WO2016000331A1 - Image enhancement method, image enhancement device and display device - Google Patents

Image enhancement method, image enhancement device and display device Download PDF

Info

Publication number
WO2016000331A1
WO2016000331A1 PCT/CN2014/087517 CN2014087517W WO2016000331A1 WO 2016000331 A1 WO2016000331 A1 WO 2016000331A1 CN 2014087517 W CN2014087517 W CN 2014087517W WO 2016000331 A1 WO2016000331 A1 WO 2016000331A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
function
transformation
parameter value
color space
Prior art date
Application number
PCT/CN2014/087517
Other languages
French (fr)
Chinese (zh)
Inventor
张晓�
于淑环
张丽杰
Original Assignee
京东方科技集团股份有限公司
北京京东方视讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方视讯科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2016000331A1 publication Critical patent/WO2016000331A1/en

Links

Images

Classifications

    • G06T5/92
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Definitions

  • the present disclosure relates to the field of image processing technologies, and in particular, to an image enhancement method, an image enhancement device, and a display device.
  • the image may be affected by factors such as the dynamic range of the imaging device and the intensity of the ambient light during the acquisition process, resulting in low contrast, inconspicuous image information, color distortion, target contour or boundary information clarity. Such phenomena, which make it difficult for human visual observation and machine analysis processing, need to enhance the image.
  • Image enhancement refers to a method of highlighting certain information of an image according to a specific need while weakening or removing certain unwanted information.
  • Image enhancement is the most basic means of image processing, and is often a pre-processing process for various image analysis and processing.
  • image enhancement usually performs gradation transformation on the luminance information of an image through a gradation transformation function, but the transformation parameters of the gradation transformation function are usually set by empirical values or subjective observations of the human eye, and thus there is a lack thereof. Universal technical issues.
  • the present disclosure provides an image enhancement method, an image enhancement apparatus, and a display apparatus, which realize adaptive enhancement of an image by automatically determining an optimal transformation parameter of a gradation transformation function.
  • an image enhancement method including:
  • the enhanced luminance information is converted from the second color space to the first color space to obtain a final enhanced image.
  • the step of determining an optimal transform parameter value of the gray-scale transform function for the image enhancement by using the optimization algorithm specifically includes:
  • the objective function is used to determine whether the current transformation parameter value is an optimal transformation parameter value, and the optimal transformation parameter value of the gradation transformation function is determined.
  • the optimization algorithm is a particle swarm optimization algorithm, and the objective function is:
  • Fitness is the current fitness value of the particle
  • M is the width of the image to be processed
  • N is the height of the image to be processed
  • f(x, y) is the brightness information of the pixel at the position (x, y).
  • the optimization algorithm is a genetic algorithm or a simulated annealing algorithm.
  • the gradation transformation function is a non-complete Beta function
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the range of variation of the integral variable t.
  • the step of determining an optimal transform parameter value for the gray-scale transform function of the image enhancement by using the optimization algorithm further comprises: normalizing the luminance information of the original image or the original image ;
  • the method further includes performing inverse normalization processing on the enhanced luminance information or the final enhanced image.
  • the present disclosure also provides an image enhancement apparatus, including:
  • a first image conversion unit configured to convert the original image from the first color space to a second color space containing the brightness information, and extract brightness information of the original image
  • a transformation parameter optimization unit configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the brightness information
  • An enhancement processing unit configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • the second image conversion unit is configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  • the transformation parameter optimization unit is specifically configured to establish an objective function, and use the objective function to determine whether the current transformation parameter value is an optimal transformation parameter value, and determine an optimal transformation of the gray transformation function. Parameter value.
  • the image enhancement device further includes:
  • a normalization processing unit configured to normalize brightness information of the original image or the original image
  • the inverse normalization processing unit is configured to perform inverse normalization processing on the enhanced luminance information or the final enhanced image.
  • the present disclosure also provides a display device including the above image enhancement device.
  • the optimal transformation parameter of the gradation transformation function can be automatically determined by the optimization algorithm, thereby realizing the adaptive enhancement of the image.
  • FIG. 1 is a schematic flow chart of an image enhancement method according to an embodiment of the present disclosure
  • FIG 2 is another schematic flowchart of an image enhancement method according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of an image enhancement apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of an image enhancement method according to an embodiment of the present disclosure, where the method includes:
  • Step S11 converting the original image from the first color space to the second color space containing the brightness information, and extracting brightness information of the original image;
  • the first color space is a red, green, blue (RGB) color space, or other color space.
  • RGB red, green, blue
  • the second color space is a hue, saturation, brightness (HIS) color space, a brightness, chrominance (YUV) color space, or other color space containing luminance information.
  • HIS hue, saturation, brightness
  • YUV chrominance
  • Step S12 determining, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement, for the luminance information;
  • the gradation transformation function may be a non-complete Beta function, and the formula of the incomplete Beta function is:
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the range of variation of the integral variable t.
  • the optimization algorithm may be a Particle Swarm Optimization (PSO), a genetic algorithm or a simulated annealing algorithm.
  • PSO Particle Swarm Optimization
  • Step S13 construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • Step S14 Convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  • the color space conversion is performed according to the enhanced luminance information and other information of the original image in the second color space.
