WO2016000480A1 - 甲醇水制氢设备的重整器及其制造工艺 - Google Patents

甲醇水制氢设备的重整器及其制造工艺 Download PDF

Info

Publication number
WO2016000480A1
WO2016000480A1 PCT/CN2015/077343 CN2015077343W WO2016000480A1 WO 2016000480 A1 WO2016000480 A1 WO 2016000480A1 CN 2015077343 W CN2015077343 W CN 2015077343W WO 2016000480 A1 WO2016000480 A1 WO 2016000480A1
Authority
WO
WIPO (PCT)
Prior art keywords
reformer
mica
casing
manufacturing process
hydrogen production
Prior art date
Application number
PCT/CN2015/077343
Other languages
English (en)
French (fr)
Inventor
向华
Original Assignee
广东合即得能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合即得能源科技有限公司 filed Critical 广东合即得能源科技有限公司
Publication of WO2016000480A1 publication Critical patent/WO2016000480A1/zh
Priority to US15/228,181 priority Critical patent/US9969616B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the technical field of methanol water hydrogen production equipment, in particular to a reformer of a methanol water hydrogen production equipment, and at the same time, the invention also relates to a manufacturing process of a reformer.
  • Hydrogen is one of the most ideal energy sources in the 21st century. When burning the same weight of coal, gasoline and hydrogen, hydrogen produces the most energy, and its combustion products are water, no ash and waste gas, no Pollution of the environment; while coal and oil combustion mainly produces CO 2 and SO 2 , which can produce greenhouse effect and acid rain, respectively.
  • the reserves of coal and oil are limited, and hydrogen is mainly stored in water. The only product after combustion is water, which can continuously produce hydrogen and never run out.
  • Hydrogen is widely distributed, and water is the large "warehouse” of hydrogen, which contains 11% hydrogen. About 1.5% of the hydrogen in the soil; hydrogen, coal, natural gas, animals and plants contain hydrogen.
  • the main body of hydrogen exists in the form of compound water, and about 70% of the earth's surface is covered by water, and the water storage capacity is large. Therefore, hydrogen can be said to be an "inexhaustible and inexhaustible" energy source. If hydrogen can be produced from a suitable method, then hydrogen will also be a relatively inexpensive energy source.
  • the reformer of the methanol water hydrogen production equipment is the most central hydrogen production equipment, and the reformer includes a reformer housing and a combustion chamber and a reforming chamber located in the housing of the heavy unit, generally
  • the temperature in the reforming chamber is between 350 and 409 ° C, and the temperature in the combustion chamber is between 405 and 570 ° C.
  • the temperature in the reforming chamber or the combustion chamber may be short.
  • the internal temperature rises above 1000 °C.
  • the reformer housing and the base of the existing methanol water hydrogen production equipment are made of stainless steel.
  • the stainless steel reformer housing and the base have the following defects: In the hydrogen environment, it is easy to corrode and easily oxidize; secondly, the heat preservation performance is poor, and the heat loss is large. Because the stainless steel has thermal conductivity, the heat energy in the reforming chamber and the combustion chamber is easily lost by the stainless steel shell and the base; Due to the high temperature of the stainless steel casing and the base, other components of the methanol water hydrogen production equipment (such as solid hydrogen storage, methanol water storage container, raw material conveying device, etc.) are easily damaged by the high temperature of the reformer casing and the base.
  • the methanol water hydrogen production equipment such as solid hydrogen storage, methanol water storage container, raw material conveying device, etc.
  • the methanol water hydrogen production equipment is an important equipment of the alcohol water power generation system, and the alcohol water power generation system also includes a control system, a fuel cell (pile), an inverter, a solenoid valve, Charged components such as gas pressure regulators, therefore, the conductive properties of the stainless steel housing and the base will affect the circuit design of the alcohol-water power generation system, and even cause the alcohol-water power generation system.
  • the technical problem to be solved by the present invention is to provide a hydrogenation of methanol water not only high temperature resistance, high strength, good heat preservation performance, corrosion resistance, oxidation resistance, water resistance, non-conductivity and light weight in view of the above-mentioned deficiencies in the prior art.
  • the reformer of the device At the same time, the present invention also provides a reformer manufacturing process for a methanol water hydrogen production facility.
  • the technical solution of the present invention is:
  • a reformer for a methanol water hydrogen production apparatus comprising a reformer housing, the reformer housing including a stainless steel inner casing, a heat insulating cotton layer and a mica outer casing in order from the inside to the outside, the reformer casing
  • the diameter to thickness ratio of the stainless steel inner casing is 150:0.8 to 150:2.5
  • the diameter ratio of the reformer casing to the insulating cotton layer is 150:10 to 150:20
  • the diameter to thickness ratio of the outer casing is 150: 1.5 to 150: 3.5.
  • the ratio of the thickness of the reformer housing to the inner diameter of the stainless steel inner casing is 150:1.5 to 150:2, and the ratio of the thickness of the reformer housing to the insulating cotton layer is 150:14 to 150:16.
  • the diameter to thickness ratio of the reformer housing to the mica housing is 150:2 to 150:3.
  • the reformer further includes a reformer base and an exhaust device, the reformer base is connected to a bottom of the reformer housing, the reformer base is a mica base; and the exhaust device is disposed in the reforming At the upper end of the housing, the exhaust device includes an exhaust pipe and a check valve installed in the exhaust pipe, the exhaust pipe is a mica exhaust pipe, and the check valve is a mica check valve.
