WO2016002393A1 - ユーザ端末、無線基地局、無線通信システムおよび無線通信方法 - Google Patents

ユーザ端末、無線基地局、無線通信システムおよび無線通信方法 Download PDF

Info

Publication number
WO2016002393A1
WO2016002393A1 PCT/JP2015/065160 JP2015065160W WO2016002393A1 WO 2016002393 A1 WO2016002393 A1 WO 2016002393A1 JP 2015065160 W JP2015065160 W JP 2015065160W WO 2016002393 A1 WO2016002393 A1 WO 2016002393A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
cell
user terminal
base station
cell group
Prior art date
Application number
PCT/JP2015/065160
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
徹 内野
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2016531196A priority Critical patent/JP6585043B2/ja
Priority to CN201580035510.5A priority patent/CN106465298A/zh
Priority to US15/323,132 priority patent/US20170142668A1/en
Publication of WO2016002393A1 publication Critical patent/WO2016002393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention relates to a user terminal, a radio base station, a radio communication system, and a radio communication method in a next generation mobile communication system.
  • Non-Patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and lower delay (Non-Patent Document 1).
  • LTE Long Term Evolution
  • LTE uses a multi-access scheme based on OFDMA (Orthogonal Frequency Division Multiple Access) for the downlink (downlink) and SC-FDMA (Single Carrier Frequency Division Multiple Access) for the uplink (uplink). Is used.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE Advanced or LTE enhancement has been studied, and LTE Rel. It is specified as 10/11.
  • the 10/11 system band includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit.
  • CC Component Carrier
  • CA carrier aggregation
  • LTE Rel. Is a further successor system of LTE. 12, various scenarios in which a plurality of cells are used in different frequency bands (carriers) are being studied.
  • carriers frequency bands
  • the radio base stations forming a plurality of cells are substantially the same, the above-described carrier aggregation can be applied.
  • dual connectivity DC
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the concept of guaranteed transmission power for each radio base station or cell group is introduced.
  • carrier aggregation for each radio base station or cell group can be applied.
  • activation and deactivation of cells in a cell group can be performed independently and dynamically between cell groups by MAC signaling or a timer managed by a user terminal or a radio base station.
  • the transmission power of the user terminal increases according to the number of activated cells. Therefore, there is a possibility that the transmission power per cell group that the radio base station wants to guarantee varies depending on the number of activated cells.
  • RRC signaling that indicates guaranteed transmission power is performed at the same frequency as active / inactive control performed in the MAC layer, overhead and delay increase, and throughput may deteriorate.
  • the present invention has been made in view of such points, and provides a user terminal, a radio base station, a radio communication system, and a radio communication method capable of appropriately performing user terminal operations when setting guaranteed transmission power in dual connectivity. For the purpose.
  • a user terminal is a user terminal that communicates with a plurality of cell groups each composed of one or more cells using different frequencies, and each of the guaranteed transmission power value for each cell and the cells in the cell group
  • a power control unit that controls the guaranteed transmission power value of the cell group using the reception unit that receives the active / inactive information, the number of cells in the active state, and the guaranteed transmission power value for each cell; It is characterized by having.
  • PDCCH Physical Downlink Control Channel
  • EPDCCH extended physical downlink control channel
  • HetNet Heterogeneous Network
  • Carrier aggregation and dual connectivity can be applied to the HetNet configuration.
  • FIG. 1A shows communication between a radio base station and a user terminal related to carrier aggregation.
  • the radio base station eNB1 is a radio base station forming a macro cell (hereinafter referred to as a macro base station), and the radio base station eNB2 is a radio base station forming a small cell (hereinafter referred to as a small base station).
  • the small base station may be configured as an RRH (Remote Radio Head) connected to the macro base station.
  • RRH Remote Radio Head
  • one scheduler controls scheduling of a plurality of cells.
  • the scheduler of the macro base station eNB1 controls the scheduling of a plurality of cells.
  • the radio base stations are connected by an ideal backhaul such as a high-speed line such as an optical fiber.
  • FIG. 1B shows communication between a radio base station and a user terminal related to dual connectivity.
  • a plurality of schedulers are provided independently, and one or more cells respectively managed by the plurality of schedulers (for example, a scheduler possessed by the radio base station MeNB and a scheduler possessed by the radio base station SeNB) Control the scheduling of
  • a scheduler possessed by the radio base station MeNB and a scheduler possessed by the radio base station SeNB Control the scheduling of In the configuration in which the scheduler possessed by the radio base station MeNB and the scheduler possessed by the radio base station SeNB control the scheduling of one or more cells under their jurisdiction, for example, a non-ideal backhaul (non ⁇ It is assumed that each radio base station is connected by ideal backhaul.
  • each radio base station sets a cell group (CG: Cell Group) composed of one or a plurality of cells.
  • CG Cell Group
  • Each cell group is composed of one or more cells formed by the same radio base station, or one or more cells formed by the same transmission point such as a transmission antenna device or a transmission station.
  • a cell group including PCell is called a master cell group (MCG), and a cell group other than the master cell group is called a secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • the total number of cells constituting the master cell group and the secondary cell group is set to be a predetermined value (for example, 5 cells) or less.
  • a radio base station in which a master cell group is set is called a master base station (MeNB: Master eNB), and a radio base station in which a secondary cell group is set is called a secondary base station (SeNB: Secondary eNB).
  • the total number of cells constituting the master cell group and the secondary cell group is set to be a predetermined value (for example, 5 cells) or less.
  • wireless base stations do not assume tight cooperation equivalent to carrier aggregation. Therefore, the user terminal independently performs downlink L1 / L2 control (PDCCH / EPDCCH) and uplink L1 / L2 control (UCI (Uplink Control Information feedback by PUCCH / PUSCH)) for each cell group. Therefore, also in the secondary base station, a special SCell having a function equivalent to that of the PCell such as a common search space or PUCCH is required. In this specification, a special SCell having a function equivalent to that of PCell is also referred to as “PSCell (Primary Secondary Cell)”.
  • PDCCH Downlink L1 / L2 control
  • UCI Uplink Control Information feedback by PUCCH / PUSCH
  • one radio base station controls scheduling of two radio base stations (see FIG. 2A). That is, the macro base station eNB1 may perform transmission power control that dynamically adjusts transmission power within a range in which the total transmission power of user terminals for the two radio base stations eNB1 and eNB2 does not exceed the allowable maximum transmission power. Yes (see FIG. 2B).
  • the master base station MeNB and the secondary base station SeNB each control what kind of power control the paired radio base stations (secondary base station SeNB for the master base station MeNB and master base station MeNB for the secondary base station SeNB) have. Since it is not possible to grasp whether or not it is performed, there is a possibility that the timing and frequency at which such power scaling and dropping occur cannot be assumed. For the master base station MeNB and the secondary base station SeNB, when unexpected power scaling or dropping is performed, uplink communication cannot be performed correctly, and communication quality and throughput may be significantly degraded.
  • the subframe transmission timing difference between cell groups can take any value.
  • transmission in one cell group and transmission in another cell group may overlap by half of the subframe.
  • the allowable maximum transmission power may be exceeded only in a half subframe section in which transmissions to two cell groups overlap, and there is a possibility that power scaling or dropping is performed only on that part.
  • the radio base station When power scaling or dropping is performed over the entire subframe, the radio base station receives the transmitted subframe and estimates the received power or amplitude of the subframe by performing channel estimation using the reference signal included in the subframe. Therefore, there is a possibility that some or all of the signals or channels included in the subframe can be correctly demodulated.
  • reception power or amplitude may be different between the reference signal and data. In such a case, even if the radio base station uses the reference signal, it cannot grasp how power scaling or dropping has been performed in the subframe, so that a part or all of the signal can be correctly demodulated from the received subframe. The possibility is likely to be smaller.
  • the transmission power is controlled independently at each radio base station, so it is difficult to perform transmission power control so that the total transmission power of the user terminals does not exceed the allowable maximum transmission power.
  • the concept of “minimum guaranteed power” for each radio base station or cell group is introduced.
  • the guaranteed transmission power of xCG MCG or SCG
  • P xeNB P MeNB or P SeNB
  • the radio base station xeNB MeNB or SeNB
  • sends both the guaranteed transmission power P MeNB and P SeNB to the user terminal Alternatively, either one is notified by higher layer signaling such as RRC.
  • the user terminal When there is a transmission request from the radio base station xeNB, that is, when the transmission of PUSCH or PUCCH is triggered by the uplink grant or RRC, the user terminal calculates the transmission power to xCG, and the required transmission power If (required power) is equal to or less than guaranteed transmission power PxeNB , the requested power is determined as xCG transmission power.
  • the user terminal may control the transmission power to be equal to or less than the guaranteed transmission power PxeNB depending on conditions. Specifically, when the total required power of the master cell group and the secondary cell group may exceed the allowable maximum transmission power P CMAX of the user terminal, the user terminal is required to have a power exceeding the guaranteed transmission power PxeNB. Perform power scaling (scaling) and channel or signal dropping for the selected cell group. As a result, when the transmission power is equal to or lower than the guaranteed transmission power PxeNB , no further power scaling or channel or signal dropping is performed.
  • the user terminal Power scaling or dropping is performed on a cell group whose transmission power per cell group exceeds the guaranteed transmission power PxeNB, and control is performed so that the total transmission power per user terminal does not exceed the allowable maximum transmission power P CMAX of the user terminal. (Condition 1).
  • the user terminal when the user terminal cannot grasp that the required power of the partial overlap section does not exceed the allowable maximum transmission power P CMAX of the user terminal in the asynchronous dual connectivity, the user terminal transmits the transmission power of each cell group. Are allocated so as to be equal to or less than the guaranteed transmission power PxeNB (condition 2).
  • the user terminal obtains and compares the transmission power (required power for each CC) required for the CC and the allowable maximum transmission power P CMAX, c for each CC.
  • the user terminal performs power scaling and channel or signal dropping, and sets the CC transmission power to PCMAX, c or less.
  • the user terminal obtains an allowable maximum transmission power PCMAX per user terminal.
  • the obtained transmission power for each CC is added for each cell group, and in each of the master cell group and the secondary cell group, it is confirmed whether the total transmission power for each CC exceeds the guaranteed transmission power P MeNB and P SeNB. .
  • the user terminal determines the transmission power as the transmission power of the cell group. To do.
  • the user terminal can Apply power scaling or dropping with. If the total transmission power of CCs belonging to the cell group falls below the guaranteed transmission power of the corresponding cell group ( PxeNB ) due to power scaling or dropping, further power scaling or dropping may not be performed. Good.
  • the guaranteed transmission power PxeNB is a parameter defined for each radio base station or cell group, and the radio base station sets the user terminal with higher layer signaling such as RRC.
  • the master radio base station MeNB and the secondary radio base station SeNB each grasp at least the guaranteed transmission powers P MeNB and P SeNB of their cell groups. These parameters may be determined by each radio base station that controls each cell group itself, or the master radio base station MeNB collectively determines the guaranteed transmission power for both cell groups, and the secondary radio base station The station SeNB may be notified by backhaul signaling.
  • the radio base station determines the maximum allowable transmission power for each CC of the user terminal, the maximum allowable transmission power for each combination of CCs to be transmitted simultaneously, and various parameters used for transmission power control, etc. Information may be exchanged. Furthermore, the radio base stations may exchange not only their guaranteed transmission power but also their mutual guaranteed transmission power by backhaul signaling.
  • Setting guaranteed transmission power P XENB is for the radio base station, as long as the required power of the own cell group to the user terminal does not exceed the guaranteed transmission power P XENB, there is an advantage that the user terminal reliably allocate the requested power. For this reason, in dual connectivity, each radio base station controls transmission power independently. However, by appropriately setting guaranteed transmission power PxeNB , at least control for a user terminal regarding a control signal, voice signal, mobility, etc. Necessary power can be assured for information and signals that are indispensable for maintaining and maintaining quality, such as information.
  • the radio base station exchanges information such as the allowable maximum transmission power for each CC of the user terminal, the allowable maximum transmission power for each combination of CCs to be transmitted simultaneously, and various parameters used for transmission power control, It is possible to estimate what kind of transmission power control is performed in the radio base station. For example, when the permissible maximum transmission power for each CC of the user terminal is recognized, the maximum transmission power that the user terminal can transmit to the paired radio base station can be estimated.
  • the radio base stations exchange not only their own guaranteed transmission power but also each other's guaranteed transmission power, it is possible to perform scheduling in consideration of the other party's guaranteed transmission power.
  • the radio base stations MeNB and SeNB can perform power allocation more appropriately by exchanging information on various parameters related to the transmission power control of the user terminal in addition to the guaranteed transmission power PxeNB thereof. It becomes like this.
  • the user terminal adds the transmission power for each CC for each cell group, and the sum of the transmission power for each CC does not exceed the guaranteed transmission power P MeNB and P SeNB in each of the master cell group and the secondary cell group. Whether or not the sum of the transmission powers of all CCs in both cell groups does not exceed the maximum allowable transmission power P CMAX can be confirmed at the same time.
  • the user terminal checks whether the total transmission power of all CCs exceeds PCMAX as described above, and requests for both cell groups requested at the same timing from the master base station and the secondary base station. If the total power does not exceed the maximum allowable transmission power PCMAX of the user terminal, the requested power is assigned as transmission power without performing power scaling or dropping. On the other hand, when the sum of the required powers of both cell groups requested from the master base station and the secondary base station at the same timing exceeds the allowable maximum transmission power P CMAX of the user terminal, power scaling and dropping are performed to transmit power Is controlled to be less than or equal to the allowable maximum transmission power PCMAX . Note that power scaling and dropping are limited to cell groups that require transmission power that exceeds guaranteed power.
