WO2016000331A1 - Procédé d'amélioration d'image, dispositif d'amélioration d'image et dispositif d'affichage - Google Patents

Procédé d'amélioration d'image, dispositif d'amélioration d'image et dispositif d'affichage Download PDF

Info

Publication number
WO2016000331A1
WO2016000331A1 PCT/CN2014/087517 CN2014087517W WO2016000331A1 WO 2016000331 A1 WO2016000331 A1 WO 2016000331A1 CN 2014087517 W CN2014087517 W CN 2014087517W WO 2016000331 A1 WO2016000331 A1 WO 2016000331A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
function
transformation
parameter value
color space
Prior art date
Application number
PCT/CN2014/087517
Other languages
English (en)
Chinese (zh)
Inventor
张晓�
于淑环
张丽杰
Original Assignee
京东方科技集团股份有限公司
北京京东方视讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方视讯科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2016000331A1 publication Critical patent/WO2016000331A1/fr

Links

Images

Classifications

    • G06T5/92
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Definitions

  • the present disclosure relates to the field of image processing technologies, and in particular, to an image enhancement method, an image enhancement device, and a display device.
  • the image may be affected by factors such as the dynamic range of the imaging device and the intensity of the ambient light during the acquisition process, resulting in low contrast, inconspicuous image information, color distortion, target contour or boundary information clarity. Such phenomena, which make it difficult for human visual observation and machine analysis processing, need to enhance the image.
  • Image enhancement refers to a method of highlighting certain information of an image according to a specific need while weakening or removing certain unwanted information.
  • Image enhancement is the most basic means of image processing, and is often a pre-processing process for various image analysis and processing.
  • image enhancement usually performs gradation transformation on the luminance information of an image through a gradation transformation function, but the transformation parameters of the gradation transformation function are usually set by empirical values or subjective observations of the human eye, and thus there is a lack thereof. Universal technical issues.
  • the present disclosure provides an image enhancement method, an image enhancement apparatus, and a display apparatus, which realize adaptive enhancement of an image by automatically determining an optimal transformation parameter of a gradation transformation function.
  • an image enhancement method including:
  • the enhanced luminance information is converted from the second color space to the first color space to obtain a final enhanced image.
  • the step of determining an optimal transform parameter value of the gray-scale transform function for the image enhancement by using the optimization algorithm specifically includes:
  • the objective function is used to determine whether the current transformation parameter value is an optimal transformation parameter value, and the optimal transformation parameter value of the gradation transformation function is determined.
  • the optimization algorithm is a particle swarm optimization algorithm, and the objective function is:
  • Fitness is the current fitness value of the particle
  • M is the width of the image to be processed
  • N is the height of the image to be processed
  • f(x, y) is the brightness information of the pixel at the position (x, y).
  • the optimization algorithm is a genetic algorithm or a simulated annealing algorithm.
  • the gradation transformation function is a non-complete Beta function
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the range of variation of the integral variable t.
  • the step of determining an optimal transform parameter value for the gray-scale transform function of the image enhancement by using the optimization algorithm further comprises: normalizing the luminance information of the original image or the original image ;
  • the method further includes performing inverse normalization processing on the enhanced luminance information or the final enhanced image.
  • the present disclosure also provides an image enhancement apparatus, including:
  • a first image conversion unit configured to convert the original image from the first color space to a second color space containing the brightness information, and extract brightness information of the original image
  • a transformation parameter optimization unit configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the brightness information
  • An enhancement processing unit configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • the second image conversion unit is configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  • the transformation parameter optimization unit is specifically configured to establish an objective function, and use the objective function to determine whether the current transformation parameter value is an optimal transformation parameter value, and determine an optimal transformation of the gray transformation function. Parameter value.
  • the image enhancement device further includes:
  • a normalization processing unit configured to normalize brightness information of the original image or the original image
  • the inverse normalization processing unit is configured to perform inverse normalization processing on the enhanced luminance information or the final enhanced image.
  • the present disclosure also provides a display device including the above image enhancement device.
  • the optimal transformation parameter of the gradation transformation function can be automatically determined by the optimization algorithm, thereby realizing the adaptive enhancement of the image.
  • FIG. 1 is a schematic flow chart of an image enhancement method according to an embodiment of the present disclosure
  • FIG 2 is another schematic flowchart of an image enhancement method according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of an image enhancement apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of an image enhancement method according to an embodiment of the present disclosure, where the method includes:
  • Step S11 converting the original image from the first color space to the second color space containing the brightness information, and extracting brightness information of the original image;
  • the first color space is a red, green, blue (RGB) color space, or other color space.
  • RGB red, green, blue
  • the second color space is a hue, saturation, brightness (HIS) color space, a brightness, chrominance (YUV) color space, or other color space containing luminance information.
  • HIS hue, saturation, brightness
  • YUV chrominance
  • Step S12 determining, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement, for the luminance information;
  • the gradation transformation function may be a non-complete Beta function, and the formula of the incomplete Beta function is:
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the range of variation of the integral variable t.
  • the optimization algorithm may be a Particle Swarm Optimization (PSO), a genetic algorithm or a simulated annealing algorithm.
  • PSO Particle Swarm Optimization
  • Step S13 construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • Step S14 Convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  • the color space conversion is performed according to the enhanced luminance information and other information of the original image in the second color space.
