によって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出装置と、前記第一検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御部と、前記第一蛇行制御部よりも前記光学フィルムの搬送方向の下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断部と、を含み、前記第一検出装置は、前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体と、前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第一光源部と、前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像部と、前記第一撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出部と、を含む。 The slit processing apparatus according to the second aspect of the present invention includes a retardation layer, a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions, and a polarizer layer, on a first surface. A slit processing apparatus for slitting a long optical film provided in this order from the side toward the second surface side, the film supply unit for feeding out the optical film in the longitudinal direction thereof, and the film Based on the first detection device that detects the plurality of polarization pattern rows of the optical film fed out by the supply unit, and the positions of the plurality of polarization pattern rows detected by the first detection device, A first meandering control unit for controlling meandering in the width direction, and a slip parallel to the transporting direction on the downstream side of the first meandering control unit in the transporting direction of the optical film. A cutting section that cuts along a line, and the first detection device has a first support surface that supports the first surface of the optical film, and is formed on at least a part of the first support surface. The first support having a first reflection surface that reflects light transmitted from the second surface side to the first surface side of the optical film, and toward the optical film located on the first reflection surface A first light source unit for irradiating light from the second surface side of the optical film, and a reflected light image of the optical film located on the first reflecting surface is captured from the second surface side of the optical film. A first pattern detecting unit that detects the plurality of polarization pattern rows located on the first reflecting surface based on the reflected light image of the optical film imaged by the first imaging unit; ,including.
 本発明の第二の形態に係るスリット加工装置において、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出装置と、前記第二検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御部と、を含み、前記第二検出装置は、前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体と、前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第二光源部と、前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像部と、前記第二撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出部と、を含むことができる。 In the slit machining apparatus according to the second aspect of the present invention, the plurality of polarization pattern rows of the optical film are arranged downstream of the position where the first meandering control unit controls the meandering in the width direction of the optical film. Based on the second detection device to be detected and the positions of the plurality of polarization pattern rows detected by the second detection device, the first meander control unit controls the meandering in the width direction of the optical film. A second meandering control unit that controls meandering in the width direction of the optical film on the downstream side, and the second detection device has a second support surface that supports the first surface of the optical film. A second support having a second reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface; Position on reflective surface A second light source unit for irradiating light from the second surface side of the optical film toward the optical film, and a reflected light image of the optical film positioned on the second reflecting surface. Based on the second imaging unit that captures images from two surfaces and the reflected light image of the optical film captured by the second imaging unit, the plurality of polarization pattern rows located on the second reflecting surface are detected. And a second pattern detecting unit.
 本発明の第二の形態に係るスリット加工装置において、前記第一蛇行制御部は、前記フィルム供給部によって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、前記第二蛇行制御部は、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御することができる。 In the slit machining apparatus according to the second aspect of the present invention, the first meandering control unit moves the position where the optical film is fed out by the film supply unit in the width direction of the optical film, thereby the optical film. And the second meandering control unit is configured to meander the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Can be controlled.
 本発明の第一の形態に係るスリット加工方法は、位相差層と、偏光子層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工方法であって、前記光学フィルムを、その長手方向に繰り出すフィルム供給ステップと、前記フィルム供給ステップによって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出ステップと、前記第一検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御ステップと、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断ステップと、を含み、前記第一検出ステップは、前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体によって、前記光学フィルムの前記第一面を支持する第一支持ステップと、前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から第一偏光板を介して光を照射する第一照射ステップと、前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像ステップと、前記第一撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出ステップと、を含む。 The slit processing method according to the first aspect of the present invention includes a retardation layer, a polarizer layer, and a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions from each other. A slit processing method for slitting a long optical film provided in this order from the side toward the second surface side, the film supply step of feeding out the optical film in its longitudinal direction, and the film Based on the first detection step of detecting the plurality of polarization pattern rows of the optical film fed out by the supply step, and the positions of the plurality of polarization pattern rows detected by the first detection device, A first meandering control step for controlling the meandering in the width direction, and a position downstream of the position for controlling the meandering in the width direction of the optical film by the first meandering control step. A cutting step of cutting the optical film along a slit line parallel to the transport direction, and the first detection step includes a first support surface that supports the first surface of the optical film. And a first support having a first reflection surface that reflects light transmitted from the second surface side to the first surface side on at least part of the first support surface, A first support step for supporting the first surface of the optical film, and light from the second surface side of the optical film through the first polarizing plate toward the optical film located on the first reflecting surface. First imaging step of irradiating, first imaging step of imaging a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film, and imaging by the first imaging step Was Serial based on the reflected light image of the optical film, including a first pattern detection step of detecting a plurality of polarization pattern row positioned on the first reflecting surface.
 本発明の第一の形態に係るスリット方法において、前記第一検出ステップは、前記第一偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第一調整ステップを含むことができる。 In the slit method according to the first aspect of the present invention, the first detection step includes a first adjustment step of adjusting a relative angle between a polarization axis of the first polarizing plate and a slow axis of the polarization pattern row. be able to.
 本発明の第一の形態に係るスリット方法において、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出ステップと、前記第二検出ステップによって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御ステップと、を含み、前記第二検出ステップは、前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体によって、前記光学フィルムの前記第一面を支持する第二支持ステップと、前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から第二偏光板を介して光を照射する第二照射ステップと、前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像ステップと、前記第二撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出ステップと、を含むことができる。 In the slit method according to the first aspect of the present invention, the plurality of polarization pattern rows of the optical film are detected downstream from the position where the first meander control step controls the meandering of the optical film in the width direction. A second detection step, and a position downstream of the position where the meandering in the width direction of the optical film is controlled by the first meander control step based on the positions of the plurality of polarization pattern rows detected by the second detection step. A second meandering control step for controlling the meandering of the optical film in the width direction, and the second detecting step has a second support surface for supporting the first surface of the optical film, A second support having a second reflection surface that reflects light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface. A second support step for supporting the first surface of the optical film, and a second polarizing plate from the second surface side of the optical film toward the optical film located on the second reflecting surface. A second irradiation step of irradiating light, a second imaging step of imaging a reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film, and the second imaging A second pattern detecting step of detecting the plurality of polarization pattern rows located on the second reflecting surface based on the reflected light image of the optical film imaged in the step.
 本発明の第一の形態に係るスリット方法において、前記第二検出ステップは、前記第二偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第二調整ステップを含むことができる。 In the slit method according to the first aspect of the present invention, the second detection step includes a second adjustment step of adjusting a relative angle between the polarization axis of the second polarizing plate and the slow axis of the polarization pattern array. be able to.
 本発明の第一の形態に係るスリット方法において、前記第一蛇行制御ステップは、前記フィルム供給ステップによって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、前記第二蛇行制御ステップは、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御することができる。 In the slit method according to the first aspect of the present invention, the first meandering control step moves the position where the optical film is fed out by the film supply step in the width direction of the optical film, thereby In the second meandering control step, the meandering in the width direction of the optical film is performed by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Can be controlled.
 本発明の第二の形態に係るスリット加工方法は、位相差層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、偏光子層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工方法であって、前記光学フィルムを、その長手方向に繰り出すフィルム供給ステップと、前記フィルム供給ステップによって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出ステップと、前記第一検出ステップによって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御ステップと、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断ステップと、を含み、前記第一検出ステップは、前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体によって、前記光学フィルムの前記第一面を支持する第一支持ステップと、前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第一照射ステップと、前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像ステップと、前記第一撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出ステップと、を含む。 In the slit processing method according to the second aspect of the present invention, a retardation layer, a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions, and a polarizer layer are first surfaces. A slit processing method for slitting a long optical film provided in this order from the side toward the second surface side, the film supply step of feeding out the optical film in its longitudinal direction, and the film Based on the first detection step of detecting the plurality of polarization pattern rows of the optical film fed out by the supply step, and the positions of the plurality of polarization pattern rows detected by the first detection step, A first meandering control step for controlling the meandering in the width direction, and a position for controlling the meandering in the width direction of the optical film by the first meandering control step. A cutting step of cutting the optical film along a slit line parallel to the conveying direction on the flow side, and the first detecting step supports the first surface of the optical film. A first support having a first reflection surface that reflects light transmitted through the optical film from the second surface side to the first surface side, at least in part within the first support surface. A first support step for supporting the first surface of the optical film, and a first irradiation for irradiating light from the second surface side of the optical film toward the optical film located on the first reflecting surface. A first imaging step of imaging a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film, and the optical film imaged by the first imaging step On the basis of the reflected light image comprises a first pattern detection step of detecting a plurality of polarization pattern row positioned on the first reflecting surface, a.
 本発明の第二の形態に係るスリット加工方法において、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出ステップと、前記第二検出ステップによって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御ステップと、を含み、前記第二検出ステップは、前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体によって、前記光学フィルムの前記第一面を支持する第二支持ステップと、前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第二照射ステップと、前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像ステップと、前記第二撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出ステップと、を含むことができる。 In the slit processing method according to the second aspect of the present invention, the plurality of polarization pattern rows of the optical film are arranged downstream of the position where the first meandering control step controls the meandering in the width direction of the optical film. Based on the second detection step to detect, and the position of the plurality of polarization pattern rows detected by the second detection step, than the position to control the meandering in the width direction of the optical film by the first meander control step A second meandering control step for controlling meandering in the width direction of the optical film on the downstream side, and the second detecting step has a second support surface for supporting the first surface of the optical film. And a second reflecting surface for reflecting light transmitted through the optical film from the second surface side to the first surface side at least in a part of the second support surface. A second support step for supporting the first surface of the optical film by the holder, and irradiating light from the second surface side of the optical film toward the optical film located on the second reflecting surface. The second imaging step, the second imaging step of imaging the reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film, and the second imaging step And a second pattern detection step of detecting the plurality of polarization pattern rows located on the second reflection surface based on the reflected light image of the optical film.
 本発明の第二の形態に係るスリット加工方法において、前記第一蛇行制御ステップは、前記フィルム供給ステップによって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、前記第二蛇行制御ステップは、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御することができる。 In the slit processing method according to the second aspect of the present invention, the first meandering control step moves the position in which the optical film is unwound by the film supply step in the width direction of the optical film, whereby the optical film In the second meander control step, the guide roll supporting the optical film is inclined in the width direction of the optical film by inclining the direction of the rotation axis with respect to the transport direction of the optical film. Can be controlled.
 本発明によれば、偏光パターン列を精度よく検出してスリット加工を行うことが可能なスリット加工装置およびスリット加工方法を提供することができる。 According to the present invention, it is possible to provide a slit processing apparatus and a slit processing method that can detect a polarization pattern row with high accuracy and perform slit processing.
本発明の第一の実施の形態に係るスリット加工装置の概略図である。It is the schematic of the slit processing apparatus which concerns on 1st embodiment of this invention. スリット加工装置に備えられる第一検出装置の概略図である。It is the schematic of the 1st detection apparatus with which a slit processing apparatus is equipped. 第一検出装置の概念図である。It is a conceptual diagram of a 1st detection apparatus. 光学フィルムの一例を示す断面図である。It is sectional drawing which shows an example of an optical film. 光学フィルムの一例を示す平面図である。It is a top view which shows an example of an optical film. 光学フィルムの反射光像の光量分布および色分布を示す図である。It is a figure which shows the light quantity distribution and color distribution of the reflected light image of an optical film. 本発明の第二の実施の形態に係るスリット加工装置に適用される第一検出装置の概念図である。It is a conceptual diagram of the 1st detection apparatus applied to the slit processing apparatus which concerns on 2nd embodiment of this invention.
[第一の実施の形態]
 図1は、本発明の第一の実施の形態に係るスリット加工装置100の概略図である。
 図2は、スリット加工装置100に備えられる第一検出装置106の概略図である。
 図3は、第一検出装置106の概念図である。
 図4は、光学フィルムF1の一例を示す断面図である。
 図5は、光学フィルムF1の一例を示す平面図である。
[First embodiment]
FIG. 1 is a schematic view of a slit machining apparatus 100 according to the first embodiment of the present invention.
FIG. 2 is a schematic diagram of the first detection device 106 provided in the slit processing device 100.
FIG. 3 is a conceptual diagram of the first detection device 106.
FIG. 4 is a cross-sectional view showing an example of the optical film F1.
FIG. 5 is a plan view showing an example of the optical film F1.
 図1に示すように、本実施形態のスリット加工装置100は、フィルム供給部101、フィルム巻き取り部102,103、耳巻き取り部104、第一蛇行制御部105、第一検出装置106、第二蛇行制御部107、第二検出装置108、切断部109および制御装置110を含む。 As shown in FIG. 1, the slit processing apparatus 100 of this embodiment includes a film supply unit 101, film winding units 102 and 103, an ear winding unit 104, a first meandering control unit 105, a first detection device 106, A two meandering control unit 107, a second detection device 108, a cutting unit 109 and a control device 110 are included.
 フィルム供給部101は、光学フィルムF1を巻き取った原反ロールR1を保持するとともに、光学フィルムF1をその長手方向に繰り出す。フィルム供給部101から繰り出された光学フィルムF1の搬送経路FCLには、搬送方向上流側から、第一蛇行制御部105、第一検出装置106、第二蛇行制御部107、第二検出装置108および切断部109が順に配置される。 The film supply unit 101 holds the original roll R1 around which the optical film F1 is wound, and feeds the optical film F1 in the longitudinal direction thereof. In the transport path FCL of the optical film F1 fed out from the film supply unit 101, the first meander control unit 105, the first detection device 106, the second meander control unit 107, the second detection device 108, and the like The cutting part 109 is arrange | positioned in order.
 スリット加工装置100は、第一蛇行制御部105および第二蛇行制御部107によって光学フィルムF1の蛇行を制御しながら、光学フィルムF1をスリットラインSL1,SL2,SL3(図5参照)に沿ってスリット加工する。 The slit machining apparatus 100 slits the optical film F1 along the slit lines SL1, SL2, and SL3 (see FIG. 5) while controlling the meandering of the optical film F1 by the first meandering control unit 105 and the second meandering control unit 107. Process.
