WO2016000609A1 - 潮流能发电装置 - Google Patents

潮流能发电装置 Download PDF

Info

Publication number
WO2016000609A1
WO2016000609A1 PCT/CN2015/083000 CN2015083000W WO2016000609A1 WO 2016000609 A1 WO2016000609 A1 WO 2016000609A1 CN 2015083000 W CN2015083000 W CN 2015083000W WO 2016000609 A1 WO2016000609 A1 WO 2016000609A1
Authority
WO
WIPO (PCT)
Prior art keywords
tidal current
bearing
lubricant
current power
mounting shaft
Prior art date
Application number
PCT/CN2015/083000
Other languages
English (en)
French (fr)
Inventor
林东
Original Assignee
浙江舟山联合动能新能源开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/541,370 priority Critical patent/US20170350366A1/en
Application filed by 浙江舟山联合动能新能源开发有限公司 filed Critical 浙江舟山联合动能新能源开发有限公司
Priority to CA2973250A priority patent/CA2973250C/en
Priority to EP15814043.4A priority patent/EP3193007B1/en
Publication of WO2016000609A1 publication Critical patent/WO2016000609A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/1055Details of supply of the liquid to the bearing from radial inside, e.g. via a passage through the shaft and/or inner sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M11/12Indicating devices; Other safety devices concerning lubricant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/06Bearing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/02Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with gravity feed or drip lubrication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/57Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/12Geometry two-dimensional rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/14Geometry two-dimensional elliptical
    • F05B2250/141Geometry two-dimensional elliptical circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to a power generating device, and more particularly to a tidal current power generating device.
  • Ocean energy (including tidal energy, tidal energy, wave energy, ocean current energy) refers to the energy of seawater flow. As a renewable energy source, it has abundant reserves and wide distribution, and has excellent development prospects and value.
  • the way of utilizing ocean energy is mainly power generation. Its working principle is similar to that of wind power generation, that is, the energy of seawater is converted into electric energy through an energy conversion device. Specifically, first, seawater impacts the turbine, which converts the energy of the water stream into rotational mechanical energy, and then the turbine drives the generator to generate electricity through the mechanical transmission system, and finally converts it into electrical energy.
  • the installation of traditional marine power generation devices must be carried out in the sea, which is difficult and costly.
  • the marine energy power generation device should be repaired or replaced periodically after using it for a period of time.
  • the maintenance and replacement of the traditional marine power generation equipment are also carried out in the sea, which is difficult and costly.
  • the scrapping of the entire marine energy-generating device is one of the important reasons for the high cost of the marine energy-generating device, and it is also a direct cause of the large-scale, commercial operation of the existing marine energy-generating device. the reason.
  • the rotating mechanism is entirely located in the water, and to achieve the rotation of the blade angle, it is necessary to accurately design the tightness of the installation between the components of the blade. If the connection is very tight and the friction is too large, it is difficult to adjust the angle of the water surface of the blade, which causes the adjustment device to fail to perform the adjustment effect. In this case, the power generation device cannot improve the efficiency when the water flow is too small, and the generator cannot be truly protected when the water flow is too large. If the connection is too loose, the friction is too small, although it can be easily adjusted, there is a serious problem of loss of sealing. In this way, the water flow will be poured into the interior of the impeller, causing damage to the entire impeller, the maintenance rate is greatly improved, and the cost is greatly increased.
  • a power generating device that utilizes ocean energy, particularly tidal current, can generate a large impact force in the radial direction of the water shaft.
  • the seal between the shaft and the conventional bearing is prone to deformation, and the sealing of the bearing cannot be guaranteed.
  • the existing marine power generation device can only abandon the rolling bearing using oil as a lubricant, and select a sliding bearing that can use water as a lubricant.
  • the water that can act as a lubricant must be clean water.
  • the present invention provides a tidal current power generating device.
  • the present invention provides a tidal current power generating apparatus including an outer frame, at least two inner frames, at least two mounting shafts, a driving unit, at least four horizontal axis water turbine generators, and at least six bearings.
  • At least two inner frames are detachably disposed within the outer frame.
  • At least two mounting shafts are rotatably disposed on the two inner frames, respectively, and the axial directions of the at least two mounting shafts are perpendicular to the horizontal plane.
  • Driver list The unit connects at least two mounting shafts to drive the mounting shaft to rotate.
  • Each of the two horizontal axis hydro-generators is mounted on a mounting shaft and located in the same inner frame.
  • At least four horizontal axis hydro-generators change orientation as the mounting shaft rotates.
  • Each of the three bearings is provided with a mounting shaft, and three bearings disposed on one of the mounting shafts are respectively located on both sides and in the middle of the two horizontal shaft hydro-generators.
  • the tidal power generating device further includes at least four shrouds, each shroud corresponding to each horizontal axis hydro-generator set, at least four shrouds fixed to the outer frame or Inner frame, each shroud has two water guiding portions and one intermediate portion, the middle portion is located between the two water guiding portions, and each of the water guiding portions is rectangular from the end of the intermediate portion, each of which is water-conducting
  • One end of the intermediate portion of the portion is circular in cross section
  • the cross section of the intermediate portion is circular
  • the cross section is perpendicular to the horizontal plane and perpendicular to the direction of water flow
  • the area of the circular cross section is smaller than the area of the rectangular cross section.
  • the tidal current power generating device further includes an underwater shafting rotation protection device, and each of the underwater shaft rotation protection devices includes a lubricant storage tank, at least six sealing rings and a conduit.
  • the lubricant storage tank stores lubricant and the lubricant storage tank is located on the water.
  • Each of the two sealing rings corresponds to one bearing and is sleeved on the mounting shaft, and a lubricant chamber is formed between each of the two sealing rings and the corresponding bearing and the mounting shaft.
  • One end of the conduit is connected to the lubricant storage tank and the other end is connected to the lubricant chamber.
  • the underwater shafting rotation protection device further includes a detection module disposed in the lubricant storage tank to detect whether the lubricant is reduced.
  • the bearing is a plain bearing, and each lubricant chamber is formed by two sealing rings with the bearing and the mounting shaft.
  • the bearing is a rolling bearing
  • the underwater shafting rotation protection device further comprises at least three bearing seats, each lubricant cavity being formed by two sealing rings, a bearing, a bearing seat and a mounting shaft.
  • the outer frame has a plurality of fixed piles, and the outer frame is fixed to the sea floor by piling.
  • the outer frame has a plurality of reduced flow resistance structures.
  • the tidal current power generating device provided by the present invention can realize modular assembly and replacement on the water surface by providing a detachable inner frame and an outer frame, thereby greatly reducing maintenance and installation costs, and overcoming the traditional ocean.
  • the power generation device cannot be commercialized and large-scale.
  • the "multi-point constraint" is achieved on the mounting shaft, so that the scale power generating device can be horizontally (perpendicular to the water flow).
  • the horizontal expansion can also be expanded longitudinally (perpendicular to the water depth in the horizontal plane), greatly increasing the power generation, and overcoming the problem that the existing marine energy generation devices cannot be “bigger” or “deep”.
  • the angular mode adjusts the load of the generator so that the generator can always ensure normal power generation within a safe load regardless of the speed of the water flow, greatly improving the power generation efficiency.
  • the impeller of the horizontal axis hydro-generator can always flow toward the water regardless of the direction in which the water flows, thereby ensuring maximum power generation. It is especially suitable for generating electricity using tidal energy.
  • the water flow is concentrated to the horizontal axis hydro-generator, so that the impeller of the horizontal-axis hydro-generator is more stressed and the rotation speed is faster, thereby improving the power generation efficiency.
  • the shroud provided in the embodiment of the invention has a rectangular shape at both ends and a circular shape in the middle, and can always serve as a diversion function regardless of high tide or low tide, and the flow guiding effect of the special structure has better guiding effect.
  • the underwater shaft rotation protection device provided by the invention can effectively protect external impurities, especially the sediment in the water enters the bearing, thereby effectively protecting the normal operation of the bearing.
  • the tidal current power generation device provided by the invention adopts the underwater shaft rotation protection device to greatly reduce the maintenance time and the maintenance cost while prolonging the service life of the bearing, and effectively ensures that the power generation efficiency is not affected.
  • the bearing in the tidal current power generating device provided by the present invention can adopt a rolling bearing, and overcomes the technical barrier of the underwater bearing that can only use water lubrication in the underwater shafting system.
  • the underwater shaft rotation protection device can be repaired or replaced conveniently and quickly, which greatly reduces the maintenance cost.
  • FIG. 1 is a schematic diagram of a built-in module of a tidal current power generating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of the circle mark V in FIG.
  • FIG. 3 is a schematic diagram of a built-in module of a tidal current power generating apparatus according to a second embodiment of the present invention.
  • Fig. 4 is a plan view showing a tidal current power generating apparatus according to a third embodiment of the present invention.
  • Fig. 5 is a front elevational view showing a tidal current power generating apparatus according to a third embodiment of the present invention.
  • FIG. 6 is an enlarged schematic view showing the circle mark U in FIG.
  • FIG. 7 is a schematic structural view of a shroud according to a third embodiment of the present invention.
  • Fig. 8 is a front elevational view showing a shroud according to a third embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a built-in module of a tidal current power generating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of the circle mark V in FIG. Please refer to Figure 1 and Figure 2 together.
  • the tidal current power generating device provided in this embodiment includes an outer frame 1, at least two inner frames 2, at least four horizontal axis hydroelectric generators 3, at least two mounting shafts 4, at least six bearings 5, and a driving unit 6.
  • the tidal energy power generation device protected by the present invention includes at least two built-in modules 100.
  • At least two inner frames 2 are detachably disposed within the outer frame 1.
  • the inner frame 2 can be provided with a hook (not shown), and the outer frame 1 can be provided with a card slot (not shown).