  • the optimal transformation parameter of the gradation transformation function can be automatically determined by the optimization algorithm, thereby realizing adaptive enhancement of the image.
  • the image enhancement method of the present disclosure will be described below by taking the gradation transformation function as a non-complete Beta function and the optimization algorithm as an example of the particle swarm optimization algorithm.
  • FIG. 2 is another schematic flowchart of an image enhancement method according to an embodiment of the present disclosure, where the method includes:
  • Step S21 converting the original image from the RGB color space to the YUV color space containing the luminance component, and extracting luminance information of the original image;
  • the image collected by the collection device is described by RGB space for each pixel of the image. Therefore, in this embodiment, the first color space is an RGB color space, and the second color space is a YUV color space.
  • Step S22 Establish a grayscale transformation function for enhancing the image.
  • the image is nonlinearly transformed by using a non-complete Beta function.
  • the formula of the incomplete Beta function is:
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the range of variation of the integral variable t.
  • Step S23 Establish an objective function.
  • an objective function is used to determine whether the current transform parameter value is the optimal transform parameter value.
  • the objective function is:
  • Fitness is the current fitness value of the particle
  • M is the width of the image to be processed
  • N is the height of the image to be processed
  • f(x, y) is the brightness information of the pixel at the position (x, y);
  • Step S24 determining, by using a particle swarm optimization algorithm, an optimal transform parameter value of the incomplete Beta function for the brightness information
  • the step of determining the optimal transformation parameter value of the incomplete Beta function by using the particle swarm optimization algorithm specifically includes:
  • Step S241 setting the particle swarm optimization parameter: setting the particle population size to N1 in the D-dimensional space, the maximum number of iterations is N2, and the particle velocity ranges from [-v max , v max ], the particle The value range of the position is [p min , p max ].
  • D of the D-dimensional space is the number of solutions in the solution space.
  • the objective function Fitness has two solutions of ⁇ and ⁇ , so the value of D is 2.
  • the range of particle positions can be based on different scenarios.
  • the range of values of the transformation parameters ⁇ and ⁇ of the incomplete Beta function is set;
  • Step S243 (not shown): calculating the fitness value of each particle Determine the objective function
  • Step S244 for each particle, comparing its current fitness value with the fitness value of the historical optimal position of the particle to complete its individual optimal solution Update:
  • Step S245 updating the global optimal position Gbest n according to the fitness value of each particle:
  • Step S246 the speed of each particle according to the following two formulas And location Update
  • c 1 is a cognitive learning factor
  • c 2 is a social learning factor
  • c 1 , c 2 are usually set to a constant 2
  • r 1 and r 2 are random numbers, subject to a uniform distribution between [0, 1]
  • w is a non-negative number, and the value is generally between [0.1, 0.9], which controls the influence of the previous speed on the current speed.
  • the most commonly used is the inertia weight linear weight decrement strategy.
  • the exponential inertia weight nonlinear weight reduction strategy is adopted to achieve a better balance between the global search and the local search.
  • t is the current number of iterations
  • t max is the total number of iterations of the algorithm
  • a is the adjustment parameter, which is used to control the size of the inertia weight transformation.
  • Excessive value of a causes the inertia weight to drop too fast, and enters the local search too early, and the value of a is too small and does not bring about an increase in convergence speed.
  • the technique of the embodiment of the present disclosure selects a value of 15.
  • Step S247 (not shown): determining whether the iteration termination condition is satisfied; the termination condition is an objective function The value is the largest.
  • Step S25 construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • Step S26 Converting the YUV color space enhanced by the brightness information to the RGB color space to obtain a final enhanced image.
  • color space conversion is performed according to the enhanced luminance information and the chrominance information of the original image in the YUV color space to obtain a final enhanced image.
  • the original image or the luminance component image may be normalized to reduce the complexity of the algorithm.
  • the enhanced luminance information or the final enhanced image also needs to be inverse normalized.
  • the normalization process and the inverse normalization process can be implemented by those skilled in the art according to the techniques in the art, and details are not described herein again.
  • FIG. 3 is a structural block diagram of an image enhancement apparatus according to an embodiment of the present disclosure, where the image enhancement apparatus includes:
  • a first image conversion unit 301 configured to convert the original image from the first color space to include light a second color space of the degree information, and extracting brightness information of the original image
  • the transformation parameter optimization unit 302 is configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the luminance information;
  • the enhancement processing unit 303 is configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • the second image converting unit 304 is configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  • the gradation transformation function is a non-complete Beta function.
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the variation range of the integral variable t
  • the optimization algorithm is a particle swarm optimization algorithm.
  • the transformation parameter optimization unit is specifically configured to establish an objective function.
  • the target function is used to determine whether the current transformation parameter value is Optimal transformation parameter value;
  • the objective function is:
  • Fitness is the current fitness value of the particle
  • M, N are the width and height of the image to be processed, respectively
  • f(x, y) is the brightness information of the pixel at the position (x, y).
  • the image enhancement apparatus may further include:
  • a normalization processing unit (not shown) for normalizing the luminance information of the original image or the original image
  • An anti-normalization processing unit (not shown) for using the enhanced luminance information or the final increase The strong image is denormalized.
  • Embodiments of the present disclosure also provide a display device including the image enhancement device as described above.
  • a display device including the image enhancement device as described above.
  • the display device may be any product or component having a display function such as a home appliance, a communication device, an engineering device, an electronic entertainment product, or the like.

