WO2016000226A1 - 处理信号的方法、发射机和压缩采样接收机 - Google Patents

处理信号的方法、发射机和压缩采样接收机 Download PDF

Info

Publication number
WO2016000226A1
WO2016000226A1 PCT/CN2014/081507 CN2014081507W WO2016000226A1 WO 2016000226 A1 WO2016000226 A1 WO 2016000226A1 CN 2014081507 W CN2014081507 W CN 2014081507W WO 2016000226 A1 WO2016000226 A1 WO 2016000226A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
information symbols
carriers
precoding
random sequence
Prior art date
Application number
PCT/CN2014/081507
Other languages
English (en)
French (fr)
Inventor
朱胡飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14896645.0A priority Critical patent/EP3151436B1/en
Priority to CN201480080198.7A priority patent/CN106464273B/zh
Priority to PCT/CN2014/081507 priority patent/WO2016000226A1/zh
Publication of WO2016000226A1 publication Critical patent/WO2016000226A1/zh
Priority to US15/394,354 priority patent/US10044401B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3059Digital compression and data reduction techniques where the original information is represented by a subset or similar information, e.g. lossy compression
    • H03M7/3062Compressive sampling or sensing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to a method of processing a signal, a transmitter, and a compressed sample receiver. Background technique
  • Compressive Sampling is a new theory of sampling. By developing the sparse characteristics of the signal, it acquires discrete samples of the signal with random samples under conditions far below the Nyquist sampling rate. The nonlinear reconstruction algorithm achieves distortion-free reconstruction of the signal. Since the compression enthalpy theory has low requirements on the sampling frequency, it has broad application prospects.
  • a frequency word is divided into a plurality of sub-bands, and a plurality of sub-bands occupied by an OFDM signal transmitted by one transmitter may be spaced apart in frequency, and the occupied sub-bands may dynamically change with time.
  • many compressed sample receivers need to know the frequency band information occupied by the frequency band signal to be sampled in advance in order to compress the received analog signal.
  • the system has multiple sampling channels, and multiple sampling channels process the received signals in parallel.
  • the received signal is first multiplied by a periodic pseudo-random sequence (or a mixing function), and the result is equivalent to moving a part of the broadband spectrum to the vicinity of the baseband, as for the moving of the sample channel.
  • the above-mentioned compression sampling method has the following problems: After the multi-band signals are mixed (aliased to the same frequency band) by using a plurality of sampling channels of the compressed sampling receiver, mutual interference occurs between the signals, resulting in reception of signals.
  • the Signal to Interference plus Noise Radio (SINR) is low, and the subsequent signal recovery is poor.
  • Embodiments of the present invention provide a method for processing a signal, a transmitter, and a compression sample receiver to improve an SINR of a received signal.
  • a method for processing a signal includes: acquiring a periodic pseudo-random sequence used in mixing a compressed sample receiver; selecting 2N information symbols from the N wireless signals, wherein the N wireless The signals are respectively located in N narrowbands, and the 2N information symbols are respectively located in 2N carriers on the N narrowbands, and the spectrum of the information symbols in the 2N carriers is moved to the frequency after the mixing.
  • the performing, by using the precoding matrix, precoding the 2N information symbols to obtain 2N precoding results including: Half of the 2N information symbols are conjugated, and half remains unchanged, and 2N to be pre-compiled
  • the conjugate of the 2N information symbols is conjugated, including: from the 2N carriers Determining N target carriers, wherein the target carrier satisfies: an information symbol located thereon, after being compressed by the compression sample receiver, a conjugate is obtained; wherein the 2N information symbols are located The information symbols on the N target carriers are conjugated.
  • the conjugate of the 2N intermediate items is conjugated, including: the 2N intermediate items
  • the intermediate term converted by the information symbols on the N target carriers is conjugated.
  • the transmitting, by the 2N carriers, the 2N precoding results to the compressed sampling receiver respectively includes: transmitting, by using the 2N carriers, the 2N precoding results to the receiving end, where a precoding result transmitted by each carrier is converted by an information symbol located on the carrier.
  • the acquiring a periodic pseudo-random sequence used when mixing the compressed sample receiver comprises: receiving the compression a signaling sent by the sampling receiver, the signaling is used to indicate a sequence number of the periodic pseudo-random sequence; and, according to the signaling, obtaining, from the pre-stored periodic pseudo-random sequence set, a sequence corresponding to the sequence number Periodic pseudo-random sequence.
  • the selecting the 2N information symbols from the N wireless signals includes: according to the periodic pseudo random sequence Frequency f p , selecting 2N carriers from the N narrow bands, the 2N carriers satisfy: After the mixing, the spectrum on the 2N carriers will be moved to a mixing interval [-f p /2 ,
  • each of the N wireless signals is a signal occupying a predetermined and continuous frequency band.
  • the wireless signal is an OFDM signal
  • the narrowband is a subband
  • the information symbol is an OFDM symbol
  • the carrier is a subcarrier.
  • a second aspect provides a method for processing a signal, comprising: acquiring a received signal matrix Y by using a compressed sample receiver; determining a receiving matrix ⁇ according to the periodic pseudo random sequence used by the compressed receiver;
  • the matrix A is generated based on the periodic pseudo-random sequence; the matrix ⁇ is multiplied by the matrix Y to recover the signal based on the result of the multiplication.
  • the method before the acquiring the received signal matrix Y by the compressed sample receiver, the method further includes: sending signaling to the transmitter, where the signaling is used And indicating a sequence number of the periodic pseudo-random sequence, where the sequence number is preset, and the periodic pseudo-random sequence is obtained therein.
  • a transmitter including: an acquiring unit, configured to acquire a periodic pseudo-random sequence used in mixing a compressed sample receiver; and a selecting unit, configured to select 2N information symbols from the N wireless signals
  • the N radio signals are respectively located in N narrowbands, and the 2N information symbols are respectively located in 2N carriers on the N narrowbands, and the spectrum of information symbols in the 2N carriers passes through
  • the mixing unit is moved to the same frequency band;
  • the determining unit is configured to determine a precoding matrix according to the periodic pseudo random sequence, wherein the matrix conjugate transposed matrix ff satisfies the singular value decomposition Equation:
  • a s S ⁇ H
  • the matrix A s is a matrix consisting of columns corresponding to the N narrow bands in the equivalent channel matrix A, and the matrix A is generated based on the periodic pseudo-random sequence
  • a precoding unit configured to perform precoding processing on the 2N information symbols by using the precoding matrix determined by the determining unit, to obtain 2N precoding results; and a
  • the precoding unit is specifically used One half of the 2N information symbols is conjugated, and one half remains unchanged, and 2N intermediate items to be advanced are obtained; half of the 2N intermediate items are conjugated, and half remains unchanged. The 2N precoding results are obtained.
