WO2019011134A1 - 一种海洋潮流能发电系统 - Google Patents

一种海洋潮流能发电系统 Download PDF

Info

Publication number
WO2019011134A1
WO2019011134A1 PCT/CN2018/093795 CN2018093795W WO2019011134A1 WO 2019011134 A1 WO2019011134 A1 WO 2019011134A1 CN 2018093795 W CN2018093795 W CN 2018093795W WO 2019011134 A1 WO2019011134 A1 WO 2019011134A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation system
pitch
marine tidal
underwater
Prior art date
Application number
PCT/CN2018/093795
Other languages
English (en)
French (fr)
Inventor
褚景春
袁凌
贾法勇
潘磊
王婷
Original Assignee
国电联合动力技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电联合动力技术有限公司 filed Critical 国电联合动力技术有限公司
Priority to US16/609,740 priority Critical patent/US10982646B2/en
Priority to AU2018300485A priority patent/AU2018300485B2/en
Publication of WO2019011134A1 publication Critical patent/WO2019011134A1/zh
Priority to PH12019502495A priority patent/PH12019502495A1/en
Priority to ZA2019/07425A priority patent/ZA201907425B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • F03B3/06Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines with adjustable blades, e.g. Kaplan turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/006Sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/008Measuring or testing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of marine energy power generation technology, and in particular to a floating semi-direct drive type marine tidal power generation system.
  • Ocean tidal energy is the kinetic energy contained in tidal water during horizontal movement, also known as ocean current energy.
  • the current is a relatively different velocity of water formed by seawater in the ocean due to heat radiation, evaporation, precipitation, cold shrinkage, etc., coupled with the effects of wind stress, geostrophic force, and tidal force.
  • the ocean tidal energy power generation system utilizes the kinetic energy of the horizontal movement of the ocean current, and generates and supplies electric energy through energy capture, energy conversion, energy transmission and the like.
  • China has abundant marine tidal energy resources, researching and developing efficient and reliable ocean tidal energy power generation system, which will greatly promote the development of renewable energy development strategy in China.
  • China's ocean tidal power generation system is still in the research stage, and there are still many technical and emergency aspects of the overall design of the power generation system.
  • the technical problem to be solved by the present disclosure is to provide a marine tidal energy power generation system that makes it simple, efficient, reliable, and safe to use ocean tidal energy to generate electricity, thereby overcoming the shortcomings of the existing ocean tidal power generation system.
  • the present disclosure provides a marine tidal energy power generation system, including a fixed mechanism, a marine energy generator set, and a signal monitoring mechanism;
  • the fixing mechanism comprises a floating body, a fixing rod, a horizontal supporting rod and a working platform, the floating body floats on the sea surface, a lower part thereof is fixed to the sea bottom by an anchor chain, and the fixing rod is fixed on the floating body, the horizontal supporting rod Vertically fixed to a portion below the water surface of the fixing rod, the working platform is vertically fixed to a portion above the water surface of the fixing rod;
  • the ocean current energy generating set includes an underwater component including a blade, a hub, a main shaft, a gear box, a coupling, a generator, a tail tank, and a yaw mechanism, which are sequentially connected, in the hub a pitching mechanism is disposed, the yaw mechanism is disposed between the coupling and the horizontal support rod, configured to drive the underwater component to yaw and rotate relative to the horizontal support rod, and the underwater component is directly immersed in the seawater ;
  • the maritime assembly includes a converter connected to the generator by a submarine cable, and a control cabinet connected to the yaw mechanism, a pitch mechanism, a gear box, a coupling, a generator, and a tail tank through a submarine cable
  • the converter and the control cabinet are both disposed on the working platform;
  • the signal monitoring mechanism includes a current meter connected to the control cabinet, and the current meter is disposed on the horizontal support rod and configured to monitor a current direction change of the ocean current energy in real time.
  • the fixing mechanism is a tidal energy unit supporting system
  • the ocean current energy generating unit is a marine tidal energy generating unit
  • the signal monitoring mechanism is a signal monitoring system
  • the floating body is a floating body structure
  • the horizontal support rod is The horizontal support structure
  • the fixed rod is a fixed structure
  • the tail tank is a wiring compartment.
  • the marine tidal power generation system further includes a lifting mechanism, the lifting mechanism includes a lifting device and a lifting control system, the lifting device is disposed on the fixing structure, and a lower portion thereof is fixedly connected with the horizontal supporting structure;
  • the lifting control system is disposed on the working platform, and is configured to control the lifting device to move up and down along the fixed structure, thereby driving the lifting movement of the marine tidal energy generating set underwater component.
  • the lifting device includes a gear and a rack, the rack is fixedly coupled to the fixed structure, the gear is fixedly coupled to the horizontal support structure, and the gear is engaged with the rack.
  • the marine tidal power generation system includes two sets of underwater components of the marine tidal power generating set, the two sets of underwater components are symmetrically disposed at both ends of the horizontal supporting structure, and the two sets are The underwater components are all connected to the marine component.
  • the pitch mechanism includes a pitch bearing and a pitch reducer that are connected to each other, the pitch bearing is fixedly connected to the blade, and the control cabinet is connected to the pitch reducer and configured to issue a control Commanding the pitch reducer to drive the pitch bearing to drive the blade.
  • the pitch mechanism is configured to vary the pitch angle of the blade from 0° to 270°, and the positive sea current pitch angle is 0° to 90°; the reverse current pitch angle is 180°. ⁇ 270°.
  • the yaw mechanism includes an yaw bearing and a yaw reducer that are connected to each other, the yaw bearing and the underwater component are fixedly connected, and the control cabinet is connected to the yaw reducer and configured And issuing a control command to the yaw reducer to drive the yaw bearing to drive the underwater component to rotate.
  • the marine tidal energy power generation system further includes an underwater sealing system including a first rotary seal disposed between the inner and outer rings of the pitch bearing.
  • the yaw structure is configured to rotate the marine tidal energy generator set 180° to maintain the horizontal axis of the marine tidal energy generator set parallel to the current flow direction such that the blade and the hub are always Facing the direction of the flow.
  • an isolation flange is disposed between each of the blades and the hub.
  • the marine tidal energy power generation system includes an underwater sealing system including a second rotary seal disposed between the main shaft and the gearbox, and a gearbox coupled thereto A first static seal between the shafts, a second static seal between the coupling and the generator, and a third static seal between the generator and the junction box.
  • the signal monitoring system further includes a pitch sensing component, a gearbox sensing component, a generator sensing component, and a wiring compartment sensing component connected to the control cabinet, the pitch sensing component being disposed at Inside the hub, the gearbox sensing assembly is disposed in the gearbox, the generator sensing assembly is disposed in the generator, and the wiring compartment sensing component is disposed inside the wiring compartment .
  • the pitch sensor assembly includes a pitch speed sensor and a pitch angle sensor, both of the pitch speed sensor and the pitch angle sensor being disposed inside the hub.
  • the gearbox sensing assembly includes an oil level sensor, an oil pressure sensor, an oil temperature sensor, and a vibration sensor, the oil level sensor configured to detect an oil level in the gear box, the oil pressure sensor configured to The oil pressure in the gearbox is detected, the oil temperature sensor is configured to detect an oil temperature in the gearbox, and the vibration sensor is configured to detect vibration of a transmission component within the gearbox.