  • the mica outer casing of the reformer housing has a bottom edge, and the bottom edge is provided with a plurality of mounting holes, and bolts are respectively screwed into the plurality of mounting holes to fix the mica outer casing to the reformer base.
  • a reformer manufacturing process for a methanol water hydrogen production equipment comprising a mica outer shell manufacturing process of a reformer shell, a heat insulating cotton layer manufacturing process of the reformer shell, and a stainless steel inner shell manufacturing process of the reformer shell, among them:
  • the mica shell manufacturing process of the reformer housing includes the following steps:
  • the mica, aluminosilicate, carbonate and high-refractory inorganic minerals are respectively crushed and ground into powders having a size of 50 ⁇ m to 300 ⁇ m, and the total weight is 100, and the ratio is 35 to 45:25 in order. Mixing materials from 35:10 to 15:5 to 15 and stirring them evenly;
  • the mica shell of the static pressure molding is sent to the grill, and the temperature is gradually heated for 3 to 4 hours at 60 to 200 ° C, and then grilled for 1 to 2 hours at 600 to 900 ° C for high temperature, and the mica is obtained.
  • the finished product is finished.
  • the reformer manufacturing process further includes a manufacturing process of a reformer mica base, a mica exhaust pipe, and a mica check valve, and the manufacturing process includes the following steps:
  • the mica, aluminosilicate, carbonate and high-refractory inorganic minerals are respectively crushed and ground into powders having a size of 50 ⁇ m to 300 ⁇ m, and the total weight is 100, and the ratio is 35 to 45:25 in order. Mixing materials from 35:10 to 15:5 to 15 and stirring them evenly;
  • the mica shell of the static pressure molding is sent to the grill, and the temperature is gradually heated for 3 to 4 hours at 60 to 200 ° C, and then grilled for 1 to 2 hours at 600 to 900 ° C for high temperature, and the mica is obtained.
  • the aluminosilicate is any one or a mixture of two or more of kaolinite, pyrophyllite, and montmorillonite.
  • the carbonate is any one or a mixture of two or more of calcite, dolomite, and magnesite.
  • the high refractoriness inorganic mineral is any one or a mixture of two or more of periclase, quartz, and silica.
  • the binder is any one or a mixture of two or more of water glass, epoxy resin, and silane.
  • the beneficial effects of the invention are as follows: First, the reformer with the mica shell and the mica base can resist corrosion and is not easy to be oxidized in the hydrogen production environment; second, the insulating cotton layer has good heat preservation property, and the mica outer casing also has good performance.
  • the heat preservation property makes the overall heat preservation performance of the reformer very good, and the heat energy in the reforming chamber and the combustion chamber is not easily lost by the shell; thirdly, because the mica shell and the mica base are not easy to conduct heat, the surface temperature is low, so
  • the invention does not affect the operation and service life of other components of the methanol water hydrogen production equipment (such as solid hydrogen storage, methanol water storage container, raw material conveying device, etc.); fourth, due to the good insulation of the mica casing and the mica base.
  • the present invention when the present invention is applied to an alcohol water power generation system, it generally does not affect the circuit design of the control parts, the fuel cell (pile), the inverter, the solenoid valve, the gas pressure regulator, and the like, and does not cause alcohol.
  • the short circuit of the water power generation system; the fifth, the mica shell and the mica base are light in weight, which is only equivalent to 1/6 of the stainless steel casing, thus setting up hydrogen
  • the transportation is convenient; sixthly, because the mica check valve is light in weight, the check valve can be easily blown off when the gas in the reformer is discharged; the sixth, the mica shell itself is strong, and the reformer
  • the inner layer of the housing also has a stainless steel inner casing, thus maximizing the strength of the reformer.
  • Figure 1 is a schematic view showing the dispersion structure of the reformer of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view of the reformer of the present invention.
  • Figure 3 is a partial cross-sectional structural view of the reformer housing of the present invention.
  • Figure 4 is a cross-sectional structural view taken along line A-A of Figure 1.
  • Fig. 5 is a functional block diagram showing a manufacturing process of a reformer of a methanol water hydrogen production facility.
  • Fig. 6 is a functional block diagram showing a manufacturing process of a reformer of another methanol water hydrogen production facility.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a reformer for a methanol water hydrogen production device is provided with a reforming chamber 5 and a combustion chamber 6 in the reformer, and in the reforming chamber 5, under the action of a catalyst, occurs.
  • the methanol cracking reaction and the carbon monoxide shift reaction generate hydrogen gas and carbon dioxide, and the temperature in the reforming chamber 5 is between 350 and 409 ° C; in the combustion chamber 6, the hydrogen gas is burned to supply heat to the reforming chamber 5, and the combustion chamber 6 is inside.
  • the temperature is between 405 and 570 °C.
  • the reformer includes a reformer housing 1 including a stainless steel inner casing 11, an insulating cotton layer 12 and a mica outer casing 13 in order from the inside to the outside, the reformer housing 1 and the stainless steel inside
