WO2016001741A1 - Ensemble anodique - Google Patents

Ensemble anodique Download PDF

Info

Publication number
WO2016001741A1
WO2016001741A1 PCT/IB2015/001109 IB2015001109W WO2016001741A1 WO 2016001741 A1 WO2016001741 A1 WO 2016001741A1 IB 2015001109 W IB2015001109 W IB 2015001109W WO 2016001741 A1 WO2016001741 A1 WO 2016001741A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
electrical connection
thermally insulating
support
anode assembly
Prior art date
Application number
PCT/IB2015/001109
Other languages
English (en)
Inventor
Sébastien BECASSE
Jean-François BILODEAU
Denis Laroche
Laurent Fiot
Steve Langlois
Original Assignee
Rio Tinto Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Limited filed Critical Rio Tinto Alcan International Limited
Priority to CN201580034611.0A priority Critical patent/CN106471160B/zh
Priority to BR112016028617-0A priority patent/BR112016028617B1/pt
Priority to US15/323,904 priority patent/US10443140B2/en
Priority to AU2015282392A priority patent/AU2015282392B2/en
Priority to EP15814208.3A priority patent/EP3164530B1/fr
Priority to CA2952166A priority patent/CA2952166C/fr
Priority to EA201790130A priority patent/EA037127B1/ru
Publication of WO2016001741A1 publication Critical patent/WO2016001741A1/fr
Priority to DKPA201670975A priority patent/DK179336B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to an anode assembly comprising an anode support and an anode for the production of aluminum.
  • Aluminum is conventionally produced in aluminum smelters, by electrolysis, according to the Hall-Héroult process.
  • an electrolysis cell comprising a box and an inner lining of refractory material.
  • the electrolytic cell also comprises cathode blocks arranged at the bottom of the box, traversed by conductive bars for collecting the electrolysis current and leading it to a subsequent electrolysis cell.
  • the electrolysis cell also comprises at least one anode block suspended on an anode support, such as a cross member, the anode block being partially immersed in an electrolytic bath, above the cathode blocks.
  • a liquid aluminum sheet, covering the cathode blocks, is formed as and when the reaction.
  • the flow of current is from the anode carrier to the cathode via the anode block and the electrolytic bath at a temperature of about 970 ° C wherein the alumina is dissolved.
  • This electrolysis current has an intensity of up to several hundreds of thousands of amperes.
  • the suspension of the anode block is then carried out by an intermediate element, capable of carrying this strong current, of resisting these very high temperatures but which is also capable of supporting the weight of the anode, such as a log made of steel.
  • the point reduction of the cross-section of the log made it possible to obtain a significant drop in temperature: from 650 ° C to 320 ° C for a reduction of the section over a log length of about 10 cm.
  • the log may be formed of two portions having different cross sections, and may be machined or formed of separate elements welded to reduce the loss of thermal energy by conduction.
  • this section reduction decreases the electrical conductance and therefore increases the power consumption.
  • this solution has a significant financial cost because it requires machining at least a portion from a log available in the general form of a standard cylinder. This machining step is also time consuming and contributes to a consequent loss of material.
  • the invention aims to provide a device for limiting heat losses without affecting its electrical conductance while limiting costs.
  • an anode assembly for the production of aluminum comprising an anode, an anode support, and an electrical connection element comprising a sealing portion and an out-sealing portion for electrically connecting the support of anode at the anode, wherein the anode comprises a recess in which is housed the sealing portion of the electrical connecting member and wherein a seal formed of an electrically conductive material retains the electrical connecting member, anode assembly comprising at least one thermally insulating element arranged between two facing walls belonging to the out-sealing portion of the electrical connection element and / or the anode support to reduce the heat transfer between the anode and the anode support when producing aluminum.
  • the sealing ensures an electrical conduction function while allowing mechanical attachment between the electrical connection element and the anode. Sealing typically extends along the side wall of the sealing portion of the electrical connecting member. This lateral contact between the seal and the electrical connection element allows a very good electrical conduction, but also a very good thermal conductivity between the anode and the electrical connection element.
  • the two walls facing each other are electrically and mechanically connected by means of a bead of electrically conductive material, plus particularly a weld seam.
  • the bead of electrically conductive material provides mechanical strength and electrical conduction in the area where the two walls are separated by the thermally insulating element.