  • the optimal transformation parameter of the gradation transformation function can be automatically determined by the optimization algorithm, thereby realizing adaptive enhancement of the image.
  • the image enhancement method of the present disclosure will be described below by taking the gradation transformation function as a non-complete Beta function and the optimization algorithm as an example of the particle swarm optimization algorithm.
  • FIG. 2 is another schematic flowchart of an image enhancement method according to an embodiment of the present disclosure, where the method includes:
  • Step S21 converting the original image from the RGB color space to the YUV color space containing the luminance component, and extracting luminance information of the original image;
  • the image collected by the collection device is described by RGB space for each pixel of the image. Therefore, in this embodiment, the first color space is an RGB color space, and the second color space is a YUV color space.
  • Step S22 Establish a grayscale transformation function for enhancing the image.
  • the image is nonlinearly transformed by using a non-complete Beta function.
  • the formula of the incomplete Beta function is:
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the range of variation of the integral variable t.
  • Step S23 Establish an objective function.
  • an objective function is used to determine whether the current transform parameter value is the optimal transform parameter value.
  • the objective function is:
  • Fitness is the current fitness value of the particle
  • M is the width of the image to be processed
  • N is the height of the image to be processed
  • f(x, y) is the brightness information of the pixel at the position (x, y);
  • Step S24 determining, by using a particle swarm optimization algorithm, an optimal transform parameter value of the incomplete Beta function for the brightness information
  • the step of determining the optimal transformation parameter value of the incomplete Beta function by using the particle swarm optimization algorithm specifically includes:
  • Step S241 setting the particle swarm optimization parameter: setting the particle population size to N1 in the D-dimensional space, the maximum number of iterations is N2, and the particle velocity ranges from [-v max , v max ], the particle The value range of the position is [p min , p max ].
  • D of the D-dimensional space is the number of solutions in the solution space.
  • the objective function Fitness has two solutions of ⁇ and ⁇ , so the value of D is 2.
  • the range of particle positions can be based on different scenarios.
  • the range of values of the transformation parameters ⁇ and ⁇ of the incomplete Beta function is set;
  • Step S243 (not shown): calculating the fitness value of each particle Determine the objective function
  • Step S244 for each particle, comparing its current fitness value with the fitness value of the historical optimal position of the particle to complete its individual optimal solution Update:
  • Step S245 updating the global optimal position Gbest n according to the fitness value of each particle:
  • Step S246 the speed of each particle according to the following two formulas And location Update
  • c 1 is a cognitive learning factor
  • c 2 is a social learning factor
  • c 1 , c 2 are usually set to a constant 2
  • r 1 and r 2 are random numbers, subject to a uniform distribution between [0, 1]
  • w is a non-negative number, and the value is generally between [0.1, 0.9], which controls the influence of the previous speed on the current speed.
  • the most commonly used is the inertia weight linear weight decrement strategy.
  • the exponential inertia weight nonlinear weight reduction strategy is adopted to achieve a better balance between the global search and the local search.
  • t is the current number of iterations
  • t max is the total number of iterations of the algorithm
  • a is the adjustment parameter, which is used to control the size of the inertia weight transformation.
  • Excessive value of a causes the inertia weight to drop too fast, and enters the local search too early, and the value of a is too small and does not bring about an increase in convergence speed.
  • the technique of the embodiment of the present disclosure selects a value of 15.
  • Step S247 (not shown): determining whether the iteration termination condition is satisfied; the termination condition is an objective function The value is the largest.
  • Step S25 construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • Step S26 Converting the YUV color space enhanced by the brightness information to the RGB color space to obtain a final enhanced image.
  • color space conversion is performed according to the enhanced luminance information and the chrominance information of the original image in the YUV color space to obtain a final enhanced image.
  • the original image or the luminance component image may be normalized to reduce the complexity of the algorithm.
  • the enhanced luminance information or the final enhanced image also needs to be inverse normalized.
  • the normalization process and the inverse normalization process can be implemented by those skilled in the art according to the techniques in the art, and details are not described herein again.
  • FIG. 3 is a structural block diagram of an image enhancement apparatus according to an embodiment of the present disclosure, where the image enhancement apparatus includes:
  • a first image conversion unit 301 configured to convert the original image from the first color space to include light a second color space of the degree information, and extracting brightness information of the original image
  • the transformation parameter optimization unit 302 is configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the luminance information;
  • the enhancement processing unit 303 is configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
  • the second image converting unit 304 is configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  • the gradation transformation function is a non-complete Beta function.
  • B( ⁇ , ⁇ ) is a Beta function
  • ⁇ , ⁇ is the transformation parameter of the incomplete Beta function
  • t is the integral variable of the incomplete Beta function
  • u is the upper limit of the variation range of the integral variable t
  • the optimization algorithm is a particle swarm optimization algorithm.
  • the transformation parameter optimization unit is specifically configured to establish an objective function.
  • the target function is used to determine whether the current transformation parameter value is Optimal transformation parameter value;
  • the objective function is:
  • Fitness is the current fitness value of the particle
  • M, N are the width and height of the image to be processed, respectively
  • f(x, y) is the brightness information of the pixel at the position (x, y).
  • the image enhancement apparatus may further include:
  • a normalization processing unit (not shown) for normalizing the luminance information of the original image or the original image
  • An anti-normalization processing unit (not shown) for using the enhanced luminance information or the final increase The strong image is denormalized.
  • Embodiments of the present disclosure also provide a display device including the image enhancement device as described above.
  • a display device including the image enhancement device as described above.
  • the display device may be any product or component having a display function such as a home appliance, a communication device, an engineering device, an electronic entertainment product, or the like.

