DK179336B1 - Anode assembly - Google Patents

Anode assembly Download PDF

Info

Publication number
DK179336B1
DK179336B1 DKPA201670975A DKPA201670975A DK179336B1 DK 179336 B1 DK179336 B1 DK 179336B1 DK PA201670975 A DKPA201670975 A DK PA201670975A DK PA201670975 A DKPA201670975 A DK PA201670975A DK 179336 B1 DK179336 B1 DK 179336B1
Authority
DK
Denmark
Prior art keywords
anode
anode assembly
thermally insulating
support
insulating element
Prior art date
Application number
DKPA201670975A
Other languages
Danish (da)
Inventor
Sébastien Becasse
Jean-Francois Bilodeau
Denis Laroche
Laurent Fiot
Steve Langlois
Original Assignee
Rio Tinto Alcan Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan Int Ltd filed Critical Rio Tinto Alcan Int Ltd
Publication of DK201670975A1 publication Critical patent/DK201670975A1/en
Application granted granted Critical
Publication of DK179336B1 publication Critical patent/DK179336B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Microwave Tubes (AREA)

Abstract

Anode assembly (100) comprising an anode (3) and an anode support (4) for the production of aluminum, characterized in that the anode assembly (100) comprises an electrical connecting element (1) to electrically connect the anode support (4) with the anode (3), and at least one thermally insulating element (6) arranged to reduce heat transfer between the anode (3) and the anode support (4) during the production of aluminum.