  • the electrical connection element extends in an extension direction between the anode and the anode support and at least one thermally insulating element extends in a plane transverse to the direction of extension. .
  • the thermal transfer along a cross-section of the electrical connection element is significantly reduced because the heat losses by radiation between the surfaces between which the thermally insulating element is interposed are prevented.
  • At least one thermally insulating element is arranged between a wall of the electrical connection element and a wall of the anode support.
  • This configuration with a thermally insulating element interposed between the electrical connection element and the anode support is particularly advantageous in that the radiative heat flux and conduction between the electrical connection element and the anode support is limited. The presence of thermal insulation at this interface is thus very simple to implement and very effective in limiting energy losses.
  • the anode assembly comprises a bead of electrically conductive material, more particularly a weld bead, arranged to electrically and mechanically connect the electrical connection element and the anode support.
  • the electrical connection element provides mechanical support for the anode while promoting electrical conduction between the anode support and the anode.
  • the out-sealing portion of the electrical connection element delimits a housing in which is disposed at least one thermally insulating element.
  • the thermally insulating element prevents heat losses by radiation between opposite walls of the housing.
  • the housing is formed by a notch in the electrical connection element. This notch may in particular be machined in the electrical connection element.
  • the notch opens out laterally of the out-sealing portion of the electrical connection element so that the thermally insulating element is easily introduced into the electrical connection element.
  • This variant is thus very simple to put into practice.
  • the out-sealing portion of the electrical connection element comprises a first portion and a second portion, the first and second portions being separated by at least one thermally insulating element.
  • conductive heat transfer is limited on the cross-section of the out-seal portion of the electrical connection element between the first and second portions.
  • a complementary bead of electrically conductive material is arranged to cover at least a portion of said at least one thermally insulating element and to electrically and mechanically connect the first portion and the second portion.
  • the mechanical strength and the electrical conduction between the anode support and the anode thus remains very satisfactory, for a reduction of the important heat transfer.
  • the thermally insulating element is further protected by this enclosure in the housing.
  • the anode assembly further comprises a thermally insulating element disposed at the interface between the electrical connection element and the anode support.
  • a thermally insulating element disposed at the interface between the electrical connection element and the anode support.
  • the first portion disposed on the side of the anode support has a reduced cross section relative to that of the second portion disposed on the side of the anode and an electrical conduction member is arranged to electrically connect the second portion and the anode support.
  • an electrical conduction member is arranged to electrically connect the second portion and the anode support.
  • the electrical connection element comprises a substantially cylindrical shape, such as a steel log.
  • the steel makes it possible to withstand the corrosive environment in the electrolysis cell, at very high temperatures and is sufficiently resistant to support the anode.
  • At least one thermally insulating element comprises a plate form, formed in particular of a sintered powder, a film or a fiber felt comprising at least one refractory material.
  • the sintered powder has the advantage of being easily shaped and is adaptable to be disposed in any geometric configuration of the anode assembly.
  • Figure 1 illustrates an anode assembly according to a first embodiment of the invention.
  • FIG. 2 illustrates an anode assembly according to an alternative embodiment of the invention.
  • Figure 3 illustrates an anode assembly according to a second embodiment of the invention.
  • Figure 4 illustrates an anode assembly according to yet another embodiment of the invention.
  • the anode assembly 100 comprises an anode 3, typically of carbon, and an anode support 4 for the production of aluminum by electrolysis according to the Hall-Héroult method.
  • the anode 3 is suspended from the anode support 4 by an electrical connection element 1 comprising a sealing portion 21 ensuring the attachment to the anode 3 and the electrical conduction to the anode 3, and an out-seal portion 22 ensuring the mechanical suspension of the anode 3.