Abstract

The present disclosure provides an image enhancement method, an image enhancement device and a display device. The image enhancement method comprises that: an original image is transferred from a first color space to a second color space containing brightness information, and the brightness information of the original image is extracted; for the brightness information, an optimum transformation parameter value of the grey level transformation function for image enhancement is determined through an optimum search algorithm; a transformation curve of the grey level transformation function is constructed according to the optimum transformation parameter value, the brightness information is processed for enhancement according to the transformation curve, and the enhanced brightness information is obtained; the enhanced brightness information is transferred from the second color space to the first color space, and a final enhanced image is obtained.

Description

一种图像增强方法、图像增强装置及显示装置Image enhancement method, image enhancement device and display device
相关申请的交叉参考Cross-reference to related applications
本申请主张在2014年06月30日在中国提交的中国专利申请号No.201410307041.5的优先权,其全部内容通过引用包含于此。The present application claims priority to Chinese Patent Application No. 201410307041.5, filed on Jun. 30, 2014, the entire content of
技术领域Technical field
本公开涉及图像处理技术领域,尤其涉及一种图像增强方法、图像增强装置及显示装置。The present disclosure relates to the field of image processing technologies, and in particular, to an image enhancement method, an image enhancement device, and a display device.
背景技术Background technique
图像在被获取的过程中有可能会受到成像设备动态范围大小、环境光线强弱等因素的影响,导致图像出现对比度较低、图像信息不明显、颜色失真、目标的轮廓或者边界信息清晰度不够等现象,从而给人类视觉观察和机器分析处理带来困难,因此需要对图像进行增强处理。The image may be affected by factors such as the dynamic range of the imaging device and the intensity of the ambient light during the acquisition process, resulting in low contrast, inconspicuous image information, color distortion, target contour or boundary information clarity. Such phenomena, which make it difficult for human visual observation and machine analysis processing, need to enhance the image.
图像增强是指按照特定的需要突出图像的某些信息,同时削弱或去除某些不需要的信息的处理方法。图像增强是图像处理的最基本手段,并且往往是各种图像分析与处理时的预处理过程。Image enhancement refers to a method of highlighting certain information of an image according to a specific need while weakening or removing certain unwanted information. Image enhancement is the most basic means of image processing, and is often a pre-processing process for various image analysis and processing.
具体地,图像增强通常是通过灰度变换函数对图像的亮度信息进行灰度变换,但是灰度变换函数的变换参数通常是通过经验值或者是人眼的主观观察去设定的,因此存在缺乏普适性的技术问题。Specifically, image enhancement usually performs gradation transformation on the luminance information of an image through a gradation transformation function, but the transformation parameters of the gradation transformation function are usually set by empirical values or subjective observations of the human eye, and thus there is a lack thereof. Universal technical issues.
发明内容Summary of the invention
有鉴于此,本公开提供一种图像增强方法、图像增强装置及显示装置,通过自动确定灰度变换函数的最优变换参数,来实现图像的自适应增强。In view of this, the present disclosure provides an image enhancement method, an image enhancement apparatus, and a display apparatus, which realize adaptive enhancement of an image by automatically determining an optimal transformation parameter of a gradation transformation function.
为解决上述技术问题,本公开提供一种图像增强方法,包括:To solve the above technical problem, the present disclosure provides an image enhancement method, including:
将原始图像从第一颜色空间转换到包含亮度信息的第二颜色空间,并提取所述原始图像的亮度信息;Converting an original image from a first color space to a second color space containing luminance information, and extracting luminance information of the original image;
针对所述亮度信息,采用寻优算法确定用于图像增强的灰度变换函数的 最佳变换参数值;For the brightness information, using a optimization algorithm to determine a gray-scale transformation function for image enhancement Optimal transformation parameter value;
根据所述最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;Constructing a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and performing enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
将增强后的亮度信息从第二颜色空间转换到第一颜色空间,得到最终的增强后的图像。The enhanced luminance information is converted from the second color space to the first color space to obtain a final enhanced image.
可选地,所述采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值的步骤具体包括:Optionally, the step of determining an optimal transform parameter value of the gray-scale transform function for the image enhancement by using the optimization algorithm specifically includes:
建立目标函数,Establish the objective function,
采用所述目标函数来判断当前的变换参数值是否为最佳变换参数值,确定所述灰度变换函数的最佳变换参数值。The objective function is used to determine whether the current transformation parameter value is an optimal transformation parameter value, and the optimal transformation parameter value of the gradation transformation function is determined.
可选地,所述寻优算法为粒子群优化算法,所述目标函数为:Optionally, the optimization algorithm is a particle swarm optimization algorithm, and the objective function is:
Figure PCTCN2014087517-appb-000001
Figure PCTCN2014087517-appb-000001
其中,Fitness为粒子的当前适应度值,M为待处理图像的宽,N为待处理图像的高,f(x,y)为位置为(x,y)的像素点的亮度信息。Where, Fitness is the current fitness value of the particle, M is the width of the image to be processed, N is the height of the image to be processed, and f(x, y) is the brightness information of the pixel at the position (x, y).
可选地,所述寻优算法为遗传算法或模拟退火算法。Optionally, the optimization algorithm is a genetic algorithm or a simulated annealing algorithm.
可选地,所述灰度变换函数为非完全Beta函数;Optionally, the gradation transformation function is a non-complete Beta function;
所述非完全Beta函数的公式为:The formula for the incomplete Beta function is:
Figure PCTCN2014087517-appb-000002
Figure PCTCN2014087517-appb-000002
其中,B(α,β)为Beta函数,
Figure PCTCN2014087517-appb-000003
α,β为非完全Beta函数的变换参数,t为非完全Beta函数的积分变量,u为积分变量t的变化范围上限。
Where B(α, β) is a Beta function,
Figure PCTCN2014087517-appb-000003
α, β is the transformation parameter of the incomplete Beta function, t is the integral variable of the incomplete Beta function, and u is the upper limit of the range of variation of the integral variable t.
可选地,所述采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值的步骤之前还包括:对所述原始图像或所述原始图像的亮度信息进行归一化处理;Optionally, the step of determining an optimal transform parameter value for the gray-scale transform function of the image enhancement by using the optimization algorithm further comprises: normalizing the luminance information of the original image or the original image ;