Description

<1θ> DANMARK (10)
Figure DK179336B1_D0001
<12> PATENTSKRIFT
Patent- og
Varemærkestyrelsen (51) lnt.CI.: C25C 3/12(2006.01) C 25 C 3/10(2006.01) C25C 7/02(2006.01) (21) Ansøgningsnummer: PA 2016 70975 (22) Indleveringsdato: 2016-12-08 (24) Løbedag: 2015-07-01 (41) Aim. tilgængelig: 2016-12-08 (45) Patentets meddelelse bkg. den: 2018-05-14 (86) International ansøgning nr: PCT/IB2015/001109 (86) International indleveringsdag: 2015-07-01 (85) Videreførelsesdag: 2016-12-08 (30) Prioritet: 2014-07-04 FR 1401517 (73) Patenthaver: Rio Tinto Alcan International Limited, 400-1190 Avenue des Canadiens de Montréal, Montréal H3B OE3 Québec, Canada (72) Opfinder: Sébastien Becasse, 215 Route de la Gare, 73250 Saint Pierre d'Albigny, Frankrig
Jean-Francois Bilodeau, 1807 Rue des Campanules, Jonquiére G7S 0B5, Québec ,, Canada Denis Laroche, 2251 rue de Regina, Jonquiére G7S 3C7 Québec, Canada
Laurent Fiot, 248 Rue de la Chapelle, L'Echaillon, 73300 Hermillon,, Frankrig Steve Langlois, 9 Rue Orée du Penet, 73800 Les Marches, Frankrig (74) Fuldmægtig: Zacco Denmark A/S, Arne Jacobsens Allé 15, 2300 København S, Danmark (54) Benævnelse: ANODE ASSEMBLY (56) Fremdragne publikationer:
US 3178363 A US 4612105 A US 4490233 A US 2012318667 A1 US 6977031 B1 (57) Sammendrag:
Anode assembly (100) comprising an anode (3) and an anode support (4) for the production of aluminum, characterized in that the anode assembly (100) comprises an electrical connecting element (1) to electrically connect the anode support (4) with the anode (3), and at least one thermally insulating element (6) arranged to reduce heat transfer between the anode (3) and the anode support (4) during the production of aluminum.
Fortsættes ...
.....ί·4
Figure DK179336B1_D0002
...........W >*
Ftg, 1
ANODE ASSEMBLY
The present invention relates to an anode assembly comprising an anode support and an anode for the production of aluminum.
Aluminum is conventionally produced in aluminum smelters by electrolysis using the HallHéroult process. To this end, an electrolytic cell is provided comprising a pot shell and a lining of refractory material. The electrolytic cell also comprises cathode blocks arranged at the bottom of the pot shell, covered by conductive bars designed to collect the electrolysis current in order to route it to the next electrolytic cell. The electrolytic cell also comprises at least one anode block suspended from an anode support, such as a crosspiece and partially immersed in an electrolytic bath, above the cathode blocks. A layer of liquid aluminum, covering the cathode blocks, is formed as the reaction proceeds. Current flow takes place from the anode support to the cathode via the anode block and the electrolytic bath at a temperature of about 970° C in which the alumina is dissolved. This electrolysis current can reach several hundreds of thousands of amperes. The anode block is then suspended by an intermediate member, capable of carrying the high current, of withstanding these very high temperatures and of supporting the weight of the anode, such as a stub made of steel.
In such a device, a very large heat flow is formed between the carbon anode and the anode support. This heat transfer is the source of major and detrimental energy loss in the electrolysis process.
It was observed that locally reducing the cross section of the stub made it possible to obtain a significant temperature drop: from 650°C to 320°C for a reduction in section over a stub length of about 10 cm. In the solid section of the stub, the extraction of heat to the anode support is primarily through conduction, and reducing the cross section of the stub greatly limits heat transfer by conduction. In this configuration, the stub may be formed of two portions having different cross-sections which can be machined or formed from separate welded elements to reduce the thermal energy loss by conduction. However, this section reduction reduces electrical conductance and therefore increases power consumption. Moreover, this solution has a significant financial cost because it requires at least a portion to be machined from an available stub in the general shape of a standard cylinder. This machining step is also time-consuming and contributes to a substantial loss of material.
It is known from patent publication US6977031 to place a thermally insulating disc between the bottom wall of the stub and the bottom of a sleeve serving to fix the stub into a recess in the anode. This thermally insulating disk arranged in the bottom of the recess allows better control of the heat flow path, which must, in the arrangement of US6977031, pass through the sides of the recess, the vertical walls of the sleeve and then the stub in order to improve the removal of heat from the anode to the anode support. The result obtained with the arrangement of US6977031 is therefore opposite to that intended, i.e. to reduce heat loss from the anode to the anode support.
The invention therefore aims to propose a device to limit heat losses without affecting its electrical conductance while minimizing costs. To do this, the invention provides an anode assembly for the production of aluminum comprising an anode, an anode support, and an electrical connecting element having a sealing portion and a non-sealing portion for electrically connecting the anode support to the anode, wherein the anode comprises a recess in which is housed the sealing portion of the electrical connecting element and wherein a seal formed of an electrically conductive material holds the electrical connecting element, the anode assembly comprising at least one thermally insulating element arranged between two walls facing each other belonging to the non-sealing portion of the electrical connection element and/or the anode support to reduce heat transfer between the anode and the anode support during the production of aluminum.
In this way, heat losses by radiation between the surfaces between which the thermally insulating element is interposed are prevented, which reduces the heat losses of the anode assembly while maintaining a satisfactory electrical connection between the anode support and the anode.