  • the anode 3 comprises in its upper part a recess 7 in which the sealing portion 21 of the electrical connecting element 1 is housed and fixed by a seal 8 of an electrically conductive material, cast iron for example.
  • the sealing portion 21 is therefore the lower part of the electrical connection element 1 which is caught in the seal 8, in contrast to the out-seal portion 22 which extends above the seal 8.
  • any other material suitable for sealing 8 may be used, especially sticky carbon paste.
  • This seal 8 covers all the surfaces of the recess 7 and the sealing portion 21 of the electrical connecting element 1 housed in the recess 7.
  • the seal 8 may otherwise extend along the side walls of the the sealing portion 21 and not on the underside.
  • the anode assembly also comprises a bead 9 of electrically conductive material, arranged to provide the electrical and mechanical connection between the anode support 4 and the electrical connection element 1, more particularly in the upper part of the out-seal portion 22 of the electrical connecting element 1.
  • the electrical connecting element 1 is typically made of steel and has a cylinder shape.
  • the bead 9 may be formed by a cupro-type copper-based weld disposed laterally at the interface between the electrical connection element 1 and the anode support 4.
  • FIG. 1 also illustrates in the out-seal portion 22 a thermally insulating element 6 which extends in a plane transverse to the direction of extension of the electrical connection element 1 between the anode 3 and the anode support 4.
  • the electrical connection element 1 comprises a housing 5, formed of a notch opening laterally and in which is disposed a thermally insulating element 6.
  • This thermally insulating element 6 may consist of any suitable refractory materials, such as sintered powder, a film or a fiber felt, comprising at least one refractory material.
  • the out-sealing portion 22 of the electrical connection element 1 comprises a first portion 11 and a second portion 12 distinct from the first portion 11 and between which a thermally insulating element 6 is arranged.
  • the heat transfer by conduction is thus significantly reduced by the fact that the entire cross section of the electrical connecting element 1 is covered by the thermally insulating element 6.
  • the electrical conduction is then provided by a complementary bead 13 of an electrically conductive material disposed laterally to the thermally insulating element 6 so as to electrically and mechanically connect the first portion 11 and the second portion 12.
  • the embodiment illustrated in FIG. 3 differs from the two previous embodiments, in particular in that the thermally insulating element 6 is disposed at the interface between the electrical connection element 1 and the anode support 4.
  • the embodiment illustrated in Figure 1 the bead 9 is disposed laterally to the insulating member 6 to provide an electrical and mechanical connection between the out-sealing portion 22 of the electrical connecting member 1 and the anode support 4. It has been observed that the electrical conduction between the anode and the anode support was mainly carried out by the weld bead 9 and not by the opposite surfaces brought into contact so that a thermally insulating element can advantageously be inserted between the electrical connection element and the anode support without prejudicing the overall electrical conduction. Radiation thermal losses can therefore be limited between the electrical connection element and the anode support.
  • the out-sealing portion 22 of the electrical connection element 1 comprises a first portion 1 1 disposed on the side of the anode support 4 and a second portion 12 disposed on the side of the anode 3.
  • the cross section of the first portion 1 1 is reduced compared to that of the second portion 12 to limit the heat transfer.
  • the anode assembly comprises a thermally insulating element 6 disposed between the electrical connection element 1 and the anode support 4 and further comprises a thermally insulating element 6 disposed between the first portion 1 1 and the second portion 12.
  • An electrical conduction member 14, such as a copper plate, is arranged to provide an electrical connection between the second portion 12 and the anode support 4 and rests against a portion of the first portion 11.
  • the heat transfer is very limited by the presence of the two thermally insulating elements 6 and the reduced cross section of the first portion 11.
  • the electrical connection is provided by the cord 9 and the complementary bead 13 as well as by the highly conductive copper plate.
  • the section of the copper plate being reduced, the thermal conduction thereby remains very limited.
  • the present invention provides an anode assembly 100 to effectively reduce the heat loss between the anode 3 and the anode carrier 4 by reducing heat transfer while also ensuring the maintenance of a very good electrical conduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Microwave Tubes (AREA)