  • the generator sensing component includes a voltage current sensor and a first temperature sensor configured to detect a voltage current and a temperature of the generator, respectively.
  • the underwater component is axially centered with a hollow shaft, and the hollow shaft is configured as a cable connected to the pitch mechanism through the control cabinet.
  • the wiring compartment is further provided with a submarine cable guard configured to protect the submarine cable, the top end of the submarine cable protection pipe being higher than the sea level.
  • the blade is made of carbon fiber, glass fiber or a combination of carbon fiber and glass fiber, and the blade root of the blade is a pre-embedded bolt.
  • a video monitoring module is disposed inside the marine tidal energy generating unit.
  • tidal energy unit support system and the marine tidal energy generator set are configured such that a surface in contact with seawater is provided with a protective layer.
  • the gearbox adopts a two-stage or three-stage shifting gear structure.
  • the generator employs a permanent magnet synchronous generator.
  • the blade is a double blade or a triple blade or more than three blades.
  • the present disclosure has at least the following advantages:
  • the present disclosure adopts a floating ocean tidal power generation system and is a semi-direct drive wind turbine.
  • the components of the ocean current energy wind turbine as underwater components and water components, it is safe and reliable to realize the use of ocean current energy generation; It can monitor the current direction change of ocean current energy in real time, and adjust the yaw direction and pitch direction in real time according to the change, efficiently ensure the conversion of ocean current energy into electric energy, and reduce the loss of electric power grid-connected power generation.
  • the present disclosure can ensure reliable operation of the generator set by providing an underwater rotary seal and static seal structure, as well as a pitch sensor assembly, a gearbox sensing assembly, a generator sensing assembly, and a wiring compartment sensing assembly. Sex.
  • the present disclosure can improve the safety and convenience of the operation and maintenance of the wind turbine by providing a lifting mechanism.
  • the present disclosure can effectively prevent seawater from entering the generator set by providing a submarine cable protection pipe in the wiring compartment, and the top of the submarine cable protection pipe is raised above the sea level, thereby protecting the submarine cable and preventing the submarine cable. Destroyed, it can also function as a gearbox breathing tube to ensure the balance of gearbox temperature and pressure. When the water depth is deep, the underwater plug connector or the submarine cable can be used to seal the connection, which not only plays a sealing role, but also reduces the force of the sea line protection pipe and the influence on the current fluctuation.
  • the present application can achieve energy capture of two-way currents through a 180° yaw mechanism and a 270° pitch mechanism, and the power generation efficiency is doubled.
  • the present disclosure is provided with a partition flange between the blade and the hub to prevent seawater from penetrating into the hub and the unit through the blade to ensure the safety of the operation of the unit.
  • the present disclosure realizes the overall design, technical comprehensiveness, reliability and advancement of the marine tidal power generation system.
  • FIG. 1 is a schematic view showing the overall structure of a marine tidal power generation system of the present disclosure
  • FIG. 2 is a schematic structural view of a semi-direct drive type generator set in a marine tidal power generation system according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a semi-direct drive type generator set in a marine tidal power generation system according to another embodiment of the present disclosure.
  • the marine tidal power generation system of the present embodiment includes a tidal energy unit support system, a lifting mechanism, a marine tidal energy generating unit, a signal monitoring system, and an underwater sealing system.
  • the tidal energy unit support system includes a floating body structure 3, a fixed structure 5, a horizontal support structure 4, and a work platform 6.
  • the number of the floating body structures 3 may be one or plural.
  • a floating body structure 3 is employed.
  • the floating body structure 3 floats on the sea surface, and the lower part thereof is fixed to the sea bottom by the anchor chain 12, that is, firmly connected to the seabed, and is configured to support the entire ocean tidal energy power generation system to ensure the safety of the system.
  • the fixed structure 5 is fixed to the floating body structure 3, which is vertically fixed to a portion below the water surface of the fixed structure 5, and the working platform 6 is vertically fixed to a portion above the water surface of the fixed structure 5. It should be understood that the above “vertical” may be completely vertical or substantially vertical.
  • the marine tidal energy generator set includes an underwater component including a blade 21, a hub 22, a main shaft 23, a gearbox 24, a coupling 25, a generator 26, a wiring compartment 27, and a yaw Agency 29.
  • a pitch mechanism 30 is disposed in the hub 22, and the yaw mechanism 29 is disposed between the coupling 25 and the horizontal support structure 4, and is configured to drive the underwater component to yaw 180° relative to the horizontal support structure 4. .
  • the yaw mechanism 29 may also be disposed between the gearbox 24 and the horizontal support structure 4.
  • the underwater assembly may include blades 21 , an isolation flange 20 , a hub 22 , a main shaft 23 , a gear box 24 , a coupling 25 , and a generator 26 that are sequentially connected. , wiring compartment 27 and yaw mechanism 29.
  • an isolation flange 20 is disposed between each of the blades 21 and the hub 22 to prevent seawater from penetrating into the hub 22 and the marine tidal energy generating unit through the blades 21, thereby ensuring the safety of the marine tidal energy generating unit.
  • the blade 21 is a double blade, and of course, a three-blade structure may be employed, or a multi-blade structure of more than three may be employed.
  • the gearbox 24 employs a two- or three-speed shifting gear structure.
  • the generator 26 employs a permanent magnet synchronous generator.
  • the maritime assembly comprises a converter 8 connected to the generator via a submarine cable 7, and a submarine cable 7 and the yaw mechanism 29, a pitch mechanism 30, a gearbox 24, a coupling 25, a generator 26 and wiring
  • the control cabinet 9 to which the compartment 27 is connected.
  • the converter 8 and the control cabinet 9 are all disposed on the working platform 6, one is convenient for operation, and the other is that there are many electrical components, and if the leakage occurs seriously under water, the safety of the power generation system is improved.
  • the marine tidal power generation system includes two sets of underwater components of the marine tidal energy generating set, such as the first underwater component 1 and the second underwater component 2.
  • the two sets of underwater components are symmetrically disposed at both ends of the horizontal support structure 4, and the two sets of the underwater components are connected to the water component. In this way, the balance of the horizontal support structure 4 can be maintained, and the interference of the fixed structure 5 to the current can be avoided, thereby affecting the power generation efficiency of the generator set and improving the sea current capture efficiency.
  • the lifting mechanism comprises a lifting device 13 and a lifting control system 10, which is arranged on the fixing structure 5. In other embodiments, it can also be fixed around the fixing structure 5, and the lower portion is fixed to the horizontal supporting structure 4.
  • the upper portion is movably connected to the working platform 6; the lifting control system 10 is disposed on the working platform 6 and configured to control the lifting device 13 to move up and down along the fixed structure 5.
  • the underwater components of the marine tidal energy generating unit are normally put into seawater to generate electricity, and the sea level maintenance can be proposed when needed, which facilitates the operation and maintenance operation of the system and improves safety.
  • the lifting device 13 comprises a gear and a rack, the rack being fixedly connected to the fixed structure 5, the gear being fixedly connected to the horizontal support structure 4.
  • the gears cooperate with the rack.
