WO2016002501A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2016002501A1
WO2016002501A1 PCT/JP2015/067266 JP2015067266W WO2016002501A1 WO 2016002501 A1 WO2016002501 A1 WO 2016002501A1 JP 2015067266 W JP2015067266 W JP 2015067266W WO 2016002501 A1 WO2016002501 A1 WO 2016002501A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
current
magnetic
sensor
magnetic sensor
Prior art date
Application number
PCT/JP2015/067266
Other languages
French (fr)
Japanese (ja)
Inventor
川浪 崇
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016531246A priority Critical patent/JP6311790B2/en
Publication of WO2016002501A1 publication Critical patent/WO2016002501A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current sensor, and more particularly to a current sensor including a primary conductor (bus bar) through which a current to be measured flows and a magnetic sensor that detects the strength of a magnetic field around the primary conductor.
  • a current sensor including a primary conductor (bus bar) through which a current to be measured flows and a magnetic sensor that detects the strength of a magnetic field around the primary conductor.
  • Patent Document 1 discloses a current sensor including a coil (bus bar) wound around a magnetic core and a hall element provided in a gap (magnetic gap) of the magnetic core. Has been. This current sensor has a problem that it is difficult to reduce the size because it includes a magnetic core. A current sensor that solves this problem is disclosed in, for example, Japanese Patent Laid-Open No. 6-294854 (Patent Document 2).
  • the current sensor disclosed in Patent Document 2 includes a magnetic sensor chip.
  • This magnetic sensor chip is provided with a Wheatstone bridge type bridge circuit having four magnetoresistive elements for detecting the strength of the magnetic field around the primary conductor (bus bar). Since this current sensor does not include a magnetic core, it can be miniaturized.
  • the strength of the magnetic field detected by the four magnetoresistive elements included in the magnetic sensor chip is the square of the distance between the four magnetoresistive elements and the primary conductor. Inversely proportional. Therefore, the sensitivity to the positions of the four magnetoresistive elements tends to be too high. As a result, there is a problem that it is difficult to manufacture a magnetic sensor chip because it is necessary to accurately arrange four magnetoresistive elements at a predetermined reference position with respect to the primary conductor. That is, if the positional relationship between the primary conductor and the magnetic sensor chip changes even a little, the measurement result greatly differs from the original value, and there is a problem that highly stable measurement cannot be performed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide stability against a change in the positional relationship between the primary conductor and the magnetic sensor in a current sensor including the primary conductor and the magnetic sensor. Is to enable high measurement.
  • the current sensor according to the present invention is a current sensor for detecting a current to be measured, and includes a primary conductor through which the current to be measured flows and a magnetic sensor for detecting a magnetic field generated around the primary conductor.
  • the primary conductor includes a plurality of branch lines through which a plurality of branch currents each branching the current to be measured flow.
  • Each of the plurality of branch lines has a twisted portion formed such that the paths of two adjacent branch currents are in a twisted relationship with each other.
  • the magnetic sensor is disposed in a gap sandwiched between the twisted portions of two adjacent branch lines, and one branch when viewed in plan from a direction along a virtual line connecting the two adjacent branch lines with the shortest distance. A magnetic field acting in a direction between the direction of the branch current flowing through the twisted portion of the line and the direction of the branch current flowing through the twisted portion of the other branch line is detected.
  • the plurality of branch lines include three or more branch lines.
  • the magnetic sensor includes two or more magnetic sensors.
  • the current sensor calculates a current to be measured based on outputs of two or more magnetic sensors.
  • the current sensor includes a member for magnetically shielding the primary conductor and the magnetic sensor from the outside.
  • the plurality of branch lines are substantially rectangular when viewed in plan from the direction along the virtual line.
  • the twisted portion is formed by arranging the extending directions of two adjacent branch lines so as to be in a twisted position relationship with each other.
  • the plurality of branch lines are arranged in parallel to each other.
  • the twisted portion is formed by notching a part of two adjacent branch lines so that the paths of the two adjacent branch currents are twisted with respect to each other.
  • the magnetic sensor is a sensor that detects a current to be measured using a plurality of magnetoresistive elements.
  • a current sensor including a primary conductor and a magnetic sensor
  • highly stable measurement can be performed with respect to a change in the positional relationship between the primary conductor and the magnetic sensor.
  • FIG. 3 is a three-side view (No. 1) showing the internal structure of the current sensor as seen through.
  • FIG. 3 is a diagram (part 1) schematically illustrating magnetic flux generated around a magnetic sensor. It is a perspective view (the 2) of a current sensor. It is a figure which shows the structural example of a current sensor. It is the isointensity diagram (the 1) of the Y direction component of magnetic flux density.
  • FIG. 3 is a diagram (part 1) illustrating a relationship between a position in a Z direction and a Y direction component of magnetic flux density. It is an isointensity diagram (the 2) of the Y direction component of magnetic flux density.
  • FIG. 6 is a diagram (part 2) illustrating a relationship between a position in the Z direction and a Y direction component of magnetic flux density.
  • FIG. 6 is a three-view drawing (2) illustrating the internal structure of the current sensor as seen through.
  • FIG. 5 is a diagram (part 2) schematically illustrating magnetic flux generated around the magnetic sensor.
  • FIG. 1 is a perspective view of a current sensor 1 according to the present embodiment.
  • FIG. 2 is a three-sided view showing the internal structure of the current sensor 1 in a transparent manner.
  • FIG. 2A is a plan view of the current sensor 1.
  • FIG. 2B is a cross-sectional view of the current sensor 1 taken along the line II of FIG.
  • FIG. 2C is a cross-sectional view of the current sensor 1 taken along the line II-II in FIG.
  • the current sensor 1 includes a primary conductor (bus bar) 10, a magnetic sensor 20, and a calculation unit (not shown).
  • the current sensor 1 measures the value of the primary current i flowing through the primary conductor 10 based on the output of the magnetic sensor while maintaining insulation between the primary conductor 10 and the magnetic sensor 20.
  • the primary conductor 10 is a metal plate through which a primary current i to be measured flows.
  • a material of the primary conductor 10 copper, silver, aluminum, or the like can be used.
  • the primary conductor 10 can be manufactured by a method such as pressing, cutting, casting, or forging.
  • the surface of the primary conductor 10 may be subjected to a surface treatment such as plating with nickel, tin, copper, silver, or the like.
  • the configuration of the sensor 1 will be described.
  • the number of primary conductors 10 is one on the upstream side of the branching section 11, but the branching section 11 branches into two branch lines 10 ⁇ / b> A and 10 ⁇ / b> B and becomes one again at the junction section 12.
  • the two branch lines 10A and 10B are formed such that the primary current i is branched almost equally into a branch current ia flowing through the branch line 10A and a branch current ib flowing through the branch line 10B in the branch section 11.
  • connection method may be welding or fastening with a bolt and nut.
  • it may be originally formed of a single metal plate, and may be three-dimensionally formed by pressing or drawing. It may be formed by shaving, casting or forging.
  • the two branch lines 10A and 10B are in a twisted position relationship (a relationship that does not exist on the same plane). Specifically, as shown in FIG. 2A, two branches when viewed in plan from the Z direction (in other words, a direction along the virtual line connecting the two branch lines 10A and 10B with the shortest distance).
  • the lines 10A and 10B are both formed so that the shape thereof is substantially rectangular, and the extending directions are inclined by a predetermined angle ⁇ and intersect at substantially the center portion.
  • the paths of the branch currents ia and ib when viewed in plan from the Z direction intersect at a predetermined angle ⁇ at the center portions of the branch lines 10A and 10B.
  • a portion where the paths of the branch currents ia and ib intersect in plan view from the Z direction is also referred to as a “twisted intersection portion”.
  • the magnetic sensor 20 is disposed in a gap sandwiched between the twisted intersection portion (center portion) of the branch line 10A and the twisted intersection portion (center portion) of the branch line 10B. More specifically, the magnetic sensor 20 is disposed at an intermediate point between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B.
  • the magnetic sensor 20 measures the primary current i by detecting a magnetic field generated by the branch currents ia and ib.
  • the magnetic sensor 20 has a sensitivity axis S0.
  • the direction of the sensitivity axis S0 of the magnetic sensor 20 is set in the Y direction (the extending direction of the primary conductor 10). More specifically, the direction of the sensitivity axis S0 flows through a twisted intersection portion of the branch line 10A when viewed in plan from the Z direction (a direction along a virtual line connecting the two branch lines 10A and 10B with the shortest distance).
  • the direction is set between the direction of the branch current ia and the direction of the branch current ib flowing through the twisted intersection of the branch line 10B.
  • the direction of the sensitivity axis S0 of the magnetic sensor 20 is set to be substantially parallel to the combined vector of the current vector indicating the branch current ia and the current vector indicating the branch current ia.
  • the magnetic sensor 20 outputs a positive value when a magnetic flux directed in one direction of the sensitivity axis S0 is applied, and is negative when a magnetic flux directed in a direction opposite to the one direction of the sensitivity axis S0 is applied.
  • Characteristic hereinafter also referred to as “odd function input / output characteristics”.
  • the magnetic sensor 20 is an MR (Magneto Resistance) type magnetic sensor.
  • the magnetic sensor 20 includes magnetoresistive elements such as AMR (Anisotropic Magneto Resistance), GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), and CMR (Colossal Magneto Resistance), particularly AMR.
  • a magnetic sensor comprising a Wheatstone bridge type bridge circuit or a half of the bridge circuit can be used as an element having an odd function input / output characteristic by providing a barber pole structure.
  • a magnetic sensor using a Hall element an MI (Magneto Impedance) magnetic sensor, a fluxgate magnetic sensor, or the like can be used as the magnetic sensor 20 a magnetic sensor using a Hall element, an MI (Magneto Impedance) magnetic sensor, a fluxgate magnetic sensor, or the like can be used.
  • the method is not limited to the method using the barber pole structure, and the magnetic sensor 20 may be biased using an induction magnetic field generated around the coil, a magnetic field of a permanent magnet, or a combination of these.
  • the magnetic sensor 20 may be of a type (open loop type) that outputs an output signal via an amplifier or a converter that calculates an output signal linearly or in a correction function, or drives an exciting coil via an amplifier or a converter.
  • a type (closed loop type) in which feedback is always performed so that the magnetic field of the superposition of the magnetic field generated by the primary current i and the magnetic field generated by the exciting coil is fixed to a zero magnetic field or a constant magnetic field.
  • the magnetic sensor 20 and the branch lines 10A and 10B are molded with an insulating resin and their mutual positional relationship is fixed.
  • the type of resin for molding may be thermosetting or thermoplastic.
  • PPS polyphenylene sulfide
  • PCT polycyclohexylene dimethylene terephthalate
  • LCP liquid crystal polymer
  • nylon epoxy resin, and the like, which are excellent in heat resistance and mold accuracy, are suitable.
  • the magnetic sensor 20 is electrically connected to a calculation unit (not shown) by connection wiring (not shown).
  • the calculation unit calculates the value of the primary current i by removing and amplifying the offset (residual) of the output of the magnetic sensor 20.
  • a non-inverting amplifier, a differential amplifier, an inverting amplifier, or the like can be used as the arithmetic unit.
  • FIG. 3 is a diagram schematically showing a magnetic flux generated around the magnetic sensor 20 by the branch currents ia and ib. With reference to FIG. 3, the effect of the current sensor 1 by this Embodiment is demonstrated.
  • branch currents ia and ib flow through branch lines 10A and 10B, magnetic fluxes ⁇ a and ⁇ b corresponding to right-handed magnetic fields are generated around branch lines 10A and 10B, respectively.
  • the magnetic fluxes ⁇ a and ⁇ b are distributed on a plane whose normal is the direction of the branch currents ia and ib, respectively. Since the magnitudes of the branch currents ia and ib are substantially the same, if the directions of the branch currents ia and ib (current vector axes of the primary conductors) are parallel, the magnetic flux ⁇ a, ⁇ b cancels each other out with the “reason of superposition” and becomes zero.
  • the directions of the branch currents ia and ib are not parallel but intersect each other by a predetermined angle ⁇ when viewed in plan from the Z direction.
  • the branch currents ia and ib intersect each other by a predetermined angle ⁇ in plan view, so that the magnetic fluxes ⁇ a and ⁇ b are in the X direction component at the intermediate point between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B.