所述方法还包括:将所述增强后的亮度信息或最终的增强后的图像进行反归一化处理。 The method further includes performing inverse normalization processing on the enhanced luminance information or the final enhanced image.
本公开还提供一种图像增强装置,包括:The present disclosure also provides an image enhancement apparatus, including:
第一图像转换单元,用于将原始图像从第一颜色空间转换到包含亮度信息的第二颜色空间,并提取所述原始图像的亮度信息;a first image conversion unit, configured to convert the original image from the first color space to a second color space containing the brightness information, and extract brightness information of the original image;
变换参数寻优单元,用于针对所述亮度信息,采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值;a transformation parameter optimization unit, configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the brightness information;
增强处理单元,用于根据所述的最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;An enhancement processing unit, configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
第二图像转换单元,用于将增强后的亮度信息从第二颜色空间转换到第一颜色空间,得到最终的增强后的图像。The second image conversion unit is configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
可选地,所述变换参数寻优单元,具体用于建立目标函数,采用所述目标函数来判断当前的变换参数值是否为最佳变换参数值,确定所述灰度变换函数的最佳变换参数值。Optionally, the transformation parameter optimization unit is specifically configured to establish an objective function, and use the objective function to determine whether the current transformation parameter value is an optimal transformation parameter value, and determine an optimal transformation of the gray transformation function. Parameter value.
可选地,所述图像增强装置还包括:Optionally, the image enhancement device further includes:
归一化处理单元,用于对所述原始图像或所述原始图像的亮度信息进行归一化处理;a normalization processing unit, configured to normalize brightness information of the original image or the original image;
反归一化处理单元,用于将所述增强后的亮度信息或最终的增强后的图像进行反归一化处理。The inverse normalization processing unit is configured to perform inverse normalization processing on the enhanced luminance information or the final enhanced image.
本公开还提供一种显示装置,包括上述图像增强装置。The present disclosure also provides a display device including the above image enhancement device.
本公开的上述技术方案的有益效果如下:The beneficial effects of the above technical solutions of the present disclosure are as follows:
通过灰度变换函数对图像进行增强处理时,能够通过寻优算法自动确定灰度变换函数的最优变换参数,从而实现图像的自适应增强。When the image is enhanced by the gradation transformation function, the optimal transformation parameter of the gradation transformation function can be automatically determined by the optimization algorithm, thereby realizing the adaptive enhancement of the image.
附图说明DRAWINGS
图1为本公开实施例的图像增强方法的一流程示意图;1 is a schematic flow chart of an image enhancement method according to an embodiment of the present disclosure;
图2为本公开实施例的图像增强方法的另一流程示意图;2 is another schematic flowchart of an image enhancement method according to an embodiment of the present disclosure;
图3为本公开实施例的图像增强装置的结构框图。FIG. 3 is a structural block diagram of an image enhancement apparatus according to an embodiment of the present disclosure.
具体实施方式 detailed description
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。The technical problems, the technical solutions, and the advantages of the present invention will be more clearly described in conjunction with the accompanying drawings and specific embodiments.
请参考图1,图1为本公开实施例的图像增强方法的一流程示意图,所述方法包括:Please refer to FIG. 1. FIG. 1 is a schematic flowchart of an image enhancement method according to an embodiment of the present disclosure, where the method includes:
步骤S11:将原始图像从第一颜色空间转换到包含亮度信息的第二颜色空间,并提取所述原始图像的亮度信息;Step S11: converting the original image from the first color space to the second color space containing the brightness information, and extracting brightness information of the original image;
其中,所述第一颜色空间为红色、绿色、蓝色(RGB)颜色空间,或者为其他颜色空间。The first color space is a red, green, blue (RGB) color space, or other color space.
所述第二颜色空间为色调、饱和度、亮度(HIS)颜色空间,亮度、色度(YUV)颜色空间,或者包含亮度信息的其他颜色空间。The second color space is a hue, saturation, brightness (HIS) color space, a brightness, chrominance (YUV) color space, or other color space containing luminance information.
步骤S12:针对所述亮度信息,采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值;Step S12: determining, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement, for the luminance information;
本公开实施例中,所述灰度变换函数可以为非完全Beta函数,所述非完全Beta函数的公式为:In the embodiment of the present disclosure, the gradation transformation function may be a non-complete Beta function, and the formula of the incomplete Beta function is:
Figure PCTCN2014087517-appb-000004
Figure PCTCN2014087517-appb-000004
其中,B(α,β)为Beta函数,
Figure PCTCN2014087517-appb-000005
α,β为非完全Beta函数的变换参数,t为非完全Beta函数的积分变量,u为积分变量t的变化范围上限。
Where B(α, β) is a Beta function,
Figure PCTCN2014087517-appb-000005
α, β is the transformation parameter of the incomplete Beta function, t is the integral variable of the incomplete Beta function, and u is the upper limit of the range of variation of the integral variable t.
所述寻优算法可以为粒子群优化算法(Particle Swarm Optimization,PSO)、遗传算法或模拟退火算法等。The optimization algorithm may be a Particle Swarm Optimization (PSO), a genetic algorithm or a simulated annealing algorithm.
步骤S13:根据所述的最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;Step S13: construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
步骤S14:将增强后的亮度信息从第二颜色空间转换到第一颜色空间,得到最终的增强后的图像。Step S14: Convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
具体地,根据增强后的亮度信息及所述原始图像在第二颜色空间中的其他信息,进行颜色空间转换。 Specifically, the color space conversion is performed according to the enhanced luminance information and other information of the original image in the second color space.
基于上述实施例提供的方法,通过灰度变换函数对图像进行增强处理时,能够通过寻优算法自动确定灰度变换函数的最优变换参数,从而实现图像的自适应增强。Based on the method provided by the above embodiment, when the image is enhanced by the gradation transformation function, the optimal transformation parameter of the gradation transformation function can be automatically determined by the optimization algorithm, thereby realizing adaptive enhancement of the image.
下面以灰度变换函数为非完全Beta函数,寻优算法为粒子群优化算法为例,对本公开的图像增强方法进行说明。The image enhancement method of the present disclosure will be described below by taking the gradation transformation function as a non-complete Beta function and the optimization algorithm as an example of the particle swarm optimization algorithm.
请参考图2,图2为本公开实施例的图像增强方法的另一流程示意图,所述方法包括:Please refer to FIG. 2. FIG. 2 is another schematic flowchart of an image enhancement method according to an embodiment of the present disclosure, where the method includes:
步骤S21:将原始图像从RGB颜色空间转换到包含亮度分量的YUV颜色空间,并提取所述原始图像的亮度信息;Step S21: converting the original image from the RGB color space to the YUV color space containing the luminance component, and extracting luminance information of the original image;