  • the user terminal determines whether the total transmission power for each CC does not exceed the guaranteed transmission powers P MeNB and P SeNB , and transmission of all CCs in both cell groups. It is confirmed whether the total power does not exceed the maximum allowable transmission power PCMAX . In the example shown in FIG. 4A, since the total required power of the master cell group and the secondary cell group does not exceed the allowable maximum transmission power P CMAX of the user terminal, the user terminal transmits the required power of the master cell group and the secondary cell group to the transmission power. Assign as.
  • the following power guaranteed transmission power P MeNB from the master base station is requested, power exceeding a guaranteed transmission power P SeNB from the secondary base station is requested.
  • the user terminal determines whether the total transmission power for each CC does not exceed the guaranteed transmission powers P MeNB and P SeNB , and transmission of all CCs in both cell groups. It is confirmed whether the total power does not exceed the maximum allowable transmission power PCMAX .
  • the user terminal since the total required power of the master cell group and the secondary cell group does not exceed the allowable maximum transmission power P CMAX of the user terminal, the user terminal transmits the required power of the master cell group and the secondary cell group to the transmission power. Assign as.
  • the master base station requests power equal to or lower than the guaranteed transmission power P MeNB
  • the secondary base station requests power exceeding the guaranteed transmission power P SeNB
  • the user terminal determines whether the total transmission power for each CC does not exceed the guaranteed transmission powers P MeNB and P SeNB , and transmission of all CCs in both cell groups. It is confirmed whether the total power does not exceed the maximum allowable transmission power PCMAX . In this case, since the sum of the transmission power of all CCs in both cell groups exceeds the allowable maximum transmission power PCMAX , the user terminal applies power scaling or dropping.
  • the user The terminal allocates the required power as transmission power to the master cell group, and assigns the remaining power (the surplus power obtained by subtracting the transmission power of the master cell group from the allowable maximum transmission power PCMAX ) to the secondary cell group. assign.
  • the user terminal regards the remaining power as the allowable maximum transmission power for the secondary cell group, and applies power scaling or dropping to the secondary cell group.
  • the rules for power scaling and dropping include Rel.
  • the rules defined in 10/11 can also be applied.
  • Rel. 10/11 defines rules for power scaling and dropping when the requested transmission power of all CCs exceeds the allowable maximum transmission power P CMAX per user terminal when there are simultaneous transmissions in a plurality of CCs in CA. .
  • the remaining power (the surplus power obtained by subtracting the transmission power of the master cell group from the allowable maximum transmission power PCMAX ) is regarded as the allowable maximum transmission power, and the transmission power requested in the cell group can be regarded as the requested transmission power.
  • Rel. Power scaling and dropping can be performed according to the rules defined in 10/11. Since these can be realized by the already defined mechanism, the user terminal can be easily realized by diverting the existing mechanism without introducing a new mechanism as a rule for transmission power control, power scaling, and dropping.
  • the user terminal determines whether the total transmission power for each CC does not exceed the guaranteed transmission powers P MeNB and P SeNB , and transmission of all CCs in both cell groups. It is confirmed whether the total power does not exceed the maximum allowable transmission power PCMAX . In this case, since the sum of the transmission power of all CCs in both cell groups exceeds the allowable maximum transmission power PCMAX , the user terminal applies power scaling or dropping.
  • the user terminal Power scaling or dropping is applied to the master cell group and the secondary cell group, and the transmission power of each cell group is controlled to be equal to or lower than the guaranteed transmission power P MeNB and the guaranteed transmission power P SeNB .
  • Rel the rules of power scaling and dropping for both cell groups.
  • the user terminal regards the guaranteed transmission powers P MeNB and P SeNB as the allowable maximum transmission power of each cell group, calculates the required power in each cell group, and determines the Rel. What is necessary is just to control so that the transmission power in each cell group may be equal to or less than the guaranteed transmission power P MeNB or P SeNB by applying power scaling and dropping based on the rules defined in 10/11.
  • the user terminal may not be able to recognize the required power required for uplink transmission to the cell group at the subsequent timing at the start of uplink transmission to the cell group at the preceding timing.
  • the user terminal performs transmission power control by regarding the guaranteed transmission power PxeNB as the maximum transmission power per radio base station or cell group.
  • the guaranteed transmission power is set to be exclusive between cell groups, that is, P MeNB + P SeNB ⁇ P CMAX . Therefore, even in the case of asynchronous dual connectivity in which it is difficult for the user terminal to appropriately allocate power between the cell groups, the transmission timing is determined by setting the guaranteed transmission power P x eNB to the maximum allowable transmission power for each cell group. Thus, it is possible to appropriately perform power control without affecting each other's transmission power between different cell groups.
  • the user terminal cannot recognize the required power at the subsequent timing at the preceding timing.
  • power exceeding the guaranteed transmission power P SeNB is requested from the secondary base station, and at the subsequent timing, power below the guaranteed transmission power P MeNB is requested from the master base station.
  • the user terminal guarantees the required power of the master cell group and allocates the required power as transmission power.
  • the user terminal allocates the power scaled with the guaranteed transmission power P SeNB as the maximum transmission power as the transmission power of the secondary base station.
  • the user terminal guarantees power allocation for the requested power equal to or lower than the guaranteed transmission power PxeNB regardless of whether it is synchronous, asynchronous, radio base station or other cell group.
  • the requested power exceeds the guaranteed transmission power PxeNB
  • the requested power is assigned as the transmission power only when it can be determined that the user terminal can be assigned.
  • the user terminal can allocate power exceeding the guaranteed transmission power PxeNB .
  • this include the case where only one of the cell groups has transitioned to the DRX state, the case where at least one of the cell groups is TDD, and the like.
  • uplink data transmission does not occur in that cell group.
  • one cell group is TDD, uplink transmission does not occur in the cell in a time period for downlink communication (for example, DL subframe or Special subframe).
  • the user terminal When the user terminal recognizes in advance the timing at which uplink transmission does not occur in this way, it is possible to allocate power exceeding the guaranteed transmission power even for asynchronous dual connectivity. Further, in such a case, the user terminal checks whether the sum of transmission powers of all CCs exceeds PCMAX at an arbitrary timing, as in synchronous dual connectivity, and at the same timing from the master base station and the secondary base station. When the total required power of both requested cell groups does not exceed the allowable maximum transmission power PCMAX of the user terminal, it is possible to assign the required power as transmission power without performing power scaling or dropping.
  • Guarantee transmission power may be set to be smaller than the allowable maximum transmission power P CMAX user terminal sum of P MeNB and P SeNB.
  • a non-guaranteed power region in which power allocation is not guaranteed for any radio base station occurs.
  • power is not guaranteed to each radio base station, but power is assigned according to a priority different from that of the guaranteed power region.
  • the remaining non-guaranteed power obtained by distributing the respective guaranteed power to each radio base station may be distributed according to the channel and signal priority of each radio base station.
  • the priority of the channel and the signal may be, for example, MCG PUCCH> SCG PUCCH> MCG PUSCH> SCG PUSCH.
  • the priority of channels and signals may be, for example, MCG SR> SCG SR> MCG HARQ-ACK> SCG HARQ-ACK> MCG data> SCG data> MCG CQI> SCG CQI.
  • the priority of channels and signals is not limited to this.
  • the non-guaranteed power region is generated because the sum of the guaranteed transmission powers P MeNB and P SeNB is set to be smaller than the allowable maximum transmission power P CMAX of the user terminal. .
  • From the master base station is required power exceeding a guaranteed transmission power P MeNB, the power exceeding a guaranteed transmission power P SeNB being requested from the secondary base station.
  • the user terminal scales the transmission power or drops the signal according to the channel and signal type of each radio base station, and assigns non-guaranteed power to each radio base station as transmission power.
  • Dual connectivity allows carrier aggregation within a radio base station or cell group.
  • setting or releasing (configure / removal) of CC is instructed by RRC signaling.
  • activation or deactivation of CC is instructed by MAC signaling.
  • the radio base station can also instruct the user terminal to deactivate by setting a deactivation timer in the MAC layer.
  • FIG. 7A shows an example in which all cells (cells C1 to C5) are in an active state.
  • FIG. 7B shows an example in which the SCell (cell C2) of the master cell group (MCG) and one SCell (cell C4) of the secondary cell group (SCG) are in an inactive state.
  • the transmission power per cell group that the radio base station wants to guarantee may vary depending on the number of cells in the active state. In this case, if RRC signaling for setting guaranteed transmission power PxeNB is performed at the same frequency as active control by the MAC layer, overhead and delay increase, and throughput decreases.
  • the present inventors have a configuration in which the radio base station sets the guaranteed transmission power PxeNB for each cell (CC) and notifies the user terminal about the user terminal operation at the time of setting the guaranteed power in the dual connectivity. I found. According to this method, an appropriate guaranteed transmission power can be set according to the number of cells in the active state.
  • a 1st aspect demonstrates the structure which a radio base station notifies the value of guaranteed transmission power PxeNB ( PxeNB, c ) of each cell (CC) to upper layer signaling, such as RRC signaling, to a user terminal.
  • PxeNB, c guaranteed transmission power of each cell
  • RRC signaling to a user terminal.
  • a user terminal calculates
  • the radio base station and the user terminal hold a common table in which the value of guaranteed transmission power P xeNB (P xeNB, c ) for each cell (CC) as shown in FIG. 8 is defined.
  • the table shown in FIG. 8 shows a case where the master cell group and the secondary cell group are configured by five cells (CC). Based on this table, the user terminal can obtain the guaranteed transmission power P x eNB according to the active cell and the number of cells.
  • values of “cell group / radio base station”, “CC index”, “guaranteed transmission power P MeNB, c ” and “guaranteed transmission power P SeNB, c ” are defined.
  • the sum of the guaranteed transmission power P xeNB, c for all cells is equal to or less than the allowable maximum transmission power P CMAX of the user terminal. That is, the allowable maximum transmission power P CMAX ⁇ M1 + M2 + S3 + S4 + S5 [dBm] of the user terminal is established.
  • the value of guaranteed transmission power P xeNB, c is not an absolute value, and may be a ratio [%] to the allowable maximum transmission power P CMAX , P CMAX_H or P CMAX_L of the user terminal. Allowable maximum transmission power P CMAX is a value selected by the user terminal, P CMAX_H less between subframes, certain variations such that the above P CMAX_L is allowed.
  • P CMAX_L is the worst value (minimum value) of the allowable maximum transmission power P CMAX that can be set by the user terminal. Therefore, if you define as the ratio [%] with respect to P CMAX_L, guaranteed transmission power P XENB, the value of c, the value that the user terminal must be able to transmit at any time regardless of the implementation of the user terminal (Minimum requirement) Can be set.
  • the SCell (cell C2) in the master cell group (MCG) is additionally activated from the state shown in FIG. 9A.
  • the user terminal obtains the guaranteed transmission power P MeNB of the master cell group again based on the table shown in FIG. Since the number of cells in the active state increases and the guaranteed power increases, the non-guaranteed power decreases compared to the state shown in FIG. 9A.
  • two SCells (cells C4 and C5) in the secondary cell group (SCG) are additionally activated from the state shown in FIG. 9B. That is, in the state shown in FIG. 9C, all the cells are in the active state.
  • the user terminal obtains the guaranteed transmission power P SeNB of the secondary cell group again based on the table shown in FIG. In this example, the sum of the guaranteed transmission power P MeNB and guarantees transmission power P SeNB becomes equal to the allowable maximum transmission power P CMAX of the user terminal, the non-guaranteed power is eliminated.
  • the radio base station sets guaranteed transmission power PxeNB ( PxeNB, c ) for each cell (CC), and notifies the user terminal, so that the user terminal appropriately sets the guaranteed power according to the number of cells in the active state. it can.
  • PxeNB, c guaranteed transmission power
  • PxeNB, c guaranteed transmission power
  • the user terminal When there are few cells in the active state, it is not necessary to guarantee a large amount of power, so that non-guaranteed power can be generated.
  • Non-guaranteed power is power available to a particular or all base stations. However, the non-guaranteed power is power that is not guaranteed by any base station, and thus there is a possibility that the user terminal does not allocate power depending on the situation.
  • the master base station and the secondary base station may hold the table illustrated in FIG. 8 in common, the master base station only has a row related to the master cell group (MCG), the secondary base station has the secondary cell group ( Only rows related to (SCG) may be held. In the case of holding in common, scheduling can be performed in consideration of power guaranteed by both cell groups, and efficient power allocation can be expected. If only the relevant rows of each cell group are kept, it is not necessary to signal all the elements of the table, so that a reduction in overhead can be expected.
  • MCG master cell group
  • SCG secondary cell group
  • the table does not have to hold the guaranteed transmission power of all configured CCs.
  • a table having no row for the SCell of CC index # 5 may be held.
  • the radio base station and the user terminal hold a common table in which the value of guaranteed transmission power P xeNB (P xeNB, c ) for each cell or combination of cells as shown in FIG. 10 is defined.
  • Cell 1 (PCell) belonging to the master cell group (MCG) and cell 3 (PSCell) belonging to the secondary cell group (SCG) are always in an active state and never become inactive.
  • the value of guaranteed transmission power PxeNB, c is not an absolute value, and may be a ratio [%] to the allowable maximum transmission power P CMAX , P CMAX_H or P CMAX_L of the user terminal, as in the first mode.
  • the SCell (cell C2) in the master cell group (MCG) is additionally activated from the state shown in FIG. 11A.
  • the sum of the guaranteed transmission power P MeNB and guarantees transmission power P SeNB becomes equal to the allowable maximum transmission power P CMAX of the user terminal, the non-guaranteed power is eliminated.
  • non-guaranteed power can be reduced as compared with the case where the table in the first aspect is used (see FIGS. 9 and 11). Therefore, even when the number of active cells is small, large guaranteed power can be allocated to the radio base station or the cell group.
  • the master base station and the secondary base station may hold the table illustrated in FIG. 10 in common, the master base station only has a row related to the master cell group (MCG), the secondary base station has the secondary cell group ( Only rows related to (SCG) may be held.
  • MCG master cell group
  • SCG secondary cell group
  • scheduling can be performed in consideration of power guaranteed by both cell groups, and efficient power allocation can be expected. If only the relevant rows of each cell group are kept, it is not necessary to signal all the elements of the table, so that a reduction in overhead can be expected.
  • the table does not have to hold the guaranteed transmission power of all configured CCs.