Sealing ensures an electrical conductivity function while allowing mechanical attachment between the electrical connecting element and the anode. Sealing typically extends along the side wall of the sealing portion of the electrical connecting element. This lateral contact between the seal and the electrical connecting element makes for very good electrical conductivity, and also very good thermal conductivity between the anode and the electrical connecting element.
Preferably, the two walls facing each other are electrically and mechanically connected by means of a bead of electrically conductive material, more particularly a weld bead. In this way, the bead of electrically conductive material provides mechanical strength and electrical conductivity in the area where the two walls are separated by a thermally insulating element.
In an advantageous arrangement, the electrical connecting element extends in a direction of extension between the anode and the anode support and at least one thermally insulating element extends in a plane transverse to the direction of extension. In this configuration, the heat transfer along the transverse section of the electrical connecting element is significantly decreased because heat losses by radiation between the surfaces between which the heat insulating element is interposed are prevented.
According to a preferred possibility, at least one thermally insulating element is arranged between a wall of the electrical connecting element and a wall of the anode support. This configuration with a thermally insulating member interposed between the electrical connecting element and the anode support is particularly advantageous in that heat flows by radiation and conduction between the electrical connecting element and the anode support are limited. The presence of thermal insulation at this interface is therefore very easy to use and very effective to limit energy losses.
Preferably, the anode assembly comprises a bead of electrically conductive material, more particularly a weld bead, arranged to electrically and mechanically connect the electrical connecting element and the anode support. In this way, the electrical connection element provides mechanical support for the anode while promoting electrical conductivity between the anode support and the anode.
It was observed by the applicant that the electrical current flowing between two parts welded together, the walls of which face each other and are in contact, passes almost entirely through the welds. Positioning a heat-insulating element between these walls facing each other allows heat gain and does not have any impact on the electrical conductivity of the anode assembly.
According to one variant, the non-sealing portion of the electrical connection element defines a housing in which at least one thermally insulating element is arranged. The thermally insulating element inhibits heat transfer by radiation between opposite walls of the housing.
Typically, the housing is formed by a notch in the electrical connection element. This notch can in particular be machined in the electrical connection element.
Preferably, the notch opens out laterally from the non-sealing portion of the electrical connection element so that the heat insulating element is easily inserted into the electrical connection element. This variant is therefore very simple to implement.
According to one possibility, the non-sealing portion of the electrical connection element comprises a first portion and a second portion, the first and second portions being separated by at least one thermally insulating element. In this way, conductive heat transfer is limited to the cross section of the non-sealing portion of the electrical connection element between the first and second portions.
Preferably, an additional bead of electrically conductive material, in particular a weld bead, is arranged to cover at least part of said at least one thermally insulating element and to electrically and mechanically connect the first portion and the second portion. The mechanical strength and electrical conductivity between the anode support and the anode therefore remains very satisfactory for a significant reduction in heat transfer. The heat insulating element is further protected by being confined in the housing.
Advantageously, the anode assembly further comprises a heat insulating element arranged at the interface between the electrical connection element and the anode support. In this way, reduction of heat transfer is further improved.
In one variant, the first portion arranged adjacent to the anode support has a smaller cross section than that of the second portion arranged near the anode and an electrical conductivity component is arranged to electrically connect the second portion and the anode support. In this configuration, the reduction of area of the first portion reducing heat transfer has no impact on electrical conductivity by virtue of the presence of the electrical conductivity component.
Typically, the electrical connection element comprises a substantially cylindrical shape, such as a steel stub. The steel makes it possible to withstand the corrosive environment in the electrolytic cell at very high temperatures and is of sufficient strength to support the anode.
According to one possibility, at least one thermally insulating element comprises a plate shape, formed, in particular, from a sintered powder, a film or a fiber mat including at least one refractory material. This sintered powder has the advantage of being easily shaped and is suitable to be arranged in any geometric configuration of the anode assembly.
Other aspects, objects and advantages of the invention will appear more clearly on reading the following description of embodiments thereof, given as non-limiting examples and with reference to the accompanying drawings. The figures are not necessarily to scale for all the elements shown in order to improve readability. In the following description, for simplicity, elements that are identical, similar or equivalent to the various embodiments have the same reference numbers.