Abstract

Ensemble anodique (100) comprenant une anode (3) et un support d'anode (4) pour la production d'aluminium, caractérisé en ce que l'ensemble anodique (100) comporte un élément de liaison électrique (1) pour relier électriquement le support d'anode (4) à l'anode (3), et au moins un élément thermiquement isolant (6) agencé pour réduire le transfert thermique entre l'anode (3) et le support d'anode (4) lors de la production d'aluminium.

Description

ENSEMBLE ANODIQUE
La présente invention concerne un ensemble anodique comprenant un support d'anode et une anode pour la production d'aluminium.
L'aluminium est classiquement produit dans des alumineries, par électrolyse, selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse comprenant un caisson et un revêtement intérieur en matériau réfractaire. La cuve d'électrolyse comprend également des blocs cathodiques agencés au fond du caisson, parcourus par des barres conductrices destinées à collecter le courant d'électrolyse et le conduire à une cuve d'électrolyse suivante. La cuve d'électrolyse comprend également au moins un bloc anodique suspendu à un support d'anode, tel qu'une traverse, le bloc anodique étant plongé partiellement dans un bain électrolytique, au-dessus des blocs cathodiques. Une nappe d'aluminium liquide, recouvrant les blocs cathodiques, se forme au fur et à mesure de la réaction. Le passage du courant s'effectue du support d'anode vers la cathode via le bloc anodique et le bain électrolytique à une température d'environ 970°C dans lequel l'alumine est dissoute. Ce courant d'électrolyse présente une intensité pouvant atteindre plusieurs centaines de milliers d'ampères. La suspension du bloc anodique est alors réalisée par un élément intermédiaire, capable de véhiculer ce fort courant, de résister à ces très fortes températures mais qui est également capable de soutenir le poids de l'anode, tel qu'un rondin réalisé en acier.
Or dans un tel dispositif, un flux thermique très important se forme entre l'anode en carbone et le support d'anode. Ce transfert thermique représente une perte énergétique importante et préjudiciable dans le processus d'électrolyse.
Il a été observé que la réduction ponctuelle de la section transversale du rondin permettait d'obtenir une chute de température importante : de 650°C à 320°C pour une réduction de la section sur une longueur de rondin de 10 cm environ. En effet, dans la section solide du rondin, l'extraction de chaleur vers le support d'anode se fait essentiellement par conduction, et la réduction de la section transversale du rondin limite fortement ce transfert thermique par conduction. Dans cette configuration, le rondin peut être formé de deux portions présentant des sections transversales différentes, et pouvant être usinées ou formées d'éléments distincts soudés, pour diminuer la perte d'énergie thermique par conduction. Toutefois, cette réduction de section diminue la conductance électrique et augmente par conséquent la consommation électrique. De plus, cette solution présente un coût financier important car elle nécessite d'usiner au moins une portion à partir d'un rondin disponible sous la forme générale d'un cylindre standard. Cette étape d'usinage est également consommatrice de temps et contribue à une perte de matériau conséquente.
Il est connu de la publication de brevet US6977031 de disposer un disque isolant thermiquement entre la paroi inférieure du rondin et le fond d'un manchon servant à la fixation du rondin dans un évidement de l'anode. Ce disque isolant thermiquement, disposé donc dans le fond de l'évidement permet un meilleur contrôle du trajet du flux de chaleur, lequel doit selon l'agencement de US6977031 , passer par les côtés de l'évidement, les parois verticales du manchon puis le rondin afin d'améliorer l'évacuation de chaleur depuis l'anode vers le support d'anode. Le résultat obtenu avec l'agencement de US6977031 est par conséquent inverse à celui recherché de diminution des pertes thermiques depuis l'anode vers le support anodique.
Aussi, l'invention a pour objectif de proposer un dispositif permettant de limiter les pertes thermiques sans affecter sa conductance électrique tout en limitant les coûts. Pour ce faire, l'invention propose un ensemble anodique pour la production d'aluminium comprenant une anode, un support d'anode, et un élément de liaison électrique comportant une portion de scellement et une portion hors-scellement pour relier électriquement le support d'anode à l'anode, dans lequel l'anode comprend un évidement dans lequel est logé la portion de scellement de l'élément de liaison électrique et dans lequel un scellement formé en un matériau électriquement conducteur retient l'élément de liaison électrique, l'ensemble anodique comprenant au moins un élément thermiquement isolant agencé entre deux parois se faisant face appartenant à la portion hors-scellement de l'élément de liaison électrique et/ou au support d'anode pour réduire le transfert thermique entre l'anode et le support d'anode lors de la production d'aluminium.
Ainsi, les pertes thermiques par rayonnement entre les surfaces entre lesquelles l'élément thermiquement isolant est intercalé sont empêchées, ce qui permet de réduire les pertes thermiques de cet ensemble anodique tout en conservant une liaison électrique satisfaisante entre le support d'anode et l'anode.
Le scellement permet d'assurer une fonction de conduction électrique tout en permettant une solidarisation mécanique entre l'élément de liaison électrique et l'anode. Le scellement s'étend typiquement le long de la paroi latérale de la portion de scellement de l'élément de liaison électrique. Ce contact latéral entre le scellement et l'élément de liaison électrique permet une très bonne conduction électrique, mais également une très bonne conductivité thermique entre l'anode et l'élément de liaison électrique.
De préférence, les deux parois se faisant face sont reliées électriquement et mécaniquement au moyen d'un cordon de matériau électriquement conducteur, plus particulièrement un cordon de soudure. Ainsi, le cordon de matériau électriquement conducteur assure la tenue mécanique et la conduction électrique dans la zone où les deux parois sont séparées par l'élément thermiquement isolant.
