WO2016000327A1 - 用于空调器的过电压保护装置、过电压保护方法及空调器 - Google Patents

用于空调器的过电压保护装置、过电压保护方法及空调器 Download PDF

Info

Publication number
WO2016000327A1
WO2016000327A1 PCT/CN2014/087309 CN2014087309W WO2016000327A1 WO 2016000327 A1 WO2016000327 A1 WO 2016000327A1 CN 2014087309 W CN2014087309 W CN 2014087309W WO 2016000327 A1 WO2016000327 A1 WO 2016000327A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
air conditioner
protection device
rectifier
overvoltage protection
Prior art date
Application number
PCT/CN2014/087309
Other languages
English (en)
French (fr)
Inventor
李洪涛
梁敏游
陈建昌
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Publication of WO2016000327A1 publication Critical patent/WO2016000327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present invention relates to the field of air conditioning technology, and in particular, to an overvoltage protection device for an air conditioner, and an air conditioner having the overvoltage protection device and an overvoltage protection method for the air conditioner.
  • the inverter air conditioner when the inverter air conditioner is powered by the AC mains, the AC mains is converted into DC power by the rectification filter circuit and then supplied to the IPM (Intelligent Power Module).
  • IPM Intelligent Power Module
  • the voltage of the AC mains input to the rectifier circuit becomes higher, and the voltage of the DC power output by the rectifier circuit is correspondingly higher, due to the high voltage filter capacitor, the IPM module and the like.
  • the withstand voltage safety value is certain. When the operating voltage of these devices exceeds their maximum withstand voltage value, the performance of these devices may be degraded or even damaged.
  • the parameter of the high-voltage filter capacitor is 400UF/400V. When the AC grid is unstable, such as the AC power supply voltage increases greatly, the voltage applied to the capacitor exceeds 400V, causing the capacitance to drop even after a period of time. Break through the short circuit and damage.
  • the object of the present invention is to at least solve the above technical drawbacks.
  • a first object of the present invention is to provide an overvoltage protection device for an air conditioner, which is capable of overvoltage protection when the voltage of the input alternating current is too high, thereby preventing the electronic components in the air conditioner from being overvoltaged. damage.
  • a second object of the present invention is to provide an air conditioner.
  • a third object of the present invention is to provide an overvoltage protection method for an air conditioner.
  • an overvoltage protection device for an air conditioner includes: a protection device connected in series at one end of an input alternating current and a rectifier in the air conditioner. Between the first input terminals; a controllable switch, the controllable switch is connected in parallel with the protection device; a voltage sampler for sampling a DC voltage output by the rectifier, the voltage sampler being connected to the first output of the rectifier Between the end and the second output; an electrolytic capacitor connected in parallel between the first output end and the second output end of the rectifier; and a control circuit, the control circuit and the controllable switch respectively
  • the control terminal is connected to the voltage sampler, and the control circuit controls the controllable switch to be turned off to enable the protection device when the DC voltage sampled by the voltage sampler is greater than an upper limit of a preset safety voltage interval Connecting to one end of the alternating current and the The control circuit controls the IPM module in the air conditioner by controlling the IPM module in the air conditioner between the first input terminals of
  • the control circuit controls the controllable switch to be disconnected, so that the protection device The power supply circuit of the alternating current is connected, so that the voltage of the input alternating current is excessively charged by the protection device, and the damage of the electronic components in the air conditioner is avoided due to the excessive voltage of the input alternating current.
  • the control circuit adjusts the operating frequency of the compressor in the air conditioner by controlling the IPM module in the air conditioner to make the DC voltage preset. Safety voltage range. Therefore, the overvoltage protection device for the air conditioner of the embodiment of the invention can improve the reliability of the frequency conversion control circuit of the entire air conditioner, and ensure normal, safe, stable, and reliable operation of the air conditioner.
  • the protection device may be a positive temperature coefficient PTC thermistor or a cement resistor.
  • controllable switch can be a relay.
  • the control circuit includes: a controller, the controller is connected to the voltage sampler; and a third resistor, one end of the third resistor is connected to the controller; a pole tube, a base of the first transistor is connected to another end of the third resistor, and a collector of the first transistor is connected to one end of a coil in the relay, in the relay The other end of the coil is connected to a power source of a first preset voltage, and one end and the other end of the switch in the relay are connected in parallel at both ends of the protection device; a fourth resistor, one end of the fourth resistor and the first An emitter of a triode is connected, and the other end of the fourth resistor is grounded; a first diode, an anode of the first diode is connected to a collector of the first triode, the A cathode of a diode is coupled to the first predetermined voltage source.
  • the overvoltage protection device for an air conditioner further includes: a power supply circuit, the power supply circuit being connected in parallel between the first output end and the second output end of the rectifier, wherein the power supply circuit is The relay provides a power source of the first predetermined voltage, and provides a power supply for the controller to a second preset voltage, wherein the second preset voltage is less than the first preset voltage.
  • a control circuit controls the controllable switch to close to short the protective device.
  • an embodiment of the present invention also proposes an air conditioner including the above-described overvoltage protection device for an air conditioner.
  • the air conditioner of the embodiment of the present invention when the voltage of the input alternating current is too high, the voltage of the input alternating current is excessively high by the overvoltage protection device, and the voltage is prevented from being caused by the excessively high voltage of the input alternating current.
  • the damage of the electronic components is greatly improved, and the operation can be performed normally and stably.
  • another embodiment of the present invention further provides an overvoltage protection method for an air conditioner, wherein the air conditioner includes the above-described overvoltage protection device for an air conditioner, and the overvoltage protection of the air conditioner
  • the method includes the steps of: sampling a DC voltage output by the rectifier; controlling the controllable switch to open to connect the protection device to one end of the alternating current when the DC voltage is greater than an upper limit of a preset safety voltage interval
  • the IPM module in the air conditioner is controlled to adjust the compressor in the air conditioner
  • the operating frequency is such that the DC voltage is within the predetermined safe voltage interval.
  • the magnitude of the DC voltage output by the rectifier is measured in real time, and when the sampled DC voltage is greater than the upper limit of the preset safety voltage interval, the controllable switch is turned off, thus protecting the device.
  • the power supply circuit of the alternating current is connected, so that the input AC voltage is excessively protected by the protection device, and the damage of the electronic component in the air conditioner due to the excessive voltage of the input alternating current is avoided, and the DC voltage is less than the preset safety voltage interval.
  • the IPM module in the air conditioner is controlled to adjust the operating frequency of the compressor in the air conditioner so that the DC voltage is in the preset safe voltage range, thereby greatly improving the reliability of the circuit and ensuring the normal and stable operation of the air conditioner.
  • the controllable switch when the operating frequency of the compressor is less than or equal to a first preset frequency, if the DC voltage is less than a lower limit of the preset safety voltage interval, controlling the controllable switch to close The protection device is shorted.
  • FIG. 1 is a circuit diagram of an overvoltage protection device for an air conditioner according to an embodiment of the present invention
  • FIG. 2 is a circuit diagram of an overvoltage protection device for an air conditioner according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of an overvoltage protection device for an air conditioner according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a resistance-temperature characteristic curve of a PTC thermistor according to an embodiment of the present invention
  • FIG. 5 is a flow chart of an overvoltage protection method of an air conditioner according to an embodiment of the present invention.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. Embodiments such that the first and second features may not be in direct contact.
  • the overvoltage protection device for an air conditioner includes a protection device R0, a controllable switch 10, a voltage sampler 20, an electrolytic capacitor EC1, and a control circuit 30.
  • the protection device R0 is connected in series between one end of the input alternating current and the first input end IN1 of the rectifier in the air conditioner.
  • one end of the protection device R0 is connected to one end of the input alternating current, and the protection device R0 is connected.