  • the horizontal support structure 4 and the underwater component are moved up and down along the fixed structure 5 by the up and down movement of the gear along the rack.
  • the signal monitoring system includes a current meter 11 connected to the control cabinet 9.
  • the current meter 11 is disposed on the horizontal support structure 4 and configured to monitor the current direction change and speed change of the ocean current energy in real time.
  • the signal monitored by the current meter 11 is transmitted to the control cabinet 9 through the submarine cable 7, and the control cabinet 9 issues a control command to the yaw mechanism 29, and the yaw mechanism 29 drives the generator set to adapt to the direction of the flow.
  • Rotation; the flow rate and flow direction signals monitored by the current meter 11 are commanded by the control cabinet 9 through the submarine cable 7, the central shaft 27 to the pitch mechanism 30, and the pitch mechanism 30 drives the blades 21 to perform a blade pitch angle of 90°. Adjustment; if the yaw mechanism 29 fails, the pitch structure 30 can perform a 270° pitch to capture the energy of the two-way ocean current.
  • the pitch mechanism 29 includes a pitch bearing and a pitch reducer that are connected to each other.
  • the pitch bearing is fixedly connected to the blade 21, and the control cabinet 9 is connected to the pitch reducer, and is configured to issue a control command to the pitch reducer to drive the change.
  • the paddle bearing drives the blade to achieve a change in the blade pitch angle of the blade 21.
  • the pitch mechanism 29 is configured to vary the blade angle at a pitch angle of 0° to 270°, and the forward sea current pitch angle is 0° to 90°, optionally, the first pitch angle is 0°, A safe feather position is 90°; the reverse current pitch angle is 180° to 270°, alternatively, the second pitch angle is 180° and the second safe feather position is 270°.
  • each blade 21 may be provided with a separate set of pitch mechanisms 29.
  • the yaw mechanism 30 includes an yaw bearing and a yaw reducer connected to each other, the yaw bearing and the underwater component are fixedly connected, and the control cabinet 9 is connected with the yaw reducer and configured to issue a control command to the yaw reducer to drive
  • the yaw bearing drives the underwater component to rotate, and realizes the change of the rotation angle of the underwater component.
  • the yaw structure 30 is configured to rotate the marine tidal energy generator set 180° to maintain the horizontal axis of the marine tidal energy generator set parallel to the current flow direction such that the blades 21 and the hub 22 are always facing the incoming flow direction.
  • the energy capture of the two-way current is achieved by the pitch mechanism 29 and the yaw mechanism 30.
  • the pitch mechanism 29 and the yaw mechanism 30 can be used simultaneously or separately.
  • the underwater component is axially centered with a hollow shaft 31, and the hollow shaft 31 is configured to pass through the cable 7 connected to the pitching mechanism of the control cabinet 9 to establish communication between the control cabinet 9 and the pitch mechanism 29.
  • the junction bay 27 is also provided with a submarine cable guard 28 configured to protect the submarine cable 7.
  • the top end of the submarine cable protection tube 28 is higher than the sea level to prevent seawater from entering the generator set, and on the one hand, protects the submarine cable 7 from damage, and on the other hand, functions as a breathing tube of the gear box 24. To ensure the balance of gearbox temperature and pressure.
  • the marine tidal energy power generation system in this embodiment further includes an underwater sealing system including a first rotary seal 42 disposed between the inner and outer rings of the pitch bearing, disposed between the main shaft 23 and the gear case 24 a second rotary seal 41, a first static seal 43 disposed between the gearbox 24 and the coupling 25, a second static seal 44 disposed between the coupling 25 and the generator 26, disposed at the generator 26 A third static seal 45 between the junction bay 27.
  • the rotary seal ensures normal rotational movement between the rotating parts without leakage, and the static seal ensures that no seawater can be leaked between the connected parts.
  • static seals can be placed between the contact surfaces of other connecting components of the tidal energy generator set.
  • the signal monitoring system further includes a pitch sensing component 51, a gearbox sensing component 52, a generator sensing component 53, and a wiring compartment sensing connected to the control cabinet 9.
  • Component 54 The pitch sensor assembly 51 is disposed inside the hub 22 and includes a pitch speed sensor and a pitch angle sensor. Both the pitch speed sensor and the pitch angle sensor are disposed inside the hub 22.
  • the gearbox sensing assembly 52 is disposed within the gearbox 24 and includes an oil level sensor, an oil pressure sensor, an oil temperature sensor, and a vibration sensor.
  • the oil level sensor is configured to detect an oil level in the gear box 24, and the oil pressure sensor is configured to detect The oil pressure in the gearbox 24 is configured to detect the oil temperature in the gearbox 24, and the vibration sensor is configured to detect vibration of the transmission components within the gearbox 24.
  • the generator sensing assembly 53 is disposed in the generator 26 and includes a voltage current sensor and a first temperature sensor configured to detect the voltage current and temperature of the generator 26, respectively.
  • the junction compartment sensing assembly 54 is disposed within the interior of the wiring compartment 27 and includes a second temperature sensor and a humidity sensor configured to detect temperature and humidity within the wiring compartment 27, respectively.
  • each of the above sensing components is further provided with a liquid level alarm.
  • pitch sensor assembly 51 If there is seawater leakage, pitch sensor assembly 51, gearbox sensing assembly 52, generator sensing assembly 53, and wiring compartment sensing assembly 54 will send an alarm signal to control cabinet 9.
  • the lift control system 10 is started, and the generator set is raised by the lifting device 13 to the sea level for inspection and maintenance.
  • the blade 21 may be carbon fiber, glass fiber or a combination of carbon fiber and glass fiber, and the blade root of the blade 21 may be a pre-embedded bolt.
  • a video monitoring module can be provided inside the marine tidal energy generating unit to detect the operation and safety of the unit throughout the life cycle.
  • the tidal energy unit support system and the marine tidal energy generator set are configured such that a surface in contact with seawater is provided with a protective layer.
  • the protective layer can be provided with a corrosion and antifouling coating as well as an anode protective layer.
  • the marine tidal power generation system of the present disclosure When the marine tidal power generation system of the present disclosure is in normal operation, the ocean current pushes the blades 21 and the hub 22 to rotate, and the impeller captures the kinetic energy of the seawater, and drives the main shaft 23, the gear box 24, the coupling 25, and the generator 26 to rotate, and converts the kinetic energy of the seawater into electric energy.
  • the electrical energy is transmitted by the submarine cable 7 connected to the generator 26 through the submarine cable protection 28 to the converter 8 and through the converter 8 to the grid system.
  • the marine tidal energy power generation system can emit 690V alternating current, and is connected to the boosting station via the converter 8, and is connected to the grid for power generation.
  • the submarine cable can be used instead of the underwater plug connector or the submarine cable to seal the connection. It also reduces the stress on the submarine cable and the impact on current fluctuations.
  • the marine tidal power generation system adopted in the present disclosure can safely and reliably realize the utilization of ocean current energy generation; can monitor the current direction change of the ocean current energy in real time, and adjust the yaw direction and the pitch direction in real time according to the change, and efficiently convert the ocean current energy into Electrical energy, and reduce the loss of electricity and grid-connected power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种海洋潮流能发电系统,包括固定机构、海流能发电机组和信号监控机构。固定机构包括浮体(3)、固定杆(5)、水平支撑杆(4)和工作平台(6)。浮体(3)通过锚链(12)固定于海底,固定杆(5)固定在浮体(3)上,水平支撑杆(4)和工作平台(6)分别固定在固定杆(5)的水下和水上部分。发电机组包括水下组件和水上组件,水下组件包括依次连接的叶片(21)、轮毂(22)、主轴(23)、齿轮箱(24)、联轴器(25)、发电机(26)、尾舱和偏航机构(29)。轮毂(22)中设有变桨机构,偏航机构(29)设置在联轴器(25)和水平支撑杆(4)之间。采用上述漂浮式半直驱型海洋潮流能发电系统,能安全可靠的实现将海流能高效转换成电能。