Abstract

La présente invention concerne un procédé d'amélioration d'image, un dispositif d'amélioration d'image et un dispositif d'affichage. Le procédé d'amélioration d'image comprend les étapes suivantes : une image originale est transférée d'un premier espace chromatique vers un deuxième espace chromatique contenant des informations de luminosité, et les informations de luminosité de l'image originale sont extraites; pour les informations de luminosité, une valeur de paramètre de transformation optimale de la fonction de transformation de niveaux de gris utilisée pour améliorer l'image est déterminée par un algorithme de recherche optimale; une courbe de transformation de la fonction de transformation de niveaux de gris est construite d'après la valeur de paramètre de transformation optimale, les informations de luminosité sont traitées à des fins d'amélioration selon la courbe de transformation, et des informations de luminosité améliorées sont obtenues; les informations de luminosité améliorées sont transférées du deuxième espace chromatique vers le premier espace chromatique, et une image améliorée finale est obtenue.
PCT/CN2014/087517 2014-06-30 2014-09-26 Procédé d'amélioration d'image, dispositif d'amélioration d'image et dispositif d'affichage WO2016000331A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410307041.5A CN104091311A (zh) 2014-06-30 2014-06-30 一种图像增强方法、图像增强装置及显示装置
CN201410307041.5 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016000331A1 true WO2016000331A1 (fr) 2016-01-07

Family

ID=51639026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087517 WO2016000331A1 (fr) 2014-06-30 2014-09-26 Procédé d'amélioration d'image, dispositif d'amélioration d'image et dispositif d'affichage

Country Status (2)