  • a magnetic flux ⁇ ab acting in the Y direction is generated by adding the Y direction components of the magnetic fluxes ⁇ a and ⁇ b.
  • the magnitude of the magnetic flux ⁇ ab acting in the Y direction increases with an increase in the “predetermined angle ⁇ ” that is the crossing angle of the branch currents ia and ib when viewed in plan from the Z direction, and reaches a maximum at 180 degrees. Therefore, by adjusting the predetermined angle ⁇ , the magnitude of the magnetic flux ⁇ ab acting in the Y direction can be freely set to a value proportional to sin ( ⁇ / 2).
  • the sensitivity axis S0 of the magnetic sensor 20 is set in the positive direction of the Y direction (the same direction as the direction of the magnetic flux ⁇ cd). Therefore, in the current sensor 1 according to the present embodiment, the primary current i having various magnitudes can be measured using the same magnetic sensor 20 by changing the predetermined angle ⁇ according to the magnitude of the primary current i. Is possible.
  • the shape of the branch lines 10A and 10B when viewed in plan from the Z direction is substantially rectangular, the predetermined angle ⁇ can be easily designed. Further, since the branch lines 10A and 10B have a constant width and there is no narrow portion where the branch currents ia and ib concentrate, heat generation and the like can be minimized.
  • the current sensor 1 can realize high accuracy and can perform measurement with less influence of noise.
  • the magnetic sensor 20 since the magnetic sensor 20 according to the present embodiment is disposed at the midpoint between the branch lines 10A and 10B, it can be disposed at a sufficient distance from either of the branch lines 10A and 10B. Therefore, the insulation between the magnetic sensor 20 and the branch lines 10A and 10B can be easily and highly secured. As a result, the current sensor 1 realizing a high degree of insulation can be realized at low cost.
  • the magnetic sensor 20 is an MR type magnetic sensor.
  • the sensitivity surface of the MR type magnetic sensor is parallel to the film forming surface, in other words, the mounting surface. Therefore, the substrate on which the functional film of the magnetic sensor 20 is formed can be parallel to the main surfaces of the branch lines 10A and 10B. Therefore, the insulation between the magnetic sensor 20 and the branch lines 10A and 10B can be easily and highly secured. As a result, the current sensor 1 realizing a high degree of insulation can be realized at low cost.
  • the current sensor 1 since the current sensor 1 according to the present embodiment does not have a magnetic core, it can be reduced in size and weight, and the characteristics of the magnetic core (for example, frequency characteristics, nonlinearity, offset point due to residual magnetic flux density) In other words, the measurement can be performed without the influence of zero current drift and hysteresis.
  • the magnetic sensor 20 in the position where the magnetic sensor 20 according to the present embodiment is disposed, that is, in the gap sandwiched between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B, the Y-direction component of the magnetic flux density with respect to the position. The amount of change is very small. Even if the current flowing in the branch lines 10A and 10B is biased, the magnetic field generated at the position where the magnetic sensor 20 is disposed is almost unchanged and constant. Therefore, even if the position of the magnetic sensor 20 is shifted in any of the X direction, the Y direction, and the Z direction, and even if the current flowing through the branch lines 10A and 10B is biased, measurement with high stability can be performed. It becomes possible.
  • the current sensor 1 can perform measurement with high stability against a change in the position of the magnetic sensor 20 and a current bias between the branch lines 10A and 10B, and a current with high reproducibility and productivity.
  • the sensor 1 can be provided. This point will be described in detail in a simulation result described later.
  • the above-described “twisted intersection portion” is formed by arranging the extending directions of the branch lines 10A and 10B having a rectangular shape in a plan view so as to be in a twisted relationship with each other. It was.
  • the above-described method of forming the “twisted intersection” is not necessarily limited to disposing the extending directions of the branch lines 10 ⁇ / b> A and 10 ⁇ / b> B at the twisted positions.
  • FIG. 4 is a perspective view of the current sensor 1-1 according to this modification.
  • the current sensor 1-1 shown in FIG. 4 is obtained by changing the branch lines 10A and 10B to the branch lines 10A-1 and 10B-1 with respect to the current sensor 1 shown in FIG.
  • the branch lines 10A-1 and 10B-1 have a substantially rectangular shape when viewed in plan from the Z direction, and are arranged in parallel to each other.
  • a plurality of notches are provided in the central portion of each branch line 10A-1, 10B-1. By these notches, the central portions of the branch lines 10A-1 and 10B-1 become the “twisted intersection” described above.
  • the extending directions of the branch lines 10A-1 and 10B-1 are not arranged at twisted positions, but instead of the branch lines 10A-1 and 10B-1.
  • the measurable current value of the current sensor 1 can be adjusted without changing the outer shape of the current sensor 1 or the arrangement of its main components.
  • the current sensor 1 according to the first embodiment and the current sensor 1-1 according to the first modification are not provided with a magnetic shield, but may be provided with a magnetic shield.
  • FIG. 5 is a diagram showing a configuration example of the current sensor 1-2 with a magnetic shield.
  • a current sensor 1-2 shown in FIG. 5 is obtained by providing two sets of magnetic shields 50 and 60 to the current sensor 1-1 according to the first modification described above.
  • the magnetic shields 50 and 60 are each formed of a metal plate bent in a U-shape and arranged to face each other.
  • the magnetic body used for the magnetic shields 50 and 60 may be a metal such as iron, iron alloy, nickel or nickel alloy, such as permalloy, silicon steel, electromagnetic steel, soft iron steel, or pure iron.
  • magnetism it is preferable that residual magnetic flux density and hysteresis are small.
  • the magnetic permeability is constant regardless of the magnetic flux density and the saturation magnetic flux density is large.
  • the magnetic material used for the magnetic shields 50 and 60 is permalloy.
  • the simulation was performed with the current sensor 1-2 installed at the position shown in FIG.
  • the width direction of the branch lines 10A-1 and 10B-1 is the X direction
  • the extending direction of the branch lines 10A-1 and 10B-1 is the Y direction
  • the branch line 10A -1, 10B-1 are arranged on XYZ orthogonal coordinates with the Z direction as the thickness direction.
  • the position of each part of the current sensor 1-2 is specified using the coordinates (X, Y, Z).
  • the unit of the value of each coordinate is “mm (millimeter)”.
  • the sensitivity point of the magnetic sensor 20 is arranged at the position of the origin coordinates (0, 0, 0).
  • the branch line 10A-1 is arranged at a position with the coordinates (0, ⁇ 40, 2.5) as the center of the start point and the coordinates (0, 40, 2.5) as the center of the end point.
  • the branch line 10B-1 is arranged at a position with the coordinates (0, ⁇ 40, ⁇ 2.5) as the center of the start point and the coordinates (0, 40, ⁇ 2.5) as the center of the end point.
  • the branch lines 10A-1 and 10B-1 have a width of 10 mm, a length of 80 mm, a thickness of 1 mm, and a pure copper material.
  • the distance between the centers of the branch lines 10A-1 and 10B-1 is 5 mm, and the gap is 4 m.
  • the magnetic shield 60 has an outer width of 44 mm, an extension length of 60 mm, and a folding height of 28 mm.
  • the magnetic shield 50 has an outer width of 32 mm, an extension length of 60 mm, and a folding height of 23 mm.
  • the material of the shield part is silicon steel.
  • 6 to 13 show the results of simulations in which the branch currents ia and ib are actually passed through the current sensor 1-2 arranged as described above and the Y direction component of the magnetic flux density at that time is measured.
  • FIG. 6 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch currents ia and ib are equally set to 150 amperes.
  • the isointensity diagram shown in FIG. 6 is drawn with respect to the XZ plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
  • FIG. 7 is a diagram showing the relationship between the position in the Z direction from the start point coordinates (0, 0, ⁇ 2) to the end point coordinates (0, 0, 2) and the Y direction component of the magnetic flux density shown in FIG.
  • the magnetic flux density The Y direction component is substantially constant at about 6.2 mT. Therefore, even if the position of the magnetic sensor 20 is shifted by several millimeters in the Z direction, highly stable measurement is possible.
  • FIG. 8 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch currents ia and ib are evenly set at 150 amperes.
  • the isointensity diagram shown in FIG. 8 is drawn with respect to the XY plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
  • FIG. 9 is a diagram showing the relationship between the position in the Y direction from the start point coordinates (0, ⁇ 20, 0) to the end point coordinates (0, 20, 0) shown in FIG. 8 and the Y direction component of the magnetic flux density.
  • the magnetic flux density is approximately 6.2 mT and is substantially constant. Therefore, even if the position of the magnetic sensor 20 is shifted by several millimeters in the Y direction, highly stable measurement is possible.
  • FIG. 10 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch currents ia and ib are evenly set at 150 amperes.
  • the isointensity diagram shown in FIG. 10 is drawn with respect to the XY plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
  • the isointensity lines themselves shown in FIG. 10 are the same as those shown in FIG.
  • FIG. 11 is a diagram showing the relationship between the position in the X direction from the start point coordinates ( ⁇ 5, 0, 0) to the end point coordinates (5, 0, 0) shown in FIG. 10 and the Y direction component of the magnetic flux density.
  • the magnetic flux density is approximately 6.2 mT and is substantially constant. Therefore, even if the position of the magnetic sensor 20 is shifted by several millimeters in the X direction, highly stable measurement is possible.
  • FIG. 12 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch current ia is 270 amperes and the branch current ib is 30 amperes (that is, when the branch currents ia and ib are biased). It is.
  • the isointensity diagram shown in FIG. 12 is drawn with respect to the XZ plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
  • FIG. 13 is a diagram showing the relationship between the position in the Z direction from the start point coordinates (0, 0, ⁇ 2) to the end point coordinates (0, 0, 2) shown in FIG. 12 and the Y direction component of the magnetic flux density.
  • the Y-direction component of the magnetic flux density depends on the position in the Z-direction. Change.
  • the Y direction component of the magnetic flux density is about 6.2 mT, and the branch
  • the ratio of the current ia and the branch current ib is uniformly 1: 1 (see FIG. 7 above)
  • the values are almost the same. Therefore, even if a deviation occurs between the branch currents ia and ib, measurement that is not affected by the deviation is possible.
  • the magnetic sensor 20 is sandwiched between the position where the magnetic sensor 20 is disposed, that is, between the twisted intersection of the branch line 10A-1 and the twisted intersection of the branch line 10B-1.
  • the amount of change in the Y direction component of the magnetic flux density with respect to the position is very small.
  • the Y direction component of the magnetic flux density is almost unchanged and constant. Therefore, even if the position of the magnetic sensor 20 is shifted in any of the X direction, the Y direction, and the Z direction, and even if a deviation occurs between the branch currents ia and ib, highly stable measurement is possible. It becomes.
  • the current sensor 1 according to the first embodiment described above or the current sensor 1-1 according to the first modification has the point where the paths of the branch currents ia and ib intersect when viewed in plan from the Z direction. Is the same. Therefore, even when a similar simulation is performed on the current sensors 1 and 1-1, a result showing substantially the same characteristics as the simulation results shown in FIGS. 6 to 13 is obtained.
  • one magnetic sensor is disposed between two branch lines, but three or more branch lines are provided, and two or more magnetic sensors respectively disposed between adjacent branch lines are provided. You may make it provide.
  • FIG. 14 is a three-sided view showing an example of the internal structure of the current sensor 1-3 according to the second embodiment.
  • FIG. 14A is a plan view of the current sensor 1-3.
  • FIG. 14B is a cross-sectional view of the current sensor 1-3 taken along the line II of FIG.
  • FIG. 14C is a cross-sectional view of the current sensor 1-3 taken along the line II-II in FIG.
  • the branching portion 11 branches into three branch lines 10C, 10D, and 10E. It becomes one again.
  • the three branch lines 10C, 10D, and 10E include a branch current ic in which the primary current i flows through the branch line 10C in the branch portion 11, a branch current id that flows through the branch line 10D, and a branch current ie that flows through the branch line 10E. Are formed so as to be branched almost evenly.
  • a method for connecting the three branch lines 10C, 10D, and 10E the same direction as the method described in the above embodiment may be adopted.
  • Each of the branch lines 10C, 10D, and 10E is formed in a rectangular shape when viewed in plan from the Z direction.
  • the branch line 10D is disposed between the branch line 10C and the branch line 10E.
