WO2016000610A1 - 潮流能发电装置 - Google Patents

潮流能发电装置 Download PDF

Info

Publication number
WO2016000610A1
WO2016000610A1 PCT/CN2015/083005 CN2015083005W WO2016000610A1 WO 2016000610 A1 WO2016000610 A1 WO 2016000610A1 CN 2015083005 W CN2015083005 W CN 2015083005W WO 2016000610 A1 WO2016000610 A1 WO 2016000610A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbines
bearing
central shaft
water
tidal current
Prior art date
Application number
PCT/CN2015/083005
Other languages
English (en)
French (fr)
Inventor
林东
Original Assignee
浙江舟山联合动能新能源开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舟山联合动能新能源开发有限公司 filed Critical 浙江舟山联合动能新能源开发有限公司
Priority to US15/541,372 priority Critical patent/US10371205B2/en
Priority to EP15814274.5A priority patent/EP3193008A4/en
Priority to CA2973271A priority patent/CA2973271A1/en
Publication of WO2016000610A1 publication Critical patent/WO2016000610A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/1055Details of supply of the liquid to the bearing from radial inside, e.g. via a passage through the shaft and/or inner sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M11/12Indicating devices; Other safety devices concerning lubricant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/06Bearing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/02Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with gravity feed or drip lubrication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/57Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/12Geometry two-dimensional rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/14Geometry two-dimensional elliptical
    • F05B2250/141Geometry two-dimensional elliptical circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to a power generating device, and more particularly to a tidal current power generating device.
  • Ocean energy (including tidal energy, tidal energy, wave energy, ocean current energy) refers to the energy of seawater flow. As a renewable energy source, it has abundant reserves and wide distribution, and has excellent development prospects and value.
  • the way of utilizing ocean energy is mainly power generation. Its working principle is similar to that of wind power generation and conventional hydropower generation, that is, converting the mechanical energy of seawater into electric energy through an energy conversion device. Specifically, first, seawater impacts the turbine, which converts the energy of the water stream into rotational mechanical energy, and then the turbine drives the generator to generate electricity through the mechanical transmission system, and finally converts it into electrical energy.
  • the conventional marine power generation device uses only one or a maximum of two vertical axis hydroelectric generators.
  • the diameter of the impeller of the turbine and the length in the depth direction are usually required to be made as large as possible.
  • the existing vertical axis turbines are limited by the materials of manufacture and the environment in which they are used, and cannot be made large or deep.
  • Known vertical axis turbines can only reach depths of 5-6 meters below sea level in the sea. The scale of the entire ocean energy power generation device is severely constrained, the power generation capacity cannot meet the demand, and the cost of the power generation device is also high.
  • the existing ocean power generation device can only be provided with a vertical axis turbine in the water depth direction (ie, perpendicular to the horizontal plane), not only because the above-mentioned vertical axis turbine cannot be made long in the water depth direction, but also The important reason is that the central axis of the vertical axis turbine cannot penetrate deep enough into the sea in practical applications.
  • the central shaft is easily deformed or even broken due to the huge impact force of the seawater, thereby making the entire power generating device unusable.
  • the prior art has overlooked the problem of bearing-to-center shaft protection. Usually the central shaft in a conventional marine power plant is protected by only one or two bearings.
  • the tightness of the bearing is one of the important indicators that determine the performance of the bearing.
  • the way of increasing the sealing ring is generally adopted to improve the sealing of the bearing. Whether it is a rotating shaft used on land or a rotating shaft used in a submarine or a ship, most of it is subjected to an external force in the axial direction. Therefore, the traditional sealing ring can solve the traditional bearing sealing requirements.
  • a power generating device that utilizes ocean energy, especially tidal current, can generate a large impact force in the radial direction of the water flow using the central axis. After a period of use, the seal between the center shaft and the conventional bearing is prone to deformation, and the sealing of the bearing cannot be guaranteed. Since the problem of high sealing demand cannot be solved, the existing marine power generation device can only abandon the rolling bearing using oil as a lubricant, and select a sliding bearing that can use water as a lubricant. However, the prior art has overlooked a problem. The water that can act as a lubricant must be clean water.
  • the existing marine power generation device often faces the problem that the replacement of the shaft system (including the center shaft and the bearing) leads to cost increase in addition to the above-mentioned problems of installation and maintenance and the central shaft cannot be made long.
  • the present invention provides a tidal current power generating device.
  • the present invention provides a tidal energy power generating apparatus comprising an outer frame, at least one inner frame, at least two water turbines, at least one central shaft, at least one generator, and at least three bearings.
  • At least one inner frame is detachably disposed within the outer frame.
  • At least two turbines are located below the surface of the water and are disposed within an inner frame, at least two turbines are coaxially disposed, and at least two of the turbines are vertical axis turbines.
  • At least one central shaft passes through at least two water turbines, the axial direction of the central shaft is perpendicular to the horizontal plane, and the central shaft rotates with the rotation of the water turbine.
  • At least one generator is located on the water, at least one The generator is connected to one end of the central shaft.
  • At least three bearings are sleeved with a central shaft, and at least three bearings are located on opposite sides and in the middle of the two turbines.
  • the number of water turbines is at least four, and each of the two coaxially arranged turbines is a group, at least two sets of turbines are disposed in one inner frame, and the adjacent two sets of turbines are arranged in an axisymmetric manner. So that the rotation directions of the adjacent two sets of turbines are opposite.
  • the tidal current power generating device further includes an underwater shafting rotation protection device, and each of the underwater shaft rotation protection devices includes a lubricant storage tank, at least six sealing rings and a conduit.
  • the lubricant storage tank stores lubricant and the lubricant storage tank is located on the water.
  • Each of the two sealing rings corresponds to one bearing and is sleeved on the central shaft, and a lubricant chamber is formed between each of the two sealing rings and the corresponding bearing and the central shaft.
  • One end of the conduit is connected to the lubricant storage tank and the other end is connected to the lubricant chamber.
  • the underwater shafting rotation protection device further includes a detection module disposed in the lubricant storage tank to detect whether the lubricant is reduced.
  • the bearings are plain bearings, and each lubricant chamber is formed by two seal rings with the bearing and the central shaft.
  • the bearing is a rolling bearing
  • the underwater shafting rotation protection device further comprises a bearing seat, each lubricant cavity being formed by two sealing rings, a bearing, a bearing seat and a central shaft.
  • the outer frame has a plurality of fixed piles, and the outer frame is fixed to the sea floor by piling.
  • the outer frame has a plurality of reduced flow resistance structures.
  • the tidal current power generating device provided by the present invention can realize modular assembly and replacement on the water surface by providing a detachable inner frame and an outer frame, thereby greatly reducing maintenance and installation costs, and overcoming the traditional ocean.
  • the power generation device cannot be commercialized and large-scale.
  • a "multi-point constraint" is achieved on the central axis, so that the scale of the tidal power generating device can be expanded not only horizontally (perpendicular to the horizontal direction of the water flow) It can also be expanded longitudinally (perpendicular to the water depth direction of the horizontal plane), greatly increasing the power generation power, and overcoming the problem that the existing ocean energy power generation device cannot be "bigger” or "deep".
  • the underwater shaft rotation protection device provided by the invention can effectively protect external impurities, especially the sediment in the water enters the bearing, thereby effectively protecting the normal operation of the bearing.
  • the tidal current power generation device provided by the invention adopts the underwater shaft rotation protection device to greatly reduce the maintenance time and the maintenance cost while prolonging the service life of the bearing, and effectively ensures that the power generation efficiency is not affected.
  • the bearing in the tidal current power generating device provided by the present invention can adopt a rolling bearing, and overcomes the technical barrier of the underwater bearing that can only use water lubrication in the underwater shafting system.
  • the frame is a detachable outer frame and an inner frame, which can quickly and easily repair or replace the underwater shaft rotation protection device, which greatly reduces the maintenance cost.