  • the pre-coding unit is specifically configured to determine N target carriers from the 2N carriers, where The target carrier satisfies: an information symbol located thereon, which is conjugated after being compressed by the compressed sample receiver; and an information symbol located on the N target carriers among the 2N information symbols Take the conjugate.
  • the intermediate term transformed from the information symbols on the other implementation carrier of the third aspect is conjugated.
  • the transmitting unit is specifically configured to send the 2N pre-prepared to the receiving end by using the 2N carriers respectively.
  • the result of the encoding, wherein the precoding result transmitted by each carrier is converted by the information symbol located on the carrier.
  • the acquiring unit is specifically configured to receive signaling sent by the compressed sampling receiver, where the signaling is used by And indicating a sequence number of the periodic pseudo-random sequence; and acquiring, according to the signaling, a periodic pseudo-random sequence corresponding to the sequence number from a pre-stored periodic pseudo-random sequence set.
  • 2N carriers are selected in the N narrowbands, and the 2N carriers satisfy: After the mixing, the spectrum on the 2N carriers will be moved to the mixing interval [-fp/2, +f p /2] The same frequency band; the information symbols on the 2N carriers are selected as the 2N information symbols.
  • each of the N wireless signals is a signal occupying a preset and continuous frequency band number.
  • the wireless signal is an OFDM signal
  • the narrowband is a subband
  • the information symbol is an OFDM symbol
  • the carrier is a subcarrier.
  • the compressed sample receiver further includes: a sending unit, configured to send signaling to the transmitter, where the signaling is used to indicate the periodic pseudo random sequence And a sequence number of each of the periodic pseudo-random sequences, wherein the periodic pseudo-random sequence is obtained in the sequence of the pre-machine sequence of each periodic pseudo-random sequence.
  • the matrix 4 is a non-zero term, and the interference between the 2N information symbols is inevitable.
  • the final received vector is satisfied: Since the singular value decomposition is a diagonal matrix, the orthogonality is satisfied between the 2N information symbols, thereby avoiding mutual interference and improving the SINR of the received signal.
  • FIG. 1 is an exemplary diagram of a conventional compression sample receiver.
  • Figure 2 is an exemplary diagram of a specific form of ; ⁇ ;).
  • Fig. 3 is a diagram showing an example of a specific form of the filter H).
  • Figure 4 is a schematic diagram of the spectrum shifting process.
  • Figure 5 is a schematic diagram of the receiving end frequency domain model.
  • Figure 6 is an exemplary diagram of a narrowband signal to be transmitted.
  • Fig. 7 is a diagram showing the frequency shift corresponding to the narrowband signal of Fig. 6.
  • Figure 8 is a schematic diagram of a frequency domain model of the receiving end when the transmitting end transmits the narrowband signal shown in Figure 6.
  • Figure 9 is a schematic illustration of an equivalent model of the frequency domain model of Figure 8.
  • FIG. 10 is a schematic flow chart of a method of processing a signal according to an embodiment of the present invention.
  • Figure 11 is a schematic flow chart of a precoding process.
  • FIG. 12 is a schematic flow chart of a method of processing a signal according to an embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a transmitter in accordance with one embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a receiver in accordance with one embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a transmitter in accordance with one embodiment of the present invention.
  • Figure 16 is a schematic block diagram of a receiver in accordance with one embodiment of the present invention. detailed description
  • the system uses spread spectrum technology in communication theory.
  • the system has an analog mixing front end that simulates the aliased front-end aliasing spectrum so that the spectrum of each band appears in the baseband.
  • the system includes a plurality of channels that perform different aliasing, so, in principle, a sufficiently large number of aliases can recover relatively sparse multi-band signals.
  • the signal x(t) is simultaneously input into the m channels of the compressed sample receiver.
  • jc(t) is multiplied by the mixing function A(t).
  • the A(t) is a periodic pseudo-random sequence with a period of;
  • the signal frequency is cut off by a low-pass filter, the low-pass filter
  • the cutoff frequency is 1/(27;), and the filtered signal is sampled at a frequency of 1/7;
  • the sampling frequency of each sampling channel can be set low enough to enable existing commercial ADCs to perform such sampling tasks.
  • the parameters that the system needs to design include: the number of channels m, the period; the sampling frequency 1/7; and the mixing function A(t) when l ⁇ ⁇ .
  • A(t) is selected as a piecewise constant function, which varies between ⁇ 1 in M equal time intervals, as shown in Figure 2. Its specific form is as follows:
  • the signal processing method of the above system is analyzed from the perspective of the frequency domain.
  • the filter H(/) uses the frequency response of the ideal rectangle function, as shown in Figure 3. Therefore, only the frequencies in the ⁇ interval will be included in the uniform sequence. Therefore, the discrete time Fourier transform (DTFT) of the i-th sequence can be expressed as:
  • the mixer output (0 is not limited by the frequency band, theoretically, depends on the coefficient as defined in the Fourier transform equation (5). Since the output of the filter only contains x(t) Finite sub-aliasing, so it can be solved by (6).
  • Each item represents a segment of frequency, the length is . Therefore, in order to recover x(t), it is sufficient to determine in the interval /e.
  • the periodic function A(t) with a periodicity can be arbitrarily selected.
  • the interval for each move is f p : ⁇ lT p .
  • the shift frequency controls the arrangement of the band segments, as shown in FIG. ⁇ s can be chosen such that each frequency band contains only one non-zero element (relative to a particular f) such that at most N non-zero elements are included. In practice, it can be slightly larger than B to avoid edge effects. Therefore, the parameter; is used to pre-convert the multi-band x(t)eM to a range according to the degree of sparsity.
  • the sampling frequency of a single channel is set in the frequency range as shown in equation (6). It can be clearly seen from Fig. 4 that for each / as long as ⁇ _, restoring jc(t) from the sample sequence [ «] is equivalent to restoring the number m of channels from /), which determines the total sample rate of the system is Mf s .
  • the setting of ⁇ and _ determines L, L is the number of frequency segments that may contain energy for z(,, medium, for a particular x(t)eM.
  • each A(t) provides a row of matrix A.
  • A(t) should have many time periods such that the Fourier expansion (3) contains more than L main terms.
  • the channel output ⁇ ] is a mixture of all (not all 0) spectral segments.
  • the functions A(t) should be different from each other to ensure that the rows of the matrix A are linearly independent.
  • Figure 6 is an exemplary diagram of a narrowband signal to be transmitted.