Description

一种海洋潮流能发电系统
相关申请的交叉引用
本申请要求于2017年07月14日提交中国专利局的申请号为2017105762128、名称为“一种海洋潮流能发电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及海洋能发电技术领域,特别是涉及一种漂浮式半直驱型海洋潮流能发电系统。
背景技术
海洋潮流能是潮水在水平运动时所含有的动能,又称海流能。海流是海洋中海水因热辐射、蒸发、降水、冷缩等而形成的密度不同的水团,再加上风应力、地转偏向力、引潮力等作用而发生的相对稳定速度的流动。海洋潮流能发电系统是利用海流水平运动的动能,通过能量捕获、能量转换、能量传输等环节,产生并提供电能。
我国拥有丰富的海洋潮流能资源,研究和开发高效可靠的海洋潮流能发电系统,对于我国实施可再生能源发展战略将起到巨大的推动作用。目前,我国海洋潮流能发电系统还处于研究阶段,尚有许多技术上和发电系统总体设计上急需突破的方面。
由此可见,现有的海洋潮流能发电系统还存在诸多缺陷,而亟待加以进一步改进。如何能创设一种新的漂浮式半直驱型海洋潮流能发电系统,实属当前重要研发课题之一。
发明内容
本公开要解决的技术问题是提供一种海洋潮流能发电系统,使其简单、高效、可靠、安全的实现利用海洋潮流能进行发电,从而克服现有的海洋潮流能发电系统的不足。
为解决上述技术问题,本公开提供一种海洋潮流能发电系统,包括固定机构、海流能发电机组和信号监控机构;
所述固定机构包括浮体、固定杆、水平支撑杆和工作平台,所述浮体漂浮在海面上,其下部通过锚链固定于海底,所述固定杆固定在所述浮体上,所述水平支撑杆垂直固定在所述固定杆的水面以下部分,所述工作平台垂直固定在所述固定杆的水面以上部分;
所述海流能发电机组包括水下组件和水上组件,所述水下组件包括依次连接的叶片、 轮毂、主轴、齿轮箱、联轴器、发电机、尾舱和偏航机构,所述轮毂中设有变桨机构,所述偏航机构设置在所述联轴器和水平支撑杆之间,配置为带动所述水下组件相对于水平支撑杆偏航转动,水下组件直接浸没在海水中;
所述水上组件包括通过海缆与所述发电机连接的变流器,和通过海缆与所述偏航机构、变桨机构、齿轮箱、联轴器、发电机和尾舱连接的控制柜,所述变流器和控制柜均设置在所述工作平台上;
所述信号监控机构包括与所述控制柜连接的海流计,所述海流计设置在所述水平支撑杆上,配置为实时监测海流能的海流方向变化。
进一步地,所述固定机构为潮流能机组支撑系统,所述海流能发电机组为海洋潮流能发电机组,所述信号监控机构为信号监控系统,所述浮体为浮体结构,所述水平支撑杆为水平支撑结构,所述固定杆为固定结构,所述尾舱为接线舱。
进一步地,所述海洋潮流能发电系统还包括提升机构,所述提升机构包括提升装置和提升控制系统,所述提升装置设置在所述固定结构上,其下部与所述水平支撑结构固定连接;所述提升控制系统设置在所述工作平台上,配置为控制所述提升装置沿所述固定结构上下移动,进而带动所述海洋潮流能发电机组水下组件的升降运动。
进一步地,所述提升装置包括齿轮和齿条,所述齿条固定连接在所述固定结构上,所述齿轮与所述水平支撑结构固定连接,所述齿轮与所述齿条配合。
进一步地,所述海洋潮流能发电系统包括两套所述海洋潮流能发电机组的水下组件,所述两套水下组件对称设置在所述水平支撑结构的两端部,且两套所述水下组件均与所述水上组件连接。
进一步地,所述变桨机构包括相互连接的变桨轴承和变桨减速机,所述变桨轴承与所述叶片固定连接,所述控制柜与所述变桨减速机连接,配置为发出控制指令给所述变桨减速机,以驱动所述变桨轴承带动所述叶片。
进一步地,所述变桨机构被配置为使所述叶片在0°~270°度桨距角变化,且正向海流桨距角为0°~90°;反向海流桨距角为180°~270°。
进一步地,所述偏航机构包括相互连接的偏航轴承和偏航减速机,所述偏航轴承和所述水下组件固定连接,所述控制柜与所述偏航减速机连接,配置为发出控制指令给所述偏航减速机,以驱动所述偏航轴承,带动所述水下组件旋转。
进一步地,所述海洋潮流能发电系统还包括水下密封系统,所述水下密封系统包括设置在所述变桨轴承的内外圈之间的第一旋转密封。
进一步地,所述偏航结构被配置为使所述海洋潮流能发电机组180°旋转,以保持所述海洋潮流能发电机组的水平轴线始终与海流方向平行,使得所述叶片与所述轮毂始终迎着 来流方向。
进一步地,每只所述叶片与所述轮毂之间均设置有隔离法兰。
进一步地,所述海洋潮流能发电系统包括水下密封系统,所述水下密封系统包括设置在所述主轴与所述齿轮箱之间的第二旋转密封,以及设置在所述齿轮箱与联轴器之间的第一静密封、所述联轴器与发电机之间的第二静密封、所述发电机与接线舱之间的第三静密封。
进一步地,所述信号监控系统还包括与所述控制柜连接的变桨传感组件、齿轮箱传感组件、发电机传感组件和接线舱传感组件,所述变桨传感组件设置在所述轮毂内部,所述齿轮箱传感组件设置于所述齿轮箱内,所述发电机传感组件设置在所述发电机中,所述接线舱传感组件设置在所述接线舱的内部。
进一步地,所述变桨传感组件包括变桨速度传感器和变桨角度传感器,所述变桨速度传感器和所述变桨角度传感器均设置于所述轮毂内部。
进一步地,所述齿轮箱传感组件包括油位传感器、油压传感器、油温传感器以及振动传感器,所述油位传感器配置为检测所述齿轮箱内的油位,所述油压传感器配置为检测所述齿轮箱内的油压,所述油温传感器配置为检测所述齿轮箱内的油温,所述振动传感器配置为检测所述齿轮箱内的传动部件的振动。