  • the inner frame 2 is embedded by the mutual engagement of the hook and the card slot. Go inside the outer frame 1.
  • the present invention does not limit the manner of fixing between the inner frame 2 and the outer frame 1.
  • An inner frame 2, at least two horizontal axis hydro-generators 3, at least one mounting shaft 4 and at least three bearings 5 together form a built-in module 100.
  • at least two horizontal axis hydro-generators 3, at least one mounting shaft 4, at least one generator 5 and at least three bearings 5 may be first fixed in one inner frame 2, and then at least two The assembled inner frame 2 is fixed in the outer frame 1 to realize modular installation of the tidal power generation device.
  • the installation of the built-in module 100 can be performed on the shore, and then the built-in module 100 is hung into the outer frame 1 placed in the sea and the outer frame 1 is fixed, thereby realizing the installation work on the sea surface, greatly simplifying the installation procedure and reducing Installation time reduces the difficulty of installation in the ocean.
  • the present invention does not limit the specific number of the inner frames 2.
  • the number of inner frames 2 can be as many as twelve.
  • the drawbacks of the conventional marine tidal energy power generation device cannot be achieved.
  • the world's largest ocean tidal power generation unit generates 1.2 megawatts of power.
  • the power generation unit of the tidal current power generation unit of the present invention generates 5 megawatts of power, which is much higher than the existing ocean tidal power generation. The maximum amount of power generated by the device.
  • the horizontal axis hydro-generator 3 includes an impeller 31 and a generator 32 (shown in Figure 3). Since the impeller 31 and the generator 32 of the horizontal-axis hydro-generator 3 are all underwater, if the horizontal-axis hydro-generator 3 fails, the conventional marine power generating device will need to be repaired in the sea. This maintenance is very difficult and costly. However, the tidal current power generating device of the present invention can directly take out the built-in module 100 from the sea for repair or replacement, realize rapid replacement and maintenance of the tidal current power generating device on the sea surface, greatly reduce the maintenance cost, and commercialize the tidal current power generating device. Achieved.
  • At least two mounting shafts 4 are rotatably disposed on the two inner frames 2, respectively.
  • the axial direction X of the mounting shaft 4 is perpendicular to the horizontal plane P.
  • Each of the two horizontal axis hydro-generators 3 is fixed to a mounting shaft 4 and is located in the same inner frame 2.
  • At least four horizontal axis hydro-generators 3 change orientation as the mounting shaft 4 rotates.
  • the drive unit 6 is coupled to the mounting shaft 4 to drive the mounting shaft 4 to rotate.
  • the impeller 31 of the horizontal axis hydro-generator 3 is always directed toward the water flow by the rotation of the mounting shaft 4, regardless of the direction of the water flow, thereby improving the utilization of the tidal current energy and improving the power generation efficiency.
  • the driving unit 5 does not operate.
  • the impeller 31 of the horizontal-axis hydro-generator 3 faces the water flow.
  • the driving unit 6 drives the mounting shaft 4 to rotate, thereby causing the horizontal shaft hydro-generator 3 to rotate 180 degrees.
  • the impeller 31 is changed from downward to upward to ensure that the impeller 31 of the horizontal-axis hydro-generator 3 is always directed toward the water flow. This is especially true for tidal power generation, ensuring maximum power generation.
  • the direction of the water flow of the high tide and the low tide in the actual application is not completely parallel, and may not necessarily be perpendicular to the water surface of the horizontal axis hydro-generator 3.
  • the power generating device of the present invention can control the horizontal-axis hydro-generator 3 to change the orientation by the mounting shaft 4 so that the horizontal-axis hydro-generator 3 is always facing the water flow, thereby Maximize the use of tidal energy and increase power generation.
  • the angle can effectively reduce the load of the horizontal axis hydro-generator 3, ensuring that the horizontal-axis hydro-generator 3 is not damaged by the overload, and ensuring that the horizontal-axis hydro-generator 3 is still working normally and continuously output stably. Power generation.
  • the number of the inner frames 2 is equal to the number of the mounting shafts 4, and the number of the horizontal-axis hydro-generators 3 is equal to twice the number of the mounting shafts 4.
  • the present invention is not limited thereto.
  • one of the built-in modules 100 can have multiple mounting shafts 4 and each of the mounting shafts 4 can have more than two horizontal axis hydro-generators 3.
  • the number of the driving units 6 corresponds to the number of the mounting shafts 4, which is at least two.
  • the control of the two mounting shafts 4 by one drive unit 6 can be achieved by a transmission mechanism such as a gear.
  • Each of the drive units 6 includes an electric motor 61 and a transmission mechanism 62 that connects one end of the mounting shaft 4 (which is the upper end in FIG. 1), and the electric motor 61 drives the mounting shaft 4 to rotate by the transmission mechanism 62.
  • the transmission mechanism 62 includes a driving gear and a driven gear that meshes with the driving gear. The motor 61 drives the driving gear to rotate, thereby driving the driven gear to rotate.
  • the drive unit can include an electric motor and a reducer. Since the existing motor speed is relatively fast, the speed is greatly reduced after passing through the speed reducer, so that the rotational speed and the rotational range of the mounting shaft 4 can be effectively and accurately controlled.
  • Each of the three bearings 5 is provided with a mounting shaft 4, as shown in Fig. 1, two bearings 5 disposed on one mounting shaft 4 are respectively located on the upper and lower sides of the two horizontal axis hydro-generators 3, and A bearing 5 is located between the two horizontal axis hydro-generators 3.
  • the depth of the tidal power generating device in the water depth direction D1 can be greatly expanded, thereby making more efficient use of tidal energy for power generation and greatly increasing power generation. power.
  • At least three bearings 5 are provided on a mounting shaft 4 to achieve "multi-point restraint" to the mounting shaft 4.
  • At least three bearings 5 give the mounting shaft 4 at least three points of fixation and support while sharing the force, so that the length of the mounting shaft 4 is no longer subject to Restriction, more horizontal axis hydro-generators 3 can be installed in the water depth direction D1, greatly expanding the scale of the tidal energy power generation device, increasing the power generation, and overcoming the prior art that the ocean energy power generation device cannot be deep in the ocean.
  • the tidal current power generating device further includes an underwater shafting rotation protection device 7, and each of the underwater shaft rotation protection devices 7 includes a lubricant storage tank 71, at least six sealing rings 72, and a duct 73.
  • the lubricant storage tank 71 stores a lubricant 74 which is located on the water surface P.
  • Each of the two sealing rings 72 corresponds to a bearing 5 and is sleeved on the mounting shaft 4, and a lubricant chamber 75 is formed between each of the two sealing rings 72 and the corresponding bearing 5 and the mounting shaft 4.
  • One end of the conduit 73 communicates with the lubricant storage tank 71, and the other end communicates with the lubricant chamber 75.
  • the number of the conduits 73 and the lubricant storage tanks 71 in each of the built-in modules 100 is two, and the two conduits 73 respectively communicate with both sides of the lubricant chamber 75 and the two lubricant storage tanks 71.
  • the speed of filling the lubricant 74 is increased by increasing the number of conduits 73.
  • the conduit 73 can be made of stainless steel.
  • the bearing 5 is a sliding bearing
  • each lubricant chamber 75 is formed by two sealing rings 72 with the bearing 5 and the mounting shaft 4.
  • the upper and lower surfaces of the lubricant chamber 75 are respectively constituted by two seal rings 72
  • the inner surface of the lubricant chamber 75 is the outer surface of the journal portion of the mounting shaft 4
  • the outer surface of the lubricant chamber 75 is the bearing 5 Inner surface.
  • the lubricant chamber 75 is a circular cylinder having a circular cross section and a rectangular cross section.
  • the lubricant 74 is filled in the lubricant chamber 75 to form a lubricating film to reduce friction.
  • the lubricant 74 is pure sea water free from impurities such as sediment.
  • the sealing ring 72 Due to the great impact force of the tidal current on the mounting shaft 4, the sealing ring 72 is subjected to a large radial force for a long time, and is easily deformed elastically, thereby causing no sealing between the sealing ring 72 and the mounting shaft 4, that is, the sealing ring 72 and the mounting shaft. There is a gap between 4. Since the lubricant 74 is originally located in the lubricant chamber 75, the lubricant 74 is likely to be lost when there is a gap in the lubricant chamber 75, and the outside water also carries impurities such as sand and the like from the gap.
  • the following is a detailed description of how the underwater shafting rotation protection device 7 for tidal current power generation provided by the present embodiment protects the mounting shaft 4 located below the water surface.
  • the lubricant storage tank 71 Since the lubricant storage tank 71 is located above the water surface P, and the joint portion of the horizontal shaft hydro-generator 3 and the mounting shaft 4 is located below the water surface P, there is a difference in height between the two. According to the calculation formula of the liquid pressure, the pressure and the depth (the height from the pressure point to the liquid surface) are proportional.
  • the lubricant 74 located in the lubricant chamber 75 is transported by the conduit 73 to which the lubricant storage tank 71 is connected. In the case of the same density, the pressure at which the lubricant chamber 75 communicates with the conduit 73 is certainly greater than the pressure at the same depth. .
  • the liquid is capable of transmitting pressure, the internal pressure experienced by the seal 72 seal is certainly greater than the external pressure experienced by the seal 72 seal. Therefore, the lubricant chamber 75 is always in a "micro-positive pressure" state.
  • the conduit 73 further includes a joint through which the conduit 73 can be multiplexed so that the lubricant chambers 75 in the three bearings 5 can share the common path of one conduit 73 to the common lubricant storage tank 71.
  • the present invention does not limit this.
  • the underwater shafting rotation protection device 7 for tidal energy generation further includes a detection module 76 disposed in the lubricant storage tank 71 to detect whether the lubricant 74 is reduced.
  • the detection module 76 can be an infrared sensor that detects whether the height of the lubricant 74 in the lubricant storage tank 71 is reduced to determine whether the lubricant 74 is reduced.
  • the detection module 76 can also be a gravity sensor that detects whether the mass of the lubricant 74 in the lubricant storage tank 71 is reduced to determine whether the amount of the lubricant 74 has changed.
  • the reduction in lubricant 74 represents a decrease in the sealing performance of the bearing 5, thereby alerting the service personnel that the seal 72 has aged or deformed and requires repair and replacement.
  • the maintenance personnel can intuitively and timely know the state of the shafting, in particular, the state of use of the sealing ring 72, and timely maintain the power flow generating device.
  • the underwater shafting rotation protection device 7 for tidal energy generation may further include an alarm module (not shown), and the alarm module is connected to the detection module 76.
  • the detection module 76 detects a decrease in the lubricant 74, the alarm module issues an alarm.
  • FIG. 3 is a schematic diagram of a built-in module of a tidal current power generating apparatus according to a second embodiment of the present invention.