  • the shell 11 has a diameter to thickness ratio of 150:0.8 to 150:2.5, and the ratio of the thickness of the reformer housing 1 to the insulating cotton layer 12 is 150:10 to 150:20, and the reformer housing 1 and The mica outer casing 13 has a diameter to thickness ratio of 150:1.5 to 150:3.5.
  • the reformer casing 1 has a diameter of 150 mm
  • the stainless steel inner casing 11 has a thickness of 1.5 mm
  • the insulating cotton layer 12 has a thickness of 15 mm.
  • the mica casing 13 The thickness is 3mm.
  • the diameter to thickness ratio of the reformer housing to the stainless steel inner casing is 150:1.5 to 150:2, and the diameter to thickness ratio of the reformer housing to the insulating cotton layer
  • the thickness ratio of the reformer housing to the mica outer shell is 150:2 to 150:3, and the ratio of the diameter to thickness ratio can ensure the strength of the reformer to the greatest extent.
  • the reformer further includes a reformer base 2 and an exhaust device 3, and the reformer base 1 is connected to the bottom of the reformer housing 1, the weight The whole base 2 is a mica base 2; the exhaust device 3 is disposed at an upper end of the reformer housing 1, and the exhaust device 3 includes an exhaust pipe 31 and a check valve 32 installed in the exhaust pipe, the row The gas pipe 31 is a mica exhaust pipe 31, and the check valve 32 is a mica check valve 32.
  • the mica outer casing 13 of the reformer housing 1 has a bottom edge 131, and the bottom edge 131 is provided with a plurality of mounting holes 1311, and the bolts 132 are screwed into the plurality of mounting holes 1311, respectively.
  • the mica casing 13 is fixed to the reformer base 2.
  • the bottom edge 131 is a bottom edge integrally formed of the mica outer casing 13, and the bottom edge 131 is provided with three mounting holes 1311, so that the mica outer casing 13 can be firmly fixed to the reforming chamber base 2.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a reformer manufacturing process of a methanol water hydrogen production apparatus including a mica outer shell manufacturing process of a reformer housing, a heat insulating cotton layer manufacturing process of a reformer housing, and a reformer housing Stainless steel inner shell manufacturing process, wherein:
  • the mica shell manufacturing process of the reformer housing includes the following steps:
  • the mica, aluminosilicate, carbonate and high-refractory inorganic minerals are respectively crushed and ground into powders having a size of 50 ⁇ m to 300 ⁇ m, and the total weight is 100, and the ratio is 35 to 45:25 in order. Mixing materials from 35:10 to 15:5 to 15 and stirring them evenly;
  • the mica shell of the static pressure molding is sent to the grill, and the temperature is gradually heated for 3 to 4 hours at 60 to 200 ° C, and then grilled for 1 to 2 hours at 600 to 900 ° C for high temperature, and the mica is obtained.
  • the finished product is finished.
  • the manufacturing process of the insulating cotton layer of the reformer housing and the stainless steel inner shell manufacturing process of the reformer housing can be made by using the prior art, and the manufacturing process is not detailed in the present invention.
  • the insulating cotton layer 12 and the stainless steel inner casing 11 are respectively prepared, the insulating cotton layer 12 is installed on the inner side of the mica outer casing 13, and then the stainless steel inner casing 11 is stuffed into the plug, that is, the reformer casing is completed. Manufacturing.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the manufacturing process of the reformer of the embodiment further includes a manufacturing process of a reformer mica base, a mica exhaust pipe, and a mica check valve, and the manufacturing process includes The following steps:
  • the mica, aluminosilicate, carbonate and high-refractory inorganic minerals are respectively crushed and ground into powders having a size of 50 ⁇ m to 300 ⁇ m, and the total weight is 100, and the ratio is 35 to 45:25 in order. Mixing materials from 35:10 to 15:5 to 15 and stirring them evenly;
  • the mica shell of the static pressure molding is sent to the grill, and the temperature is gradually heated for 3 to 4 hours at 60 to 200 ° C, and then grilled for 1 to 2 hours at 600 to 900 ° C for high temperature, and the mica is obtained.
  • the aluminosilicate is any one or a mixture of two or more of kaolinite, pyrophyllite, and montmorillonite.
  • the carbonate is any one or a mixture of two or more of calcite, dolomite, and magnesite.
  • the high refractoriness inorganic mineral is any one or a mixture of two or more of periclase, quartz, and silica.
  • the binder is any one or a mixture of two or more of water glass, epoxy resin, and silane.
  • the mica material may be selected from muscovite and phlogopite, or artificially synthesized mica, wherein the chemical formula of muscovite is KAl 2 [AlSi 3 O 10 ][OH] 2 , wherein SiO 2 45.2%, Al 2 O 3 38.5%, K 2 O 11.8%, H 2 O 4.5%, and further, a small amount of Na, Ca, Mg, Ti, Cr, Mn, Fe, F, and the like.
  • the chemical formula of phlogopite is KMg 3 [AlSi 3 O 10 ][F,OH]2, wherein K 2 O7 to 10.3%, MgO is 21.4 to 29.4%, Al 2 O 3 is 10.8 to 17%, and SiO 2 is 38.7 to ⁇ 45%, H 2 O is 0.3 to 4.5%, and contains a small amount of Fe, Ti, Mn, Na, and F.
  • the synthetic mica can be obtained by melting five kinds of raw materials: calcined talc 55%, heavy magnesium oxide 9%, potassium fluorosilicate 20%, alumina 12%, and potassium carbonate 4%.
  • the mica material selected in the present invention is not limited to the above types.
  • the invention relates to a reformer for a methanol water hydrogen production device and a manufacturing process thereof.
  • the reformer can resist corrosion and is not easy to be oxidized in a hydrogen production environment, and the overall heat preservation performance is very good, and does not affect other methanol water hydrogen production equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