 図5に示すように、光学フィルムF1は、アクティブエリアACと周辺エリアSRとを、長手方向と直交する幅方向において交互に含む、長尺状のフィルムである。アクティブエリアACは、例えば、液晶パネルの表示領域と対向する部分であり、周辺エリアSRは、液晶パネルの表示領域の周辺部に位置する周辺領域と対向する部分である。 As shown in FIG. 5, the optical film F1 is a long film including the active area AC and the peripheral area SR alternately in the width direction orthogonal to the longitudinal direction. The active area AC is, for example, a part facing the display area of the liquid crystal panel, and the peripheral area SR is a part facing the peripheral area located in the peripheral part of the display area of the liquid crystal panel.
 アクティブエリアACには、互いに遅相軸の方向が異なる複数の偏光パターン列DPAa,DPAbが、液晶パネルの複数の画素列に対応して設けられている。液晶パネルの表示領域には、右眼用画像を表示する右眼用画素列と、左眼用画像を表示する左眼用画素列と、が交互に配置される。そのため、アクティブエリアACには、右眼用画素列に対応した右眼用偏光パターン列DPAaと、左眼用画素列に対応した左眼用偏光パターン列DPAbと、が交互に配置される。 In the active area AC, a plurality of polarization pattern rows DPAa and DPAb having different slow axis directions are provided corresponding to the plurality of pixel rows of the liquid crystal panel. In the display area of the liquid crystal panel, right-eye pixel columns for displaying right-eye images and left-eye pixel columns for displaying left-eye images are alternately arranged. Therefore, in the active area AC, the right-eye polarization pattern array DPAa corresponding to the right-eye pixel array and the left-eye polarization pattern array DPAb corresponding to the left-eye pixel array are alternately arranged.
 周辺エリアSRには、遅相軸の方向が右眼用偏光パターン列DPAaと平行な第一偏光パターン列APAaと、遅相軸の方向が左眼用偏光パターン列DPAbと平行な第二偏光パターン列APAbと、が交互に配置される。周辺エリアSRに設けられる偏光パターン列APAa,APAbは、単独で、または、アクティブエリアACに設けられる偏光パターン列DPAa,DPAbとともに、光学フィルムF1の走行位置を検出するための基準として用いることができる。偏光パターン列APAa,APAbの検出を容易にするために、例えば、周辺エリアSRに設けられる偏光パターン列APAa,APAbのうち、少なくとも一の偏光パターン列の幅は、アクティブエリアACに設けられる偏光パターン列DPAa,DPAbの幅よりも広くすることができる。 In the peripheral area SR, a first polarization pattern array APAa whose slow axis direction is parallel to the right-eye polarization pattern array DPAa, and a second polarization pattern whose slow axis direction is parallel to the left-eye polarization pattern array DPAb. Rows APAb are alternately arranged. The polarization pattern rows APAa and APAb provided in the peripheral area SR can be used alone or together with the polarization pattern rows DPAa and DPAb provided in the active area AC as a reference for detecting the traveling position of the optical film F1. . In order to facilitate the detection of the polarization pattern rows APAa and APAb, for example, of the polarization pattern rows APAa and APAb provided in the peripheral area SR, the width of at least one polarization pattern row is the polarization pattern provided in the active area AC. The width of the columns DPAa and DPAb can be made wider.
 光学フィルムF1は、液晶パネル複数分(図5では例えば2つ分)の幅を有する。光学フィルムF1は、スリット加工装置100を用いて、スリットラインSL1,SL2,SL3に沿って切断される。スリットラインSL1,SL2,SL3は、周辺エリアSR内に設定される。これにより、光学フィルムF1は、液晶パネル1つ分の幅を有する複数の長尺フィルムに分割される。スリットラインSL1,SL2,SL3は、例えば、周辺エリアSRに設けられた偏光パターン列APAa,APAbの境界線の位置に設定される。なお、本実施形態のスリット加工によって切断されるスリットラインの位置は、加工上(生産上)の問題が無い限り、細いラインで切断される。 The optical film F1 has a width corresponding to a plurality of liquid crystal panels (for example, two in FIG. 5). The optical film F1 is cut along the slit lines SL1, SL2, and SL3 using the slit processing apparatus 100. Slit lines SL1, SL2, and SL3 are set in the peripheral area SR. Thereby, the optical film F1 is divided into a plurality of long films having a width corresponding to one liquid crystal panel. The slit lines SL1, SL2, and SL3 are set, for example, at the positions of the boundary lines of the polarization pattern rows APAa and APAb provided in the peripheral area SR. In addition, the position of the slit line cut | disconnected by the slit process of this embodiment will be cut | disconnected by a thin line, as long as there is no problem on a process (production).
 図1に戻って、フィルム供給部101から繰り出された光学フィルムF1の繰り出し直後の走行位置は、第一検出装置106を用いて検出される。第一検出装置106は、光学フィルムF1に設けられた複数の偏光パターン列APAa,APAb,DPAa,DPAb(図5参照)を検出する。制御装置110は、第一検出装置106によって検出された複数の偏光パターン列APAa,APAb,DPAa,DPAbの位置(例えば、偏光パターン列APAa,APAb,DPAa,DPAbの境界線の位置)に基づいて、光学フィルムF1の走行位置のずれを検出し、第一蛇行制御部105を制御して光学フィルムF1の幅方向の蛇行を制御する。 Returning to FIG. 1, the travel position immediately after the feeding of the optical film F <b> 1 fed from the film supply unit 101 is detected using the first detection device 106. The first detection device 106 detects a plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb (see FIG. 5) provided on the optical film F1. The control device 110 is based on the positions of the plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb detected by the first detection device 106 (for example, the positions of the boundary lines of the polarization pattern rows APAa, APAb, DPAa, and DPAb). The shift of the traveling position of the optical film F1 is detected, and the first meandering control unit 105 is controlled to control the meandering of the optical film F1 in the width direction.
 第一蛇行制御部105によって蛇行が制御された後の光学フィルムF1の走行位置は、第二検出装置108を用いて検出される。第二検出装置108は、光学フィルムF1に設けられた複数の偏光パターン列APAa,APAb,DPAa,DPAb(図5参照)を検出する。制御装置110は、第二検出装置108によって検出された複数の偏光パターン列APAa,APAb,DPAa,DPAbの位置(例えば、偏光パターン列APAa,APAb,DPAa,DPAbの境界線の位置)に基づいて、光学フィルムF1の走行位置のずれを検出し、第二蛇行制御部107を制御して光学フィルムF1の幅方向の蛇行を制御する。 The traveling position of the optical film F <b> 1 after the meandering is controlled by the first meandering control unit 105 is detected using the second detection device 108. The second detection device 108 detects a plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb (see FIG. 5) provided on the optical film F1. The control device 110 is based on the positions of the plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb detected by the second detection device 108 (for example, the positions of the boundary lines of the polarization pattern rows APAa, APAb, DPAa, and DPAb). The shift of the running position of the optical film F1 is detected, and the second meandering control unit 107 is controlled to control the meandering of the optical film F1 in the width direction.
 第一蛇行制御部105は、例えば、第一検出装置106および制御装置110により検出された光学フィルムF1の走行位置のずれに基づいて、フィルム供給部101によって光学フィルムF1が繰り出される位置(原反ロールR1の位置)を、光学フィルムF2の幅方向に移動させる。第一蛇行制御部105により、光学フィルムF1の走行位置のずれが粗く制御される。 For example, the first meandering control unit 105 detects the position (raw material) where the optical film F1 is fed out by the film supply unit 101 based on the shift of the traveling position of the optical film F1 detected by the first detection device 106 and the control device 110. The position of the roll R1) is moved in the width direction of the optical film F2. The first meandering control unit 105 roughly controls the shift of the traveling position of the optical film F1.
 第二蛇行制御部107は、例えば、第二検出装置108および制御装置110により検出された光学フィルムF1の走行位置のずれに基づいて、光学フィルムF1を支持する第一ガイドロール115および第二ガイドロール116を光学フィルムF1の搬送方向に対して傾斜させる。第一ガイドロール115と第二ガイドロール116とは、互いに回転軸を平行にして配置される。第二蛇行制御部107は、第一ガイドロール115と第二ガイドロール116の回転軸の方向を光学フィルムF1の走行方向に対して一体に傾斜させる。これにより、光学フィルムF1の走行位置が幅方向に微調整され、光学フィルムF1は予め設定された走行位置を走行するようになる。 For example, the second meandering control unit 107 includes a first guide roll 115 and a second guide that support the optical film F1 based on the shift of the traveling position of the optical film F1 detected by the second detection device 108 and the control device 110. The roll 116 is inclined with respect to the transport direction of the optical film F1. The first guide roll 115 and the second guide roll 116 are arranged with their rotation axes parallel to each other. The second meandering control unit 107 integrally inclines the directions of the rotation axes of the first guide roll 115 and the second guide roll 116 with respect to the traveling direction of the optical film F1. Thereby, the traveling position of the optical film F1 is finely adjusted in the width direction, and the optical film F1 travels at a preset traveling position.
 なお、第二蛇行制御部107は、光学フィルムF1を支持する一本のガイドロールを光学フィルムF1の搬送方向に対して回転軸の方向を傾斜させる構成であってもよい。 The second meandering control unit 107 may be configured such that one guide roll that supports the optical film F1 is inclined in the direction of the rotation axis with respect to the transport direction of the optical film F1.
 切断部109に搬送される光学フィルムF1の走行位置は、第一蛇行制御部105および第二蛇行制御部107によって精密に制御される。第一蛇行制御部105および第二蛇行制御部107の構成は、上記のものに限定されない。第一蛇行制御部105としては、第二蛇行制御部107よりも光学フィルムF1の走行位置を大きく調整できるものが好ましい。第二蛇行制御部107としては、第一蛇行制御部105よりも光学フィルムF1の走行位置を精密に調整できるものが好ましい。 The traveling position of the optical film F <b> 1 conveyed to the cutting unit 109 is precisely controlled by the first meandering control unit 105 and the second meandering control unit 107. The configurations of the first meandering control unit 105 and the second meandering control unit 107 are not limited to those described above. The first meandering control unit 105 is preferably one that can adjust the traveling position of the optical film F <b> 1 larger than the second meandering control unit 107. The second meandering control unit 107 is preferably capable of adjusting the traveling position of the optical film F1 more precisely than the first meandering control unit 105.
 また、第一蛇行制御部105、第一検出装置106、第二蛇行制御部107および第二検出装置108の配置は、上記のものに限定されない。第一検出装置106は、第一蛇行制御部105の上流側でもよいし、下流側でもよい。第二検出装置108は、第二蛇行制御部107の上流側でもよいし、下流側でもよい。第二検出装置108は、第一蛇行制御部105によって光学フィルムF1の幅方向の蛇行を制御する位置よりも下流側で、且つ、切断部109によって光学フィルムF1を切断する位置よりも上流側で、光学フィルムF1の複数の偏光パターン列APAa,APAb,DPAa,DPAbを検出するものであればよい。
第二蛇行制御部107は、第一蛇行制御部105によって光学フィルムF1の幅方向の蛇行を制御する位置よりも下流側で、且つ、切断部109によって光学フィルムF1を切断する位置よりも上流側で、光学フィルムF1の幅方向の蛇行を制御するものであればよい。
Further, the arrangement of the first meandering control unit 105, the first detection device 106, the second meandering control unit 107, and the second detection device 108 is not limited to the above. The first detection device 106 may be upstream or downstream of the first meander control unit 105. The second detection device 108 may be upstream or downstream of the second meandering control unit 107. The second detection device 108 is on the downstream side of the position where the first meandering control unit 105 controls the meandering of the optical film F1 in the width direction, and on the upstream side of the position where the cutting unit 109 cuts the optical film F1. Any one that detects a plurality of polarization pattern rows APAa, APAb, DPAa, and DPAb of the optical film F1 may be used.
The second meandering control unit 107 is downstream of the position where the first meandering control unit 105 controls the meandering of the optical film F1 in the width direction, and upstream of the position where the cutting unit 109 cuts the optical film F1. Thus, what is necessary is just to control the meandering in the width direction of the optical film F1.
切断部109は、光学フィルムF1を、図5中に示したスリットラインSL1,SL2、SL3に沿って切断する。切断部109は、例えば、切断刃やレーザーカッターなどにより構成することができる。切断部109は、スリットラインSL1,SL2,SL3の配置間隔と同じ間隔で、光学フィルムF1の幅方向に複数配置される。制御装置110は、切断部109の直下にスリットラインSL1,SL2,SL3が配置されるように、第一蛇行制御部105および第二蛇行制御部107により光学フィルムF1の走行位置を制御する。切断部109は、第一蛇行制御部105および第二蛇行制御部107によって光学フィルムF1の幅方向の蛇行を制御する位置よりも下流側で、光学フィルムF1を、その搬送方向と平行なスリットラインSL1,SL2,SL3に沿って切断する。 The cutting part 109 cuts the optical film F1 along the slit lines SL1, SL2, and SL3 shown in FIG. The cutting part 109 can be constituted by, for example, a cutting blade or a laser cutter. A plurality of cutting portions 109 are arranged in the width direction of the optical film F1 at the same intervals as the arrangement intervals of the slit lines SL1, SL2, and SL3. The control device 110 controls the travel position of the optical film F <b> 1 by the first meandering control unit 105 and the second meandering control unit 107 so that the slit lines SL <b> 1, SL <b> 2, SL <b> 3 are arranged immediately below the cutting unit 109. The cutting unit 109 is a slit line parallel to the conveyance direction of the optical film F1 on the downstream side of the position where the first meandering control unit 105 and the second meandering control unit 107 control the meandering in the width direction of the optical film F1. Cut along SL1, SL2, and SL3.