具体地,通常采集设备采集到的图像是通过RGB空间对图像的各像素点进行描述的,因而,本实施例中,第一颜色空间为RGB颜色空间,而第二颜色空间为YUV颜色空间。Specifically, the image collected by the collection device is described by RGB space for each pixel of the image. Therefore, in this embodiment, the first color space is an RGB color space, and the second color space is a YUV color space.
步骤S22:建立对图像进行增强的灰度变换函数,本实施例中采用非完全Beta函数对图像进行非线性变换增强,非完全Beta函数的公式为:Step S22: Establish a grayscale transformation function for enhancing the image. In this embodiment, the image is nonlinearly transformed by using a non-complete Beta function. The formula of the incomplete Beta function is:
Figure PCTCN2014087517-appb-000006
Figure PCTCN2014087517-appb-000006
其中,B(α,β)为Beta函数,
Figure PCTCN2014087517-appb-000007
α,β为非完全Beta函数的变换参数,t为非完全Beta函数的积分变量,u为积分变量t的变化范围上限。
Where B(α, β) is a Beta function,
Figure PCTCN2014087517-appb-000007
α, β is the transformation parameter of the incomplete Beta function, t is the integral variable of the incomplete Beta function, and u is the upper limit of the range of variation of the integral variable t.
步骤S23:建立目标函数,采用粒子群优化算法确定非完全Beta函数的最佳变换参数值时,采用一目标函数来判断当前的变换参数值是否为最佳变换参数值。Step S23: Establish an objective function. When the particle swarm optimization algorithm is used to determine the optimal transform parameter value of the incomplete Beta function, an objective function is used to determine whether the current transform parameter value is the optimal transform parameter value.
所述目标函数为:The objective function is:
Figure PCTCN2014087517-appb-000008
Figure PCTCN2014087517-appb-000008
其中,Fitness为粒子的当前适应度值,M为待处理图像的宽,N分别为待处理图像的高,f(x,y)为位置为(x,y)的像素点的亮度信息;Where, Fitness is the current fitness value of the particle, M is the width of the image to be processed, N is the height of the image to be processed, and f(x, y) is the brightness information of the pixel at the position (x, y);
步骤S24:针对所述亮度信息,采用粒子群优化算法确定非完全Beta函数的最佳变换参数值; Step S24: determining, by using a particle swarm optimization algorithm, an optimal transform parameter value of the incomplete Beta function for the brightness information;
其中,采用粒子群优化算法确定非完全Beta函数的最佳变换参数值的步骤具体包括:The step of determining the optimal transformation parameter value of the incomplete Beta function by using the particle swarm optimization algorithm specifically includes:
步骤S241(未示出):设定粒子群优化参数:在D维空间设定粒子种群规模为N1,最大迭代次数为N2,粒子速度的取值范围为[-vmax,vmax],粒子位置的取值范围为[pmin,pmax]。Step S241 (not shown): setting the particle swarm optimization parameter: setting the particle population size to N1 in the D-dimensional space, the maximum number of iterations is N2, and the particle velocity ranges from [-v max , v max ], the particle The value range of the position is [p min , p max ].
本实施例中,D维空间的D是解空间中解的个数。在本实施例中目标函数Fitness有α,β这两个解,因此D的取值为2。设定粒子种群规模N1为30,最大迭代次数N2为100,粒子速度的取值范围[-vmax,vmax]设为[-1,1],粒子位置的取值范围可依据不同场景的非完全Beta函数的变换参数α和β值的取值范围来设定;In this embodiment, D of the D-dimensional space is the number of solutions in the solution space. In the present embodiment, the objective function Fitness has two solutions of α and β, so the value of D is 2. Set the particle population size N1 to 30, the maximum number of iterations N2 to 100, and the range of particle velocity [-v max , v max ] to [-1, 1]. The range of particle positions can be based on different scenarios. The range of values of the transformation parameters α and β of the incomplete Beta function is set;
步骤S242(未示出):初始化:当迭代次数n2=0时,在解空间中对粒子群中的每个粒子随机设置其初始速度
Figure PCTCN2014087517-appb-000009
和初始位置
Figure PCTCN2014087517-appb-000010
对全局最优位置Gbest进行初始化;
Step S242 (not shown): Initialization: When the number of iterations n2=0, the initial velocity of each particle in the particle group is randomly set in the solution space.
Figure PCTCN2014087517-appb-000009
And initial position
Figure PCTCN2014087517-appb-000010
Initializing the global optimal position Gbest;
步骤S243(未示出):计算每个粒子的适应度值
Figure PCTCN2014087517-appb-000011
即确定目标函数
Figure PCTCN2014087517-appb-000012
Step S243 (not shown): calculating the fitness value of each particle
Figure PCTCN2014087517-appb-000011
Determine the objective function
Figure PCTCN2014087517-appb-000012
步骤S244(未示出):对于每个粒子,将其当前的适应度值与该粒子的历史最优位置的适应度值进行比较,完成其个体最优解
Figure PCTCN2014087517-appb-000013
的更新:
Step S244 (not shown): for each particle, comparing its current fitness value with the fitness value of the historical optimal position of the particle to complete its individual optimal solution
Figure PCTCN2014087517-appb-000013
Update:
Figure PCTCN2014087517-appb-000014
Figure PCTCN2014087517-appb-000014
步骤S245(未示出):根据各个粒子的适应度值更新全局最优位置GbestnStep S245 (not shown): updating the global optimal position Gbest n according to the fitness value of each particle:
Figure PCTCN2014087517-appb-000015
Figure PCTCN2014087517-appb-000015
步骤S246(未示出):根据以下两个公式对每个粒子的速度
Figure PCTCN2014087517-appb-000016
和位置
Figure PCTCN2014087517-appb-000017
进行更新;
Step S246 (not shown): the speed of each particle according to the following two formulas
Figure PCTCN2014087517-appb-000016
And location
Figure PCTCN2014087517-appb-000017
Update;
Figure PCTCN2014087517-appb-000018
Figure PCTCN2014087517-appb-000018
Figure PCTCN2014087517-appb-000019
Figure PCTCN2014087517-appb-000019
其中,c1为认知学习因子,c2为社会学习因子,c1,c2的值通常设置为常数2;r1、r2为随机数,服从[0,1]之间的均匀分布。w为非负数,取值一般 在[0.1,0.9]之间,控制着前一速度对当前速度的影响,其中基本PSO算法可以看作是w=1的特殊情况。最常用的是惯性权重线性权值递减策略,本实施例中采用指数型的惯性权重非线性权值递减的策略,使全局搜索和局部搜索之间取得更好的平衡。Where c 1 is a cognitive learning factor, c 2 is a social learning factor, c 1 , c 2 are usually set to a constant 2; r 1 and r 2 are random numbers, subject to a uniform distribution between [0, 1] . w is a non-negative number, and the value is generally between [0.1, 0.9], which controls the influence of the previous speed on the current speed. The basic PSO algorithm can be regarded as a special case of w=1. The most commonly used is the inertia weight linear weight decrement strategy. In this embodiment, the exponential inertia weight nonlinear weight reduction strategy is adopted to achieve a better balance between the global search and the local search.
Figure PCTCN2014087517-appb-000020
Figure PCTCN2014087517-appb-000020
通常取值wini=0.9,wend=0.4;t为当前迭代次数,tmax为算法的总迭代次数,a为调节参数,用来控制惯性权重变换的大小。a的值过大会造成惯性权重下降的过快,过早的进入局部搜索,而a的值过小并没有带来收敛速度的提高,本公开实施例的技术选取a的值为15。Usually, the value w ini = 0.9, w end = 0.4; t is the current number of iterations, t max is the total number of iterations of the algorithm, and a is the adjustment parameter, which is used to control the size of the inertia weight transformation. Excessive value of a causes the inertia weight to drop too fast, and enters the local search too early, and the value of a is too small and does not bring about an increase in convergence speed. The technique of the embodiment of the present disclosure selects a value of 15.