提供一种甲醇水制氢设备的重整器及其制造工艺。该重整器包括重整器壳体,所述重整器壳体从内至外依次包括不锈钢内壳、保温棉层及云母外壳,重整器壳体直径与不锈钢内壳厚度的比为150:0.8~150:2.5,重整器壳体直径与保温棉层厚度的比为150:10~150:20,重整器壳体直径与云母厚度的比为150:1.5~150:3.5。该重整器不仅耐高温、强度大,而且保温性能好、耐腐蚀、耐氧化、防水、不导电、重量轻。

Description

甲醇水制氢设备的重整器及其制造工艺 技术领域
本发明涉及甲醇水氢气制备设备技术领域,特别涉及一种甲醇水制氢设备的重整器,与此同时,本发明还涉及一种重整器的制造工艺。
背景技术
氢,是一种21世纪最理想的能源之一,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的主要是CO2和SO2,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。氢的分布很广泛,水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从制取氢,那么氢也将是一种价格相当便宜的能源。
目前,世界上氢的年产量约为3600万吨,制氢方法主要有两种:其一、绝大部分氢是从石油、煤炭和天然气中制取,这种方法需要消耗本来就很紧缺的矿物燃料;其二、约有4%的氢是用电解水的方法制取,这种方法消耗电能大,很不划算。随着技术的进步,采用甲醇和水重整制氢的技术渐渐得到发展,其能减少化工生产中的能耗和降低成本,并有望替代电能消耗特别在的电解水制氢工艺。利用先进的甲醇水蒸气重整技术制取H2与CO2 的混合气体,再经钯膜分离器分离,可分别得到H2和CO2
参照中国发明申请201310340475.0(申请人:上海合既得动氢机器有限公司),甲醇与水蒸气在350-409℃温度下、1-5M Pa的压力条件下通过催化剂,在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢气和二氧化碳,这是一个多组份、多反应的气固催化反应系统。反应方程如下:
CH3OH→CO+2H2(1)
H2O+CO→CO2+H2(2)
CH3OH+H2O→CO2+3H2(3)
重整反应生成的H2和CO2,再经过分离室的钯膜分离器将H2和CO2分离,得到高纯氢气。
在整个制氢过程中,甲醇水制氢设备的重整器是最为核心的制氢设备,重整器包括重整器壳体及位于重整体器壳体内的燃烧腔和重整腔,一般地,在重整腔中的温度在350-409℃之间,而燃烧腔中的温度则在405-570℃之间,当然,若出现异常,重整腔或燃烧腔中的温度可能会短时间内飚升至1000℃以上。现有甲醇水制氢设备的重整器壳体及底座采用不锈钢制成,虽然具有较高的强度和耐高温性,但是,不锈钢重整器壳体及底座具有如下缺失:其一、在制氢环境中,易腐蚀、易氧化;其二、保温性能差,热量流失大,由于不锈钢具有导热性,使得重整腔及燃烧腔中的热能易被不锈钢壳体及底座导出而损失;其三、由于不锈钢壳体及底座的温度高,使得甲醇水制氢设备的其他部件(如固态氢气储存器、甲醇水储存容器、原料输送装置等等)易受到重整器壳体及底座的高温破坏,而降低性能和使用寿命;其四、由于甲醇水制氢设备是醇水发电系统的重要设备,而醇水发电系统还包括控制系统、燃料电池(电堆)、逆变器、电磁阀、气压调整器等带电部件,因此,不锈钢壳体及底座的导电性质,会影响到醇水发电系统的电路设计,甚至会造成醇水发电系统的短路;其五、重整器不锈钢壳体及底座的重量重,给制氢设备的运输造成不利。
技术问题
本发明要解决的技术问题是针对上述现有技术中的不足,提供一种不仅耐高温、强度大,而且保温性能好、耐腐蚀、耐氧化、防水、不导电、重量轻的甲醇水制氢设备的重整器。与此同时,本发明还要提供一种甲醇水制氢设备的重整器制造工艺。
技术解决方案
为解决上述技术问题,本发明的技术方案是:
一种甲醇水制氢设备的重整器,包括重整器壳体,所述重整器壳体从内至外依次包括不锈钢内壳、保温棉层及云母外壳,所述重整器壳体与不锈钢内壳的直径厚度比为150:0.8~150:2.5,所述重整器壳体与保温棉层的直径厚度比为150:10~150:20,所述重整器壳体与云母外壳的直径厚度比为150:1.5~150:3.5。
所述重整器壳体与不锈钢内壳的直径厚度比为150:1.5~150:2,所述重整器壳体与保温棉层的直径厚度比为150:14~150:16,所述重整器壳体与云母外壳的直径厚度比为150:2~150:3。
所述重整器还包括重整器底座及排气装置,所述重整器底座与重整器壳体底部相连接,该重整器底座为云母底座;所述排气装置设置于重整器壳体的上端,该排气装置包括排气管及安装于排气管内的止逆阀,该排气管为云母排气管,该止逆阀为云母止逆阀。