  • the signal to be transmitted is x(t), including two narrowband signals as shown in FIG. 6: narrowband signal 1 and narrowband signal 2 (narrowband signal ⁇ and narrowband signal 2' correspond to narrowband signal 1 and narrowband signal 2, respectively Negative frequency narrowband signal).
  • the compressed sample receiver After transmitting the above x(t) at the transmitting end, it is received by the compressed sample receiver through channel transmission.
  • the compressed sample receiver is provided with m sampling channels, and m-path parallel processing is performed on the received signals.
  • the specific form of the compressed sampling receiver can be seen in FIG. 1, which has been described in detail above, and will not be described herein.
  • the low-pass filter h(t) bandwidth can be set to [-f s /2, f s /2].
  • DSP digital signal processing
  • the periodic pseudo-random sequence ⁇ ( ⁇ multiplied by x(t) has the effect of spectrum shifting
  • FIG. 7 shows the result of the narrowband signal in FIG. 6 after frequency shifting
  • Figure 8 shows the mathematical model of the received signal in the frequency domain using the frequency shifting method shown in Figure 7. The establishment of the mathematical model is described in the above description of equation (8).
  • D is the diagonal matrix,
  • the values of the items can be regarded as constants, and the meanings and forms of the matrices S, F, D are as described above, especially the descriptions related to the above formulas (11) and (16).
  • (/) is the result of the ith path sample sequence.
  • (") is transformed into the frequency domain.
  • the specific form of the matrix Z in Fig. 8 is related to the period of the periodic pseudo-random sequence, see the push-to-process associated with equation (10).
  • the remaining narrow bands have no signal and are represented by a horizontal line, that is, the behavior of the matrix Z corresponding to the horizontal line is zero. item.
  • the matrix Y in FIG. 8 is deformed, by retaining the non-zero entries with the same number of columns of the matrix A and the matrix Z, to give S matrix A, the equation in FIG. 8 can be converted to Fig. For example, if the first, third, sixth, and eighth rows in the matrix Z include non-zero elements, then the first, third, sixth, and eighth columns in the matrix A may be retained to form the matrix A s .
  • the frequency of the four narrowband signals is moved to the same frequency band near the baseband, that is, [-f p /2 in Fig. 7 Fp/2] , that is, the frequency of the four narrow-band signals (including the narrow-band signals of two negative frequencies) is aliased, the aliased narrow-band signals interfere with each other, and the received signal has a low SINR.
  • H does not record narrowband signal 1 and narrowband signal 2 as c and d, respectively.
  • each narrowband signal is modulated by Orthogonal Frequency Division Multiplexing (OFDM)
  • OFDM Orthogonal Frequency Division Multiplexing
  • c and d each contain 101 subcarriers.
  • the four high frequency subcarriers ⁇ 5 0 ⁇ , ⁇ 49 ⁇
  • the matrix representing the four narrowband signals ⁇ can be expressed by its sample value as:
  • the transmitting end directly transmits the OFDM symbol c k
  • K C_ and the narrowband signal are respectively located on the k-th subcarrier and the second subcarrier -k 1; OFDM symbol D_ 4 and k are respectively located on the narrowband signal and the k-th subcarrier of subcarrier -k 2.
  • the information symbols on the above four subcarriers are transmitted to the receiving end and processed through the parallel processing of the compressed sample receiver m.
  • the information symbol transmitted by the transmitting end is pre-coded to be changed.
  • the embodiment does not specifically limit this.
  • FIG. 10 is a schematic flow chart of a method of processing a signal according to an embodiment of the present invention.
  • the method of Figure 10 can be performed by a transmitting end, for example, a UE or a base station.
  • the method of Figure 10 can include:
  • the number of periodic pseudo-random sequences used by the compressed sample receiver and the pressure is equal, that is, each sampling channel uses a periodic pseudo-random sequence, and the periodic pseudo-random sequences of different sampling channels are different.
  • Step 1010 may include: receiving signaling sent by the compressed sample receiver, where the signaling command acquires a periodic pseudo random sequence corresponding to the sequence number from a pre-stored periodic pseudo-random sequence set.
  • the periodic pseudo-random sequence set may not be stored in advance, and the receiving end directly transmits the spreading sequence used by the compressed sample receiver to the transmitting end.
  • the information symbols on which 2N carriers are moved to the same frequency band at the receiving end are known in advance.
  • the information symbols on the 2N carriers can be mutually known at the receiving end.
  • the step 1020 may include: selecting, according to the frequency f p of the periodic pseudo-random sequence, 2N carriers from the N narrowbands, where the 2N carriers satisfy: after the mixing, the 2N The spectrum on the carriers will be moved to the same frequency band within the mixing interval [-f p /2, +f p /2]; the information symbols on the 2N carriers are selected as the 2N information symbols.
  • the manner in which the compressed sample receiving end shifts the spectrum is related to the frequency f p of the periodic pseudo random sequence (the reciprocal of the period T p ), and the f p can know that the receiving end is in units of f p comprising N narrowband speech moved to the entire frequency band [-fp / 2, + f p / 2] , since the transmitting end band known to be transmitted where N wireless signals, it can be determined After the spectrum shifting method, which frequency bands will be moved to the frequency band [-fp/2, +f p /2], and which carriers in the frequency band
  • the information symbols in the waves interfere with each other. See equation (19), receiving y A at the receiving end That is, the k-th carrier and the -kth carrier of the narrowband signal 1, and the information symbols in the k-th carrier and the -kth carrier of the narrowband signal 2 are moved to the same frequency band at the receiving end, resulting in Mutual interference; then the information symbols t , c- k , ck and of the four carriers are selected from the two narrowband signals.
  • the specific types of the above information symbols may be different in different communication systems or communication modes, which are not specifically limited in the embodiment of the present invention.
  • the above information symbol may be
  • the information symbols after the Quadrature Amplitude Modulation (QAM) processing may be OFDM symbols.
  • the above wireless signal may be a signal occupying a preset and continuous frequency band.
  • it may be an OFDM signal, or a narrowband signal.
  • the narrowband may be a pre-divided range of frequencies, which may be subbands in an OFDM system.
  • the MIMO matrix A s is equivalent a matrix consisting of columns corresponding to the N narrow bands in the channel matrix A, the matrix A being generated based on the periodic pseudo-random sequence.
  • A SFD, where the i-th row of S is the value of A(t) - period; F is the DFT matrix; D is the diagonal matrix, and the value of each item can be regarded as a constant.
  • Equation (10) it can be known from equation (10) that, according to the frequency f p of the periodic pseudo-random sequence, the entire frequency term including N narrow bands is moved to the frequency band in units of f p [-f p /2, +f p / 2]
  • the frequency band in which the N narrowbands are located and the above-mentioned frequency shifting mode, it can determine which behaviors in the matrix Z are zero rows and which rows are not zero (that is, the spectrum information of the signal is included). It should be noted that it is not necessary to find the matrix Z here, and only the zero row or the non-zero row of the matrix Z needs to be determined.