切断部109によって幅方向に分割された光学フィルムF1のうち、アクティブエリアACを含む部分は、フィルム巻き取り部102,103により巻き取られ、液晶パネル一つ分の幅を有する長尺状フィルムの原反ロールR2,R3として提供される。切断部109によって分割された光学フィルムF1のうち、アクティブエリアACを含まない部分は、耳巻き取り部104により巻き取られ、廃棄される。 Of the optical film F1 divided in the width direction by the cutting part 109, the part including the active area AC is wound up by the film winding parts 102 and 103, and is a long film having a width corresponding to one liquid crystal panel. Provided as original fabric rolls R2, R3. Of the optical film F1 divided by the cutting unit 109, the part not including the active area AC is wound up by the ear winding unit 104 and discarded.
以下、図2および図3を用いて、第一検出装置106および第二検出装置108の構成を説明する。第一検出装置106と第二検出装置108の構成は同じである。よって、以下の説明では、第一検出装置106の構成を中心に説明する。 Hereinafter, the configuration of the first detection device 106 and the second detection device 108 will be described with reference to FIGS. 2 and 3. The configuration of the first detection device 106 and the second detection device 108 is the same. Therefore, in the following description, the configuration of the first detection device 106 will be mainly described.
図2および図3に示すように、本実施形態の第一検出装置106は、第一支持体111と、第一撮像ユニット112と、第一パターン検出部114と、第一調整部113と、を含む。第一検出装置106は、光学フィルムF1に含まれる偏光パターン列APAa,APAb,DPAa,DPAb(図5参照)を検出する。 As shown in FIGS. 2 and 3, the first detection device 106 of the present embodiment includes a first support 111, a first imaging unit 112, a first pattern detection unit 114, a first adjustment unit 113, including. The first detection device 106 detects polarization pattern rows APAa, APAb, DPAa, and DPAb (see FIG. 5) included in the optical film F1.
光学フィルムF1は、位相差層F20と、偏光子層F16と、パターン化位相差層F14と、を少なくとも含む。位相差層F20と、偏光子層F16と、パターン化位相差層F14は、光学フィルムF1の第一面(第一支持体111によって支持される側の面)側から第二面(第一支持体111によって支持される側とは反対側の面)側に向けて、この順で設けられている。光学フィルムF1のうち、位相差層F11を除く部分が、光学フィルム本体部F21である。 The optical film F1 includes at least a retardation layer F20, a polarizer layer F16, and a patterned retardation layer F14. The retardation layer F20, the polarizer layer F16, and the patterned retardation layer F14 are provided on the second surface (first support) from the first surface (surface supported by the first support 111) side of the optical film F1. It is provided in this order toward the surface opposite to the side supported by the body 111. Of the optical film F1, the portion excluding the retardation layer F11 is the optical film body F21.
パターン化位相差層F14は、互いに遅相軸RTAXの方向が異なる複数の偏光パターン列F14a,F14bを含む。パターン化位相差層F14は、例えば、遅相軸RTAXの方向が互いに直交する第一偏光パターン列F14aと、第二偏光パターン列F14bとを含む。第一偏光パターン列F14aの遅相軸RTAXは、光学フィルムF1の法線方向から見て、例えば、偏光子層F16の偏光軸(透過軸)PLAX1に対して右回りに45°の角度をなす。第二偏光パターン列F14bの遅相軸RTAXは、光学フィルムF1の法線方向から見て、例えば、偏光子層F16の偏光軸PLAX1に対して左回りに45°の角度をなす。第一偏光パターン列F14aと第二偏光パターン列F14bは、その長手方向と直交する方向に交互に配置されている。第一偏光パターン列F14aは、図5の偏光パターン列APAaおよび偏光パターン列DPAaに対応し、第二偏光パターン列F14bは、図5の偏光パターン列APAbおよび偏光パターン列DPAbに対応する。 The patterned retardation layer F14 includes a plurality of polarization pattern rows F14a and F14b having different directions of the slow axis RTAX. The patterned retardation layer F14 includes, for example, a first polarization pattern row F14a and a second polarization pattern row F14b whose slow axis RTAX directions are orthogonal to each other. The slow axis RTAX of the first polarization pattern row F14a forms an angle of 45 ° clockwise, for example, with respect to the polarization axis (transmission axis) PLAX1 of the polarizer layer F16 when viewed from the normal direction of the optical film F1. . The slow axis RTAX of the second polarization pattern row F14b is, for example, 45 degrees counterclockwise with respect to the polarization axis PLAX1 of the polarizer layer F16 when viewed from the normal direction of the optical film F1. The first polarization pattern row F14a and the second polarization pattern row F14b are alternately arranged in a direction orthogonal to the longitudinal direction. The first polarization pattern column F14a corresponds to the polarization pattern column APAa and the polarization pattern column DPAa in FIG. 5, and the second polarization pattern column F14b corresponds to the polarization pattern column APAb and the polarization pattern column DPAb in FIG.
位相差層F20は、光学フィルム本体部F21の保護フィルム(セパレータフィルム)として、光学フィルム本体部F21に剥離可能に設けられる。保護フィルムは、通常、二軸延伸によって製造され、複屈折性を有している。保護フィルムは、パターン化位相差層F14や偏光子層F16などに比べて位相差が十分に制御されていない。そのため、保護フィルムは、パターン化位相差層F14を透過した光に対して意図せぬ位相差を付与する。このような位相差は、光学測定の精度を低下させるため、排除されるべきであるが、本実施形態では、このような位相差を積極的に利用して、偏光パターン列F14a,F14bの検出を行っている。この点については、後述する。 The retardation layer F20 is detachably provided on the optical film body F21 as a protective film (separator film) for the optical film body F21. The protective film is usually produced by biaxial stretching and has birefringence. The retardation of the protective film is not sufficiently controlled as compared with the patterned retardation layer F14 and the polarizer layer F16. Therefore, the protective film imparts an unintended retardation to the light transmitted through the patterned retardation layer F14. Such a phase difference should be eliminated in order to reduce the accuracy of optical measurement. In the present embodiment, such a phase difference is positively used to detect the polarization pattern rows F14a and F14b. It is carried out. This point will be described later.
光学フィルムF1は、位相差層F20、偏光子層F16およびパターン化位相差層F14以外の層を含むことができる。本実施形態では、例えば、図4に示した光学フィルムF2の一部もしくは全部を、光学フィルムF1として用いることができる。 The optical film F1 can include layers other than the retardation layer F20, the polarizer layer F16, and the patterned retardation layer F14. In the present embodiment, for example, a part or all of the optical film F2 shown in FIG. 4 can be used as the optical film F1.
図4の光学フィルムF2は、第一位相差層(プロテクションフィルム)F11、基材層F12、光配向層F13、パターン化位相差層F14、第一接着層F15、偏光子層F16、第二接着層F17、偏光子保護層F18、粘着層F19および第二位相差層(セパレータフィルム)F20を、厚み方向で、この順で含む。光学フィルムF2のうち、第一位相差層F11と第二位相差層F20を除く部分が、光学フィルム本体部F21である。 The optical film F2 in FIG. 4 includes a first retardation layer (protection film) F11, a base material layer F12, a photo-alignment layer F13, a patterned retardation layer F14, a first adhesive layer F15, a polarizer layer F16, and a second adhesive. A layer F17, a polarizer protective layer F18, an adhesive layer F19, and a second retardation layer (separator film) F20 are included in this order in the thickness direction. Of the optical film F2, the portion excluding the first retardation layer F11 and the second retardation layer F20 is the optical film main body F21.
以下、光学フィルムF2の具体的な構成を説明する。 Hereinafter, a specific configuration of the optical film F2 will be described.
<偏光子層>
偏光子層F16は、入射する光のうち、ある方向の振動面を有する光を透過し、それと直交する振動面を有する光を吸収する。偏光子層F16を介して射出される光は直線偏光となる。
<Polarizer layer>
The polarizer layer F16 transmits light having a vibration surface in a certain direction out of incident light, and absorbs light having a vibration surface perpendicular to the light. The light emitted through the polarizer layer F16 becomes linearly polarized light.
偏光子層F16としては、例えば、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程と、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することによって二色性色素を吸着させる工程と、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程と、ホウ酸水溶液による処理後に水洗する工程と、を経て製造される偏光フィルムを用いることができる。 Examples of the polarizer layer F16 include a step of uniaxially stretching a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and a dichroic dye. The polarizing film manufactured through the process of processing the polyvinyl-alcohol-type resin film which adsorb | sucked with a boric-acid aqueous solution, and the process of washing with water after the process by a boric-acid aqueous solution can be used.
ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得ることができる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他にも、酢酸ビニルとそれに共重合可能な他の単量体との共重合体であってもよい。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などを挙げることができる。 The polyvinyl alcohol-based resin can be obtained by saponifying a polyvinyl acetate-based resin. The polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
二色性色素としては、例えば、ヨウ素や二色性の有機染料が用いられる。二色性色素としてヨウ素を用いる場合は、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法を採用することができる。 As the dichroic dye, for example, iodine or a dichroic organic dye is used. When iodine is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide can be employed.
ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前に行なってもよいし、二色性色素による染色と同時に行なってもよいし、二色性色素による染色の後、例えばホウ酸処理中に行なってもよい。 Uniaxial stretching of the polyvinyl alcohol resin film may be performed before dyeing with the dichroic dye, may be performed simultaneously with dyeing with the dichroic dye, or after dyeing with the dichroic dye, It may be performed during the acid treatment.
偏光子層F16の厚みは、例えば、平均厚さで5μm以上40μm以下とすることができる。 The thickness of the polarizer layer F16 can be, for example, 5 μm or more and 40 μm or less in average thickness.
<パターン化位相差層>
 パターン化位相差層F14は、入射する直線偏光を2種の偏光状態の光として射出する。パターン化位相差層F14は、光配向層F13上に形成されている。
<Pattern retardation layer>
The patterned retardation layer F14 emits incident linearly polarized light as light of two types of polarization states. The patterned retardation layer F14 is formed on the photo-alignment layer F13.
 光配向層F13は、液晶性を有する材料(以下、液晶材料と称する)に対して配向規制力を有する。光配向層F13は、重合性の光配向材料を用いて形成される。光配向材料としては、偏光光で露光されることにより、配向規制力を発現するものが用いられる。光配向材料に偏光光を露光し、配向規制力を発現させた上で重合させることで、配向規制力を保持した光配向層F13が形成される。このような光配向材料としては、通常知られたものを用いることができる。 The photo-alignment layer F13 has an alignment regulating force with respect to a material having liquid crystallinity (hereinafter referred to as a liquid crystal material). The photo-alignment layer F13 is formed using a polymerizable photo-alignment material. As the photo-alignment material, a material that exhibits an alignment regulating force when exposed to polarized light is used. The photo-alignment layer F13 which hold | maintained the alignment control force is formed by making it superpose | polymerize after exposing polarized light to the photo-alignment material, and expressing the alignment control force. As such a photo-alignment material, a conventionally known material can be used.
 光配向層F13は、例えば、配向規制力の方向が互いに直交する第一配向領域と第二配向領域とを含む。第一配向領域と第二配向領域は、それぞれ光学フィルムF2の一辺と平行な方向に帯状に延在する。第一配向領域と第二配向領域は、自身の延在方向と直交する方向に交互に設けられる。 The photo-alignment layer F13 includes, for example, a first alignment region and a second alignment region in which the directions of the alignment regulating force are orthogonal to each other. Each of the first alignment region and the second alignment region extends in a strip shape in a direction parallel to one side of the optical film F2. The first alignment region and the second alignment region are alternately provided in a direction orthogonal to the extending direction of the first alignment region and the second alignment region.
 パターン化位相差層F14は、光配向層F13の第一配向領域に対応する第一偏光パターン列F14aと、第二配向領域に対応する第二偏光パターン列F14bと、を含む。第一偏光パターン列F14aと第二偏光パターン列F14bは、互いに遅相軸が直交する。第一偏光パターン列F14aは、直線偏光を第一の円偏光に変化させる。第二偏光パターン列F14bは、直線偏光を第一の円偏光とは回転方向が異なる第二の円偏光に変化させる。 The patterned retardation layer F14 includes a first polarization pattern row F14a corresponding to the first alignment region of the photo-alignment layer F13 and a second polarization pattern row F14b corresponding to the second alignment region. The slow axis of the first polarization pattern row F14a and the second polarization pattern row F14b are orthogonal to each other. The first polarization pattern row F14a changes linearly polarized light to first circularly polarized light. The second polarization pattern row F14b changes linearly polarized light into second circularly polarized light having a rotation direction different from that of the first circularly polarized light.
パターン化位相差層F14は、重合性の官能基を有する液晶材料を用いて形成される。パターン化位相差層F14は、光配向層F13が有する第一配向領域および第二配向領域の配向規制力に応じて液晶材料を2方向に配列させ、さらに、液晶材料が有する重合性の官能基を反応させて、用いる液晶材料の液晶相を維持して硬化させることにより得られる。このような重合性の液晶材料としては、通常知られたものを用いることができる。 The patterned retardation layer F14 is formed using a liquid crystal material having a polymerizable functional group. The patterned retardation layer F14 arranges the liquid crystal material in two directions according to the alignment regulating force of the first alignment region and the second alignment region that the photo-alignment layer F13 has, and further, the polymerizable functional group that the liquid crystal material has Is reacted to maintain the liquid crystal phase of the liquid crystal material to be used and cured. As such a polymerizable liquid crystal material, a conventionally known material can be used.
<基材層>
 基材層F12は、光配向層F13およびパターン化位相差層F14を支持する基材として用いられる。光配向層F13およびパターン化位相差F14は、基材層F12の表面に光配向材料および液晶材料を塗布することにより形成される。
<Base material layer>
The base material layer F12 is used as a base material that supports the photo-alignment layer F13 and the patterned retardation layer F14. The photo-alignment layer F13 and the patterned retardation F14 are formed by applying a photo-alignment material and a liquid crystal material to the surface of the base material layer F12.
 基材層F12の形成材料としては、例えば、トリアセチルセルロース(TAC)系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、(メタ)アクリレート系樹脂、環状ポリオレフィン系樹脂やポリプロピレン系樹脂を包含するポリオレフィン系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、ポリアミド系樹脂などを挙げることができる。 Examples of the material for forming the base material layer F12 include triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, cyclic polyolefin resin, and polypropylene resin. Examples thereof include polyolefin resins, polyarylate resins, polyimide resins, and polyamide resins.