Figure 1 shows an anode assembly according to a first embodiment of the invention.
Figure 2 shows an anode assembly according to an alternative embodiment of the invention.
Figure 3 shows an anode assembly according to a second embodiment of the invention. Figure 4 shows an anode assembly according to yet another embodiment of the invention.
As illustrated in Figure 1, the anode assembly 100 includes an anode 3, typically made of carbon, and an anode support 4 for the production of aluminum by electrolysis according to the Hall-Héroult process. Anode 3 is suspended from the anode support 4 by an electrical connecting element 1 having a sealing portion 21 for fixing to anode 3 and providing electrical conductivity to anode 3, and a non-sealing portion 22 which provides the mechanical suspension of anode 3.
Anode 3 comprises in its upper part a recess 7 in which the sealing portion 21 of the electric connecting element 1 is housed and fixed by a seal 8 made of an electrically conductive material, for example cast iron. The sealing portion 21 is therefore the lower part of the electrical connecting element 1 which is caught in the seal 8, in contrast to the non-sealing portion 22 which extends above the seal 8. It is understood in the present document that any other material suitable for the seal 8 can be used, including adhesive carbonaceous paste. This seal 8 covers all the surfaces of the recess 7 and the sealing portion 21 of the electrical connecting element 1 housed in recess 7. Seal 8 may alternatively extend along the side walls of the sealing portion 21 and not on the underside.
The anode assembly also comprises a bead 9 of electrically conductive material, arranged to provide electrical and mechanical connection between the anode support 4 and the electrical connecting element 1, especially in the upper part of the non-sealing portion 22 of electrical connecting element 1. Electrical connecting element 1 is typically made of steel and has the shape of a cylinder. Bead 9 can be formed by a weld based on cuprotype copper, arranged laterally at the interface between the electrical connecting element 1 and the anode support 4.
Figure 1 also illustrates, in the non-sealing portion 22, a thermally insulating element 6 which extends in a plane transverse to the direction of extension of the electrical connecting element 1 between the anode 3 and the anode support 4. This configuration effectively reduces heat transfer from the anode 3 to the anode support 4. More precisely, the electrical connecting element 1 comprises a housing 5, formed from a notch opening out laterally, in which a thermally insulating element 6 is arranged. This thermally insulating element 6 may be made of any suitable refractory materials, such as sintered powder, a film or a fiber mat, including at least one refractory material.
In the embodiment illustrated in figure 2, non-sealing portion 22 of the electrical connecting element 1 comprises a first portion 11 and a second portion 12 separate from the first portion 11 between which a thermally insulating element 6 is arranged. Conduction heat transfer is significantly decreased by the fact that the entire cross section of electrical connecting element 1 is covered by the thermally insulating element 6. Electrical conductivity is then provided by an additional bead 13 of an electrically conductive material arranged laterally in relation to thermally insulating element 6 so as to electrically and mechanically connect the first portion 11 and the second portion 12.
The embodiment shown in figure 3 differs from the two previous embodiments particularly in that the thermally insulating element 6 is arranged at the interface between the electrical connecting element 1 and the anode support 4. As with the embodiment illustrated in figure 1, bead 9 is arranged laterally in relation to insulating element 6 so as to ensure electrical and mechanical connection between electrical connecting element 1 and anode support 4. It was observed that electrical conductivity between the anode and the anode support mainly occurred via the weld bead 9 and not by the opposite surfaces being brought into contact so that a thermally insulating element may advantageously be inserted between the electrical connecting element and the anode support without detriment to overall electrical conductivity. Heat loss by radiation can be limited between the electrical connecting element and the anode support.
According to the embodiment illustrated in figure 4, the non-sealing portion 22 of electrical connecting element 1 comprises a first portion 11 arranged on the side of anode support 4 and a second portion 12 arranged on the side of anode 3. The cross section of the first portion 11 is smaller in relation to that of the second portion 12 so as to limit heat transfer. Furthermore, the anode assembly comprises a thermally insulating member 6 arranged between electrical connecting element 1 and anode support 4 and further includes a thermally insulating member 6 arranged between the first portion 11 and second portion
12. An electrical conductivity component 14, such as a copper plate, is arranged to provide an electrical connection between the second portion 12 and the anode support 4 and rests against a part of the first portion 11. In this configuration, heat transfer is very much limited by the presence of two thermally insulating elements 6 and the smaller cross section of the first portion 11. Furthermore, electrical connection is provided by bead 9 and additional bead 13 as well as the highly conductive copper plate. As the section of the copper plate is small, thermal conductivity through it is very limited.
So the present invention proposes an anode assembly 100 making it possible to effectively reduce heat loss between anode 3 and the anode support 4 by reducing heat transfer while also maintaining a very good electrical conductivity
It goes without saying that the invention is not limited to the embodiments described above by way of example, but includes all technical equivalents and variants of the means described and combinations of these.