所述重整器壳体的云母外壳具有一底沿,该底沿设有若干安装孔,该若干安装孔中分别旋入螺栓,使云母外壳固定于重整器底座上。
一种甲醇水制氢设备的重整器制造工艺,包括重整器壳体之云母外壳制造工艺、重整器壳体之保温棉层制造工艺及重整器壳体之不锈钢内壳制造工艺,其中:
所述重整器壳体之云母外壳制造工艺包括如下步骤:
(1)将云母、铝硅酸盐、碳酸盐和高耐火度无机矿物分别破碎、研磨成尺寸为50μm~300μm的粉末,按总重量为100计,依次按比例为35~45:25~35:10~15:5~15取料混合,并搅拌均匀;
(2)加入混合料总重量10~15%的粘合剂将混合料均匀混合粘结;
(3)在压力为15~25Mpa的静压条件下将混合粘结料静压成型成云母外壳;
(4)将静压成型的云母外壳送入烧烤炉,在60~200℃状态下逐步升温烧烤3~4小时,再经600~900℃高温烧烤1~2小时,出炉自然冷却,即得云母外壳成品。
所述重整器制造工艺还包括重整器云母底座、云母排气管及云母止逆阀的制造工艺,该制造工艺包括如下步骤:
(1)将云母、铝硅酸盐、碳酸盐和高耐火度无机矿物分别破碎、研磨成尺寸为50μm~300μm的粉末,按总重量为100计,依次按比例为35~45:25~35:10~15:5~15取料混合,并搅拌均匀;
(2)加入混合料总重量10~15%的粘合剂将混合料均匀混合粘结;
(3)在压力为15~25Mpa的静压条件下将混合粘结料静压成型成云母底座、云母排气管及云母止逆阀;
(4)将静压成型的云母外壳送入烧烤炉,在60~200℃状态下逐步升温烧烤3~4小时,再经600~900℃高温烧烤1~2小时,出炉自然冷却,即得云母底座、云母排气管及云母止逆阀成品。
所述铝硅酸盐为高岭石、叶蜡石、蒙脱石中的任意一种或两种以上的混合物。
所述碳酸盐为方解石、白云石、菱镁矿中的任意一种或两种以上的混合物。
所述高耐火度无机矿物为方镁石、石英、硅石中的任意一种或两种以上的混合物。
所述粘结剂为水玻璃、环氧树脂、硅烷中的任意一种或两种以上的混合物。
有益效果
本发明的有益效果是:其一、具有云母外壳及云母底座的重整器在制氢环境中,能耐腐蚀,不易氧化;其二、保温棉层具有良好的保温性,云母外壳同样具有良好的保温性,使得重整器整体保温性能非常好,重整腔及燃烧腔中的热能不易被壳体导出而损失;其三、由于云母外壳及云母底座不易导热,使得其表面温度低,因而本发明不会影响甲醇水制氢设备的其他部件(如固态氢气储存器、甲醇水储存容器、原料输送装置等等)的工作和使用寿命;其四、由于云母外壳及云母底座具有良好的绝缘性,因而本发明在运用到醇水发电系统中时,一般不会影响控制系统、燃料电池(电堆)、逆变器、电磁阀、气压调整器等带电部件的电路设计,更不会造成醇水发电系统的短路;其五、云母外壳及云母底座的重量轻,只相当于不锈钢壳体的1/6,因而为制氢设备的运输提供了便利;其六、由于云母止逆阀重量轻,因而使得重整器内的气体排出时,能很容易吹开止逆阀;其六、云母外壳本身强度大,且重整器壳体内层还具有不锈钢内壳,因而最大程度上保证了重整器的强度。
附图说明
图1为本发明重整器的分散结构示意图。
图2为本发明重整器的整体纵剖视结构示意图。
图3为本发明重整器壳体的局部剖视结构示意图。
图4为图1中沿A-A向的剖视结构示意图。
图5为一种甲醇水制氢设备的重整器制造工艺功能方框图。
图6为另一种甲醇水制氢设备的重整器制造工艺功能方框图。
图中:1.重整器壳体;11.不锈钢内壳;12.保温棉层;13.云母外壳;2.重整器底座;3.排气装置;31.排气管;32.止逆阀;5.重整腔;6.燃烧腔;131.底沿;1311.安装孔;132.螺栓。
本发明的实施方式
下面结合附图对本发明的结构原理和工作原理作进一步详细说明。
实施例一:
如图1~图4所示,一种甲醇水制氢设备的重整器,重整器内设有重整腔5和燃烧腔6,在重整腔5内,在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢气和二氧化碳,重整腔5内的温度在350-409℃之间;在燃烧腔6内,氢气燃烧,为重整腔5提供热量,燃烧腔6内的温度在405-570℃之间。重整器包括重整器壳体1,所述重整器壳体1从内至外依次包括不锈钢内壳11、保温棉层12及云母外壳13,所述重整器壳体1与不锈钢内壳11的直径厚度比为150:0.8~150:2.5,所述重整器壳体1与保温棉层12的直径厚度比为150:10~150:20,所述重整器壳体1与云母外壳13的直径厚度比为150:1.5~150:3.5,例如,重整器壳体1直径为150mm,不锈钢内壳11的厚度为1.5mm,保温棉层12的厚度为15mm,云母外壳13的厚度为3mm。