  • a table having no rows for CC index # 3 + # 5 and CC index # 3 + # 4 + # 5 may be held.
  • a 3rd aspect demonstrates the structure which a user terminal reports PHR (Power HeadRoom) with respect to a wireless base station in connection with activation or deactivation of SCell.
  • PHR Power HeadRoom
  • PCell (cell C1) and SCell (cell C2) are active in the master cell group (MCG), and only the special SCell (cell C3) is active in the secondary cell group (SCG).
  • MCG master cell group
  • SCell SCell
  • SCG secondary cell group
  • PCell (cell C1) and SCell (cell C2) are active in the master cell group (MCG), and Special SCell (cell C3) and SCell (cells C4 and C5) in the secondary cell group (SCG). Is active.
  • MCG master cell group
  • SCG secondary cell group
  • the state shown in FIG. 12B is obtained.
  • the state shown in FIG. 12A is obtained.
  • the area of the guaranteed transmission power P SeNB of the secondary base station or the non-guaranteed power area of the secondary base group exists in the area exceeding the guaranteed transmission power P MeNB as seen from the master base station. Depends on active or inactive state.
  • the user terminal reports PHR (Power HeadRoom) to all radio base stations when the SCell is activated or deactivated. Since the PHR has a flag bit indicating which cell is active, each radio base station can grasp which cell is active.
  • the cell activation is triggered by an activation instruction by MAC signaling from the radio base station.
  • Cell deactivation is triggered by expiration of a deactivation timer (De-activation time) or a deactivation instruction by MAC signaling from a radio base station.
  • the master base station MeNB activates the SCell (# 2).
  • the user terminal reports the PHR to the master base station MeNB and the secondary base station SeNB.
  • the master base station MeNB and the secondary base station SeNB grasp each other's guaranteed transmission powers P MeNB and P SeNB , grasp how much non-guaranteed power is present, and independently control the transmission power.
  • the master base station MeNB and the secondary base station SeNB grasp that the non-guaranteed power has decreased compared to the previous stage in which the PCell (# 1) and PSCell (# 3) were in the active state.
  • the master base station MeNB deactivates the SCell (# 2).
  • the user terminal reports the PHR to the master base station MeNB and the secondary base station SeNB.
  • the master base station MeNB and the secondary base station SeNB grasp each other's guaranteed transmission powers P MeNB and P SeNB , grasp how much non-guaranteed power is present, and independently control the transmission power.
  • the master base station MeNB and the secondary base station SeNB grasp that the non-guaranteed power has increased compared to the previous stage in which the PCell (# 1), SCell (# 2), and PSCell (# 3) were active.
  • the secondary base station SeNB activates the SCell (# 4, # 5).
  • the user terminal reports the PHR to the master base station MeNB and the secondary base station SeNB.
  • the master base station MeNB and the secondary base station SeNB grasp each other's guaranteed transmission powers P MeNB and P SeNB , grasp how much non-guaranteed power is present, and independently control the transmission power.
  • the master base station MeNB and the secondary base station SeNB grasp that the non-guaranteed power has decreased as compared to the previous stage in which the PCell (# 1) and PSCell (# 3) were active.
  • the user terminal can perform active / inactive control so as to effectively use power by reporting the PHR to the radio base station when the SCell is activated or deactivated. Become.
  • the radio base station can grasp the active state of other radio base stations appropriately and with low delay, and can appropriately control the transmission power according to the traffic and the remaining transmission power of the user terminal. For example, it is possible to recognize that the number of cells in the active state of other radio base stations has decreased, and to activate the cell of the own base station additionally. Additional activation increases the guaranteed power of its own base station, but the user terminal reports the PHR as a result of activation, so that the guaranteed power of its own base station has increased to other radio base stations Can do. For example, it is possible to grasp that the number of cells in the active state of other radio base stations has increased, and limit allocation of guaranteed power or more to the cells of the own base station.
  • LTE Rel. 12 for eIMTA (enhanced Interference Management and Traffic Adaptation) or Dynamic TDD, subframes are divided into subframe sets and transmission power control is independently performed. Even in a cell belonging to a master base station or a secondary base station in dual connectivity, transmission power control for each subframe set may be performed.
  • the necessary transmission power may differ for each subframe set. Therefore, when the transmission power control function for each subframe set for eITMA is used, it is not preferable that the guaranteed transmission power P x eNB has one value.
  • the guaranteed transmission power P MeNB, 1 or P SeNB, 1 is set for the subframe set 1
  • the guaranteed transmission power P MeNB, 2 or P SeNB, 2 is set for the subframe set 2.
  • FIG. 14 is a schematic configuration diagram showing an example of a radio communication system according to the present embodiment.
  • the radio communication system 1 is in a cell formed by a plurality of radio base stations 10 (11 and 12) and each radio base station 10, and is configured to be able to communicate with each radio base station 10.
  • Each of the radio base stations 10 is connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the radio base station 11 is composed of, for example, a macro base station having a relatively wide coverage, and forms a macro cell C1.
  • the radio base station 12 is configured by a small base station having local coverage, and forms a small cell C2.
  • the number of radio base stations 11 and 12 is not limited to the number shown in FIG.
  • the same frequency band may be used, or different frequency bands may be used.
  • the radio base stations 11 and 12 are connected to each other via an inter-base station interface (for example, optical fiber, X2 interface).
  • the user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • the user terminal 20 can execute communication with other user terminals 20 via the radio base station 10.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a downlink control channel (PDCCH: Physical Downlink Control Channel, EPDCCH: Enhanced Physical Downlink Control Channel). ), A broadcast channel (PBCH) or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PBCH broadcast channel
  • DCI Downlink control information
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), or the like is used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • FIG. 15 is an overall configuration diagram of the radio base station 10 according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit (transmission unit and reception unit) 103, a baseband signal processing unit 104, A call processing unit 105 and an interface unit 106 are provided.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the interface unit 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse
  • Each transmission / reception unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • the transmitter / receiver 103, a transmitter / receiver, a transmitter / receiver circuit, or a transmitter / receiver described based on common recognition in the technical field according to the present invention can be applied.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • the transmission / reception unit 103 performs guaranteed transmission power value PxeNB for each cell belonging to the own cell group or a guaranteed transmission power value PxeNB for each combination of cells and multiple cells and active / inactive cells in the own cell group with respect to the user terminal Send information. Each transmitting / receiving unit 103 receives power headroom from the user terminal.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input uplink signal.
  • the data is transferred to the higher station apparatus 30 via the interface unit 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the interface unit 106 transmits / receives a signal (backhaul signaling) to / from an adjacent radio base station via an inter-base station interface (for example, optical fiber, X2 interface). Alternatively, the interface unit 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • a signal backhaul signaling
  • inter-base station interface for example, optical fiber, X2 interface
  • FIG. 16 is a main functional configuration diagram of the baseband signal processing unit 104 included in the radio base station 10 according to the present embodiment.
  • the baseband signal processing unit 104 included in the radio base station 10 includes a control unit 301, a downlink control signal generation unit 302, a downlink data signal generation unit 303, a mapping unit 304, and a demapping unit. 305, a channel estimation unit 306, an uplink control signal decoding unit 307, an uplink data signal decoding unit 308, and a determination unit 309 are included.
  • the control unit 301 controls scheduling of downlink user data transmitted on the PDSCH, downlink control information transmitted on both or either of the PDCCH and the extended PDCCH (EPDCCH), downlink reference signals, and the like. In addition, the control unit 301 also performs scheduling control (allocation control) of RA preambles transmitted on the PRACH, uplink data transmitted on the PUSCH, uplink control information transmitted on the PUCCH or PUSCH, and uplink reference signals. Information related to allocation control of uplink signals (uplink control signals, uplink user data) is notified to the user terminal 20 using downlink control signals (DCI).
  • DCI downlink control signals
  • the control unit 301 controls allocation of radio resources to the downlink signal and the uplink signal based on the instruction information from the higher station apparatus 30 and the feedback information from each user terminal 20. That is, the control unit 301 has a function as a scheduler. A controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention can be applied to the control unit 301.
  • the downlink control signal generation unit 302 generates a downlink control signal (both PDCCH signal and EPDCCH signal or one of them) whose assignment is determined by the control unit 301. Specifically, the downlink control signal generation unit 302 receives a downlink assignment for notifying downlink signal allocation information and an uplink grant for notifying uplink signal allocation information based on an instruction from the control unit 301. Generate. A signal generator or a signal generation circuit described based on common recognition in the technical field according to the present invention can be applied to the downlink control signal generation unit 302.
  • the downlink data signal generation unit 303 generates a downlink data signal (PDSCH signal) determined to be allocated to resources by the control unit 301.
  • the data signal generated by the downlink data signal generation unit 303 is subjected to an encoding process and a modulation process according to an encoding rate and a modulation scheme determined based on CSI from each user terminal 20 or the like.
  • the mapping unit 304 allocates the downlink control signal generated by the downlink control signal generation unit 302 and the downlink data signal generated by the downlink data signal generation unit 303 to radio resources. Control.
  • a mapping circuit or mapper described based on common recognition in the technical field according to the present invention can be applied to the mapping unit 304.
  • the demapping unit 305 demaps the uplink signal transmitted from the user terminal 20 and separates the uplink signal.
  • Channel estimation section 306 estimates the channel state from the reference signal included in the received signal separated by demapping section 305, and outputs the estimated channel state to uplink control signal decoding section 307 and uplink data signal decoding section 308.
  • the uplink control signal decoding unit 307 decodes a feedback signal (such as a delivery confirmation signal) transmitted from the user terminal through the uplink control channel (PRACH, PUCCH) and outputs the decoded signal to the control unit 301.
  • Uplink data signal decoding section 308 decodes the uplink data signal transmitted from the user terminal through the uplink shared channel (PUSCH), and outputs the decoded signal to determination section 309.
  • the determination unit 309 performs retransmission control determination (A / N determination) based on the decoding result of the uplink data signal decoding unit 308 and outputs the result to the control unit 301.
  • FIG. 17 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (transmission unit and reception unit) 203, a baseband signal processing unit 204, an application Unit 205.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • the transmitter / receiver 203 may be a transmitter / receiver, a transmitter / receiver circuit, or a transmitter / receiver described based on common recognition in the technical field according to the present invention.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 retransmission control (HARQ: Hybrid ARQ) transmission processing, channel coding, precoding, DFT processing, IFFT processing, and the like are performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives the value of the guaranteed transmission power PxeNB for each CC or the value of the guaranteed transmission power PxeNB for each cell combination indicated by higher layer signaling such as RRC signaling from the radio base station 10.
  • the transmission / reception unit 203 receives CC configuration / removal information indicated by higher layer signaling such as RRC signaling from the radio base station 10.
  • the transmission / reception unit 203 receives CC activation / deactivation information instructed by MAC signaling from the radio base station 10.
  • FIG. 18 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, an uplink control signal generation unit 402, an uplink data signal generation unit 403, a mapping unit 404, and a demapping unit 405.
  • the control unit 401 determines the uplink control signal (A / N signal, etc.) and the uplink data signal. Control generation.
  • the downlink control signal received from the radio base station is output from the downlink control signal decoding unit 407, and the retransmission control determination result is output from the determination unit 409.
  • a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention is applied to the control unit 401.
  • Control unit 401 controls the number of cells in the active state, guaranteed transmission power value P XENB per cell, P XENB for each combination of c or cells, using a c, a guaranteed transmission power value P XENB cell group Functions as a power control unit.
  • the uplink control signal generation unit 402 generates an uplink control signal (feedback signal such as a delivery confirmation signal or channel state information (CSI)) based on an instruction from the control unit 401.
  • Uplink data signal generation section 403 generates an uplink data signal based on an instruction from control section 401.
  • the control unit 401 instructs the uplink data signal generation unit 403 to generate an uplink data signal when the downlink grant is included in the downlink control signal notified from the radio base station.
  • a signal generator or a signal generation circuit described based on common recognition in the technical field according to the present invention can be applied to the uplink control signal generation unit 402.
  • the mapping unit 404 controls allocation of uplink control signals (delivery confirmation signals and the like) and uplink data signals to radio resources (PUCCH, PUSCH) based on an instruction from the control unit 401.
  • the demapping unit 405 demaps the downlink signal transmitted from the radio base station 10 and separates the downlink signal.
  • Channel estimation section 406 estimates the channel state from the reference signal included in the received signal separated by demapping section 405, and outputs the estimated channel state to downlink control signal decoding section 407 and downlink data signal decoding section 408.
  • the downlink control signal decoding unit 407 decodes the downlink control signal (PDCCH signal) transmitted on the downlink control channel (PDCCH), and outputs scheduling information (allocation information to uplink resources) to the control unit 401.
  • the downlink control signal includes information on a cell that feeds back a delivery confirmation signal and information on whether or not RF adjustment is applied, the downlink control signal is also output to the control unit 401.
  • the downlink data signal decoding unit 408 decodes the downlink data signal transmitted through the downlink shared channel (PDSCH), and outputs the decoded signal to the determination unit 409.
  • the determination unit 409 performs retransmission control determination (A / N determination) based on the decoding result of the downlink data signal decoding unit 408 and outputs the result to the control unit 401.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 デュアルコネクティビティにおける保証送信電力設定時のユーザ端末動作を適切に行うこと。異なる周波数を利用する1つ以上のセルからそれぞれ構成される複数のセルグループと通信を行うユーザ端末は、セルごとの保証送信電力値およびセルグループにおけるセルのアクティブ・非アクティブ情報を受信する受信部と、アクティブ状態のセル数と、セルごとの保証送信電力値とを用いて、セルグループの保証送信電力値を制御する電力制御部と、を有する。