  • the branch line 10 ⁇ / b> C and the branch line 10 ⁇ / b> D are arranged so as to have a twisted position relative to each other.
  • the two branch lines 10C and 10D are formed such that, when viewed in plan from the Z direction, the extending directions are inclined with respect to each other by a predetermined angle ⁇ and intersect at substantially the center portion.
  • the branch line 10 ⁇ / b> D and the branch line 10 ⁇ / b> E are arranged so as to have a twisted position relationship with each other.
  • the two branch lines 10D and 10E are formed such that, when viewed in plan from the Z direction, the extending directions are inclined with respect to each other by a predetermined angle ⁇ and intersect substantially at the center portion.
  • the branch line 10C and the branch line 10E are arranged in parallel to each other. Note that the branch line 10C and the branch line 10E are not necessarily arranged in parallel to each other.
  • the current sensor 1-3 includes two independent magnetic sensors 21 and 22, and a calculation unit (not shown) that calculates the value of the primary current i using the outputs of the two magnetic sensors 21 and 22.
  • the magnetic sensor 21 is disposed at an intermediate point between the branch line 10C and the branch line 10D.
  • the direction of the sensitivity axis S1 of the magnetic sensor 21 is set to the positive direction of the Y direction.
  • the magnetic sensor 22 is disposed at an intermediate point between the branch line 10D and the branch line 10E.
  • the direction of the sensitivity axis S ⁇ b> 2 of the magnetic sensor 22 is also set to the positive direction of the Y direction, like the magnetic sensor 21.
  • the types and structures of the magnetic sensors 21 and 22 are the same as those of the magnetic sensor 20 according to the first embodiment.
  • the current sensor 1-3 having such a configuration basically exhibits the same operational effects as those of the current sensor according to the first embodiment described above.
  • FIG. 15 is a diagram schematically showing the magnetic flux generated around the magnetic sensors 21 and 22 by the branch currents ic, id, and ie.
  • branch currents ic, id, and ee flow through branch lines 10C, 10D, and 10E
  • magnetic fluxes ⁇ c, ⁇ d, and ⁇ e corresponding to a right-handed magnetic field are generated around branch lines 10C, 10D, and 10E, respectively.
  • the magnetic fluxes ⁇ c, ⁇ d, and ⁇ e are distributed on a plane whose normal is the direction of the branch currents ic, id, and ee, respectively.
  • the directions of the branch currents ic and id intersect by a predetermined angle ⁇ when viewed in plan from the Z direction. Therefore, at the position where the magnetic sensor 21 is arranged, that is, at the midpoint between the twisted intersection of the branch line 10C and the twisted intersection of the branch line 10D, as shown in FIG. 15, the magnetic flux ⁇ cd acting in the positive direction of the Y direction. Will occur.
  • the sensitivity axis S1 of the magnetic sensor 21 is set in the positive direction of the Y direction (the same direction as the direction of the magnetic flux ⁇ cd). Therefore, the output of the magnetic sensor 21 is a positive value.
  • the directions of the branch currents id and ie intersect by a predetermined angle ⁇ when viewed in plan from the Z direction. Therefore, at a position where the magnetic sensor 22 is arranged, that is, at an intermediate point between the twisted intersection portion of the branch line 10D and the twisted intersection portion of the branch line 10E, as shown in FIG. 15, the magnetic flux ⁇ de acting in the negative direction in the Y direction. Will occur.
  • the sensitivity axis S2 of the magnetic sensor 22 is set in the positive direction in the Y direction (direction opposite to the direction of the magnetic flux ⁇ cd). Therefore, the output of the magnetic sensor 22 is a negative value.
  • the arithmetic unit included in the current sensor 1-3 subtracts the output of the magnetic sensor 21 and the output of the magnetic sensor 22 (takes a differential).
  • the output of the magnetic sensor 21 and the output of the magnetic sensor 22 are added together, and unnecessary noise magnetic fields from outside, that is, disturbance magnetic fields, etc. are canceled out and canceled out.
  • an unnecessary noise magnetic field from the outside can be canceled, and a current sensor that is strong against disturbance can be realized.
  • calculation unit may amplify the differential result instead of simply taking the difference between the output of the magnetic sensor 21 and the output of the magnetic sensor 22.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

This current sensor (1) comprises a primary conductor (10) and a magnetic sensor (20). In a branching section (11), the primary conductor (10) branches into two branch wires (10A, 10B). Said branch wires are in a twisted positional relationship (a relationship in which said branch wires do not lie in the same plane) with each other. Specifically, in a planar view in a Z direction (the direction parallel to shortest-distance imaginary lines connecting the two branch wires), the branch wires are each substantially rectangular and are formed so as to intersect in the approximate centers thereof with a prescribed angle (θ) between the directions in which the branch wires extend. The magnetic sensor is positioned in the space between the centers of the branch wires, and the axis of sensitivity (S0) of the magnetic sensor is set to the direction in which the primary conductor extends.

Description

電流センサCurrent sensor
 本発明は、電流センサに関し、特に、被測定電流が流れる1次導体(バスバー)と、1次導体の周辺の磁界の強さを検出する磁気センサとを備えた電流センサに関する。 The present invention relates to a current sensor, and more particularly to a current sensor including a primary conductor (bus bar) through which a current to be measured flows and a magnetic sensor that detects the strength of a magnetic field around the primary conductor.
 特開平8-233864号公報(特許文献1)には、磁性体コアに巻かれたコイル(バスバー)と、磁性体コアの隙間(磁気ギャップ)に設けられたホール素子とを備える電流センサが開示されている。この電流センサにおいては、磁性体コアを備えるために小型化が困難であるという問題がある。この問題を解決する電流センサが、たとえば、特開平6-294854号公報(特許文献2)に開示されている。 Japanese Patent Application Laid-Open No. 8-233864 (Patent Document 1) discloses a current sensor including a coil (bus bar) wound around a magnetic core and a hall element provided in a gap (magnetic gap) of the magnetic core. Has been. This current sensor has a problem that it is difficult to reduce the size because it includes a magnetic core. A current sensor that solves this problem is disclosed in, for example, Japanese Patent Laid-Open No. 6-294854 (Patent Document 2).
 特許文献2に開示された電流センサは、磁気センサチップを備える。この磁気センサチップには、1次導体(バスバー)の周辺の磁界の強度を検出する4つの磁気抵抗素子を有するホイートストンブリッジ型のブリッジ回路が設けられる。この電流センサは、磁性体コアを備えていないため、小型化が可能である。 The current sensor disclosed in Patent Document 2 includes a magnetic sensor chip. This magnetic sensor chip is provided with a Wheatstone bridge type bridge circuit having four magnetoresistive elements for detecting the strength of the magnetic field around the primary conductor (bus bar). Since this current sensor does not include a magnetic core, it can be miniaturized.
特開平8-233864号公報JP-A-8-233864 特開平6-294854号公報JP-A-6-294854 特開2010-175474号公報JP 2010-175474 A
 しかしながら、特許文献2に開示された電流センサにおいては、磁気センサチップに含まれる4つの磁気抵抗素子が検出する磁界の強さは、4つの磁気抵抗素子と1次導体との距離の2乗に反比例する。そのため、4つの磁気抵抗素子の位置に対する感度が高くなり過ぎてしまう傾向にある。その結果、1次導体に対して4つの磁気抵抗素子を予め定められた基準位置に正確に配置する必要があり、磁気センサチップの製造が難しいという問題がある。すなわち、仮に1次導体と磁気センサチップとの位置関係が少しでも変化した場合には測定結果が本来の値から大きく異なってしまうため、安定度の高い測定を行なうことができないという問題がある。 However, in the current sensor disclosed in Patent Document 2, the strength of the magnetic field detected by the four magnetoresistive elements included in the magnetic sensor chip is the square of the distance between the four magnetoresistive elements and the primary conductor. Inversely proportional. Therefore, the sensitivity to the positions of the four magnetoresistive elements tends to be too high. As a result, there is a problem that it is difficult to manufacture a magnetic sensor chip because it is necessary to accurately arrange four magnetoresistive elements at a predetermined reference position with respect to the primary conductor. That is, if the positional relationship between the primary conductor and the magnetic sensor chip changes even a little, the measurement result greatly differs from the original value, and there is a problem that highly stable measurement cannot be performed.
 本発明は上記の問題に鑑みてなされたものであって、その目的は、1次導体と磁気センサとを備える電流センサにおいて、1次導体と磁気センサとの位置関係の変化に対して安定度の高い計測を可能にすることである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide stability against a change in the positional relationship between the primary conductor and the magnetic sensor in a current sensor including the primary conductor and the magnetic sensor. Is to enable high measurement.
 この発明に係る電流センサは、被測定電流を検出する電流センサであって、被測定電流が流れる1次導体と、1次導体の周辺に生じる磁界を検出するための磁気センサとを備える。1次導体は、被測定電流が分岐された複数の分岐電流がそれぞれ流れる複数の分岐線を含む。複数の分岐線の各々は、隣接する2つの分岐電流の経路が互いにねじれの位置の関係となるように形成されたねじれ部分を有する。磁気センサは、隣接する2本の分岐線のねじれ部分の間に挟まれる間隙に配置され、隣接する2本の分岐線を最短距離で結ぶ仮想線に沿う方向から平面視したときに一方の分岐線のねじれ部分を流れる分岐電流の向きと他方の分岐線のねじれ部分を流れる分岐電流の向きとの間の向きに作用する磁界を検出する。 The current sensor according to the present invention is a current sensor for detecting a current to be measured, and includes a primary conductor through which the current to be measured flows and a magnetic sensor for detecting a magnetic field generated around the primary conductor. The primary conductor includes a plurality of branch lines through which a plurality of branch currents each branching the current to be measured flow. Each of the plurality of branch lines has a twisted portion formed such that the paths of two adjacent branch currents are in a twisted relationship with each other. The magnetic sensor is disposed in a gap sandwiched between the twisted portions of two adjacent branch lines, and one branch when viewed in plan from a direction along a virtual line connecting the two adjacent branch lines with the shortest distance. A magnetic field acting in a direction between the direction of the branch current flowing through the twisted portion of the line and the direction of the branch current flowing through the twisted portion of the other branch line is detected.
 好ましくは、複数の分岐線は、3つ以上の分岐線を含む。磁気センサは、2つ以上の磁気センサを含む。電流センサは、2つ以上の磁気センサの出力に基づいて被測定電流を算出する。 Preferably, the plurality of branch lines include three or more branch lines. The magnetic sensor includes two or more magnetic sensors. The current sensor calculates a current to be measured based on outputs of two or more magnetic sensors.
 好ましくは、電流センサは、1次導体および磁気センサを外部に対して磁気的にシールドするための部材を備える。 Preferably, the current sensor includes a member for magnetically shielding the primary conductor and the magnetic sensor from the outside.
 好ましくは、複数の分岐線は、仮想線に沿う方向から平面視したときに略長方形状とされる。ねじれ部分は、隣接する2つの分岐線の延在方向を互いにねじれの位置の関係となるように配置することによって形成される。 Preferably, the plurality of branch lines are substantially rectangular when viewed in plan from the direction along the virtual line. The twisted portion is formed by arranging the extending directions of two adjacent branch lines so as to be in a twisted position relationship with each other.
 好ましくは、複数の分岐線は、互いに平行に配置される。ねじれ部分は、隣接する2つの分岐電流の経路が互いにねじれの位置となるように、隣接する2つの分岐線の一部を切欠くことによって形成される。 Preferably, the plurality of branch lines are arranged in parallel to each other. The twisted portion is formed by notching a part of two adjacent branch lines so that the paths of the two adjacent branch currents are twisted with respect to each other.
 好ましくは、磁気センサは、複数の磁気抵抗素子を用いて被測定電流を検出するセンサである。 Preferably, the magnetic sensor is a sensor that detects a current to be measured using a plurality of magnetoresistive elements.
 本発明によれば、1次導体と磁気センサとを備える電流センサにおいて、1次導体と磁気センサとの位置関係の変化に対して安定度の高い計測が可能となる。 According to the present invention, in a current sensor including a primary conductor and a magnetic sensor, highly stable measurement can be performed with respect to a change in the positional relationship between the primary conductor and the magnetic sensor.