  • the precoding processing manner may be multiple, as long as the precoding processing is performed, so that the receiving vector corresponding to the 2N precoding results meets at the compression sampling receiver end:
  • the implementation of y ⁇ should fall within the scope of protection of the embodiments of the present invention, which will be described in detail later.
  • the ⁇ here is not a column vector composed of 2 information symbols, but a 2 ⁇ ⁇ ⁇ ⁇ ⁇ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
  • the two-time precoding result is respectively transmitted to the compression sample receiver by using the two carriers.
  • the precoding matrix is generated according to the periodic pseudo random sequence used by the receiving end.
  • step 1040 may include:
  • the step 1110 may include: determining N target carriers from the 2N carriers, where the target carrier is: an information symbol located thereon, after the compressed sample receiver The conjugated carrier will be taken after compression; the information symbols located on the N target carriers among the 2N information symbols are conjugated.
  • the information symbols in the -kth carrier of the narrowband signal 1 and the -kth carrier of the narrowband signal 2 are conjugated at the receiving end, and the two carriers are determined as the target carrier. On the target carrier The information symbol is conjugated to obtain the item to be precoded.
  • step 1130 may include: aligning an intermediate term converted from information symbols on the N target carriers among the 2N intermediate items.
  • the -kth carrier of the narrowband signal 1 and The intermediate term corresponding to the -kth carrier of the narrowband signal 2 is conjugated, see equation (27),
  • the -kth carrier and the kth carrier of the narrowband signal 1 are respectively retransmitted; and the -kth and kth carriers of the narrowband signal 2 are respectively transmitted and transmitted.
  • FIG. 11 is only an example of a precoding processing manner.
  • the precoding matrix may be deformed so that the deformed precoding matrix is directly multiplied by the column vector composed of 2N information symbols. Obtaining the above 2N precoding results, in other words, by changing the specific form of the precoding matrix, the precoding matrix further has the above two conjugated operations use.
  • FIG. 12 is a schematic flow chart of a method of processing a signal according to an embodiment of the present invention.
  • the method of Figure 12 is performed by a compressed sample receiver, for example, either a UE or a base station.
  • the method of Figure 12 includes:
  • the transmitting end may send the numbering information to the receiving end by signaling (see the description of FIG. 10 for the manner in which the transmitting end determines the non-zero line of the matrix Z).
  • the receiving end multiplies the receiving matrix by the left, and the multiplied result can ensure each receiving vector in the receiving matrix Y; / are satisfied due to the singular value decomposition, In the diagonal matrix, the orthogonality is satisfied between the 2N information symbols, thereby avoiding mutual interference and improving the SINR of the received signal.
  • the method of FIG. 12 may further include: sending signaling to the transmitter, where the signaling is used to indicate The sequence number of the periodic pseudo-random sequence, wherein the sequence number is preset, and the sequence number uses each periodic pseudo-random sequence.
  • FIG. 13 is a schematic block diagram of a transmitter in accordance with one embodiment of the present invention. It should be understood that the hair of Figure 13
  • the launcher 1300 is capable of implementing the various steps performed by the transmitting end in the above, and to avoid repetition, it will not be described in detail herein.
  • Transmitter 1300 includes:
  • the obtaining unit 1310 is configured to obtain a periodic pseudo-random sequence ⁇
  • the selecting unit 1320 is configured to select 2N information symbols from the N radio signals, where the N radio signals are respectively located in N narrow bands, and the 2N information symbols are respectively located in the N N narrow bands In the carrier, and the spectrum of the information symbols in the 2N carriers is moved to the same frequency band after the mixing;
  • a determining unit 1330 configured to determine, according to the periodic pseudo-random sequence, a precoding matrix, wherein the conjugate transposed matrix of the matrix 10,000 satisfies a singular value decomposition formula:
  • a S H matrix A s is a matrix consisting of columns corresponding to the N narrow bands in the equivalent channel matrix A, the matrix A being generated based on the periodic pseudo-random sequence;
  • a precoding unit 1340 configured to perform precoding processing on the 2N information symbols selected by the selecting unit 1320 by using the precoding matrix determined by the determining unit 1330, to obtain 2N precoding results;
  • the transmitting unit 1350 is configured to separately send the 2N precoding results obtained by the precoding unit 1340 to the compressed sampling receiver by using the 2N carriers.
  • the resulting column vector (where z is not a column vector consisting of 2N information symbols, but half is conjugated and half remains unchanged. See the description of equations (18) and (19) for details.
  • the periodicity of the receiving end is determined by the fact that the matrix 4 is non-zero, and the interference between the 2N information symbols is inevitable.
  • the pre-coding unit 1340 may be specifically configured to: halve half of the 2N information symbols, and keep half of the information symbols to obtain 2N pre-coded items;
  • the precoding matrix is multiplied by the column vector composed of the 2N to-be-precoded items to obtain 2N intermediate terms; half of the 2N intermediate terms are conjugated, and half remains unchanged, and the 2N are obtained. Precoding results.
  • the precoding unit 1340 may be specifically configured to determine N target carriers from the 2N carriers, where the target carrier is: an information symbol located thereon, after The compressed sample receiver will take a conjugated carrier after compressing the sample; and the information symbols located on the N target carriers among the 2N information symbols are conjugated.
  • the pre-coding unit 1340 may be specifically configured to: align the intermediate items converted by the information symbols on the N target carriers in the 2N intermediate items.
  • the sending unit 1350 may be specifically configured to separately send the 2N precoding results to the receiving end by using the 2N carriers, where a precoding result transmitted by each carrier is located by The information symbols on this carrier are converted.
  • the acquiring unit 1310 may be specifically configured to receive signaling sent by the compressed sampling receiver, where the signaling is used to indicate a sequence number of the periodic pseudo random sequence; The signaling is to obtain a periodic pseudo-random sequence corresponding to the sequence number from a pre-stored periodic pseudo-random sequence set.
  • the selection unit 1320 may be specifically configured according to the periodic pseudo-random sequence frequency f p, 2N carriers selected from the N narrow-band, the carrier 2N satisfied: After The mixing, the spectrum on the 2N carriers will be moved to the same frequency band in the mixing interval [-f p /2, +f p /2]; the information symbols on the 2N carriers are selected as The 2N information symbols.
  • each of the N wireless signals is a signal occupying a pre-set and continuous frequency band.