 基材層F12の厚みは、例えば、平均厚さで40μm以上100μm以下とすることができる。 The thickness of the base material layer F12 can be, for example, 40 μm or more and 100 μm or less in average thickness.
<偏光子保護層>
 偏光子保護層F18の形成材料としては、上述の基材層F12と同様のものを用いることができる。このような材料としては、例えば、トリアセチルセルロース(TAC)系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、(メタ)アクリレート系樹脂、環状ポリオレフィン系樹脂やポリプロピレン系樹脂を包含するポリオレフィン系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、ポリアミド系樹脂などを挙げることができる。
<Polarizer protective layer>
As a material for forming the polarizer protective layer F18, the same material as that of the base material layer F12 described above can be used. Examples of such materials include polyolefins including triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, cyclic polyolefin resin, and polypropylene resin. Resin, polyarylate resin, polyimide resin, polyamide resin and the like.
 偏光子保護層F18の厚みは、例えば、平均厚さで5μm以上80μm以下とすることができる。 The thickness of the polarizer protective layer F18 can be, for example, 5 μm or more and 80 μm or less in average thickness.
<接着層>
 第一接着層F15および第二接着層F17の形成材料は、例えば、ポリビニルアルコール系樹脂またはウレタン樹脂を用いた組成物を主成分として水に溶解したものまたは水に分散させた水系接着剤や、光硬化性樹脂と光カチオン重合開始剤などを含有する無溶剤の光硬化性接着剤が挙げられる。第一接着層F15および第二接着層F17の形成材料としては、製造時の体積収縮が少なく、厚さの制御が容易である観点から、光硬化性接着剤を用いることが好ましく、紫外線硬化型接着剤を用いることがより好ましい。
<Adhesive layer>
A material for forming the first adhesive layer F15 and the second adhesive layer F17 is, for example, a composition using a polyvinyl alcohol-based resin or a urethane resin as a main component, dissolved in water, or a water-based adhesive dispersed in water, A solvent-free photocurable adhesive containing a photocurable resin and a cationic photopolymerization initiator can be used. As a material for forming the first adhesive layer F15 and the second adhesive layer F17, it is preferable to use a photocurable adhesive from the viewpoint that the volume shrinkage during production is small and the thickness can be easily controlled. It is more preferable to use an adhesive.
 紫外線硬化型接着剤としては、液状の塗布可能な状態で供給される限りにおいて、従来から偏光板の製造に使用されている各種のものを用いることができる。紫外線硬化型接着剤は、耐候性や重合性などの観点から、カチオン重合性の化合物、例えば、エポキシ化合物、より具体的には、特開2004-245925号公報に記載されるような、分子内に芳香環を有しないエポキシ化合物を、紫外線硬化性成分の一つとして含有するものが好ましい。 As the ultraviolet curable adhesive, various materials conventionally used in the production of polarizing plates can be used as long as they are supplied in a liquid-applicable state. The ultraviolet curable adhesive is a cationically polymerizable compound, for example, an epoxy compound, more specifically, an intramolecular molecule as described in JP-A-2004-245925, from the viewpoint of weather resistance, polymerizability, and the like. It preferably contains an epoxy compound having no aromatic ring as one of the ultraviolet curable components.
 このようなエポキシ化合物としては、例えば、ビスフェノールAのジグリシジルエーテルを代表例とする芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物を核水添し、それをグリシジルエーテル化して得られる水素化エポキシ化合物、脂環式環に結合するエポキシ基を分子内に少なくとも1個有する脂環式エポキシ化合物、脂肪族ポリヒドロキシ化合物のグリシジルエーテルを代表例とする脂肪族エポキシ化合物などが挙げられる。 As such an epoxy compound, for example, a hydrogenation obtained by nuclear hydrogenation of an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound represented by diglycidyl ether of bisphenol A, and converting it to glycidyl ether. Examples thereof include an epoxy compound, an alicyclic epoxy compound having at least one epoxy group bonded to an alicyclic ring in the molecule, and an aliphatic epoxy compound having a glycidyl ether of an aliphatic polyhydroxy compound as a representative example.
 紫外線硬化型接着剤には、エポキシ化合物を代表例とするカチオン重合性化合物のほか、重合開始剤、特に紫外線の照射によりカチオン種またはルイス酸を発生し、カチオン重合性化合物の重合を開始させるための光カチオン重合開始剤が配合される。さらに、紫外線硬化型接着剤には、加熱によって重合を開始させる熱カチオン重合開始剤、その他、光増感剤などの各種添加剤が配合されていてもよい。 In addition to cationically polymerizable compounds such as epoxy compounds as representative examples of ultraviolet curable adhesives, polymerization initiators, particularly to generate cationic species or Lewis acids upon irradiation with ultraviolet rays, initiate polymerization of cationically polymerizable compounds. The photocationic polymerization initiator is blended. Furthermore, the ultraviolet curable adhesive may contain various additives such as a thermal cationic polymerization initiator that initiates polymerization by heating, and other photosensitizers.
 第一接着層F15および第二接着層F17の形成材料は、同じであっても、あるいは異なっていてもよいが、生産性の観点からは、適度の接着力が得られるという前提で、第一接着層F15および第二接着層F17を、同じ接着剤を用いて形成することが好ましい。 The materials for forming the first adhesive layer F15 and the second adhesive layer F17 may be the same or different. However, from the viewpoint of productivity, the first adhesive layer F15 and the second adhesive layer F17 are based on the premise that an appropriate adhesive force can be obtained. The adhesive layer F15 and the second adhesive layer F17 are preferably formed using the same adhesive.
 第一接着層F15および第二接着層F17の厚みは、例えば、平均厚さで0.5μm以上5μm以下とすることができる。 The thickness of the 1st adhesion layer F15 and the 2nd adhesion layer F17 can be 0.5 micrometer or more and 5 micrometers or less by average thickness, for example.
<粘着層>
 粘着層F19は、例えば、光学フィルム本体部F21を液晶パネルの表示面に貼合するために用いられる。粘着層F19を形成する粘着剤としては、例えば、アクリル系樹脂、シリコーン系樹脂、ポリエステル、ポリウレタン、ポリエーテルなどをベース樹脂とするものを挙げることができる。その中でも、アクリル系樹脂をベース樹脂とするアクリル系粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を保持し、さらに耐候性や耐熱性などに優れ、加熱や加湿の条件下で浮きや剥がれなどの剥離問題が生じにくいため、好適に用いられる。
<Adhesive layer>
The adhesive layer F19 is used, for example, to bond the optical film body F21 to the display surface of the liquid crystal panel. Examples of the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer F19 include those having an acrylic resin, a silicone-based resin, polyester, polyurethane, polyether, or the like as a base resin. Among them, acrylic adhesives based on acrylic resins are excellent in optical transparency, retain moderate wettability and cohesion, and are also excellent in weather resistance and heat resistance. It is preferably used because peeling problems such as floating and peeling hardly occur under the conditions.
 アクリル系粘着剤を構成するアクリル系樹脂には、エステル部分が、メチル基、エチル基、ブチル基、又は2-エチルヘキシル基のような炭素数20以下のアルキル基を有するアクリル酸アルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸-2-ヒドロキシエチルのような官能基含有(メタ)アクリル系モノマーとのアクリル系共重合体が好適に用いられる。 The acrylic resin constituting the acrylic pressure-sensitive adhesive includes an acrylic acid alkyl ester having an ester group having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group, a butyl group, or a 2-ethylhexyl group, An acrylic copolymer with a functional group-containing (meth) acrylic monomer such as (meth) acrylic acid and (meth) acrylic acid-2-hydroxyethyl is preferably used.
 このようなアクリル系共重合体を含む粘着層F19は、液晶パネルに貼合した後に何らかの不具合があって剥離する必要が生じた場合に、ガラス基板に糊残りなどを生じさせることなく、比較的容易に剥離することができる。アクリル系共重合体は、そのガラス転移温度が25℃以下であることが好ましく、0℃以下であることがより好ましい。また、このアクリル系共重合体は、通常10万以上の重量平均分子量を有する。 The pressure-sensitive adhesive layer F19 containing such an acrylic copolymer is relatively free without causing adhesive residue or the like on the glass substrate when it is necessary to peel off after being bonded to the liquid crystal panel. It can be easily peeled off. The acrylic copolymer preferably has a glass transition temperature of 25 ° C. or lower, and more preferably 0 ° C. or lower. The acrylic copolymer usually has a weight average molecular weight of 100,000 or more.
 粘着層F19の厚みは、例えば、平均厚さで1μm以上40μm以下とすることができる。 The thickness of the adhesive layer F19 can be, for example, 1 μm or more and 40 μm or less in average thickness.
<第一位相差層>
 第一位相差層(プロテクションフィルム)F11は、基材層F12とともにパターン化位相差層F14を保護する。第一位相差層F11は、基材層F12に対して剥離自在に設けられている。
<First retardation layer>
The first retardation layer (protection film) F11 protects the patterned retardation layer F14 together with the base material layer F12. The first retardation layer F11 is provided to be peelable from the base material layer F12.
 第一位相差層F11は、透明樹脂フィルムに粘着・剥離性の樹脂層又は付着性の樹脂層を形成して、弱い粘着性を付与したものが用いられる。透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフトレート、ポリエチレン、及びポリプロピレンのような熱可塑性樹脂の押出フィルム、それらを組み合わせた共押出フィルム、それらを一軸又は二軸に延伸したフィルムなどを挙げることができる。透明樹脂フィルムとしては、透明性及び均質性に優れ、廉価であるポリエチレンテレフタレート又はポリエチレンの一軸又は二軸延伸フィルムを用いることが好ましい。 The first retardation layer F11 is formed by forming an adhesive / peelable resin layer or an adhesive resin layer on a transparent resin film to give weak adhesiveness. Examples of the transparent resin film include extruded films of thermoplastic resins such as polyethylene terephthalate, polyethylene naphtholate, polyethylene, and polypropylene, co-extruded films combining them, and films obtained by stretching them uniaxially or biaxially. be able to. As the transparent resin film, it is preferable to use polyethylene terephthalate or polyethylene uniaxially or biaxially stretched film which is excellent in transparency and homogeneity and is inexpensive.
 粘着・剥離性の樹脂層としては、例えば、アクリル系粘着剤、天然ゴム系粘着剤、スチレン-ブタジエン共重合樹脂系粘着剤、ポリイソブチレン系粘着剤、ビニルエーテル系樹脂粘着剤、シリコーン系樹脂粘着剤などを挙げることができる。また、付着性の樹脂層としては、例えば、エチレン-酢酸ビニル共重合樹脂などを挙げることができる。粘着・剥離性の樹脂層としては、透明性に優れるアクリル系粘着剤を用いることが好ましい。 Examples of the adhesive / peelable resin layer include acrylic adhesives, natural rubber adhesives, styrene-butadiene copolymer resin adhesives, polyisobutylene adhesives, vinyl ether resin adhesives, and silicone resin adhesives. And so on. Examples of the adhesive resin layer include an ethylene-vinyl acetate copolymer resin. As the adhesive / peelable resin layer, it is preferable to use an acrylic adhesive having excellent transparency.
 第一位相差層F11の厚みは、例えば、平均厚さで15μm以上75μm以下とすることができる。 The thickness of the first retardation layer F11 can be, for example, an average thickness of 15 μm to 75 μm.
<第二位相差層>
 第二位相差層(セパレータフィルム)F20は、粘着層F19を覆って粘着層F19を保護する。第二位相差層F20は、粘着層F19に対して剥離自在に設けられている。第二位相差層F20としては、第一位相差層F11と同様の透明樹脂フィルムを用いることができる。
<Second retardation layer>
The second retardation layer (separator film) F20 covers the adhesive layer F19 and protects the adhesive layer F19. The second retardation layer F20 is provided to be peelable from the adhesive layer F19. As the second retardation layer F20, a transparent resin film similar to the first retardation layer F11 can be used.
 第二位相差層F20の厚みは、例えば、平均厚さで15μm以上75μm以下とすることができる。 The thickness of the second retardation layer F20 can be, for example, 15 μm or more and 75 μm or less in average thickness.
 本実施形態では、例えば、光学フィルムF2を光学フィルムF1として用いる。しかし、光学フィルムF2から、例えば、第一位相差層F11を剥離したものを光学フィルムF1として用いてもよい。 In this embodiment, for example, the optical film F2 is used as the optical film F1. However, for example, a film obtained by removing the first retardation layer F11 from the optical film F2 may be used as the optical film F1.
 図2および図3に戻って、第一支持体111は、光学フィルムF1の幅方向と平行な円柱状の第一支持面111aを有する。第一支持体111は、例えば、光学フィルムF1の搬送経路FCL(図1参照)を構成する複数の搬送ロールのうちの一つである。第一支持体111は、光学フィルムF1の第一面(本実施形態では、例えば、図4の第二位相差層F20の上面)を支持しつつ、光学フィルムF1の搬送に伴って回転する。 2 and 3, the first support 111 has a cylindrical first support surface 111a parallel to the width direction of the optical film F1. The 1st support body 111 is one of the some conveyance rolls which comprise the conveyance path | route FCL (refer FIG. 1) of the optical film F1, for example. The first support 111 rotates with the conveyance of the optical film F1 while supporting the first surface of the optical film F1 (in this embodiment, for example, the upper surface of the second retardation layer F20 in FIG. 4).