步骤S247(未示出):判断是否满足迭代终止条件;该终止条件为目标函数
Figure PCTCN2014087517-appb-000021
的取值最大。
Step S247 (not shown): determining whether the iteration termination condition is satisfied; the termination condition is an objective function
Figure PCTCN2014087517-appb-000021
The value is the largest.
步骤S248(未示出):如果不满足迭代终止条件,迭代次数为n2=n2+1,转到步骤S243,直到满足终止条件迭代结束,得到非完全Beta函数的最佳变换参数值。Step S248 (not shown): If the iteration termination condition is not satisfied, the number of iterations is n2=n2+1, and the process goes to step S243 until the end of the termination condition iteration is completed, and the optimal transformation parameter value of the incomplete Beta function is obtained.
步骤S25:根据所述的最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;Step S25: construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
步骤S26:将亮度信息增强后的YUV颜色空间转换到RGB颜色空间,得到最终的增强后的图像。Step S26: Converting the YUV color space enhanced by the brightness information to the RGB color space to obtain a final enhanced image.
具体地,根据增强后的亮度信息及原始图像在YUV颜色空间的色度信息,进行颜色空间转换,得到最终的增强后的图像。Specifically, color space conversion is performed according to the enhanced luminance information and the chrominance information of the original image in the YUV color space to obtain a final enhanced image.
以上实施例中,在采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值之前,可以先将原始图像或亮度分量图像进行归一化处理,以降低算法的复杂度。当然,将图像进行增强处理之后,还需要将所述增强后的亮度信息或最终的增强后的图像进行反归一化处理。本领域技术人员可以根据本领域的技术来实现所述归一化处理和反归一化处理,在此不再赘述。In the above embodiment, before the optimal transformation parameter value of the gradation transformation function for image enhancement is determined by using the optimization algorithm, the original image or the luminance component image may be normalized to reduce the complexity of the algorithm. Of course, after the image is subjected to enhancement processing, the enhanced luminance information or the final enhanced image also needs to be inverse normalized. The normalization process and the inverse normalization process can be implemented by those skilled in the art according to the techniques in the art, and details are not described herein again.
请参考图3,图3为本公开实施例的图像增强装置的结构框图,所述图像增强装置包括:Please refer to FIG. 3. FIG. 3 is a structural block diagram of an image enhancement apparatus according to an embodiment of the present disclosure, where the image enhancement apparatus includes:
第一图像转换单元301,用于将原始图像从第一颜色空间转换到包含亮 度信息的第二颜色空间,并提取所述原始图像的亮度信息;a first image conversion unit 301, configured to convert the original image from the first color space to include light a second color space of the degree information, and extracting brightness information of the original image;
变换参数寻优单元302,用于针对所述亮度信息,采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值;The transformation parameter optimization unit 302 is configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the luminance information;
增强处理单元303,用于根据所述的最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;The enhancement processing unit 303 is configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
第二图像转换单元304,用于将增强后的亮度信息从第二颜色空间转换到第一颜色空间,得到最终的增强后的图像。The second image converting unit 304 is configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
可选地,所述灰度变换函数为非完全Beta函数。Optionally, the gradation transformation function is a non-complete Beta function.
所述非完全Beta函数的公式为:The formula for the incomplete Beta function is:
Figure PCTCN2014087517-appb-000022
Figure PCTCN2014087517-appb-000022
其中,B(α,β)为Beta函数,
Figure PCTCN2014087517-appb-000023
α,β为非完全Beta函数的变换参数,t为非完全Beta函数的积分变量,u为积分变量t的变化范围上限;
Where B(α, β) is a Beta function,
Figure PCTCN2014087517-appb-000023
α, β is the transformation parameter of the incomplete Beta function, t is the integral variable of the incomplete Beta function, and u is the upper limit of the variation range of the integral variable t;
可选地,所述寻优算法为粒子群优化算法。Optionally, the optimization algorithm is a particle swarm optimization algorithm.
所述变换参数寻优单元,具体用于建立目标函数,采用所述寻优算法确定所述灰度变换函数的最佳变换参数值时,采用所述目标函数来判断当前的变换参数值是否为最佳变换参数值;The transformation parameter optimization unit is specifically configured to establish an objective function. When the optimal transformation parameter value of the gradation transformation function is determined by using the optimization algorithm, the target function is used to determine whether the current transformation parameter value is Optimal transformation parameter value;
所述目标函数为:The objective function is:
Figure PCTCN2014087517-appb-000024
Figure PCTCN2014087517-appb-000024
其中,Fitness为粒子的当前适应度值,M,N分别为待处理图像的宽和高,f(x,y)为位置为(x,y)的像素点的亮度信息。Where, Fitness is the current fitness value of the particle, M, N are the width and height of the image to be processed, respectively, and f(x, y) is the brightness information of the pixel at the position (x, y).
可选地,所述图像增强装置还可以包括:Optionally, the image enhancement apparatus may further include:
归一化处理单元(未示出),用于对所述原始图像或所述原始图像的亮度信息进行归一化处理;a normalization processing unit (not shown) for normalizing the luminance information of the original image or the original image;
反归一化处理单元(未示出),用于将所述增强后的亮度信息或最终的增 强后的图像进行反归一化处理。An anti-normalization processing unit (not shown) for using the enhanced luminance information or the final increase The strong image is denormalized.
本公开实施例还提供一种显示装置,包括如上所述的图像增强装置。其中,所述显示装置所包括的图像增强装置的结构以及工作原理请参见上述实施例,在此不再赘述。另外,显示装置的其他部分的结构可以参考现有技术,对此本文不再详细描述。该显示装置可以为:家用电器、通信设备、工程设备、电子娱乐产品等任何具有显示功能的产品或部件。Embodiments of the present disclosure also provide a display device including the image enhancement device as described above. For the structure and working principle of the image enhancement device included in the display device, refer to the foregoing embodiment, and details are not described herein again. In addition, the structure of other parts of the display device can refer to the prior art, and will not be described in detail herein. The display device may be any product or component having a display function such as a home appliance, a communication device, an engineering device, an electronic entertainment product, or the like.
以上所述是本公开的可选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本公开的原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。 The above is an alternative embodiment of the present disclosure, and it should be noted that those skilled in the art can also make several improvements and refinements without departing from the principles of the present disclosure. It should be considered as the scope of protection of this disclosure.