  • the wireless signal is an OFDM signal
  • the narrowband is a subband
  • the information symbol is an OFDM symbol
  • the carrier is a subcarrier
  • FIG. 14 is a schematic block diagram of a compression sample receiver in accordance with one embodiment of the present invention. It should be understood that the compression sample receiver 1400 of FIG. 14 is capable of implementing the various steps performed by the receiving end, Avoid repetition and will not be detailed here. Receiver 1400 can include:
  • An obtaining unit 1410 configured to acquire a received signal matrix Y;
  • Determining unit 1420 configured to determine, according to the periodic pseudo-random sequence ⁇
  • the operation unit 1430 is configured to multiply the matrix determined by the determining unit 1420 by the matrix Y acquired by the obtaining unit 1410 to recover a signal based on the result of the multiplication.
  • the receiving end multiplies the receiving matrix by the left multiplication, and the result of the multiplication can ensure each receiving vector in the receiving matrix Y; / both are satisfied due to the singular value decomposition,
  • the angular matrix satisfies the orthogonality between the 2N information symbols, thereby avoiding mutual interference and improving the SINR of the received signal.
  • the compressed sample receiver 1400 may further include: a sending unit, configured to send signaling to the transmitter, where the signaling is used to indicate a sequence number of the periodic pseudo random sequence, where The sequence number is preset, and the sequence number is used by the transmitter to obtain the periodic pseudo-random sequence from a pre-stored periodic pseudo-random sequence set according to the sequence number.
  • a sending unit configured to send signaling to the transmitter, where the signaling is used to indicate a sequence number of the periodic pseudo random sequence, where The sequence number is preset, and the sequence number is used by the transmitter to obtain the periodic pseudo-random sequence from a pre-stored periodic pseudo-random sequence set according to the sequence number.
  • FIG. 15 is a schematic block diagram of a transmitter in accordance with one embodiment of the present invention. It should be understood that the transmitter 1500 of Figure 15 is capable of implementing the various steps performed by the transmitting end herein, and to avoid repetition, it will not be described in detail herein. Transmitter 1500 includes:
  • the processor 1510 is configured to obtain a periodic pseudo-random sequence ⁇
  • the periodic pseudo-random sequence determines a precoding matrix 10000, wherein the conjugate transposed matrix ff of the matrix 10000 satisfies a singular value decomposition formula: the MIMO matrix A s is obtained by the equivalent channel matrix A, a matrix composed of columns corresponding to the N narrowbands, the matrix A is generated based on the periodic pseudo-random sequence; ⁇ precoding the 2N information symbols with the precoding matrix to obtain 2N Precoding results;
  • the precoding matrix is generated according to the periodic pseudo random sequence used by the receiving end, and is received.
  • the receiving vector satisfies: Since the singular value decomposition is a diagonal matrix, the orthogonality is satisfied between the 2N information symbols, thereby avoiding mutual interference and improving the SINR of the received signal.
  • the processor 1510 may be specifically configured to: align one half of the 2N information symbols, and keep half of the information symbols to obtain 2N precoding items to be precoded; The column vectors of the 2N pre-coded items are multiplied to obtain 2N intermediate items; half of the 2N intermediate items are conjugated, and half of the intermediate items remain unchanged, and the 2N pre-coding results are obtained.
  • the processor 1510 is specifically configured to determine N target carriers from the 2N carriers, where the target carrier satisfies: an information symbol located thereon, after the compression The sample receiver will be conjugated after being compressed; and the information symbols located on the N target carriers among the 2N information symbols are conjugated.
  • the processor 1510 is specifically configured to: conjugate the intermediate item converted by the information symbols on the N target carriers in the 2N intermediate items.
  • the transmitter 1520 may be specifically configured to pass the foregoing
  • the 2N carriers transmit the 2N precoding results to the receiving end, wherein the precoding result transmitted by each carrier is converted by an information symbol located on the carrier.
  • the processor 1510 is specifically configured to receive signaling sent by the compressed sampling receiver, where the signaling is used to indicate a sequence number of the periodic pseudo random sequence; The signaling is to obtain a periodic pseudo-random sequence corresponding to the sequence number from a pre-stored periodic pseudo-random sequence set.
  • the processor 1510 may be specifically configured based on the frequency f p of the periodic pseudo-random sequence, selected from the 2N carriers in the N narrow-band, the 2N carriers satisfied: After the mixing, the spectrum on the 2N carriers will be moved to the mixing interval [-f p /2, The same frequency band within +f p /2]; the information symbols on the 2N carriers are selected as the 2N information symbols.
  • each of the N wireless signals is a signal occupying a pre-set and continuous frequency band.
  • the wireless signal is an OFDM signal
  • the narrowband is a subband
  • the information symbol is an OFDM symbol
  • the carrier is a subcarrier
  • FIG. 16 is a schematic block diagram of a compression sample receiver in accordance with one embodiment of the present invention. It should be understood that the compression sample receiver 1600 of Fig. 16 is capable of implementing the various steps performed by the receiving end in the above, in order to avoid repetition, which will not be described in detail herein.
  • Receiver 1600 can include:
  • a receiver 1610 configured to acquire a received signal
  • the receiving end multiplies the receiving matrix by the left, and the multiplied result can guarantee each receiving vector in the receiving matrix Y; / are satisfied due to the singular value decomposition, In the diagonal matrix, the orthogonality is satisfied between the 2N information symbols, thereby avoiding mutual interference and improving the SINR of the received signal.
  • the compressed sample receiver 1600 may further include: a transmitter, configured to send signaling to the transmitter, where the signaling is used to indicate a sequence number of the periodic pseudo random sequence, where The sequence number is preset, and the sequence number is used by the transmitter to obtain the periodic pseudo-random sequence from a pre-stored periodic pseudo-random sequence set according to the sequence number.