  • the structure and function of the outer frame 1, the inner frame 2, the horizontal axis hydro-generator 3, the mounting shaft 4, the bearing 5, and the driving unit 6 are as described in the first embodiment, and the same components are They are denoted by the same reference numerals and will not be described again. The following only explains the differences.
  • four horizontal axis hydro-generators 3 are fixed to a mounting shaft 4.
  • Two of the three bearings 5 are mounted on the upper and lower sides of the horizontal shaft hydro-generator 3 on the same mounting shaft 4, and the other is mounted between each of the two horizontal-axis hydro-generators 3.
  • a set of two horizontal-axis hydro-generators 3 is provided to ensure that a bearing 5 is provided between each set of horizontal-axis hydro-generators 3.
  • FIG. 4 is a plan view showing a tidal current power generating apparatus according to a third embodiment of the present invention.
  • Fig. 5 is a front elevational view showing a tidal current power generating apparatus according to a third embodiment of the present invention.
  • FIG. 6 is an enlarged schematic view showing the circle mark U in FIG.
  • FIG. 7 is a schematic structural view of a shroud according to a third embodiment of the present invention.
  • Figure 8 is a front elevational view of a shroud provided in accordance with a third embodiment of the present invention. Please refer to FIG. 4 to FIG. 8 together.
  • the structure and function of the inner frame 2, the horizontal axis hydro-generator 3, the mounting shaft 4, and the driving unit 6 are as described in the first embodiment, and the same elements are denoted by the same reference numerals. This will not be repeated here. The following only explains the differences.
  • the outer frame 1' can be welded from a steel material.
  • the outer frame 1' includes an outer sleeve 11 and a fixed pile 12.
  • the fixed pile 12 is formed by pouring concrete in the outer casing 11.
  • the outer frame 1' is fixed to the sea floor F by piling.
  • the outer frame 1' also has a plurality of reduced water flow resistance structures 13.
  • a plurality of reduced water flow resistance structures 13 are located on the water-facing side of the plurality of outer casings 11.
  • the force-receiving area of the outer casing 11 (the fixed pile 12 is formed here) to withstand the hydraulic impact is greatly reduced, and the subsequent formation is greatly improved.
  • the reduced water flow resistance structure 13 is located at the uppermost and lowermost sides of the outer frame 1'.
  • the reduced flow resistance structure 13 is integrally formed with the body of the outer frame 1'.
  • the cross section of the reduced water flow resistance structure 13 is a triangle.
  • the present invention does not limit the specific shape and structure of the water flow resistance structure 13 to a small extent.
  • the reduced water flow resistance structure can be fabricated as a streamlined type.
  • the tidal current power generating apparatus 200 includes six built-in modules each having an inner frame 2 and corresponding two horizontal-axis hydro-generators 3 and three bearings 5'.
  • the horizontal axis hydro-generator 3 can be increased in the lateral direction (the horizontal direction as shown in FIG. 4, that is, the horizontal direction perpendicular to the water flow direction) and the longitudinal direction according to the power generation demand of the tidal power generation device (the vertical direction as shown in FIG. 4, that is, the vertical direction)
  • the number in the depth direction of the horizontal plane realizes a large-scale development of the tidal current power generation device 200.
  • the bearing 5' includes an inner ring 51', an outer ring 52', and a rolling body 53'.
  • the inner ring 51' cooperates with the mounting shaft 4 and rotates together with the mounting shaft 4, and the outer ring 52' cooperates with the bearing housing 76' to support.
  • the bearing 5' changes the sliding friction between the mounting shaft and the bearing in the sliding bearing into rolling friction between the rolling elements 53' between the inner ring 51' and the outer ring 52'.
  • the underwater shaft rotation protection device 7' further includes at least three bearing seats 76'.
  • the lubricant chamber 75' is composed of two sealing rings 72', a bearing 5', a bearing housing 76' and a mounting shaft 4. Formed, the rolling elements 53' of the bearing 5' are located within the lubricant chamber 75'.
  • the bearing housing 76' of the present embodiment includes two end caps 761'. The end cap 761' not only functions as an axial positioning of the bearing 5' but also functions as an anti-aliasing and sealing together with the sealing ring 72'.
  • a seal chamber is formed between the upper and lower end caps 761', the seal ring 72', the mounting shaft 4, and the circumferential bearing seat 76', and the bearing 5' is located within the cavity.
  • the lubricant is a lubricating oil.
  • One conduit 73' is in communication with the upper end cap 761' and the other conduit 73' is in communication with the lower end cap 761'.
  • the density of the lubricating oil is slightly smaller than the density of the water, and the pressure is proportional to the density and the depth, since the height difference between the lubricant storage tank 71' and the underwater lubricant chamber 75' on the water surface is large, after calculation, In general, the lubricant chamber 75' is still in a "micro-positive pressure" state. In other words, even if the sealing ring 72' located below cannot be sealed, the lubricant will continuously flow from the lubricant storage tank 71' into the lubricant chamber 75' under the pressure difference, and then flow out from the gap to the sealing ring 72'. In addition, the water with sand on the outside does not flow from the gap into the lubricant chamber 75', thus truly protecting the shafting.
  • the tidal current power generating device 200 further includes at least four shrouds 8, each of which is disposed corresponding to each horizontal axis hydro-generator 3.
  • Each of the shrouds 8 has two water guiding portions 81 and one intermediate portion 82.
  • the intermediate portion 82 is located between the two water guiding portions 81.
  • a cross section 811 of each of the water guiding portions 81 away from one end of the intermediate portion 82 is rectangular.
  • a cross section 812 of one end of each of the water guiding portions 81 connected to the intermediate portion 82 is circular.
  • the cross section 821 of the intermediate portion 82 is circular.
  • the cross sections 811, 812, and 821 are all perpendicular to the horizontal plane and perpendicular to the water flow direction D2, and the areas of the circular cross sections 812 and 821 are smaller than the area of the rectangular cross section 811.
  • the intermediate portion 82 is a cylindrical duct, and each of the water guiding portions 81 has a three-dimensional structure in which one end is rectangular and then transitions to the other end in a circular shape.
  • the area of the circular cross section 812 of the water guiding portion 81 may be approximately equal to the area of the circular cross section 821 of the intermediate portion 82.
  • the area of the circular cross section 812 of the water guiding portion 81 is smaller than the area of the rectangular cross section 811 of the water guiding portion 81.
  • the horizontal axis hydro-generator 3 is located just in the cylindrical intermediate portion 82.
  • the shroud used in the existing tidal power generation device has a circular cross section on the water-facing side. Since the existing frames are all rectangular, a gap is created between the circle and the rectangle during the installation process. If there is nothing blocking the gap, when the tidal current hits the turbine, a considerable part of the water will flow from the gap into the turbine, even hitting the back of the impeller blades, greatly reducing the power generation. If the gap is blocked by the flat plate, the water flow directly hits the flat plate, forming a large stress, which easily damages the structure of the entire frame. In particular, after the plate is blocked, the direction of the water flow changes or even the water flow is disordered, which seriously reduces the utilization of the tidal current energy, thereby reducing the power generation.
  • the flow guide cover 8 in this embodiment has a rectangular shape at both ends instead of a rectangular shape at one end, so that the flow guide cover 8 can realize the flow guiding function regardless of the high tide or the low tide.
  • the shroud 8 can be fixed to the outer frame 1' or the inner frame 2. In the present embodiment, the shroud 8 is all fixed to the inner frame 2. However, the present invention is not limited thereto. In practical applications, the shroud 8 can In the split type mounting, the intermediate portion 82 can be fixed to the inner frame 2, and the two water guiding portions 81 can be fixed to the outer frame 1'. In the actual installation, the intermediate portion 82 can be fixed on the water surface when assembling the built-in module, and the water guiding portion 81 can be directly fixed on the outer frame 1', and then the built-in module is transferred into the outer frame 1', that is, The assembly of the water guide 8 is completed.
  • the tidal current power generating device provided by the present invention can realize modular assembly and replacement on the water surface by providing a detachable inner frame and an outer frame, thereby greatly reducing maintenance and installation costs, and overcoming the traditional ocean.
  • the power generation device cannot be commercialized and large-scale.
  • the "multi-point constraint" is achieved on the mounting shaft, so that the scale power generating device can be horizontally (perpendicular to the water flow).
  • the horizontal expansion can also be expanded longitudinally (perpendicular to the water depth in the horizontal plane), greatly increasing the power generation, and overcoming the problem that the existing marine energy generation devices cannot be “bigger” or “deep”.
  • the load of the generator is innovatively adjusted by changing the orientation of the entire horizontal shaft generator instead of changing the water angle of the blade separately, so that the generator can always be safe under normal load regardless of the water flow speed.
  • Power generation greatly improves power generation efficiency. More importantly, by providing a rotatable mounting shaft, the impeller of the horizontal axis hydro-generator can always flow toward the water regardless of the direction in which the water flows, thereby ensuring maximum power generation. It is especially suitable for generating electricity using tidal energy.
  • the underwater shaft rotation protection device provided by the invention can effectively protect external impurities, especially the sediment in the water enters the bearing, thereby effectively protecting the normal operation of the bearing.
  • the tidal current power generation device provided by the invention adopts the underwater shaft rotation protection device to greatly reduce the maintenance time and the maintenance cost while prolonging the service life of the bearing, and effectively ensures that the power generation efficiency is not affected.
  • the bearing in the tidal current power generating device provided by the present invention can adopt a rolling bearing, and overcomes the technical barrier of the underwater bearing that can only use water lubrication in the underwater shafting system.
  • the underwater shaft rotation protection device can be repaired or replaced conveniently and quickly, which greatly reduces the maintenance cost.
  • the water flow is concentrated to the horizontal axis hydro-generator, so that the impeller of the horizontal-axis hydro-generator is more stressed and the rotation speed is faster, thereby improving the power generation efficiency.
  • the shroud provided in the embodiment of the invention has a rectangular shape at both ends and a circular shape in the middle, and can always serve as a diversion function regardless of high tide or low tide, and the flow guiding effect of the special structure has better guiding effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种潮流能发电装置,包括外框架(1)、至少两个内框架(2)、至少两根安装轴(4)、驱动单元(6)、至少四个水平轴水轮发电机(3)和至少六个轴承(5);至少两个内框架(2)分别可分离地设置于外框架(1)内;至少两根安装轴(4)分别可转动地设置于两个内框架(2)内,至少两根安装轴(4)的轴线方向垂直于水平面;驱动单元(6)连接至少两根安装轴(4)以驱动安装轴(4)转动;每两个水平轴水轮发电机(3)固定于一根安装轴(4)上且位于同一个内框架(2)内;至少四个水平轴水轮发电机(3)随安装轴(4)的转动改变朝向;每三个轴承(5)套设在一根安装轴(4)上,设于一根安装轴(4)上的三个轴承(5)分别位于两个水平轴水轮发电机(3)的两侧和中间。所述潮流能发电装置可以方便地进行维修或更换,并可以在海洋中做深。