  • the other end is connected to the first input terminal IN1 of the rectifier 40 in the air conditioner, and the second input terminal IN2 of the rectifier 40 is connected to the other end of the alternating current.
  • the controllable switch 10 is connected in parallel with the protection device R0, the voltage sampler 20 is connected between the first output terminal OUT1 and the second output terminal OUT2 of the rectifier 40, and the voltage sampler 20 is used for sampling the rectifier 40 through the first output terminal OUT1 thereof.
  • the electrolytic capacitor EC1 is connected in parallel between the first output terminal OUT1 and the second output terminal OUT2 of the rectifier, and the electrolytic capacitor EC1 starts from It acts as a filter and acts as a buffer when the sampled DC voltage drops.
  • the control circuit 30 is respectively connected to the control end of the controllable switch 10 and the voltage sampler 20.
  • the control circuit 30 controls the controllable when the DC voltage sampled by the voltage sampler 20 is greater than the upper limit of the preset safety voltage interval.
  • the switch 10 is disconnected such that the protection device R0 is connected in series between one end of the alternating current and the first input terminal IN1 of the rectifier 40, and the direct current voltage sampled by the voltage sampler 20 is less than the preset safe voltage interval.
  • the control circuit 30 adjusts the operating frequency of the compressor M in the air conditioner by controlling the IPM module 50 in the air conditioner such that the DC voltage is in the preset safe voltage interval.
  • the voltage sampler 20 can detect the magnitude of the DC voltage output from the rectifier 40, and the control circuit 30 can estimate the magnitude of the input AC voltage by determining the magnitude of the DC voltage. Controlling the controllable switch 10 to be disconnected when the voltage sampler 20 samples the DC voltage to be greater than the upper limit value of the preset safety voltage interval, so that the protection device R0 is connected to the AC power supply circuit to bear the voltage of the input AC power, thereby Avoid electronic components in the circuit from being damaged by overvoltage.
  • the protection device R0 may be a PTC (Positive Temperature Coefficient) thermistor or a cement resistor.
  • the protection device R0 herein may be other voltage dividing resistors such as ceramic resistors, etc., and can function as a partial pressure.
  • the voltage sampler 20 may include: a first resistor R1 and a second resistor R2 connected in series, one end of the first resistor R1 and the first of the rectifier 40 The output terminal OUT1 is connected, the other end of the first resistor R1 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is connected to the second output terminal OUT2 of the rectifier 40.
  • the other end of the first resistor R1 and the second resistor There is a first node J1 between one end of R2, and the first node J1 is connected to the control circuit 30.
  • controllable switch 10 can be a relay.
  • control circuit 30 may include a controller 301, a third resistor R3, a first transistor Q1, a fourth resistor R4, and a first diode D1.
  • the controller 301 for example, the P1 end of the MCU (Micro Control Unit) is connected to the voltage sampler, for example, to the first node J1 in the voltage sampler, and one end of the third resistor R3.
  • the controller 301 for example, the P2 terminal of the MCU, the base of the first transistor Q1 is connected to the other end of the third resistor R3, and the collector of the first transistor Q1 is connected to the one end 1 of the coil in the relay.
  • the other end 2 of the coil in the relay is connected to a first predetermined voltage, for example, a 12V power supply, and one end 3 and the other end 4 of the switch in the relay are connected in parallel at both ends of the protection device R0 such as a PTC thermistor or a cement resistor.
  • One end of the fourth resistor R4 is connected to the emitter of the first transistor Q1, and the other end of the fourth resistor R4 is grounded, and the anode of the first diode D1 Connected to the collector of the first transistor Q1, the cathode of the first diode D1 is connected to a first predetermined voltage, for example, a 12V power supply.
  • the above-mentioned overvoltage protection device for an air conditioner further includes a power supply circuit 60 such as a switching power supply, and the power supply circuit 60 is connected in parallel to the rectifier.
  • a power supply circuit 60 such as a switching power supply
  • the power supply circuit 60 supplies a first preset voltage, for example, a 12V power supply to the relay, and is the controller 301.
  • the MCU provides a second preset voltage, for example, a 5V power supply, wherein the second preset voltage is smaller than the first preset voltage.
  • a reactor L1 is further connected in series between the first output terminal OUT1 of the rectifier 40 and one end of the first resistor R1.
  • an EMC (Electro Magnetic Compatibility) filter circuit 70 and a fuse FUSE1 are further provided at the input end of the alternating current.
  • the protection device is a PTC thermistor, and only the circuit portion related to the driving of the compressor M is shown in FIG. 2, and other loads on the air conditioner such as an indoor fan, The driving circuit of the load of the outdoor fan, the four-way valve, the stepping motor, and the like is not shown. This part of the circuit is a prior art known technique and will not be described in detail herein.
  • the DC voltage on the electrolytic capacitor EC1 in the loop that is, the DC voltage sampled by the voltage sampler is V
  • the DC current in the loop is I.
  • the MCU in the control circuit When the air conditioner is powered on, the MCU in the control circuit outputs a high level signal to the first transistor Q1 through the P2 terminal, and the first transistor Q1 is turned on, so that the relay is closed, and the PTC thermistor is Short circuit does not limit current.
  • the MCU detects that the DC voltage output by the rectifier 40 is normal, for example, in a preset safe voltage range, by the voltage sampler 20, and always controls the relay to be in a pull-in state. For example, the normal AC voltage is 220V.
  • the MCU detects the DC voltage output from the rectifier 40 through the voltage sampler 20.
  • the DC voltage is within the highest operating voltage of the DC post-stage device such as the electrolytic capacitor EC1, IPM module 50.
  • the MCU control relay maintains the pull-in state, and the IPM module 50 drives the compressor M to operate at the normal operating frequency, and the entire air conditioner
  • the inverter control circuit works normally.
  • the MCU detects the DC voltage output from the rectifier 40 through the voltage sampler 20.
  • This DC voltage is close to or exceeds the highest working withstand voltage of electrolytic capacitor EC1.
  • the parameter of electrolytic capacitor EC1 is 200UF/375V. This DC voltage is very close to its withstand voltage. If the circuit continues to work, electrolytic capacitor EC1 will work. If the voltage is too high, the performance of the capacitor will be degraded. If it is used for a long time, there is a danger of breakdown damage.
  • the MCU control relay In order to protect the electrolytic capacitor EC1, the MCU control relay is turned off at this time, and the PTC thermistor is connected in series to perform voltage division. Therefore, when the voltage sampler 20 samples the DC voltage to be greater than the upper limit of the preset safety voltage interval, the MCU control relay in the control circuit is disconnected, so that the PTC thermistor is connected to the power supply circuit to bear the voltage of the input AC power. Thereby, electronic components such as electrolytic capacitor EC1 in the circuit are prevented from being damaged by overvoltage operation.
  • the upper limit of the preset safety voltage interval may be 90% of the highest withstand voltage value of the electrolytic capacitor EC1.
  • the PTC thermistor due to the working characteristics of the PTC thermistor, as shown in Figure 4, when the PTC thermistor is connected to the power supply circuit, its resistance value is less than 100 ohms at normal temperature, if the compressor M is working at a relative position At higher frequencies, the operating current I will be higher.
  • the compressor of a 1P air conditioner operates at a frequency of 40 Hz and its operating current exceeds 2 A, so the current of the PTC thermistor is about 2 A.
  • the large operating current causes the temperature of the PTC thermistor to rise rapidly, and its resistance value. It also changes, but its resistance changes slowly with temperature before reaching the Curie temperature point.
  • the resistance of the PTC thermistor is 45 ohms at 80 °C, still within 100 ohms. During the time, the partial pressure on the PTC thermistor is not high due to the change of the resistance value. If the resistance of the PTC thermistor is 45 ohms, the voltage it can bear is about 90V. The DC voltage of the 40 output has been reduced to a safe voltage range.
  • the resistance value of the PTC thermistor jumps with temperature, and its resistance value rises rapidly.
  • the time from the start of the operation of the PTC thermistor to the Curie temperature point is usually a few seconds (not more than 10 seconds). If the operating current I is larger, the time to reach the Curie temperature point is shorter. For example, when the operating current is 2A, the time to reach the Curie temperature point is generally within 3 seconds.
  • the MCU detects that the DC voltage V is lowered by the voltage sampler 20, specifically, the DC voltage sampled by the voltage sampler 20 is less than the preset safety voltage.
  • the MCU quickly reduces the operating frequency of the compressor M by controlling the IPM module 50, and even stops the operation of the operating frequency of the compressor to zero, so that the operating current I is lowered, thereby making the PTC thermistor