 第一支持体111は、第一支持面111a内の少なくとも一部に、光学フィルムF1を第二面側から第一面側に透過した光を反射する反射面RS(第一反射面)を有する。本実施形態の場合、第一支持体111は、例えば、鏡面加工を施された金属製のロールであり、第一支持面111a全体が反射面RSとなっているが、第一支持体111の構成はこれに限られない。反射面RSの材料や構成は、特に限定されない。反射面RSは、第一支持体111の表面を鏡面加工することにより形成されてもよく、第一支持体111の表面に金属反射膜や反射型偏光板等の反射部材を配置することにより形成されてもよい。また、第一支持面111a全体が反射面RSとなっていてもよく、第一支持面111aの一部の領域のみが反射面RSとなっていてもよい。 The first support 111 has a reflection surface RS (first reflection surface) that reflects light transmitted through the optical film F1 from the second surface side to the first surface side, at least in part within the first support surface 111a. . In the case of this embodiment, the first support 111 is, for example, a mirror-finished metal roll, and the entire first support surface 111a is a reflective surface RS. The configuration is not limited to this. The material and configuration of the reflective surface RS are not particularly limited. The reflective surface RS may be formed by mirror-finishing the surface of the first support 111, and is formed by disposing a reflective member such as a metal reflective film or a reflective polarizing plate on the surface of the first support 111. May be. Further, the entire first support surface 111a may be the reflection surface RS, or only a part of the first support surface 111a may be the reflection surface RS.
 第一撮像ユニット112は、第一光源部112aと、第一撮像部112bと、第一偏光板112cと、を含む。第一撮像ユニット112は、例えば、一の偏光パターン列を透過して反射面RSで反射された光が、同じ一の偏光パターン列を透過して第一撮像部112bに入射するように、第一光源部112aと第一撮像部112bとを近接させて一体に保持している。 The first imaging unit 112 includes a first light source unit 112a, a first imaging unit 112b, and a first polarizing plate 112c. For example, the first imaging unit 112 is configured so that light transmitted through one polarization pattern row and reflected by the reflection surface RS passes through the same polarization pattern row and enters the first imaging unit 112b. The one light source unit 112a and the first imaging unit 112b are held close to each other.
 第一光源部112aは、反射面上に位置する光学フィルムF1に向けて光学フィルムF1の第二面(図4の第一位相差層F11の下面)側から光を照射する。第一偏光板112cは、第一光源部112aから光学フィルムF1に向かう光の光路上に設けられる。第一光源部112aから照射された光は、第一偏光板112cを透過して直線偏光に変換される。第一光源部112aとしては、LEDなどの公知の光源を用いることができる。第一光源部112aは、例えば、光学フィルムF1に向けて白色光を照射するが、第一光源部112aが照射する光はこれに限られない。例えば、光学フィルムF1に含まれる位相差層F20、パターン化位相差層F14および偏光子層F16や第一偏光板112cの位相差や波長分散特性などに応じて、適切な波長の光を第一光源部112aから照射することができる。 The first light source unit 112a irradiates light from the second surface of the optical film F1 (the lower surface of the first retardation layer F11 in FIG. 4) toward the optical film F1 positioned on the reflection surface. The 1st polarizing plate 112c is provided on the optical path of the light which goes to the optical film F1 from the 1st light source part 112a. The light emitted from the first light source unit 112a passes through the first polarizing plate 112c and is converted into linearly polarized light. As the first light source unit 112a, a known light source such as an LED can be used. For example, the first light source unit 112a emits white light toward the optical film F1, but the light emitted by the first light source unit 112a is not limited thereto. For example, depending on the phase difference and wavelength dispersion characteristics of the retardation layer F20, the patterned retardation layer F14, the polarizer layer F16, and the first polarizing plate 112c included in the optical film F1, the light having an appropriate wavelength is first It can irradiate from the light source part 112a.
 第一撮像部112bは、反射面RS上に位置する光学フィルムF1の反射光像を光学フィルムF1の第二面側から撮像する。第一撮像部112bとしては、CCDカメラなどの公知の撮像手段を用いることができる。 The 1st imaging part 112b images the reflected light image of the optical film F1 located on the reflective surface RS from the 2nd surface side of the optical film F1. As the first imaging unit 112b, known imaging means such as a CCD camera can be used.
 第一パターン検出部114は、光学フィルムF1の反射光像に基づいて、反射面RS上に位置する第一偏光パターン列F14a(APAa,DPAa)および第二偏光パターン列F14b(APAb,DPAb)を検出し、偏光パターン列F14a,F14bの境界線の位置情報を抽出する。第一パターン検出部114としては、公知の画像処理手段を用いることができる。第一撮像部112bによって撮像された反射光像の画像信号は、第一パターン検出部114によってデジタルデータ化された画像データに変換され、色抽出処理や二値化処理などの公知の画像処理が施される。 Based on the reflected light image of the optical film F1, the first pattern detection unit 114 detects the first polarization pattern row F14a (APAa, DPAa) and the second polarization pattern row F14b (APAb, DPAb) located on the reflection surface RS. Then, the position information of the boundary lines of the polarization pattern rows F14a and F14b is extracted. As the first pattern detection unit 114, a known image processing unit can be used. The image signal of the reflected light image captured by the first imaging unit 112b is converted into image data converted into digital data by the first pattern detection unit 114, and known image processing such as color extraction processing and binarization processing is performed. Applied.
 第一偏光パターン列F14aと第二偏光パターン列F14bは、第一偏光板112cの偏光軸(透過軸)PLAX2に対する遅相軸RTAXのなす方向が互いに異なる。そのため、第一偏光板112c、パターン化位相差層F14、偏光子層F16および位相差層F20を透過し、反射面RSで反射して再度位相差層F20、偏光子層F16およびパターン化位相差層F14を透過した光の輝度や色は、第一偏光パターン列F14aを透過したものと第二偏光パターン列F14bを透過したものとで異なる。よって、第一パターン検出部114は、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像の輝度または色の違いに基づいて、第一偏光パターン列F14aと第二偏光パターン列F14bを検出する。 The first polarization pattern row F14a and the second polarization pattern row F14b are different from each other in the direction formed by the slow axis RMAX with respect to the polarization axis (transmission axis) PLAX2 of the first polarizing plate 112c. Therefore, the first polarizing plate 112c, the patterned retardation layer F14, the polarizer layer F16, and the retardation layer F20 are transmitted, reflected by the reflective surface RS, and again the retardation layer F20, the polarizer layer F16, and the patterned retardation. The brightness and color of the light transmitted through the layer F14 are different between the light transmitted through the first polarization pattern array F14a and the light transmitted through the second polarization pattern array F14b. Therefore, the first pattern detection unit 114 determines the first polarization pattern row F14a and the second polarization pattern row F14b based on the difference in luminance or color between the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b. Is detected.
 例えば、図6中の(a)および(b)に示すように、第一光源部112aから白色光を照射すると、第一偏光パターン列F14aを透過して第一撮像部112bに入射する光は、赤色Rで光量も大きいのに対し、第二偏光パターン列F14bを透過して第一撮像部112bに入射する光は、緑色Gで光量も小さいというような現象が生じる。第一パターン検出部114は、反射光像の画像データに対して、色抽出処理や二値化処理などの公知の画像処理を施すことにより、第一偏光パターン列F14aおよび第二偏光パターン列F14bを検出する。色抽出処理や二値化処理は、いずれか一つを選択して用いることもできるが、両者を併用して用いることもできる。例えば、第一パターン検出部114は、反射光像の画像データにおいて,より明るく表示される色(図6中では、例えば、赤色R)を有する部分を抽出し、抽出された画像データをさらに二値化処理することにより、第一偏光パターン列F14aと第二偏光パターン列F14bとを、明パターンと暗パターンとして検出する。色抽出処理や二値化処理のアルゴリズムは多数知られており、特定の検出方法に限定されない。 For example, as shown in FIGS. 6A and 6B, when white light is emitted from the first light source unit 112a, the light that passes through the first polarization pattern array F14a and enters the first imaging unit 112b is as follows. In contrast, the red light R has a large amount of light, whereas the light transmitted through the second polarization pattern array F14b and incident on the first imaging unit 112b has a green color G and a small amount of light. The first pattern detection unit 114 performs known image processing such as color extraction processing and binarization processing on the image data of the reflected light image, thereby the first polarization pattern row F14a and the second polarization pattern row F14b. Is detected. Any one of the color extraction process and the binarization process can be selected and used, or both can be used in combination. For example, the first pattern detection unit 114 extracts a portion having a brighter color (for example, red R in FIG. 6) from the image data of the reflected light image, and further extracts the extracted image data. By performing the digitization process, the first polarization pattern row F14a and the second polarization pattern row F14b are detected as a bright pattern and a dark pattern. Many algorithms for color extraction processing and binarization processing are known and are not limited to specific detection methods.
 複数の偏光パターン列F14a,F14bの反射光像のコントラスト(反射光像の輝度の比)を調整するために、第一光源部112aは、赤色や緑色などの色光を照射してもよい。例えば、第一光源部112aから赤色Rの光を照射すると、赤色Rを殆ど含まない第二偏光パターン列F14bの反射光像は黒となる。よって、第一偏光パターン列F14aの反射光像の輝度と、第二偏光パターン列F14bの反射光像の輝度との比(以下、「第一偏光パターン列と第二偏光パターン列の反射光像のコントラスト」という)が大きくなり、第一偏光パターン列F14aと第二偏光パターン列F14bの検出が容易になる。 In order to adjust the contrast of the reflected light images of the plurality of polarization pattern rows F14a and F14b (ratio of the brightness of the reflected light image), the first light source unit 112a may irradiate colored light such as red or green. For example, when the red light R is emitted from the first light source unit 112a, the reflected light image of the second polarization pattern array F14b that hardly includes the red color R is black. Therefore, the ratio between the brightness of the reflected light image of the first polarization pattern array F14a and the brightness of the reflected light image of the second polarization pattern array F14b (hereinafter referred to as “the reflected light image of the first polarization pattern array and the second polarization pattern array). Of the first polarization pattern row F14a and the second polarization pattern row F14b.
 第一光源部112aは、緑色Gの光を照射することもできる。しかし、より明るく表示される色(図6中では、例えば、赤色R)を照射する第一光源部112aを用いるほうが、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像のコントラストを高める上で有利である。 The first light source unit 112a can also emit green G light. However, the contrast of the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b is better when the first light source unit 112a that emits a brighter color (for example, red R in FIG. 6) is used. It is advantageous in increasing
 上述のように、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像のコントラストは、光学フィルムF1に入射する光の波長によって異なる。第一光源部112aから照射される光の波長は、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像のコントラストが、白色光を照射する場合に比べて相対的に大きくなるような波長に設定することができる。 As described above, the contrast of the reflected light images of the first polarization pattern array F14a and the second polarization pattern array F14b varies depending on the wavelength of light incident on the optical film F1. The wavelength of the light emitted from the first light source unit 112a is such that the contrast of the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b is relatively larger than when white light is emitted. Can be set to any wavelength.
 第一調整部113は、第一偏光板112cの偏光軸PLAX2と、偏光パターン列F14a,F14bの遅相軸RTAXとの相対角度を調整する。第一調整部113によって、第一偏光板112cの偏光軸PLAX2に対する、第一偏光パターン列F14aおよび第二偏光パターン列F14bの遅相軸RTAXのなす角度を調整することにより、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像の非対称性(色や輝度などの相違)を大きくすることができる。よって、第一パターン検出部114は、反射面上に位置する偏光パターン列F14a,F14bを精度よく検出することができる。
なお、上記した第一偏光板112cの偏光軸PLAX2と、偏光パターン列F14a,F14bの遅相軸RTAXとの相対角度の調整は、例えば、第一調整部113により、第一偏光板112cを回転可能な治具に貼り付けた後、作業者が光学フィルムF1の反射光像を確認しながら、回転可能な治具に貼り付けられた第一偏光板112cを、治具ごと回転させることで行うことができる。この場合、作業者が光学フィルムF1の反射光像を確認しながら治具を回転させ、第一偏光パターン列F14aと第二偏光パターン列F14bの非対称性が最も大きくなったと判断した位置で、治具の回転を停止する手順とすることができる。一方、上記の相対角度の調整は、第一調整部113により、治具を図示略のモータ等で回転させることで、自動で行うことも可能である。また、上記の相対角度の調整は、1回の工程毎に実施してもよいが、原反ロール(図1中の符号R1を参照)の交換時に光学フィルムF1の反射光像を確認し、この反射光像における非対称性が大きい場合には相対角度の調整を行わず、非対称性が小さくパターン認識が良好で無いときのみ調整してもよい。
The first adjustment unit 113 adjusts the relative angle between the polarization axis PLAX2 of the first polarizing plate 112c and the slow axis RMAX of the polarization pattern rows F14a and F14b. By adjusting the angle formed by the slow axis RMAX of the first polarization pattern row F14a and the second polarization pattern row F14b with respect to the polarization axis PLAX2 of the first polarizing plate 112c by the first adjustment unit 113, the first polarization pattern row Asymmetry (difference in color, brightness, etc.) of the reflected light images of F14a and the second polarization pattern row F14b can be increased. Therefore, the first pattern detection unit 114 can accurately detect the polarization pattern rows F14a and F14b located on the reflection surface.
The relative angle between the polarization axis PLAX2 of the first polarizing plate 112c and the slow axis RMAX of the polarization pattern rows F14a and F14b is adjusted by, for example, rotating the first polarizing plate 112c by the first adjustment unit 113. After being attached to a possible jig, the operator checks the reflected light image of the optical film F1 and rotates the first polarizing plate 112c attached to the rotatable jig together with the jig. be able to. In this case, the operator rotates the jig while confirming the reflected light image of the optical film F1, and at the position where the asymmetry between the first polarization pattern row F14a and the second polarization pattern row F14b is determined to be the largest. The procedure can be to stop the rotation of the tool. On the other hand, the adjustment of the relative angle can be automatically performed by the first adjusting unit 113 by rotating the jig with a motor (not shown). Moreover, although adjustment of said relative angle may be implemented for every process, when the original fabric roll (refer code | symbol R1 in FIG. 1) is replaced | exchanged, the reflected light image of the optical film F1 is confirmed, When the asymmetry in the reflected light image is large, the relative angle may not be adjusted, and may be adjusted only when the asymmetry is small and the pattern recognition is not good.