  • Fig. 1 is a side view showing a tidal current power generating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of the circle mark V in FIG.
  • Fig. 3 is a plan view showing a tidal current power generating apparatus according to a second embodiment of the present invention.
  • Fig. 4 is a front elevational view showing a tidal current power generating apparatus according to a second embodiment of the present invention.
  • Fig. 5 is a schematic view showing a built-in module of a tidal current power generating apparatus according to a second embodiment of the present invention.
  • FIG. 6 is an enlarged schematic view showing the circle mark U in FIG.
  • FIG. 1 is a side view showing a tidal current power generating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of the circle mark V in FIG. Please refer to Figure 1 and Figure 2 together.
  • the tidal current power generating device 100 provided in this embodiment includes an outer frame 1, at least one inner frame 2, at least two water turbines 3, at least one central shaft 4, at least one generator 5, and at least three bearings 6.
  • At least one inner frame 2 is detachably disposed within the outer frame 1.
  • the inner frame 2 can be provided with a hook (not shown), and the outer frame 1 can be provided with a card slot (not shown).
  • the inner frame 2 is embedded by the mutual engagement of the hook and the card slot. Go inside the outer frame 1.
  • the present invention does not limit the manner of fixing between the inner frame 2 and the outer frame 1.
  • At least one inner frame 2, at least two water turbines 3, at least one central shaft 4, at least one generator 5 and at least three bearings 6 together form a built-in module.
  • at least two hydraulic turbines 3, at least one central shaft 4, at least one generator 5 and at least three bearings 6 may be first fixed in the inner frame 2, and then at least one inner frame 2 is fixed to the outer frame 1
  • the modular installation of the tidal power generation device 100 is achieved.
  • the installation of the built-in module can be carried out on the shore, and then the built-in module is suspended into the outer frame 1 placed in the sea and the outer frame 1 is fixed, thereby realizing the installation work on the sea surface, greatly simplifying the installation procedure and reducing the installation time. Reduce the difficulty of installation in the ocean.
  • the tidal current power generating device 100 of the present invention can directly take out the built-in module from the sea for dimensioning. Repair or replacement, the rapid replacement and maintenance of the tidal power generation device 100 on the sea surface is greatly reduced, and the maintenance cost is greatly reduced, so that the commercialization of the tidal power generation device 100 can be realized.
  • the detachable outer frame 1 and the inner frame 2 the problems that the prior art installation and maintenance must be implemented in the sea are overcome.
  • the drawbacks of the conventional marine tidal energy power generation device cannot be achieved.
  • the world's largest ocean tidal power generation unit generates 1.2 megawatts of power.
  • the power generation unit of the tidal current power generation unit of the present invention generates 5 megawatts of power, which is much higher than the existing ocean tidal power generation. The maximum amount of power generated by the device.
  • At least two turbines 3 are located below the surface of the water and are disposed within an inner frame 2. At least two turbines 3 in the present invention are coaxially disposed and the two turbines 3 are vertical axis turbines. As shown in Fig. 1, the turbine whose rotation axis is perpendicular to the horizontal plane P is a vertical axis turbine.
  • the "coaxial arrangement" in the present invention means that the two turbines 3 are arranged in parallel up and down from the direction shown in Fig. 1, and the axis of the turbine 3 located above in Fig. 1 and the axis of the turbine 3 located below are The same straight line.
  • the blades of the two turbines 3 arranged coaxially are bent in the same direction to ensure that the directions of rotation of the two turbines 3 are the same.
  • the present invention does not limit the number of the water turbines 3 in any way. In other embodiments, the number of turbines 3 can be much more than two.
  • At least one central shaft 4 is bored with at least two hydraulic turbines 3, the axial direction X of which is perpendicular to the horizontal plane P, and the central shaft 4 is rotated as the turbine 3 rotates. Since the turbine 3 itself has a central symmetrical structure, the axial direction of the turbine 3 in the present invention is the axial direction X of the central axis 4.
  • At least one generator 5 is located on the water surface, and at least one generator 5 is coupled to one end of the central shaft 4.
  • the blades of the turbine 3 are subjected to the impact of the tidal current, thereby rotating.
  • the center shaft 4 and the turbine 3 may have an interference fit, and the center shaft 4 rotates as the turbine 3 rotates.
  • One end of the center shaft 4 is in an interference fit with the gear holes in the gearbox in the generator 5.
  • the rotation of the central shaft 4 drives the rotation of the gear, and then the mechanical energy is transmitted to the generator 5 through the mutual engagement between the gears to drive the generator 5 to generate electricity.
  • At least three bearings 6 are sleeved with a central shaft 4, and at least three bearings 6 are respectively located on both sides and in the middle of the two turbines 3. Specifically, as shown in FIG. 1, one of the three bearings 6 is disposed between the two turbines 3, and the other two bearings 6 are located on the upper and lower sides of the two turbines 3, respectively.
  • the number of bearings 6 on each central shaft 4 corresponds to the number of turbines 3 on the same central shaft 4, and the number of bearings 6 is at least one more than the number of turbines 3 to ensure that regardless of the number of turbines 3 Growing, each of the turbines 3 has bearings 6 on both sides.
  • the tidal power generation device 100 By providing two or more turbines 3 in the water depth direction D, it is possible to greatly expand the depth of the tidal power generation device 100 in the water depth direction D without increasing the length of the turbine 3 blades, thereby making more efficient use.
  • the tidal current can generate electricity and greatly increase the power generation.
  • the provision of at least three bearings 6 achieves a "multi-point constraint" to the central shaft 4, so that no matter how long the central shaft 4 is made, under the great impact force of the seawater, the three bearings 6 give the central shaft while sharing the force. 4 At least three points of fixing and supporting overcome the technical problem that the central axis 4 of the marine energy generating device cannot be deep in the ocean in the prior art.
  • the tidal power generation device 100 further includes an underwater shafting rotation protection device 7, each of which includes a lubricant storage tank 71, at least six seal rings 72, and a duct 73.
  • the lubricant storage tank 71 stores a lubricant 74 which is located on the water surface P.
  • Each of the two sealing rings 72 corresponds to a bearing 6 and is sleeved on the central shaft 4, and a lubricant chamber 75 is formed between each of the two sealing rings 72 and the corresponding bearing 6 and the central shaft 4.
  • One end of the conduit 73 communicates with the lubricant storage tank 71, and the other end communicates with the lubricant chamber 75.
  • the number of the conduits 73 and the lubricant storage tanks 71 in each of the built-in modules is two, and the two conduits 73 communicate with the two sides of the lubricant chamber 75 and the two lubricant storage tanks 71, respectively.
  • the speed of filling the lubricant 74 is increased by increasing the number of conduits 73.
  • the conduit 73 can be made of stainless steel.
  • the bearing 6 is a sliding bearing, and each of the lubricant chambers 75 is formed by two seal rings 72 and a bearing 6 and a center shaft 4.
  • the upper and lower surfaces of the lubricant chamber 75 are respectively constituted by two seal rings 72
  • the inner surface of the lubricant chamber 75 is the outer surface of the journal portion of the center shaft 4
  • the outer surface of the lubricant chamber 75 is the bearing 6 Inner surface.
  • the lubricant chamber 75 is a circular cylinder having a circular cross section and a rectangular cross section.
  • the lubricant 74 is filled in the lubricant chamber 75 to form a lubricating film to reduce friction.
  • the lubricant 74 is pure sea water free from impurities such as sediment.
  • the sealing ring 72 Due to the huge impact force of the tidal current on the turbine 3, the sealing ring 72 is subjected to a large radial force for a long time, and is easily deformed elastically, thereby causing no sealing between the sealing ring 72 and the central shaft 4, that is, the sealing ring 72 and the central shaft 4 There is a gap between them. Since the lubricant 74 is originally located in the lubricant chamber 75, the lubricant 74 is likely to be lost when there is a gap in the lubricant chamber 75, and the outside water also carries impurities such as sand and the like from the gap.
  • the underwater shaft rotation protection device 7 for tidal current power generation provided by the present embodiment is described in detail below for how to protect the central shaft 4 located below the water surface.
  • the lubricant storage tank 71 Since the lubricant storage tank 71 is located above the water surface P, and the connecting portion of the water turbine 3 and the center shaft 4 is located below the water surface P, there is a difference in height between the two. According to the calculation formula of liquid pressure, pressure and depth The degree (the height from the pressure point to the liquid level) is proportional.
  • the lubricant 74 located in the lubricant chamber 75 is transported by the conduit 73 to which the lubricant storage tank 71 is connected. In the case of the same density, the pressure at which the lubricant chamber 75 communicates with the conduit 73 is certainly greater than the pressure at the same depth. .