Description

ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局、無線通信システムおよび無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。
 LTEではマルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。
 LTEからのさらなる広帯域化および高速化を目的として、たとえばLTEアドバンストまたはLTEエンハンスメントと呼ばれるLTEの後継システムが検討され、LTE Rel.10/11として仕様化されている。
 LTE Rel.10/11のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。このように、複数のCCを集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。
 LTEのさらなる後継システムであるLTE Rel.12においては、複数のセルが異なる周波数帯(キャリア)で用いられるさまざまなシナリオが検討されている。複数のセルを形成する無線基地局が実質的に同一の場合には、上述のキャリアアグリゲーションを適用可能である。一方、複数のセルを形成する無線基地局が完全に異なる場合には、デュアルコネクティビティ(DC:Dual Connectivity)を適用することが考えられる。
 デュアルコネクティビティでは、無線基地局またはセルグループごとの保証送信電力という概念が導入される。また、デュアルコネクティビティにおいては、無線基地局またはセルグループごとのキャリアアグリゲーションを適用可能である。キャリアアグリゲーションでは、MACシグナリングもしくはユーザ端末または無線基地局によって管理されるタイマにより、セルグループ内のセルのアクティブ化・非アクティブ化をセルグループ間で独立かつ動的に行うことができる。一方、ユーザ端末の送信電力は、アクティブ化されるセル数に応じて増加する。したがって、アクティブ化されるセル数に応じて無線基地局が保証したいセルグループあたりの送信電力は異なる可能性がある。しかし、MACレイヤで行われるアクティブ・非アクティブ制御と同じ頻度で保証送信電力を指示するRRCシグナリングを行うと、オーバヘッドと遅延が大きくなり、スループットが劣化するおそれがある。
 本発明はかかる点に鑑みてなされたものであり、デュアルコネクティビティにおける保証送信電力設定時のユーザ端末動作を適切に行うことができるユーザ端末、無線基地局、無線通信システムおよび無線通信方法を提供することを目的とする。
 本発明のユーザ端末は、異なる周波数を利用する1つ以上のセルからそれぞれ構成される複数のセルグループと通信を行うユーザ端末であって、前記セルごとの保証送信電力値および前記セルグループにおけるセルのアクティブ・非アクティブ情報を受信する受信部と、前記アクティブ状態のセル数と、前記セルごとの保証送信電力値とを用いて、前記セルグループの保証送信電力値を制御する電力制御部と、を有することを特徴とする。
 本発明によれば、デュアルコネクティビティにおける保証送信電力設定時のユーザ端末動作を適切に行うことができる。
キャリアアグリゲーションおよびデュアルコネクティビティに係る無線基地局およびユーザ端末の通信を示す図である。 キャリアアグリゲーションの制御および送信電力制御を示す図である。 デュアルコネクティビティの送信電力制御を説明する図である。 デュアルコネクティビティの送信電力制御を説明する図である。 デュアルコネクティビティの送信電力制御を説明する図である。 非保証電力について説明する図である。 デュアルコネクティビティにおけるセルのアクティブ化または非アクティブ化を説明する図である。 第1の態様におけるテーブルを説明する図である。 第1の態様においてユーザ端末がアクティブ状態のセル数に応じて保証電力を設定する方法について説明する図である。 第2の態様におけるテーブルを説明する図である。 第2の態様においてユーザ端末がアクティブ状態のセル数に応じて保証電力を設定する方法について説明する図である。 第3の態様において、保証送信電力PMeNBを超える領域にセカンダリ基地局の保証送信電力PSeNBの領域が存在する場合と、非保証電力領域が存在する場合と、を説明する図である。 第3の態様においてユーザ端末が無線基地局に対してPHRを報告する方法を説明する図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、以下の説明において、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)と記載される場合には、拡張物理下りリンク制御チャネル(EPDCCH:Enhanced PDCCH)も含むものとする。
 LTE-Aシステムでは、半径数キロメートル程度の広範囲のカバレッジエリアを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジエリアを有するスモールセルが形成されるHetNet(Heterogeneous Network)が検討されている。キャリアアグリゲーションおよびデュアルコネクティビティは、HetNet構成に適用する事が可能である。
 図1Aは、キャリアアグリゲーションに係る無線基地局およびユーザ端末の通信を示している。図1Aに示す例において、無線基地局eNB1はマクロセルを形成する無線基地局(以下、マクロ基地局という)であり、無線基地局eNB2はスモールセルを形成する無線基地局(以下、スモール基地局という)である。たとえば、スモール基地局は、マクロ基地局に接続するRRH(Remote Radio Head)のような構成であってもよい。
 キャリアアグリゲーションが適用される場合、1つのスケジューラ(たとえば、マクロ基地局eNB1の有するスケジューラ)が複数セルのスケジューリングを制御する。マクロ基地局eNB1の有するスケジューラが複数セルのスケジューリングを制御する構成では、たとえば光ファイバのような高速回線などの理想的バックホール(ideal backhaul)で各無線基地局間が接続されることが想定される。
 図1Bは、デュアルコネクティビティに係る無線基地局およびユーザ端末の通信を示している。デュアルコネクティビティが適用される場合、複数のスケジューラが独立して設けられ、当該複数のスケジューラ(たとえば、無線基地局MeNBの有するスケジューラおよび無線基地局SeNBの有するスケジューラ)がそれぞれ管轄する1つ以上のセルのスケジューリングを制御する。無線基地局MeNBの有するスケジューラおよび無線基地局SeNBの有するスケジューラがそれぞれの管轄する1つ以上のセルのスケジューリングを制御する構成では、たとえばX2インタフェースなどの遅延の無視できない非理想的バックホール(non-ideal backhaul)で各無線基地局間が接続されることが想定される。
 図1Bに示すように、デュアルコネクティビティでは、各無線基地局が、1つまたは複数のセルから構成されるセルグループ(CG:Cell Group)を設定する。各セルグループは、同一無線基地局が形成する1つ以上のセルまたは送信アンテナ装置、送信局などの同一送信ポイントが形成する1つ以上のセルから構成される。
 PCellを含むセルグループはマスタセルグループ(MCG:Master Cell Group)と呼ばれ、マスタセルグループ以外のセルグループはセカンダリセルグループ(SCG:Secondary Cell Group)と呼ばれる。マスタセルグループおよびセカンダリセルグループを構成するセルの合計数は、所定値(たとえば、5セル)以下となるように設定される。
 マスタセルグループが設定される無線基地局はマスタ基地局(MeNB:Master eNB)と呼ばれ、セカンダリセルグループが設定される無線基地局はセカンダリ基地局(SeNB:Secondary eNB)と呼ばれる。マスタセルグループおよびセカンダリセルグループを構成するセルの合計数は、所定値(たとえば、5セル)以下となるように設定される。
 デュアルコネクティビティでは、無線基地局間はキャリアアグリゲーションと同等のタイトな協調は前提としない。そのため、ユーザ端末は、セルグループごとに下りリンクL1/L2制御(PDCCH/EPDCCH)、上りリンクL1/L2制御(PUCCH/PUSCHによるUCI(Uplink Control Information)フィードバック)を独立に行う。したがってセカンダリ基地局においても、共通サーチスペースやPUCCHなどのPCellと同等の機能を有するスペシャルSCellが必要となる。本明細書において、PCellと同等の機能を有するスペシャルSCellを、「PSCell(Primary Secondary Cell)」とも記す。
 キャリアアグリゲーションでは、1つの無線基地局(たとえばマクロ基地局eNB1)が2つの無線基地局のスケジューリングを制御する(図2A参照)。すなわち、マクロ基地局eNB1は、2つの無線基地局eNB1,eNB2に対するユーザ端末の送信電力の合計が許容最大送信電力を超えない範囲で、送信電力を動的に調整する送信電力制御をすることができる(図2B参照)。
 デュアルコネクティビティでは、マスタ基地局MeNB、セカンダリ基地局SeNBがそれぞれ独立にスケジューリングするので、マスタ基地局MeNBおよびセカンダリ基地局SeNBに対するユーザ端末の合計送信電力が許容最大送信電力を超えない範囲で、送信電力を動的に調整する送信電力制御をすることが困難である。ユーザ端末は、必要となる合計送信電力がユーザ端末の許容最大送信電力を超える場合、許容最大送信電力を超えない値になるまで、電力をスケールダウン(パワースケーリング)するか、一部または全部のチャネルまたは信号を欠落させる(ドロッピング)処理を行う。デュアルコネクティビティでは、マスタ基地局MeNBおよびセカンダリ基地局SeNBは、それぞれ対となる無線基地局(マスタ基地局MeNBにとってセカンダリ基地局SeNB、セカンダリ基地局SeNBにとってマスタ基地局MeNB)がどのような電力制御を行っているか把握できないため、このようなパワースケーリングやドロッピングが起こるタイミングや頻度を想定できないおそれがある。マスタ基地局MeNBおよびセカンダリ基地局SeNBにとって、想定外のパワースケーリングやドロッピングが行われた場合、正しく上りリンク通信を行うことができなくなり、通信品質やスループットが著しく劣化するおそれがある。
 さらに、デュアルコネクティビティは、無線基地局またはセルグループ間のサブフレームタイミングが非同期のシナリオにおいても設定できる可能性がある。非同期のデュアルコネクティビティでは、セルグループ間のサブフレーム送信タイミング差が任意の値を取り得る。かかる場合、たとえばあるセルグループでの送信と別のセルグループでの送信が、サブフレームの半分だけオーバーラップすることも有り得る。この場合、2つのセルグループに対する送信がオーバーラップする半サブフレーム区間のみ許容最大送信電力を超えるおそれが生じ、その部分のみ、パワースケーリングやドロッピングを行う可能性もある。
 パワースケーリングやドロッピングがサブフレーム全体にわたって行われる場合、無線基地局は送信されたサブフレームを受信し、そのサブフレームに含まれる参照信号によってチャネル推定を行うことでサブフレームの受信電力または振幅を推定できるから、そのサブフレームに含まれる一部または全部の信号またはチャネルを正しく復調できる可能性がある。しかしながら、パワースケーリングやドロッピングがサブフレームの一部分のみ行われた場合、参照信号とデータとで受信電力または振幅が異なる可能性がある。かかる場合、無線基地局は参照信号を用いても、サブフレームの中でどのようにパワースケーリングやドロッピングが行われたか把握できないため、受信したサブフレームからその一部または全部の信号を正しく復調できる可能性がより小さくなるおそれがある。このように、デュアルコネクティビティでは各々の無線基地局で独立に送信電力を制御するため、ユーザ端末の送信電力の合計が許容最大送信電力を超えないように送信電力制御を行うことが困難である。
 そこで、デュアルコネクティビティでは、無線基地局またはセルグループごとの「保証送信電力(minimum guaranteed power)」という概念が導入される。xCG(MCGまたはSCG)の保証送信電力をPxeNB(PMeNBまたはPSeNB)とすると、無線基地局xeNB(MeNBまたはSeNB)は、ユーザ端末に対し、保証送信電力PMeNBとPSeNBの両方、またはいずれか一方をRRCなど上位レイヤシグナリングにより通知する。ユーザ端末は、無線基地局xeNBから送信要求があった場合、すなわち上りリンクグラントまたはRRCによりPUSCHまたはPUCCHの送信がトリガされた場合に、xCGへの送信電力を計算し、必要とされる送信電力(要求電力)が保証送信電力PxeNB以下であれば、当該要求電力をxCGの送信電力として確定する。
 無線基地局xeNBの要求電力が保証送信電力PxeNBを超える場合には、ユーザ端末は、条件次第で送信電力が保証送信電力PxeNB以下となるように制御することがある。具体的には、ユーザ端末は、マスタセルグループおよびセカンダリセルグループの合計要求電力がユーザ端末の許容最大送信電力PCMAXを超えるおそれがある場合には、保証送信電力PxeNBを超える電力が要求されたセルグループに対し、パワースケーリング(Power-scaling)やチャネルまたは信号のドロッピングを行う。その結果、送信電力が保証送信電力PxeNB以下となったら、それ以上のパワースケーリングやチャネルまたは信号のドロッピングは行わない。
 図3Aに示すように、同期デュアルコネクティビティで、マスタ基地局およびセカンダリ基地局から同じタイミングで要求された要求電力の合計がユーザ端末の許容最大送信電力PCMAXを超える場合には、ユーザ端末は、セルグループあたりの送信電力が保証送信電力PxeNBを超えるセルグループに対してパワースケーリングまたはドロッピングを行い、ユーザ端末あたりの送信電力の合計がユーザ端末の許容最大送信電力PCMAXを超えないよう制御する(条件1)。
 図3Bに示すように、非同期デュアルコネクティビティで部分重複区間の要求電力がユーザ端末の許容最大送信電力PCMAXを超えないことをユーザ端末が把握できない場合には、ユーザ端末は各セルグループの送信電力がそれぞれ保証送信電力PxeNB以下となるように割り当てる(条件2)。
 ユーザ端末の動作について、より具体的に説明する。ユーザ端末は、初めに、上りリンク送信を行うCCごとに、そのCCで必要とされる送信電力(CCごとの要求電力)とCCごとの許容最大送信電力PCMAX,cを求め、比較する。ユーザ端末は、当該CCの要求電力がPCMAX,cを超えている場合、パワースケーリングやチャネルまたは信号のドロッピングを行い、当該CCの送信電力をPCMAX,c以下とする。
 また、ユーザ端末は、ユーザ端末あたりの許容最大送信電力PCMAXを求める。得られたCCごとの送信電力をセルグループごとに加算し、マスタセルグループおよびセカンダリセルグループそれぞれにおいて、CCごとの送信電力の総和が、保証送信電力PMeNBおよびPSeNBを超えていないか確認する。ユーザ端末は、任意のセルグループ(xCGとする)のCCごとの送信電力の総和が該当する保証送信電力(PxeNBとする)を超えない場合、その送信電力を当該セルグループの送信電力として確定する。一方、ユーザ端末は、任意のセルグループ(xCGとする)のCCごとの送信電力の総和が該当するセルグループの保証送信電力(PxeNBとする)を超える場合、前記の条件により、所定のルールでパワースケーリングまたはドロッピングを適用する。なお、パワースケーリングまたはドロッピングによって当該セルグループに属するCCの送信電力の総和が該当するセルグループの保証送信電力(PxeNBとする)を下回った場合、それ以上のパワースケーリングまたはドロッピングは行わなくてもよい。
 保証送信電力PxeNBは、無線基地局またはセルグループごとに定義されるパラメータであり、無線基地局がユーザ端末に対し、RRCなどの上位レイヤシグナリングで設定する。マスタ無線基地局MeNBとセカンダリ無線基地局SeNBは、それぞれ少なくとも自身のセルグループの保証送信電力PMeNBおよびPSeNBを把握するものとする。これらのパラメータは、各セルグループを制御するそれぞれの無線基地局が自身で決定してもよいし、マスタ無線基地局MeNBが両方のセルグループに対する保証送信電力を一括して決定し、セカンダリ無線基地局SeNBに対してバックホールシグナリングにより通知してもよい。また、保証送信電力を決定するにあたり、無線基地局は、ユーザ端末のCCごとの許容最大送信電力や、同時送信するCCの組み合わせごとの許容最大送信電力、そして送信電力制御に用いる各種パラメータ、などの情報を交換してもよい。さらに、無線基地局は、自身の保証送信電力だけでなく、互いの保証送信電力をバックホールシグナリングにより交換してもよい。