  • the partial pressure is reduced, so that the DC voltage outputted by the rectifier 40 is increased to prevent the partial pressure on the PTC thermistor from being too large to cause the IPM module, the MCU, the compressor, etc., to operate normally after reaching the Curie temperature point.
  • the MCU also turns off other workloads of the air conditioner such as indoor and outdoor fans, etc., so that the operating current I of the entire circuit can be reduced, so that the flow
  • the current of the PTC thermistor is not too high, causing its resistance to become high, so that the partial pressure of the PTC thermistor is not too high.
  • the electrolytic capacitor EC1 discharges, so that the DC voltage decreases in a curve, and does not occur in a very short time.
  • the MCU quickly controls the IPM module in the air conditioner to reduce the operating frequency of the compressor in the air conditioner by detecting the DC voltage being lower than the lower limit of the preset safety voltage interval by the voltage sampler, and the operating current I is lowered.
  • the partial pressure across the PTC thermistor is reduced so that the DC voltage can rise before falling to the load and the operating voltages allowed by the device, such as the compressor and IPM module, until it is within the preset safe voltage range.
  • the input AC voltage is further increased, so that the DC voltage output by the rectifier 40 is greater than the upper limit of the preset safety voltage interval, and the MCU can control the IPM module 50 to make the compressor.
  • the operating frequency is increased, so that the operating current I rises, and then the current flowing through the PTC thermistor rises, the temperature of the PTC thermistor rises, and the resistance value increases due to the temperature rise, the PTC heat
  • the partial pressure of the varistor becomes large, and the DC voltage output from the rectifier 40 is lowered to a preset safe voltage range.
  • the MCU needs to control the IPM module 50 to drive the operating frequency of the compressor M to increase.
  • the operating current I will increase, and the temperature of the PTC thermistor will gradually increase.
  • the working current I reaches a certain value, for example, several amps
  • the resistance of the PTC thermistor rises rapidly after the temperature rises to the Curie temperature point, and the partial pressure of the PTC thermistor also increases rapidly.
  • the DC voltage V is rapidly decreased.
  • the MCU detects that the DC voltage output by the rectifier 40 is less than the lower limit of the preset voltage interval by the voltage sampler 20, the operating frequency of the compressor M is controlled to be rapidly reduced by controlling the IPM module 60. Make the rectifier 40 lose DC voltage is preset safe voltage range.
  • the protection device is a PTC thermistor and a controllable switch such as a relay is turned off
  • the control circuit 30 that is, the MCU in the control circuit controls the operating frequency of the compressor M in the air conditioner by controlling the IPM module 50 in the air conditioner such that the DC voltage is in the preset safe voltage interval. Therefore, during this period, the operating frequency of the compressor M can be dynamically adjusted as the DC voltage changes, ensuring that the operating voltage of the electrolytic capacitor EC1 and the like is below the maximum withstand voltage.
  • the MCU may also control the prompt module of the air conditioner to output an alarm or prompt information such as sound.
  • a tone and/or light prompt to indicate that the current input AC voltage is too high, alerting the user to the abnormally high AC power supply.
  • the control circuit 30 Controllable controllable switch 10, such as a relay, is closed to short circuit a protective device, such as a PTC thermistor. That is, when the MCU controls the IPM module 50 such that the operating frequency of the compressor M is low, for example, less than 10 Hz or even zero, if the DC voltage sampled by the voltage sampler is less than the lower limit of the preset safety voltage interval, That is to say, the voltage of the input AC power is reduced.
  • a first preset frequency for example, 10 Hz
  • a protective device such as a PTC thermistor
  • the MCU controls the relay to pull in, the PTC thermistor shorts out of the power supply loop, the current limiting action fails, and the voltage of the entire circuit returns to normal.
  • the MCU controls the IPM module 50 to drive the compressor M.
  • the operating frequency is restored to the normal operating frequency. Among them, if other loads such as indoor and outdoor fans are turned off before, the operation is resumed again. If the protection prompt information is output, the output of the prompt information is turned off, so that the air conditioner returns to normal operation.
  • the lower limit of the preset safety voltage interval may be 80% of the highest withstand voltage value of the electrolytic capacitor EC1
  • the upper limit of the preset safety voltage interval may be 90% of the highest withstand voltage value of the electrolytic capacitor EC1. Therefore, the operating voltage of the electrolytic capacitor EC1 and the like is always less than the maximum withstand voltage value, which is advantageous for prolonging the working life of the electrolytic capacitor EC1 and the like.
  • the protection device is a cement resistor and a controllable switch such as a relay is turned off, if the DC voltage sampled by the voltage sampler 20 is less than the preset safety
  • the lower limit of the voltage interval the control circuit 30, that is, the MCU in the control circuit, controls the operating frequency of the compressor M in the air conditioner by controlling the IPM module 50 in the air conditioner.
  • the MCU control relay is disconnected.
  • the cement resistor is connected in series to the power supply circuit. Due to the partial pressure of the cement resistor, the DC voltage V will rapidly decrease. If the voltage sampler 20 samples the DC voltage to be lower than the lower limit of the preset safety voltage range, the MCU passes the control IPM module.
  • the power supply circuit 50 makes the operating frequency of the compressor M rapidly decrease, and further can turn off other loads of the air conditioner such as indoor and outdoor fans, so that the working current I is lowered, so that the partial pressure of the cement resistor becomes smaller, from The DC voltage outputted by the rectifier 40 is not too low, which affects the normal operation of the compressor M and the IPM module 50, and ensures stable operation of the air conditioner.
  • the control circuit controls the controllable switch to be disconnected, so that the protection device The power supply circuit of the alternating current is connected, so that the voltage of the input alternating current is excessively charged by the protection device, and the damage of the electronic components in the air conditioner is avoided due to the excessive voltage of the input alternating current.
  • the control circuit adjusts the operating frequency of the compressor in the air conditioner by controlling the IPM module in the air conditioner to make the DC voltage preset. Safety voltage range. Therefore, the overvoltage protection device for the air conditioner of the embodiment of the invention can improve the reliability of the frequency conversion control circuit of the entire air conditioner, and ensure normal, safe, stable, and reliable operation of the air conditioner.
  • an embodiment of the present invention also proposes an air conditioner including the above-described overvoltage protection device for an air conditioner.
  • the air conditioner of the embodiment of the present invention when the voltage of the input alternating current is too high, the voltage of the input alternating current is excessively high by the overvoltage protection device, and the voltage is prevented from being caused by the excessively high voltage of the input alternating current.
  • the damage of the electronic components is greatly improved, and the operation can be performed normally and stably.
  • FIG. 5 is a flow chart of an overvoltage protection method of an air conditioner according to an embodiment of the present invention.
  • the air conditioner includes the above-mentioned overvoltage protection device for an air conditioner.
  • the overvoltage protection method of the air conditioner includes the following steps:
  • the higher the voltage of the alternating current so as to prevent the electronic components in the circuit from being damaged by overvoltage.
  • adjusting the operating frequency of the compressor in the air conditioner by controlling an IPM module in the air conditioner when the DC voltage is less than a lower limit of the preset safety voltage interval, so that the DC voltage is in the Preset the safe voltage interval.
  • the controllable switch when the operating frequency of the compressor is less than or equal to a first preset frequency, if the DC voltage is less than a lower limit of the preset safety voltage interval, controlling the controllable switch to close A protection device such as a PTC thermistor is shorted.
  • the magnitude of the DC voltage output by the rectifier is measured in real time, and when the sampled DC voltage is greater than the upper limit of the preset safety voltage interval, the controllable switch is turned off, thus protecting the device. Access to the AC power supply loop, so that the input AC power is too high voltage is protected by the device To avoid damage to the electronic components in the air conditioner caused by the excessive voltage of the input AC power, and to adjust the compression in the air conditioner by controlling the IPM module in the air conditioner when the DC voltage is lower than the lower limit of the preset safety voltage interval.
  • the operating frequency of the machine is such that the DC voltage is in the preset safe voltage range, which greatly improves the reliability of the circuit and ensures the normal and stable operation of the air conditioner.