  • the liquid is capable of transmitting pressure, the internal pressure experienced by the seal 72 seal is certainly greater than the external pressure experienced by the seal 72 seal. Therefore, the lubricant chamber 75 is always in a "micro-positive pressure" state.
  • the conduit 73 further includes a joint through which the conduit 73 can be multiplexed so that the lubricant chambers 75 of the three bearings 6 can share the common path of one conduit 73 to the common lubricant storage tank 71.
  • the present invention does not limit this.
  • the underwater shafting rotation protection device 7 for tidal energy generation further includes a detection module 76 disposed in the lubricant storage tank 71 to detect whether the lubricant 74 is reduced.
  • the detection module 76 can be an infrared sensor that detects whether the height of the lubricant 74 in the lubricant storage tank 71 is reduced to determine whether the lubricant 74 is reduced.
  • the detection module 76 can also be a gravity sensor that detects whether the mass of the lubricant 74 in the lubricant storage tank 71 is reduced to determine whether the amount of the lubricant 74 has changed.
  • the reduction in lubricant 74 represents a decrease in the sealing performance of the bearing 6, thereby alerting the service personnel that the seal 72 has aged or deformed and requires repair and replacement.
  • the maintenance personnel can intuitively and timely know the state of the shafting, in particular, the state of use of the sealing ring 72, and perform maintenance on the tidal current power generating device 100 in time.
  • the underwater shafting rotation protection device 7 for tidal energy generation may further include an alarm module (not shown), and the alarm module is connected to the detection module 76.
  • the detection module 76 detects a decrease in the lubricant 74, the alarm module issues an alarm.
  • Fig. 3 is a plan view showing a tidal current power generating apparatus according to a second embodiment of the present invention.
  • Fig. 4 is a front elevational view showing a tidal current power generating apparatus according to a second embodiment of the present invention.
  • Fig. 5 is a schematic view showing a built-in module of a tidal current power generating apparatus according to a second embodiment of the present invention.
  • FIG. 6 is an enlarged schematic view showing the circle mark U in FIG. Please refer to Figure 3 to Figure 6.
  • the structure and function of the inner frame 2, the water turbine 3, the central axis 4, and the generator 5 are as described in the first embodiment, and the same components are denoted by the same reference numerals and will not be described again. The following only explains the differences.
  • the outer frame 1' can be welded from a steel material.
  • the outer frame 1' includes an outer sleeve 11 and a fixed pile 12.
  • the fixed pile 12 is formed by pouring concrete in the outer casing 11.
  • the outer frame 1' is fixed to the sea floor F by piling.
  • the outer frame 1' also has a plurality of reduced water flow resistance structures 13.
  • a plurality of reduced water flow resistance structures 13 are located on the water-facing side of the plurality of outer casings 11.
  • the force-receiving area of the outer casing 11 (the fixed pile 12 is formed here) to withstand the hydraulic impact is greatly reduced, and the subsequent formation is greatly improved.
  • the reduced water flow resistance structure 13 is located at the uppermost and lowermost sides of the outer frame 1'.
  • the reduced flow resistance structure 13 is integrally formed with the body of the outer frame 1'.
  • the cross section of the reduced water flow resistance structure 13 is a triangle.
  • the present invention does not limit the specific shape and structure of the water flow resistance structure 13 to a small extent.
  • the reduced water flow resistance structure can be fabricated as a streamlined type.
  • the number of the hydraulic turbines 3 is at least four, and each of the two coaxially disposed turbines 3 is a group, at least two sets of the hydraulic turbines 3 are disposed in one inner frame 2, and the adjacent two sets of the hydraulic turbines 3 are in the axial direction.
  • the symmetry is arranged such that the directions of rotation of the adjacent two sets of turbines 3 are opposite.
  • the two sets of turbines 2 are arranged side by side, and the bending directions of the blades 32 of the two turbines 3 of the phase group are axisymmetric. As shown in FIGS.
  • each of the two turbines 3 is provided in a group and arranged in parallel, the direction of rotation of the left turbine 3 is counterclockwise, and the direction of rotation of the right turbine 3 is clockwise.
  • the rotational directions of the adjacent turbines 3 are effectively increased, the water flow speed is increased, and the rotation of the water turbine 3 is accelerated to improve the power generation efficiency of the generator 5.
  • the present invention does not limit the number of the turbines 3 and the direction of rotation. Tests have shown that the adjacent turbines 3 are symmetrically arranged, which greatly increases the power generation.
  • the tidal current power generating apparatus 200 includes five built-in modules each having an inner frame 2 and corresponding four turbines 3 and six bearings 6'.
  • the turbine 3 can be increased in the lateral direction according to the power generation demand of the tidal power generating device (as shown in Fig. 4).
  • the lateral direction that is, the horizontal direction perpendicular to the water flow direction
  • the longitudinal direction the longitudinal direction shown in FIG. 4, that is, the water depth direction perpendicular to the horizontal plane
  • the bearing 6' includes an inner race 61', an outer race 62' and a rolling body 63'.
  • the inner ring 61' cooperates with the central shaft 4 and rotates together with the central shaft 4, and the outer ring 62' cooperates with the bearing housing 76' to support.
  • the bearing 6' changes the sliding friction between the rotating shaft of the sliding bearing and the bearing into the rolling friction of the rolling elements 63' between the inner ring 61' and the outer ring 62'.
  • the underwater shaft rotation protection device 7' further includes at least three bearing seats 76', and the lubricant chamber 75' is composed of two sealing rings 72', a bearing 5', a bearing housing 76' and a central shaft 4 Formed, the rolling elements 63' of the bearing 6' are located within the lubricant chamber 75'.
  • the bearing housing 76' of the present embodiment includes two end caps 761'. The end cap 761' functions not only for the axial positioning of the bearing 6' but also for preventing impurities and sealing together with the sealing ring 72'.
  • a seal chamber is formed between the upper and lower end caps 761', the seal ring 72', the central shaft 4, and the circumferential bearing seat 76', and the bearing 6' is located within the cavity.
  • the lubricant 74 is a lubricating oil.
  • One conduit 73 communicates with the upper end cap 761' and the other conduit 73 communicates with the lower end cap 761'.
  • the density of the lubricating oil is slightly smaller than the density of the water, and the pressure is proportional to the density and the depth, since the height difference between the lubricant storage tank 71' and the underwater lubricant chamber 75' on the water surface is large, after calculation, In general, the lubricant chamber 75' is still in a "micro-positive pressure" state. In other words, even if the sealing ring 72' located below cannot be sealed, the lubricant will continuously flow from the lubricant storage tank 71' into the lubricant chamber 75' under the pressure difference, and then flow out from the gap to the sealing ring 72'. In addition, the water with sand on the outside does not flow from the gap into the lubricant chamber 75', thereby realizing the protection of the shafting 2'.
  • the tidal current power generating device provided by the present invention can realize modular assembly and replacement on the water surface by providing a detachable inner frame and an outer frame, thereby greatly reducing maintenance and installation costs, and overcoming the traditional ocean.
  • the power generation device cannot be commercialized and large-scale.
  • a "multi-point constraint" is achieved on the central axis, so that the scale of the tidal power generating device can be expanded not only horizontally (perpendicular to the horizontal direction of the water flow) It can also be expanded longitudinally (perpendicular to the water depth direction of the horizontal plane), greatly increasing the power generation power, and overcoming the problem that the existing ocean energy power generation device cannot be "bigger” or "deep".
  • the underwater shaft rotation protection device provided by the invention can effectively protect external impurities, especially the sediment in the water enters the bearing, thereby effectively protecting the normal operation of the bearing.
  • the tidal current power generation device provided by the invention adopts the underwater shaft rotation protection device to greatly reduce the maintenance time and the maintenance cost while prolonging the service life of the bearing, and effectively ensures that the power generation efficiency is not affected.
  • the bearing in the tidal current power generating device provided by the invention can adopt a rolling bearing, and overcomes the technical barrier of the underwater bearing in the prior art that only the water-lubricated sliding bearing can be used.
  • the frame is a detachable outer frame and an inner frame, which can quickly and easily repair or replace the underwater shaft rotation protection device, which greatly reduces the maintenance cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Power Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种潮流能发电装置,包括外框架(1)、至少一个内框架(2)、至少两个水轮机(3)、至少一根中心轴(4)、至少一个发电机(5)和至少三个轴承(6),至少一个内框架(2)可分离地设置于外框架(1)内,至少两个水轮机(3)位于水面下且设置于一个内框架(2)内,至少两个水轮机(3)为同轴设置且为垂直轴水轮机,至少一根中心轴(4)穿设至少两个水轮机(3),中心轴(4)的轴线方向垂直于水平面且随水轮机(3)的转动而转动,至少一个发电机(5)位于水面上且连接于中心轴(4)的一端,至少三个轴承(6)套设中心轴(4)且分别位于两个水轮机(3)的两侧和中间。所述潮流能发电装置可以在水面上进行模块化组装和替换,并可以在水深方向扩张,提高发电功率。