Selon une disposition avantageuse, l'élément de liaison électrique s'étend dans une direction d'extension entre l'anode et le support d'anode et au moins un élément thermiquement isolant s'étend dans un plan transversal à la direction d'extension. Dans cette configuration, le transfert thermique selon une section transversale de l'élément de liaison électrique est nettement diminué car les pertes thermiques par rayonnement entre les surfaces entre lesquelles l'élément thermiquement isolant est intercalé sont empêchées.
Selon une possibilité préférée, au moins un élément thermiquement isolant est agencé entre une paroi de l'élément de liaison électrique et une paroi du support d'anode. Cette configuration avec un élément thermiquement isolant intercalé entre l'élément de liaison électrique et le support d'anode est particulièrement avantageuse en ce que le flux thermique par rayonnement et conduction entre l'élément de liaison électrique et le support d'anode est limité. La présence d'un isolant thermique à cette interface est ainsi très simple à mettre en œuvre et très efficace pour limiter les pertes énergétiques.
De préférence, l'ensemble anodique comprend un cordon de matériau électriquement conducteur, plus particulièrement un cordon de soudure, agencé pour relier électriquement et mécaniquement l'élément de liaison électrique et le support d'anode. Ainsi, l'élément de liaison électrique assure le soutien mécanique de l'anode tout en favorisant la conduction électrique entre le support d'anode et l'anode.
Il a été observé par la demanderesse que le courant électrique circulant entre deux pièces soudées entre elles et dont les parois se font face et sont en contact passe en quasi- totalité par les soudures. Le positionnement d'un élément thermiquement isolant entre ces parois se faisant face permet donc un gain thermique et n'impact pas la conductivité électrique de l'ensemble anodique.
Selon une variante, la portion hors-scellement de l'élément de liaison électrique délimite un logement dans lequel est disposé au moins un élément thermiquement isolant. L'élément thermiquement isolant empêche les pertes thermiques par rayonnement entre des parois opposées du logement.
Typiquement, le logement est formé par une encoche dans l'élément de liaison électrique. Cette encoche peut être notamment usinée dans l'élément de liaison électrique.
De préférence, l'encoche débouche latéralement de la portion hors-scellement de l'élément de liaison électrique de sorte que l'élément thermiquement isolant est facilement introduit dans l'élément de liaison électrique. Cette variante est ainsi très simple à mettre en pratique.
Selon une possibilité, la portion hors-scellement de l'élément de liaison électrique comprend une première portion et une seconde portion, les première et seconde portions étant séparées par au moins un élément thermiquement isolant. Ainsi, le transfert thermique par conduction est limité sur la section transversale de la portion hors- scellement de l'élément de liaison électrique entre les première et seconde portions.
De préférence, un cordon complémentaire de matériau électriquement conducteur, plus particulièrement un cordon de soudure, est agencé pour recouvrir au moins une partie dudit au moins un élément thermiquement isolant et pour relier électriquement et mécaniquement la première portion et la seconde portion. La tenue mécanique et la conduction électrique entre le support d'anode et l'anode reste ainsi très satisfaisante, pour une réduction du transfert thermique importante. L'élément thermiquement isolant est en outre protégé par cet enfermement dans le logement.
Avantageusement, l'ensemble anodique comprend en outre un élément thermiquement isolant disposé à l'interface entre l'élément de liaison électrique et le support d'anode. Ainsi, la réduction du transfert thermique est encore améliorée.
Dans une variante, la première portion disposée du côté du support d'anode présente une section transversale réduite par rapport à celle de la seconde portion disposée du côté de l'anode et un organe de conduction électrique est agencé pour relier électriquement la seconde portion et le support d'anode. Dans cette configuration, la réduction de la section de la première portion réduisant le transfert thermique reste sans incidence sur la conduction électrique de par la présence l'organe de conduction électrique.
Typiquement, l'élément de liaison électrique comprend une forme sensiblement cylindrique, telle qu'un rondin en acier. L'acier permet en effet de résister à l'environnement corrosif dans la cuve d'électrolyse, aux températures très élevées et est suffisamment résistant pour soutenir l'anode.
Selon une possibilité, au moins un élément thermiquement isolant comprend une forme de plaque, formée notamment d'une poudre frittée, d'un film ou d'un feutre de fibres comprenant au moins un matériau réfractaire. La poudre frittée présente l'avantage d'être facilement conformée et est adaptable pour être disposée dans toute configuration géométrique de l'ensemble anodique.
D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description suivante de modes de réalisation de celle-ci, donnée à titre d'exemples non limitatifs et faite en référence aux dessins annexés. Les figures ne respectent pas nécessairement l'échelle de tous les éléments représentés de sorte à améliorer leur lisibilité. Dans la suite de la description, par souci de simplification, des éléments identiques, similaires ou équivalents des différentes formes de réalisation portent les mêmes références numériques.
La figure 1 illustre un ensemble anodique selon un premier mode de réalisation de l'invention.
La figure 2 illustre un ensemble anodique selon une variante de réalisation de l'invention.
La figure 3 illustre un ensemble anodique selon un second mode de réalisation de l'invention.
La figure 4 illustre un ensemble anodique selon encore un autre mode de réalisation de l'invention.