进一步地,所述发电机传感组件包括电压电流传感器和第一温度传感器,分别配置为检测所述发电机的电压电流以及温度。
进一步地,所述水下组件轴向中心设有空心轴,所述空心轴配置为穿过所述控制柜与变桨机构连接的电缆。
进一步地,所述接线舱还设有配置为保护海缆的海缆护管,所述海缆护管的顶端高出海平面。
进一步地,所述叶片采用碳纤维、玻璃纤维或碳纤维和玻璃纤维的组合,所述叶片的叶根采用预埋螺栓。
进一步地,所述海洋潮流能发电机组内部设有视频监控模块。
进一步地,所述潮流能机组支撑系统和所述海洋潮流能发电机组的配置为与海水接触的表面均设置有防护层。
进一步地,所述齿轮箱采用二级或三级变速齿轮结构。
进一步地,所述发电机采用永磁同步发电机。
进一步地,所述叶片为双叶片或三叶片或大于三个的多叶片。
采用这样的设计后,本公开至少具有以下优点:
1、本公开采用漂浮式海洋潮流能发电系统,且为半直驱式风电机组,通过将海流能风 电机组分为水下组件和水上组件,安全可靠的实现利用海流能发电;还通过设置海流计,能实时监测海流能的海流方向变化,并根据该变化实时调整偏航方向和变桨方向,高效的保证海流能转换成电能,并减少电能并网发电的损耗。
2、进一步地,本公开通过设置水下旋转密封和静密封结构,以及变桨传感组件、齿轮箱传感组件、发电机传感组件和接线舱传感组件,能够保证发电机组运行的可靠性。
3、进一步地,本公开通过设置提升机构,能提高风电机组运维的安全性和方便性。
4、进一步地,本公开通过在接线舱设置海缆护管,且将该海缆护管的顶端高出海平面,能有效防止海水进入发电机组,既对海缆起到保护作用,防止海缆遭受破坏,又能起到作为齿轮箱呼吸管的作用,保证齿轮箱温度和压力的平衡。水深时可采用水下插拔接头或海缆穿仓密封连接,既起到密封作用,又减少海缆护管的受力以及对海流波动的影响。
5、进一步地,本公开应用通过180°偏航机构和270°变桨机构,能够实现对双向海流的能量捕获,发电效率提高一倍。
6、进一步地,本公开在叶片与轮毂之间设有隔断法兰,防止海水经过叶片渗入轮毂和机组,保证机组运行的安全。
本公开实现了海洋潮流能发电系统总体设计和技术上全面性、可靠性和先进性。
附图说明
上述仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,以下结合附图与具体实施方式对本公开作进一步的详细说明。
图1是本公开海洋潮流能发电系统的总体结构示意图;
图2是本公开一实施例提供的海洋潮流能发电系统中半直驱型发电机组的结构示意图。
图3是本公开另一实施例提供的海洋潮流能发电系统中半直驱型发电机组的结构示意图。
具体实施方式
参照附图1和2所示,本实施例海洋潮流能发电系统,包括潮流能机组支撑系统、提升机构、海洋潮流能发电机组、信号监控系统以及水下密封系统。
该潮流能机组支撑系统包括浮体结构3、固定结构5、水平支撑结构4和工作平台6。其中,浮体结构3的数量可以是一个,也可以为多个。本实施例中,采用一个浮体结构3。该浮体结构3漂浮在海面上,其下部通过锚链12固定于海底,即牢固连接在海床上,配置为支撑整个海洋潮流能发电系统,保证系统的安全。该固定结构5固定在浮体结构3上,该水平支撑结构4垂直固定在该固定结构5的水面以下部分,该工作平台6垂直固定在该 固定结构5的水面以上部分。应当理解,上述的“垂直”可以是完全垂直,也可以是大致垂直即可。
该海洋潮流能发电机组包括水下组件和水上组件,该水下组件包括依次连接的叶片21、轮毂22、主轴23、齿轮箱24、联轴器25、发电机26、接线舱27和偏航机构29。该轮毂22中设有变桨机构30,该偏航机构29设置在该联轴器25和水平支撑结构4之间,配置为带动该水下组件相对于水平支撑结构4偏航转动达180°。在本公开的其他实施例中,也可以是该偏航机构29设置在该齿轮箱24和水平支撑结构4之间。
请参阅图3,在本公开的另一实施例中,该水下组件可以包括依次连接的叶片21、隔离法兰20、轮毂22、主轴23、齿轮箱24、联轴器25、发电机26、接线舱27和偏航机构29。可选地,每只叶片21与轮毂22之间均设置有隔离法兰20,以防止海水经过叶片21渗入轮毂22和海洋潮流能发电机组,保证海洋潮流能发电机组运行的安全。
本实施例中该叶片21为双叶片,当然也可采用三叶片结构,也可以采用大于三个的多叶片结构。该齿轮箱24采用二级或三级变速齿轮结构。该发电机26采用永磁同步发电机。
该水上组件包括通过海缆7与该发电机连接的变流器8,和通过海缆7与该偏航机构29、变桨机构30、齿轮箱24、联轴器25、发电机26和接线舱27连接的控制柜9。该变流器8和控制柜9均设置在该工作平台6上,一是为了操作方便,二是电器元件较多,放置在水下如果发生泄漏后果严重,提高该发电系统的安全性。
本实施例中该海洋潮流能发电系统包括两套该海洋潮流能发电机组的水下组件,如第一水下组件1和第二水下组件2。该两套水下组件左右对称的设置在该水平支撑结构4的两端部,且两套该水下组件均与该水上组件连接。这样既能保持水平支撑结构4的受力平衡,又能避开固定结构5对海流的干扰进而影响发电机组的发电效率,提高海流捕获效率。
该提升机构包括提升装置13和提升控制系统10,该提升装置13设置在该固定结构5上,在其他实施例中,也可以固定在固定结构5的周围,其下部与该水平支撑结构4固定连接,其上部与该工作平台6活动连接;该提升控制系统10设置在该工作平台6上,配置为控制该提升装置13沿该固定结构5上下移动。这样该海洋潮流能发电机组的水下组件正常情况下放到海水中运行发电,能在需要时提出海平面维修,方便该系统的运维操作且提升安全性。