Claims (13)

Patentkravclaims 1. Anodesamling (100) til fremstilling af aluminium, omfattende en anode (3), en anodestøtte (4) og et elektrisk forbindelseselement (1) med en tætnende del (21) og en ikke-tætnende del (22) til elektrisk at forbinde anodestøtten (4) med anoden (3),An anode assembly (100) for producing aluminum, comprising an anode (3), anode support (4), and an electrical connecting member (1) with a sealing member (21) and a non-sealing member (22) for electrically connecting the anode support (4) with the anode (3), 5 hvor anoden (3) omfatter en udsparing (7), hvori den tætnende del af det elektriske forbindelseselement (1) er anbragt, og hvor en tætning (8), der er udformet af et elektrisk ledende materiale, holder det elektriske forbindelseselement (1), kendetegnet ved, at mindst et termisk isolerende element (6) er anbragt mellem to vægge, der vender mod hinanden, og hører til den ikke-tætnende del (22) af det5 wherein the anode (3) comprises a recess (7) wherein the sealing portion of the electrical connector (1) is disposed and a seal (8) formed of an electrically conductive material holds the electrical connector (1). , characterized in that at least one thermally insulating element (6) is arranged between two facing walls and belongs to the non-sealing part (22) thereof. 10 elektriske forbindelseselement (1) og/eller til anodestøtten (4) til reduktion af varmeoverførsel mellem anoden (3) og anodestøtten (4) under fremstillingen af aluminium.10 electrical connector (1) and / or to the anode support (4) for reducing heat transfer between the anode (3) and the anode support (4) during the manufacture of aluminum. 2. Anodesamling (100) ifølge krav 1, hvor de to vægge, der vender mod hinanden, er elektrisk og mekanisk forbundet ved hjælp af en vulst (9) af elektrisk ledendeAnode assembly (100) according to claim 1, wherein the two facing walls are electrically and mechanically connected by an electrically conductive bead (9) 15 materiale.15 material. 3. Anodesamling (100) ifølge et af kravene 1 til 2, hvor det elektriske forbindelseselement (1) strækker sig i en forlængelsesretning mellem anoden (3) og anodestøtten (Anode assembly (100) according to one of claims 1 to 2, wherein the electrical connection element (1) extends in an extension direction between the anode (3) and the anode support ( 4), og hvor et termisk isolerende element (6) strækker sig i et plan på tværs af forlængelsesretningen.4) and wherein a thermally insulating element (6) extends in a plane transverse to the extension direction. 20 4. Anodesamling (100) ifølge et af kravene 1 til 3, hvor et termisk isolerende element (6) er anbragt mellem en væg af det elektriske forbindelseselement (1) og en væg af anodestøtten (4).Anode assembly (100) according to one of claims 1 to 3, wherein a thermally insulating element (6) is arranged between a wall of the electrical connecting element (1) and a wall of the anode support (4). 5. Anodesamling (100) ifølge et af kravene 1 til 4, hvor anodesamlingen (100) endvidere omfatter en vulst (9) af elektrisk ledende materiale, der er beregnet tilAnode assembly (100) according to one of claims 1 to 4, wherein the anode assembly (100) further comprises a bead (9) of electrically conductive material intended for 25 elektrisk og mekanisk at forbinde det elektriske forbindelseselement (1) og anodestøtten (4).25 electrically and mechanically connecting the electrical connector (1) and the anode support (4). 6. Anodesamling (100) ifølge et af kravene 1 til 5, hvor den ikke-tætnende del (22) af det elektriske forbindelseselement (1) definerer et hus (5), hvor der er anbragt et termisk isolerende element (6).Anode assembly (100) according to one of claims 1 to 5, wherein the non-sealing portion (22) of the electrical connector (1) defines a housing (5) where a thermally insulating element (6) is arranged. 3030 7. Anodesamling (100) ifølge krav 6, hvor huset (5) er dannet af en indskæring i den ikke-tætnende del (22) af det elektriske forbindelseselement (1).Anode assembly (100) according to claim 6, wherein the housing (5) is formed by a notch in the non-sealing portion (22) of the electrical connector (1). 8. Anodesamling (100) ifølge krav 7, hvor indskæringen udmunder lateralt fra den ikketætnende del (22) af det elektriske forbindelseselement (1).Anode assembly (100) according to claim 7, wherein the notch opens laterally from the non-sealing portion (22) of the electrical connector (1). 9. Anodesamling (100) ifølge et af kravene 1 til 8, hvor den ikke-tætnende del (22) af det elektriske forbindelseselement (1) omfatter en første del (11) og en anden delAnode assembly (100) according to one of claims 1 to 8, wherein the non-sealing portion (22) of the electrical connector (1) comprises a first portion (11) and a second portion. 5 (12), hvor den første og anden del (11,12) er separeret af et termisk isolerende element (6).5 (12), wherein the first and second parts (11, 12) are separated by a thermally insulating element (6). 10. Anodesamling (100) ifølge krav 9, hvor en yderligere vulst (13) af elektrisk ledende materiale er beregnet til at dække mindst en del af det termisk isolerende element (6) og elektrisk og mekanisk at forbinde den første del (Anode assembly (100) according to claim 9, wherein an additional bead (13) of electrically conductive material is intended to cover at least a portion of the thermally insulating element (6) and to connect the first portion (electrically and mechanically) 11) og den anden del (11) and the second part ( 12).12). 10 11. Anodesamling (100) ifølge et af kravene 9 til 10, hvor den første del (11), der er anbragt på siden af anodestøtten (4), har et mindre tværsnit, der er reduceret i forhold til tværsnittet af den anden del (12), som er anbragt på siden af anoden (3), og hvor en komponent (14) med elektrisk ledeevne er beregnet til elektrisk at forbinde den anden del (12) og anodestøtten (4).Anode assembly (100) according to any one of claims 9 to 10, wherein the first portion (11) disposed on the side of the anode support (4) has a smaller cross-section reduced relative to the cross-section of the second portion. (12) located on the side of the anode (3) and wherein a component (14) of electrical conductivity is intended to electrically connect the second part (12) to the anode support (4). 15 12. Anodesamling (100) ifølge et af kravene 1 til 10, hvor det elektrisk ledende materiale har en cylindrisk form, såsom en stålstub.Anode assembly (100) according to one of claims 1 to 10, wherein the electrically conductive material has a cylindrical shape, such as a steel stub. 13. Anodesamling (100) ifølge et af kravene 1 til 12, hvor det mindst ene termisk isolerende element (6) har en pladeform, der især er dannet af et sintret pulver, en film eller en fibermåtte, der indbefatter mindst et modstandsdygtigt materiale.Anode assembly (100) according to any one of claims 1 to 12, wherein the at least one thermally insulating element (6) has a sheet form formed in particular of a sintered powder, film or fiber mat including at least one resistant material. 1/2 1001/2 100
DKPA201670975A 2014-07-04 2016-12-08 Anode assembly DK179336B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401517 2014-07-04
PCT/IB2015/001109 WO2016001741A1 (en) 2014-07-04 2015-07-01 Anode assembly