Description

潮流能发电装置 技术领域
本发明涉及一种发电装置,尤其涉及一种潮流能发电装置。
背景技术
海洋能(包含潮汐能、潮流能、波浪能、海流能)是指海水流动的能量,作为可再生能源,储量丰富,分布广泛,具有极好的开发前景和价值。海洋能的利用方式主要是发电,其工作原理与风力发电和常规水力发电类似,即通过能量转换装置,将海水的机械能转换成电能。具体而言,首先海水冲击水轮机,水轮机将水流的能量转换为旋转的机械能,然后水轮机经过机械传动系统带动发电机发电,最终转换成电能。
现今能源日益短缺,温室效应日益严重,能源需要低碳化,所以风能,海洋能等清洁能源是未来能源的发展方向。但现在这些清洁能源的发电设备,除了风能利用比较成熟外,海洋能的利用还都是在起步阶段,没有通用和成熟的设备。现有的少数设备也存在效率低下,设备不能大规模化的问题。
由于海洋环境复杂,水中阻力大,传统的海洋能发电装置的安装都必须在海里进行,困难度高,费用庞大。另外,由于发电装置长期接触海水,在海水的长期侵蚀和巨大冲击力下,海洋能发电装置使用一段时间后就要定期进行维修或更换。然而传统的海洋能发电装置的维修和更换也均在海里进行,困难度高,成本巨大。甚至,因为部分组件的损坏,导致整个海洋能发电装置的报废,这是海洋能发电装置高成本的重要原因之一,也是造成现有的海洋能发电装置无法大规模化、商业化运营的直接原因。然而,目前海洋能发电领域的技术人员都忽略了对安装和维修方式的改进。
另外,传统的海洋能发电装置只采用一个或最多两个垂直轴水轮发电机,为了提高发电功率,通常水轮机的叶轮的直径和沿水深方向的长度需要制造得尽可能大。然而,现有的垂直轴水轮机受到制作材料以及使用环境的限制,根本无法做大和做深。已知的垂直轴水轮机在海里的深度最深仅能达到海面以下5-6米。整个海洋能发电装置的规模受到严重制约,发电功率无法满足需求,发电装置的成本也居高不下。
但是,目前海洋能发电领域的技术人员都存在着技术偏见,只着重于研发如何将水轮发电机的叶轮部分做大或者对叶轮叶片的结构进行改进以提高单个 水轮发电机的发电功率。目前本领域没有任何人研究如何在不改变叶轮的前提下,提高发电功率且降低成本以适合商业运用。
另一方面,现有海洋能发电装置在水深方向(即垂直于水平面的方向)仅能设置一个垂直轴水轮机,其原因不光是上述提及的垂直轴水轮机无法在水深方向做长,还有个重要原因是垂直轴水轮机的中心轴在实际应用中也无法深入海里足够深的地方。现有技术中只要中心轴做的特别长,由于海水巨大的冲击力,中心轴很容易发生变形甚至断裂,从而导致整个发电装置无法使用。再者,现有技术人员都忽略了轴承对中心轴保护的问题。通常传统的海洋能发电装置中的中心轴只受到一个最多两个轴承进行保护。
轴承的密封性是决定轴承工作性能的重要指标之一。现有技术中通常采用增加密封圈的方式来提高轴承的密封性。无论是陆地上使用的转轴,还是潜艇或轮船中使用的转轴,其大部分受到的是沿轴向的外力。因此传统的密封圈就能解决传统的轴承密封的需求。
然而,利用海洋能,尤其是潮流能进行发电的发电装置,其使用的中心轴会受到水流沿径向的巨大冲击力。使用一段时间后,中心轴和传统轴承之间的密封圈容易发生变形,轴承的密封性将无法保证。由于无法解决密封需求高的问题,现有的海洋能发电装置只能舍弃采用油作为润滑剂的滚动轴承,选择可以用水作为润滑剂的滑动轴承。但是,现有技术人员都忽略了一个问题。能作为润滑剂的水必须是清水。换言之,由于水流中常含有大量泥沙,若密封圈因为弹性变形导致外部的水携带泥沙等杂质涌入轴承内,不但无法实现对轴承的润滑作用,还会影响中心轴的正常工作,最终影响发电装置的发电效率。
因此,现有的海洋能发电装置除了上述提及的安装维修和中心轴无法做长的问题以外,还常常面临需要更换轴系(包括中心轴和轴承)导致成本攀高的问题。
发明内容
本发明为了克服现有技术中的至少一个不足,提供一种潮流能发电装置。
为了实现上述目的,本发明提供一种潮流能发电装置,包括外框架、至少一个内框架、至少两个水轮机、至少一根中心轴、至少一个发电机和至少三个轴承。至少一个内框架可分离地设置于外框架内。至少两个水轮机位于水面下且设置于一个内框架内,至少两个水轮机为同轴设置,至少两个水轮机为垂直轴水轮机。至少一根中心轴穿设至少两个水轮机,中心轴的轴线方向垂直于水平面,中心轴随水轮机的转动而转动。至少一个发电机位于水面上,至少一个 发电机连接于中心轴的一端。至少三个轴承套设中心轴,至少三个轴承分别位于两个水轮机的两侧和中间。
于本发明的一实施例中,水轮机的数量为至少四个,每两个同轴设置的水轮机为一组,至少两组水轮机设置于一个内框架内,相邻两组的水轮机呈轴对称设置以使相邻两组水轮机的转动方向相反。
于本发明的一实施例中,潮流能发电装置还包括水下轴系转动保护装置,每个水下轴系转动保护装置包括润滑剂存储箱、至少六个密封圈和导管。润滑剂存储箱存储有润滑剂,润滑剂存储箱位于水面上。每两个密封圈对应于一个轴承且套设于中心轴上,每两个密封圈与对应的轴承和中心轴之间形成润滑剂腔。导管的一端连通润滑剂存储箱,另一端连通润滑剂腔。
于本发明的一实施例中,水下轴系转动保护装置还包括检测模组,设置于润滑剂存储箱以检测润滑剂是否减少。
于本发明的一实施例中,轴承为滑动轴承,每个润滑剂腔由两个密封圈与轴承和中心轴形成。
于本发明的一实施例中,轴承为滚动轴承,水下轴系转动保护装置还包括轴承座,每个润滑剂腔由两个密封圈、轴承、轴承座和中心轴形成。
于本发明的一实施例中,外框架具有多个固定桩,所述外框架通过打桩的方式固定于海底。
于本发明的一实施例中,外框架具有多个减小水流阻力结构。
综上所述,本发明提供的潮流能发电装置通过设置可分离的内框架和外框架,使得发电装置可以在水面上进行模块化组装和替换,大幅度降低维修和安装费用,克服了传统海洋能发电装置无法商业化、大规模化的难题。并且,通过在中心轴上同轴设置至少两个水轮机和设置至少三个轴承,对中心轴实现“多点约束”,使得潮流能发电装置的规模不光可以横向(垂直于水流的水平方向)扩张也可以纵向(垂直于水平面的水深方向)扩张,大幅度提高了发电功率,克服了现有海洋能发电装置无法“做大”、“做深”的难题。
另外,本发明提供的水下轴系转动保护装置能有效保护外界杂质,尤其是水中的泥沙进入轴承,从而有效保护轴承的正常工作。本发明提供的潮流能发电装置,通过采用水下轴系转动保护装置,在延长轴承使用寿命的同时,大幅度降低了维修次数和维修成本,同时有效地保证了发电效率不受影响。另外,本发明提供的潮流能发电装置中的轴承可采用滚动轴承,克服了现有技术中水下轴系只能使用水润滑的滑动轴承的技术壁垒。
并且,通过设置检测模组,能够及时且直观地知道轴承的密封性是否降低,从而有效指导维修人员何时何处进行维修,提高维修的及时性和可靠性。另外,框架为可分离的外框架和内框架,可以方便快捷地对水下轴系转动保护装置进行维修或更换,大大降低了维修成本。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。
附图说明
图1所示为本发明第一实施例提供的潮流能发电装置的侧视图。
图2所示为图1中圆圈标识V的放大示意图。