提升装置13包括齿轮和齿条,齿条固定连接在固定结构5上,齿轮与水平支撑结构4固定连接。齿轮与齿条配合。通过齿轮沿着齿条的上下移动,带动水平支撑结构4和水下组件沿着固定结构5上下运动。
该信号监控系统包括与该控制柜9连接的海流计11,该海流计11设置在该水平支撑结构4上,配置为实时监测海流能的海流方向变化及速度变化。在潮流涨潮、落潮方向发生 改变,由海流计11监控得到的信号,通过海缆7传输到控制柜9,控制柜9发出控制指令到偏航机构29,偏航机构29带动发电机组适应潮流方向转动;海流计11监控得到的流速、流向信号,由控制柜9发出控制指令通过海缆7、中心轴27到变桨机构30,变桨机构30带动叶片21进行叶片桨距角90°范围内调整;如果偏航机构29发生故障,变桨结构30可以进行270°变桨,捕获双向海洋潮流的能量。
变桨机构29包括相互连接的变桨轴承和变桨减速机,变桨轴承与叶片21固定连接,控制柜9与变桨减速机连接,配置为发出控制指令给变桨减速机,以驱动变桨轴承带动叶片,实现叶片21浆距角的变化。
变桨机构29被配置为使叶片21在0°~270°度桨距角变化,且正向海流桨距角为0°~90°,可选地,第一桨距角在0°,第一安全顺桨位置为90°;反向海流桨距角为180°~270°,可选地,第二桨距角在180°,第二安全顺桨位置为270°。可选地,每个叶片21可以单独设置一套独立的变桨机构29。
偏航机构30包括相互连接的偏航轴承和偏航减速机,偏航轴承和水下组件固定连接,控制柜9与偏航减速机连接,配置为发出控制指令给偏航减速机,以驱动偏航轴承,带动水下组件旋转,实现水下组件旋转角度的变化。
偏航结构30被配置为使海洋潮流能发电机组180°旋转,以保持海洋潮流能发电机组的水平轴线始终与海流方向平行,使得叶片21与轮毂22始终迎着来流方向。
通过变桨机构29和偏航机构30实现双向海流的能量捕获。变桨机构29和偏航机构30可以同时使用,也可用单独应用。
本实施例中该水下组件轴向中心设有空心轴31,该空心轴31配置为穿过该控制柜9与变桨机构连接的电缆7,建立控制柜9与变桨机构29的通信联系。该接线舱27还设有配置为保护海缆7的海缆护管28。该海缆护管28的顶端要高出海平面,以防止海水进入发电机组,一方面对海缆7起到保护作用,防止海缆遭受破坏;另一方面,起到齿轮箱24呼吸管的作用,保证齿轮箱温度和压力的平衡。
本实施例中该海洋潮流能发电系统还包括水下密封系统,该水下密封系统包括设置在变桨轴承的内外圈之间的第一旋转密封42、设置在主轴23与齿轮箱24之间的第二旋转密封41、设置在齿轮箱24与联轴器25之间的第一静密封43、设置在联轴器25与发电机26之间的第二静密封44,设置在发电机26与接线舱27之间的第三静密封45。旋转密封保证转动部件之间正常旋转运动而不产生泄露,静密封保证连接部件之间不能泄露海水。
除此以外,潮流能发电机组其他连接部件接触面之间,都可以设置静密封。
为了进一步提高该发电系统的运维安全性,该信号监控系统还包括与该控制柜9连接的变桨传感组件51、齿轮箱传感组件52、发电机传感组件53和接线舱传感组件54。该变 桨传感组件51设置在该轮毂22内部,包括变桨速度传感器和变桨角度传感器,变桨速度传感器和变桨角度传感器均设置于轮毂22内部。该齿轮箱传感组件52设置在齿轮箱24内,包括油位传感器、油压传感器、油温传感器以及振动传感器,油位传感器配置为检测齿轮箱24内的油位,油压传感器配置为检测齿轮箱24内的油压,油温传感器配置为检测齿轮箱24内的油温,振动传感器配置为检测齿轮箱24内的传动部件的振动。发电机传感组件53设置在发电机26中,包括电压电流传感器和第一温度传感器,分别配置为检测发电机26的电压电流以及温度。该接线舱传感组件54设置在接线舱27的内部,包括第二温度传感器和湿度传感器,分别配置为检测接线舱27内的温度和湿度。另外,上述的各传感组件均还设有液位报警器。若有海水泄露,变桨传感组件51、齿轮箱传感组件52、发电机传感组件53和接线舱传感组件54就会发出报警信号到控制柜9。必要时启动提升控制系统10,由提升装置13把发电机组提出海平面进行检查维护。
另外,可选地,叶片21可以采用碳纤维、玻璃纤维或碳纤维和玻璃纤维的组合,叶片21的叶根可以采用预埋螺栓。
可选地,海洋潮流能发电机组的内部可以设有视频监控模块,全寿命周期检测机组的运行与安全。
可选地,潮流能机组支撑系统和海洋潮流能发电机组的配置为与海水接触的表面均设置有防护层。例如,该防护层可以采用防腐和防污涂层以及阳极保护层。
本公开海洋潮流能发电系统正常运行时,海流推动叶片21、轮毂22转动,叶轮捕获海水动能,带动主轴23、齿轮箱24、联轴器25、发电机26转动,把海水动能转化为电能,电能由与发电机26相接的海缆7通过海缆护管28传输到变流器8,经过变流器8并入电网系统。该海洋潮流能发电系统能发出690V交流电,经变流器8接入升压站,并网发电。
如果海水深度较深,例如,当海洋潮流能机组工作水深在15米以下时,可以不采用海缆护管,而采用水下插拔接头或海缆穿仓密封连接,既起到密封作用,又减少海缆护管的受力以及对海流波动的影响。
以上所述,仅是本公开的较佳实施例而已,并非对本公开作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本公开的保护范围内。
工业实用性
本公开采用的海洋潮流能发电系统能够安全可靠的实现利用海流能发电;能实时监测海流能的海流方向变化,并根据该变化实时调整偏航方向和变桨方向,高效的保证海流能转换成电能,并减少电能并网发电的损耗。