Description

潮流能发电装置 技术领域
本发明涉及一种发电装置,尤其涉及一种潮流能发电装置。
背景技术
海洋能(包含潮汐能、潮流能、波浪能、海流能)是指海水流动的能量,作为可再生能源,储量丰富,分布广泛,具有极好的开发前景和价值。海洋能的利用方式主要是发电,其工作原理与风力发电类似,即通过能量转换装置,将海水的机械能转换成电能。具体而言,首先海水冲击水轮机,水轮机将水流的能量转换为旋转的机械能,然后水轮机经过机械传动系统带动发电机发电,最终转换成电能。
现今能源日益短缺,温室效应日益严重,能源需要低碳化,所以风能,海洋能等清洁能源是未来能源的发展方向。但现在这些清洁能源的发电设备,除了风能利用比较成熟外,海洋能的利用还都是在起步阶段,没有通用和成熟的设备。现有的少数设备也存在效率低下,设备不能大规模化的问题。
由于海洋环境复杂,水中阻力大,传统的海洋能发电装置的安装都必须在海里进行,困难度高,费用庞大。另外,由于发电装置长期接触海水,在海水的长期侵蚀和巨大冲击力下,海洋能发电装置使用一段时间后就要定期进行维修或更换。然而传统的海洋能发电装置的维修和更换也均在海里进行,困难度高,成本巨大。甚至,因为部分组件的损坏,导致整个海洋能发电装置的报废,这是海洋能发电装置高成本的重要原因之一,也是造成现有的海洋能发电装置无法大规模化、商业化运营的直接原因。
尤其是水平轴水轮发电机,由于其所有设备(包括叶轮和发电机)均在水下,因此水平轴水轮发电机的维修更加困难,成本更高。因此,即便水平轴水轮发电机的发电效率高于垂直轴水轮发电机,但水平轴水轮发电机仍然无法商业化。然而,目前海洋能发电领域的技术人员都忽略了对安装和维修方式的改进。
另外,由于潮流能是利用海洋的潮流进行发电。伴随着涨潮和落潮,潮流的方向会发生改变。更重要的是潮流的速度并不恒定。在安装发电装置时,一旦发电机选定,它的负载量就确定下来。然而,潮流的速度并不恒定,因此造成发电量并不恒定。现有的海洋能发电装置为了节省成本以及受到技术上的局限,无论是水平轴水轮发电机还是垂直轴水轮发电机只能承载在一定水流速度 以下的发电负荷。一旦水流速度增加,发电量超过负荷,发电机会超负荷工作很容易损毁。因此,为了延长发电机的工作寿命,传统的海洋能发电装置一旦潮流超过一定速度就彻底切断水流,使得发电机停止工作。
还有一种采用水平轴水轮发电机的海洋能发电装置借鉴风能发电机的设计,通过变桨的方式调节发电装置的负荷。当水流速度较大时,通过调节装置使桨叶迎角减小;当水流速度较小时,通过调节装置使桨叶迎角增大。然而,这种设计存在很大的弊端。不同于风能发电机的使用环境,水平轴水轮机是在水中使用,受到的阻力远远大于风能发电机受到的阻力。并且,由于调节的是水平轴水轮机的叶片角度,旋转机构是整个都位于水里,要实现叶片角度的旋转就需要精准地设计叶片各部件之间的安装紧密程度。若连接很紧密,摩擦力太大,则很难调整叶片的迎水面角度,导致调节装置无法发挥调节的功效。这种情况下的发电装置在水流太小时无法提高效率,在水流太大时也无法真正保护发电机。若连接太松,摩擦力太小,虽然可以轻松地调节,但是会存在丧失密封性这一严重问题。这样水流将会灌入叶轮内部造成整个叶轮损坏,维修率大大提高,成本巨增。
另一方面,利用海洋能,尤其是潮流能进行发电的发电装置,其使用的转轴会受到水流沿径向的巨大冲击力。使用一段时间后,转轴和传统轴承之间的密封圈容易发生变形,轴承的密封性将无法保证。由于无法解决密封需求高的问题,现有的海洋能发电装置只能舍弃采用油作为润滑剂的滚动轴承,选择可以用水作为润滑剂的滑动轴承。但是,现有技术人员都忽略了一个问题。能作为润滑剂的水必须是清水。换言之,由于水流中常含有大量泥沙,若密封圈因为弹性变形导致外部的水携带泥沙等杂质涌入轴承内,不但无法实现对轴承的润滑作用,还会影响转轴的正常工作,最终影响发电装置的发电效率。
现有的海洋能发电装置都无法解决如何提升水底下轴承密封性问题。因此设计的控制叶片或者发电机的旋转装置都非常复杂,无法单独使用一根转轴进行调节。
发明内容
本发明为了克服现有技术中的至少一个不足,提供一种潮流能发电装置。
为了实现上述目的,本发明提供一种潮流能发电装置,包括外框架、至少两个内框架、至少两根安装轴、驱动单元、至少四个水平轴水轮发电机和至少六个轴承。至少两个内框架可分离地设置于外框架内。至少两根安装轴分别可转动地设置于两个内框架,至少两根安装轴的轴线方向垂直于水平面。驱动单 元连接至少两根安装轴以驱动安装轴转动。每两个水平轴水轮发电机固定于一根安装轴上且位于同一个内框架内。至少四个水平轴水轮发电机随安装轴的转动改变朝向。每三个轴承套设一根安装轴,设于一根安装轴上的三个轴承分别位于两个水平轴水轮发电机的两侧和中间。
于本发明的一实施例中,潮流能发电装置还包括至少四个导流罩,每个导流罩对应于每个水平轴水轮发电机设置,至少四个导流罩固定于外框架或内框架,每个导流罩具有两个导水部分和一个中间部分,中间部分位于两个导水部分之间,每个导水部分远离中间部分的一端的横截面为矩形,每个导水部分连接中间部分的一端的横截面为圆形,中间部分的横截面为圆形,横截面垂直于水平面且垂直于水流方向,圆形横截面的面积小于矩形横截面的面积。
于本发明的一实施例中,潮流能发电装置还包括水下轴系转动保护装置,每个水下轴系转动保护装置包括润滑剂存储箱、至少六个密封圈和导管。润滑剂存储箱存储有润滑剂,润滑剂存储箱位于水面上。每两个密封圈对应于一个轴承且套设于安装轴上,每两个密封圈与对应的轴承和安装轴之间形成润滑剂腔。导管的一端连通润滑剂存储箱,另一端连通润滑剂腔。
于本发明的一实施例中,水下轴系转动保护装置还包括检测模组,设置于润滑剂存储箱以检测润滑剂是否减少。
于本发明的一实施例中,轴承为滑动轴承,每个润滑剂腔由两个密封圈与轴承和安装轴形成。
于本发明的一实施例中,轴承为滚动轴承,水下轴系转动保护装置还包括至少三个轴承座,每个润滑剂腔由两个密封圈、轴承、轴承座和安装轴形成。
于本发明的一实施例中,外框架具有多个固定桩,外框架通过打桩的方式固定于海底。
于本发明的一实施例中,外框架具有多个减小水流阻力结构。
综上所述,本发明提供的潮流能发电装置通过设置可分离的内框架和外框架,使得发电装置可以在水面上进行模块化组装和替换,大幅度降低维修和安装费用,克服了传统海洋能发电装置无法商业化、大规模化的难题。并且,通过在安装轴上同轴设置至少两个水平轴水轮发电机和设置至少三个轴承,对安装轴实现“多点约束”,使得潮流能发电装置的规模不光可以横向(垂直于水流的水平方向)扩张也可以纵向(垂直于水平面的水深方向)扩张,大幅度提高了发电功率,克服了现有海洋能发电装置无法“做大”、“做深”的难题。通过设置安装轴,创新地通过改变整个水平轴发电机的朝向而非单独改变叶片迎水 角的方式对发电机的负荷进行调节,使得无论水流速度多大发电机一直可以保证能够在安全负荷内正常发电,极大地提高了发电效率。更重要的是,通过设置可转动的安装轴,使得无论水流朝哪个方向流入,水平轴水轮发电机的叶轮可以始终朝向水流,从而确保最大的发电功率。尤其适用于利用潮汐能进行发电。
通过设置导流罩,将水流都集中导向水平轴水轮发电机,使得水平轴水轮发电机的叶轮受力更大、转速更快,从而提高发电效率。本发明实施例中提供的导流罩,两端为矩形,中间为圆形,无论涨潮还是落潮始终可以起到导流作用,并且具有该特定结构的导流罩导流效果更好。
另外,本发明提供的水下轴系转动保护装置能有效保护外界杂质,尤其是水中的泥沙进入轴承,从而有效保护轴承的正常工作。本发明提供的潮流能发电装置,通过采用水下轴系转动保护装置,在延长轴承使用寿命的同时,大幅度降低了维修次数和维修成本,同时有效地保证了发电效率不受影响。另外,本发明提供的潮流能发电装置中的轴承可采用滚动轴承,克服了现有技术中水下轴系只能使用水润滑的滑动轴承的技术壁垒。
并且,通过设置检测模组,能够及时且直观地知道轴承的密封性是否降低,从而有效指导维修人员何时何处进行维修,提高维修的及时性和可靠性。另外,由于框架为可分离的外框架和内框架,可以方便快捷地对水下轴系转动保护装置进行维修或更换,大大降低了维修成本。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。
附图说明
图1所示为根据本发明第一实施例提供的潮流能发电装置的一个内置模块的示意图。
图2所示为图1中圆圈标识V的放大示意图。
图3所示为根据本发明第二实施例提供的潮流能发电装置的一个内置模块的示意图。
图4所示为根据本发明第三实施例提供的潮流能发电装置的俯视图。
图5所示为根据本发明第三实施例提供的潮流能发电装置的主视图。
图6所示为图4中圆圈标识U的放大示意图。
图7所示为本发明第三实施例提供的导流罩的结构示意图。
图8所示为本发明第三实施例提供的导流罩的主视图。
具体实施方式
图1所示为根据本发明第一实施例提供的潮流能发电装置的一个内置模块的示意图。图2所示为图1中圆圈标识V的放大示意图。请一并参考图1和图2。本实施例提供的潮流能发电装置包括外框架1、至少两个内框架2、至少四个水平轴水轮发电机3、至少两根安装轴4、至少六个轴承5和驱动单元6。
图1中仅绘出了潮流能发电装置的其中一个内置模块100,因此仅显示出一个内框架2、两个水平轴水轮发电机3、一根安装轴4、三个轴承5和驱动单元6。本发明保护的潮流能发电装置包括至少两个内置模块100。