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

一种用于空调器的过电压保护装置,其包括:保护器件,保护器件串联在输入的交流电的一端与整流器的第一输入端之间;可控开关,可控开关与保护器件并联;采样整流器输出的直流电压的电压采样器;电解电容;控制电路,控制电路在直流电压大于预设安全电压区间的上限时控制可控开关断开以使保护器件串联到交流电的一端与整流器的第一输入端之间,并在直流电压小于预设安全电压区间的下限时,通过控制IPM模块以调节压缩机的运行频率,以使直流电压处于预设安全电压区间。该过电压保护装置能够在输入的交流电的电压过高时进行过电压保护,避免空调器中的电子元件因过电压而损坏。还公开一种空调器和一种空调器的过电压保护方法。

Description

用于空调器的过电压保护装置、过电压保护方法及空调器 技术领域
本发明涉及空调技术领域,特别涉及一种用于空调器的过电压保护装置以及一种具有该过电压保护装置的空调器和一种空调器的过电压保护方法。
背景技术
目前,在变频空调器通过交流市电供电时,交流市电经过整流滤波电路转换成直流电后供给IPM(Intelligent Power Module,智能功率模块)。
然而,由于交流电网存在电压波动,会导致输入到整流电路的交流市电的电压变高,从而整流电路输出的直流电的电压也会相应变高,由于高压滤波电容、IPM模块等器件其承受的耐压安全值是一定的,当这些器件的工作电压超过其最高承受的耐压值时便会引起这些器件的工作性能降低甚至损坏。例如高压滤波电容的参数为400UF/400V,在交流电网不稳定的时候,如交流市电的电压发生大的升高导致加载在此电容上的电压超过400V后一段时间会引起其电容量下降甚至击穿短路而损坏。
发明内容
本发明的目的旨在至少解决上述的技术缺陷。
为此,本发明的第一个目的在于提出一种用于空调器的过电压保护装置,能够在输入的交流电的电压过高时进行过电压保护,避免空调器中的电子元件因过电压而损坏。
本发明的第二个目的在于提出一种空调器。本发明的第三个目的在于提出一种空调器的过电压保护方法。
为达到上述目的,本发明一方面实施例提出的一种用于空调器的过电压保护装置,包括:保护器件,所述保护器件串联在输入的交流电的一端与所述空调器中的整流器的第一输入端之间;可控开关,所述可控开关与所述保护器件并联;采样所述整流器输出的直流电压的电压采样器,所述电压采样器连接在所述整流器的第一输出端与第二输出端之间;电解电容,所述电解电容并联在所述整流器的第一输出端与第二输出端之间;以及控制电路,所述控制电路分别与所述可控开关的控制端和所述电压采样器相连,所述控制电路在所述电压采样器采样到的所述直流电压大于预设安全电压区间的上限时控制所述可控开关断开以使所述保护器件串联到所述交流电的一端与所述 整流器的第一输入端之间,并在所述电压采样器采样到的所述直流电压小于所述预设安全电压区间的下限时,所述控制电路通过控制所述空调器中的IPM模块以调节所述空调器中的压缩机的运行频率,以使所述直流电压处于所述预设安全电压区间。
根据本发明实施例提出的用于空调器的过电压保护装置,在电压采样器采样到整流器输出的直流电压大于预设安全电压区间的上限时,控制电路控制可控开关断开,这样保护器件接入交流电的供电回路,从而使得输入的交流电过高的电压被保护器件承担,避免因输入的交流电的电压过高而导致空调器中电子元件的损坏。并且,在电压采样器采样到的直流电压小于预设安全电压区间的下限时,控制电路通过控制空调器中的IPM模块以调节空调器中的压缩机的运行频率,以使直流电压处于预设安全电压区间。因此,本发明实施例的用于空调器的过电压保护装置能够提高整个空调器的变频控制电路的可靠性,保证空调器正常、安全、稳定、可靠运行。
根据本发明的一个实施例,所述保护器件可以为正温度系数PTC热敏电阻或水泥电阻。
其中,所述可控开关可以为继电器。
根据本发明的一个实施例,所述控制电路包括:控制器,所述控制器与所述电压采样器相连;第三电阻,所述第三电阻的一端与所述控制器相连;第一三极管,所述第一三极管的基极与所述第三电阻的另一端相连,所述第一三极管的集电极与所述继电器中的线圈的一端相连,所述继电器中的线圈的另一端与第一预设电压的电源相连,所述继电器中的开关的一端和另一端并联在所述保护器件的两端;第四电阻,所述第四电阻的一端与所述第一三极管的发射极相连,所述第四电阻的另一端接地;第一二极管,所述第一二极管的阳极与所述第一三极管的集电极相连,所述第一二极管的阴极与所述第一预设电压的电源相连。
并且,所述的用于空调器的过电压保护装置,还包括:供电电路,所述供电电路并联在所述整流器的第一输出端与第二输出端之间,所述供电电路为所述继电器提供所述第一预设电压的电源,并为所述控制器提供第二预设电压的电源,其中,所述第二预设电压小于所述第一预设电压。
根据本发明的一个实施例,当所述压缩机的运行频率小于等于第一预设频率,如果所述电压采样器采样到的所述直流电压小于所述预设安全电压区间的下限,所述控制电路控制所述可控开关闭合以使所述保护器件短路。
此外,本发明的实施例还提出了一种空调器,其包括上述的用于空调器的过电压保护装置。
根据本发明实施例的空调器,在输入的交流电的电压过高时,通过过电压保护装置使得输入的交流电过高的电压被保护器件承担,避免因输入的交流电的电压过高而导致空调器中电子元件的损坏,可靠性得到了大大提高,并且能够正常稳定地运行。
为达到上述目的,本发明另一方面实施例还提出了一种空调器的过电压保护方法,其中,该空调器包括上述的用于空调器的过电压保护装置,该空调器的过电压保护方法包括以下步骤:采样所述整流器输出的直流电压;在所述直流电压大于预设安全电压区间的上限时控制所述可控开关断开以使所述保护器件串联到所述交流电的一端与所述整流器的第一输入端之间,并在所述直流电压小于所述预设安全电压区间的下限时,通过控制所述空调器中的IPM模块以调节所述空调器中的压缩机的运行频率,以使所述直流电压处于所述预设安全电压区间。
根据本发明实施例的空调器的过电压保护方法,实时采样整流器输出的直流电压的大小,在采样到的直流电压大于预设安全电压区间的上限时,控制可控开关断开,这样保护器件接入交流电的供电回路,从而使得输入的交流电过高的电压被保护器件承担,避免因输入的交流电的电压过高而导致空调器中电子元件的损坏,并且在直流电压小于预设安全电压区间的下限时,通过控制空调器中的IPM模块以调节空调器中的压缩机的运行频率,以使直流电压处于预设安全电压区间,大大提高了电路的可靠性,保证空调器正常稳定运行。
根据本发明的一个实施例,当所述压缩机的运行频率小于等于第一预设频率,如果所述直流电压小于所述预设安全电压区间的下限,控制所述可控开关闭合以使所述保护器件短路。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的用于空调器的过电压保护装置的电路示意图;以及
图2为根据本发明一个具体实施例的用于空调器的过电压保护装置的电路示意图;
图3为根据本发明另一个具体实施例的用于空调器的过电压保护装置的电路示意图;
图4为根据本发明一个实施例的PTC热敏电阻的阻值-温度特性曲线示意图;以及
图5为根据本发明实施例的空调器的过电压保护方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
下面参照附图来描述根据本发明实施例提出的用于空调器的过电压保护装置以及具有该过电压保护装置的空调器和该空调器的过电压保护方法。
图1为根据本发明实施例的用于空调器的过电压保护装置的电路示意图。如图1所示,该用于空调器的过电压保护装置包括:保护器件R0、可控开关10、电压采样器20、电解电容EC1和控制电路30。
其中,保护器件R0串联在输入的交流电的一端与空调器中的整流器的第一输入端IN1之间,例如如图1所示,保护器件R0的一端与输入的交流电的一端相连,保护器件R0的另一端与空调器中的整流器40的第一输入端IN1相连,整流器40的第二输入端IN2与交流电的另一端相连。可控开关10与保护器件R0并联连接,电压采样器20连接在整流器40的第一输出端OUT1与第二输出端OUT2之间,电压采样器20用于采样整流器40通过其第一输出端OUT1和第二输出端OUT2输出的直流电压。电解电容EC1并联在整流器的第一输出端OUT1与第二输出端OUT2之间,电解电容EC1起 到滤波作用,以及在采样到的直流电压跌落时起到缓冲作用。