Country Link
CN (1) CN104091311A (fr)
WO (1) WO2016000331A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109636745A (zh) * 2018-11-28 2019-04-16 陕西理工大学 基于分数阶微分图像增强算法的最佳阶图像增强方法
CN110189266A (zh) * 2019-05-09 2019-08-30 湖北工业大学 一种自适应的快速图像增强方法
CN110706172A (zh) * 2019-09-27 2020-01-17 郑州轻工业学院 基于自适应混沌粒子群优化的低照度彩色图像增强方法
CN111242878A (zh) * 2020-01-14 2020-06-05 郑州轻工业大学 基于布谷鸟搜索的矿井下图像增强方法
CN111784588A (zh) * 2019-04-04 2020-10-16 长沙智能驾驶研究院有限公司 图像数据增强方法、装置、计算机设备和存储介质
CN112288652A (zh) * 2020-10-30 2021-01-29 西安科技大学 一种基于PSO寻优的引导滤波-Retinex低照度图像增强方法
CN112907472A (zh) * 2021-02-09 2021-06-04 大连海事大学 一种基于场景深度信息的偏振水下图像优化方法
CN112927168A (zh) * 2021-03-26 2021-06-08 江西理工大学 基于天牛须搜索与差分进化混合算法的图像增强方法
CN113870141A (zh) * 2021-10-08 2021-12-31 成都医学院 一种彩色眼底图像增强方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376543B (zh) * 2014-11-28 2017-02-22 湖北工业大学 一种基于杜鹃搜索算法的自适应图像增强方法
CN107194892A (zh) * 2017-05-18 2017-09-22 哈尔滨理工大学 一种基于svr的图像增强方法
CN107274357B (zh) * 2017-05-23 2020-09-15 浙江大学 一种参数最优的灰度图像增强处理系统
CN107274356B (zh) * 2017-05-23 2020-07-21 浙江大学 一种自适应的灰度图像增强系统
CN111340741B (zh) * 2020-01-03 2023-05-09 中北大学 基于四元数与l1范数的粒子群优化灰度图像增强方法
US20240046836A1 (en) * 2020-12-11 2024-02-08 Beijing Boe Optoelectronics Technology Co., Ltd. Image processing methods and apparatuses, electronic devices and storage media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779330A (zh) * 2012-06-13 2012-11-14 京东方科技集团股份有限公司 图像增强方法、图像增强装置和显示装置
CN103593830A (zh) * 2013-11-29 2014-02-19 大连理工大学 一种低照度视频图像增强方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467604B2 (en) * 2007-09-03 2013-06-18 Entropic Communications, Inc. Color enhancement
KR101065719B1 (ko) * 2009-12-03 2011-09-19 인하대학교 산학협력단 적응적인 감마 적용에 의한 콘트라스트 개선 방법
CN102332154A (zh) * 2011-10-18 2012-01-25 中国农业大学 不均匀光照下的棉花伪异性纤维彩色图像增强方法及系统
CN102968769B (zh) * 2012-11-27 2015-07-22 宁波盈芯信息科技有限公司 一种图像一致性增强装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779330A (zh) * 2012-06-13 2012-11-14 京东方科技集团股份有限公司 图像增强方法、图像增强装置和显示装置
CN103593830A (zh) * 2013-11-29 2014-02-19 大连理工大学 一种低照度视频图像增强方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUN, YONGQIANG ET AL.: "Research on Image Enhancement Based on Particle Swarm Optimization", JOURNAL OF XUZHOU INSTITUTE OF TECHNOLOGY( NATURAL SCIENCE EDITION, vol. 24, no. 3, 30 September 2009 (2009-09-30), XP055250676 *
WEI, HAN ET AL.: "Adaptive Fuzzy Enhancement for Images by Genetic Algorithm", JOURNAL OF OPTOELECTRONICS . LASER, vol. 18, no. 12, 15 December 2007 (2007-12-15), XP055250677 *
ZHANG, CHANGJIANG ET AL.: "Adaptive Contrast Enhancement of Infrared Image Based on Simulated Annealing Algorithm", JOURNAL OF IMAGE AND GRAPHICS, vol. 9, no. 4, 25 April 2004 (2004-04-25) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109636745A (zh) * 2018-11-28 2019-04-16 陕西理工大学 基于分数阶微分图像增强算法的最佳阶图像增强方法
CN109636745B (zh) * 2018-11-28 2023-03-14 陕西理工大学 基于分数阶微分图像增强算法的最佳阶图像增强方法
CN111784588A (zh) * 2019-04-04 2020-10-16 长沙智能驾驶研究院有限公司 图像数据增强方法、装置、计算机设备和存储介质
CN110189266B (zh) * 2019-05-09 2023-01-03 湖北工业大学 一种自适应的快速图像增强方法
CN110189266A (zh) * 2019-05-09 2019-08-30 湖北工业大学 一种自适应的快速图像增强方法
CN110706172A (zh) * 2019-09-27 2020-01-17 郑州轻工业学院 基于自适应混沌粒子群优化的低照度彩色图像增强方法
CN110706172B (zh) * 2019-09-27 2023-03-24 郑州轻工业学院 基于自适应混沌粒子群优化的低照度彩色图像增强方法
CN111242878A (zh) * 2020-01-14 2020-06-05 郑州轻工业大学 基于布谷鸟搜索的矿井下图像增强方法
CN111242878B (zh) * 2020-01-14 2023-05-12 郑州轻工业大学 基于布谷鸟搜索的矿井下图像增强方法
CN112288652A (zh) * 2020-10-30 2021-01-29 西安科技大学 一种基于PSO寻优的引导滤波-Retinex低照度图像增强方法
CN112907472A (zh) * 2021-02-09 2021-06-04 大连海事大学 一种基于场景深度信息的偏振水下图像优化方法
CN112927168A (zh) * 2021-03-26 2021-06-08 江西理工大学 基于天牛须搜索与差分进化混合算法的图像增强方法
CN113870141A (zh) * 2021-10-08 2021-12-31 成都医学院 一种彩色眼底图像增强方法