 保証送信電力PxeNBの設定は、無線基地局にとって、ユーザ端末に対する自セルグループの要求電力が保証送信電力PxeNBを超えない限り、ユーザ端末が要求電力を確実に割り当てるという利点がある。このため、デュアルコネクティビティでは各々の無線基地局で独立に送信電力を制御するが、保証送信電力PxeNBを適切に設定することにより、少なくともユーザ端末に対して制御信号や音声信号、モビリティ等に関する制御情報など、接続維持や品質保持が不可欠な情報や信号に対して、必要な電力を保証することができる。
 無線基地局が、ユーザ端末のCCごとの許容最大送信電力や、同時送信するCCの組み合わせごとの許容最大送信電力、そして送信電力制御に用いる各種パラメータ、などの情報を交換した場合、互いに対となる無線基地局でどのような送信電力制御を行うかを推定できる。たとえば、ユーザ端末のCCごとの許容最大送信電力を認識した場合、対となる無線基地局に対してユーザ端末が送信し得る最大の送信電力を推定することができる。
 無線基地局が、自身の保証送信電力だけでなく、互いの保証送信電力を交換した場合、相手の保証送信電力を考慮したスケジューリングを行うことが可能となる。このように、無線基地局MeNBとSeNBは、自身の保証送信電力PxeNBに加え、ユーザ端末の送信電力制御に関連する各種パラメータを情報交換することで、より適切に電力割り当てを行うことができるようになる。
 同期デュアルコネクティビティは、ユーザ端末のサブフレーム送信タイミング差が最大でも数十μs程度となる可能性がある。したがって、ユーザ端末は、CCごとの送信電力をセルグループごとに加算し、マスタセルグループおよびセカンダリセルグループそれぞれにおいて、CCごとの送信電力の総和が、保証送信電力PMeNBおよびPSeNBを超えていないかどうか、ということと、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えていないかどうか、ということを、同時に確認できる。
 ユーザ端末は、同期デュアルコネクティビティでは、前記のように全CCの送信電力の総和がPCMAXを超えるかどうかをチェックし、マスタ基地局およびセカンダリ基地局から同じタイミングで要求された両セルグループの要求電力の合計がユーザ端末の許容最大送信電力PCMAXを超えない場合には、パワースケーリングやドロッピングを行わず、当該要求電力を送信電力として割り当てる。一方、マスタ基地局およびセカンダリ基地局から同じタイミングで要求された両セルグループの要求電力の合計がユーザ端末の許容最大送信電力PCMAXを超える場合には、パワースケーリングやドロッピングを行って、送信電力が許容最大送信電力PCMAX以下となるよう制御する。なお、パワースケーリングやドロッピングを行うのは、保証電力を超過する送信電力を要求されるセルグループに限定する。
 図4Aに示す例では、マスタ基地局から保証送信電力PMeNBを超える電力が要求され、セカンダリ基地局から保証送信電力PSeNB以下の電力が要求されている。ユーザ端末は、マスタセルグループおよびセカンダリセルグループそれぞれにおいて、CCごとの送信電力の総和が、保証送信電力PMeNBおよびPSeNBを超えていないかどうか、ということと、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えていないかどうか、ということを確認する。図4Aに示す例では、マスタセルグループおよびセカンダリセルグループの合計要求電力がユーザ端末の許容最大送信電力PCMAXを超えないため、ユーザ端末は、マスタセルグループおよびセカンダリセルグループの要求電力を送信電力として割り当てる。
 図4Bに示す例では、マスタ基地局から保証送信電力PMeNB以下の電力が要求され、セカンダリ基地局から保証送信電力PSeNBを超える電力が要求されている。ユーザ端末は、マスタセルグループおよびセカンダリセルグループそれぞれにおいて、CCごとの送信電力の総和が、保証送信電力PMeNBおよびPSeNBを超えていないかどうか、ということと、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えていないかどうか、ということを確認する。図4Bに示す例では、マスタセルグループおよびセカンダリセルグループの合計要求電力がユーザ端末の許容最大送信電力PCMAXを超えないため、ユーザ端末は、マスタセルグループおよびセカンダリセルグループの要求電力を送信電力として割り当てる。
 図5Aに示す例では、マスタ基地局から保証送信電力PMeNB以下の電力が要求され、セカンダリ基地局から保証送信電力PSeNBを超える電力が要求されている。ユーザ端末は、マスタセルグループおよびセカンダリセルグループそれぞれにおいて、CCごとの送信電力の総和が、保証送信電力PMeNBおよびPSeNBを超えていないかどうか、ということと、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えていないかどうか、ということを確認する。この場合、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えるため、ユーザ端末は、パワースケーリングまたはドロッピングを適用する。具体的には、マスタセルグループのCCごとの送信電力の総和が保証送信電力PMeNBを超えないが、セカンダリセルグループのCCごとの送信電力の総和が保証送信電力PSeNBを超えることから、ユーザ端末は、マスタセルグループに対しては当該要求電力を送信電力として割り当て、残りの電力(許容最大送信電力PCMAXからマスタセルグループの送信電力を減算して得られる余剰電力)をセカンダリセルグループに割り当てる。ユーザ端末は、セカンダリセルグループに対しては、前記残りの電力を許容最大送信電力とみなし、セカンダリセルグループに対して、パワースケーリングまたはドロッピングを適用する。
 前記パワースケーリングやドロッピングのルールとしては、Rel.10/11で規定されたルールを適用することもできる。Rel.10/11では、CAにおいて複数のCCで同時送信がある場合、全CCの要求送信電力がユーザ端末あたりの許容最大送信電力PCMAXを超えた場合のパワースケーリングやドロッピングのルールが規定されている。前記残りの電力(許容最大送信電力PCMAXからマスタセルグループの送信電力を減算して得られる余剰電力)を許容最大送信電力とみなし、当該セルグループで要求された送信電力を要求送信電力とみなせば、当該セルグループに対してRel.10/11で規定されたルールでパワースケーリングやドロッピングを行うことができる。これらは既に規定された仕組みで実現できるため、ユーザ端末は、送信電力制御およびパワースケーリングやドロッピングのルールとして新しい仕組みを導入することなく、既存の仕組みの流用によって容易に実現することができる。
 図5Bに示す例では、マスタ基地局から保証送信電力PMeNBを超える電力が要求され、セカンダリ基地局からも保証送信電力PSeNBを超える電力が要求されている。ユーザ端末は、マスタセルグループおよびセカンダリセルグループそれぞれにおいて、CCごとの送信電力の総和が、保証送信電力PMeNBおよびPSeNBを超えていないかどうか、ということと、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えていないかどうか、ということを確認する。この場合、両セルグループにおける全CCの送信電力の総和が、許容最大送信電力PCMAXを超えるため、ユーザ端末は、パワースケーリングまたはドロッピングを適用する。具体的には、マスタセルグループのCCごとの送信電力の総和が保証送信電力PMeNBを、セカンダリセルグループのCCごとの送信電力の総和が保証送信電力PSeNBを超えることから、ユーザ端末は、マスタセルグループおよびセカンダリセルグループに対して、パワースケーリングまたはドロッピングを適用し、それぞれのセルグループの送信電力が保証送信電力PMeNBおよび保証送信電力PSeNB以下となるよう制御する。この場合も、両セルグループに対するパワースケーリングやドロッピングのルールとして、Rel.10/11で規定されたルールを適用できる。ユーザ端末は、保証送信電力PMeNBおよびPSeNBをそれぞれのセルグループの許容最大送信電力とみなし、それぞれのセルグループにおける要求電力を計算して、セルグループごとに、Rel.10/11で規定されたルールに基づいてパワースケーリングやドロッピングを適用して、それぞれのセルグループにおける送信電力が保証送信電力PMeNBまたはPSeNB以下となるように制御すればよい。
 非同期デュアルコネクティビティでは、ユーザ端末が、先行タイミングのセルグループに対する上りリンク送信開始時点で、後行タイミングのセルグループに対する上りリンク送信で要求される要求電力を認識できない場合がある。この場合、ユーザ端末は、保証送信電力PxeNBを無線基地局またはセルグループあたりの最大送信電力とみなして送信電力制御を行う。保証送信電力は、セルグループ間で排他的、すなわちPMeNB+PSeNB≦PCMAXとなるよう設定される。したがって、ユーザ端末がセルグループ間に適切に電力を割り振ることが困難な非同期デュアルコネクティビティであっても、保証送信電力PxeNB分をそれぞれのセルグループあたりの許容最大送信電力とすることにより、送信タイミングの異なるセルグループ間で互いの送信電力に影響することなく、適切に電力制御を行うことができる。
 図5Cに示す例では、ユーザ端末は、先行タイミングにおいて後行タイミングの要求電力を認識できない。先行タイミングではセカンダリ基地局からは保証送信電力PSeNBを超える電力が要求され、後行タイミングではマスタ基地局からは保証送信電力PMeNB以下の電力が要求されている。この場合、ユーザ端末は、マスタセルグループの要求電力を保証して、当該要求電力を送信電力として割り当てる。ユーザ端末は、保証送信電力PSeNBを最大送信電力としてスケーリングした電力をセカンダリ基地局の送信電力として割り当てる。
 ユーザ端末は、同期、非同期、無線基地局または他セルグループの別に関わらず、保証送信電力PxeNB以下の要求電力について電力割り当てを保証する。要求電力が保証送信電力PxeNBを超える場合は、ユーザ端末が割り当て可能と判断できる場合のみ当該要求電力を送信電力として割り当てる。
 なお、非同期デュアルコネクティビティであっても、ユーザ端末が保証送信電力PxeNBを超える電力を割り当て可能と判断できる場合もある。このような例としては、いずれか一方のセルグループのみDRX状態に遷移している場合、少なくともいずれか一方のセルグループがTDDである場合、などが挙げられる。一方のセルグループがDRX状態に遷移している場合、そのセルグループにおいて、上りリンクのデータ送信が発生することはない。また、一方のセルグループがTDDである場合、下り通信用の時間区間(たとえばDLサブフレームやSpecialサブフレーム)では、当該セルで上りリンクの送信が発生することはない。
 ユーザ端末は、このように上りリンクの送信が発生しないタイミングをあらかじめ認識している場合、非同期デュアルコネクティビティであっても、保証送信電力を超える電力を割り当て可能とできる。また、このような場合、ユーザ端末は、同期デュアルコネクティビティと同様、任意のタイミングにおいて全CCの送信電力の総和がPCMAXを超えるかどうかをチェックし、マスタ基地局およびセカンダリ基地局から同じタイミングで要求された両セルグループの要求電力の合計がユーザ端末の許容最大送信電力PCMAXを超えない場合には、パワースケーリングやドロッピングを行わず、当該要求電力を送信電力として割り当てることが可能である。
 保証送信電力は、PMeNBとPSeNBとの合計がユーザ端末の許容最大送信電力PCMAXよりも小さな値になるように設定されてもよい。この場合には、いずれの無線基地局にとっても電力割り当てが保証されない非保証電力領域が生じる。非保証電力領域は、各無線基地局に電力が保証されるのではなく、保証電力領域とは異なるプライオリティに従って電力が割り当てられる。たとえば、各無線基地局にそれぞれの保証電力を分配した残りの非保証電力を、各無線基地局のチャネルや信号の優先度に従って配分してもよい。チャネルや信号の優先度は、たとえばMCGのPUCCH>SCGのPUCCH>MCGのPUSCH>SCGのPUSCHとすることができる。チャネルや信号の優先度は、たとえば、MCGのSR>SCGのSR>MCGのHARQ-ACK>SCGのHARQ-ACK>MCGのデータ>SCGのデータ>MCGのCQI>SCGのCQIとしてもよい。ただしチャネルや信号の優先度はこれに限られない。
 図6に示す例では、保証送信電力PMeNBとPSeNBとの合計がユーザ端末の許容最大送信電力PCMAXよりも小さな値になるように設定されているため、非保証電力領域が生じている。マスタ基地局からは保証送信電力PMeNBを超える電力が要求され、セカンダリ基地局からは保証送信電力PSeNBを超える電力が要求されている。この場合、ユーザ端末は、各無線基地局のチャネルや信号の種別に応じて、送信電力をスケーリングするかまたは信号をドロップして、非保証電力を各無線基地局に送信電力として割り当てる。
 デュアルコネクティビティでは、無線基地局またはセルグループ内でキャリアアグリゲーションすることが可能である。キャリアアグリゲーションでは、CCの設定または解除(configure/removal)をRRCシグナリングで指示する。さらに、MACシグナリングでCCのアクティブ化または非アクティブ化(activate/de-activate)を指示する。無線基地局は、ユーザ端末に対し、MACレイヤにおける非アクティブ化タイマ(De-activation time)を設定することでも非アクティブ化を指示することができる。ユーザ端末に対するトラフィックに応じて、CCのアクティブ化または非アクティブ化をMACレイヤによる動的な指示で実現することにより、ユーザ端末の消費電力を低減することが可能となる。ただし、PCellおよびスペシャルSCell(PSCell)は常にアクティブ状態とする。
 図7Aでは、全セル(セルC1からC5)がアクティブ状態となる例を示している。図7Bでは、マスタセルグループ(MCG)のSCell(セルC2)と、セカンダリセルグループ(SCG)のSCellの1つ(セルC4)が非アクティブ状態となる例を示している。同時送信するCC数が多いほど、必要な送信電力が増加することを考慮すれば、アクティブ状態のセル数に応じて、無線基地局が保証したいセルグループあたりの送信電力が異なる可能性がある。この場合、MACレイヤによるアクティブ制御と同じ頻度で保証送信電力PxeNBを設定するRRCシグナリングを行うと、オーバヘッドと遅延が大きくなり、スループットが低下する。
 これに対して、本発明者らは、デュアルコネクティビティにおける保証電力設定時のユーザ端末動作について、無線基地局が、セル(CC)ごとの保証送信電力PxeNBを設定してユーザ端末に通知する構成を見出した。この方法によれば、アクティブ状態のセル数に応じて適切な保証送信電力を設定できる。
 以下、無線基地局が、セル(CC)ごとの保証送信電力PxeNBを設定してユーザ端末に通知する構成について、詳細に説明する。
(第1の態様)
 第1の態様では、無線基地局が、ユーザ端末に、RRCシグナリングなどの上位レイヤシグナリングにより各セル(CC)の保証送信電力PxeNB(PxeNB,c)の値を通知する構成について説明する。ユーザ端末は、アクティブ状態のセルとセル数に応じて保証送信電力PxeNBを求める。
 無線基地局とユーザ端末とで、図8に示すようなセル(CC)ごとの保証送信電力PxeNB(PxeNB,c)の値が規定された共通のテーブルを保持する。図8に示すテーブルは、マスタセルグループおよびセカンダリセルグループが5つのセル(CC)で構成される場合を示している。ユーザ端末は、このテーブルに基づいてアクティブ状態のセルとセル数に応じて保証送信電力PxeNBを求めることができる。図8に示すテーブルには、「セルグループ/無線基地局」、「CCインデックス」、「保証送信電力PMeNB,c」および「保証送信電力PSeNB,c」の値が規定されている。