電流センサの斜視図(その1)である。It is a perspective view (the 1) of a current sensor. 電流センサの内部構造を透視して示す三面図(その1)である。FIG. 3 is a three-side view (No. 1) showing the internal structure of the current sensor as seen through. 磁気センサの周辺に発生する磁束を模式的に示す図(その1)である。FIG. 3 is a diagram (part 1) schematically illustrating magnetic flux generated around a magnetic sensor. 電流センサの斜視図(その2)である。It is a perspective view (the 2) of a current sensor. 電流センサの構成例を示す図である。It is a figure which shows the structural example of a current sensor. 磁束密度のY方向成分の等強度線図(その1)である。It is the isointensity diagram (the 1) of the Y direction component of magnetic flux density. Z方向の位置と磁束密度のY方向成分との関係を示す図(その1)である。FIG. 3 is a diagram (part 1) illustrating a relationship between a position in a Z direction and a Y direction component of magnetic flux density. 磁束密度のY方向成分の等強度線図(その2)である。It is an isointensity diagram (the 2) of the Y direction component of magnetic flux density. Y方向の位置と磁束密度のY方向成分との関係を示す図である。It is a figure which shows the relationship between the position of a Y direction, and the Y direction component of magnetic flux density. 磁束密度のY方向成分の等強度線図(その3)である。It is the isointensity diagram (the 3) of the Y direction component of magnetic flux density. X方向の位置と磁束密度のY方向成分との関係を示す図である。It is a figure which shows the relationship between the position of a X direction, and the Y direction component of magnetic flux density. 磁束密度のY方向成分の等強度線図(その4)である。It is the isointensity diagram (the 4) of the Y direction component of magnetic flux density. Z方向の位置と磁束密度のY方向成分との関係を示す図(その2)である。FIG. 6 is a diagram (part 2) illustrating a relationship between a position in the Z direction and a Y direction component of magnetic flux density. 電流センサの内部構造を透視して示す三面図(その2)である。FIG. 6 is a three-view drawing (2) illustrating the internal structure of the current sensor as seen through. 磁気センサの周辺に発生する磁束を模式的に示す図(その2)である。FIG. 5 is a diagram (part 2) schematically illustrating magnetic flux generated around the magnetic sensor.
 以下、図面を参照しつつ、実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載ある場合を除き、必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In the description of the embodiment, reference to the number, amount, and the like is not necessarily limited to the number, amount, and the like unless otherwise specified. In the drawings of the embodiments, the same reference numerals and reference numerals represent the same or corresponding parts. Further, in the description of the embodiments, the overlapping description may not be repeated for the portions with the same reference numerals and the like.
 <実施の形態1>
 図1は、本実施の形態による電流センサ1の斜視図である。図2は、電流センサ1の内部構造を透視して示す三面図である。図2(a)は、電流センサ1の平面図である。図2(b)は、図2(a)のI-Iにおける電流センサ1の断面図である。図2(c)は、図2(a)のII-IIにおける電流センサ1の断面図である。
<Embodiment 1>
FIG. 1 is a perspective view of a current sensor 1 according to the present embodiment. FIG. 2 is a three-sided view showing the internal structure of the current sensor 1 in a transparent manner. FIG. 2A is a plan view of the current sensor 1. FIG. 2B is a cross-sectional view of the current sensor 1 taken along the line II of FIG. FIG. 2C is a cross-sectional view of the current sensor 1 taken along the line II-II in FIG.
 図1および図2を参照して、本実施の形態による電流センサ1について説明する。電流センサ1は、1次導体(バスバー)10と、磁気センサ20と、図示しない演算部とを含む。電流センサ1は、1次導体10と磁気センサ20との間で絶縁を保ちつつ、磁気センサの出力に基づいて1次導体10を流れる1次電流iの値を計測する。 The current sensor 1 according to the present embodiment will be described with reference to FIG. 1 and FIG. The current sensor 1 includes a primary conductor (bus bar) 10, a magnetic sensor 20, and a calculation unit (not shown). The current sensor 1 measures the value of the primary current i flowing through the primary conductor 10 based on the output of the magnetic sensor while maintaining insulation between the primary conductor 10 and the magnetic sensor 20.
 1次導体10は、測定対象である1次電流iが流れる金属板である。1次導体10の材質としては、銅、銀、アルミニウムなどを用いることができる。1次導体10は、プレスや切削、鋳造、鍛造などの工法で製作することができる。1次導体10の表面には、ニッケル、スズ、銅、銀などにより、めっきなどによる表面処理を施してもよい。 The primary conductor 10 is a metal plate through which a primary current i to be measured flows. As a material of the primary conductor 10, copper, silver, aluminum, or the like can be used. The primary conductor 10 can be manufactured by a method such as pressing, cutting, casting, or forging. The surface of the primary conductor 10 may be subjected to a surface treatment such as plating with nickel, tin, copper, silver, or the like.
 以下では、1次導体10の主表面と平行な面をXY面とし、1次電流iの流れる向きをY方向とし、XY面と垂直な方向をZ方向とするXYZ直交座標系を用いて電流センサ1の構成を説明する。 In the following, the current using an XYZ orthogonal coordinate system in which the plane parallel to the main surface of the primary conductor 10 is the XY plane, the direction in which the primary current i flows is the Y direction, and the direction perpendicular to the XY plane is the Z direction. The configuration of the sensor 1 will be described.
 1次導体10は、分岐部11よりも上流側では1本であるが、分岐部11において2本の分岐線10A,10Bに分岐され、合流部12において再び1本となる。2本の分岐線10A,10Bは、1次電流iが分岐部11において分岐線10Aを流れる分岐電流iaと分岐線10Bを流れる分岐電流ibとにほぼ均等に分岐されるように形成される。 The number of primary conductors 10 is one on the upstream side of the branching section 11, but the branching section 11 branches into two branch lines 10 </ b> A and 10 </ b> B and becomes one again at the junction section 12. The two branch lines 10A and 10B are formed such that the primary current i is branched almost equally into a branch current ia flowing through the branch line 10A and a branch current ib flowing through the branch line 10B in the branch section 11.
 2本の分岐線10A,10Bは分岐部11および合流部12にて互いに接続されるが、接続の方法としては、溶接でもよいし、ボルトナットによる締結でもよい。また元々1枚の金属板からなり、これをプレスや絞り加工などで立体的に成形してもよい。削りだしや鋳造、鍛造で成形してもよい。 The two branch lines 10 </ b> A and 10 </ b> B are connected to each other at the branch portion 11 and the junction portion 12, but the connection method may be welding or fastening with a bolt and nut. Alternatively, it may be originally formed of a single metal plate, and may be three-dimensionally formed by pressing or drawing. It may be formed by shaving, casting or forging.
 2本の分岐線10A,10Bは、互いにねじれの位置の関係(同一の平面上に存在しない関係)にある。具体的には、図2(a)に示すように、Z方向(換言すれば2本の分岐線10A,10Bを最短距離で結ぶ仮想線に沿う方向)から平面視した場合、2本の分岐線10A,10Bは、いずれも形状が略長方形状とされ、かつ延在方向が互いに所定角度θだけ傾斜してほぼ中央部分で交差するように形成される。これにより、Z方向から平面視した場合の分岐電流ia,ibの経路は、各分岐線10A,10Bの中央部分において所定角度θで交差する。 The two branch lines 10A and 10B are in a twisted position relationship (a relationship that does not exist on the same plane). Specifically, as shown in FIG. 2A, two branches when viewed in plan from the Z direction (in other words, a direction along the virtual line connecting the two branch lines 10A and 10B with the shortest distance). The lines 10A and 10B are both formed so that the shape thereof is substantially rectangular, and the extending directions are inclined by a predetermined angle θ and intersect at substantially the center portion. As a result, the paths of the branch currents ia and ib when viewed in plan from the Z direction intersect at a predetermined angle θ at the center portions of the branch lines 10A and 10B.
 以下では、説明の便宜上、Z方向から平面視した場合の分岐電流ia,ibの経路が交差する部分(本実施の形態においては各分岐線10A,10Bの中央部分)を「ねじれ交差部分」ともいう。 In the following, for convenience of explanation, a portion where the paths of the branch currents ia and ib intersect in plan view from the Z direction (in the present embodiment, the central portion of each branch line 10A and 10B) is also referred to as a “twisted intersection portion”. Say.
 磁気センサ20は、分岐線10Aのねじれ交差部分(中央部分)と分岐線10Bのねじれ交差部分(中央部分)との間に挟まれる間隙に配置される。より具体的には、磁気センサ20は、分岐線10Aのねじれ交差部分と分岐線10Bのねじれ交差部分との中間点に配置される。磁気センサ20は、分岐電流ia,ibによって生じる磁界を検出することによって1次電流iを計測する。 The magnetic sensor 20 is disposed in a gap sandwiched between the twisted intersection portion (center portion) of the branch line 10A and the twisted intersection portion (center portion) of the branch line 10B. More specifically, the magnetic sensor 20 is disposed at an intermediate point between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B. The magnetic sensor 20 measures the primary current i by detecting a magnetic field generated by the branch currents ia and ib.
 磁気センサ20は、感度軸S0を有する。磁気センサ20の感度軸S0の向きは、Y方向(1次導体10の延在方向)に設定される。より具体的には、感度軸S0の向きは、Z方向(2本の分岐線10A,10Bを最短距離で結ぶ仮想線に沿う方向)から平面視したときの分岐線10Aのねじれ交差部分を流れる分岐電流iaの向きと分岐線10Bのねじれ交差部分を流れる分岐電流ibの向きとの間の向きに設定される。さらに具体的には、磁気センサ20の感度軸S0の向きは、分岐電流iaを示す電流ベクトルと分岐電流iaを示す電流ベクトルとの合成ベクトルと略平行な向きに設定されている。磁気センサ20は、感度軸S0の一方向に向いた磁束が印加された場合に正の値を出力し、感度軸S0の一方向とは反対の方向に向いた磁束が印加された場合に負の値を出力する特性(以下「奇関数入出力特性」ともいう)を有している。 The magnetic sensor 20 has a sensitivity axis S0. The direction of the sensitivity axis S0 of the magnetic sensor 20 is set in the Y direction (the extending direction of the primary conductor 10). More specifically, the direction of the sensitivity axis S0 flows through a twisted intersection portion of the branch line 10A when viewed in plan from the Z direction (a direction along a virtual line connecting the two branch lines 10A and 10B with the shortest distance). The direction is set between the direction of the branch current ia and the direction of the branch current ib flowing through the twisted intersection of the branch line 10B. More specifically, the direction of the sensitivity axis S0 of the magnetic sensor 20 is set to be substantially parallel to the combined vector of the current vector indicating the branch current ia and the current vector indicating the branch current ia. The magnetic sensor 20 outputs a positive value when a magnetic flux directed in one direction of the sensitivity axis S0 is applied, and is negative when a magnetic flux directed in a direction opposite to the one direction of the sensitivity axis S0 is applied. Characteristic (hereinafter also referred to as “odd function input / output characteristics”).
 磁気センサ20は、MR(Magneto Resistance)型の磁気センサである。磁気センサ20としては、AMR(Anisotropic Magneto Resistance)、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗系素子、特に、AMRにバーバーポール構造を設けて奇関数入出力特性を持たせた素子で、ホイートストンブリッジ型のブリッジ回路またはその半分のブリッジ回路を構成した磁気センサを用いることができる。その他にも、磁気センサ20として、ホール素子を用いた磁気センサ、MI(Magneto Impedance)磁気センサまたはフラックスゲート磁気センサなどを用いることができる。 The magnetic sensor 20 is an MR (Magneto Resistance) type magnetic sensor. The magnetic sensor 20 includes magnetoresistive elements such as AMR (Anisotropic Magneto Resistance), GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), and CMR (Colossal Magneto Resistance), particularly AMR. A magnetic sensor comprising a Wheatstone bridge type bridge circuit or a half of the bridge circuit can be used as an element having an odd function input / output characteristic by providing a barber pole structure. In addition, as the magnetic sensor 20, a magnetic sensor using a Hall element, an MI (Magneto Impedance) magnetic sensor, a fluxgate magnetic sensor, or the like can be used.
 磁気センサ20にバイアスをかける場合は、バーバーポール構造を用いる方法に限られず、コイルの周囲に発生する誘導磁界、永久磁石の磁界、またはこれらを組み合わせた磁界を用いてバイアスをかけてもよい。 When the magnetic sensor 20 is biased, the method is not limited to the method using the barber pole structure, and the magnetic sensor 20 may be biased using an induction magnetic field generated around the coil, a magnetic field of a permanent magnet, or a combination of these.