Claims (20)

  1. 一种海洋潮流能发电系统,其特征在于,包括固定机构、海流能发电机组和信号监控机构;所述固定机构包括浮体、固定杆、水平支撑杆和工作平台,所述浮体漂浮在海面上,其下部通过锚链固定于海底,所述固定杆固定在所述浮体上,所述水平支撑杆垂直固定在所述固定杆的水面以下部分,所述工作平台垂直固定在所述固定杆的水面以上部分;所述海流能发电机组包括水下组件和水上组件,所述水下组件包括依次连接的叶片、轮毂、主轴、齿轮箱、联轴器、发电机、尾舱和偏航机构,所述轮毂中设有变桨机构,所述偏航机构设置在所述联轴器和水平支撑杆之间,配置为带动所述水下组件相对于水平支撑杆偏航转动,所述水下组件直接浸没在海水中;所述水上组件包括通过海缆与所述发电机连接的变流器,和通过海缆与所述偏航机构、变桨机构、齿轮箱、联轴器、发电机和尾舱连接的控制柜,所述变流器和控制柜均设置在所述工作平台上;所述信号监控机构包括与所述控制柜连接的海流计,所述海流计设置在所述水平支撑杆上,配置为实时监测海流能的海流方向变化。
  2. 根据权利要求1所述的海洋潮流能发电系统,其特征在于,所述固定机构为潮流能机组支撑系统,所述海流能发电机组为海洋潮流能发电机组,所述信号监控机构为信号监控系统,所述浮体为浮体结构,所述水平支撑杆为水平支撑结构,所述固定杆为固定结构,所述尾舱为接线舱。
  3. 根据权利要求2所述的海洋潮流能发电系统,其特征在于,所述海洋潮流能发电系统还包括提升机构,所述提升机构包括提升装置和提升控制系统,所述提升装置设置在所述固定结构上,其下部与所述水平支撑结构固定连接;所述提升控制系统设置在所述工作平台上,配置为控制所述提升装置沿所述固定结构上下移动,进而带动所述海洋潮流能发电机组水下组件的升降运动。
  4. 根据权利要求3所述的海洋潮流能发电系统,其特征在于,所述提升装置包括齿轮和齿条,所述齿条固定连接在所述固定结构上,所述齿轮与所述水平支撑结构固定连接,所述齿轮与所述齿条配合。
  5. 根据权利要求1-4任一项所述的海洋潮流能发电系统,其特征在于,所述海洋潮流能发电系统包括两套所述海洋潮流能发电机组的水下组件,所述两套水下组件对称设置在所述水平支撑结构的两端部,且两套所述水下组件均与所述水上组件连接。
  6. 根据权利要求1-5任一项所述的海洋潮流能发电系统,其特征在于,所述变桨机构包括相互连接的变桨轴承和变桨减速机,所述变桨轴承与所述叶片固定连接,所述控制柜与所述变桨减速机连接,配置为发出控制指令给所述变桨减速机,以驱动所述变桨轴承 带动所述叶片。
  7. 根据权利要求1-6任一项所述的海洋潮流能发电系统,其特征在于,所述变桨机构被配置为使所述叶片在0°~270°度桨距角变化,且正向海流桨距角为0°~90°;反向海流桨距角为180°~270°。
  8. 根据权利要求1-7任一项所述的海洋潮流能发电系统,其特征在于,所述偏航机构包括相互连接的偏航轴承和偏航减速机,所述偏航轴承和所述水下组件固定连接,所述控制柜与所述偏航减速机连接,配置为发出控制指令给所述偏航减速机,以驱动所述偏航轴承,带动所述水下组件旋转。
  9. 根据权利要求8所述的海洋潮流能发电系统,其特征在于,所述海洋潮流能发电系统还包括水下密封系统,所述水下密封系统包括设置在所述变桨轴承的内外圈之间的第一旋转密封。
  10. 根据权利要求1-9任一项所述的海洋潮流能发电系统,其特征在于,所述偏航结构被配置为使所述海洋潮流能发电机组180°旋转,以保持所述海洋潮流能发电机组的水平轴线始终与海流方向平行,使得所述叶片与所述轮毂始终迎着来流方向。
  11. 根据权利要求1-10任一项所述的海洋潮流能发电系统,其特征在于,每只所述叶片与所述轮毂之间均设置有隔离法兰。
  12. 根据权利要求1-11任一项所述的海洋潮流能发电系统,其特征在于,所述海洋潮流能发电系统包括水下密封系统,所述水下密封系统包括设置在所述主轴与所述齿轮箱之间的第二旋转密封,以及设置在所述齿轮箱与联轴器之间的第一静密封、所述联轴器与发电机之间的第二静密封、所述发电机与接线舱之间的第三静密封。
  13. 根据权利要求1至12任一项所述的海洋潮流能发电系统,其特征在于,所述信号监控系统还包括与所述控制柜连接的变桨传感组件、齿轮箱传感组件、发电机传感组件和接线舱传感组件,所述变桨传感组件设置在所述轮毂内部,所述齿轮箱传感组件设置于所述齿轮箱内,所述发电机传感组件设置在和所述发电机中,所述接线舱传感组件设置在所述接线舱的内部。
  14. 根据权利要求13所述的海洋潮流能发电系统,其特征在于,所述变桨传感组件包括变桨速度传感器和变桨角度传感器,所述变桨速度传感器和所述变桨角度传感器均设置于所述轮毂内部。
  15. 根据权利要求13所述的海洋潮流能发电系统,其特征在于,所述齿轮箱传感组件包括油位传感器、油压传感器、油温传感器以及振动传感器,所述油位传感器配置为检测所述齿轮箱内的油位,所述油压传感器配置为检测所述齿轮箱内的油压,所述油温传感器配置为检测所述齿轮箱内的油温,所述振动传感器配置为检测所述齿轮箱内的传动部件 的振动。
  16. 根据权利要求13所述的海洋潮流能发电系统,其特征在于,所述发电机传感组件包括电压电流传感器和第一温度传感器,分别配置为检测所述发电机的电压电流以及温度。
  17. 根据权利要求1-16任一项所述的海洋潮流能发电系统,其特征在于,所述水下组件轴向中心设有空心轴,所述空心轴配置为穿过所述控制柜与所述变桨机构连接的电缆。
  18. 根据权利要求1-17任一项所述的海洋潮流能发电系统,其特征在于,所述接线舱还设有配置为保护海缆的海缆护管,所述海缆护管的顶端高出海平面。
  19. 根据权利要求1-18任一项所述的海洋潮流能发电系统,其特征在于,所述叶片采用碳纤维、玻璃纤维或碳纤维和玻璃纤维的组合,所述叶片的叶根采用预埋螺栓。
  20. 根据权利要求1-19任一项所述的海洋潮流能发电系统,其特征在于,所述潮流能机组支撑系统和所述海洋潮流能发电机组的配置为与海水接触的表面均设置有防护层。
PCT/CN2018/093795 2017-07-14 2018-06-29 一种海洋潮流能发电系统 WO2019011134A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/609,740 US10982646B2 (en) 2017-07-14 2018-06-29 Ocean tidal current energy power generating system
AU2018300485A AU2018300485B2 (en) 2017-07-14 2018-06-29 Ocean tidal current energy power generating system
PH12019502495A PH12019502495A1 (en) 2017-07-14 2019-11-06 Ocean tidal current energy power generating system
ZA2019/07425A ZA201907425B (en) 2017-07-14 2019-11-08 Ocean tidal current energy power generating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710576212.8A CN107165774A (zh) 2017-07-14 2017-07-14 一种海洋潮流能发电系统
CN201710576212.8 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019011134A1 true WO2019011134A1 (zh) 2019-01-17

Family

ID=59816820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093795 WO2019011134A1 (zh) 2017-07-14 2018-06-29 一种海洋潮流能发电系统

Country Status (6)