Publications (2)

Publication Number Publication Date
DK201670975A1 DK201670975A1 (en) 2017-01-09
DK179336B1 true DK179336B1 (en) 2018-05-14

Family

ID=51483482

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201670975A DK179336B1 (en) 2014-07-04 2016-12-08 Anode assembly

Country Status (10)

Country Link
US (1) US10443140B2 (en)
EP (1) EP3164530B1 (en)
CN (1) CN106471160B (en)
AR (1) AR101928A1 (en)
AU (1) AU2015282392B2 (en)
BR (1) BR112016028617B1 (en)
CA (1) CA2952166C (en)
DK (1) DK179336B1 (en)
EA (1) EA037127B1 (en)
WO (1) WO2016001741A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178363A (en) * 1961-08-03 1965-04-13 Varda Giuseppe De Apparatus and process for production of aluminum and other metals by fused bath electrolysis
US4490233A (en) * 1982-05-18 1984-12-25 Aluminium De Grece Process for thermally insulating precalcined anodes in electrolysis cells for the production of aluminum
US4612105A (en) * 1984-05-29 1986-09-16 Aluminium Pechiney Carbonaceous anode with partially constricted round bars intended for cells for the production of aluminium by electrolysis
US6977031B1 (en) * 1999-08-13 2005-12-20 Sra Technologies Pty Ltd. Anode assembly
US20120318667A1 (en) * 2009-12-18 2012-12-20 Aluminum Corporation Of China Limited Electrolytic Cell for Producing Primary Aluminum by Using Inert Anode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509030A (en) * 1967-12-15 1970-04-28 Alcan Res & Dev Casing liner
DE3009098C2 (en) * 1979-12-21 1983-02-24 Schweizerische Aluminium AG, 3965 Chippis Method of conducting electricity between electrolytic furnaces
FR2900938B1 (en) * 2006-05-15 2008-06-20 Ecl Soc Par Actions Simplifiee METHOD FOR MANUFACTURING ANODES FOR THE PRODUCTION OF ALUMINUM BY IGNEE ELECTROLYSIS, THE SAID ANODES AND THEIR USE
EP2006419A1 (en) 2007-06-22 2008-12-24 Sgl Carbon Ag Reduced voltage drop anode assembly for aluminium electrolysis cell
WO2012100340A1 (en) 2011-01-28 2012-08-02 UNIVERSITé LAVAL Anode and connector for a hall-heroult industrial cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178363A (en) * 1961-08-03 1965-04-13 Varda Giuseppe De Apparatus and process for production of aluminum and other metals by fused bath electrolysis
US4490233A (en) * 1982-05-18 1984-12-25 Aluminium De Grece Process for thermally insulating precalcined anodes in electrolysis cells for the production of aluminum
US4612105A (en) * 1984-05-29 1986-09-16 Aluminium Pechiney Carbonaceous anode with partially constricted round bars intended for cells for the production of aluminium by electrolysis
US6977031B1 (en) * 1999-08-13 2005-12-20 Sra Technologies Pty Ltd. Anode assembly
US20120318667A1 (en) * 2009-12-18 2012-12-20 Aluminum Corporation Of China Limited Electrolytic Cell for Producing Primary Aluminum by Using Inert Anode