作为重整器壳体1的优选方式,所述重整器壳体与不锈钢内壳的直径厚度比为150:1.5~150:2,所述重整器壳体与保温棉层的直径厚度比为150:14~150:16,所述重整器壳体与云母外壳的直径厚度比为150:2~150:3,这个直径厚度比的范围能最大程度上保证重整器的强度。
如图1、图2和图3所示,所述重整器还包括重整器底座2及排气装置3,所述重整器底座1与重整器壳体1底部相连接,该重整器底座2为云母底座2;所述排气装置3设置于重整器壳体1的上端,该排气装置3包括排气管31及安装于排气管内的止逆阀32,该排气管31为云母排气管31,该止逆阀32为云母止逆阀32。
如图1和图2所示,所述重整器壳体1的云母外壳13具有一底沿131,该底沿131设有若干安装孔1311,该若干安装孔1311中分别旋入螺栓132,使云母外壳13固定于重整器底座2上。图中,底沿131为云母外壳13一体成型的底沿,底沿131上共设有三个安装孔1311,这样能稳固地将云母外壳13固定于重整室底座2上。
实施例二:
如图5的示,一种甲醇水制氢设备的重整器制造工艺,包括重整器壳体之云母外壳制造工艺、重整器壳体之保温棉层制造工艺及重整器壳体之不锈钢内壳制造工艺,其中:
所述重整器壳体之云母外壳制造工艺包括如下步骤:
(1)将云母、铝硅酸盐、碳酸盐和高耐火度无机矿物分别破碎、研磨成尺寸为50μm~300μm的粉末,按总重量为100计,依次按比例为35~45:25~35:10~15:5~15取料混合,并搅拌均匀;
(2)加入混合料总重量10~15%的粘合剂将混合料均匀混合粘结;
(3)在压力为15~25Mpa的静压条件下将混合粘结料静压成型成云母外壳;
(4)将静压成型的云母外壳送入烧烤炉,在60~200℃状态下逐步升温烧烤3~4小时,再经600~900℃高温烧烤1~2小时,出炉自然冷却,即得云母外壳成品。
重整器壳体之保温棉层制造工艺及重整器壳体之不锈钢内壳制造工艺采用现有技术即可制成,固,本发明不再详述其制造工艺。云母外壳13、保温棉层12及不锈钢内壳11分别制得后,将保温棉层12安装于云母外壳13之内侧,然后将不锈钢内壳11塞入塞紧,即完成重整器壳体的制造。
实施例三:
如图6所示,本实施例与实施例二的区别是,本实施例重整器制造工艺还包括重整器云母底座、云母排气管及云母止逆阀的制造工艺,该制造工艺包括如下步骤:
(1)将云母、铝硅酸盐、碳酸盐和高耐火度无机矿物分别破碎、研磨成尺寸为50μm~300μm的粉末,按总重量为100计,依次按比例为35~45:25~35:10~15:5~15取料混合,并搅拌均匀;
(2)加入混合料总重量10~15%的粘合剂将混合料均匀混合粘结;
(3)在压力为15~25Mpa的静压条件下将混合粘结料静压成型成云母底座、云母排气管及云母止逆阀;
(4)将静压成型的云母外壳送入烧烤炉,在60~200℃状态下逐步升温烧烤3~4小时,再经600~900℃高温烧烤1~2小时,出炉自然冷却,即得云母底座、云母排气管及云母止逆阀成品。
在上述实施例中,所述铝硅酸盐为高岭石、叶蜡石、蒙脱石中的任意一种或两种以上的混合物。所述碳酸盐为方解石、白云石、菱镁矿中的任意一种或两种以上的混合物。所述高耐火度无机矿物为方镁石、石英、硅石中的任意一种或两种以上的混合物。所述粘结剂为水玻璃、环氧树脂、硅烷中的任意一种或两种以上的混合物。
此外,在上述实施例中,所述云母材料可选用白云母和金云母,也可选用人工合成云母,其中,白云母的化学式为KAl2〔AlSi3O10〕〔OH〕2,其中SiO2 45.2%、Al2O3 38.5%、K2O 11.8%、H2O 4.5%,此外,含少量Na、Ca、Mg、Ti、Cr、Mn、Fe和F等。金云母的化学式为KMg3〔AlSi3O10〕〔F,OH〕2,其中K2O7~10.3%、MgO为21.4~29.4%、Al2O3为10.8~17%、SiO2为38.7~45%、H2O为0.3~4.5%,含少量Fe、Ti、Mn、Na和F等。人工合成云母可由煅烧滑石55%、重体氧化镁9%、氟硅酸钾20%、氧化铝12%、碳酸钾4%五种原料熔制而成。当然本发明选用的云母材料并不局限于上述种类。
以上所述,仅是本发明较佳实施方式,凡是依据本发明的技术方案对以上的实施方式所作的任何细微修改、等同变化与修饰,均属于本发明技术方案的范围内。
工业实用性
本发明为一种甲醇水制氢设备的重整器及其制造工艺,重整器在制氢环境中,能耐腐蚀,不易氧化,整体保温性能非常好,不会影响甲醇水制氢设备的其他部件的工作和使用寿命,具有良好的绝缘性,重量轻,强度大。因此,具有工业实用性。