如图1所示,控制电路30分别与可控开关10的控制端和电压采样器20相连,控制电路30在电压采样器20采样到的直流电压大于预设安全电压区间的上限时控制可控开关10断开,这样使得保护器件R0串联接入到交流电的一端与整流器40的第一输入端IN1之间,并在电压采样器20采样到的所述直流电压小于所述预设安全电压区间的下限时,控制电路30通过控制所述空调器中的IPM模块50以调节所述空调器中的压缩机M的运行频率,以使所述直流电压处于所述预设安全电压区间。
其中,需要说明的是,由于输入的交流电的电压会出现波动,并且在交流电的电压变大到超过一定值时,整流器40输出的直流电压也会随之变大。因此,可以由电压采样器20来检测整流器40输出的直流电压的大小,控制电路30通过判断直流电压的大小从而可推算出输入的交流电的电压的高低。在电压采样器20采样到直流电压大于预设安全电压区间的上限值时控制可控开关10断开,这样使得保护器件R0串入交流电的供电回路来承担输入的交流电高出的电压,从而避免电路中的电子元件因过电压而受到损坏。
在本发明的实施例中,保护器件R0可以为PTC(Positive Temperature Coefficient,正温度系数)热敏电阻或水泥电阻。当然,这里的保护器件R0也可以是其他分压电阻例如陶瓷电阻等,能够起到分压的作用即可。
并且,根据本发明的一个实施例,如图2或图3所示,电压采样器20可以包括:串联的第一电阻R1和第二电阻R2,第一电阻R1的一端与整流器40的第一输出端OUT1相连,第一电阻R1的另一端与第二电阻R2的一端相连,第二电阻R2的另一端与整流器40的第二输出端OUT2相连,第一电阻R1的另一端与第二电阻R2的一端之间具有第一节点J1,第一节点J1与控制电路30相连。
其中,如图2或图3所示,可控开关10可以为继电器。并且,控制电路30可包括:控制器301、第三电阻R3、第一三极管Q1、第四电阻R4和第一二极管D1。
如图2或图3所示,控制器301例如MCU(Micro Control Unit,微控制单元)的P1端与电压采样器相连例如与电压采样器中的第一节点J1相连,第三电阻R3的一端与控制器301例如MCU的P2端相连,第一三极管Q1的基极与第三电阻R3的另一端相连,第一三极管Q1的集电极与所述继电器中的线圈的一端1相连,所述继电器中的线圈的另一端2与第一预设电压例如12V的电源相连,继电器中的开关的一端3和另一端4并联在保护器件R0例如PTC热敏电阻或水泥电阻的两端,第四电阻R4的一端与第一三极管Q1的发射极相连,第四电阻R4的另一端接地,第一二极管D1的阳极 与第一三极管Q1的集电极相连,第一二极管D1的阴极与第一预设电压例如12V的电源相连。
具体地,在本发明的实施例中,如图2或图3所示,上述的用于空调器的过电压保护装置还包括供电电路60例如开关电源,供电电路60并联在所述整流器的第一输出端与第二输出端之间,即并联在第一电阻R1的一端与第二电阻R2的另一端,供电电路60为继电器提供第一预设电压例如12V的电源,并为控制器301例如MCU提供第二预设电压例如5V的电源,其中,所述第二预设电压小于所述第一预设电压。
并且,如图2或图3所示,在整流器40的第一输出端OUT1与第一电阻R1的一端之间还串联有电抗器L1。此外,如图2或图3所示,在交流电的输入端还设有EMC(Electro Magnetic Compatibility,电磁兼容性)滤波电路70和熔断器FUSE1。
根据本发明的一个实施例,如图2所示,保护器件为PTC热敏电阻,并且,图2中仅示出与压缩机M驱动相关的电路部分,对空调器的其他负载如室内风机、室外风机、四通阀、步进电机等负载的驱动电路未示出,此部分电路为现有的公知技术,在此不再详述。
在本实施例中,如图2所示,可认为回路中电解电容EC1上的直流电压即电压采样器采样到的直流电压为V,回路中的直流电流为I。当空调器上电开机工作时,控制电路中的MCU通过P2端输出一高电平信号至第一三极管Q1,第一三极管Q1导通,从而继电器吸合,PTC热敏电阻被短路不起限流作用。MCU通过电压采样器20检测整流器40输出的直流电压处于正常例如处于预设安全电压区间时,一直控制继电器为吸合状态。例如正常的交流电压为220V,根据整流器40的工作原理,此时MCU通过电压采样器20检测到整流器40输出的直流电压为
Figure PCTCN2014087309-appb-000001
此直流电压在直流后级器件如电解电容EC1、IPM模块50的最高工作电压内,此时MCU控制继电器保持吸合状态,IPM模块50驱动压缩机M按正常的运行频率运行,空调器的整个变频控制电路工作正常。
当输入的交流电的电压升高,例如交流电网的电压升高了20%即为264V,此时MCU通过电压采样器20检测到整流器40输出的直流电压为
Figure PCTCN2014087309-appb-000002
此直流电压接近或超过了电解电容EC1的最高工作耐压值,例如电解电容EC1的参数为200UF/375V,此直流电压已经很接近其耐压值,如果电路继续工作,电解电容EC1会由于工作电压过高而引起电容性能下降,如果长期工作会有击穿损坏的危险。为了保护电解电容EC1,此时MCU控制继电器断开,PTC热敏电阻串联接入,进行分压。因 此,在电压采样器20采样到直流电压大于预设安全电压区间的上限时控制电路中的MCU控制继电器断开,这样使得PTC热敏电阻串入供电回路来承担输入的交流电高出的电压,从而避免电路中的电子元件例如电解电容EC1因过电压工作而受到损坏。在本发明的一个示例中,预设安全电压区间的上限可以为电解电容EC1最高耐压值的90%。
其中,由于PTC热敏电阻的工作特性,具体如图4所示,当PTC热敏电阻接入供电回路时,其电阻值在常温下不到100欧姆,如果此时压缩机M工作在一个相对较高的频率,其工作电流I会比较高。例如一个1P的空调器的压缩机工作在40HZ频率时其工作电流超过2A,于是PTC热敏电阻的通过电流约为2A,大的工作电流使得PTC热敏电阻的温度迅速升高,其阻值也随之变化,但在达到居里温度点以前其阻值随温度变化缓慢,如图4所示,在80℃时PTC热敏电阻的阻值为45欧姆,仍在100欧姆以内,这段时间内PTC热敏电阻上的分压由于电阻阻值变化不大其承担的电压不高,如PTC热敏电阻的阻值为45欧姆时可计算出其承担的电压约为90V,这时整流器40输出的直流电压已经可降到安全电压范围内。
但当PTC热敏电阻的温度达到居里温度点(125±5℃)如图4所示的125℃以后,PTC热敏电阻的阻值随温度会发生跃升,其阻值迅速升高。通常情况下PTC热敏电阻从开始工作至达到居里温度点的时间一般为几秒(不超过10秒),如果工作电流I越大,达到居里温度点的时间越短。例如工作电流为2A时,达到居里温度点的时间一般在3秒以内。当PTC热敏电阻的温度达到居里温度点以后,由于其阻值迅速增高,其承担的电压也迅速升高,使整流器40输出的直流电压迅速下降,这时如果MCU仍然控制IPM模块50驱动压缩机M保持运行频率不变,就会由于整流器40输出的直流电压迅速降低使得压缩机M和IPM模块50的工作电压降低到其允许的工作电压以下,从而导致压缩机M和IPM模块50无法正常工作。