Also Published As

Publication number Publication date
CN104091311A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2016000331A1 (fr) Procédé d'amélioration d'image, dispositif d'amélioration d'image et dispositif d'affichage
CN107527333B (zh) 一种基于伽马变换的快速图像增强方法
CN103971330B (zh) 图像增强方法及装置
CN107680056B (zh) 一种图像处理方法及装置
Gupta et al. Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework
WO2016206087A1 (fr) Procédé et dispositif de traitement d'images à faible éclairage
WO2013185449A1 (fr) Procédé d'amélioration d'image, dispositif d'amélioration d'image et dispositif d'affichage
CN110706172B (zh) 基于自适应混沌粒子群优化的低照度彩色图像增强方法
CN103714520A (zh) 基于fpga实现数字视频图像增强系统及其方法
CN107895350B (zh) 一种基于自适应双伽玛变换的hdr图像生成方法
TWI533661B (zh) 色域轉換系統之膚色最佳化方法與裝置
CN109274948B (zh) 图像色彩校正方法、装置、存储介质和计算机设备
WO2020000546A1 (fr) Procédé et appareil pour améliorer une couleur d'image
CN104166967A (zh) 提升视频图像清晰度的方法
CN102446347A (zh) 图像白平衡方法和装置
CN103886565A (zh) 基于目的性优化及直方图均衡化的夜间彩色图像增强方法
CN108024105A (zh) 图像色彩调节方法、装置、电子设备及存储介质
CN105809643A (zh) 一种基于自适应块通道拉伸的图像增强方法
CN109147005A (zh) 一种用于红外图像的自适应染色方法、系统、存储介质、终端
CN104392425B (zh) 一种基于人脸的自动调整对比度的图像增强方法
CN103839245B (zh) 基于统计规律的Retinex夜间彩色图像增强方法
CN105225205B (zh) 图像增强方法、装置及系统
CN107256539B (zh) 一种基于局部对比度的图像锐化方法
Gautam et al. Efficient color image contrast enhancement using range limited bi-histogram equalization with adaptive gamma correction
CN107358592B (zh) 一种迭代式全局自适应图像增强方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896851

Country of ref document: EP

Kind code of ref document: A1