Country Link
US (1) US10982646B2 (zh)
CN (1) CN107165774A (zh)
AU (1) AU2018300485B2 (zh)
PH (1) PH12019502495A1 (zh)
WO (1) WO2019011134A1 (zh)
ZA (1) ZA201907425B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608129A (zh) * 2019-10-28 2019-12-24 重庆理工大学 一种基于双水伞相互切换的平流微水发电装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165774A (zh) 2017-07-14 2017-09-15 国电联合动力技术有限公司 一种海洋潮流能发电系统
CN107605652A (zh) * 2017-10-23 2018-01-19 国电联合动力技术有限公司 一种海上发电机组
CN108361146A (zh) * 2018-04-17 2018-08-03 国电联合动力技术有限公司 一种半直驱式潮流能机组传动链及包括其的潮流能机组
CN108336700A (zh) * 2018-04-17 2018-07-27 国电联合动力技术有限公司 一种分段式十字花键穿线管轴及包括其的潮流能机组
CN108953048B (zh) * 2018-07-25 2020-01-31 国电联合动力技术有限公司 一种潮流能发电机组及其正反转切换检测方法
CN112901396B (zh) * 2020-03-30 2022-12-16 邓向东 增压式水轮机主轴密封装置
CN112229600A (zh) * 2020-09-09 2021-01-15 中国航天空气动力技术研究院 水下发电风筝的拖曳水池试验装置及方法
CN113864100B (zh) * 2021-10-22 2024-03-15 重庆锕维科技有限公司 一种微海流发电机及其生产设备
CN114233562B (zh) * 2021-11-08 2023-12-22 深圳供电局有限公司 新能源发电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562427A (zh) * 2012-01-14 2012-07-11 哈尔滨工程大学 一种漂浮式潮流能发电站
CN103397980A (zh) * 2013-08-02 2013-11-20 中国海洋石油总公司 潮流能发电水轮机的变桨距机构
CN203756423U (zh) * 2014-02-27 2014-08-06 国电联合动力技术有限公司 一种潮流能发电机组
CN104454325A (zh) * 2014-10-24 2015-03-25 国电联合动力技术有限公司 一种潮流能发电机组的变桨方法
CN104481790A (zh) * 2014-11-20 2015-04-01 哈尔滨工程大学 一种直驱式独立变桨距潮流能发电水轮机
CN204553079U (zh) * 2015-04-02 2015-08-12 国电联合动力技术有限公司 一种潮流能发电机组
US20160245258A1 (en) * 2015-02-24 2016-08-25 Lockheed Martin Corporation Turbine with yaw brake mechanism having a rotor lock and a corresponding receptacle
CN107165774A (zh) * 2017-07-14 2017-09-15 国电联合动力技术有限公司 一种海洋潮流能发电系统
CN207111294U (zh) * 2017-07-14 2018-03-16 国电联合动力技术有限公司 一种海洋潮流能发电系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2367715C (en) * 1999-02-24 2008-04-01 Peter Fraenkel Water current turbine sleeve mounting
CN2435539Y (zh) * 1999-06-01 2001-06-20 肖元龙 锥齿轮增速串灯泡贯流毂怀电机转桨式水电机组
GB0227739D0 (en) * 2002-11-28 2003-01-08 Marine Current Turbines Ltd Supporting structures for water current (including tidal stream) turbines
NO320252B1 (no) * 2003-05-21 2005-11-14 Hydra Tidal Energy Technology Anordning for forankring av en flytende struktur
GB0521356D0 (en) * 2005-10-19 2005-11-30 Marine Current Turbines Ltd Methods and apparatus for the extraction of energy from moving water
GB0600942D0 (en) * 2006-01-18 2006-02-22 Marine Current Turbines Ltd Improvements in gravity foundations for tidal stream turbines
CN1888417A (zh) * 2006-07-18 2007-01-03 浙江大学 液压式水下风车发电装置
CN200993073Y (zh) * 2006-07-25 2007-12-19 白子刚 江河海底以及风力场中的发电装置
JP4982828B2 (ja) * 2008-01-23 2012-07-25 独立行政法人海上技術安全研究所 潮流・海流発電装置
CN102345550B (zh) * 2011-09-13 2013-09-18 浙江大学 一种低速半直驱海流能发电装置
CN203515944U (zh) * 2013-09-06 2014-04-02 国电联合动力技术有限公司 一种海洋潮汐能发电机组
GB2527817B (en) * 2014-07-02 2016-06-22 Energy Tech Inst Llp Tidal energy converter system
EP3037652A1 (en) * 2014-12-23 2016-06-29 Openhydro IP Limited A displacement system and method for a submersible electrical system
CN104763581B (zh) * 2015-04-02 2017-05-24 国电联合动力技术有限公司 一种潮流能发电机组及其偏航方法
CN106704084A (zh) * 2015-07-17 2017-05-24 上海电气风电设备有限公司 一种洋流式发电机组整机分布设计方案
CN106194569A (zh) * 2016-09-14 2016-12-07 国家电网公司 潮流发电系统的维护装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562427A (zh) * 2012-01-14 2012-07-11 哈尔滨工程大学 一种漂浮式潮流能发电站
CN103397980A (zh) * 2013-08-02 2013-11-20 中国海洋石油总公司 潮流能发电水轮机的变桨距机构
CN203756423U (zh) * 2014-02-27 2014-08-06 国电联合动力技术有限公司 一种潮流能发电机组
CN104454325A (zh) * 2014-10-24 2015-03-25 国电联合动力技术有限公司 一种潮流能发电机组的变桨方法
CN104481790A (zh) * 2014-11-20 2015-04-01 哈尔滨工程大学 一种直驱式独立变桨距潮流能发电水轮机
US20160245258A1 (en) * 2015-02-24 2016-08-25 Lockheed Martin Corporation Turbine with yaw brake mechanism having a rotor lock and a corresponding receptacle
CN204553079U (zh) * 2015-04-02 2015-08-12 国电联合动力技术有限公司 一种潮流能发电机组
CN107165774A (zh) * 2017-07-14 2017-09-15 国电联合动力技术有限公司 一种海洋潮流能发电系统
CN207111294U (zh) * 2017-07-14 2018-03-16 国电联合动力技术有限公司 一种海洋潮流能发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608129A (zh) * 2019-10-28 2019-12-24 重庆理工大学 一种基于双水伞相互切换的平流微水发电装置

Also Published As

Publication number Publication date
AU2018300485B2 (en) 2023-06-22
US20200072183A1 (en) 2020-03-05
ZA201907425B (en) 2021-01-27
US10982646B2 (en) 2021-04-20
AU2018300485A1 (en) 2019-11-21
CN107165774A (zh) 2017-09-15
PH12019502495A1 (en) 2020-07-13

Similar Documents

Publication Publication Date Title
WO2019011134A1 (zh) 一种海洋潮流能发电系统
JP6484283B2 (ja) 多メガワット海流エネルギー抽出装置
TWI437163B (zh) 水流發電系統
KR100697717B1 (ko) 조류 발전 장치
WO2016000610A1 (zh) 潮流能发电装置
CN107131093A (zh) 一种海洋潮流能发电系统
JP2008063960A (ja) 洋上浮体式風水車流体抽出発電設備
Fraenkel Practical tidal turbine design considerations: a review of technical alternatives and key design decisions leading to the development of the SeaGen 1.2 MW tidal turbine
US10422311B2 (en) Hydroelectricity generating unit capturing marine current energy
CN106939870A (zh) 海洋能发电装置及其海洋能发电漏水保护装置
KR200386085Y1 (ko) 조류 발전 장치
CN107165772A (zh) 一种海洋潮流能发电系统
CN104481780A (zh) 浅浸没漂浮式带导流罩水平轴海流发电系统
CN207111294U (zh) 一种海洋潮流能发电系统
JP5466703B2 (ja) 発電装置
CN107191315A (zh) 一种海洋潮流能发电系统
JP2013002399A (ja) 風力の一部を風上への推進力に利用することで、海底に係留しなくても風に流されない洋上風力発電用風車。
CN104018980A (zh) 一种利用多个浮体的桩式波浪能俘获装置
CN105134454A (zh) 低速垂直轴水流发电机
CN207111296U (zh) 一种海洋潮流能发电系统
JP2021533320A (ja) 風力タービン、ヒートポンプ、エネルギー保存、および熱移送システムおよび方法
CN104329212A (zh) 一种浮子式液压波浪能装置
CN210564882U (zh) 一种安装于风力发电机组塔筒的潮流能发电装置
KR20120013806A (ko) 해양 복합발전장치
CN202360286U (zh) 悬浮发电水轮机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018300485

Country of ref document: AU

Date of ref document: 20180629

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831665

Country of ref document: EP

Kind code of ref document: A1