 図8に示すテーブルによれば、マスタセルグループ(MCG)に属するセル1(PCell)に対して保証送信電力PMeNB,1=M1[dBm]が設定され、マスタセルグループ(MCG)に属するセル2(SCell)に対して保証送信電力PMeNB,2=M2[dBm]が設定されている。セカンダリセルグループ(SCG)に属するセル3(PSCell)に対して保証送信電力PSeNB,3=S3[dBm]が設定され、セカンダリセルグループ(SCG)に属するセル4(SCell)に対して保証送信電力PSeNB,4=S4[dBm]が設定され、セカンダリセルグループ(SCG)に属するセル5(SCell)に対して保証送信電力PSeNB,5=S5[dBm]が設定されている。
 図8に示すテーブルにおいて、すべてのセルに対する保証送信電力PxeNB,cを合計すると、ユーザ端末の許容最大送信電力PCMAX以下となる。すなわち、ユーザ端末の許容最大送信電力PCMAX≦M1+M2+S3+S4+S5[dBm]が成り立つ。
 たとえば、セカンダリセルグループ(SCG)に属するセル3とセル5がアクティブ状態である場合、図8に示すテーブルを参照すると、セル3の保証送信電力PSeNB,3=S3[dBm]、セル5の保証送信電力PSeNB,5=S5[dBm]である。したがって、セカンダリセルグループの保証送信電力PSeNBは、
 PSeNB=10log10{10(S3/10)+10(S5/10)}[dBm]
と求まる。
 保証送信電力PxeNB,cの値は絶対値ではなく、ユーザ端末の許容最大送信電力PCMAXやPCMAX_HまたはPCMAX_Lに対する比率[%]であってもよい。許容最大送信電力PCMAXはユーザ端末が選択する値であり、サブフレーム間でPCMAX_H以下、PCMAX_L以上となるように一定の変動が許容されている。ユーザ端末の許容最大送信電力PCMAXに対する比率[%]として定義した場合、保証送信電力PxeNB,cの和が100[%]となるよう設定することで、ユーザ端末の許容最大送信電力PCMAX値選択結果に関わらず、ユーザ端末が利用可能な送信電力すべてを保証電力として各CCに割り当てることができるので、無駄のない電力制御が可能となる。一方、PCMAX_Hは無線基地局がユーザ端末に設定する準静的なパラメータであることから、PCMAX_Hに対する比率[%]として定義した場合、保証送信電力PxeNB,cに対し、無線基地局の把握できない変動が発生することがなくなる。したがって、安定した送信電力制御が可能となる。また、PCMAX_Lはユーザ端末が設定し得る許容最大送信電力PCMAXの値の最悪値(最小値)となる。したがって、PCMAX_Lに対する比率[%]として定義した場合、保証送信電力PxeNB,cの値を、ユーザ端末の実装に関わらず任意のタイミングでユーザ端末が送信できなければならない値(Minimum requirement)として設定できる。
 図9を参照して、ユーザ端末がアクティブ状態のセル数に応じて保証電力を設定する方法について説明する。図9Aに示す状態では、マスタセルグループ(MCG)ではPCell(セルC1)のみアクティブで、セカンダリセルグループ(SCG)ではスペシャルSCell(セルC3)のみアクティブである。ユーザ端末は、図8に示すテーブルに基づいて、マスタセルグループの保証送信電力PMeNBおよびセカンダリセルグループの保証送信電力PSeNBを求める。このとき、保証送信電力PMeNBと保証送信電力PSeNBとの合計がユーザ端末の許容最大送信電力PCMAXを超えないため、非保証電力が生じる。
 図9Bに示す状態は、図9Aに示す状態からマスタセルグループ(MCG)におけるSCell(セルC2)を追加でアクティブとしている。ユーザ端末は、図8に示すテーブルに基づいて、マスタセルグループの保証送信電力PMeNBを再度求める。アクティブ状態のセルが増え、保証電力が大きくなったため、図9Aに示す状態と比較して非保証電力は少なくなる。
 図9Cに示す状態は、図9Bに示す状態からセカンダリセルグループ(SCG)におけるSCell2つ(セルC4およびC5)を追加でアクティブとしている。すなわち、図9Cに示す状態では、全セルがアクティブ状態である。ユーザ端末は、図8に示すテーブルに基づいて、セカンダリセルグループの保証送信電力PSeNBを再度求める。この例では、保証送信電力PMeNBと保証送信電力PSeNBとの合計がユーザ端末の許容最大送信電力PCMAXと等しくなるため、非保証電力はなくなる。
 無線基地局がセル(CC)ごとの保証送信電力PxeNB(PxeNB,c)を設定し、ユーザ端末に通知することにより、ユーザ端末はアクティブ状態のセル数に応じて適切に保証電力を設定できる。アクティブ状態のセルが少ない場合には大きな電力を保証しなくてもよくなるため、非保証電力を作り出すことができる。非保証電力は、特定のまたはすべての基地局が利用できる電力である。ただし、非保証電力は、いずれの基地局からも保証されない電力であるため、状況に応じてユーザ端末が電力を割り当てない可能性もある。
 アクティブ状態のセルが多くなったときに保証電力を大きくすることにより、大きな送信電力が必要となるセルグループに対し、より大きな保証電力を確保することができる。また、アクティブ化・非アクティブ化に応じてRRCシグナリングで保証電力を設定しなおす必要がないため、RRCシグナリングの頻度を減らすことができ、オーバヘッドを削減することが可能となる。また、遅延の少ないMACシグナリングで保証送信電力PxeNBを変更できるため、遅延特性を改善することが可能となる。
 マスタ基地局とセカンダリ基地局は、図8に例示したテーブルを共通で保持していてもよいし、マスタ基地局はマスタセルグループ(MCG)に関連する行のみ、セカンダリ基地局はセカンダリセルグループ(SCG)に関連する行のみを保持していてもよい。共通で保持する場合、双方のセルグループで保証される電力を考慮しながらスケジューリングを行うことができ、効率的な電力割り当てが期待できる。それぞれのセルグループの関連する行のみ保持する場合、テーブルのすべての要素をシグナリングする必要がなくなるため、オーバヘッドの削減が期待できる。
 テーブルには、設定(configure)されたすべてのCCの保証送信電力を保持しなくてもよい。図8において、たとえばCC index #5のSCellで保証電力を設定しない場合、CC index #5のSCellに対する行がないテーブルを保持すればよい。保証送信電力が設定されない場合、ユーザ端末は、保証送信電力=0と認識する。このように、保証送信電力=0のCCについてはテーブルを設定しないことにより、シグナリングオーバヘッドの削減および無線基地局またはユーザ端末に必要なメモリ量を削減できる。
(第2の態様)
 第1の態様で示したように、セルごとに保証送信電力PxeNBを設定した場合、セルグループ内に設定されたセル数に対してアクティブ状態のセル数が少ないと非保証電力が生じる。これに対して、アクティブ状態のセル数によらず、できるだけ多くの電力を保証電力として利用したいというニーズがある。そこで、第2の態様では、アクティブ状態のセルの組み合わせごとに保証送信電力PxeNBを設定する構成について説明する。
 無線基地局とユーザ端末とで、図10に示すようなセルまたはセルの組み合わせごとの保証送信電力PxeNB(PxeNB,c)の値が規定された共通のテーブルを保持する。図10に示すテーブルによれば、マスタセルグループ(MCG)に属するセル1(PCell)に対して保証送信電力PMeNB,1=M1[dBm]が設定され、マスタセルグループ(MCG)に属するセル1と2との組み合わせ(セル1+2)に対して保証送信電力PMeNB,1+2=M2[dBm]が設定されている。セカンダリセルグループ(SCG)に属するセル3(PSCell)に対して保証送信電力PSeNB,3=S3[dBm]が設定され、セカンダリセルグループ(SCG)に属するセル3と4との組み合わせ(セル3+4)に対して保証送信電力PSeNB,3+4=S4[dBm]が設定され、セカンダリセルグループ(SCG)に属するセル3と5との組み合わせ(セル3+5)に対して保証送信電力PSeNB,3+5=S5[dBm]が設定され、セカンダリセルグループ(SCG)に属するセル3と4と5との組み合わせ(セル3+4+5)に対して保証送信電力PSeNB,3+4+5=S6[dBm]が設定されている。
 マスタセルグループ(MCG)に属するセル1(PCell)と、セカンダリセルグループ(SCG)に属するセル3(PSCell)は常にアクティブ状態であり、非アクティブ状態となることはない。
 たとえば、セカンダリセルグループ(SCG)に属するセル3とセル5がアクティブ状態の場合、図10に示すテーブルを参照すると、セカンダリセルグループの保証送信電力PSeNB,3+5=S5[dBm]と求まる。
 保証送信電力PxeNB,cの値は絶対値ではなく、第1の態様と同様に、ユーザ端末の許容最大送信電力PCMAXやPCMAX_HまたはPCMAX_Lに対する比率[%]であってもよい。
 図11を参照して、ユーザ端末がアクティブ状態のセル数に応じて保証電力を設定する方法について説明する。図11Aに示す状態では、マスタセルグループ(MCG)ではPCell(セルC1)のみアクティブで、セカンダリセルグループ(SCG)ではスペシャルSCell(セルC3)のみアクティブである。ユーザ端末は、図10に示すテーブルに基づいて、マスタセルグループの保証送信電力PMeNBおよびセカンダリセルグループの保証送信電力PSeNBを求める。図10に示すテーブルによれば、マスタセルグループの保証送信電力PMeNB=PMeNB,1=M1[dBm]であり、セカンダリセルグループの保証送信電力PSeNB=PSeNB,3=S3[dBm]である。このとき、保証送信電力PMeNBと保証送信電力PSeNBとの合計がユーザ端末の許容最大送信電力PCMAXを超えないため、非保証電力が生じる。
 図11Bに示す状態は、図11Aに示す状態からマスタセルグループ(MCG)におけるSCell(セルC2)を追加でアクティブとしている。ユーザ端末は、図10に示すテーブルに基づいて、マスタセルグループの保証送信電力PMeNBを再度求める。図10に示すテーブルによれば、マスタセルグループの保証送信電力PMeNB=PMeNB,1+2=M2[dBm]である。
 図11Cに示す状態は、図11Bに示す状態からセカンダリセルグループ(SCG)におけるSCell2つ(セルC4およびC5)を追加でアクティブとしている。すなわち、図11Cに示す状態では、全セルがアクティブ状態である。ユーザ端末は、図10に示すテーブルに基づいて、セカンダリセルグループの保証送信電力PSeNBを再度求める。図10に示すテーブルによれば、セカンダリセルグループの保証送信電力PSeNB=PSeNB,3+4+5=S6[dBm]である。この例では、保証送信電力PMeNBと保証送信電力PSeNBとの合計がユーザ端末の許容最大送信電力PCMAXと等しくなるため、非保証電力はなくなる。
 第2の態様よれば、第1の態様におけるテーブルを用いた場合と比較して、非保証電力を減らすことができる(図9、図11参照)。したがって、アクティブ状態のセル数が少ないときでも、無線基地局またはセルグループに大きな保証電力を割り当てることができる。
 第2の態様によれば、アクティブ状態のセルの組み合わせによらず固定となるPMeNB/PSeNBの値を設定することにより、アクティブ状態のセル数によらず常に一定のPMeNB/PSeNBとすることも可能である。これにより、より柔軟な保証電力割り当て運用が可能となる。
 マスタ基地局とセカンダリ基地局は、図10に例示したテーブルを共通で保持していてもよいし、マスタ基地局はマスタセルグループ(MCG)に関連する行のみ、セカンダリ基地局はセカンダリセルグループ(SCG)に関連する行のみを保持していてもよい。共通で保持する場合、双方のセルグループで保証される電力を考慮しながらスケジューリングを行うことができ、効率的な電力割り当てが期待できる。それぞれのセルグループの関連する行のみ保持する場合、テーブルのすべての要素をシグナリングする必要がなくなるため、オーバヘッドの削減が期待できる。
 テーブルには、設定(configure)されたすべてのCCの保証送信電力を保持しなくてもよい。図10において、たとえばCC index #5のSCellで保証送信電力を設定しない場合、CC index #3+#5とCC index #3+#4+#5に対する行がないテーブルを保持すればよい。保証送信電力が設定されない場合、ユーザ端末は、保証送信電力=0と認識する。このように、保証送信電力=0のCCについてはテーブルを設定しないことにより、シグナリングオーバヘッドの削減および基地局またはユーザ端末に必要なメモリ量を削減できる。
(第3の態様)
 第3の態様では、ユーザ端末が、SCellのアクティブ化または非アクティブ化に伴って、無線基地局に対してPHR(Power HeadRoom)を報告する構成について説明する。
 図12Aに示す状態では、マスタセルグループ(MCG)ではPCell(セルC1)およびSCell(セルC2)がアクティブで、セカンダリセルグループ(SCG)ではスペシャルSCell(セルC3)のみアクティブである。このとき、マスタ基地局から見れば、保証送信電力PMeNBを超える領域には非保証電力領域が存在している。
 図12Bに示す状態では、マスタセルグループ(MCG)ではPCell(セルC1)およびSCell(セルC2)がアクティブで、セカンダリセルグループ(SCG)ではスペシャルSCell(セルC3)およびSCell(セルC4およびC5)がアクティブである。このとき、マスタ基地局から見れば、保証送信電力PMeNBを超える領域にはセカンダリ基地局の保証送信電力PSeNBの領域が存在している。
 図12Aに示す状態から、セカンダリ基地局がSCellをアクティブ化すると図12Bに示す状態となる。図12Bに示す状態から、セカンダリ基地局がSCellを非アクティブ化すると図12Aに示す状態となる。マスタ基地局から見て、保証送信電力PMeNBを超える領域にセカンダリ基地局の保証送信電力PSeNBの領域が存在しているか、非保証電力領域が存在しているかは、セカンダリセルグループのSCellのアクティブまたは非アクティブ状態により異なる。
 ある無線基地局またはセルグループがセルのアクティブ化または非アクティブ化を行ったことを、デュアルコネクティビティに係る他の無線基地局またはセルグループが把握する必要がある。図12に示す例によると、保証送信電力PMeNBを超える領域にセカンダリ基地局の保証送信電力PSeNBの領域が存在しているか、非保証電力領域が存在しているかによってユーザ端末の電力割り当て優先動作が異なるため、マスタ基地局がいずれの領域が存在しているかを把握することができないと、保証送信電力PMeNBを超える電力の適切な割り当てが困難となる。
 しかし、セルのアクティブ化または非アクティブ化はMACシグナリングで指示するため、無線基地局間で動的に情報交換することができない。
 そこで、ユーザ端末は、SCellがアクティブ化または非アクティブ化された際に、すべての無線基地局に対してPHR(Power HeadRoom)を報告する。PHRにはどのセルがアクティブ状態かを示すフラグビットがあるため、各無線基地局はどのセルがアクティブ状態かを把握できる。セルのアクティブ化は無線基地局からのMACシグナリングによるアクティブ化指示でトリガされる。セルの非アクティブ化は非アクティブ化タイマ(De-activation time)の満了または無線基地局からのMACシグナリングよる非アクティブ化指示でトリガされる。
 図13を参照して、ユーザ端末がSCellのアクティブ化または非アクティブ化の際に、無線基地局に対してPHRを報告する方法について説明する。まず、ユーザ端末に対して、マスタセルグループに属するPCell(#1)とセカンダリセルグループに属するPSCell(#3)とがアクティブ状態であるとする。
 その後、マスタ基地局MeNBが、SCell(#2)をアクティブ化する。ユーザ端末は、マスタ基地局MeNBとセカンダリ基地局SeNBにPHRを報告する。マスタ基地局MeNBおよびセカンダリ基地局SeNBは、互いの保証送信電力PMeNB、PSeNBを把握するとともに、非保証電力がどれくらいあるのかを把握して、それぞれ独立に送信電力を制御する。マスタ基地局MeNBおよびセカンダリ基地局SeNBは、PCell(#1)およびPSCell(#3)がアクティブ状態だった前段階と比べて、非保証電力が減ったことを把握する。