至少两个内框架2可分离地设置于外框架1内。于本实施例中,内框架2上可设有卡勾(图未示),外框架1上可设有卡槽(图未示),内框架2通过卡勾和卡槽的相互卡合嵌入到外框架1内。然而,本发明对内框架2与外框架1之间的固定方式不作任何限定。
一个内框架2、至少两个水平轴水轮发电机3、至少一根安装轴4和至少三个轴承5共同形成一个内置模块100。于实际应用中,可先将至少两个水平轴水轮发电机3、至少一根安装轴4、至少一个发电机5和至少三个轴承5固定在一个内框架2内,然后将至少两个这样组装好的内框架2固定在外框架1内,从而实现潮流能发电装置的模块化安装。具体而言,内置模块100的安装可在岸上进行,然后将内置模块100吊入置于海中的外框架1内和外框架1进行固定,如此实现海面上的安装作业,大大简化安装程序,减少安装时间,降低海洋中安装难度。
本发明对内框架2的具体数量不作任何限定。于实际应用中,内框架2的数量可以多达12个。通过将至少两个内框架2可分离地设置于外框架1,突破了现有传统海洋潮流能发电装置无法实现规模化的弊端。目前世界上最大的海洋潮流能发电单台机组的发电量为1.2兆瓦,然而本发明的潮流能发电装置单台机组的发电量为5兆瓦,远远高于现有的海洋潮流能发电装置的最大发电量。
水平轴水轮发电机3包括叶轮31和发电机32(如图3所示)。由于水平轴水轮发电机3的叶轮31和发电机32全部在水下,因此,若水平轴水轮发电机3发生故障,传统的海洋能发电装置将需要在海里进行维修。这样维修非常困难且费用庞大。然而,本发明的潮流能发电装置可直接将内置模块100从海中取出进行维修或更换,实现潮流能发电装置的海面上快速更换和维修,大大降低了维修成本,使得潮流能发电装置的商业化得以实现。
至少两根安装轴4分别可转动地设置于两个内框架2。安装轴4的轴线方向X垂直于水平面P。每两个水平轴水轮发电机3固定于一根安装轴4上且位于同一个内框架2内。至少四个水平轴水轮发电机3随安装轴4的转动改变朝向。驱动单元6连接安装轴4以驱动安装轴4转动。由于涨潮和落潮的水流方向相反,无论水流朝哪个方向流入,通过安装轴4的转动控制水平轴水轮发电机3的叶轮31始终朝向水流,从而提高潮流能的利用率,提高发电效率。
于实际应用中,当水流沿图3中所示的水流方向流向潮流能发电装置时,驱动单元5不运作。此时,水平轴水轮发电机3的叶轮31面向水流。当水流沿水流方向相反的方向(从图3中看去为由上往下)流向潮流能发电装置时,驱动单元6驱动安装轴4转动,从而带动水平轴水轮发电机3旋转180度,使得叶轮31从朝下改为朝上,以保证水平轴水轮发电机3的叶轮31始终朝向水流。此种情况尤其适用于利用潮汐能发电,确保了最大的发电功率。
特别地,实际应用中涨潮和落潮的水流方向并不完全平行,也并不一定会垂直于水平轴水轮发电机3的迎水面。无论水流从哪个方向涌入水平轴水轮发电机3,本发明的发电装置可以通过安装轴4控制水平轴水轮发电机3改变朝向以使水平轴水轮发电机3始终正对水流,从而最大程度地利用潮流能,提高发电功率。
并且,当实际水流速度高于水平轴水轮发电机3能承受的最大负荷对应的额定速度时,此时只需通过安装轴4转动控制水平轴水轮发电机3使其旋转偏离水流方向一个角度,则可以有效降低水平轴水轮发电机3的负载,在确保水平轴水轮发电机3不会因超负荷损毁的同时,确保水平轴水轮发电机3仍然正常工作,持续稳定地输出发电。克服了传统海洋能发电装置中当水流速度过大,发电机为了避免烧毁就停止工作的弊端,同时无需进行变桨调节,使得发电机的负荷调节更加简单有效。当实际水流速度小于发电机3能承受的最大负荷对应的额定速度时,此时只需通过安装轴4转动控制水平轴水轮发电机3使其旋转正对水流方向(即水平轴水轮发电机3的迎水面垂直于水流方向),则可以最大程度地利用水流进行发电,提高发电功率。
于本实施例中,内框架2的数量等于安装轴4的数量,且水平轴水轮发电机3的数量等于安装轴4的数量的两倍。然而,本发明对此不作任何限定。于其它实施例中,一个内置模块100可具有多根安装轴4和每根安装轴4上可具有两个以上的水平轴水轮发电机3。
于本实施例中,驱动单元6的数量对应于安装轴4的数量,为至少两个。然而,本发明对此不做任何限定。于其它实施例中,可以通过齿轮等传动机构,实现一个驱动单元6对两个安装轴4的控制。每个驱动单元6包括电动机61和传动机构62,传动机构62连接安装轴4的一端(为图1中的上端),电动机61通过传动机构62驱动安装轴4转动。于本实施例中,传动机构62包括主动齿轮和与主动齿轮相啮合的从动齿轮。电动机61驱动主动齿轮转动,从而带动从动齿轮转动。从动齿轮的齿轮孔与安装轴4的上端紧密配合,从而带动安装轴4转动。然而,本发明对此不作任何限定。于其它实施例中,驱动单元可包括电动机和减速机。由于现有的电动机转速都较快,通过减速机后转速大大降低,因此能有效且精准地控制安装轴4的转速和转动幅度。
每三个轴承5套设一根安装轴4,如图1所示,设于一根安装轴4上的两个轴承5分别位于两个水平轴水轮发电机3的上下两侧,还有一个轴承5位于两个水平轴水轮发电机3之间。
通过在水深方向D1上设置两个和两个以上的水平轴水轮发电机3,可以大大拓展潮流能发电装置在水深方向D1上的深度,从而更加高效地利用潮流能进行发电,大大提高发电功率。在一根安装轴4上设置至少三个轴承5,实现对安装轴4的“多点约束”。无论安装轴4做的多长,在海水巨大的冲击力下,至少三个轴承5在分担受力的同时,给予安装轴4至少三点的固定和支撑,使得安装轴4的长度不再受到限制,在水深方向D1上可以安装更多的水平轴水轮发电机3,大幅度扩大潮流能发电装置的规模,提高发电功率,克服了现有技术中海洋能发电装置无法在海洋中做深的技术难题。
于本实施例中,潮流能发电装置还包括水下轴系转动保护装置7,每个水下轴系转动保护装置7包括润滑剂存储箱71、至少六个密封圈72和导管73。润滑剂存储箱71存储有润滑剂74,润滑剂存储箱71位于水面P上。每两个密封圈72对应于一个轴承5且套设于安装轴4上,每两个密封圈72与对应的轴承5和安装轴4之间形成润滑剂腔75。导管73的一端连通润滑剂存储箱71,另一端连通润滑剂腔75。
于本实施例中,每个内置模块100中的导管73和润滑剂存储箱71的数量均为二,两根导管73分别连通润滑剂腔75的两侧和两个润滑剂存储箱71。通过增加导管73的数量以提高填充润滑剂74的速度。然而,本发明对此不作任何限定。于本实施例中,导管73可采用不锈钢制成。
于第一实施例中,轴承5为滑动轴承,每个润滑剂腔75由两个密封圈72与轴承5和安装轴4形成。具体而言,润滑剂腔75的上下表面由两个密封圈72分别构成,润滑剂腔75的内表面为安装轴4的轴颈部分的外表面,润滑剂腔75的外表面为轴承5的内表面。润滑剂腔75是个横截面是圆环形,纵截面是长方形的环形圆柱。润滑剂74填充于润滑剂腔75中以形成润滑膜从而减小摩擦。于第一实施例中,润滑剂74为不含泥沙等杂质的纯净海水。
由于潮流对安装轴4的冲击力巨大,密封圈72长期受到巨大的径向力,很容易发生弹性变形,从而导致密封圈72与安装轴4之间不再密封,即密封圈72与安装轴4之间存在空隙。由于润滑剂74原始是位于润滑剂腔75中,当润滑剂腔75存在空隙后,润滑剂74很可能流失,同时,外面的水也会携带泥沙等杂质从空隙中涌入。
以下详细介绍本实施例提供的用于潮流能发电的水下轴系转动保护装置7如何对位于水面下的安装轴4进行保护。
由于润滑剂存储箱71位于水面P之上,而水平轴水轮发电机3和安装轴4的连接部分位于水面P之下,二者之间存在高度差。根据液体压强的计算公式,压强和深度(取压点到液面之间的高度)呈正比关系。位于润滑剂腔75内的润滑剂74由于由连通有润滑剂存储箱71的导管73输送,在密度一样的情况下,润滑剂腔75与导管73连通处的压强肯定大于同一水深处外部的压强。同时,由于液体能够传递压强,密封圈72密封处受到的内部压强肯定大于密封圈72密封处受到的外部压强。因此,润滑剂腔75始终处于一个“微正压”状态。
换言之,即便轴承5和安装轴4之间无法实现密封,即密封圈72与安装轴4之间存在空隙,润滑剂74也会在压差作用下不断从润滑剂存储箱71中流入到润滑剂腔75中,然后从空隙流出到密封圈72外,位于外面带有泥沙的水也不会从空隙流入到润滑剂腔75中,从而真正实现对安装轴4的保护作用。
于实际应用中,导管73还包括接头,通过接头,导管73可实现多路排布,从而三个轴承5内的润滑剂腔75可共用一个导管73的总路连通共同的润滑剂存储箱71。然而本发明对此不作任何限定。
于本实施例中,用于潮流能发电的水下轴系转动保护装置7还包括检测模组76,设置于润滑剂存储箱71以检测润滑剂74是否减少。于实际应用中,检测模组76可为红外线感应器,检测润滑剂74于润滑剂存储箱71内的高度是否降低来判段润滑剂74是否减少。检测模组76也可为重力感应器,检测润滑剂74于润滑剂存储箱71内的质量是否减少来判断润滑剂74的量是否发生改变。 润滑剂74的减少代表着轴承5的密封性能下降,从而提醒维修人员密封圈72已经老化或者发生了变形需要进行维修和更换。通过设置检测模组76,维修人员能够直观且及时地知道轴系的状态,尤其是密封圈72的使用状态,并及时地对潮流能发电装置进行维护。