Claims (10)

  1. 一种图像增强方法,其中,包括:An image enhancement method, comprising:
    将原始图像从第一颜色空间转换到包含亮度信息的第二颜色空间,并提取所述原始图像的亮度信息;Converting an original image from a first color space to a second color space containing luminance information, and extracting luminance information of the original image;
    针对所述亮度信息,采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值;Determining, by the optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement;
    根据所述最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;Constructing a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and performing enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
    将所述增强后的亮度信息从第二颜色空间转换到第一颜色空间,得到最终的增强后的图像。Converting the enhanced luminance information from the second color space to the first color space to obtain a final enhanced image.
  2. 根据权利要求1所述的图像增强方法,其中,所述采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值的步骤具体包括:The image enhancement method according to claim 1, wherein the step of determining an optimal transformation parameter value of the gradation transformation function for the image enhancement using the optimization algorithm comprises:
    建立目标函数;Establish an objective function;
    采用所述目标函数来判断当前的变换参数值是否为最佳变换参数值,确定所述灰度变换函数的最佳变换参数值。The objective function is used to determine whether the current transformation parameter value is an optimal transformation parameter value, and the optimal transformation parameter value of the gradation transformation function is determined.
  3. 根据权利要求2所述的图像增强方法,其中,所述寻优算法为粒子群优化算法,所述目标函数为:The image enhancement method according to claim 2, wherein the optimization algorithm is a particle swarm optimization algorithm, and the objective function is:
    Figure PCTCN2014087517-appb-100001
    Figure PCTCN2014087517-appb-100001
    其中,Fitness为粒子的当前适应度值,M为待处理图像的宽,N为待处理图像的高,f(x,y)为位置为(x,y)的像素点的亮度信息。Where, Fitness is the current fitness value of the particle, M is the width of the image to be processed, N is the height of the image to be processed, and f(x, y) is the brightness information of the pixel at the position (x, y).
  4. 根据权利要求1或2所述的图像增强方法,其中,所述寻优算法为遗传算法或模拟退火算法。The image enhancement method according to claim 1 or 2, wherein the optimization algorithm is a genetic algorithm or a simulated annealing algorithm.
  5. 根据权利要求1或2所述的图像增强方法,其中,所述灰度变换函数为非完全Beta函数;The image enhancement method according to claim 1 or 2, wherein the gradation transformation function is a non-complete Beta function;
    所述非完全Beta函数的公式为:The formula for the incomplete Beta function is:
    Figure PCTCN2014087517-appb-100002
    Figure PCTCN2014087517-appb-100002
    其中,B(α,β)为Beta函数,
    Figure PCTCN2014087517-appb-100003
    α,β为非完全Beta函数的变换参数,t为非完全Beta函数的积分变量,u为积分变量t的变化范围上限。
    Where B(α, β) is a Beta function,
    Figure PCTCN2014087517-appb-100003
    α, β is the transformation parameter of the incomplete Beta function, t is the integral variable of the incomplete Beta function, and u is the upper limit of the range of variation of the integral variable t.
  6. 根据权利要求1所述的图像增强方法,其中,The image enhancement method according to claim 1, wherein
    所述采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值的步骤之前还包括:对所述原始图像或所述原始图像的亮度信息进行归一化处理;The step of determining an optimal transform parameter value for the gray-scale transform function of the image enhancement by using the optimization algorithm further includes: normalizing the luminance information of the original image or the original image;
    所述方法还包括:将所述增强后的亮度信息或所述最终的增强后的图像进行反归一化处理。The method further includes performing inverse normalization processing on the enhanced luminance information or the final enhanced image.
  7. 一种图像增强装置,其中,包括:An image enhancement device, comprising:
    第一图像转换单元,用于将原始图像从第一颜色空间转换到包含亮度信息的第二颜色空间,并提取所述原始图像的亮度信息;a first image conversion unit, configured to convert the original image from the first color space to a second color space containing the brightness information, and extract brightness information of the original image;
    变换参数寻优单元,用于针对所述亮度信息,采用寻优算法确定用于图像增强的灰度变换函数的最佳变换参数值;a transformation parameter optimization unit, configured to determine, by using a optimization algorithm, an optimal transformation parameter value of the gradation transformation function for image enhancement for the brightness information;
    增强处理单元,用于根据所述的最佳变换参数值,构造所述灰度变换函数的变换曲线,并根据所述变换曲线对所述亮度信息进行增强处理,得到增强后的亮度信息;An enhancement processing unit, configured to construct a transformation curve of the gradation transformation function according to the optimal transformation parameter value, and perform enhancement processing on the luminance information according to the transformation curve to obtain enhanced luminance information;
    第二图像转换单元,用于将所述增强后的亮度信息从第二颜色空间转换到第一颜色空间,得到最终的增强后的图像。And a second image conversion unit, configured to convert the enhanced brightness information from the second color space to the first color space to obtain a final enhanced image.
  8. 根据权利要求7所述的图像增强装置,其中,The image enhancement device according to claim 7, wherein
    所述变换参数寻优单元,具体用于建立目标函数,采用所述目标函数来判断当前的变换参数值是否为最佳变换参数值,确定所述灰度变换函数的最佳变换参数值。The transformation parameter optimization unit is specifically configured to establish an objective function, and use the objective function to determine whether the current transformation parameter value is an optimal transformation parameter value, and determine an optimal transformation parameter value of the gradation transformation function.
  9. 根据权利要求7所述的图像增强装置,其中,还包括:The image enhancement device of claim 7, further comprising:
    归一化处理单元,用于对所述原始图像或所述原始图像的亮度信息进行归一化处理;a normalization processing unit, configured to normalize brightness information of the original image or the original image;
    反归一化处理单元,用于将所述增强后的亮度信息或最终的增强后的图像进行反归一化处理。 The inverse normalization processing unit is configured to perform inverse normalization processing on the enhanced luminance information or the final enhanced image.
  10. 一种显示装置,其中,包括如权利要求7-9所述的图像增强装置。 A display device comprising the image enhancement device of claims 7-9.
PCT/CN2014/087517 2014-06-30 2014-09-26 Image enhancement method, image enhancement device and display device WO2016000331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410307041.5A CN104091311A (en) 2014-06-30 2014-06-30 Image enhancement method, image enhancement device and display device
CN201410307041.5 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016000331A1 true WO2016000331A1 (en) 2016-01-07