 その後、マスタ基地局MeNBが、SCell(#2)を非アクティブ化する。ユーザ端末は、マスタ基地局MeNBとセカンダリ基地局SeNBにPHRを報告する。マスタ基地局MeNBおよびセカンダリ基地局SeNBは、互いの保証送信電力PMeNB、PSeNBを把握するとともに、非保証電力がどれくらいあるのかを把握して、それぞれ独立に送信電力を制御する。マスタ基地局MeNBおよびセカンダリ基地局SeNBは、PCell(#1)、SCell(#2)およびPSCell(#3)がアクティブだった前段階と比べて、非保証電力が増えたことを把握する。
 その後、セカンダリ基地局SeNBが、SCell(#4,#5)をアクティブ化する。ユーザ端末は、マスタ基地局MeNBとセカンダリ基地局SeNBにPHRを報告する。マスタ基地局MeNBおよびセカンダリ基地局SeNBは、互いの保証送信電力PMeNB、PSeNBを把握するとともに、非保証電力がどれくらいあるのかを把握して、それぞれ独立に送信電力を制御する。マスタ基地局MeNBおよびセカンダリ基地局SeNBは、PCell(#1)およびPSCell(#3)がアクティブだった前段階と比べて、非保証電力が減ったことを把握する。
 このように、ユーザ端末がSCellのアクティブ化または非アクティブ化に伴って、無線基地局に対してPHRを報告することにより、電力を有効活用するようにアクティブ・非アクティブ制御をすることが可能となる。
 また、無線基地局が他の無線基地局のアクティブ状態を適切かつ低遅延に把握し、トラフィックとユーザ端末の送信電力余力に応じて適切に送信電力制御をすることができる。たとえば、他の無線基地局のアクティブ状態のセルが減ったことを把握して、自基地局のセルを追加でアクティブ化することができる。追加でアクティブ化することにより自基地局の保証電力が増えるが、ユーザ端末がアクティブ化に伴ってPHRを報告するため、他の無線基地局に自基地局の保証電力が増えたことを伝えることができる。たとえば、他の無線基地局のアクティブ状態のセルが増えたことを把握して、自基地局のセルに対する保証電力以上の割り当てを制限することもできる。
(第4の態様)
 LTE Rel.12では、eIMTA(enhanced Interference Management and Traffic Adaptation)またはDynamic TDD向けとして、サブフレームをサブフレームセットに分割し、独立に送信電力制御を行うことが検討されている。デュアルコネクティビティにおけるマスタ基地局またはセカンダリ基地局に属するセルでも、サブフレームセットごとの送信電力制御が行われる可能性がある。
 サブフレームセットごとに送信電力制御を行う場合、サブフレームセットごとに必要な送信電力が異なる可能性がある。したがって、eITMA向けのサブフレームセットごとの送信電力制御の機能を用いる場合に、保証送信電力PxeNBの値が1つというのは好ましくない。
 そこで、サブフレームセットごとに送信電力制御を行う場合、当該サブフレームセットごとに異なる保証送信電力PxeNBの値を設定可能とする。たとえば、サブフレームセット1については保証送信電力PMeNB,1またはPSeNB,1を設定し、セブフレームセット2については保証送信電力PMeNB,2またはPSeNB,2を設定する。
 これにより、サブフレームセットごとに異なる保証送信電力PxeNBの値を設定することができる。この構成は、TDD+FDDデュアルコネクティビティなどにも適用できる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上述の送信電力制御を行う無線通信方法が適用される。
 図14は、本実施の形態に係る無線通信システムの一例を示す概略構成図である。図14に示すように、無線通信システム1は、複数の無線基地局10(11および12)と、各無線基地局10によって形成されるセル内にあり、各無線基地局10と通信可能に構成された複数のユーザ端末20と、を備えている。無線基地局10は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。
 図14において、無線基地局11は、たとえば相対的に広いカバレッジを有するマクロ基地局で構成され、マクロセルC1を形成する。無線基地局12は、局所的なカバレッジを有するスモール基地局で構成され、スモールセルC2を形成する。なお、無線基地局11および12の数は、図14に示す数に限られない。
 マクロセルC1およびスモールセルC2では、同一の周波数帯が用いられてもよいし、異なる周波数帯が用いられてもよい。また、無線基地局11および12は、基地局間インタフェース(たとえば、光ファイバ、X2インタフェース)を介して互いに接続される。
 無線基地局11と無線基地局12との間、無線基地局11と他の無線基地局11との間または無線基地局12と他の無線基地局12との間では、デュアルコネクティビティ(DC)またはキャリアアグリゲーション(CA)が適用される。
 ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでいてもよい。ユーザ端末20は、無線基地局10を経由して他のユーザ端末20と通信を実行できる。
 上位局装置30には、たとえば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel)、報知チャネル(PBCH)などが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。
 図15は、本実施の形態に係る無線基地局10の全体構成図である。図15に示すように、無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部(送信部および受信部)103と、ベースバンド信号処理部104と、呼処理部105と、インタフェース部106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30からインタフェース部106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、たとえば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力された下り信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。送受信部103には、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッタ/レシーバ、送受信回路または送受信装置を適用できる。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 送受信部103は、ユーザ端末に対して自セルグループに属するセルごとの保証送信電力値PxeNBまたはセルおよび複数セルの組み合わせごとの保証送信電力値PxeNBならびに自セルグループにおけるセルのアクティブ・非アクティブ情報を送信する。各送受信部103は、ユーザ端末からパワーヘッドルームを受信する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、インタフェース部106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 インタフェース部106は、基地局間インタフェース(たとえば、光ファイバ、X2インタフェース)を介して隣接無線基地局と信号を送受信(バックホールシグナリング)する。あるいは、インタフェース部106は、所定のインタフェースを介して、上位局装置30と信号を送受信する。
 図16は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。図16に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部301と、下り制御信号生成部302と、下りデータ信号生成部303と、マッピング部304と、デマッピング部305と、チャネル推定部306と、上り制御信号復号部307と、上りデータ信号復号部308と、判定部309と、を少なくとも含んで構成されている。
 制御部301は、PDSCHで送信される下りユーザデータ、PDCCHと拡張PDCCH(EPDCCH)の両方、またはいずれか一方で伝送される下り制御情報、下り参照信号などのスケジューリングを制御する。また、制御部301は、PRACHで伝送されるRAプリアンブル、PUSCHで伝送される上りデータ、PUCCHまたはPUSCHで伝送される上り制御情報、上り参照信号のスケジューリングの制御(割り当て制御)も行う。上りリンク信号(上り制御信号、上りユーザデータ)の割り当て制御に関する情報は、下り制御信号(DCI)を用いてユーザ端末20に通知される。
 制御部301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報に基づいて、下りリンク信号および上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部301は、スケジューラとしての機能を有している。制御部301には、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路または制御装置を適用できる。
 下り制御信号生成部302は、制御部301により割り当てが決定された下り制御信号(PDCCH信号とEPDCCH信号の両方、またはいずれか一方)を生成する。具体的に、下り制御信号生成部302は、制御部301からの指示に基づいて、下りリンク信号の割り当て情報を通知する下りリンクアサインメントと、上りリンク信号の割り当て情報を通知する上りリンクグラントを生成する。下り制御信号生成部302には、本発明に係る技術分野での共通認識に基づいて説明される信号生成器または信号生成回路を適用できる。
 下りデータ信号生成部303は、制御部301によりリソースへの割り当てが決定された下りデータ信号(PDSCH信号)を生成する。下りデータ信号生成部303により生成されるデータ信号には、各ユーザ端末20からのCSI等に基づいて決定された符号化率、変調方式に従って符号化処理、変調処理が行われる。
 マッピング部304は、制御部301からの指示に基づいて、下り制御信号生成部302で生成された下り制御信号と、下りデータ信号生成部303で生成された下りデータ信号の無線リソースへの割り当てを制御する。マッピング部304には、本発明に係る技術分野での共通認識に基づいて説明されるマッピング回路またはマッパーを適用できる。
 デマッピング部305は、ユーザ端末20から送信された上りリンク信号をデマッピングして、上りリンク信号を分離する。チャネル推定部306は、デマッピング部305で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を上り制御信号復号部307、上りデータ信号復号部308に出力する。
 上り制御信号復号部307は、上り制御チャネル(PRACH,PUCCH)でユーザ端末から送信されたフィードバック信号(送達確認信号等)を復号し、制御部301へ出力する。上りデータ信号復号部308は、上り共有チャネル(PUSCH)でユーザ端末から送信された上りデータ信号を復号し、判定部309へ出力する。判定部309は、上りデータ信号復号部308の復号結果に基づいて、再送制御判定(A/N判定)を行うとともに結果を制御部301に出力する。
 図17は、本実施の形態に係るユーザ端末20の全体構成図である。図17に示すように、ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(送信部および受信部)203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータのうち、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。送受信部203には、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッタ/レシーバ、送受信回路または送受信装置を適用できる。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(HARQ:Hybrid ARQ)の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 送受信部203は、無線基地局10からRRCシグナリングなどの上位レイヤシグナリングにより指示される、各CCの保証送信電力PxeNBの値またはセルの組み合わせごとの保証送信電力PxeNBの値を受信する。送受信部203は、無線基地局10からRRCシグナリングなどの上位レイヤシグナリングにより指示される、CCの設定または解除(configure/removal)情報を受信する。送受信部203は、無線基地局10からMACシグナリングで指示される、CCのアクティブ化または非アクティブ化(activate/de-activate)情報を受信する。
 図18は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。図18に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、上り制御信号生成部402と、上りデータ信号生成部403と、マッピング部404と、デマッピング部405と、チャネル推定部406と、下り制御信号復号部407と、下りデータ信号復号部408と、判定部409と、を少なくとも含んで構成されている。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH信号)や、受信したPDSCH信号に対する再送制御判定結果に基づいて、上り制御信号(A/N信号等)や上りデータ信号の生成を制御する。無線基地局から受信した下り制御信号は下り制御信号復号部407から出力され、再送制御判定結果は、判定部409から出力される。制御部401には、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路または制御装置が適用される。
 制御部401は、アクティブ状態のセル数と、セルごとの保証送信電力値PxeNB,cまたはセルの組み合わせごとのPxeNB,cとを用いて、セルグループの保証送信電力値PxeNBを制御する電力制御部として機能する。
 上り制御信号生成部402は、制御部401からの指示に基づいて上り制御信号(送達確認信号やチャネル状態情報(CSI)等のフィードバック信号)を生成する。上りデータ信号生成部403は、制御部401からの指示に基づいて上りデータ信号を生成する。なお、制御部401は、無線基地局から通知される下り制御信号に上りリンクグラントが含まれている場合に、上りデータ信号生成部403に上りデータ信号の生成を指示する。上り制御信号生成部402には、本発明に係る技術分野での共通認識に基づいて説明される信号生成器または信号生成回路を適用できる。
 マッピング部404は、制御部401からの指示に基づいて、上り制御信号(送達確認信号等)と、上りデータ信号の無線リソース(PUCCH、PUSCH)への割り当てを制御する。
 デマッピング部405は、無線基地局10から送信された下りリンク信号をデマッピングして、下りリンク信号を分離する。チャネル推定部406は、デマッピング部405で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を下り制御信号復号部407、下りデータ信号復号部408に出力する。
 下り制御信号復号部407は、下り制御チャネル(PDCCH)で送信された下り制御信号(PDCCH信号)を復号し、スケジューリング情報(上りリソースへの割り当て情報)を制御部401へ出力する。また、下り制御信号に送達確認信号をフィードバックするセルに関する情報や、RF調整の適用有無に関する情報が含まれている場合も、制御部401へ出力する。
 下りデータ信号復号部408は、下り共有チャネル(PDSCH)で送信された下りデータ信号を復号し、判定部409へ出力する。判定部409は、下りデータ信号復号部408の復号結果に基づいて、再送制御判定(A/N判定)を行うとともに、結果を制御部401に出力する。
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
 本出願は、2014年6月30日出願の特願2014-134751に基づく。この内容は、すべてここに含めておく。