 また、磁気センサ20は、出力信号を直線的または補正関数的に演算する増幅器や変換器を介して出力するタイプ(開ループ型)としてもよいし、増幅器や変換器を介して励磁コイルを駆動することで1次電流iによる磁界と励磁コイルによる磁界との重ねの磁界がゼロ磁界や一定の磁界に固定されるように常にフィードバックをかけるタイプ(閉ループ型)としてもよい。 The magnetic sensor 20 may be of a type (open loop type) that outputs an output signal via an amplifier or a converter that calculates an output signal linearly or in a correction function, or drives an exciting coil via an amplifier or a converter. Thus, a type (closed loop type) in which feedback is always performed so that the magnetic field of the superposition of the magnetic field generated by the primary current i and the magnetic field generated by the exciting coil is fixed to a zero magnetic field or a constant magnetic field.
 なお、図示していないが、磁気センサ20および分岐線10A,10Bは、絶縁性の樹脂でモールドされて相互の位置関係が固定される。モールド用の樹脂の種類としては、熱硬化性であってもよく、熱可塑性であってもよい。代表的には、耐熱やモールド精度に優れる、PPS(ポリフェニレンサルファイド)、PCT(ポリシクロへキシレンジメチレンテレフタレート)、LCP(液晶ポリマー)、ナイロン、エポキシ樹脂などが適する。 Although not shown, the magnetic sensor 20 and the branch lines 10A and 10B are molded with an insulating resin and their mutual positional relationship is fixed. The type of resin for molding may be thermosetting or thermoplastic. Typically, PPS (polyphenylene sulfide), PCT (polycyclohexylene dimethylene terephthalate), LCP (liquid crystal polymer), nylon, epoxy resin, and the like, which are excellent in heat resistance and mold accuracy, are suitable.
 磁気センサ20は、図示しない接続配線によって図示しない演算部と電気的に接続される。演算部は、磁気センサ20の出力のオフセット分(残留分)を除去し、また増幅することにより、1次電流iの値を算出する。なお、演算部としては、非反転増幅器を用いたり、差動増幅器あるいは反転増幅器などを用いたりすることができる。 The magnetic sensor 20 is electrically connected to a calculation unit (not shown) by connection wiring (not shown). The calculation unit calculates the value of the primary current i by removing and amplifying the offset (residual) of the output of the magnetic sensor 20. As the arithmetic unit, a non-inverting amplifier, a differential amplifier, an inverting amplifier, or the like can be used.
 図3は、分岐電流ia,ibによって磁気センサ20の周辺に発生する磁束を模式的に示す図である。図3を参照して、本実施の形態による電流センサ1の作用効果について説明する。 FIG. 3 is a diagram schematically showing a magnetic flux generated around the magnetic sensor 20 by the branch currents ia and ib. With reference to FIG. 3, the effect of the current sensor 1 by this Embodiment is demonstrated.
 分岐線10A,10Bに分岐電流ia,ibがそれぞれ流れることで、分岐線10A,10Bの周囲には、右ネジの磁界に相当する磁束Φa,Φbがそれぞれ発生する。磁束Φa,Φbは、それぞれ分岐電流ia,ibの向きを法線とする平面上に分布する。分岐電流ia,ibの大きさはほぼ同じであるため、分岐電流ia,ibの向き(1次導体の電流ベクトル軸)が平行であれば、分岐線10A,10Bの中間点では、磁束Φa,Φbは「重ねの理」で打ち消し合い、ゼロとなる。 As branch currents ia and ib flow through branch lines 10A and 10B, magnetic fluxes Φa and Φb corresponding to right-handed magnetic fields are generated around branch lines 10A and 10B, respectively. The magnetic fluxes Φa and Φb are distributed on a plane whose normal is the direction of the branch currents ia and ib, respectively. Since the magnitudes of the branch currents ia and ib are substantially the same, if the directions of the branch currents ia and ib (current vector axes of the primary conductors) are parallel, the magnetic flux Φa, Φb cancels each other out with the “reason of superposition” and becomes zero.
 しかし、本実施の形態においては、分岐電流ia,ibの向きは、平行ではなく、Z方向から平面視した場合に所定角度θだけ交差する。このように分岐電流ia,ibが平面視で所定角度θだけ交差することで、分岐線10Aのねじれ交差部分と分岐線10Bのねじれ交差部分との中間点では、磁束Φa,ΦbはX方向成分は「重ねの理」で打ち消し合うが、Y方向成分は足し合わされることになる。磁束Φa,ΦbのY方向成分が足し合わされることによって、Y方向に作用する磁束Φabが発生する。 However, in the present embodiment, the directions of the branch currents ia and ib are not parallel but intersect each other by a predetermined angle θ when viewed in plan from the Z direction. As described above, the branch currents ia and ib intersect each other by a predetermined angle θ in plan view, so that the magnetic fluxes Φa and Φb are in the X direction component at the intermediate point between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B. Cancel each other by "superposition", but Y direction components are added together. A magnetic flux Φab acting in the Y direction is generated by adding the Y direction components of the magnetic fluxes Φa and Φb.
 Y方向に作用する磁束Φabの大きさは、Z方向から平面視した場合の分岐電流ia,ibの交差角度である「所定角度θ」の増大とともに増加し、180度で最大となる。したがって、所定角度θを調整することで、Y方向に作用する磁束Φabの大きさをsin(θ/2)に比例した値に自由に設定できる。磁気センサ20の感度軸S0はY方向の正方向(磁束Φcdの向きと同じ向き)に設定されている。そのため、本実施の形態による電流センサ1においては、一次電流iの大きさに応じて所定角度θを変えることで、同じ磁気センサ20を用いて様々な大きさの1次電流iを測定することが可能となる。 The magnitude of the magnetic flux Φab acting in the Y direction increases with an increase in the “predetermined angle θ” that is the crossing angle of the branch currents ia and ib when viewed in plan from the Z direction, and reaches a maximum at 180 degrees. Therefore, by adjusting the predetermined angle θ, the magnitude of the magnetic flux Φab acting in the Y direction can be freely set to a value proportional to sin (θ / 2). The sensitivity axis S0 of the magnetic sensor 20 is set in the positive direction of the Y direction (the same direction as the direction of the magnetic flux Φcd). Therefore, in the current sensor 1 according to the present embodiment, the primary current i having various magnitudes can be measured using the same magnetic sensor 20 by changing the predetermined angle θ according to the magnitude of the primary current i. Is possible.
 特に、本実施の形態においては、Z方向から平面視した場合の分岐線10A,10Bの形状が略長方形状であるので、所定角度θを容易に設計することができる。また、分岐線10A,10Bの幅は一定であり分岐電流ia,ibが集中する狭隘部がないため、発熱などを最小限とすることができる。 In particular, in the present embodiment, since the shape of the branch lines 10A and 10B when viewed in plan from the Z direction is substantially rectangular, the predetermined angle θ can be easily designed. Further, since the branch lines 10A and 10B have a constant width and there is no narrow portion where the branch currents ia and ib concentrate, heat generation and the like can be minimized.
 また、本実施の形態による磁気センサ20が配置される位置、すなわち分岐線10Aのねじれ交差部分と分岐線10Bのねじれ交差部分との間に挟まれる間隙においては、Y方向(分岐線10A,10Bの延在方向)以外の磁界は発生しない。すなわち、磁気センサ20の出力が非線形となったり誤差やノイズが生じたりする要因となり得るX方向の磁界およびZ方向の磁界が発生しない。そのため、本実施の形態による電流センサ1は、高精度を実現でき、ノイズの影響の少ない計測が可能になる。 Further, at the position where the magnetic sensor 20 according to the present embodiment is arranged, that is, in the gap sandwiched between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B, the Y direction ( branch lines 10A, 10B). No magnetic field other than the direction of extension) is generated. That is, the magnetic field in the X direction and the magnetic field in the Z direction, which may cause the output of the magnetic sensor 20 to become nonlinear or cause errors and noises, are not generated. Therefore, the current sensor 1 according to the present embodiment can realize high accuracy and can perform measurement with less influence of noise.
 また、本実施の形態による磁気センサ20は、各分岐線10A,10Bの中間点に配置されるので、どちらの分岐線10A,10Bとも十分な距離をとって配置することができる。そのため、磁気センサ20と分岐線10A,10Bとの間の絶縁を容易かつ高度に確保できる。その結果、高度の絶縁性を実現した電流センサ1を安価に実現できる。 In addition, since the magnetic sensor 20 according to the present embodiment is disposed at the midpoint between the branch lines 10A and 10B, it can be disposed at a sufficient distance from either of the branch lines 10A and 10B. Therefore, the insulation between the magnetic sensor 20 and the branch lines 10A and 10B can be easily and highly secured. As a result, the current sensor 1 realizing a high degree of insulation can be realized at low cost.
 また、本実施の形態による磁気センサ20は、MR型の磁気センサである。MR型の磁気センサの感度面は、その膜形成面、換言すれば実装面と平行である。そのため、磁気センサ20の機能膜を形成する基板を、各分岐線10A,10Bの主表面と平行にできる。そのため、磁気センサ20と分岐線10A,10Bとの間の絶縁を容易かつ高度に確保できる。その結果、高度の絶縁性を実現した電流センサ1を安価に実現できる。 The magnetic sensor 20 according to the present embodiment is an MR type magnetic sensor. The sensitivity surface of the MR type magnetic sensor is parallel to the film forming surface, in other words, the mounting surface. Therefore, the substrate on which the functional film of the magnetic sensor 20 is formed can be parallel to the main surfaces of the branch lines 10A and 10B. Therefore, the insulation between the magnetic sensor 20 and the branch lines 10A and 10B can be easily and highly secured. As a result, the current sensor 1 realizing a high degree of insulation can be realized at low cost.
 また、本実施の形態による電流センサ1は、磁性体コアを持たないため、小型化および軽量化が可能であるとともに、磁性体コアの持つ特性(たとえば周波数特性、非線形、残留磁束密度によるオフセット点、言い換えれば電流ゼロ点の遊動およびヒステリシスなど)の影響のない計測が可能になる。 In addition, since the current sensor 1 according to the present embodiment does not have a magnetic core, it can be reduced in size and weight, and the characteristics of the magnetic core (for example, frequency characteristics, nonlinearity, offset point due to residual magnetic flux density) In other words, the measurement can be performed without the influence of zero current drift and hysteresis.
 さらに、本実施の形態による磁気センサ20が配置される位置、すなわち分岐線10Aのねじれ交差部分と分岐線10Bのねじれ交差部分との間に挟まれる間隙においては、位置に対する磁束密度のY方向成分の変化量が非常に小さい。また、分岐線10A,10Bに流れる電流に偏りが発生しても、磁気センサ20が配置される位置に発生する磁場はほとんど変わらず一定である。そのため、磁気センサ20の位置がX方向、Y方向およびZ方向のいずれの方向にずれたとしても、また、分岐線10A,10Bを流れる電流に偏りが発生したとしても、安定度の高い計測が可能となる。その結果、本実施の形態による電流センサ1は、磁気センサ20の位置変化や分岐線10A,10B間の電流の偏りに対して安定度の高い計測が可能となり、再現性および生産性のよい電流センサ1を提供できる。なお、この点については、後述のシミュレーション結果において詳細に説明する。 Further, in the position where the magnetic sensor 20 according to the present embodiment is disposed, that is, in the gap sandwiched between the twisted intersection portion of the branch line 10A and the twisted intersection portion of the branch line 10B, the Y-direction component of the magnetic flux density with respect to the position. The amount of change is very small. Even if the current flowing in the branch lines 10A and 10B is biased, the magnetic field generated at the position where the magnetic sensor 20 is disposed is almost unchanged and constant. Therefore, even if the position of the magnetic sensor 20 is shifted in any of the X direction, the Y direction, and the Z direction, and even if the current flowing through the branch lines 10A and 10B is biased, measurement with high stability can be performed. It becomes possible. As a result, the current sensor 1 according to the present embodiment can perform measurement with high stability against a change in the position of the magnetic sensor 20 and a current bias between the branch lines 10A and 10B, and a current with high reproducibility and productivity. The sensor 1 can be provided. This point will be described in detail in a simulation result described later.