 制御装置110は、第一パターン検出部114が抽出した偏光パターン列F14a,F14bの境界線の位置情報を取得する。制御装置110は、偏光パターン列F14a,F14bの境界線の位置情報に基づいて、第一支持体111に対する光学フィルムF1の配置位置を確認する。制御装置110は、偏光パターン列F14a,F14bの位置(例えば、偏光パターン列F14a,F14bの境界線の位置)に基づいて、予め設定された走行位置に対して、実際の光学フィルムF1の走行位置がどの程度ずれているかを検出する。制御装置110は、光学フィルムF1の走行位置のずれを低減するように、図1に示した第一蛇行制御部105により、フィルム供給部101を光学フィルムF1の搬送方向と直交する幅方向に移動させる。 The control device 110 acquires the position information of the boundary lines of the polarization pattern rows F14a and F14b extracted by the first pattern detection unit 114. The control device 110 confirms the arrangement position of the optical film F1 relative to the first support 111 based on the positional information on the boundary lines of the polarization pattern rows F14a and F14b. Based on the positions of the polarization pattern rows F14a and F14b (for example, the positions of the boundary lines of the polarization pattern rows F14a and F14b), the control device 110 performs the actual travel position of the optical film F1 with respect to the preset travel position. It is detected how much is shifted. The control device 110 moves the film supply unit 101 in the width direction orthogonal to the transport direction of the optical film F1 by the first meandering control unit 105 shown in FIG. 1 so as to reduce the shift of the traveling position of the optical film F1. Let
 制御装置110は、コンピュータシステムを含んで構成される。コンピュータシステムは、CPU等の演算処理部と、メモリやハードディスク等の記憶部とを含む。第一パターン検出部114の機能は、演算処理部によって実現される。制御装置110は、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含み、フィルム供給部101、フィルム巻き取り部102,103、耳巻き取り部104、第一蛇行制御部105、第一検出装置106、第二蛇行制御部107、第二検出装置108および切断部109などの外部の装置の動作を統括的に制御する。 The control device 110 includes a computer system. The computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk. The function of the first pattern detection unit 114 is realized by an arithmetic processing unit. The control device 110 includes an interface capable of executing communication with an external device of the computer system. The film supply unit 101, the film winding units 102 and 103, the ear winding unit 104, the first meandering control unit 105, the first Operations of external devices such as the detection device 106, the second meandering control unit 107, the second detection device 108, and the cutting unit 109 are comprehensively controlled.
 第二検出装置108の構成は、第一検出装置106と同様である。第二検出装置108は、第二支持体117と、第二撮像ユニット118と、第二パターン検出部120と、第二調整部119と、を含む。第二支持体117は第一支持体111と同じ構成であり、第二撮像ユニット118は第一撮像ユニット112と同じ構成であり、第二パターン検出部120は第一パターン検出部114と同じ構成であり、第二調整部119は第一調整部113と同じ構成である。 The configuration of the second detection device 108 is the same as that of the first detection device 106. The second detection device 108 includes a second support member 117, a second imaging unit 118, a second pattern detection unit 120, and a second adjustment unit 119. The second support 117 has the same configuration as the first support 111, the second imaging unit 118 has the same configuration as the first imaging unit 112, and the second pattern detection unit 120 has the same configuration as the first pattern detection unit 114. The second adjustment unit 119 has the same configuration as the first adjustment unit 113.
 第二検出装置108は、第一検出装置106と同様に、第二支持体117の反射面RS(第二反射面)で反射された光学フィルムF1の反射光像を第二撮像ユニット118により撮像し、その撮像結果に基づいて、反射面RS上に位置する第一偏光パターン列F14a(APAa,DPAa)および第二偏光パターン列F14b(APAb,DPAb)を検出し、第一偏光パターン列F14aと第二偏光パターン列F14bとの境界線の位置情報を抽出する。 Similarly to the first detection device 106, the second detection device 108 captures the reflected light image of the optical film F <b> 1 reflected by the reflection surface RS (second reflection surface) of the second support 117 with the second imaging unit 118. Then, based on the imaging result, the first polarization pattern array F14a (APAa, DPAa) and the second polarization pattern array F14b (APAb, DPAb) located on the reflection surface RS are detected, and the first polarization pattern array F14a The position information of the boundary line with the second polarization pattern row F14b is extracted.
 以上のように、本実施形態のスリット加工装置100では、第一検出装置106および第二検出装置108として、上記の構成のものが用いられている。第一検出装置106および第二検出装置108では、パターン化位相差層F14および偏光子層F16を透過した光を、位相差層F20を介して反射面RSに入射させ、反射面RSで反射した光を、再度位相差層F20を介して偏光子層F16およびパターン化位相差層F14に入射させる。そのため、撮像部112b,118bによって撮像される反射光像には、色や輝度の異なる複数のパターン列が、第一偏光パターン列F14aと第二偏光パターン列F14bに対応して表示される。よって、この反射光像の画像データに対して色抽出処理や二値化処理などの画像処理を施せば、第一偏光パターン列F14aと第二偏光パターン列F14bを精度よく検出することができる。 As described above, in the slit machining apparatus 100 of the present embodiment, the first detection apparatus 106 and the second detection apparatus 108 are configured as described above. In the first detection device 106 and the second detection device 108, the light transmitted through the patterned retardation layer F14 and the polarizer layer F16 is incident on the reflection surface RS via the retardation layer F20 and reflected by the reflection surface RS. The light is again incident on the polarizer layer F16 and the patterned retardation layer F14 via the retardation layer F20. Therefore, in the reflected light image captured by the imaging units 112b and 118b, a plurality of pattern rows having different colors and luminances are displayed corresponding to the first polarization pattern row F14a and the second polarization pattern row F14b. Therefore, if image processing such as color extraction processing or binarization processing is performed on the image data of the reflected light image, the first polarization pattern row F14a and the second polarization pattern row F14b can be detected with high accuracy.
 位相差層F20がパターン化位相差層F14と反射面RSとの間に設けられていなければ、撮像部112b,118bによって撮像される反射光像は全面黒の画像となる。よって、第一偏光パターン列F14aと第二偏光パターン列F14bを検出することはできない。位相差層F20がパターン化位相差層F14と反射面RSとの間に設けられることによって、偏光子層F16から漏れる光が発生し、その光の色や輝度も、第一偏光パターン列F14aを透過したものと第二偏光パターン列F14bを透過したものとでは異なる。 If the retardation layer F20 is not provided between the patterned retardation layer F14 and the reflection surface RS, the reflected light image captured by the imaging units 112b and 118b is a black image. Therefore, the first polarization pattern row F14a and the second polarization pattern row F14b cannot be detected. By providing the retardation layer F20 between the patterned retardation layer F14 and the reflecting surface RS, light leaking from the polarizer layer F16 is generated, and the color and brightness of the light are also different from those of the first polarization pattern array F14a. The transmitted light is different from the transmitted light through the second polarization pattern array F14b.
 位相差層F20は、パターン化位相差層F14や偏光子層F16などに比べて、その位相差が十分に制御されていないため、光学測定においては不都合を生じさせることが多い。そのため、光学測定の前に予め位相差層を剥離するなどの工夫が必要であるが、本実施形態では、位相差層F20の位相差を積極的に利用して、位相差層F20を剥離することなく、偏光パターン列F14a,F14bを検出する。そのため、偏光パターン列F14a,F14bを精度よく効率的に検出することが可能な検出装置および検出方法を提供することができる。 The retardation layer F20 often causes inconveniences in optical measurement because the retardation thereof is not sufficiently controlled as compared with the patterned retardation layer F14 and the polarizer layer F16. Therefore, it is necessary to devise a technique such as peeling the retardation layer in advance before optical measurement. In this embodiment, however, the retardation of the retardation layer F20 is peeled off positively using the retardation of the retardation layer F20. Without detection, the polarization pattern rows F14a and F14b are detected. Therefore, it is possible to provide a detection device and a detection method capable of detecting the polarization pattern rows F14a and F14b with high accuracy and efficiency.
 また、本実施形態では、調整部113,119によって、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像の非対称性を大きくすることができる。よって、偏光パターン列F14a,F14bの検出精度が高まる。 In the present embodiment, the asymmetry of the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b can be increased by the adjustment units 113 and 119. Therefore, the detection accuracy of the polarization pattern rows F14a and F14b is increased.
 本実施形態のスリット加工装置100は、第一検出装置106および第二検出装置108により検出された偏光パターン列F14a,F14bの位置(例えば、偏光パターン列F14a,F14bの境界線の位置)に基づいて、光学フィルムF1の走行位置を制御する。そのため、走行位置の制御を精度よく行うことができる。また、走行位置の制御を第一蛇行制御部105と第二蛇行制御部107を用いて二段階で行うため、光学フィルムF1の走行位置のずれを殆どなくすことができる。よって、走行位置のずれによりアクティブエリアACを誤って切断してしまうおそれが低減され、歩留りが向上する。また、走行位置のずれを考慮した余剰部分(周辺エリア)の幅を狭くすることができるため、光学フィルムF1の無駄が少なくなり、製造コストが低減される。 The slit processing apparatus 100 according to the present embodiment is based on the positions of the polarization pattern rows F14a and F14b detected by the first detection device 106 and the second detection device 108 (for example, the positions of the boundary lines of the polarization pattern rows F14a and F14b). Thus, the traveling position of the optical film F1 is controlled. Therefore, the traveling position can be controlled with high accuracy. In addition, since the travel position is controlled in two steps using the first meandering control unit 105 and the second meandering control unit 107, the shift of the travel position of the optical film F1 can be almost eliminated. Therefore, the possibility that the active area AC is accidentally disconnected due to the shift of the traveling position is reduced, and the yield is improved. Moreover, since the width | variety of the surplus part (peripheral area) which considered the shift | offset | difference of driving | running | working position can be narrowed, the waste of the optical film F1 decreases and manufacturing cost is reduced.
[第二の実施の形態]
 図7は、本発明の第二の実施の形態に係るスリット加工装置に適用される第一検出装置130の概念図である。
 本実施形態において、第一の実施の形態と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Second Embodiment]
FIG. 7 is a conceptual diagram of the first detection device 130 applied to the slit machining device according to the second embodiment of the present invention.
In the present embodiment, components that are the same as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態においては、第一支持体111に支持される光学フィルムF1の姿勢が第一の実施の形態と異なる。また、この姿勢の違いに基づいて、第一検出装置130の構成も第一の実施の形態の第一検出装置106とは異なっている。 In this embodiment, the posture of the optical film F1 supported by the first support 111 is different from that of the first embodiment. Further, based on this difference in posture, the configuration of the first detection device 130 is also different from the first detection device 106 of the first embodiment.
 本実施形態の第一検出装置130は、第一支持体111と、第一撮像ユニット131と、第一パターン検出部114と、を含む。第一支持体111は、光学フィルムF1のパターン化位相差層F21が偏光子層F16よりも下側に配置されるような姿勢で光学フィルムF1を支持する。光学フィルムF1は、第一支持体111によって支持される側の面を第一面とし、第一支持体111によって支持される側とは反対側の面を第二面としたときに、第一面側から第二面側に向けて、第一位相差層F11、パターン化位相差層F14および偏光子層F16を、この順で含む。 The first detection device 130 of the present embodiment includes a first support 111, a first imaging unit 131, and a first pattern detection unit 114. The first support 111 supports the optical film F1 in such a posture that the patterned retardation layer F21 of the optical film F1 is disposed below the polarizer layer F16. The optical film F1 has a first surface when the surface supported by the first support 111 is a first surface, and a surface opposite to the side supported by the first support 111 is a first surface. A first retardation layer F11, a patterned retardation layer F14, and a polarizer layer F16 are included in this order from the surface side to the second surface side.
 第一撮像ユニット131は、第一光源部112aと、第一撮像部112bと、を含む。
本実施形態では、偏光子層F16がパターン化位相差層F14と第一光源部112aとの間に配置されるため、第一光源部112aと光学フィルムF1との間に、別途偏光板を配置する必要がない。したがって、第一の実施の形態で示した第一偏光板112cおよび第一調整部113は省略されている。
The first imaging unit 131 includes a first light source unit 112a and a first imaging unit 112b.
In the present embodiment, since the polarizer layer F16 is disposed between the patterned retardation layer F14 and the first light source unit 112a, a separate polarizing plate is disposed between the first light source unit 112a and the optical film F1. There is no need to do. Therefore, the first polarizing plate 112c and the first adjustment unit 113 shown in the first embodiment are omitted.
第一パターン検出部114は、光学フィルムF1の反射光像に基づいて、反射面RS上に位置する偏光パターン列F14a,F14bを検出し、偏光パターン列F14a,F14bの境界線の位置情報を抽出する。第一撮像部112bによって撮像された反射光像の画像信号は、第一パターン検出部114によってデジタルデータ化された画像データに変換され、色抽出処理や二値化処理などの公知の画像処理が施される。 The first pattern detection unit 114 detects the polarization pattern rows F14a and F14b located on the reflection surface RS based on the reflected light image of the optical film F1, and extracts the position information of the boundary lines of the polarization pattern rows F14a and F14b. To do. The image signal of the reflected light image captured by the first imaging unit 112b is converted into image data converted into digital data by the first pattern detection unit 114, and known image processing such as color extraction processing and binarization processing is performed. Applied.
第一偏光パターン列F14aと第二偏光パターン列F14bは、偏光子層F16の偏光軸PLAXに対する遅相軸RTAXのなす方向が互いに異なる。そのため、偏光子層F16、パターン化位相差層F14および位相差層F11を透過し、反射面RSで反射して再度位相差層F11、パターン化位相差層F14および偏光子層F16を透過した光の輝度や色は、第一偏光パターン列F14aを透過したものと第二偏光パターン列F14bを透過したものとで異なる。よって、第一パターン検出部114は、第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像の輝度または色の違いに基づいて、第一偏光パターン列F14aと第二偏光パターン列F14bを検出する。 The first polarization pattern row F14a and the second polarization pattern row F14b are different from each other in the direction formed by the slow axis RMAX with respect to the polarization axis PLAX of the polarizer layer F16. Therefore, the light transmitted through the polarizer layer F16, the patterned retardation layer F14, and the retardation layer F11, reflected by the reflecting surface RS, and transmitted again through the retardation layer F11, the patterned retardation layer F14, and the polarizer layer F16. The brightness and color of the light beam are different between the light transmitted through the first polarization pattern array F14a and the light transmitted through the second polarization pattern array F14b. Therefore, the first pattern detection unit 114 determines the first polarization pattern row F14a and the second polarization pattern row F14b based on the difference in luminance or color between the reflected light images of the first polarization pattern row F14a and the second polarization pattern row F14b. Is detected.