Claims (9)

  1.  異なる周波数を利用する1つ以上のセルからそれぞれ構成される複数のセルグループと通信を行うユーザ端末であって、
     前記セルごとの保証送信電力値および前記セルグループにおけるセルのアクティブ・非アクティブ情報を受信する受信部と、
     前記アクティブ状態のセル数と、前記セルごとの保証送信電力値とを用いて、前記セルグループの保証送信電力値を制御する電力制御部と、を有することを特徴とするユーザ端末。
  2.  異なる周波数を利用する1つ以上のセルからそれぞれ構成される複数のセルグループと通信を行うユーザ端末であって、
     前記セルおよび複数セルの組み合わせごとの保証送信電力値および前記セルグループにおけるセルのアクティブ・非アクティブ情報を受信する受信部と、
     前記アクティブ状態のセル数と、前記セルおよび複数セルの組み合わせごとの保証送信電力値とを用いて、前記セルグループの保証送信電力値を制御する電力制御部と、を有することを特徴とするユーザ端末。
  3.  前記セルグループの保証送信電力値を、自端末の許容最大送信電力に対する比率に基づいて制御することを特徴とする請求項1または請求項2に記載のユーザ端末。
  4.  前記セルの非アクティブ情報を受信した際に、前記セルグループを形成する複数の無線基地局に対してパワーヘッドルームを送信する送信部を有することを特徴とする請求項1または請求項2に記載のユーザ端末。
  5.  前記電力制御部は、前記セルがサブフレームセットに分けられる場合、前記サブフレームセットごとに保証送信電力値を制御することを特徴とする請求項1または請求項2に記載のユーザ端末。
  6.  前記セルごとの保証送信電力値は、上位レイヤシグナリングで設定されることを特徴とする請求項1に記載のユーザ端末。
  7.  異なる周波数を利用する1つ以上のセルからそれぞれ構成されるセルグループを形成し、前記セルグループと異なるセルグループを形成する他の無線基地局とデュアルコネクティビティを適用してユーザ端末と通信する無線基地局であって、
     前記ユーザ端末に対して自セルグループに属するセルごとの保証送信電力値または前記セルおよび複数セルの組み合わせごとの保証送信電力値ならびに前記自セルグループにおけるセルのアクティブ・非アクティブ情報を送信する送信部を有することを特徴とする無線基地局。
  8.  異なる周波数を利用する1つ以上のセルからそれぞれ構成されるセルグループを形成し、前記セルグループと異なるセルグループを形成する他の無線基地局とデュアルコネクティビティを適用して無線基地局がユーザ端末と通信する無線通信システムであって、
     前記無線基地局は、
     前記ユーザ端末に対して自セルグループに属するセルごとの保証送信電力値および前記自セルグループにおけるセルのアクティブ・非アクティブ情報を送信する送信部を有し、
     前記ユーザ端末は、
     前記セルごとの保証送信電力値および前記セルグループにおけるセルのアクティブ・非アクティブ情報を受信する受信部と、
     前記アクティブ状態のセル数と、前記セルごとの保証送信電力値とを用いて、前記セルグループの保証送信電力値を制御する電力制御部と、を有することを特徴とする無線通信システム。
  9.  異なる周波数を利用する1つ以上のセルからそれぞれ構成される複数のセルグループと通信を行うユーザ端末の無線通信方法であって、
     前記セルごとの保証送信電力値および前記セルグループにおけるセルのアクティブ・非アクティブ情報を受信する工程と、
     前記アクティブ状態のセル数と、前記セルごとの保証送信電力値とを用いて、前記セルグループの保証送信電力値を制御する工程と、を有することを特徴とする無線通信方法。
PCT/JP2015/065160 2014-06-30 2015-05-27 ユーザ端末、無線基地局、無線通信システムおよび無線通信方法 WO2016002393A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016531196A JP6585043B2 (ja) 2014-06-30 2015-05-27 ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
CN201580035510.5A CN106465298A (zh) 2014-06-30 2015-05-27 用户终端、无线基站、无线通信系统以及无线通信方法
US15/323,132 US20170142668A1 (en) 2014-06-30 2015-05-27 User terminal, radio base station, radio communication system and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-134751 2014-06-30
JP2014134751 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002393A1 true WO2016002393A1 (ja) 2016-01-07

Family

ID=55018947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065160 WO2016002393A1 (ja) 2014-06-30 2015-05-27 ユーザ端末、無線基地局、無線通信システムおよび無線通信方法

Country Status (4)

Country Link
US (1) US20170142668A1 (ja)
JP (1) JP6585043B2 (ja)
CN (1) CN106465298A (ja)
WO (1) WO2016002393A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094408A1 (en) * 2016-11-21 2018-05-24 Qualcomm Incorporated Power headroom reporting for systems with multiple transmission time intervals
WO2018229837A1 (ja) * 2017-06-12 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019030904A1 (ja) * 2017-08-10 2019-02-14 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
US11856523B2 (en) 2014-01-29 2023-12-26 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304164B2 (en) * 2016-11-18 2022-04-12 Qualcomm Incorporated Asynchronous CA handling
WO2018173438A1 (ja) * 2017-03-22 2018-09-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
US10517045B2 (en) 2017-11-17 2019-12-24 Qualcomm Incorporated Techniques for power control using carrier aggregation in wireless communications
US10863450B2 (en) * 2018-07-25 2020-12-08 Qualcomm Incorporated Power control in NR-NR dual connectivity
US11356962B2 (en) * 2019-01-07 2022-06-07 Qualcomm Incorporated Power control in NR-NR dual connectivity
WO2020144817A1 (ja) * 2019-01-10 2020-07-16 株式会社Nttドコモ ユーザ装置及び電力削減方法
US11589403B2 (en) * 2019-02-25 2023-02-21 Qualcomm Incorporated Uplink power control prioritization in dual connectivity
US11432250B2 (en) * 2019-06-27 2022-08-30 Qualcomm Incorporated Transmission power control
EP4197256A4 (en) * 2020-08-17 2024-05-01 Qualcomm Inc BEAM MANAGEMENT FOR A SECONDARY CELL GROUP IN RESTING STATE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317815A1 (en) * 2009-11-02 2011-05-04 Panasonic Corporation Power-limit reporting in a communication system using carrier aggregation
JP5542971B2 (ja) * 2010-02-25 2014-07-09 エルジー エレクトロニクス インコーポレイティド 多重搬送波システムにおけるパワーヘッドルーム情報の送信装置及び方法
CN102123437B (zh) * 2011-03-03 2016-02-17 电信科学技术研究院 功率余量上报和调度子帧的方法、系统及设备
CN102300305B (zh) * 2011-09-23 2013-09-04 电信科学技术研究院 一种上行功率控制的方法及装置
US9900844B2 (en) * 2014-01-13 2018-02-20 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"SGC Activation Deactivation", 3GPP TSG-RAN2 #85 MEETING, R2-140195, February 2014 (2014-02-01), pages 1 - 3, XP050737425 *
INTEL CORPORATION: "Discussion on physical layer aspects for support of dual connectivity", 3GPP TSG-RAN WG1 #77, RL-142569, May 2014 (2014-05-01), pages 1 - 5, XP050788157 *
LG ELECTRONICS: "Power control for dual connectivity", 3GPP TSG RAN WG1 MEETING #76BIS, RL-141344, March 2014 (2014-03-01), XP050787016 *
SAMSUNG: "UL Power Control in Dual Connectivity", 3GPP TSG RAN WG1 #76BIS, R1- 141293, April 2014 (2014-04-01), pages 1 - 2, XP050786965 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856523B2 (en) 2014-01-29 2023-12-26 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications
WO2018094408A1 (en) * 2016-11-21 2018-05-24 Qualcomm Incorporated Power headroom reporting for systems with multiple transmission time intervals
US10834687B2 (en) 2016-11-21 2020-11-10 Qualcomm Incorporated Power headroom reporting for systems with multiple transmission time intervals
TWI777990B (zh) * 2016-11-21 2022-09-21 美商高通公司 具有多個傳輸時間間隔的系統的功率餘量報告
WO2018229837A1 (ja) * 2017-06-12 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019030904A1 (ja) * 2017-08-10 2019-02-14 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
JPWO2019030904A1 (ja) * 2017-08-10 2019-11-07 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
US10772047B2 (en) 2017-08-10 2020-09-08 Fujitsu Limited Transmission power sharing between dual connectivity cell groups

Also Published As

Publication number Publication date
JP6585043B2 (ja) 2019-10-02
US20170142668A1 (en) 2017-05-18
JPWO2016002393A1 (ja) 2017-04-27
CN106465298A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6585043B2 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
US10993194B2 (en) User terminal, radio base station and radio communication method
EP3096568B1 (en) User terminal, radio base station, and radio communication method
JP5948376B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP5878595B2 (ja) ユーザ端末、無線通信システムおよび無線通信方法
JP6031058B2 (ja) ユーザ端末、無線基地局、無線通信システム及び無線通信方法
JP6343015B2 (ja) ユーザ端末および無線通信方法
JP6272483B2 (ja) ユーザ端末および無線通信方法
WO2016159231A1 (ja) ユーザ端末、無線基地局及び無線通信方法
EP3089537B1 (en) Inter-group cross-carrier-scheduling
WO2016006679A1 (ja) ユーザ端末、無線通信方法及び無線通信システム
WO2015170726A1 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
JP6340432B2 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
JP2016195413A (ja) ユーザ端末、無線基地局及び無線通信方法
JP6174200B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015045960A1 (ja) ユーザ端末および無線通信方法
JP2016066926A (ja) ユーザ端末、無線基地局および無線通信方法
JP6817982B2 (ja) ユーザ端末及び無線通信方法
JP6254240B2 (ja) ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15323132

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15815871

Country of ref document: EP

Kind code of ref document: A1