图3所示为本发明第二实施例提供的潮流能发电装置的俯视图。
图4所示为本发明第二实施例提供的潮流能发电装置的主视图。
图5所示为根据本发明第二实施例所述的潮流能发电装置的一个内置模块的示意图。
图6所示为图5中圆圈标识U的放大示意图。
具体实施方式
图1所示为本发明第一实施例提供的潮流能发电装置的侧视图。图2所示为图1中圆圈标识V的放大示意图。请一并参考图1和图2。
本实施例提供的潮流能发电装置100包括外框架1、至少一个内框架2、至少两个水轮机3、至少一根中心轴4、至少一个发电机5和至少三个轴承6。
至少一个内框架2可分离地设置于外框架1内。于本实施例中,内框架2上可设有卡勾(图未示),外框架1上可设有卡槽(图未示),内框架2通过卡勾和卡槽的相互卡合嵌入到外框架1内。然而,本发明对内框架2与外框架1之间的固定方式不作任何限定。
至少一个内框架2、至少两个水轮机3、至少一根中心轴4、至少一个发电机5和至少三个轴承6共同形成一个内置模块。于实际应用中,可先将至少两个水轮机3、至少一根中心轴4、至少一个发电机5和至少三个轴承6固定在内框架2内,然后将至少一个内框架2固定在外框架1内,从而实现潮流能发电装置100的模块化安装。具体而言,内置模块的安装可在岸上进行,然后将内置模块吊入置于海中的外框架1内和外框架1进行固定,如此实现海面上的安装作业,大大简化安装程序,减少安装时间,降低海洋中安装难度。
传统的海洋能发电装置需要在海里进行维修。这样维修非常困难且费用庞大。然而,本发明的潮流能发电装置100可直接将内置模块从海中取出进行维 修或更换,实现潮流能发电装置100的海面上快速更换和维修,大大降低了维修成本,使得潮流能发电装置100的商业化得以实现。通过设置可分离的外框架1和内框架2,克服了现有技术中安装和维修都必须在海里实施的难题。
通过将至少一个内框架2可分离地设置于外框架1,突破了现有传统海洋潮流能发电装置无法实现规模化的弊端。目前世界上最大的海洋潮流能发电单台机组的发电量为1.2兆瓦,然而本发明的潮流能发电装置单台机组的发电量为5兆瓦,远远高于现有的海洋潮流能发电装置的最大发电量。
至少两个水轮机3位于水面下且设置于一个内框架2内。本发明中的至少两个水轮机3为同轴设置且两个水轮机3为垂直轴水轮机。如图1所示,旋转轴垂直于水平面P的水轮机为垂直轴水轮机。
具体而言,本发明中的“同轴设置”是指两个水轮机3从图1所示的方向上下平行排列,并且位于图1中上方的水轮机3的轴线和位于下方的水轮机3的轴线为同一根直线。同轴设置的两个水轮机3的叶片弯曲方向相同以保证两个水轮机3的旋转方向相同。然而,本发明对水轮机3的数量不作任何限定。于其它实施例中,水轮机3的数量可远远多于两个。通过在垂直于水平面P的水深方向D上设置至少两个水轮机3,可以在不增大水轮机3的尺寸的前提下,大幅度加深潮流能发电装置100深入海里的深度,从而提高发电功率。
至少一根中心轴4穿设至少两个水轮机3,中心轴4的轴线方向X垂直于水平面P,中心轴4随水轮机3的转动而转动。由于水轮机3本身为中心对称结构,因此本发明中水轮机3的轴线方向即为中心轴4的轴线方向X。
至少一个发电机5位于水面上,至少一个发电机5连接于中心轴4的一端。于实际应用中,水轮机3的叶片受到潮流的冲击力,从而进行转动。中心轴4与水轮机3之间可为过盈配合,中心轴4随水轮机3的转动而转动。中心轴4的一端与发电机5中的齿轮箱中的齿轮孔为过盈配合。中心轴4的转动带动该齿轮的转动,然后通过齿轮间的相互啮合,将机械能传给发电机5从而驱使发电机5进行发电。
至少三个轴承6套设中心轴4,至少三个轴承6分别位于两个水轮机3的两侧和中间。具体而言,如图1所示,三个轴承6的其中一个轴承设置于两个水轮机3之间,另外两个轴承6分别位于两个水轮机3的上下两侧。于本实施例中,每根中心轴4上轴承6的数量对应于同一根中心轴4上水轮机3的数量,且轴承6的数量比水轮机3的数量至少多一个以确保无论水轮机3的数量如何增长,每个水轮机3的两侧都具有轴承6。
通过在水深方向D上设置两个和两个以上的水轮机3,可以在无需加大水轮机3叶片长度的情况下,大大拓展潮流能发电装置100在水深方向D上的深度,从而更加高效地利用潮流能进行发电,大大提高发电功率。设置至少三个轴承6实现对中心轴4的“多点约束”,这样无论中心轴4做的多长,在海水巨大的冲击力下,三个轴承6在分担受力的同时,给予中心轴4至少三点的固定和支撑,克服了现有技术中海洋能发电装置中心轴4无法在海洋中做深的技术难题。
于本实施例中,潮流能发电装置100还包括水下轴系转动保护装置7,每个水下轴系转动保护装置7包括润滑剂存储箱71、至少六个密封圈72和导管73。润滑剂存储箱71存储有润滑剂74,润滑剂存储箱71位于水面P上。每两个密封圈72对应于一个轴承6且套设于中心轴4上,每两个密封圈72与对应的轴承6和中心轴4之间形成润滑剂腔75。导管73的一端连通润滑剂存储箱71,另一端连通润滑剂腔75。
于本实施例中,每个内置模块中的导管73和润滑剂存储箱71的数量均为二,两根导管73分别连通润滑剂腔75的两侧和两个润滑剂存储箱71。通过增加导管73的数量以提高填充润滑剂74的速度。然而,本发明对此不作任何限定。于本实施例中,导管73可采用不锈钢制成。
于第一实施例中,轴承6为滑动轴承,每个润滑剂腔75由两个密封圈72与轴承6和中心轴4形成。具体而言,润滑剂腔75的上下表面由两个密封圈72分别构成,润滑剂腔75的内表面为中心轴4的轴颈部分的外表面,润滑剂腔75的外表面为轴承6的内表面。润滑剂腔75是个横截面是圆环形,纵截面是长方形的环形圆柱。润滑剂74填充于润滑剂腔75中以形成润滑膜从而减小摩擦。于第一实施例中,润滑剂74为不含泥沙等杂质的纯净海水。
由于潮流对水轮机3的冲击力巨大,密封圈72长期受到巨大的径向力,很容易发生弹性变形,从而导致密封圈72与中心轴4之间不再密封,即密封圈72与中心轴4之间存在空隙。由于润滑剂74原始是位于润滑剂腔75中,当润滑剂腔75存在空隙后,润滑剂74很可能流失,同时,外面的水也会携带泥沙等杂质从空隙中涌入。
以下详细介绍本实施例提供的用于潮流能发电的水下轴系转动保护装置7如何对位于水面下的中心轴4进行保护。
由于润滑剂存储箱71位于水面P之上,而水轮机3和中心轴4的连接部分位于水面P之下,二者之间存在高度差。根据液体压强的计算公式,压强和深 度(取压点到液面之间的高度)呈正比关系。位于润滑剂腔75内的润滑剂74由于由连通有润滑剂存储箱71的导管73输送,在密度一样的情况下,润滑剂腔75与导管73连通处的压强肯定大于同一水深处外部的压强。同时,由于液体能够传递压强,密封圈72密封处受到的内部压强肯定大于密封圈72密封处受到的外部压强。因此,润滑剂腔75始终处于一个“微正压”状态。
换言之,即便轴承6和中心轴4之间无法实现密封,即密封圈72与中心轴4之间存在空隙,润滑剂74也会在压差作用下不断从润滑剂存储箱71中流入到润滑剂腔75中,然后从空隙流出到密封圈72外,位于外面带有泥沙的水也不会从空隙流入到润滑剂腔75中,从而真正实现对中心轴4的保护作用。