Claims (10)

  1. 一种甲醇水制氢设备的重整器,包括重整器壳体,其特征在于:所述重整器壳体从内至外依次包括不锈钢内壳、保温棉层及云母外壳,所述重整器壳体与不锈钢内壳的直径厚度比为150:0.8~150:2.5,所述重整器壳体与保温棉层的直径厚度比为150:10~150:20,所述重整器壳体与云母外壳的直径厚度比为150:1.5~150:3.5。
  2. 根据权利要求1所述的甲醇水制氢设备的重整器,其特征在于:所述重整器壳体与不锈钢内壳的直径厚度比为150:1.5~150:2,所述重整器壳体与保温棉层的直径厚度比为150:14~150:16,所述重整器壳体与云母外壳的直径厚度比为150:2~150:3。
  3. 根据权利要求1所述的甲醇水制氢设备的重整器,其特征在于:所述重整器还包括重整器底座及排气装置,所述重整器底座与重整器壳体底部相连接,该重整器底座为云母底座;所述排气装置设置于重整器壳体的上端,该排气装置包括排气管及安装于排气管内的止逆阀,该排气管为云母排气管,该止逆阀为云母止逆阀。
  4. 根据权利要求3所述的甲醇水制氢设备的重整器,其特征在于:所述重整器壳体的云母外壳具有一底沿,该底沿设有若干安装孔,该若干安装孔中分别旋入螺栓,使云母外壳固定于重整器底座上。
  5. 权利要求1-4中任意一项甲醇水制氢设备重整器的制造工艺,其特征在于:包括重整器壳体之云母外壳制造工艺、重整器壳体之保温棉层制造工艺及重整器壳体之不锈钢内壳制造工艺,其中, 所述重整器壳体之云母外壳制造工艺包括如下步骤:
    (1)将云母、铝硅酸盐、碳酸盐和高耐火度无机矿物分别破碎、研磨成尺寸为50μm~300μm的粉末,按总重量为100计,依次按比例为35~45:25~35:10~15:5~15取料混合,并搅拌均匀;
    (2)加入混合料总重量10~15%的粘合剂将混合料均匀混合粘结;
    (3)在压力为15~25Mpa的静压条件下将混合粘结料静压成型成云母外壳;
    (4)将静压成型的云母外壳送入烧烤炉,在60~200℃状态下逐步升温烧烤3~4小时,再经600~900℃高温烧烤1~2小时,出炉自然冷却,即得云母外壳成品。
  6. 根据权利要求5所述的甲醇水制氢设备重整器的制造工艺,其特征在于:所述重整器制造工艺还包括重整器云母底座、云母排气管及云母止逆阀的制造工艺,该制造工艺包括如下步骤:
    (1)将云母、铝硅酸盐、碳酸盐和高耐火度无机矿物分别破碎、研磨成尺寸为50μm~300μm的粉末,按总重量为100计,依次按比例为35~45:25~35:10~15:5~15取料混合,并搅拌均匀;
    (2)加入混合料总重量10~15%的粘合剂将混合料均匀混合粘结;
    (3)在压力为15~25Mpa的静压条件下将混合粘结料静压成型成云母底座、云母排气管及云母止逆阀;
    (4)将静压成型的云母外壳送入烧烤炉,在60~200℃状态下逐步升温烧烤3~4小时,再经600~900℃高温烧烤1~2小时,出炉自然冷却,即得云母底座、云母排气管及云母止逆阀成品。
  7. 根据权利要求5或6所述的甲醇水制氢设备重整器的制造工艺,其特征在于:所述铝硅酸盐为高岭石、叶蜡石、蒙脱石中的任意一种或两种以上的混合物。
  8. 根据权利要求5或6所述的甲醇水制氢设备重整器的制造工艺,其特征在于:所述碳酸盐为方解石、白云石、菱镁矿中的任意一种或两种以上的混合物。
  9. 根据权利要求5或6所述的甲醇水制氢设备重整器的制造工艺,其特征在于:所述高耐火度无机矿物为方镁石、石英、硅石中的任意一种或两种以上的混合物。
  10. 根据权利要求5或6所述的甲醇水制氢设备重整器的制造工艺,其特征在于:所述粘结剂为水玻璃、环氧树脂、硅烷中的任意一种或两种以上的混合物。
PCT/CN2015/077343 2014-07-02 2015-04-24 甲醇水制氢设备的重整器及其制造工艺 WO2016000480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/228,181 US9969616B2 (en) 2014-07-02 2016-08-04 Reformer of device preparing hydrogen with methanol and water and manufacture process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410311217.4 2014-07-02
CN201410311217.4A CN104229733B (zh) 2014-07-02 2014-07-02 甲醇水制氢设备的重整器及其制造工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/228,181 Continuation US9969616B2 (en) 2014-07-02 2016-08-04 Reformer of device preparing hydrogen with methanol and water and manufacture process thereof

Publications (1)

Publication Number Publication Date
WO2016000480A1 true WO2016000480A1 (zh) 2016-01-07

Family

ID=52218758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077343 WO2016000480A1 (zh) 2014-07-02 2015-04-24 甲醇水制氢设备的重整器及其制造工艺

Country Status (3)