  • a transmitter configured to send signaling to the transmitter, where the signaling is used to indicate a sequence number of the periodic pseudo random sequence, where The sequence number is preset, and the sequence number is used by the transmitter to obtain the periodic pseudo-random sequence from a pre-stored periodic pseudo-random sequence set according to the sequence number.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例提供一种处理信号的方法、发射机和压缩采样接收机,该方法包括:获取压缩采样接收机混频时使用的周期性伪随机序列;从N个无线信号中选取2N个信息符号;根据所述周期性伪随机序列,确定预编码矩阵;采用该预编码矩阵对该2N个信息符号进行预编码处理,得到2N个预编码结果;通过该2N个载波分别向该压缩采样接收机发射该2N个预编码结果。本发明实施例中,通过预编码矩阵对待发射的信息符号进行预编码处理,从而实现了接收端将这些信息符号的频谱混叠时,它们在混叠频段内的正交性,进而避免了这些信息符号之间的干扰,提高了接收信号的SINR。

Description

处理信号的方法、 发射机和压缩釆样接收机 技术领域
本发明实施例涉及无线通信领域, 并且更具体地, 涉及一种处理信号的 方法、 发射机和压缩釆样接收机。 背景技术
传统的信号处理是建立在奈奎斯特(Nyquist )釆样理论的基础上, 即一 个信号可以无失真重建所要求的离散样本数由其带宽决定。 具体地, 当釆样 频率大于信号中最高频率的 2倍时,釆样之后的数字信号完整地保留了原始 信号中的信息。
在无线通信领域, 传输无线信号的频谱带宽有不断增加的趋势。 频谱带 宽越宽, 对模数转换器(Analog to Digital Converter, ADC ) 的釆样速率要 求越高。 高速率 ADC的设计增加了终端设计的复杂度, 且价格昂贵。 例如, 频谱多子带聚合以及子带频点动态变化, 已经广泛应用在现有的无线通信系 统中, 但现有终端的 ADC通常使用子带釆样的方式, 即每个子带使用一路 变频器和滤波器, 每增加一个子带就需要增加一路变频器和滤波器, 终端尺 寸有限, 难以满足频谱多子带聚合及自带频点动态变化的要求。
压缩釆样(Compressive Sampling )是一种新的釆样理论, 它通过开发 信号的稀疏特性, 在远小于奈奎斯特釆样率的条件下, 用随机釆样获取信号 的离散样本, 然后通过非线性重建算法实现信号的无失真重建。 由于压缩釆 样理论对釆样频率的要求较低, 因此具有广阔的应用前景。
目前, 许多通信系统将一段宽带频谱分成多个窄带, 不同窄带用于承载 不同的窄带信号。 例如, 在 OFDM 系统中, 频语被分为多个子带, 一个发 射机发射的 OFDM信号所占用的多个子带之间在频率上可以间隔分布, 且 其占用的子带可以随时间动态变化。 针对这样的多频带信号, 许多压缩釆样 接收机需要预先获知待釆样的频带信号所占用的频带信息, 才能对接收到的 模拟信号进行压缩釆样。 Moshe Mishali 等人(具体参见 IEEE Journal of Selected Topics In Signal Processing, Vol. 4, No. 2, April 2010, 标题名称为: "From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signal" )提出了一种 MWC ( Modulated Wideband Converter, 调制宽带转换 器) 系统, 该系统具有多个釆样通道, 多个釆样通道对接收信号并行处理。 在每个釆样通道中 ,先将接收信号与一个周期性伪随机序列 (或称混频函数 ) 相乘, 其结果相当于将宽带频谱的一部分搬移至基带附近, 至于该釆样通道 搬移的是宽带频谱的哪部分与周期性伪随机序列的具体形式有关, Moshe Mishali 在上述文献中有详细描述; 然后, 通过低通滤波器将除基带附近的 信号之外的部分滤除,并釆用釆样速率远小于 Nyquist频率的低速 ADC对基 带附近的信号进行釆样。 不同的釆样通道设置不同的周期性伪随机序列(这 些周期性伪随机序列的周期 Tp是相同的), 其目的是: 将整个频谱以 = 1/7 为单位搬移至基带附近的一段相同频带内, 这样, 发射端无论釆用哪些窄带 发送无线信号, 这些无线信号的频谱均会被搬移至该基带附近的频段内, 后 续利用信号恢复算法即可恢复多频带信号中的信息。
但是, 上述压缩釆样方式存在的问题是: 使用压缩釆样接收机的多个釆 样通道将多频带信号混频(混叠至相同频段)后, 信号之间存在相互干扰, 导致接收信号的信干噪比( Signal to Interference plus Noise Radio, SINR )低, 后续信号恢复的效果差。 发明内容
本发明实施例提供一种处理信号的方法、 发射机和压缩釆样接收机, 以 提高接收信号的 SINR。
第一方面, 提供一种处理信号的方法, 包括: 获取压缩釆样接收机混频 时使用的周期性伪随机序列;从 N个无线信号中选取 2N个信息符号,其中, 所述 N个无线信号分别位于 N个窄带中,所述 2N个信息符号分别位于所述 N个窄带上的 2N个载波中, 且所述 2N个载波中的信息符号的频谱经过所 述混频后将被搬移至相同频段内; 根据所述周期性伪随机序列, 确定预编码 矩阵万,其中,所述矩阵万的共轭转置矩阵万^满足奇异值分解式: As = SVDH , 矩阵 是由等效信道矩阵 A中的, 与所述 N个窄带对应的列组成的矩阵, 所述矩阵 A是基于所述周期性伪随机序列生成的;釆用所述预编码矩阵对所 述 2N个信息符号进行预编码处理, 得到 2N个预编码结果, 并通过所述 2N 个载波分别向所述压缩釆样接收机发射所述 2N个预编码结果。
结合第一方面, 在第一方面的一种实现方式中, 所述釆用所述预编码矩 阵对所述 2N个信息符号进行预编码处理, 得到 2N个预编码结果, 包括: 将所述 2N个信息符号中的一半取共轭, 一半保持不变, 得到 2N个待预编