 <実施の形態1の変形例1>
 上述の実施の形態1においては、平面視が長方形状の分岐線10A,10Bの延在方向を互いにねじれの位置の関係となるように配置することによって上述の「ねじれ交差部分」を形成していた。
<Modification 1 of Embodiment 1>
In the first embodiment described above, the above-described “twisted intersection portion” is formed by arranging the extending directions of the branch lines 10A and 10B having a rectangular shape in a plan view so as to be in a twisted relationship with each other. It was.
 しかしながら、上述の「ねじれ交差部分」の形成手法は、必ずしも分岐線10A,10Bの延在方向を互いにねじれの位置に配置することに限定されない。 However, the above-described method of forming the “twisted intersection” is not necessarily limited to disposing the extending directions of the branch lines 10 </ b> A and 10 </ b> B at the twisted positions.
 図4は、本変形例による電流センサ1-1の斜視図である。図4に示す電流センサ1-1は、上述の図1に示す電流センサ1に対して、分岐線10A,10Bを分岐線10A-1,10B-1に変更したものである。 FIG. 4 is a perspective view of the current sensor 1-1 according to this modification. The current sensor 1-1 shown in FIG. 4 is obtained by changing the branch lines 10A and 10B to the branch lines 10A-1 and 10B-1 with respect to the current sensor 1 shown in FIG.
 分岐線10A-1,10B-1は、Z方向から平面視した場合の形状が略長方形状とされ、互いに平行に配置される。各分岐線10A-1,10B-1の中央部分には、複数の切欠き部が設けられる。これらの切欠き部により、各分岐線10A-1,10B-1の中央部分が上述の「ねじれ交差部分」となる。 The branch lines 10A-1 and 10B-1 have a substantially rectangular shape when viewed in plan from the Z direction, and are arranged in parallel to each other. A plurality of notches are provided in the central portion of each branch line 10A-1, 10B-1. By these notches, the central portions of the branch lines 10A-1 and 10B-1 become the “twisted intersection” described above.
 すなわち、本変形例による電流センサ1-1においては、分岐線10A-1,10B-1の延在方向を互いにねじれの位置に配置するのではなく、各分岐線10A-1,10B-1の中央部分を流れる分岐電流ia,ibの経路が互いにねじれの位置となるように、各分岐線10A-1,10B-1の中央部分の一部を切欠くことによって、上述の「ねじれ交差部分」が形成される。 In other words, in the current sensor 1-1 according to the present modification, the extending directions of the branch lines 10A-1 and 10B-1 are not arranged at twisted positions, but instead of the branch lines 10A-1 and 10B-1. By cutting out a part of the central portion of each of the branch lines 10A-1 and 10B-1 so that the paths of the branch currents ia and ib flowing through the central portion are mutually twisted positions, Is formed.
 そして、切欠き部の形状(深さ、大きさ、間隔)を調整することで、各分岐線10A-1,10B-1の中央部分を流れる分岐電流ia,ibの経路(Z方向から平面視した場合の分岐電流ia,ibの交差角度)を自在に設定することができる。そのため、電流センサ1の外形やその主要部品配置を変えることなく、電流センサ1の計測可能な電流値を調整することが可能になる。 Then, by adjusting the shape (depth, size, interval) of the notches, the paths of the branch currents ia and ib flowing through the central portions of the branch lines 10A-1 and 10B-1 (in plan view from the Z direction) The crossing angle of the branch currents ia and ib in this case can be freely set. Therefore, the measurable current value of the current sensor 1 can be adjusted without changing the outer shape of the current sensor 1 or the arrangement of its main components.
 <実施の形態1の変形例2>
 上述の実施の形態1による電流センサ1および変形例1による電流センサ1-1においては、磁気シールドを施していないが、磁気シールドを施すようにしてもよい。
<Modification 2 of Embodiment 1>
The current sensor 1 according to the first embodiment and the current sensor 1-1 according to the first modification are not provided with a magnetic shield, but may be provided with a magnetic shield.
 図5は、磁気シールド付の電流センサ1-2の構成例を示す図である。図5に示す電流センサ1-2は、上述の変形例1による電流センサ1-1に2組の磁気シールド50,60を施したものである。 FIG. 5 is a diagram showing a configuration example of the current sensor 1-2 with a magnetic shield. A current sensor 1-2 shown in FIG. 5 is obtained by providing two sets of magnetic shields 50 and 60 to the current sensor 1-1 according to the first modification described above.
 磁気シールド50,60は、各々がU字状に曲げた金属板で形成され、互いに対面させるように配置される。磁気シールド50,60に用いる磁性体は、鉄や鉄合金、ニッケルやニッケル合金、たとえば、パーマロイ、ケイ素鋼、電磁鋼、軟鉄鋼、純鉄などの金属とすることができる。磁性としては、残留磁束密度やヒステリシスが少ないことが好ましい。また透磁率が磁束密度にかかわらず一定程度であり、飽和磁束密度が大きいことが好ましい。なお、本変形例2では、磁気シールド50,60に用いる磁性体をパーマロイとした。 The magnetic shields 50 and 60 are each formed of a metal plate bent in a U-shape and arranged to face each other. The magnetic body used for the magnetic shields 50 and 60 may be a metal such as iron, iron alloy, nickel or nickel alloy, such as permalloy, silicon steel, electromagnetic steel, soft iron steel, or pure iron. As magnetism, it is preferable that residual magnetic flux density and hysteresis are small. Moreover, it is preferable that the magnetic permeability is constant regardless of the magnetic flux density and the saturation magnetic flux density is large. In the second modification, the magnetic material used for the magnetic shields 50 and 60 is permalloy.
 本変形例2による電流センサ1-2を用いて、実際に分岐電流ia,ibを流し、そのときの磁束密度のY方向成分を計測するシミュレーションを行なった。 Using the current sensor 1-2 according to the second modification, a simulation was performed in which the branch currents ia and ib were actually passed and the Y direction component of the magnetic flux density at that time was measured.
 シミュレーションは、電流センサ1-2を図5に示す位置に設置して行われた。図5に示すように、電流センサ1-2は、分岐線10A-1,10B-1の幅方向をX方向、分岐線10A-1,10B-1の延在方向をY方向、分岐線10A-1,10B-1の厚み方向をZ方向とする、XYZ直交座標上に配置される。以下では、座標(X,Y,Z)を用いて電流センサ1-2の各部の位置を特定する。なお、各座標の値の単位は「mm(ミリメートル)」である。 The simulation was performed with the current sensor 1-2 installed at the position shown in FIG. As shown in FIG. 5, in the current sensor 1-2, the width direction of the branch lines 10A-1 and 10B-1 is the X direction, the extending direction of the branch lines 10A-1 and 10B-1 is the Y direction, and the branch line 10A -1, 10B-1 are arranged on XYZ orthogonal coordinates with the Z direction as the thickness direction. In the following, the position of each part of the current sensor 1-2 is specified using the coordinates (X, Y, Z). The unit of the value of each coordinate is “mm (millimeter)”.
 磁気センサ20の感度点は原点座標(0,0,0)の位置に配置される。分岐線10A-1は、座標(0,-40,2.5)を始点中心とし、座標(0,40,2.5)を終点中心とする位置に配置される。分岐線10B-1は、座標(0,-40,-2.5)を始点中心とし、座標(0,40,-2.5)を終点中心とする位置に配置される。 The sensitivity point of the magnetic sensor 20 is arranged at the position of the origin coordinates (0, 0, 0). The branch line 10A-1 is arranged at a position with the coordinates (0, −40, 2.5) as the center of the start point and the coordinates (0, 40, 2.5) as the center of the end point. The branch line 10B-1 is arranged at a position with the coordinates (0, −40, −2.5) as the center of the start point and the coordinates (0, 40, −2.5) as the center of the end point.
 各分岐線10A-1,10B-1の幅は10mm、長さは80mm、厚みは1mmで、材質は純銅である。分岐線10A-1,10B-1間の中心間距離は5mm、間隙は4mである。磁気シールド60は幅外寸44mm、延在長60mm、折り下げ高さ28mmである。磁気シールド50は幅外寸32mm、延在長60mm、折り下げ高さ23mmである。シールド部の材質はケイ素鋼である。 The branch lines 10A-1 and 10B-1 have a width of 10 mm, a length of 80 mm, a thickness of 1 mm, and a pure copper material. The distance between the centers of the branch lines 10A-1 and 10B-1 is 5 mm, and the gap is 4 m. The magnetic shield 60 has an outer width of 44 mm, an extension length of 60 mm, and a folding height of 28 mm. The magnetic shield 50 has an outer width of 32 mm, an extension length of 60 mm, and a folding height of 23 mm. The material of the shield part is silicon steel.
 上述のように配置された電流センサ1-2に実際に分岐電流ia,ibを流し、そのときの磁束密度のY方向成分を計測するシミュレーションを行なった結果を、図6~図13に示す。 6 to 13 show the results of simulations in which the branch currents ia and ib are actually passed through the current sensor 1-2 arranged as described above and the Y direction component of the magnetic flux density at that time is measured.
 図6は、各分岐電流ia,ibを均等に150アンペアづつとした場合における、磁束密度のY方向成分の等強度線図である。図6に示す等強度線図は、磁気センサ20が配置される座標(0,0,0)を通るXZ平面に関して描かれている。 FIG. 6 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch currents ia and ib are equally set to 150 amperes. The isointensity diagram shown in FIG. 6 is drawn with respect to the XZ plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
 図7は、図6に示す始点座標(0,0,-2)から終点座標(0,0,2)までのZ方向の位置と磁束密度のY方向成分との関係を示す図である。 FIG. 7 is a diagram showing the relationship between the position in the Z direction from the start point coordinates (0, 0, −2) to the end point coordinates (0, 0, 2) and the Y direction component of the magnetic flux density shown in FIG.
 図7に示すグラフの横軸の中央付近(磁気センサ20が配置される座標(0,0,0)付近)において、Z方向の位置が±2mm程度の範囲で変化しても、磁束密度のY方向成分は約6.2mTでほぼ一定である。したがって、仮に磁気センサ20の位置がZ方向に数ミリメートル程度ずれたとしても、安定度の高い計測が可能となる。 Even if the position in the Z direction changes in the range of about ± 2 mm around the center of the horizontal axis of the graph shown in FIG. 7 (near the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged), the magnetic flux density The Y direction component is substantially constant at about 6.2 mT. Therefore, even if the position of the magnetic sensor 20 is shifted by several millimeters in the Z direction, highly stable measurement is possible.
 図8は、各分岐電流ia,ibを均等に150アンペアづつとした場合における、磁束密度のY方向成分の等強度線図である。図8に示す等強度線図は、磁気センサ20が配置される座標(0,0,0)を通るXY平面に関して描かれている。 FIG. 8 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch currents ia and ib are evenly set at 150 amperes. The isointensity diagram shown in FIG. 8 is drawn with respect to the XY plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
 図9は、図8に示す始点座標(0,-20,0)から終点座標(0,20,0)までのY方向の位置と磁束密度のY方向成分との関係を示す図である。 FIG. 9 is a diagram showing the relationship between the position in the Y direction from the start point coordinates (0, −20, 0) to the end point coordinates (0, 20, 0) shown in FIG. 8 and the Y direction component of the magnetic flux density.
 図9に示すグラフの横軸の中央付近(磁気センサ20が配置される座標(0,0,0)付近)においては、Y方向の位置が±2mm程度の範囲で変化しても、磁束密度のY方向成分は約6.2mTでほぼ一定である。したがって、仮に磁気センサ20の位置がY方向に数ミリメートル程度ずれたとしても、安定度の高い計測が可能となる。 Near the center of the horizontal axis of the graph shown in FIG. 9 (near the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged), even if the position in the Y direction changes within a range of about ± 2 mm, the magnetic flux density The Y direction component of is approximately 6.2 mT and is substantially constant. Therefore, even if the position of the magnetic sensor 20 is shifted by several millimeters in the Y direction, highly stable measurement is possible.
 図10は、各分岐電流ia,ibを均等に150アンペアづつとした場合における、磁束密度のY方向成分の等強度線図である。図10に示す等強度線図は、磁気センサ20が配置される座標(0,0,0)を通るXY平面に関して描かれている。なお、図10に示す等強度線そのものは、図8に示すものと同じである。 FIG. 10 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch currents ia and ib are evenly set at 150 amperes. The isointensity diagram shown in FIG. 10 is drawn with respect to the XY plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged. The isointensity lines themselves shown in FIG. 10 are the same as those shown in FIG.