于实际应用中,导管73还包括接头,通过接头,导管73可实现多路排布,从而三个轴承6内的润滑剂腔75可共用一个导管73的总路连通共同的润滑剂存储箱71。然而本发明对此不作任何限定。
于本实施例中,用于潮流能发电的水下轴系转动保护装置7还包括检测模组76,设置于润滑剂存储箱71以检测润滑剂74是否减少。于实际应用中,检测模组76可为红外线感应器,检测润滑剂74于润滑剂存储箱71内的高度是否降低来判段润滑剂74是否减少。检测模组76也可为重力感应器,检测润滑剂74于润滑剂存储箱71内的质量是否减少来判断润滑剂74的量是否发生改变。润滑剂74的减少代表着轴承6的密封性能下降,从而提醒维修人员密封圈72已经老化或者发生了变形需要进行维修和更换。通过设置检测模组76,维修人员能够直观且及时地知道轴系的状态,尤其是密封圈72的使用状态,并及时地对潮流能发电装置100进行维护。
于实际使用中,用于潮流能发电的水下轴系转动保护装置7可还包括报警模块(图未示),所述报警模块连接所述检测模组76。当检测模组76检测到润滑剂74减少时,报警模块发出警报。
图3所示为本发明第二实施例提供的潮流能发电装置的俯视图。图4所示为本发明第二实施例提供的潮流能发电装置的主视图。图5所示为根据本发明第二实施例所述的潮流能发电装置的一个内置模块的示意图。图6所示为图5中圆圈标识U的放大示意图。请一并参考图3至图6。
于第二实施例中,内框架2、水轮机3、中心轴4和发电机5的结构和功能,皆如第一实施例所述,相同元件都以相同标号进行表示,在此不再赘述。以下仅就不同之处予以说明。
外框架1’可由钢材料焊接而成。于本实施例中,外框架1’包括外套管11和固定桩12。通过在外套管11内浇灌混凝土形成固定桩12。外框架1’通过打桩的方式固定于海底F。
于本实施例中,外框架1’还具有多个减小水流阻力结构13。多个减小水流阻力结构13位于多根外套管11的迎水侧。通过设置减小水流阻力结构13于外套管11的迎水侧,大大减小了外套管11(之后在此处就形成固定桩12)承受水力冲击的受力面积,同时大幅度提高了后续形成的固定桩12的稳定度。如图1所示,减小水流阻力结构13位于外框架1’的最上边和最下边。于本实施例中,减小水流阻力结构13与外框架1’的本体为一体成型。
以图3中从左数第二列四根外套管11为例,由于外套管11排成了平行于水流方向的一列,因此位于下游的外套管11承受的水流冲击力会在位于上游的外套管11的阻挡后大大减小。经过实验后发现,若不具有减小水流阻力结构13,在水流速度不变的情况下,四根外套管11承受的水流冲击力之和为一根裸露于水中的外套管11承受的水流冲击力的2.6倍左右。然而,在外框架1’上设置有减小水流阻力结构13后,四根外套管11承受的水流冲击力之和仅为一根裸露于水中的外套管11承受的水流冲击力的30%。
于本实施例中,减小水流阻力结构13的截面为三角形。然而,本发明对减小水流阻力结构13的具体形状和结构不作任何限定。于其他实施例中,该减小水流阻力结构可制造为流线型。
于本实施例中,水轮机3的数量为至少四个,每两个同轴设置的水轮机3为一组,至少两组水轮机3设置于一个内框架2内,相邻两组的水轮机3呈轴对称设置以使相邻两组水轮机3的转动方向相反。具体而言,两组水轮机2呈并排阵列设置,且相组两个水轮机3的叶片32的弯曲方向呈轴对称。如图3和图3所示,每两个水轮机3为一组且平行设置,左侧水轮机3的转动方向为逆时针,右侧水轮机3的转动方向为顺时针。通过将相邻水轮机3的转动方向设置为相反,有效地提高水流的聚集和疏散,提升水流速度,从而加快水轮机3的转动以提高发电机5的发电效率。然而,本发明对水轮机3的数量以及转动方向不作任何限定。经过试验表明,将相邻的水轮机3对称设置,大幅度提高了发电功率。
于本实施例中,潮流能发电装置200包括五个内置模块,每个内置模块有一个内框架2以及对应的四个水轮机3和六个轴承6’。然而,本发明对此不作任何限定。可根据潮流能发电装置的发电需求增加水轮机3在横向(如图4所 示的横向,即垂直于水流方向的水平方向)和纵向(如图4所示的纵向,即垂直于水平面的水深方向)上的数量,从而实现潮流发电装置200的大规模化。
于第二实施例中,轴承6’包括内圈61’、外圈62’和滚动体63’。内圈61’与中心轴4相配合并与中心轴4一起旋转,外圈62’与轴承座76’相配合起支撑作用。轴承6’将滑动轴承中转轴与轴承之间的滑动摩擦变为了位于内圈61’和外圈62’之间滚动体63’的滚动摩擦。
于本实施例中,水下轴系转动保护装置7’还包括至少三个轴承座76’,润滑剂腔75’由两个密封圈72’、轴承5’、轴承座76’和中心轴4形成,轴承6’的滚动体63’位于润滑剂腔75’内。具体而言,本实施例的轴承座76’包括两个端盖761’。端盖761’不仅起到轴承6’的轴向定位作用,还和密封圈72’一起起到防杂质和密封的作用。上下两个端盖761’、密封圈72’、中心轴4和周向的轴承座76’之间形成密封腔,轴承6’位于腔体内。
于第二实施例中,润滑剂74为润滑油。一根导管73连通于上端盖761’处,另一根导管73连通于下端盖761’处。通过这种设置,轴承6’的滚动体63’浸润于润滑油中。
尽管润滑油的密度略小于水的密度,而压强和密度、深度均成正比关系,但是由于水面上的润滑剂存储箱71’和水下润滑剂腔75’的高度差较大,经过计算,总体来说,润滑剂腔75’依旧处于一个“微正压”状态。换言之,即便位于下方的密封圈72’无法实现密封,润滑剂也会在压差作用下不断从润滑剂存储箱71’中流入到润滑剂腔75’中,然后从空隙流出到密封圈72’外,位于外面带有泥沙的水也不会从空隙流入到润滑剂腔75’中,从而真正实现对轴系2’的保护作用。
综上所述,本发明提供的潮流能发电装置通过设置可分离的内框架和外框架,使得发电装置可以在水面上进行模块化组装和替换,大幅度降低维修和安装费用,克服了传统海洋能发电装置无法商业化、大规模化的难题。并且,通过在中心轴上同轴设置至少两个水轮机和设置至少三个轴承,对中心轴实现“多点约束”,使得潮流能发电装置的规模不光可以横向(垂直于水流的水平方向)扩张也可以纵向(垂直于水平面的水深方向)扩张,大幅度提高了发电功率,克服了现有海洋能发电装置无法“做大”、“做深”的难题。
另外,本发明提供的水下轴系转动保护装置能有效保护外界杂质,尤其是水中的泥沙进入轴承,从而有效保护轴承的正常工作。本发明提供的潮流能发电装置,通过采用水下轴系转动保护装置,在延长轴承使用寿命的同时,大幅度降低了维修次数和维修成本,同时有效地保证了发电效率不受影响。另外, 本发明提供的潮流能发电装置中的轴承可采用滚动轴承,克服了现有技术中水下轴系只能使用水润滑的滑动轴承的技术壁垒。
并且,通过设置检测模组,能够及时且直观地知道轴承的密封性是否降低,从而有效指导维修人员何时何处进行维修,提高维修的及时性和可靠性。另外,框架为可分离的外框架和内框架,可以方便快捷地对水下轴系转动保护装置进行维修或更换,大大降低了维修成本。
虽然本发明已由较佳实施例揭露如上,然而并非用以限定本发明,任何熟知此技艺者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所要求保护的范围为准。