因此,MCU在控制继电器断开使得PTC热敏电阻串联接入供电回路后,如果MCU通过电压采样器20检测到直流电压V降低,具体为电压采样器20采样到的直流电压小于预设安全电压区间的下限,则MCU通过控制IPM模块50使得压缩机M的运行频率迅速降低,甚至压缩机的运行频率降低到为零而停止工作,以使得工作电流I降低,从而使得PTC热敏电阻上的分压降低,这样整流器40输出的直流电压就会升高,以防止PTC热敏电阻上的分压由于达到居里温度点以后过大而引起IPM模块、MCU、压缩机等无法正常工作。并且,MCU同时还会关闭空调器的其他工作负载例如室内、室外风机等工作电流比较大的负载,以使得整个电路的工作电流I能得到降低,使得流过 PTC热敏电阻的电流不致过高而引起其阻值变高,从而使得PTC热敏电阻的分压不致过高。其中,需要说明的是,由于PTC热敏电阻到达居里点温度后引起直流电压的降低,此时电解电容EC1进行放电,使得直流电压的降低是呈曲线下降的,不会在极短时间内迅速跌落,此时MCU通过电压采样器在检测到直流电压小于预设安全电压区间的下限时,迅速控制空调器中的IPM模块以降低空调器中的压缩机的运行频率,工作电流I降低,使得PTC热敏电阻上的分压减小,使得直流电压能在下降到负载和器件如压缩机和IPM模块允许的工作电压之前得到上升,直到处于预设安全电压区间。
需要说明的是,如果在这段期间内,输入的交流电的电压进一步升高,使得整流器40输出的直流电压又大于预设安全电压区间的上限,此时MCU可通过控制IPM模块50使得压缩机的运行频率升高,使得工作电流I升高,进而流过PTC热敏电阻的电流跟着升高,PTC热敏电阻的温度升高,其阻值会由于温度的升高而变大,PTC热敏电阻的分压变大而使整流器40输出的直流电压降低,降低到预设安全电压区间。
在PTC热敏电阻串联接入供电回路时,如果此时压缩机M的运行频率很低甚至处于停机状态,这时由于工作电流I很小例如在mA级,则PTC热敏电阻上的分压会很小,例如如果工作电流I为1mA,PTC热敏电阻刚接入时电阻为50欧姆,则PTC热敏电阻的分压大概为50*0.001=0.05V,基本起不到分压限流的作用,此时MCU需通过控制IPM模块50来驱动压缩机M的运行频率升高,由于压缩机的运行频率升高,工作电流I会随之升高,PTC热敏电阻的温度也会逐渐升高,当工作电流I达到某一个值例如几安培时,PTC热敏电阻由于温度的升高达到居里温度点后,其阻值迅速升高,PTC热敏电阻的分压也迅速增大,则直流电压V会迅速降低,MCU在通过电压采样器20检测到整流器40输出的直流电压小于预设电压区间的下限时,通过控制IPM模块60来驱动压缩机M的运行频率再迅速降低,使得整流器40输出的直流电压处于预设安全电压区间。
综上所述,根据本发明的一个实施例,当保护器件为PTC热敏电阻,且可控开关例如继电器断开时,如果电压采样器20采样到的所述直流电压未处于所述预设安全电压区间,控制电路30即控制电路中的MCU通过控制空调器中的IPM模块50以调节空调器中的压缩机M的运行频率,以使所述直流电压处于所述预设安全电压区间。因此说,在此期间压缩机M的运行频率可随着直流电压的变化而动态调整,保证电解电容EC1等器件的工作电压在其承受的最大耐压以下。
进一步地,在本发明的实施例中,在电压采样器20采样到的直流电压大于预设安全电压区间的上限时,MCU还可控制空调器的提示模块输出报警或者提示信息例如声 音和/或灯光提示,以提示当前输入的交流电的电压过高,提醒用户注意此时的交流电源处于异常高的状态。
根据本发明的一个实施例,当压缩机M的运行频率小于等于第一预设频率例如10HZ,如果电压采样器20采样到的所述直流电压小于所述预设安全电压区间的下限,控制电路30控制可控开关10例如继电器闭合以使保护器件例如PTC热敏电阻短路。也就是说,当MCU通过控制IPM模块50使得压缩机M的运行频率很低例如小于10HZ甚至为零的情况下,如果此时电压采样器采样到的直流电压小于预设安全电压区间的下限,即表明输入的交流电的电压降低,此时MCU控制继电器吸合,PTC热敏电阻短路出供电回路,限流作用失效,整个电路的电压恢复正常,MCU通过控制IPM模块50以驱动压缩机M的运行频率恢复到正常工作频率。其中,如果之前关闭了其他负载如室内、外风机,则重新恢复正常,如果输出了保护提示信息则关闭提示信息的输出,使得空调器恢复正常工作。
可以理解的是,在压缩机M的运行频率很低或者为零时,由于工作电流I很小,例如在mA级,则通过PTC热敏电阻的电流也很低。由于通过PTC热敏电阻的电流变低,其阻值会回落降低,例如只有几十欧姆,那么PTC热敏电阻的分压很小,其分压限流效果几乎可以忽略,则电压采样器20采样到的直流电压可真实对应输入的交流电的电压,如果电压采样器20采样到的直流电压小于预设安全电压区间的下限,就可以判断输入的交流电的电压回落到了安全范围内。其中,在本发明的一个示例中,预设安全电压区间的下限可以为电解电容EC1最高耐压值的80%,而预设安全电压区间的上限可以为电解电容EC1最高耐压值的90%,从而可保证电解电容EC1等器件的工作电压一直都小于其最大耐压值,有利于延长电解电容EC1等器件的工作寿命。
根据本发明的另一个实施例,如图3所示,当保护器件为水泥电阻,且可控开关例如继电器断开时,如果电压采样器20采样到的所述直流电压小于所述预设安全电压区间的下限,控制电路30即控制电路中的MCU通过控制空调器中的IPM模块50以降低空调器中的压缩机M的运行频率。
与PTC热敏电阻相比,由于水泥电阻的阻值是恒定的,不存在阻值变化的情况,当电压采样器20采样到直流电压大于预设安全电压区间的上限时,MCU控制继电器断开,使得水泥电阻串联接入到供电回路,由于水泥电阻的分压作用,直流电压V会迅速降低,如果电压采样器20采样到直流电压小于预设安全电压区间的下限,MCU则通过控制IPM模块50使得压缩机M的运行频率迅速降低,并进一步可关闭空调器的其他负载如室内、外风机等,使得工作电流I降低,这样水泥电阻的分压会变小,从 而不会导致整流器40输出的直流电压过低而影响压缩机M和IPM模块50正常工作,保证空调器运行稳定。
根据本发明实施例提出的用于空调器的过电压保护装置,在电压采样器采样到整流器输出的直流电压大于预设安全电压区间的上限时,控制电路控制可控开关断开,这样保护器件接入交流电的供电回路,从而使得输入的交流电过高的电压被保护器件承担,避免因输入的交流电的电压过高而导致空调器中电子元件的损坏。并且,在电压采样器采样到的直流电压小于预设安全电压区间的下限时,控制电路通过控制空调器中的IPM模块以调节空调器中的压缩机的运行频率,以使直流电压处于预设安全电压区间。因此,本发明实施例的用于空调器的过电压保护装置能够提高整个空调器的变频控制电路的可靠性,保证空调器正常、安全、稳定、可靠运行。
此外,本发明的实施例还提出了一种空调器,其包括上述的用于空调器的过电压保护装置。
根据本发明实施例的空调器,在输入的交流电的电压过高时,通过过电压保护装置使得输入的交流电过高的电压被保护器件承担,避免因输入的交流电的电压过高而导致空调器中电子元件的损坏,可靠性得到了大大提高,并且能够正常稳定地运行。
图5为根据本发明实施例的空调器的过电压保护方法的流程图。其中,该空调器包括上述的用于空调器的过电压保护装置。如图5所示,该空调器的过电压保护方法包括以下步骤:
S1,采样整流器输出的直流电压。
S2,在直流电压大于预设安全电压区间的上限时控制可控开关断开以使保护器件串联到交流电的一端与整流器的第一输入端之间,这样使得保护器件串入供电回路来承担输入的交流电高出的电压,从而避免电路中的电子元件因过电压而受到损坏。并在所述直流电压小于所述预设安全电压区间的下限时,通过控制所述空调器中的IPM模块以调节所述空调器中的压缩机的运行频率,以使所述直流电压处于所述预设安全电压区间。
根据本发明的一个实施例,当所述压缩机的运行频率小于等于第一预设频率,如果所述直流电压小于所述预设安全电压区间的下限,控制所述可控开关闭合以使所述保护器件例如PTC热敏电阻短路。
根据本发明实施例的空调器的过电压保护方法,实时采样整流器输出的直流电压的大小,在采样到的直流电压大于预设安全电压区间的上限时,控制可控开关断开,这样保护器件接入交流电的供电回路,从而使得输入的交流电过高的电压被保护器件 承担,避免因输入的交流电的电压过高而导致空调器中电子元件的损坏,并且在直流电压小于预设安全电压区间的下限时,通过控制空调器中的IPM模块以调节空调器中的压缩机的运行频率,以使直流电压处于预设安全电压区间,大大提高了电路的可靠性,保证空调器正常稳定运行。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (9)