 図11は、図10に示す始点座標(-5,0,0)から終点座標(5,0,0)までのX方向の位置と磁束密度のY方向成分との関係を示す図である。 FIG. 11 is a diagram showing the relationship between the position in the X direction from the start point coordinates (−5, 0, 0) to the end point coordinates (5, 0, 0) shown in FIG. 10 and the Y direction component of the magnetic flux density.
 図11に示すグラフの横軸の中央付近(磁気センサ20が配置される座標(0,0,0)付近)においては、X方向の位置が±2mm程度の範囲で変化しても、磁束密度のY方向成分は約6.2mTでほぼ一定である。したがって、仮に磁気センサ20の位置がX方向に数ミリメートル程度ずれたとしても、安定度の高い計測が可能となる。 Near the center of the horizontal axis of the graph shown in FIG. 11 (near the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged), even if the position in the X direction changes within a range of about ± 2 mm, the magnetic flux density The Y direction component of is approximately 6.2 mT and is substantially constant. Therefore, even if the position of the magnetic sensor 20 is shifted by several millimeters in the X direction, highly stable measurement is possible.
 図12は、分岐電流iaを270アンペア、分岐電流ibを30アンペアとした場合(すなわち分岐電流ia,ibの間に偏りを持たせた場合)における、磁束密度のY方向成分の等強度線図である。図12に示す等強度線図は、磁気センサ20が配置される座標(0,0,0)を通るXZ平面に関して描かれている。 FIG. 12 is an isointensity diagram of the Y direction component of the magnetic flux density when the branch current ia is 270 amperes and the branch current ib is 30 amperes (that is, when the branch currents ia and ib are biased). It is. The isointensity diagram shown in FIG. 12 is drawn with respect to the XZ plane passing through the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged.
 なお、分岐電流ia,ibの間の偏りが実際に生じる理由としては、様々な理由が考えられる。たとえば、ボルトナット締結による組立時の、締め付けトルク不足による接触抵抗の増大などがある。 Note that there are various reasons why the deviation between the branch currents ia and ib actually occurs. For example, there is an increase in contact resistance due to insufficient tightening torque during assembly by tightening bolts and nuts.
 図13は、図12に示す始点座標(0,0,-2)から終点座標(0,0,2)までのZ方向の位置と磁束密度のY方向成分との関係を示す図である。 FIG. 13 is a diagram showing the relationship between the position in the Z direction from the start point coordinates (0, 0, −2) to the end point coordinates (0, 0, 2) shown in FIG. 12 and the Y direction component of the magnetic flux density.
 図13のシミュレーション結果に示されるように、分岐電流iaと分岐電流ibとの比が9:1など一方に極端に偏った場合には、Z方向の位置に応じて磁束密度のY方向成分は変化する。しかしながら、図13のグラフの横軸の中央付近(磁気センサ20が配置される座標(0,0,0)付近)においては、磁束密度のY方向成分は約6.2mTとなっており、分岐電流iaと分岐電流ibとの比を均等に1:1とした場合(上述の図7参照)とほぼ同じ値となる。したがって、分岐電流ia,ibの間に偏りが生じても、その影響を受けない計測が可能である。 As shown in the simulation result of FIG. 13, when the ratio of the branch current ia to the branch current ib is extremely biased to one side such as 9: 1, the Y-direction component of the magnetic flux density depends on the position in the Z-direction. Change. However, in the vicinity of the center of the horizontal axis of the graph of FIG. 13 (near the coordinates (0, 0, 0) where the magnetic sensor 20 is arranged), the Y direction component of the magnetic flux density is about 6.2 mT, and the branch When the ratio of the current ia and the branch current ib is uniformly 1: 1 (see FIG. 7 above), the values are almost the same. Therefore, even if a deviation occurs between the branch currents ia and ib, measurement that is not affected by the deviation is possible.
 図6~図13に示すシミュレーション結果から明らかなように、磁気センサ20が配置される位置、すなわち分岐線10A-1のねじれ交差部分と分岐線10B-1のねじれ交差部分との間に挟まれる間隙においては、位置に対する磁束密度のY方向成分の変化量が非常に小さい。また、分岐線10A-1,10B-1に流れる電流に偏りが発生しても、磁束密度のY方向成分はほとんど変わらず一定である。そのため、磁気センサ20の位置がX方向、Y方向およびZ方向のいずれの方向にずれたとしても、また、分岐電流ia,ibの間に偏りが生じたとしても、安定度の高い計測が可能となる。 As is apparent from the simulation results shown in FIGS. 6 to 13, the magnetic sensor 20 is sandwiched between the position where the magnetic sensor 20 is disposed, that is, between the twisted intersection of the branch line 10A-1 and the twisted intersection of the branch line 10B-1. In the gap, the amount of change in the Y direction component of the magnetic flux density with respect to the position is very small. Even if the current flowing in the branch lines 10A-1 and 10B-1 is biased, the Y direction component of the magnetic flux density is almost unchanged and constant. Therefore, even if the position of the magnetic sensor 20 is shifted in any of the X direction, the Y direction, and the Z direction, and even if a deviation occurs between the branch currents ia and ib, highly stable measurement is possible. It becomes.
 なお、上述の本実施の形態1による電流センサ1あるいは変形例1による電流センサ1-1は、Z方向から平面視した場合の分岐電流ia,ibの経路が交差する点は電流センサ1-2と同じである。したがって、電流センサ1,1-1に同様のシミュレーションを行なった場合においても、図6~図13に示すシミュレーション結果とほぼ同じ特性を示す結果が得られる。 The current sensor 1 according to the first embodiment described above or the current sensor 1-1 according to the first modification has the point where the paths of the branch currents ia and ib intersect when viewed in plan from the Z direction. Is the same. Therefore, even when a similar simulation is performed on the current sensors 1 and 1-1, a result showing substantially the same characteristics as the simulation results shown in FIGS. 6 to 13 is obtained.
 <実施の形態2>
 上述の実施の形態においては、2本の分岐線の間に1つの磁気センサを配置したが、分岐線を3本以上設け、隣接する分岐線間にそれぞれ配置される2つ以上の磁気センサを設けるようにしてもよい。
<Embodiment 2>
In the above-described embodiment, one magnetic sensor is disposed between two branch lines, but three or more branch lines are provided, and two or more magnetic sensors respectively disposed between adjacent branch lines are provided. You may make it provide.
 図14は、本実施の形態2による電流センサ1-3の内部構造の一例を透視して示す三面図である。図14(a)は、電流センサ1-3の平面図である。図14(b)は、図14(a)のI-Iにおける電流センサ1-3の断面図である。図14(c)は、図14(a)のII-IIにおける電流センサ1-3の断面図である。 FIG. 14 is a three-sided view showing an example of the internal structure of the current sensor 1-3 according to the second embodiment. FIG. 14A is a plan view of the current sensor 1-3. FIG. 14B is a cross-sectional view of the current sensor 1-3 taken along the line II of FIG. FIG. 14C is a cross-sectional view of the current sensor 1-3 taken along the line II-II in FIG.
 電流センサ1-3に含まれる1次導体10は、分岐部11よりも上流側では1本であるが、分岐部11において3本の分岐線10C,10D,10Eに分岐され、合流部12において再び1本となる。3本の分岐線10C,10D,10Eは、1次電流iが分岐部11において分岐線10Cを流れる分岐電流icと、分岐線10Dを流れる分岐電流idと、分岐線10Eを流れる分岐電流ieとにほぼ均等に分岐されるように形成される。なお、3本の分岐線10C,10D,10Eの接続方法としては、上述の実施の形態で説明した方法と同様の方向を採用すればよい。 Although the number of primary conductors 10 included in the current sensor 1-3 is one on the upstream side of the branching portion 11, the branching portion 11 branches into three branch lines 10C, 10D, and 10E. It becomes one again. The three branch lines 10C, 10D, and 10E include a branch current ic in which the primary current i flows through the branch line 10C in the branch portion 11, a branch current id that flows through the branch line 10D, and a branch current ie that flows through the branch line 10E. Are formed so as to be branched almost evenly. As a method for connecting the three branch lines 10C, 10D, and 10E, the same direction as the method described in the above embodiment may be adopted.
 分岐線10C,10D,10Eの各々は、Z方向から平面視した場合の形状が長方形状に形成される。分岐線10Dは、分岐線10Cと分岐線10Eとの間の配置される。 Each of the branch lines 10C, 10D, and 10E is formed in a rectangular shape when viewed in plan from the Z direction. The branch line 10D is disposed between the branch line 10C and the branch line 10E.
 分岐線10Cと分岐線10Dとは、互いにねじれの位置の関係となるように配置される。2本の分岐線10C,10Dは、Z方向から平面視した場合、延在方向が互いに所定角度θだけ傾斜してほぼ中央部分で交差するように形成される。 The branch line 10 </ b> C and the branch line 10 </ b> D are arranged so as to have a twisted position relative to each other. The two branch lines 10C and 10D are formed such that, when viewed in plan from the Z direction, the extending directions are inclined with respect to each other by a predetermined angle θ and intersect at substantially the center portion.
 分岐線10Dと分岐線10Eとは、互いにねじれの位置の関係となるように配置される。2本の分岐線10D,10Eは、Z方向から平面視した場合、延在方向が互いに所定角度θだけ傾斜してほぼ中央部分で交差するように形成される。 The branch line 10 </ b> D and the branch line 10 </ b> E are arranged so as to have a twisted position relationship with each other. The two branch lines 10D and 10E are formed such that, when viewed in plan from the Z direction, the extending directions are inclined with respect to each other by a predetermined angle θ and intersect substantially at the center portion.
 分岐線10Cと分岐線10Eとは、互いに平行に配置される。なお、分岐線10Cと分岐線10Eとは必ずしも互いに平行に配置されていなくてもよい。 The branch line 10C and the branch line 10E are arranged in parallel to each other. Note that the branch line 10C and the branch line 10E are not necessarily arranged in parallel to each other.
 電流センサ1-3は、独立した2つの磁気センサ21,22と、2つの磁気センサ21,22の出力を用いて1次電流iの値を演算する演算部(図示せず)とを含む。 The current sensor 1-3 includes two independent magnetic sensors 21 and 22, and a calculation unit (not shown) that calculates the value of the primary current i using the outputs of the two magnetic sensors 21 and 22.
 磁気センサ21は、分岐線10Cと分岐線10Dとの中間点に配置される。磁気センサ21の感度軸S1の向きは、Y方向の正方向に設定される。磁気センサ22は、分岐線10Dと分岐線10Eとの中間点に配置される。磁気センサ22の感度軸S2の向きも、磁気センサ21と同様、Y方向の正方向に設定される。なお、各磁気センサ21,22の種類および構造は、上述の実施の形態1による磁気センサ20と同じである。 The magnetic sensor 21 is disposed at an intermediate point between the branch line 10C and the branch line 10D. The direction of the sensitivity axis S1 of the magnetic sensor 21 is set to the positive direction of the Y direction. The magnetic sensor 22 is disposed at an intermediate point between the branch line 10D and the branch line 10E. The direction of the sensitivity axis S <b> 2 of the magnetic sensor 22 is also set to the positive direction of the Y direction, like the magnetic sensor 21. The types and structures of the magnetic sensors 21 and 22 are the same as those of the magnetic sensor 20 according to the first embodiment.
 このような構成を有する電流センサ1-3は、基本的には、上述の実施の形態1による電流センサと同様の作用効果を奏する。 The current sensor 1-3 having such a configuration basically exhibits the same operational effects as those of the current sensor according to the first embodiment described above.
 図15は、分岐電流ic,id,ieによって磁気センサ21,22の周辺に発生する磁束を模式的に示す図である。 FIG. 15 is a diagram schematically showing the magnetic flux generated around the magnetic sensors 21 and 22 by the branch currents ic, id, and ie.