Family

ID=51639026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087517 WO2016000331A1 (en) 2014-06-30 2014-09-26 Image enhancement method, image enhancement device and display device

Country Status (2)

Country Link
CN (1) CN104091311A (en)
WO (1) WO2016000331A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109636745A (en) * 2018-11-28 2019-04-16 陕西理工大学 Best rank image enchancing method based on fractional order differential algorithm for image enhancement
CN110189266A (en) * 2019-05-09 2019-08-30 湖北工业大学 A kind of adaptive rapid image Enhancement Method
CN110706172A (en) * 2019-09-27 2020-01-17 郑州轻工业学院 Low-illumination color image enhancement method based on adaptive chaotic particle swarm optimization
CN111242878A (en) * 2020-01-14 2020-06-05 郑州轻工业大学 Mine underground image enhancement method based on cuckoo search
CN111784588A (en) * 2019-04-04 2020-10-16 长沙智能驾驶研究院有限公司 Image data enhancement method and device, computer equipment and storage medium
CN112288652A (en) * 2020-10-30 2021-01-29 西安科技大学 PSO optimization-based guide filtering-Retinex low-illumination image enhancement method
CN112907472A (en) * 2021-02-09 2021-06-04 大连海事大学 Polarization underwater image optimization method based on scene depth information
CN112927168A (en) * 2021-03-26 2021-06-08 江西理工大学 Image enhancement method based on longicorn stigma search and differential evolution hybrid algorithm
CN113870141A (en) * 2021-10-08 2021-12-31 成都医学院 Color fundus image enhancement method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376543B (en) * 2014-11-28 2017-02-22 湖北工业大学 Method for adaptively enhancing images on basis of cuckoo search algorithm
CN107194892A (en) * 2017-05-18 2017-09-22 哈尔滨理工大学 A kind of image enchancing method based on SVR
CN107274356B (en) * 2017-05-23 2020-07-21 浙江大学 Self-adaptive gray level image enhancement system
CN107274357B (en) * 2017-05-23 2020-09-15 浙江大学 Gray level image enhancement processing system with optimal parameters
CN111340741B (en) * 2020-01-03 2023-05-09 中北大学 Particle swarm optimization gray image enhancement method based on quaternion and L1 norm
CN114930381A (en) * 2020-12-11 2022-08-19 京东方科技集团股份有限公司 Image processing method, image processing device, electronic equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779330A (en) * 2012-06-13 2012-11-14 京东方科技集团股份有限公司 Image reinforcement method, image reinforcement device and display device
CN103593830A (en) * 2013-11-29 2014-02-19 大连理工大学 Low-light video image reinforcing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2201782A1 (en) * 2007-09-03 2010-06-30 Nxp B.V. Color enhancement
KR101065719B1 (en) * 2009-12-03 2011-09-19 인하대학교 산학협력단 Method for enhancing contrast based on adaptive gamma
CN102332154A (en) * 2011-10-18 2012-01-25 中国农业大学 Method and system for enhancing color images of cotton pseudo foreign fibers under non-uniform illumination
CN102968769B (en) * 2012-11-27 2015-07-22 宁波盈芯信息科技有限公司 Image consistency enhancing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779330A (en) * 2012-06-13 2012-11-14 京东方科技集团股份有限公司 Image reinforcement method, image reinforcement device and display device
CN103593830A (en) * 2013-11-29 2014-02-19 大连理工大学 Low-light video image reinforcing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUN, YONGQIANG ET AL.: "Research on Image Enhancement Based on Particle Swarm Optimization", JOURNAL OF XUZHOU INSTITUTE OF TECHNOLOGY( NATURAL SCIENCE EDITION, vol. 24, no. 3, 30 September 2009 (2009-09-30), XP055250676 *
WEI, HAN ET AL.: "Adaptive Fuzzy Enhancement for Images by Genetic Algorithm", JOURNAL OF OPTOELECTRONICS . LASER, vol. 18, no. 12, 15 December 2007 (2007-12-15), XP055250677 *
ZHANG, CHANGJIANG ET AL.: "Adaptive Contrast Enhancement of Infrared Image Based on Simulated Annealing Algorithm", JOURNAL OF IMAGE AND GRAPHICS, vol. 9, no. 4, 25 April 2004 (2004-04-25) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109636745A (en) * 2018-11-28 2019-04-16 陕西理工大学 Best rank image enchancing method based on fractional order differential algorithm for image enhancement
CN109636745B (en) * 2018-11-28 2023-03-14 陕西理工大学 Optimal order image enhancement method based on fractional order differential image enhancement algorithm
CN111784588A (en) * 2019-04-04 2020-10-16 长沙智能驾驶研究院有限公司 Image data enhancement method and device, computer equipment and storage medium
CN110189266B (en) * 2019-05-09 2023-01-03 湖北工业大学 Self-adaptive rapid image enhancement method
CN110189266A (en) * 2019-05-09 2019-08-30 湖北工业大学 A kind of adaptive rapid image Enhancement Method
CN110706172A (en) * 2019-09-27 2020-01-17 郑州轻工业学院 Low-illumination color image enhancement method based on adaptive chaotic particle swarm optimization
CN110706172B (en) * 2019-09-27 2023-03-24 郑州轻工业学院 Low-illumination color image enhancement method based on adaptive chaotic particle swarm optimization
CN111242878A (en) * 2020-01-14 2020-06-05 郑州轻工业大学 Mine underground image enhancement method based on cuckoo search
CN111242878B (en) * 2020-01-14 2023-05-12 郑州轻工业大学 Mine image enhancement method based on cuckoo search
CN112288652A (en) * 2020-10-30 2021-01-29 西安科技大学 PSO optimization-based guide filtering-Retinex low-illumination image enhancement method
CN112907472A (en) * 2021-02-09 2021-06-04 大连海事大学 Polarization underwater image optimization method based on scene depth information
CN112927168A (en) * 2021-03-26 2021-06-08 江西理工大学 Image enhancement method based on longicorn stigma search and differential evolution hybrid algorithm
CN113870141A (en) * 2021-10-08 2021-12-31 成都医学院 Color fundus image enhancement method

Also Published As

Publication number Publication date
CN104091311A (en) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2016000331A1 (en) Image enhancement method, image enhancement device and display device
CN107527333B (en) Quick image enhancement method based on gamma transformation
CN103971330B (en) Image enchancing method and device
Gupta et al. Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework
CN107680056B (en) Image processing method and device
WO2016206087A1 (en) Low-illumination image processing method and device
WO2013185449A1 (en) Image enhancement method, image enhancement device and display device
CN110706172B (en) Low-illumination color image enhancement method based on adaptive chaotic particle swarm optimization
CN103714520A (en) Digital video image enhancement achieving system and method based on FPGA
CN107895350B (en) HDR image generation method based on self-adaptive double gamma transformation
CN109274948B (en) Image color correction method, device, storage medium and computer equipment
WO2020000546A1 (en) Method and apparatus for enhancing image color
CN104166967A (en) Method for improving definition of video image
CN102446347A (en) White balance method and device for image
CN103886565A (en) Nighttime color image enhancement method based on purpose optimization and histogram equalization
CN108024105A (en) Image color adjusting method, device, electronic equipment and storage medium
CN105809643A (en) Image enhancing method based on self-adaptive block channel stretching
CN109147005A (en) It is a kind of for the adaptive colouring method of infrared image, system, storage medium, terminal
TW201444336A (en) Method and device of skin tone optimization in color gamut mapping system
CN104392425B (en) A kind of image enchancing method of the adjust automatically contrast based on face
CN103839245B (en) The Retinex colour-image reinforcing method at night of Corpus--based Method rule
CN105225205B (en) Image enchancing method, apparatus and system
CN107256539B (en) Image sharpening method based on local contrast
Gautam et al. Efficient color image contrast enhancement using range limited bi-histogram equalization with adaptive gamma correction
CN107358592B (en) Iterative global adaptive image enhancement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896851

Country of ref document: EP

Kind code of ref document: A1