Comme illustré à la figure 1 , l'ensemble anodique 100 comprend une anode 3, typiquement en carbone, et un support d'anode 4 pour la production d'aluminium par électrolyse selon le procédé de Hall-Héroult. L'anode 3 est suspendue au support d'anode 4 par un élément de liaison électrique 1 comportant une portion de scellement 21 assurant la fixation à l'anode 3 et la conduction électrique vers l'anode 3, et une portion hors-scellement 22 assurant la suspension mécanique de l'anode 3.
L'anode 3 comprend dans sa partie supérieure un évidement 7 dans lequel la portion de scellement 21 de l'élément de liaison électrique 1 est logée et fixée par un scellement 8 en un matériau électriquement conducteur, en fonte par exemple. La portion de scellement 21 est donc la partie inférieure de l'élément de liaison électrique 1 qui se trouve prise dans le scellement 8, à contrario de la portion hors-scellement 22 qui s'étend au-dessus du scellement 8. Il est bien entendu dans le présent document que tout autre matériau adapté au scellement 8 peut être utilisé, notamment de la pâte carbonée collante. Ce scellement 8 recouvre l'ensemble des surfaces de l'évidement 7 et de la portion de scellement 21 de l'élément de liaison électrique 1 logé dans l'évidement 7. Le scellement 8 peut sinon s'étendre le long des parois latérales de la portion de scellement 21 et non sur le dessous.
L'ensemble anodique comporte également un cordon 9 de matériau électriquement conducteur, agencé pour assurer la liaison électrique et mécanique entre le support d'anode 4 et l'élément de liaison électrique 1 , plus particulièrement en partie supérieure de la portion hors-scellement 22 de l'élément de liaison électrique 1. L'élément de liaison électrique 1 est typiquement réalisé en acier et présente une forme de cylindre. Le cordon 9 peut être formé par une soudure à base de cuivre de type cupro, disposée latéralement à l'interface entre l'élément de liaison électrique 1 et le support d'anode 4. La figure 1 illustre également dans la portion hors-scellement 22 un élément thermiquement isolant 6 qui s'étend selon un plan transversal à la direction d'extension de l'élément de liaison électrique 1 entre l'anode 3 et le support d'anode 4. Cette configuration réduit ainsi efficacement le transfert thermique de l'anode 3 vers le support d'anode 4. Plus précisément, l'élément de liaison électrique 1 comprend un logement 5, formé d'une encoche débouchant latéralement et dans lequel est disposé un élément thermiquement isolant 6. Cet élément thermiquement isolant 6 peut être constitué de tous matériaux réfractaires adaptés, tels que de la poudre frittée, un film ou un feutre de fibres, comprenant au moins un matériau réfractaire.
Dans le mode de réalisation illustré à la figure 2, la portion hors-scellement 22 de l'élément de liaison électrique 1 comprend une première portion 1 1 et une seconde portion 12 distincte de la première portion 1 1 et entre lesquelles un élément thermiquement isolant 6 est disposé. Le transfert thermique par conduction est ainsi nettement diminué de par le fait que la totalité de la section transversale de l'élément de liaison électrique 1 est recouverte par l'élément thermiquement isolant 6. La conduction électrique est alors assurée par un cordon complémentaire 13 d'un matériau électriquement conducteur, disposé latéralement à l'élément thermiquement isolant 6 de sorte à relier électriquement et mécaniquement la première portion 11 et la seconde portion 12.
Le mode de réalisation illustré à la figure 3 diffère des deux modes de réalisation précédents notamment en ce que l'élément isolant thermiquement 6 est disposé à l'interface entre l'élément de liaison électrique 1 et le support d'anode 4. Comme pour le mode de réalisation illustré à la figure 1 , le cordon 9 est disposé latéralement à l'élément isolant 6 pour assurer une liaison électrique et mécanique entre la portion hors-scellement 22 de l'élément de liaison électrique 1 et le support d'anode 4. Il a été observé que la conduction électrique entre l'anode et le support d'anode était principalement réalisée par le cordon 9 de soudure et non par les surfaces opposées mises en contact de sorte qu'un élément thermiquement isolant peut avantageusement être inséré entre l'élément de liaison électrique et le support d'anode sans porter préjudice à la conduction électrique globale. Les pertes thermiques par rayonnement peuvent donc être limitées entre l'élément de liaison électrique et le support d'anode.
Selon le mode de réalisation illustré à la figure 4, la portion hors-scellement 22 de l'élément de liaison électrique 1 comprend une première portion 1 1 disposée du coté du support d'anode 4 et une seconde portion 12 disposée du coté de l'anode 3. La section transversale de la première portion 1 1 est réduite par comparaison à celle de la seconde portion 12 pour limiter le transfert thermique. Par ailleurs, l'ensemble anodique comprend un élément thermiquement isolant 6 disposé entre l'élément de liaison électrique 1 et le support d'anode 4 et comprend en outre un élément thermiquement isolant 6 disposé entre la première portion 1 1 et la seconde portion 12. Un organe de conduction électrique 14, tel qu'une plaque de cuivre, est agencé de sorte à assurer une liaison électrique entre la seconde portion 12 et le support d'anode 4 et repose contre une partie de la première portion 11. Dans cette configuration, le transfert thermique est très limité par la présence des deux éléments thermiquement isolants 6 et de la section transversale réduite de la première portion 11. Par ailleurs, la liaison électrique est assurée par le cordon 9 et le cordon complémentaire 13 ainsi que par la plaque de cuivre très conductrice. La section de la plaque de cuivre étant réduite, la conduction thermique par ce biais reste très limitée.
Ainsi, la présente invention propose un ensemble anodique 100 permettant de réduire efficacement la perte thermique entre l'anode 3 et le support anodique 4 par diminution du transfert thermique tout en assurant par ailleurs le maintien d'une très bonne conduction électrique.
Il va de soi que l'invention n'est pas limitée aux modes de réalisation décrits ci-dessus à titre d'exemples mais qu'elle comprend tous les équivalents techniques et les variantes des moyens décrits ainsi que leurs combinaisons.