 分岐線10C,10D,10Eに分岐電流ic,id,ieがそれぞれ流れることで、分岐線10C,10D,10Eの周囲には、右ネジの磁界に相当する磁束Φc,Φd,Φeがそれぞれ発生する。磁束Φc,Φd,Φeは、それぞれ分岐電流ic,id,ieの向きを法線とする平面上に分布する。 As branch currents ic, id, and ee flow through branch lines 10C, 10D, and 10E, magnetic fluxes Φc, Φd, and Φe corresponding to a right-handed magnetic field are generated around branch lines 10C, 10D, and 10E, respectively. . The magnetic fluxes Φc, Φd, and Φe are distributed on a plane whose normal is the direction of the branch currents ic, id, and ee, respectively.
 分岐電流ic,idの向きは、Z方向から平面視した場合に所定角度θだけ交差する。そのため、磁気センサ21が配置される位置、すなわち分岐線10Cのねじれ交差部分と分岐線10Dのねじれ交差部分との中間点では、図15に示すように、Y方向の正方向に作用する磁束Φcdが発生する。磁気センサ21の感度軸S1はY方向の正方向(磁束Φcdの向きと同じ向き)に設定される。したがって、磁気センサ21の出力は正の値となる。 The directions of the branch currents ic and id intersect by a predetermined angle θ when viewed in plan from the Z direction. Therefore, at the position where the magnetic sensor 21 is arranged, that is, at the midpoint between the twisted intersection of the branch line 10C and the twisted intersection of the branch line 10D, as shown in FIG. 15, the magnetic flux Φcd acting in the positive direction of the Y direction. Will occur. The sensitivity axis S1 of the magnetic sensor 21 is set in the positive direction of the Y direction (the same direction as the direction of the magnetic flux Φcd). Therefore, the output of the magnetic sensor 21 is a positive value.
 分岐電流id,ieの向きは、Z方向から平面視した場合に所定角度θだけ交差する。そのため、磁気センサ22が配置される位置、すなわち分岐線10Dのねじれ交差部分と分岐線10Eのねじれ交差部分との中間点では、図15に示すように、Y方向の負方向に作用する磁束Φdeが発生する。磁気センサ22の感度軸S2は、Y方向の正方向(磁束Φcdの向きとは逆の向き)に設定される。したがって、磁気センサ22の出力は負の値となる。 The directions of the branch currents id and ie intersect by a predetermined angle θ when viewed in plan from the Z direction. Therefore, at a position where the magnetic sensor 22 is arranged, that is, at an intermediate point between the twisted intersection portion of the branch line 10D and the twisted intersection portion of the branch line 10E, as shown in FIG. 15, the magnetic flux Φde acting in the negative direction in the Y direction. Will occur. The sensitivity axis S2 of the magnetic sensor 22 is set in the positive direction in the Y direction (direction opposite to the direction of the magnetic flux Φcd). Therefore, the output of the magnetic sensor 22 is a negative value.
 分岐電流ic,id,ieがほぼ同じ値であるため、磁気センサ21の出力と磁気センサ22の出力とは、およそ同じ大きさで、符号が正負逆となる。この点を考慮し、本実施の形態による電流センサ1-3に含まれる演算部は、磁気センサ21の出力と磁気センサ22の出力とを減算する(差動をとる)。これにより、磁気センサ21の出力と磁気センサ22の出力とは足し合わされ、かつ外部からの不要な雑音磁界、すなわち外乱磁界などは相殺されて打ち消される。その結果、外部からの不要な雑音磁場を相殺でき、外乱に対して強い電流センサを実現できる。 Since the branch currents ic, id, and ie have almost the same value, the output of the magnetic sensor 21 and the output of the magnetic sensor 22 are approximately the same magnitude, and the signs are reversed. Considering this point, the arithmetic unit included in the current sensor 1-3 according to the present embodiment subtracts the output of the magnetic sensor 21 and the output of the magnetic sensor 22 (takes a differential). As a result, the output of the magnetic sensor 21 and the output of the magnetic sensor 22 are added together, and unnecessary noise magnetic fields from outside, that is, disturbance magnetic fields, etc. are canceled out and canceled out. As a result, an unnecessary noise magnetic field from the outside can be canceled, and a current sensor that is strong against disturbance can be realized.
 なお、演算部において、単に磁気センサ21の出力と磁気センサ22の出力との差動をとるのではなく、差動結果を増幅するようにしてもよい。 Note that the calculation unit may amplify the differential result instead of simply taking the difference between the output of the magnetic sensor 21 and the output of the magnetic sensor 22.
 上述した実施の形態およびその変形例については、適宜組合せることも可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The above-described embodiment and its modifications can be combined as appropriate.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 電流センサ、10 1次導体、10A,10B,10C,10D,10E 分岐線、11 分岐部、12 合流部、20,21,22 磁気センサ、50,60 磁気シールド。 1 current sensor, 10 primary conductor, 10A, 10B, 10C, 10D, 10E branch line, 11 branch part, 12 merge part, 20, 21, 22 magnetic sensor, 50, 60 magnetic shield.

Claims (6)

  1.  被測定電流を検出する電流センサであって、
     前記被測定電流が流れる1次導体と、
     前記1次導体の周辺に生じる磁界を検出するための磁気センサとを備え、
     前記1次導体は、前記被測定電流が分岐された複数の分岐電流がそれぞれ流れる複数の分岐線を含み、
     前記複数の分岐線の各々は、隣接する2つの分岐電流の経路が互いにねじれの位置の関係となるように形成されたねじれ部分を有し、
     前記磁気センサは、隣接する2本の分岐線の前記ねじれ部分の間に挟まれる間隙に配置され、隣接する2本の分岐線を最短距離で結ぶ仮想線に沿う方向から平面視したときに一方の分岐線の前記ねじれ部分を流れる分岐電流の向きと他方の分岐線の前記ねじれ部分を流れる分岐電流の向きとの間の向きに作用する磁界を検出する、電流センサ。
    A current sensor for detecting a current to be measured,
    A primary conductor through which the current to be measured flows;
    A magnetic sensor for detecting a magnetic field generated around the primary conductor,
    The primary conductor includes a plurality of branch lines through which a plurality of branch currents from which the current to be measured flows are branched,
    Each of the plurality of branch lines has a twisted portion formed such that two adjacent branch current paths are in a twisted position relationship with each other,
    The magnetic sensor is disposed in a gap sandwiched between the twisted portions of two adjacent branch lines, and when viewed in plan from a direction along an imaginary line connecting the two adjacent branch lines with the shortest distance, A current sensor for detecting a magnetic field acting in a direction between a direction of a branch current flowing through the twisted portion of the branch line and a direction of the branch current flowing through the twisted portion of the other branch line.
  2.  前記複数の分岐線は、3つ以上の分岐線を含み、
     前記磁気センサは、2つ以上の磁気センサを含み、
     前記電流センサは、前記2つ以上の磁気センサの出力に基づいて前記被測定電流を算出する、請求項1に記載の電流センサ。
    The plurality of branch lines includes three or more branch lines;
    The magnetic sensor includes two or more magnetic sensors,
    The current sensor according to claim 1, wherein the current sensor calculates the measured current based on outputs of the two or more magnetic sensors.
  3.  前記電流センサは、前記1次導体および前記磁気センサを外部に対して磁気的にシールドするための部材を備える、請求項1または2に記載の電流センサ。 The current sensor according to claim 1 or 2, wherein the current sensor includes a member for magnetically shielding the primary conductor and the magnetic sensor from the outside.
  4.  前記複数の分岐線は、前記仮想線に沿う方向から平面視したときに略長方形状とされ、
     前記ねじれ部分は、隣接する2つの分岐線の延在方向を互いにねじれの位置の関係となるように配置することによって形成される、請求項1~3のいずれかに記載の電流センサ。
    The plurality of branch lines are substantially rectangular when viewed in plan from the direction along the virtual line,
    The current sensor according to any one of claims 1 to 3, wherein the twisted portion is formed by arranging the extending directions of two adjacent branch lines so as to have a twisted position relative to each other.
  5.  前記複数の分岐線は、互いに平行に配置され、
     前記ねじれ部分は、隣接する2つの分岐電流の経路が互いにねじれの位置となるように、隣接する2つの分岐線の一部を切欠くことによって形成される、請求項1~4のいずれかに記載の電流センサ。
    The plurality of branch lines are arranged in parallel to each other,
    The twisted portion is formed by cutting out a part of two adjacent branch lines so that paths of two adjacent branch currents are twisted with respect to each other. The current sensor described.
  6.  前記磁気センサは、複数の磁気抵抗素子を用いて前記被測定電流を検出するセンサである、請求項1~5のいずれかに記載の電流センサ。 The current sensor according to any one of claims 1 to 5, wherein the magnetic sensor is a sensor that detects the measured current using a plurality of magnetoresistive elements.
PCT/JP2015/067266 2014-07-02 2015-06-16 Current sensor WO2016002501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531246A JP6311790B2 (en) 2014-07-02 2015-06-16 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136966 2014-07-02
JP2014-136966 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002501A1 true WO2016002501A1 (en) 2016-01-07

Family

ID=55019048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067266 WO2016002501A1 (en) 2014-07-02 2015-06-16 Current sensor

Country Status (2)

Country Link
JP (1) JP6311790B2 (en)
WO (1) WO2016002501A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010210A1 (en) * 2015-07-15 2017-01-19 株式会社村田製作所 Electric current sensor
JP2017133942A (en) * 2016-01-28 2017-08-03 アルプス電気株式会社 Current sensor
JP2017133943A (en) * 2016-01-28 2017-08-03 アルプス電気株式会社 Current sensor and manufacturing method thereof
WO2022030177A1 (en) * 2020-08-06 2022-02-10 株式会社村田製作所 Electric current sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070563A (en) * 2017-10-06 2019-05-09 株式会社デンソー Current sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027059A (en) * 1989-08-24 1991-06-25 Schlumberger Industries, Inc. Differential current shunt
JPH05312843A (en) * 1992-05-13 1993-11-26 Mazda Motor Corp Current detecting apparatus
WO2013038867A1 (en) * 2011-09-13 2013-03-21 アルプス・グリーンデバイス株式会社 Electric-current sensor
JP2014055791A (en) * 2012-09-11 2014-03-27 Alps Green Devices Co Ltd Current sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039734A (en) * 2006-08-10 2008-02-21 Koshin Denki Kk Current sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027059A (en) * 1989-08-24 1991-06-25 Schlumberger Industries, Inc. Differential current shunt
JPH05312843A (en) * 1992-05-13 1993-11-26 Mazda Motor Corp Current detecting apparatus
WO2013038867A1 (en) * 2011-09-13 2013-03-21 アルプス・グリーンデバイス株式会社 Electric-current sensor
JP2014055791A (en) * 2012-09-11 2014-03-27 Alps Green Devices Co Ltd Current sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010210A1 (en) * 2015-07-15 2017-01-19 株式会社村田製作所 Electric current sensor
JP2017133942A (en) * 2016-01-28 2017-08-03 アルプス電気株式会社 Current sensor
JP2017133943A (en) * 2016-01-28 2017-08-03 アルプス電気株式会社 Current sensor and manufacturing method thereof
WO2022030177A1 (en) * 2020-08-06 2022-02-10 株式会社村田製作所 Electric current sensor

Also Published As

Publication number Publication date
JPWO2016002501A1 (en) 2017-04-27
JP6311790B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6414641B2 (en) Current sensor
JP6311790B2 (en) Current sensor
JP5531215B2 (en) Current sensor
JP5489145B1 (en) Current sensor
US9063185B2 (en) Current sensor
CN107250813B (en) Current sensor
US9400315B2 (en) Current sensor
JP6696571B2 (en) Current sensor and current sensor module
WO2017018306A1 (en) Electric current sensor
WO2015133621A1 (en) Amperage detector
JP6269479B2 (en) Magnetic sensor device
WO2014192625A1 (en) Current sensor
JP6409970B2 (en) Current sensor
JP6540802B2 (en) Current sensor
US10267825B2 (en) Current sensor including a housing surrounded by bent portions of primary conductors
JP6098729B2 (en) Current sensor
JP2015036636A (en) Current sensor
JP2013088370A (en) Current sensor
JP2013108787A (en) Current sensor
JP5487403B2 (en) Current sensor
WO2016035606A1 (en) Current sensor
JP2013142604A (en) Current sensor
JP5533244B2 (en) Current sensor
WO2016076114A1 (en) Current sensor
WO2012035906A1 (en) Current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814458

Country of ref document: EP

Kind code of ref document: A1