図示は省略したが、第二検出装置の構成も第一検出装置130と同じである。第二検出装置においても、第一の実施の形態で示した第二偏光板118cおよび第二調整部119は省略されている。第二検出装置においても、第二支持体117に支持される光学フィルムF1の姿勢が第一の実施の形態とは異なるため、第二撮像部118bによって撮像される第一偏光パターン列F14aと第二偏光パターン列F14bの反射光像の輝度または色の違いに基づいて、第一偏光パターン列F14aと第二偏光パターン列F14bを検出することができる。 Although not shown, the configuration of the second detection device is the same as that of the first detection device 130. Also in the second detection apparatus, the second polarizing plate 118c and the second adjustment unit 119 described in the first embodiment are omitted. Also in the second detection device, since the posture of the optical film F1 supported by the second support 117 is different from that of the first embodiment, the first polarization pattern row F14a imaged by the second imaging unit 118b and the first Based on the difference in luminance or color of the reflected light image of the two-polarization pattern row F14b, the first polarization pattern row F14a and the second polarization pattern row F14b can be detected.
本実施形態においても、位相差層F11の位相差を積極的に利用して、位相差層F11を剥離することなく、偏光パターン列F14a,F14bを検出する。そのため、偏光パターン列F14a,F14bを精度よく効率的に検出することが可能な検出装置および検出方法を提供することができる。そして、このような検出装置および検出方法を用いて光学フィルムF1の走行位置を制御することで、走行位置の制御を精度よく行うことが可能なスリット加工装置およびスリット加工方法を提供することができる。 Also in the present embodiment, the polarization pattern rows F14a and F14b are detected without actively separating the retardation layer F11 by actively using the retardation of the retardation layer F11. Therefore, it is possible to provide a detection device and a detection method capable of detecting the polarization pattern rows F14a and F14b with high accuracy and efficiency. And by controlling the traveling position of the optical film F1 using such a detecting device and a detecting method, it is possible to provide a slit processing apparatus and a slit processing method capable of accurately controlling the traveling position. .
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されるものではない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
また、上記の実施の形態では、パターン化位相差層に含まれる偏光パターン列として二種類の偏光パターン列を説明した。しかし、パターン化位相差層に含まれる偏光パターン列は二種類に限定されず、三種類以上とすることもできる。この場合も、複数の偏光パターン列の反射光像は、互いに輝度や色などが異なるものとなる。よって、パターン検出部は、複数の偏光パターン列の反射光像の輝度または色の違いに基づいて、複数の偏光パターン列を検出することができる。 In the above-described embodiment, two types of polarization pattern sequences have been described as the polarization pattern sequence included in the patterned retardation layer. However, the number of polarization pattern sequences included in the patterned retardation layer is not limited to two, and may be three or more. Also in this case, the reflected light images of the plurality of polarization pattern rows are different from each other in luminance and color. Therefore, the pattern detection unit can detect the plurality of polarization pattern rows based on the difference in luminance or color of the reflected light images of the plurality of polarization pattern rows.
本発明に係るスリット加工装置およびスリット加工方法によれば、偏光パターン列を精度よく検出してスリット加工を行うことが可能なスリット加工装置およびスリット加工方法を提供することができる。 According to the slit processing apparatus and the slit processing method according to the present invention, it is possible to provide a slit processing apparatus and a slit processing method capable of accurately detecting a polarization pattern array and performing slit processing.
100…スリット加工装置、101…フィルム供給部、105…第一蛇行制御部、106…第一検出装置、107…第二蛇行制御部、108…第二検出装置、109…切断部、111…第一支持体、111a…第一支持面、112a…第一光源部、112b…第一撮像部、112c…第一偏光板、113…第一調整部、114…第一パターン検出部、115…第一ガイドロール、116…第二ガイドロール、117…第二支持体、117a…第二支持面、118a…第二光源部、118b…第二撮像部、118c…第二偏光板、119…第二調整部、120…第二パターン検出部、F1,F2…光学フィルム、F11…第一位相差層(位相差層)、F14…パターン化位相差層、F14a,F14b,APAa,APAb,DPAa,DPAb…偏光パターン列、F16…偏光子層、F20…第二位相差層(位相差層)、RS…反射面、SL1,SL2,SL3…スリットライン DESCRIPTION OF SYMBOLS 100 ... Slit processing apparatus, 101 ... Film supply part, 105 ... 1st meander control part, 106 ... 1st detection apparatus, 107 ... 2nd meander control part, 108 ... 2nd detection apparatus, 109 ... Cutting part, 111 ... 1st One support, 111a ... first support surface, 112a ... first light source unit, 112b ... first imaging unit, 112c ... first polarizing plate, 113 ... first adjustment unit, 114 ... first pattern detection unit, 115 ... first One guide roll, 116 ... second guide roll, 117 ... second support, 117a ... second support surface, 118a ... second light source unit, 118b ... second imaging unit, 118c ... second polarizing plate, 119 ... second Adjustment unit, 120 ... second pattern detection unit, F1, F2 ... optical film, F11 ... first retardation layer (retardation layer), F14 ... patterned retardation layer, F14a, F14b, APAa, APAb, DPAa, DPA ... polarization pattern sequence, F16 ... polarizer layer, F20 ... second retardation layer (retardation layer), RS ... reflecting surface, SL1, SL2, SL3 ... slit line

Claims (16)

  1.  位相差層と、偏光子層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工装置であって、
     前記光学フィルムを、その長手方向に繰り出すフィルム供給部と、
     前記フィルム供給部によって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出装置と、
     前記第一検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御部と、
     前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断部と、
     を含み、
     前記第一検出装置は、
     前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体と、
     前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第一光源部と、
     前記第一光源部から前記光学フィルムに向かう前記光の光路上に設けられた第一偏光板と、
     前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像部と、
     前記第一撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出部と、
     を含むスリット加工装置。
    A retardation layer, a polarizer layer, and a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions are provided in this order from the first surface side to the second surface side. A slitting device for slitting the obtained long optical film,
    A film supply section for feeding out the optical film in its longitudinal direction;
    A first detector for detecting the plurality of polarization pattern rows of the optical film fed by the film supply unit;
    A first meandering control unit that controls meandering in the width direction of the optical film based on the positions of the plurality of polarization pattern rows detected by the first detection device;
    A cutting unit that cuts the optical film along a slit line parallel to the transport direction on the downstream side of the position where the first meander control unit controls the meandering in the width direction of the optical film,
    Including
    The first detection device includes:
    Light having a first support surface that supports the first surface of the optical film, and having transmitted the optical film from the second surface side to the first surface side in at least a part of the first support surface A first support having a first reflecting surface for reflecting
    A first light source unit that emits light from the second surface side of the optical film toward the optical film located on the first reflecting surface;
    A first polarizing plate provided on the optical path of the light from the first light source part toward the optical film;
    A first imaging unit that images a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film;
    A first pattern detection unit that detects the plurality of polarization pattern rows located on the first reflection surface based on the reflected light image of the optical film imaged by the first imaging unit;
    Slitting machine including
  2.  前記第一検出装置は、前記第一偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第一調整部を含む
     請求項1に記載のスリット加工装置。
    The slit processing apparatus according to claim 1, wherein the first detection device includes a first adjustment unit that adjusts a relative angle between a polarization axis of the first polarizing plate and a slow axis of the polarization pattern array.
  3.  前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出装置と、
     前記第二検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御部と、
     を含み、
     前記第二検出装置は、
     前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体と、
     前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第二光源部と、
     前記第二光源部から前記光学フィルムに向かう前記光の光路上に設けられた第二偏光板と、
     前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像部と、
     前記第二撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出部と、
     を含む請求項1または2に記載のスリット加工装置。
    A second detection device that detects the plurality of polarization pattern rows of the optical film on the downstream side of the position where the first meandering control unit controls the meandering in the width direction of the optical film;
    Based on the positions of the plurality of polarization pattern rows detected by the second detection device, on the downstream side of the position where the first meandering control unit controls the meandering in the width direction of the optical film, A second meander control unit for controlling the meandering in the width direction;
    Including
    The second detection device is
    Light having a second support surface for supporting the first surface of the optical film, and transmitting the optical film from the second surface side to the first surface side in at least a part of the second support surface A second support having a second reflective surface for reflecting
    A second light source unit that emits light from the second surface side of the optical film toward the optical film located on the second reflecting surface;
    A second polarizing plate provided on the optical path of the light from the second light source part toward the optical film;
    A second imaging unit that images the reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film;
    A second pattern detection unit that detects the plurality of polarization pattern rows located on the second reflection surface based on the reflected light image of the optical film imaged by the second imaging unit;
    The slit processing apparatus of Claim 1 or 2 containing.
  4.  前記第二検出装置は、前記第二偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第二調整部を含む
     請求項3に記載のスリット加工装置。
    The slit processing device according to claim 3, wherein the second detection device includes a second adjustment unit that adjusts a relative angle between a polarization axis of the second polarizing plate and a slow axis of the polarization pattern array.
  5.  前記第一蛇行制御部は、前記フィルム供給部によって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、
     前記第二蛇行制御部は、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御する
     請求項3または4に記載のスリット加工装置。
    The first meandering control unit controls the meandering of the optical film by moving a position in which the optical film is drawn out by the film supply unit in the width direction of the optical film,
    The second meandering control unit controls meandering in the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Or the slit processing apparatus of 4.
  6.  位相差層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、偏光子層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工装置であって、
     前記光学フィルムを、その長手方向に繰り出すフィルム供給部と、
     前記フィルム供給部によって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出装置と、
     前記第一検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御部と、
     前記第一蛇行制御部よりも前記光学フィルムの搬送方向の下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断部と、
     を含み、
     前記第一検出装置は、
     前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体と、
     前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第一光源部と、
     前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像部と、
     前記第一撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出部と、
     を含むスリット加工装置。
    A retardation layer, a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions, and a polarizer layer are provided in this order from the first surface side to the second surface side. A slitting device for slitting the obtained long optical film,
    A film supply section for feeding out the optical film in its longitudinal direction;
    A first detector for detecting the plurality of polarization pattern rows of the optical film fed by the film supply unit;
    A first meandering control unit that controls meandering in the width direction of the optical film based on the positions of the plurality of polarization pattern rows detected by the first detection device;
    A cutting unit that cuts the optical film along a slit line parallel to the transport direction on the downstream side in the transport direction of the optical film from the first meandering control unit,
    Including
    The first detection device includes:
    Light having a first support surface that supports the first surface of the optical film, and having transmitted the optical film from the second surface side to the first surface side in at least a part of the first support surface A first support having a first reflecting surface for reflecting
    A first light source unit that emits light from the second surface side of the optical film toward the optical film located on the first reflecting surface;
    A first imaging unit that images a reflected light image of the optical film located on the first reflecting surface from the second surface side of the optical film;
    A first pattern detection unit that detects the plurality of polarization pattern rows located on the first reflection surface based on the reflected light image of the optical film imaged by the first imaging unit;
    Slitting machine including
  7.  前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出装置と、
     前記第二検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御部によって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御部と、
     を含み、
     前記第二検出装置は、
     前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体と、
     前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第二光源部と、
     前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像部と、
     前記第二撮像部により撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出部と、
     を含む請求項6に記載のスリット加工装置。
    A second detection device that detects the plurality of polarization pattern rows of the optical film on the downstream side of the position where the first meandering control unit controls the meandering in the width direction of the optical film;
    Based on the positions of the plurality of polarization pattern rows detected by the second detection device, on the downstream side of the position where the first meandering control unit controls the meandering in the width direction of the optical film, A second meander control unit for controlling the meandering in the width direction;
    Including
    The second detection device is
    Light having a second support surface for supporting the first surface of the optical film, and transmitting the optical film from the second surface side to the first surface side in at least a part of the second support surface A second support having a second reflective surface for reflecting
    A second light source unit that emits light from the second surface side of the optical film toward the optical film located on the second reflecting surface;
    A second imaging unit that images the reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film;
    A second pattern detection unit that detects the plurality of polarization pattern rows located on the second reflection surface based on the reflected light image of the optical film imaged by the second imaging unit;
    The slit processing apparatus of Claim 6 containing.
  8.  前記第一蛇行制御部は、前記フィルム供給部によって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、
     前記第二蛇行制御部は、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御する
     請求項7に記載のスリット加工装置。
    The first meandering control unit controls the meandering of the optical film by moving a position in which the optical film is drawn out by the film supply unit in the width direction of the optical film,
    The second meandering control unit controls meandering in the width direction of the optical film by inclining a direction of a rotation axis of a guide roll supporting the optical film with respect to a transport direction of the optical film. The slit processing apparatus described in 1.
  9.  位相差層と、偏光子層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工方法であって、
     前記光学フィルムを、その長手方向に繰り出すフィルム供給ステップと、
     前記フィルム供給ステップによって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出ステップと、
     前記第一検出装置によって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御ステップと、
     前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断ステップと、
     を含み、
     前記第一検出ステップは、
     前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体によって、前記光学フィルムの前記第一面を支持する第一支持ステップと、
     前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から第一偏光板を介して光を照射する第一照射ステップと、
     前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像ステップと、
     前記第一撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出ステップと、
     を含むスリット加工方法。
    A retardation layer, a polarizer layer, and a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions are provided in this order from the first surface side to the second surface side. A slit processing method for slitting a long optical film,
    A film supply step of feeding out the optical film in its longitudinal direction;
    A first detection step of detecting the plurality of polarization pattern rows of the optical film fed out by the film supply step;
    A first meandering control step for controlling the meandering in the width direction of the optical film based on the positions of the plurality of polarization pattern rows detected by the first detection device;
    A cutting step of cutting the optical film along a slit line parallel to the transport direction on the downstream side of the position where the meandering in the width direction of the optical film is controlled by the first meandering control step;
    Including
    The first detection step includes
    Light having a first support surface that supports the first surface of the optical film, and having transmitted the optical film from the second surface side to the first surface side in at least a part of the first support surface A first support step of supporting the first surface of the optical film by a first support having a first reflecting surface that reflects
    A first irradiation step of irradiating light through the first polarizing plate from the second surface side of the optical film toward the optical film located on the first reflecting surface;
    A first imaging step of imaging a reflected light image of the optical film located on the first reflective surface from the second surface side of the optical film;
    A first pattern detecting step for detecting the plurality of polarization pattern rows located on the first reflecting surface based on the reflected light image of the optical film imaged by the first imaging step;
    A slitting method including:
  10.  前記第一検出ステップは、前記第一偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第一調整ステップを含む
     請求項9に記載のスリット加工方法。
    The slit processing method according to claim 9, wherein the first detection step includes a first adjustment step of adjusting a relative angle between a polarization axis of the first polarizing plate and a slow axis of the polarization pattern row.