Claims (8)

  1. 一种潮流能发电装置,其特征在于,包括:
    外框架;
    至少一个内框架,可分离地设置于外框架内;
    至少两个水轮机,位于水面下且设置于一个内框架内,所述至少两个水轮机为同轴设置,所述至少两个水轮机为垂直轴水轮机;
    至少一根中心轴,穿设所述至少两个水轮机,所述中心轴的轴线方向垂直于水平面,所述中心轴随水轮机的转动而转动;
    至少一个发电机,位于水面上,所述至少一个发电机连接于所述中心轴的一端;
    至少三个轴承,套设所述中心轴,所述至少三个轴承分别位于两个水轮机的两侧和中间。
  2. 根据权利要求1所述的潮流能发电装置,其特征在于,所述水轮机的数量为至少四个,每两个同轴设置的水轮机为一组,至少两组水轮机设置于一个内框架内,相邻两组的水轮机呈轴对称设置以使相邻两组水轮机的转动方向相反。
  3. 根据权利要求1所述的潮流能发电装置,其特征在于,所述潮流能发电装置还包括水下轴系转动保护装置,每个水下轴系转动保护装置包括:
    润滑剂存储箱,存储有润滑剂,所述润滑剂存储箱位于水面上;
    至少六个密封圈,每两个密封圈对应于一个轴承且套设于所述中心轴上,每两个密封圈与对应的轴承和中心轴之间形成润滑剂腔;
    导管,所述导管的一端连通润滑剂存储箱,另一端连通润滑剂腔。
  4. 根据权利要求3所述的潮流能发电装置,其特征在于,所述水下轴系转动保护装置还包括检测模组,设置于所述润滑剂存储箱以检测润滑剂是否减少。
  5. 根据权利要求3所述的潮流能发电装置,其特征在于,所述轴承为滑动轴承,每个润滑剂腔由两个密封圈与轴承和中心轴形成。
  6. 根据权利要求3所述的潮流能发电装置,其特征在于,所述轴承为滚动轴承,所述水下轴系转动保护装置还包括至少三个轴承座,每个润滑剂腔由两个密封圈、轴承、轴承座和中心轴形成。
  7. 根据权利要求1所述的潮流能发电装置,其特征在于,所述外框架具有多个固定桩,所述外框架通过打桩的方式固定于海底。
  8. 根据权利要求1所述的潮流能发电装置,其特征在于,所述外框架具有多个减小水流阻力结构。
PCT/CN2015/083005 2014-06-30 2015-06-30 潮流能发电装置 WO2016000610A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/541,372 US10371205B2 (en) 2014-06-30 2015-06-30 Tidal current energy generating device
EP15814274.5A EP3193008A4 (en) 2014-06-30 2015-06-30 Tidal current energy electric generating apparatus
CA2973271A CA2973271A1 (en) 2014-06-30 2015-06-30 Tidal current energy generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410309411 2014-06-30
CN201410309411.9 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016000610A1 true WO2016000610A1 (zh) 2016-01-07

Family

ID=54990522

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2015/083000 WO2016000609A1 (zh) 2014-06-30 2015-06-30 潮流能发电装置
PCT/CN2015/083005 WO2016000610A1 (zh) 2014-06-30 2015-06-30 潮流能发电装置
PCT/CN2016/073236 WO2017000555A1 (zh) 2014-06-30 2016-02-02 模块化双向潮流能发电装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083000 WO2016000609A1 (zh) 2014-06-30 2015-06-30 潮流能发电装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073236 WO2017000555A1 (zh) 2014-06-30 2016-02-02 模块化双向潮流能发电装置

Country Status (6)