Also Published As

Publication number Publication date
CA2952166C (en) 2022-07-26
BR112016028617A2 (en) 2017-08-22
AU2015282392A1 (en) 2017-01-05
CA2952166A1 (en) 2016-01-07
US10443140B2 (en) 2019-10-15
EP3164530B1 (en) 2019-04-24
WO2016001741A1 (en) 2016-01-07
BR112016028617B1 (en) 2021-11-03
DK201670975A1 (en) 2017-01-09
EP3164530A4 (en) 2018-01-17
CN106471160A (en) 2017-03-01
US20170167039A1 (en) 2017-06-15
AU2015282392B2 (en) 2019-03-14
EA201790130A1 (en) 2017-06-30
CN106471160B (en) 2018-10-16
EP3164530A1 (en) 2017-05-10
AR101928A1 (en) 2017-01-25
EA037127B1 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
NO343882B1 (en) Cathodes for aluminum electrolysis cell with expanded graphite liner
RU2449058C2 (en) Electrolyser for aluminium production provided with voltage drop decreasing means
DK180505B1 (en) APPLIANCES AND SYSTEMS FOR VERTICAL ELECTROLYSIS CELLS
CA2964835A1 (en) Cathode current collector for a hall-heroult cell
JP7284240B2 (en) Hall-Helloucel Cathode Current Collector/Connector
CA2919331A1 (en) Electrolytic device and anode assembly intended for the production of aluminium, electrolytic cell and apparatus comprising such a device
CA2980832A1 (en) Cathode block for electrolytic cell suitable for the hall-heroult process
HU195261B (en) Carbon anode for electrolytic cell for producing aluminium
DK179336B1 (en) Anode assembly
DK178961B1 (en) ELECTROLYTIC CELL INTENDED FOR PRODUCTION OF ALUMINUM AND ELECTROLYTIC MELTING COMPANY, INCLUDING THIS CELL
WO2017163162A1 (en) Flexible electrical connector for electrolytic cell
NO332628B1 (en) Aluminum electro recovery cells with oxygen-generating anodes
NO20141570A1 (en) anode hanger
US20090236233A1 (en) Aluminum electrolysis cell electrolyte containment systems and apparatus and methods relating to the same
NO321709B1 (en) Current rail, electrode mass and electrode
CN214937868U (en) Anode fixing structure of rare earth metal electrolytic cell and electrolytic cell
RU2209856C1 (en) Cathode unit for aluminum electrolyzer
RU2381301C1 (en) Cathode assembly of aluminium electrolytic cell
RU2149925C1 (en) Cathode unit of aluminum electrolyzer
CN103608489A (en) Electrolysis cell intended to be used to produce aluminium
CA2847160A1 (en) System and method for control of layer formation in an aluminium electrolysis cell
FI3510183T3 (en) Improvements in hanger bars
NO883887L (en) CARBON ANNEX MOUNTING DEVICE.
WO2014065703A1 (en) Cathode section for an aluminium electrolytic cell