于实际使用中,用于潮流能发电的水下轴系转动保护装置7可还包括报警模块(图未示),所述报警模块连接所述检测模组76。当检测模组76检测到润滑剂74减少时,报警模块发出警报。
图3所示为根据本发明第二实施例提供的潮流能发电装置的一个内置模块的示意图。于第二实施例中,外框架1、内框架2、水平轴水轮发电机3、安装轴4、轴承5和驱动单元6的结构和功能,皆如第一实施例所述,相同元件都以相同标号进行表示,在此不再赘述。以下仅就不同之处予以说明。
于本实施例中,四个水平轴水轮发电机3固定于一根安装轴4上。三个轴承5的两个安装于同一根安装轴4上水平轴水轮发电机3的上下两侧,另外一个安装于每两个水平轴水轮发电机3之间。换言之,以两个水平轴水轮发电机3为一组,确保每组水平轴水轮发电机3之间设置有轴承5。通过这种设置仍然可以实现对安装轴4的多点约束和支撑。
图4所示为根据本发明第三实施例提供的潮流能发电装置的俯视图。图5所示为根据本发明第三实施例提供的潮流能发电装置的主视图。图6所示为图5中圆圈标识U的放大示意图。图7所示为根据本发明第三实施例提供的导流罩的结构示意图。图8所示为根据本发明第三实施例提供的导流罩的主视图。请一并参考图4至图8。
于第三实施例中,内框架2、水平轴水轮发电机3、安装轴4和驱动单元6的结构和功能,皆如第一实施例所述,相同元件都以相同标号进行表示,在此不再赘述。以下仅就不同之处予以说明。
外框架1’可由钢材料焊接而成。于本实施例中,外框架1’包括外套管11和固定桩12。通过在外套管11内浇灌混凝土形成固定桩12。外框架1’通过打桩的方式固定于海底F。
于本实施例中,外框架1’还具有多个减小水流阻力结构13。多个减小水流阻力结构13位于多根外套管11的迎水侧。通过设置减小水流阻力结构13于外套管11的迎水侧,大大减小了外套管11(之后在此处就形成固定桩12)承受水力冲击的受力面积,同时大幅度提高了后续形成的固定桩12的稳定度。如图 1所示,减小水流阻力结构13位于外框架1’的最上边和最下边。于本实施例中,减小水流阻力结构13与外框架1’的本体为一体成型。
以图3中从左数第二列四根外套管11为例,由于外套管11排成了平行于水流方向的一列,因此位于下游的外套管11承受的水流冲击力会在位于上游的外套管11的阻挡后大大减小。经过实验后发现,若不具有减小水流阻力结构13,在水流速度不变的情况下,四根外套管11承受的水流冲击力之和为一根裸露于水中的外套管11承受的水流冲击力的2.6倍左右。然而,在外框架1’上设置有减小水流阻力结构13后,四根外套管11承受的水流冲击力之和仅为一根裸露于水中的外套管11承受的水流冲击力的30%。
于本实施例中,减小水流阻力结构13的截面为三角形。然而,本发明对减小水流阻力结构13的具体形状和结构不作任何限定。于其他实施例中,该减小水流阻力结构可制造为流线型。
于本实施例中,潮流能发电装置200包括六个内置模块,每个内置模块有一个内框架2以及对应的两个水平轴水轮发电机3和三个轴承5’。然而,本发明对此不作任何限定。可根据潮流能发电装置的发电需求增加水平轴水轮发电机3在横向(如图4所示的横向,即垂直于水流方向的水平方向)和纵向(如图4所示的纵向,即垂直于水平面的水深方向)上的数量,从而实现潮流发电装置200的大规模化。
于第三实施例中,轴承5’包括内圈51’、外圈52’和滚动体53’。内圈51’与安装轴4相配合并与安装轴4一起旋转,外圈52’与轴承座76’相配合起支撑作用。轴承5’将滑动轴承中安装轴与轴承之间的滑动摩擦变为了位于内圈51’和外圈52’之间滚动体53’的滚动摩擦。
于本实施例中,水下轴系转动保护装置7’还包括至少三个轴承座76’,润滑剂腔75’由两个密封圈72’、轴承5’、轴承座76’和安装轴4形成,轴承5’的滚动体53’位于润滑剂腔75’内。具体而言,本实施例的轴承座76’包括两个端盖761’。端盖761’不仅起到轴承5’的轴向定位作用,还和密封圈72’一起起到防杂质和密封的作用。上下两个端盖761’、密封圈72’、安装轴4和周向的轴承座76’之间形成密封腔,轴承5’位于腔体内。
于第三实施例中,润滑剂为润滑油。一根导管73’连通于上端盖761’处,另一根导管73’连通于下端盖761’处。通过这种设置,轴承5’的滚动体53’浸润于润滑油中。
尽管润滑油的密度略小于水的密度,而压强和密度、深度均成正比关系,但是由于水面上的润滑剂存储箱71’和水下润滑剂腔75’的高度差较大,经过计算,总体来说,润滑剂腔75’依旧处于一个“微正压”状态。换言之,即便位于下方的密封圈72’无法实现密封,润滑剂也会在压差作用下不断从润滑剂存储箱71’中流入到润滑剂腔75’中,然后从空隙流出到密封圈72’外,位于外面带有泥沙的水也不会从空隙流入到润滑剂腔75’中,从而真正实现对轴系的保护作用。
于本实施例中,潮流能发电装置200还包括至少四个导流罩8,每个导流罩8对应于每个水平轴水轮发电机3设置。每个导流罩8具有两个导水部分81和一个中间部分82。中间部分82位于两个导水部分81之间。每个导水部分81远离中间部分82的一端的横截面811为矩形。每个导水部分81连接中间部分82的一端的横截面812为圆形。中间部分82的横截面821为圆形。横截面811、812和821均垂直于水平面且垂直于水流方向D2,圆形横截面812和821的面积小于矩形横截面811的面积。
具体而言,中间部分82为圆柱形的导管,每个导水部分81为一端为矩形然后过渡到另一端为圆形的立体结构。导水部分81的圆形横截面812的面积可近乎等于中间部分82的圆形横截面821的面积。导水部分81的圆形横截面812的面积小于导水部分81的矩形横截面811的面积。实际应用中,水平轴水轮发电机3正好位于圆柱形的中间部分82内。
通过将导水部分81的一端设置为矩形,可以实现和内框架2连接端面的无缝连接。现有的潮流能发电装置中使用的导流罩,其迎水侧的横截面均为圆形。由于现有框架均为矩形,在安装过程中就会在圆形和矩形之间产生空隙。若该空隙没有东西阻挡,当潮流冲击向水轮机时,相当一部分水流会从该空隙涌入水轮机,甚至冲击叶轮叶片的背面,大大降低了发电功率。若将该空隙用平板进行阻隔,则水流会直接冲向该平板,形成巨大的应力,容易损坏整个框架的结构。特别是经过该平板阻挡后,水流方向会发生改变甚至水流乱窜,严重降低了潮流能利用率,进而降低了发电功率。
通过从矩形过渡到面积更小的圆形,缩小了水流通道,将水流都集中导向水平轴水轮发电机3,使得水平轴水轮发电机3的叶轮31受力更大、转速更快,从而提高发电效率。特别地,本实施例中的导流罩8两端均为矩形而非一端为矩形,这样无论涨潮还是落潮,该导流罩8都可以实现导流作用。
导流罩8可固定于外框架1’或内框架2。于本实施例中,导流罩8全部固定于内框架2上。然而,本发明对此不作任何限定。于实际应用中,导流罩8可 分体式安装,其中间部分82可固定在内框架2上,两个导水部分81可固定在外框架1’上。在实际安装中,中间部分82可在组装内置模块的时候在水面上就固定好,导水部分81可直接在外框架1’上固定好,然后将内置模块调入外框架1’内时,即完成导水罩8的组装。
综上所述,本发明提供的潮流能发电装置通过设置可分离的内框架和外框架,使得发电装置可以在水面上进行模块化组装和替换,大幅度降低维修和安装费用,克服了传统海洋能发电装置无法商业化、大规模化的难题。并且,通过在安装轴上同轴设置至少两个水平轴水轮发电机和设置至少三个轴承,对安装轴实现“多点约束”,使得潮流能发电装置的规模不光可以横向(垂直于水流的水平方向)扩张也可以纵向(垂直于水平面的水深方向)扩张,大幅度提高了发电功率,克服了现有海洋能发电装置无法“做大”、“做深”的难题。通过设置安装轴,创新地通过改变整个水平轴发电机的朝向而非单独改变叶片迎水角的方式对发电机的负荷进行调节,使得无论水流速度多大发电机一直可以保证能够在安全负荷内正常发电,极大地提高了发电效率。更重要的是,通过设置可转动的安装轴,使得无论水流朝哪个方向流入,水平轴水轮发电机的叶轮可以始终朝向水流,从而确保最大的发电功率。尤其适用于利用潮汐能进行发电。
另外,本发明提供的水下轴系转动保护装置能有效保护外界杂质,尤其是水中的泥沙进入轴承,从而有效保护轴承的正常工作。本发明提供的潮流能发电装置,通过采用水下轴系转动保护装置,在延长轴承使用寿命的同时,大幅度降低了维修次数和维修成本,同时有效地保证了发电效率不受影响。另外,本发明提供的潮流能发电装置中的轴承可采用滚动轴承,克服了现有技术中水下轴系只能使用水润滑的滑动轴承的技术壁垒。
并且,通过设置检测模组,能够及时且直观地知道轴承的密封性是否降低,从而有效指导维修人员何时何处进行维修,提高维修的及时性和可靠性。另外,由于框架为可分离的外框架和内框架,可以方便快捷地对水下轴系转动保护装置进行维修或更换,大大降低了维修成本。
通过设置导流罩,将水流都集中导向水平轴水轮发电机,使得水平轴水轮发电机的叶轮受力更大、转速更快,从而提高发电效率。本发明实施例中提供的导流罩,两端为矩形,中间为圆形,无论涨潮还是落潮始终可以起到导流作用,并且具有该特定结构的导流罩导流效果更好。
虽然本发明已由较佳实施例揭露如上,然而并非用以限定本发明,任何熟知此技艺者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所要求保护的范围为准。