Country Link
US (2) US20170350366A1 (zh)
EP (2) EP3193008A4 (zh)
JP (1) JP2018519473A (zh)
CN (4) CN105221331A (zh)
CA (2) CA2973250C (zh)
WO (3) WO2016000609A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170350366A1 (en) * 2014-06-30 2017-12-07 Zhejiang Zhoushan Lhd Energy Development Co., Ltd. Tidal current energy generating device
EP3315767A4 (en) * 2015-06-29 2018-06-13 Hangzhou Lindong New Energy Technology Inc. Modular two-way power generation device using tidal energy
PL228025B1 (pl) * 2015-11-24 2018-02-28 Ireneusz Piskorz Agregat do wykorzystania energii słonecznej i wiatru
CN107304745B (zh) * 2016-04-22 2023-09-29 杭州林东新能源科技股份有限公司 潮流能发电装置及其导流罩
WO2017181433A1 (zh) * 2016-04-22 2017-10-26 杭州林东新能源科技股份有限公司 潮流能发电装置及其导流罩
WO2017193295A1 (zh) * 2016-05-10 2017-11-16 杭州林东新能源科技股份有限公司 潮流能发电装置及其水底密封保护装置
CN106364629A (zh) * 2016-09-14 2017-02-01 江苏科技大学 一种利用潮流能水轮机发电的海上浮标
CN106894937A (zh) * 2017-01-24 2017-06-27 杭州林东新能源科技股份有限公司 具有变角传动机构的海洋能发电装置
CN107542068B (zh) * 2017-09-04 2019-08-02 合肥工业大学 一种近岸区v型洋流发电场装置
WO2019156562A1 (en) * 2018-02-09 2019-08-15 Ece Offshore B.V. Assembly comprising based- water structure and energy generator functionally coupled thereto
CN109826742A (zh) * 2019-01-09 2019-05-31 刘时英 一种潮汐发电系统及其发电方法
AU2020236379B2 (en) 2019-03-08 2023-08-17 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
CN110907156B (zh) * 2019-12-03 2021-08-13 哈尔滨电机厂有限责任公司 一种立式水轮发电机连轴紧度监测装置
CN110848077A (zh) * 2019-12-06 2020-02-28 宁波市镇海捷登应用技术研究所 一种利用潮汐的发电装置及用该装置发电的方法
CN111608844A (zh) * 2020-06-19 2020-09-01 杭州林黄丁新能源研究院有限公司 滚动轴承保护装置及其适用的垂直轴潮流能发电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359599A (zh) * 2011-09-07 2012-02-22 武汉船用机械有限责任公司 一种用于伸缩式全回转舵桨的动密封装置
CN102892957A (zh) * 2009-09-02 2013-01-23 加拿大蓝色能量有限公司 由流体动力阵列支撑的高架桥
JP2013181430A (ja) * 2012-02-29 2013-09-12 Kyb Co Ltd 波力発電装置
CN203230522U (zh) * 2013-03-25 2013-10-09 杭州林黄丁新能源科技有限公司 立式海洋能发电装置框架
CN103807590A (zh) * 2013-11-13 2014-05-21 浙江吉利控股集团有限公司 可自动补油的润滑装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993913A (en) * 1975-03-28 1976-11-23 Dickman Smith V Tidewater power system
US4468153A (en) * 1982-05-12 1984-08-28 Gutierrez Atencio Francisco J Symmetric tidal station
US4717832A (en) * 1985-09-17 1988-01-05 Harris Charles W Tidal and river turbine
US4804855A (en) * 1987-02-13 1989-02-14 Obermeyer Henry K Hydromotive machine apparatus and method of constructing the same
US5825094A (en) * 1996-11-13 1998-10-20 Voith Hydro, Inc. Turbine array
NL1013559C2 (nl) * 1999-11-11 2001-05-28 Peter Alexander Josephus Pas Systeem voor het uit water produceren van waterstof onder gebruikmaking van een waterstroom zoals een golfstroom of getijdenstroom.
US6856036B2 (en) * 2001-06-26 2005-02-15 Sidney Irving Belinsky Installation for harvesting ocean currents (IHOC)
ITRM20050216A1 (it) * 2005-05-05 2006-11-06 Francis Allen Farrelly Dispositivo di ugello asimmetrico con turbina idrica per lo sfruttamento dell'energia idrocinetica.
US7215036B1 (en) * 2005-05-19 2007-05-08 Donald Hollis Gehring Current power generator
WO2008051455A2 (en) * 2006-10-20 2008-05-02 Ocean Renewable Power Company, Llc Submersible turbine-generator unit for ocean and tidal currents
GB2459447A (en) * 2008-04-21 2009-10-28 Sub Sea Turbines Ltd Tidal power generating unit
CN101592117A (zh) * 2009-07-03 2009-12-02 林建国 一种潮汐发电装置
JP4422789B1 (ja) * 2009-08-03 2010-02-24 日本システム企画株式会社 水力発電装置の設置構造
CN102230440B (zh) * 2011-06-16 2013-04-17 中国海洋大学 双向导流罩及潮流发电装置
GB2502166B (en) * 2012-05-14 2015-05-27 Sustainable Marine Energy Ltd A flowing-water driveable turbine assembly
CN203230527U (zh) * 2013-03-08 2013-10-09 杭州林黄丁新能源科技有限公司 卧式发电机装置
CN203822526U (zh) * 2013-03-25 2014-09-10 杭州林黄丁新能源研究院有限公司 模块化海洋能发电装置
CN203230525U (zh) * 2013-04-11 2013-10-09 杭州林黄丁新能源科技有限公司 海洋能发电装置及其框架
CN203601542U (zh) * 2013-08-06 2014-05-21 杭州林黄丁新能源研究院有限公司 潮流发电装置及其安装框架
CN204082424U (zh) * 2014-06-30 2015-01-07 杭州林东新能源科技股份有限公司 用于潮流能发电的水下轴系转动保护装置及潮流发电装置
US20170350366A1 (en) * 2014-06-30 2017-12-07 Zhejiang Zhoushan Lhd Energy Development Co., Ltd. Tidal current energy generating device
CN204226097U (zh) * 2014-07-18 2015-03-25 杭州林东新能源科技股份有限公司 固定于水底的潮流能发电装置
CN204827782U (zh) * 2015-06-29 2015-12-02 浙江舟山联合动能新能源开发有限公司 潮流能发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892957A (zh) * 2009-09-02 2013-01-23 加拿大蓝色能量有限公司 由流体动力阵列支撑的高架桥
CN102359599A (zh) * 2011-09-07 2012-02-22 武汉船用机械有限责任公司 一种用于伸缩式全回转舵桨的动密封装置
JP2013181430A (ja) * 2012-02-29 2013-09-12 Kyb Co Ltd 波力発電装置
CN203230522U (zh) * 2013-03-25 2013-10-09 杭州林黄丁新能源科技有限公司 立式海洋能发电装置框架
CN103807590A (zh) * 2013-11-13 2014-05-21 浙江吉利控股集团有限公司 可自动补油的润滑装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193008A4 *

Also Published As

Publication number Publication date
CN105484935B (zh) 2019-02-19
US20170350366A1 (en) 2017-12-07
EP3193007B1 (en) 2019-01-23
CN105221331A (zh) 2016-01-06
JP2018519473A (ja) 2018-07-19
EP3193007A4 (en) 2017-11-15
US10371205B2 (en) 2019-08-06
EP3193008A1 (en) 2017-07-19
US20180023625A1 (en) 2018-01-25
CN105298733A (zh) 2016-02-03
CA2973250C (en) 2021-02-16
CA2973250A1 (en) 2016-01-07
WO2016000609A1 (zh) 2016-01-07
CN206054171U (zh) 2017-03-29
WO2017000555A1 (zh) 2017-01-05
CN105484935A (zh) 2016-04-13
EP3193007A1 (en) 2017-07-19
EP3193008A4 (en) 2017-11-22
CA2973271A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
WO2016000610A1 (zh) 潮流能发电装置
US8736096B2 (en) Water flow electricity generating device
US9556848B2 (en) Tidal current generating device and installation frame thereof
CN104329205B (zh) 水流发电装置
US10495051B2 (en) Power generating device having hollow structures
US20200224632A1 (en) Ocean energy power generation device and ocean energy power generation water leak-proof device thereof
WO2019011134A1 (zh) 一种海洋潮流能发电系统
CN204877775U (zh) 潮流能发电装置
CN204082424U (zh) 用于潮流能发电的水下轴系转动保护装置及潮流发电装置
CN104832358A (zh) 高效水流发电装置
CN107304745B (zh) 潮流能发电装置及其导流罩
KR101661267B1 (ko) 무축 스크류 발전 장치
WO2017193295A1 (zh) 潮流能发电装置及其水底密封保护装置
WO2017181433A1 (zh) 潮流能发电装置及其导流罩
KR20120031984A (ko) 유수력과 풍력을 병합한 발전시스템
JP2012241702A (ja) 水中発電装置
CN106894937A (zh) 具有变角传动机构的海洋能发电装置
KR101315180B1 (ko) 떠 있는 연속풍력발전장치
KR101385564B1 (ko) 조류 발전 장치
KR100955083B1 (ko) 유체 배관을 이용한 발전장치
EP3193010B1 (en) Power generating system using current around structural body
CN104373279A (zh) 水流式水力发电装置
KR20100063277A (ko) 조류력 발전을 위한 수차 축을 따라 미끄러지는 부력통이 장착된 자가 부양식 수차장치
AU2014218435A1 (en) Water Level Flow Speed-Increasing Generating Station, Power Station, Water Supply Station, And Offshore Floating City
CN204003238U (zh) 一种用于海洋潮流能发电机组的自润滑桨叶轴承系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015814274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15541372

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2973271

Country of ref document: CA