Country Link
US (1) US9969616B2 (zh)
CN (1) CN104229733B (zh)
WO (1) WO2016000480A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961627B2 (en) 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
CN104229733B (zh) * 2014-07-02 2016-08-24 广东合即得能源科技有限公司 甲醇水制氢设备的重整器及其制造工艺
CN104789368A (zh) * 2015-04-17 2015-07-22 广东合即得能源科技有限公司 一种用于食用油脂加氢改性的氢原料生产设备及工艺
CN109650332A (zh) * 2018-12-29 2019-04-19 广东富海新能源科技有限公司 一种氢能源合成装置
CN110950303B (zh) * 2019-12-09 2024-05-17 广东设合水氢电力有限公司 一种钛合金甲醇水重整器及制氢设备
CN111995302A (zh) * 2020-07-29 2020-11-27 苏州高迈新能源有限公司 一种抗拉抗裂保温材料以及醇水重整制氢设备的重整器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2162601Y (zh) * 1993-03-09 1994-04-20 陈志忠 高效保温节电炉
CN1579992A (zh) * 2003-08-08 2005-02-16 桂林矿产地质研究院 一种云母复合隔热绝缘抗静压板
CN202668929U (zh) * 2012-05-09 2013-01-16 珠海市英豪电子科技有限公司 一种新型的注塑机发热系统保温装置
CN204022466U (zh) * 2014-07-02 2014-12-17 广东合即得能源科技有限公司 甲醇水制氢设备的重整器
CN104229733A (zh) * 2014-07-02 2014-12-24 广东合即得能源科技有限公司 甲醇水制氢设备的重整器及其制造工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973252A (en) * 1955-05-25 1961-02-28 Standard Oil Co Reactor apparatus for regenerative reforming of hydrocarbons
US7008716B2 (en) * 2001-10-01 2006-03-07 Delphi Technologies, Inc. Gasket material for a fuel cell
JP2005330205A (ja) * 2004-05-19 2005-12-02 Mitsubishi Chemicals Corp (メタ)アクロレイン又は(メタ)アクリル酸の製造方法
US8790611B2 (en) * 2012-07-05 2014-07-29 Basf Se Reactor for carrying out an exothermic reaction in the gas phase
US10190823B2 (en) * 2013-11-15 2019-01-29 Allied Mineral Products, Inc. High temperature reactor refractory systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2162601Y (zh) * 1993-03-09 1994-04-20 陈志忠 高效保温节电炉
CN1579992A (zh) * 2003-08-08 2005-02-16 桂林矿产地质研究院 一种云母复合隔热绝缘抗静压板
CN202668929U (zh) * 2012-05-09 2013-01-16 珠海市英豪电子科技有限公司 一种新型的注塑机发热系统保温装置
CN204022466U (zh) * 2014-07-02 2014-12-17 广东合即得能源科技有限公司 甲醇水制氢设备的重整器
CN104229733A (zh) * 2014-07-02 2014-12-24 广东合即得能源科技有限公司 甲醇水制氢设备的重整器及其制造工艺

Also Published As

Publication number Publication date
US9969616B2 (en) 2018-05-15
CN104229733B (zh) 2016-08-24
US20160340185A1 (en) 2016-11-24
CN104229733A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2016000480A1 (zh) 甲醇水制氢设备的重整器及其制造工艺
WO2016070588A1 (zh) 甲醇水制氢系统的重整器、甲醇水制氢系统及制氢方法
CN101830464B (zh) 两段法生产电石和热电联产的工艺及装置
Balakrishnan et al. Waste materials–catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications
WO2003016210A1 (fr) Procede et appareil de recyclage de ressources d'hydrocarbures
KR20090013116A (ko) 연료첨가제 조성물
CN105294154A (zh) 高资源化蒸汽加压混凝土砌块及其制备方法
CN105481335A (zh) 一种以硅锰渣和粉煤灰为主材的免烧砖
JP2010521278A (ja) 新規な直列型パワープラントプロセス及び当該パワープラントプロセスにおいて可逆的に使用可能な水素キャリヤーを提供する方法
CN103848582A (zh) 土壤固化的胶凝材料
PL342026A1 (en) Method of and apparatus for obtaining a flammable gas from a raw material rich with organic matter
CN202962441U (zh) 一种烃生产乙炔的反应器
CN204022466U (zh) 甲醇水制氢设备的重整器
CN104446494A (zh) 一种采用内燃式回转炉生产β-碳化硅的方法
EP2374755A1 (en) Method for fabricating silicon carbide material
CN104654343B (zh) 等离子体解水制氢高效节能锅炉燃烧器
CN102617263A (zh) 一种利用焦炉气制备乙炔的方法
CN101993251B (zh) 乙烯裂解炉废热锅炉封头及其制造方法
CN102557717A (zh) 一种多孔堇青石—莫来石复合陶瓷材料及其制备方法
WO2014069756A1 (en) Method for producing synthetic gas by using solid acid
Bratsev et al. Experimental development of methods on plasma gasification of coal as the basis for creation of liquid fuel technology
CN208186379U (zh) 一种用于处理含氨酸性气的废酸焚烧炉
CN102295438A (zh) 硫酸粉煤灰砖及其生产工艺
CN109205557A (zh) 一种水氢燃料的制取方法
CN101274828A (zh) 废弃水漂珠保温材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814849

Country of ref document: EP

Kind code of ref document: A1