Claims (8)

  1. 一种潮流能发电装置,其特征在于,包括:
    外框架;
    至少两个内框架,可分离地设置于外框架内;
    至少两根安装轴,分别可转动地设置于两个内框架,所述至少两根安装轴的轴线方向垂直于水平面;
    驱动单元,连接所述至少两根安装轴以驱动所述安装轴转动;
    至少四个水平轴水轮发电机,每两个水平轴水轮发电机固定于一根安装轴上且位于同一个内框架内,所述至少四个水平轴水轮发电机随安装轴的转动改变朝向;
    至少六个轴承,每三个轴承套设一根安装轴,设于一根安装轴上的三个轴承分别位于两个水平轴水轮发电机的两侧和中间。
  2. 根据权利要求1所述的潮流能发电装置,其特征在于,所述潮流能发电装置还包括至少四个导流罩,每个导流罩对应于每个水平轴水轮发电机设置,所述至少四个导流罩固定于外框架或内框架,每个导流罩具有两个导水部分和一个中间部分,所述中间部分位于两个导水部分之间,每个导水部分远离中间部分的一端的横截面为矩形,每个导水部分连接中间部分的一端的横截面为圆形,所述中间部分的横截面为圆形,所述横截面垂直于水平面且垂直于水流方向,所述圆形横截面的面积小于矩形横截面的面积。
  3. 根据权利要求1所述的潮流能发电装置,其特征在于,所述潮流能发电装置还包括水下轴系转动保护装置,每个水下轴系转动保护装置包括:
    润滑剂存储箱,存储有润滑剂,所述润滑剂存储箱位于水面上;
    至少六个密封圈,每两个密封圈对应于一个轴承且套设于所述安装轴上,每两个密封圈与对应的轴承和安装轴之间形成润滑剂腔;
    导管,所述导管的一端连通润滑剂存储箱,另一端连通润滑剂腔。
  4. 根据权利要求3所述的潮流能发电装置,其特征在于,所述水下轴系转动保护装置还包括检测模组,设置于所述润滑剂存储箱以检测润滑剂是否减少。
  5. 根据权利要求3所述的潮流能发电装置,其特征在于,所述轴承为滑动轴承,每个润滑剂腔由两个密封圈与轴承和安装轴形成。
  6. 根据权利要求3所述的潮流能发电装置,其特征在于,所述轴承为滚动轴承,所述水下轴系转动保护装置还包括至少三个轴承座,每个润滑剂腔由两个密封圈、轴承、轴承座和安装轴形成。
  7. 根据权利要求1所述的潮流能发电装置,其特征在于,所述外框架具有多个固定桩,所述外框架通过打桩的方式固定于海底。
  8. 根据权利要求1所述的潮流能发电装置,其特征在于,所述外框架具有多个减小水流阻力结构。
PCT/CN2015/083000 2014-06-30 2015-06-30 潮流能发电装置 WO2016000609A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/541,370 US20170350366A1 (en) 2014-06-30 2005-06-30 Tidal current energy generating device
CA2973250A CA2973250C (en) 2014-06-30 2015-06-30 Tidal current energy electric generating device
EP15814043.4A EP3193007B1 (en) 2014-06-30 2015-06-30 Tidal current energy electric generating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410309411 2014-06-30
CN201410309411.9 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016000609A1 true WO2016000609A1 (zh) 2016-01-07

Family

ID=54990522

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2015/083005 WO2016000610A1 (zh) 2014-06-30 2015-06-30 潮流能发电装置
PCT/CN2015/083000 WO2016000609A1 (zh) 2014-06-30 2015-06-30 潮流能发电装置
PCT/CN2016/073236 WO2017000555A1 (zh) 2014-06-30 2016-02-02 模块化双向潮流能发电装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083005 WO2016000610A1 (zh) 2014-06-30 2015-06-30 潮流能发电装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073236 WO2017000555A1 (zh) 2014-06-30 2016-02-02 模块化双向潮流能发电装置