  11.  前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出ステップと、
     前記第二検出ステップによって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御ステップと、
     を含み、
     前記第二検出ステップは、
     前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体によって、前記光学フィルムの前記第一面を支持する第二支持ステップと、
     前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から第二偏光板を介して光を照射する第二照射ステップと、
     前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像ステップと、
     前記第二撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出ステップと、
     を含む請求項9または10に記載のスリット加工方法。
    A second detection step of detecting the plurality of polarization pattern rows of the optical film on the downstream side of the position where the first meander control step controls the meandering in the width direction of the optical film;
    Based on the positions of the plurality of polarization pattern rows detected by the second detection step, on the downstream side of the position of controlling the meandering in the width direction of the optical film by the first meander control step, A second meandering control step for controlling the meandering in the width direction;
    Including
    The second detection step includes
    Light having a second support surface for supporting the first surface of the optical film, and transmitting the optical film from the second surface side to the first surface side in at least a part of the second support surface A second support step of supporting the first surface of the optical film by a second support having a second reflective surface for reflecting
    A second irradiation step of irradiating light through the second polarizing plate from the second surface side of the optical film toward the optical film located on the second reflecting surface;
    A second imaging step of imaging a reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film;
    A second pattern detecting step for detecting the plurality of polarization pattern rows located on the second reflecting surface based on the reflected light image of the optical film imaged by the second imaging step;
    The slit processing method of Claim 9 or 10 containing.
  12.  前記第二検出ステップは、前記第二偏光板の偏光軸と前記偏光パターン列の遅相軸との相対角度を調整する第二調整ステップを含む
     請求項11に記載のスリット加工方法。
    The slit processing method according to claim 11, wherein the second detection step includes a second adjustment step of adjusting a relative angle between a polarization axis of the second polarizing plate and a slow axis of the polarization pattern row.
  13.  前記第一蛇行制御ステップは、前記フィルム供給ステップによって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、
     前記第二蛇行制御ステップは、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御する
     請求項11または12に記載のスリット加工方法。
    In the first meandering control step, the meandering of the optical film is controlled by moving the position in which the optical film is drawn out in the film supply step in the width direction of the optical film,
    The second meandering control step controls meandering in the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. Or the slit processing method of 12.
  14.  位相差層と、互いに遅相軸の方向が異なる複数の偏光パターン列を含むパターン化位相差層と、偏光子層と、が第一面側から第二面側に向けて、この順で設けられた長尺状の光学フィルムをスリット加工するスリット加工方法であって、
     前記光学フィルムを、その長手方向に繰り出すフィルム供給ステップと、
     前記フィルム供給ステップによって繰り出された前記光学フィルムの前記複数の偏光パターン列を検出する第一検出ステップと、
     前記第一検出ステップによって検出された前記複数の偏光パターン列の位置に基づいて、前記光学フィルムの幅方向の蛇行を制御する第一蛇行制御ステップと、
     前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムを、その搬送方向と平行なスリットラインに沿って切断する切断ステップと、
     を含み、
     前記第一検出ステップは、
     前記光学フィルムの前記第一面を支持する第一支持面を有し、前記第一支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第一反射面を有する第一支持体によって、前記光学フィルムの前記第一面を支持する第一支持ステップと、
     前記第一反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第一照射ステップと、
     前記第一反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第一撮像ステップと、
     前記第一撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第一反射面上に位置する前記複数の偏光パターン列を検出する第一パターン検出ステップと、
     を含むスリット加工方法。
    A retardation layer, a patterned retardation layer including a plurality of polarization pattern rows having different slow axis directions, and a polarizer layer are provided in this order from the first surface side to the second surface side. A slit processing method for slitting a long optical film,
    A film supply step of feeding out the optical film in its longitudinal direction;
    A first detection step of detecting the plurality of polarization pattern rows of the optical film fed out by the film supply step;
    A first meander control step for controlling meandering in the width direction of the optical film based on the positions of the plurality of polarization pattern rows detected by the first detection step;
    A cutting step of cutting the optical film along a slit line parallel to the transport direction on the downstream side of the position where the meandering in the width direction of the optical film is controlled by the first meandering control step;
    Including
    The first detection step includes
    Light having a first support surface that supports the first surface of the optical film, and having transmitted the optical film from the second surface side to the first surface side in at least a part of the first support surface A first support step of supporting the first surface of the optical film by a first support having a first reflecting surface that reflects
    A first irradiation step of irradiating light from the second surface side of the optical film toward the optical film located on the first reflecting surface;
    A first imaging step of imaging a reflected light image of the optical film located on the first reflective surface from the second surface side of the optical film;
    A first pattern detecting step for detecting the plurality of polarization pattern rows located on the first reflecting surface based on the reflected light image of the optical film imaged by the first imaging step;
    A slitting method including:
  15.  前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの前記複数の偏光パターン列を検出する第二検出ステップと、
     前記第二検出ステップによって検出された前記複数の偏光パターン列の位置に基づいて、前記第一蛇行制御ステップによって前記光学フィルムの幅方向の蛇行を制御する位置よりも下流側で、前記光学フィルムの幅方向の蛇行を制御する第二蛇行制御ステップと、
     を含み、
     前記第二検出ステップは、
     前記光学フィルムの前記第一面を支持する第二支持面を有し、前記第二支持面内の少なくとも一部に、前記光学フィルムを前記第二面側から前記第一面側に透過した光を反射する第二反射面を有する第二支持体によって、前記光学フィルムの前記第一面を支持する第二支持ステップと、
     前記第二反射面上に位置する前記光学フィルムに向けて前記光学フィルムの前記第二面側から光を照射する第二照射ステップと、
     前記第二反射面上に位置する前記光学フィルムの反射光像を前記光学フィルムの前記第二面側から撮像する第二撮像ステップと、
     前記第二撮像ステップにより撮像された前記光学フィルムの前記反射光像に基づいて、前記第二反射面上に位置する前記複数の偏光パターン列を検出する第二パターン検出ステップと、
     を含む請求項14に記載のスリット加工方法。
    A second detection step of detecting the plurality of polarization pattern rows of the optical film on the downstream side of the position where the first meander control step controls the meandering in the width direction of the optical film;
    Based on the positions of the plurality of polarization pattern rows detected by the second detection step, on the downstream side of the position of controlling the meandering in the width direction of the optical film by the first meander control step, A second meandering control step for controlling the meandering in the width direction;
    Including
    The second detection step includes
    Light having a second support surface for supporting the first surface of the optical film, and transmitting the optical film from the second surface side to the first surface side in at least a part of the second support surface A second support step of supporting the first surface of the optical film by a second support having a second reflective surface for reflecting
    A second irradiation step of irradiating light from the second surface side of the optical film toward the optical film located on the second reflecting surface;
    A second imaging step of imaging a reflected light image of the optical film located on the second reflecting surface from the second surface side of the optical film;
    A second pattern detecting step for detecting the plurality of polarization pattern rows located on the second reflecting surface based on the reflected light image of the optical film imaged by the second imaging step;
    The slit processing method of Claim 14 containing.
  16.  前記第一蛇行制御ステップは、前記フィルム供給ステップによって前記光学フィルムが繰り出される位置を前記光学フィルムの幅方向に移動させることにより、前記光学フィルムの蛇行を制御し、
     前記第二蛇行制御ステップは、前記光学フィルムを支持するガイドロールを前記光学フィルムの搬送方向に対して回転軸の方向を傾斜させることにより、前記光学フィルムの幅方向の蛇行を制御する
     請求項15に記載のスリット加工方法。
    In the first meandering control step, the meandering of the optical film is controlled by moving the position in which the optical film is drawn out in the film supply step in the width direction of the optical film,
    16. The second meandering control step controls meandering in the width direction of the optical film by inclining the direction of the rotation axis of the guide roll supporting the optical film with respect to the transport direction of the optical film. The slit processing method of description.
PCT/JP2015/068326 2014-06-30 2015-06-25 Slit machining device and slit machining method WO2016002618A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531310A JPWO2016002618A1 (en) 2014-06-30 2015-06-25 Slit processing apparatus and slit processing method
CN201580035025.8A CN106662533A (en) 2014-06-30 2015-06-25 Slit machining device and slit machining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014134629 2014-06-30
JP2014-134629 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002618A1 true WO2016002618A1 (en) 2016-01-07

Family

ID=55019159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068326 WO2016002618A1 (en) 2014-06-30 2015-06-25 Slit machining device and slit machining method

Country Status (4)

Country Link
JP (1) JPWO2016002618A1 (en)
CN (1) CN106662533A (en)
TW (1) TW201606363A (en)
WO (1) WO2016002618A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928792B (en) * 2020-07-15 2022-04-29 大族激光科技产业集团股份有限公司 Method and system for detecting inscribed cutting precision of polaroid on surface of LCD panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344301A (en) * 2002-05-31 2003-12-03 Sumitomo Chem Co Ltd Method and equipment for inspecting polarization film
JP2012073576A (en) * 2010-09-03 2012-04-12 Nitto Denko Corp Method for producing laminate strip roll with polarizing film
JP2012242679A (en) * 2011-05-20 2012-12-10 Sony Corp Optical device, position detection method, and method for manufacturing display device
JP2013015563A (en) * 2011-06-30 2013-01-24 Nippon Zeon Co Ltd Method for evaluating patterned retardation film
JP2013117714A (en) * 2011-11-01 2013-06-13 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimentional (3d) image display system
WO2013191132A1 (en) * 2012-06-18 2013-12-27 富士フイルム株式会社 Analyzing system and method for repeatedly patterned image and three-dimensionally repeated structural data
JP2014062817A (en) * 2012-09-21 2014-04-10 Dainippon Printing Co Ltd Pattern detection device and pattern detection method
JP2014095617A (en) * 2012-11-09 2014-05-22 Dainippon Printing Co Ltd Device for measuring pattern and method for measuring pattern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344301A (en) * 2002-05-31 2003-12-03 Sumitomo Chem Co Ltd Method and equipment for inspecting polarization film
JP2012073576A (en) * 2010-09-03 2012-04-12 Nitto Denko Corp Method for producing laminate strip roll with polarizing film
JP2012242679A (en) * 2011-05-20 2012-12-10 Sony Corp Optical device, position detection method, and method for manufacturing display device
JP2013015563A (en) * 2011-06-30 2013-01-24 Nippon Zeon Co Ltd Method for evaluating patterned retardation film
JP2013117714A (en) * 2011-11-01 2013-06-13 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimentional (3d) image display system
WO2013191132A1 (en) * 2012-06-18 2013-12-27 富士フイルム株式会社 Analyzing system and method for repeatedly patterned image and three-dimensionally repeated structural data
JP2014062817A (en) * 2012-09-21 2014-04-10 Dainippon Printing Co Ltd Pattern detection device and pattern detection method
JP2014095617A (en) * 2012-11-09 2014-05-22 Dainippon Printing Co Ltd Device for measuring pattern and method for measuring pattern

Also Published As

Publication number Publication date
TW201606363A (en) 2016-02-16
CN106662533A (en) 2017-05-10
JPWO2016002618A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP4503693B1 (en) Continuous roll of cut-lined optical film laminate in the form of a continuous web, its manufacturing method and manufacturing apparatus
KR101011449B1 (en) Continuous manufacturing method of liquid crystal display element and device thereof
JP4503692B1 (en) Information storage / read operation system and method for manufacturing information storage / read operation system used in apparatus for continuously manufacturing liquid crystal display elements
KR102222973B1 (en) Defect inspection device, optical member manufacturing system, and optical display device production system
WO2016002624A1 (en) Detection device, detection method, processing device, and processing method
TW201113599A (en) Information storage/readout device for use in continuously manufacturing system for liquid-crystal display elements, and method and system for producing the same
JP2010256757A (en) Method of manufacturing optical display panel
KR20190015987A (en) Manufacturing method of optical film with adhesive agent
KR20200091871A (en) Cutting method and manufacturing method of laminated film
KR20210068051A (en) Optical laminate, polarizer composite, and image display device
WO2016002617A1 (en) Detection device, detection method, processing device, and processing method
WO2016002618A1 (en) Slit machining device and slit machining method
WO2013165013A1 (en) System for producing and method for manufacturing optical display device
KR102062941B1 (en) Production system for optical display device
JP6887759B2 (en) An optical laminate and a method for manufacturing an optical film piece using the optical laminate
CN102879854A (en) Masking film-attached original plate for light guide plate
TWI806817B (en) Polarization plate and image display device
US9618761B2 (en) Vision system, alignment system for aligning display panel and patterned retarder on stereoscopic image display using the vision system
TW202108269A (en) Polarizing plate
TWI602652B (en) Turning apparatus and manufacturing method of optical film using the same
CN114868051A (en) Laminated body
JP7288989B1 (en) Inspection method for long optical film
JP2020160455A (en) Optical laminate and method of manufacturing optical film piece using optical laminate
KR20160000459A (en) Method for manufacturing polarizing plate
KR20200067264A (en) Polarizer structure and bonding method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815388

Country of ref document: EP

Kind code of ref document: A1