2N个中间项; 将所述 2N个中间项中的一半取共轭, 一半保持不变, 得到所 述 2N个预编码结果。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述将所述 2N个信息符号中的一半取共轭, 包括: 从所述 2N个载 波中确定 N个目标载波, 其中, 所述目标载波满足: 位于其上的信息符号, 经过所述压缩釆样接收机压缩釆样后将被取共轭; 将所述 2N个信息符号中 的, 位于所述 N个目标载波上的信息符号取共轭。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述将所述 2N个中间项中的一半取共轭, 包括: 将所述 2N个中间 项中的, 由所述 N个目标载波上的信息符号转化而来的中间项取共轭。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述通过所述 2N个载波分别向所述压缩釆样接收机发射所述 2N个 预编码结果, 包括: 分别通过所述 2N个载波向所述接收端发射所述 2N个 预编码结果, 其中, 各个载波发射的预编码结果由位于该载波上的信息符号 转化而来。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述获取压缩釆样接收机混频时使用的周期性伪随机序列, 包括: 接 收所述压缩釆样接收机发送的信令, 所述信令用于指示所述周期性伪随机序 列的序号; 根据所述信令, 从预先存储的周期性伪随机序列集合中获取与所 述序号对应的周期性伪随机序列。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述从 N个无线信号中选取 2N个信息符号, 包括: 根据所述周期性 伪随机序列的频率 fp, 从所述 N个窄带中选取 2N个载波, 所述 2N个载波 满足: 经过所述混频, 所述 2N个载波上的频谱将被搬移至混频区间 [-fp/2,
+fp/2]内的相同频段; 将所述 2N个载波上的信息符号选取为所述 2N个信息 符号。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述 N个窄带对应的列为: 所述矩阵 A中, 与矩阵 Z的非零行具有 相同编号的列, 所述矩阵 Z满足: Y=AZ, 其中, 矩阵 Y为所述 N个无线信 号对应的接收信号矩阵。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中, 所述 N个无线信号中的各无线信号为占用预先设定且连续频段的信 号。
结合第一方面或其上述实现方式的任一种,在第一方面的另一个实现方 式中 ,所述无线信号为 OFDM信号,所述窄带为子带,所述信息符号为 OFDM 符号, 所述载波为子载波。
第二方面, 提供一种处理信号的方法, 包括: 用压缩釆样接收机获取接 收信号矩阵 Y; 根据所述压缩釆用接收机使用的周期性伪随机序列, 确定接 收矩阵 ^, 其中, 的共轭转置矩阵 满足奇异值分解式: AS = H , 矩 阵 由等效信道矩阵 A中, 与矩阵 Z的非零行具有相同编号的列组成, 所 述矩阵 Z满足: Y=AZ, 所述矩阵 A是基于所述周期性伪随机序列生成的; 将所述矩阵 ^与所述矩阵 Y相乘, 以便基于相乘的结果恢复信号。
结合第二方面, 在第二方面的一个实现方式中, 在所述用压缩釆样接收 机获取接收信号矩阵 Y之前, 所述方法还包括: 向发射机发送信令, 所述信 令用于指示所述周期性伪随机序列的序号, 其中, 所述序号预先设定, 且所 中获取所述周期性伪随机序列。
第三方面, 提供一种发射机, 包括: 获取单元, 用于获取压缩釆样接收 机混频时使用的周期性伪随机序列; 选取单元,用于从 N个无线信号中选取 2N个信息符号, 其中, 所述 N个无线信号分别位于 N个窄带中, 所述 2N 个信息符号分别位于所述 N个窄带上的 2N个载波中, 且所述 2N个载波中 的信息符号的频谱经过所述混频后将被搬移至相同频段内; 确定单元, 用于 根据所述周期性伪随机序列, 确定预编码矩阵万, 其中, 所述矩阵万的共轭 转置矩阵万 ff满足奇异值分解式: As = S^H,矩阵 As是由等效信道矩阵 A中 的, 与所述 N个窄带对应的列组成的矩阵, 所述矩阵 A是基于所述周期性 伪随机序列生成的; 预编码单元, 用于釆用所述确定单元确定的所述预编码 矩阵对所述 2N个信息符号进行预编码处理, 得到 2N个预编码结果; 发射 单元, 用于通过所述 2N个载波分别向所述压缩釆样接收机发射所述预编码 单元得到的所述 2N个预编码结果。
结合第三方面, 在第三方面的一种实现方式中, 所述预编码单元具体用 于将所述 2N个信息符号中的一半取共轭, 一半保持不变, 得到 2N个待预 到 2N个中间项; 将所述 2N个中间项中的一半取共轭, 一半保持不变, 得 到所述 2N个预编码结果。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 式中, 所述预编码单元具体用于从所述 2N个载波中确定 N个目标载波, 其 中, 所述目标载波满足: 位于其上的信息符号, 经过所述压缩釆样接收机压 缩釆样后将被取共轭; 将所述 2N个信息符号中的, 位于所述 N个目标载波 上的信息符号取共轭。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 载波上的信息符号转化而来的中间项取共轭。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 式中, 所述发射单元具体用于分别通过所述 2N个载波向所述接收端发射所 述 2N个预编码结果, 其中, 各个载波发射的预编码结果由位于该载波上的 信息符号转化而来。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 式中, 所述获取单元具体用于接收所述压缩釆样接收机发送的信令, 所述信 令用于指示所述周期性伪随机序列的序号; 根据所述信令, 从预先存储的周 期性伪随机序列集合中获取与所述序号对应的周期性伪随机序列。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方
N个窄带中选取 2N个载波, 所述 2N个载波满足: 经过所述混频, 所述 2N 个载波上的频谱将被搬移至混频区间 [-fp/2, +fp/2]内的相同频段; 将所述 2N 个载波上的信息符号选取为所述 2N个信息符号。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 式中, 所述 N个窄带对应的列为: 所述矩阵 A中, 与矩阵 Z的非零行具有 相同编号的列, 所述矩阵 Z满足: Y=AZ, 其中, 矩阵 Y为所述 N个无线信 号对应的接收信号矩阵。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 式中,所述 N个无线信号中的各无线信号为占用预先设定且连续的频段的信 号。
结合第三方面或其上述实现方式的任一种,在第三方面的另一个实现方 式中 ,所述无线信号为 OFDM信号,所述窄带为子带,所述信息符号为 OFDM 符号, 所述载波为子载波。
第四方面, 提供一种压缩釆样接收机, 包括: 获取单元, 用于获取接收 信号矩阵 Y;确定单元,根据所述压缩釆用接收机使用的周期性伪随机序列, 确定接收矩阵 ,其中, 的共轭转置矩阵 满足奇异值分解式: As = SVDH, 矩阵 As由等效信道矩阵 A中, 与矩阵 Z的非零行具有相同编号的列组成, 运算单元,用于将所述确定单元确定的所述矩阵 与所述获取单元获取的所 述矩阵 Y相乘, 以便基于相乘的结果恢复信号。
结合第四方面,在第四方面的一种实现方式中,压缩釆样接收机还包括: 发送单元, 用于向发射机发送信令, 所述信令用于指示所述周期性伪随机序 列中各周期性伪随机序列的序号, 其中, 所述各周期性伪随机序列的序号预 机序列集合中获取所述周期性伪随机序列。