Country Status (6)

Country Link
US (2) US20170350366A1 (zh)
EP (2) EP3193008A4 (zh)
JP (1) JP2018519473A (zh)
CN (4) CN105298733A (zh)
CA (2) CA2973250C (zh)
WO (3) WO2016000610A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170350366A1 (en) * 2014-06-30 2017-12-07 Zhejiang Zhoushan Lhd Energy Development Co., Ltd. Tidal current energy generating device
KR20180048591A (ko) * 2015-06-29 2018-05-10 항저우 린동 뉴 에너지 테크놀로지 인코퍼레이티드 모듈화된 양방향 조류 에너지 발전 장치
PL228025B1 (pl) * 2015-11-24 2018-02-28 Ireneusz Piskorz Agregat do wykorzystania energii słonecznej i wiatru
CN107304745B (zh) * 2016-04-22 2023-09-29 杭州林东新能源科技股份有限公司 潮流能发电装置及其导流罩
WO2017181433A1 (zh) * 2016-04-22 2017-10-26 杭州林东新能源科技股份有限公司 潮流能发电装置及其导流罩
WO2017193295A1 (zh) * 2016-05-10 2017-11-16 杭州林东新能源科技股份有限公司 潮流能发电装置及其水底密封保护装置
CN106364629A (zh) * 2016-09-14 2017-02-01 江苏科技大学 一种利用潮流能水轮机发电的海上浮标
CN106894937A (zh) * 2017-01-24 2017-06-27 杭州林东新能源科技股份有限公司 具有变角传动机构的海洋能发电装置
CN107542068B (zh) * 2017-09-04 2019-08-02 合肥工业大学 一种近岸区v型洋流发电场装置
WO2019156562A1 (en) * 2018-02-09 2019-08-15 Ece Offshore B.V. Assembly comprising based- water structure and energy generator functionally coupled thereto
CN109826742A (zh) * 2019-01-09 2019-05-31 刘时英 一种潮汐发电系统及其发电方法
EP3935278A1 (en) 2019-03-08 2022-01-12 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
CN110907156B (zh) * 2019-12-03 2021-08-13 哈尔滨电机厂有限责任公司 一种立式水轮发电机连轴紧度监测装置
CN110848077A (zh) * 2019-12-06 2020-02-28 宁波市镇海捷登应用技术研究所 一种利用潮汐的发电装置及用该装置发电的方法
CN111608844A (zh) * 2020-06-19 2020-09-01 杭州林黄丁新能源研究院有限公司 滚动轴承保护装置及其适用的垂直轴潮流能发电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825094A (en) * 1996-11-13 1998-10-20 Voith Hydro, Inc. Turbine array
CN102359599A (zh) * 2011-09-07 2012-02-22 武汉船用机械有限责任公司 一种用于伸缩式全回转舵桨的动密封装置
CN102892957A (zh) * 2009-09-02 2013-01-23 加拿大蓝色能量有限公司 由流体动力阵列支撑的高架桥
CN203230525U (zh) * 2013-04-11 2013-10-09 杭州林黄丁新能源科技有限公司 海洋能发电装置及其框架
CN203230527U (zh) * 2013-03-08 2013-10-09 杭州林黄丁新能源科技有限公司 卧式发电机装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993913A (en) * 1975-03-28 1976-11-23 Dickman Smith V Tidewater power system
US4468153A (en) * 1982-05-12 1984-08-28 Gutierrez Atencio Francisco J Symmetric tidal station
US4717832A (en) * 1985-09-17 1988-01-05 Harris Charles W Tidal and river turbine
US4804855A (en) * 1987-02-13 1989-02-14 Obermeyer Henry K Hydromotive machine apparatus and method of constructing the same
NL1013559C2 (nl) * 1999-11-11 2001-05-28 Peter Alexander Josephus Pas Systeem voor het uit water produceren van waterstof onder gebruikmaking van een waterstroom zoals een golfstroom of getijdenstroom.
US6856036B2 (en) * 2001-06-26 2005-02-15 Sidney Irving Belinsky Installation for harvesting ocean currents (IHOC)
ITRM20050216A1 (it) * 2005-05-05 2006-11-06 Francis Allen Farrelly Dispositivo di ugello asimmetrico con turbina idrica per lo sfruttamento dell'energia idrocinetica.
US7215036B1 (en) * 2005-05-19 2007-05-08 Donald Hollis Gehring Current power generator
JP5508018B2 (ja) * 2006-10-20 2014-05-28 オーシヤン・リニユーアブル・パワー・カンパニー・エルエルシー 海流及び潮汐流用の潜水可能なタービン発電機ユニット
GB2459447A (en) * 2008-04-21 2009-10-28 Sub Sea Turbines Ltd Tidal power generating unit
CN101592117A (zh) * 2009-07-03 2009-12-02 林建国 一种潮汐发电装置
JP4422789B1 (ja) * 2009-08-03 2010-02-24 日本システム企画株式会社 水力発電装置の設置構造
CN102230440B (zh) * 2011-06-16 2013-04-17 中国海洋大学 双向导流罩及潮流发电装置
JP5886081B2 (ja) * 2012-02-29 2016-03-16 Kyb株式会社 波力発電装置
GB2509353B (en) * 2012-05-14 2015-11-11 Sustainable Marine Energy Ltd A flowing-water drivable turbine assembly
CA3020569C (en) * 2013-03-25 2020-08-04 Hangzhou Lhd Institute Of New Energy, Llc Modularized ocean energy generating device and built-in module thereof
CN203230522U (zh) * 2013-03-25 2013-10-09 杭州林黄丁新能源科技有限公司 立式海洋能发电装置框架
CN104340339B (zh) * 2013-08-06 2018-02-06 杭州林黄丁新能源研究院有限公司 潮流发电装置及其安装框架
CN103807590B (zh) * 2013-11-13 2016-04-06 浙江吉利控股集团有限公司 可自动补油的润滑装置
CN204082424U (zh) * 2014-06-30 2015-01-07 杭州林东新能源科技股份有限公司 用于潮流能发电的水下轴系转动保护装置及潮流发电装置
US20170350366A1 (en) * 2014-06-30 2017-12-07 Zhejiang Zhoushan Lhd Energy Development Co., Ltd. Tidal current energy generating device
CN204226097U (zh) * 2014-07-18 2015-03-25 杭州林东新能源科技股份有限公司 固定于水底的潮流能发电装置
CN204827782U (zh) * 2015-06-29 2015-12-02 浙江舟山联合动能新能源开发有限公司 潮流能发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825094A (en) * 1996-11-13 1998-10-20 Voith Hydro, Inc. Turbine array
CN102892957A (zh) * 2009-09-02 2013-01-23 加拿大蓝色能量有限公司 由流体动力阵列支撑的高架桥
CN102359599A (zh) * 2011-09-07 2012-02-22 武汉船用机械有限责任公司 一种用于伸缩式全回转舵桨的动密封装置
CN203230527U (zh) * 2013-03-08 2013-10-09 杭州林黄丁新能源科技有限公司 卧式发电机装置
CN203230525U (zh) * 2013-04-11 2013-10-09 杭州林黄丁新能源科技有限公司 海洋能发电装置及其框架

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193007A4 *

Also Published As

Publication number Publication date
CN105484935A (zh) 2016-04-13
US20180023625A1 (en) 2018-01-25
CN206054171U (zh) 2017-03-29
US10371205B2 (en) 2019-08-06
CN105298733A (zh) 2016-02-03
CN105221331A (zh) 2016-01-06
CA2973250A1 (en) 2016-01-07
CA2973250C (en) 2021-02-16
CA2973271A1 (en) 2016-01-07
US20170350366A1 (en) 2017-12-07
EP3193008A4 (en) 2017-11-22
EP3193007A4 (en) 2017-11-15
EP3193007B1 (en) 2019-01-23
EP3193007A1 (en) 2017-07-19
WO2017000555A1 (zh) 2017-01-05
JP2018519473A (ja) 2018-07-19
EP3193008A1 (en) 2017-07-19
WO2016000610A1 (zh) 2016-01-07
CN105484935B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2016000609A1 (zh) 潮流能发电装置
EP2644884B1 (en) Water flow electricity generating device
JP6328175B2 (ja) モジュール化された海洋エネルギー発電装置および海洋エネルギー発電装置用組み込みモジュール
US20200224632A1 (en) Ocean energy power generation device and ocean energy power generation water leak-proof device thereof
US9556848B2 (en) Tidal current generating device and installation frame thereof
CN204877775U (zh) 潮流能发电装置
US10495051B2 (en) Power generating device having hollow structures
CN105781864A (zh) 潮流能发电装置及其水底密封保护装置
CN204827782U (zh) 潮流能发电装置
WO2017193295A1 (zh) 潮流能发电装置及其水底密封保护装置
CN204663751U (zh) 一种高效水流发电装置
EP3315767A1 (en) Modular two-way power generation device using tidal energy
KR101027129B1 (ko) 수력을 이용한 전기발전장치
CN104832358A (zh) 高效水流发电装置
WO2017181433A1 (zh) 潮流能发电装置及其导流罩
CN107304745B (zh) 潮流能发电装置及其导流罩
CN106894937A (zh) 具有变角传动机构的海洋能发电装置
KR20160049285A (ko) 교각을 이용한 수력발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015814043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15541370

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2973250

Country of ref document: CA