Claims

REVENDICATIONS
1. Ensemble anodique (100) pour la production d'aluminium comprenant une anode (3), un support d'anode (4), et un élément de liaison électrique (1 ) comportant une portion de scellement (21 ) et une portion hors-scellement (22) pour relier électriquement le support d'anode (4) à l'anode (3), dans lequel l'anode (3) comprend un évidement (7) dans lequel est logé la portion de scellement de l'élément de liaison électrique (1 ) et dans lequel un scellement (8) formé en un matériau électriquement conducteur retient l'élément de liaison électrique (1 ), caractérisé en ce que au moins un élément thermiquement isolant (6) est agencé entre deux parois se faisant face appartenant à la portion hors-scellement (22) de l'élément de liaison électrique (1 ) et/ou au support d'anode (4) pour réduire le transfert thermique entre l'anode (3) et le support d'anode (4) lors de la production d'aluminium.
2. Ensemble anodique (100) selon la revendication 1 , dans lequel les deux parois se faisant face sont reliées électriquement et mécaniquement au moyen d'un cordon (9) de matériau électriquement conducteur.
3. Ensemble anodique (100) selon l'une des revendications 1 et 2, dans lequel l'élément de liaison électrique (1) s'étend dans une direction d'extension entre l'anode (3) et le support d'anode (4) et dans lequel au moins un élément thermiquement isolant (6) s'étend dans un plan transversal à la direction d!extension.
4. Ensemble anodique (100) selon l'une des revendications 1 à 3, dans lequel au moins un élément thermiquement isolant (6) est agencé entre une paroi de l'élément de liaison électrique (1) et une paroi du support d'anode (4).
5. Ensemble anodique (100) selon l'une des revendications 1 à 4, dans lequel l'ensemble anodique (100) comprend un cordon (9) de matériau électriquement conducteur agencé pour relier électriquement et mécaniquement l'élément de liaison électrique (1) et le support d'anode (4).
6. Ensemble anodique (100) selon l'Une des revendications 1 à 5, dans lequel la portion hors-scellement (22) de l'élément de liaison électrique (1 ) délimite un logement (5) dans lequel est disposé au moins un élément thermiquement isolant (6).
7. Ensemble anodique (100) selon la revendication 6, dans lequel le logement (5) est formé par une encoche dans la portion hors-scellement (22) de l'élément de liaison électrique (1).
8. Ensemble anodique (100) selon la revendication 7, dans lequel l'encoche débouche latéralement de la portion hors-scellement (22) de l'élément de liaison électrique (1 ).
9. Ensemble anodique (100) selon l'une des revendications 1 à 8, dans lequel la portion hors-scellement (22) de l'élément de liaison électrique (1) comprend une première portion (11) et une seconde portion (12), les première et seconde portions (11 ,12) étant séparées par au moins un élément thermiquement isolant (6).
10. Ensemble anodique (100) selon la revendication 9, dans lequel un cordon complémentaire (13) de matériau électriquement conducteur est agencé pour recouvrir au moins une partie dudit au moins un élément thermiquement isolant (6) et pour relier électriquement et mécaniquement la première portion (1 1) et la seconde portion (12).
11. Ensemble anodique (100) selon l'une des revendications 9 à 10, dans lequel la première portion (11 ) disposée du côté du support d'anode (4) présente une section transversale réduite par rapport à celle de la seconde portion (12) disposée du côté de l'anode (3) et dans lequel un organe de conduction électrique (14) est agencé pour relier électriquement la seconde portion (12) et le support d'anode (4).
12. Ensemble anodique (100) selon l'une des revendications 1 à 10, dans lequel l'élément de liaison électrique comprend une forme sensiblement cylindrique, telle qu'un rondin en acier.
13. Ensemble anodique (100) selon l'une des revendications 1 à 12, dans lequel au moins un élément thermiquement isolant (6) comprend une forme de plaque, formée notamment d'une poudre frittée, d'un film ou d'un feutre de fibres comprenant au moins un matériau réfractaire.
PCT/IB2015/001109 2014-07-04 2015-07-01 Ensemble anodique WO2016001741A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201580034611.0A CN106471160B (zh) 2014-07-04 2015-07-01 阳极组件
BR112016028617-0A BR112016028617B1 (pt) 2014-07-04 2015-07-01 Comjunto anódico
US15/323,904 US10443140B2 (en) 2014-07-04 2015-07-01 Anode assembly
AU2015282392A AU2015282392B2 (en) 2014-07-04 2015-07-01 Anode assembly
EP15814208.3A EP3164530B1 (fr) 2014-07-04 2015-07-01 Ensemble anodique
CA2952166A CA2952166C (fr) 2014-07-04 2015-07-01 Ensemble anodique
EA201790130A EA037127B1 (ru) 2014-07-04 2015-07-01 Анодный узел
DKPA201670975A DK179336B1 (en) 2014-07-04 2016-12-08 Anode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401517 2014-07-04
FR1401517 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016001741A1 true WO2016001741A1 (fr) 2016-01-07

Family

ID=51483482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/001109 WO2016001741A1 (fr) 2014-07-04 2015-07-01 Ensemble anodique

Country Status (10)

Country Link
US (1) US10443140B2 (fr)
EP (1) EP3164530B1 (fr)
CN (1) CN106471160B (fr)
AR (1) AR101928A1 (fr)
AU (1) AU2015282392B2 (fr)
BR (1) BR112016028617B1 (fr)
CA (1) CA2952166C (fr)
DK (1) DK179336B1 (fr)
EA (1) EA037127B1 (fr)
WO (1) WO2016001741A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397728A (en) * 1979-12-21 1983-08-09 Swiss Aluminium Ltd. Device for conducting electric current between electrolytic cells
US4612105A (en) * 1984-05-29 1986-09-16 Aluminium Pechiney Carbonaceous anode with partially constricted round bars intended for cells for the production of aluminium by electrolysis
US6977031B1 (en) * 1999-08-13 2005-12-20 Sra Technologies Pty Ltd. Anode assembly
US20100096258A1 (en) * 2007-06-22 2010-04-22 Sgl Carbon Se Reduced voltage drop anode assembly for aluminum electrolysis cell, method of manufacturing anode assemblies and aluminum electrolysis cell
WO2012100340A1 (fr) * 2011-01-28 2012-08-02 UNIVERSITé LAVAL Anode et connecteur pour une cellule industrielle de hall-héroult