  1. 一种用于空调器的过电压保护装置,其特征在于,包括:
    保护器件,所述保护器件串联在输入的交流电的一端与所述空调器中的整流器的第一输入端之间;
    可控开关,所述可控开关与所述保护器件并联;
    采样所述整流器输出的直流电压的电压采样器,所述电压采样器连接在所述整流器的第一输出端与第二输出端之间;
    电解电容,所述电解电容并联在所述整流器的第一输出端与第二输出端之间;以及
    控制电路,所述控制电路分别与所述可控开关的控制端和所述电压采样器相连,所述控制电路在所述电压采样器采样到的所述直流电压大于预设安全电压区间的上限时控制所述可控开关断开以使所述保护器件串联到所述交流电的一端与所述整流器的第一输入端之间,并在所述电压采样器采样到的所述直流电压小于所述预设安全电压区间的下限时,所述控制电路通过控制所述空调器中的IPM模块以调节所述空调器中的压缩机的运行频率,以使所述直流电压处于所述预设安全电压区间。
  2. 如权利要求1所述的用于空调器的过电压保护装置,其特征在于,所述保护器件为正温度系数PTC热敏电阻或水泥电阻。
  3. 如权利要求1所述的用于空调器的过电压保护装置,其特征在于,所述可控开关为继电器。
  4. 如权利要求3所述的用于空调器的过电压保护装置,其特征在于,所述控制电路包括:
    控制器,所述控制器与所述电压采样器相连;
    第三电阻,所述第三电阻的一端与所述控制器相连;
    第一三极管,所述第一三极管的基极与所述第三电阻的另一端相连,所述第一三极管的集电极与所述继电器中的线圈的一端相连,所述继电器中的线圈的另一端与第一预设电压的电源相连,所述继电器中的开关的一端和另一端并联在所述保护器件的两端;
    第四电阻,所述第四电阻的一端与所述第一三极管的发射极相连,所述第四电阻的另一端接地;
    第一二极管,所述第一二极管的阳极与所述第一三极管的集电极相连,所述第一 二极管的阴极与所述第一预设电压的电源相连。
  5. 如权利要求4所述的用于空调器的过电压保护装置,其特征在于,还包括:
    供电电路,所述供电电路并联在所述整流器的第一输出端与第二输出端之间,所述供电电路为所述继电器提供所述第一预设电压的电源,并为所述控制器提供第二预设电压的电源,其中,所述第二预设电压小于所述第一预设电压。
  6. 如权利要求1所述的用于空调器的过电压保护装置,其特征在于,当所述压缩机的运行频率小于等于第一预设频率,如果所述电压采样器采样到的所述直流电压小于所述预设安全电压区间的下限,所述控制电路控制所述可控开关闭合以使所述保护器件短路。
  7. 一种空调器,其特征在于,包括如权利要求1-6中任一项所述的用于空调器的过电压保护装置。
  8. 一种如权利要求7所述的空调器的过电压保护方法,其特征在于,包括以下步骤:
    采样所述整流器输出的直流电压;
    在所述直流电压大于预设安全电压区间的上限时控制所述可控开关断开以使所述保护器件串联到所述交流电的一端与所述整流器的第一输入端之间,并在所述直流电压小于所述预设安全电压区间的下限时,通过控制所述空调器中的IPM模块以调节所述空调器中的压缩机的运行频率,以使所述直流电压处于所述预设安全电压区间。
  9. 如权利要求8所述的空调器的过电压保护方法,其特征在于,当所述压缩机的运行频率小于等于第一预设频率,如果所述直流电压小于所述预设安全电压区间的下限,控制所述可控开关闭合以使所述保护器件短路。
PCT/CN2014/087309 2014-07-02 2014-09-24 用于空调器的过电压保护装置、过电压保护方法及空调器 WO2016000327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410314284.1 2014-07-02
CN201410314284.1A CN104134983B (zh) 2014-07-02 2014-07-02 用于空调器的过电压保护装置、过电压保护方法及空调器