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB962599A (en) * 1961-08-03 1964-07-01 Montedison Spa Electrolytic furnace for aluminium production
US3509030A (en) * 1967-12-15 1970-04-28 Alcan Res & Dev Casing liner
FR2527229A1 (fr) * 1982-05-18 1983-11-25 Aluminium Grece Procede de calorifugeage des anodes precuites dans les cuves d'electrolyse pour la production d'aluminium
FR2900938B1 (fr) * 2006-05-15 2008-06-20 Ecl Soc Par Actions Simplifiee Procede de fabrication d'anodes pour la production d'aluminium par electrolyse ignee, lesdites anodes et leur utilisation
CN101709485B (zh) * 2009-12-18 2012-07-04 中国铝业股份有限公司 一种采用惰性阳极生产原铝的铝电解槽

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397728A (en) * 1979-12-21 1983-08-09 Swiss Aluminium Ltd. Device for conducting electric current between electrolytic cells
US4612105A (en) * 1984-05-29 1986-09-16 Aluminium Pechiney Carbonaceous anode with partially constricted round bars intended for cells for the production of aluminium by electrolysis
US6977031B1 (en) * 1999-08-13 2005-12-20 Sra Technologies Pty Ltd. Anode assembly
US20100096258A1 (en) * 2007-06-22 2010-04-22 Sgl Carbon Se Reduced voltage drop anode assembly for aluminum electrolysis cell, method of manufacturing anode assemblies and aluminum electrolysis cell
WO2012100340A1 (fr) * 2011-01-28 2012-08-02 UNIVERSITé LAVAL Anode et connecteur pour une cellule industrielle de hall-héroult

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3164530A4 *

Also Published As

Publication number Publication date
AU2015282392B2 (en) 2019-03-14
AR101928A1 (es) 2017-01-25
US10443140B2 (en) 2019-10-15
BR112016028617A2 (pt) 2017-08-22
DK179336B1 (en) 2018-05-14
EP3164530A1 (fr) 2017-05-10
US20170167039A1 (en) 2017-06-15
DK201670975A1 (en) 2017-01-09
EA201790130A1 (ru) 2017-06-30
CN106471160B (zh) 2018-10-16
EA037127B1 (ru) 2021-02-09
EP3164530A4 (fr) 2018-01-17
CA2952166A1 (fr) 2016-01-07
BR112016028617B1 (pt) 2021-11-03
EP3164530B1 (fr) 2019-04-24
AU2015282392A1 (en) 2017-01-05
CN106471160A (zh) 2017-03-01
CA2952166C (fr) 2022-07-26

Similar Documents

Publication Publication Date Title
EP3030696B1 (fr) Dispositif d' electrolyse et ensemble anodique destines a la production d'aluminium, cellule d' electrolyse et installation comportant un tel dispositif
FR2565258A1 (fr) Anode carbonee a rondins partiellement retrecis destinee aux cuves pour la production d'aluminium par electrolyse
EP3164530B1 (fr) Ensemble anodique
CA2935676A1 (fr) Cuve d'electrolyse comportant un ensemble anodique contenu dans une enceinte de confinement
EP0872374B1 (fr) Frotteur en carbone à détecteur d'avaries fonctionnant sous alimentation électrique à intensite elevée
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
CA2935439A1 (fr) Cuve d'electrolyse comportant un dispositif de levage d'ensembles anodiques
EP0169152A1 (fr) Bloc cathodique modulaire et cathode à faible chute de tension pour cuves d'électrolyse hall-héroult
CA1214752A (fr) Barre cathodique comportant une semelle metallique, pour cuves d'electrolyse hall-heroult
EP2585624B1 (fr) Dispositif permettant d'extraire des cales de court-circuitage lors de la mise en circuit d'une cellule d'electrolyse pour la production d'aluminium
FR3012473A1 (fr) Dispositif d'etancheite pour capot de cellule d'electrolyse
FR2925531A1 (fr) Dispositif de support pour electrodes dans une installation d'electrolyses
CA3122500A1 (fr) Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique
EP3099845A1 (fr) Ensemble anodique et procede de fabrication associe
FR2546184A1 (fr) Barre cathodique comportant une semelle metallique pour cuves d'electrolyse hall-heroult
FR2971794A1 (fr) Dispositif de protection cathodique et procede d'installation associe
FR3016892A1 (fr) Dispositif de prechauffage d'un ensemble anodique.
WO2023087107A1 (fr) Système de revêtement intérieur pour cuve d'électrolyse
EP3899105A1 (fr) Ensemble anodique et procede de fabrication associe
FR3016900A1 (fr) Dispositif d'electrolyse et ensemble anodique destines a la production d'aluminium, cellule d'electrolyse et installation comportant un tel dispositif.
FR3016899A1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve.
WO2012172196A1 (fr) Cuve d'électrolyse destinée à être utilisée pour produire de l'aluminium
FR3078714A1 (fr) Assemblage cathodique pour cuve d’electrolyse
OA17791A (fr) Dispositif d'électrolyse et ensemble anodique destinés à la production d'aluminium, cellule d'électrolyse et installation comportant un tel dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814208

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015814208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2952166

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016028617

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15323904

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015282392

Country of ref document: AU

Date of ref document: 20150701

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201790130

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112016028617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161206