Publications (1)

Publication Number Publication Date
WO2016000327A1 true WO2016000327A1 (zh) 2016-01-07

Family

ID=51807559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087309 WO2016000327A1 (zh) 2014-07-02 2014-09-24 用于空调器的过电压保护装置、过电压保护方法及空调器

Country Status (2)

Country Link
CN (1) CN104134983B (zh)
WO (1) WO2016000327A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111251827A (zh) * 2020-01-20 2020-06-09 广州华凌制冷设备有限公司 空调器的控制方法、装置、空调器和存储介质
CN112670956A (zh) * 2021-01-18 2021-04-16 佛山市顺德区美的电子科技有限公司 空调器的过压保护方法、装置和空调器
CN113054887A (zh) * 2019-12-28 2021-06-29 南京德朔实业有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN113587377A (zh) * 2021-06-24 2021-11-02 青岛海信日立空调系统有限公司 一种多联机空调及空调节能控制方法
CN114243636A (zh) * 2021-12-31 2022-03-25 华南蓝天航空油料有限公司 一种防异常电流侵入装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638616B (zh) * 2014-12-29 2017-06-27 广东美的制冷设备有限公司 变频空调器及变频空调器的防电压冲击保护方法、装置
CN107681626A (zh) * 2017-09-13 2018-02-09 广东美的制冷设备有限公司 空调控制器的保护电路及其控制方法
CN112821350B (zh) * 2020-12-31 2023-09-19 Tcl空调器(中山)有限公司 电压异常保护电路、控制方法及空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501562A (zh) * 2002-11-15 2004-06-02 深圳市中兴通讯股份有限公司 一种实现在线式交流输入高压保护的电路
CN1801564A (zh) * 2005-01-08 2006-07-12 艾默生网络能源系统有限公司 具有过压保护的开关电源及其过压保护方法
CN201204447Y (zh) * 2008-06-04 2009-03-04 青岛海信电器股份有限公司 具有浪涌电流抑制作用的电源
CN201315484Y (zh) * 2008-11-25 2009-09-23 海信(山东)空调有限公司 浪涌电压抑制电路及具有所述电路的空调器
US20100165526A1 (en) * 2008-12-30 2010-07-01 International Business Machines Corporation Apparatus, system, and method to prevent smoke in a power supply powered by a current limited source
CN202997527U (zh) * 2012-12-28 2013-06-12 海信(山东)空调有限公司 一种三相电源的故障检测保护电路及变频空调器
CN103390879A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 一种交流电源输入高压防护装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501562A (zh) * 2002-11-15 2004-06-02 深圳市中兴通讯股份有限公司 一种实现在线式交流输入高压保护的电路
CN1801564A (zh) * 2005-01-08 2006-07-12 艾默生网络能源系统有限公司 具有过压保护的开关电源及其过压保护方法
CN201204447Y (zh) * 2008-06-04 2009-03-04 青岛海信电器股份有限公司 具有浪涌电流抑制作用的电源
CN201315484Y (zh) * 2008-11-25 2009-09-23 海信(山东)空调有限公司 浪涌电压抑制电路及具有所述电路的空调器
US20100165526A1 (en) * 2008-12-30 2010-07-01 International Business Machines Corporation Apparatus, system, and method to prevent smoke in a power supply powered by a current limited source
CN103390879A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 一种交流电源输入高压防护装置
CN202997527U (zh) * 2012-12-28 2013-06-12 海信(山东)空调有限公司 一种三相电源的故障检测保护电路及变频空调器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054887A (zh) * 2019-12-28 2021-06-29 南京德朔实业有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN113054887B (zh) * 2019-12-28 2024-01-05 南京泉峰科技有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN111251827A (zh) * 2020-01-20 2020-06-09 广州华凌制冷设备有限公司 空调器的控制方法、装置、空调器和存储介质
CN112670956A (zh) * 2021-01-18 2021-04-16 佛山市顺德区美的电子科技有限公司 空调器的过压保护方法、装置和空调器
CN112670956B (zh) * 2021-01-18 2023-08-04 佛山市顺德区美的电子科技有限公司 空调器的过压保护方法、装置和空调器
CN113587377A (zh) * 2021-06-24 2021-11-02 青岛海信日立空调系统有限公司 一种多联机空调及空调节能控制方法
CN113587377B (zh) * 2021-06-24 2023-08-04 青岛海信日立空调系统有限公司 一种多联机空调及空调节能控制方法
CN114243636A (zh) * 2021-12-31 2022-03-25 华南蓝天航空油料有限公司 一种防异常电流侵入装置及方法
CN114243636B (zh) * 2021-12-31 2023-12-08 华南蓝天航空油料有限公司 一种防异常电流侵入装置及方法

Also Published As

Publication number Publication date
CN104134983A (zh) 2014-11-05
CN104134983B (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016000327A1 (zh) 用于空调器的过电压保护装置、过电压保护方法及空调器
CN104134981B (zh) 用于空调器的过电压保护装置、过电压保护方法及空调器
CN104638616B (zh) 变频空调器及变频空调器的防电压冲击保护方法、装置
US9577534B2 (en) Power converter and air conditioner
CN103973277B (zh) 绝缘栅双极型晶体管的短路保护电路和方法
TWI551016B (zh) Power supply and power supply method
WO2019052256A1 (zh) 空调控制器的保护电路及其控制方法
JP4175258B2 (ja) 圧縮機ユニットおよびそれを用いた冷凍機
US10468969B2 (en) Electronic circuit and method for operating an electronic circuit
US10176950B2 (en) Latching relay drive circuit
CN105932654B (zh) 空调器和用于其的风机的电源控制电路
CN109579388A (zh) 压缩机软启动控制电路、方法及空调器
CN112670956A (zh) 空调器的过压保护方法、装置和空调器
CN203967744U (zh) 用于空调器的过电压保护装置及空调器
JP2003134826A (ja) 電源装置およびそれを用いた空気調和機
CN104134982A (zh) 用于空调器的过电压保护装置、过电压保护方法及空调器
CN112713579A (zh) 防浪涌电路的控制方法、系统及空调设备
JP6462637B2 (ja) 沿面放電素子駆動装置および沿面放電素子駆動方法
CN206226396U (zh) 基于电压非线性元件的过电压检测及开关电路
KR100308563B1 (ko) 분리형 공기조화기의 실외기 전원공급장치및 그 방법
KR102007851B1 (ko) 전력변환장치 및 이를 포함하는 공기조화장치
CN216905400U (zh) 延时电路
JP2019007709A (ja) 電子機器
CN110410993B (zh) 空调电路和空调的供电方法
JP7095555B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896348

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14896348

Country of ref document: EP

Kind code of ref document: A1