由于选取的 2N个信息符号在压缩釆样接收端会被搬移至相同频段内, 如果直接发射该 2N个信息符号, 在接收端对应的接收向量 满足 j = 4z , z 为该 2N个信息符号转化而来的列向量, 由于矩阵 4各项均为非零项, 2N个 信息符号之间必然产生干扰, 本发明实施例中, 根据接收端使用的周期性伪 随机序列生成预编码矩阵万 ,并向接收端发射经过预编码矩阵万处理后的 2N 个预编码结果, 由于接收端的接收向量 满足: y = As5z , 进一步展开成 y = SVz , 当压缩釆样接收机使用 左乘该向量 时, 得到最终的接收向量 满足: 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间 满足正交性, 从而避免了相互干扰, 提高了接收信号的 SINR。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。 图 1是现有的压缩釆样接收机的示例图。
图 2是;^;)的具体形式的示例图。
图 3是滤波器 H )的具体形式的示例图。
图 4是频谱搬移过程的示意图。
图 5是接收端频域模型的示意图。
图 6是待发射的窄带信号的一个示例图。
图 7是图 6的窄带信号对应的频语搬移图。
图 8是发射端发射图 6所示的窄带信号时接收端的频域模型的示意图。 图 9是图 8的频域模型的等效模型的示意图。
图 10是本发明一个实施例的处理信号的方法的示意性流程图。
图 11是预编码处理过程的示意性流程图。
图 12是本发明一个实施例的处理信号的方法的示意性流程图。
图 13是本发明一个实施例的发射机的示意性框图。
图 14是本发明一个实施例的接收机的示意性框图。
图 15是本发明一个实施例的发射机的示意性框图。
图 16是本发明一个实施例的接收机的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
首先, 为了更清楚的描述本发明的实施方式, 先结合图 1至图 5 , 简单 介绍现有的 MWC系统, 及其存在的问题, 具体如下:
该系统釆用通信理论中的扩频技术。 该系统具有模拟混频前端, 模拟混 频前端混叠频谱, 使得各频段的频谱出现在基带中。 该系统包括多个通道, 该多个通道执行不同的混叠, 因此, 原则上, 足够大数量的混叠能够恢复相 对稀疏的多频带信号。
更为具体地, 参见图 1 , 将信号 x(t)同时输入压缩釆样接收机的 m个通 道中。 在第 i通道, jc(t)与混频函数 A(t)相乘, 实际中, 该 A(t)是周期为 ;的 周期性伪随机序列。 在混频后, 信号频语被低通滤波器截断, 该低通滤波器 的截断频率为 1/(27;), 并且过滤后的信号在 1/7;的频率下进行釆样。 各釆样 通道的釆样频率可设置的足够低, 使得现有的商用 ADC能够完成该釆样任 务。 那么, 该系统需要设计的参数包括: 通道的数量 m, 周期 ;, 釆样频率 1/7; , 以及 l≤ ≤ 时的混频函数 A(t)。
为了更为具体的描述, 接下来, 将 A(t)选定为分段常值函数, 该函数在 M个相等的时间间隔内, 在 ±1之间变化, 具体参见图 2。 其具体形式如下 式所示:
τ τ
p (t") = c(t,k丄≤t≤iJc + X)丄 ,0≤k≤M_\ ( 1 ) 其中, ¾e{+l,- 1} , Pj(t + nTp) = Pi(t) , n属于整数。 需要说明的是, 由于 原则上 A(t)是周期性的即可, 因此, A(t)并不限于上述形式, 还可以有其他 选择。
下面从频域的角度分析上述系统的信号处理方式。
先来推导未知的信号 x(t)和压缩釆样得到的釆样序列 之间的关系。 首先, 引入下式:
fP =^Tp,Fp =[-fp/2,+fp/2] (2a) fs =l/Ts^Fs =[-fs/2,+fs/2] (2b ) 考虑第 i通道, 由于 A(t)以 ;为周期, 其傅里叶展开如下:
∞ '27llt
pi(t)= jcae1~' t (3) t=-∞
Figure imgf000010_0001
相乘得到的模拟信号 (0 = x(t) Pi(t)的傅里叶变换的结果为:
XAf) =厂 x e-]2nftdt
-
Figure imgf000010_0002
=∑cuX(f-lfp) 因此, H(/) ( 在频域的表示)的输入是以 为单位平移; 后的信 号的线性组合。 因为当 时, ;r(/) = o, 式子 (5)求得的和包含(最多) 非零项, / 为整个带宽的 Nyqmst釆样频率。
滤波器 H(/)釆用理想矩形函数的频率响应, 如图 3所示。 因此, 只有处 于^区间的频率会被包含在统一的序列 中。 因此, 第 i序列 ]的离散 时间傅里叶变换(DTFT)可表达为:
Y, (ej2^' )=∑yt \nYM =∑ caX(f -lfp) Fs (6) 其中, 的定义见式(2b), J。选为: 使得在 区间, 上式求得的和包 含; 的所有非零组分的最小整数。 J。的准确值可通过下式计算得到:
Figure imgf000011_0001
需要注意的是, 混频器输出 (0并不受频带的限制, 理论上来讲, 取决 于系数 如傅里叶变换公式(5) 中的定义。 由于滤波器的输出仅包含 x(t) 的有限次混叠, 因此可以通过(6) 式求解。
关系式(6)将 DTFT的结果 ^]和未知的; 联系起来。 这个式子是 恢复 x(t)的关键。 为了简便, 将(6) 式改写成矩阵形式, 如下:
Figure imgf000011_0002
其中, 是长度为 m的向量, 其第 i元素 .(/) = ί(^2 ); 需要说明 的是, 这里的 Α即为本发明实施例中的等效信道矩阵 Α, 这里的向量 )的 每一行代表频域的一段频谱, 将这段频谱离散釆样成信息符号, 即可对应于 本发明实施例中的矩阵 Z,两者本质相同。下面详细描述该矩阵 A和向量 ) 的具体形式。 未知的 = (/),.. 的长度如下:
= 2Jn+l (9)
Figure imgf000011_0003
搬移频率 =1/7 ≥ 两个釆样速率 _ = 和 = 5_ 为例, 描述了 以 及对; 以 为单位的搬移后的副本。在图 4中,左平面的 fs:fp,因此 的长度 L=ll, 右平面中, fs:5fp, 使得 L=15, 在 ≤J。 (或 >J。+i )对应的 项的位置包含向频率轴右方(或左方)搬移后的; (/)的副本, 在中间项, 即 = J。+i处不发生搬移。 )的每一项代表; 频率的一个片段, 长度为 。 因此, 为了恢复 x(t), 在区间/ e 确定 就足够了。
目前的分析中,以 ;为周期的周期性函数 A(t)可以任意选取。在继续前, 讨论一下每个参数的作用。 ;确定了对; 的搬移时, 每次搬移的区间为 fp:\lTp。 同样地, 搬移频率 控制了频带片段 )的排布, 如图 4所示。 可选择 ≥s,使得每个频带仅包含 )的一个非零元素(相对于具体的 f ), 从而使得 最多包含 N个非零元素。 实际中, 可略大于 B, 以避免边缘 效应。 因此, 参数;用于根据 )的稀疏程度, 预先转化多频带 x(t)eM至一 段范围内。 单个通道的釆样频率 Λ设置在频率范围 内, 如式(6 ) 所示。 从图 4可以明显地看出, 对于每个/ 只要 ≥_ , 从釆样序列 [«]中恢 复 jc(t)等效于从 /)中恢复 通道数 m 决定了系统的全部釆样速率为 mfs。 最简便地, 可以设 fs=fp=B , 如图 4左平面所示, 以控制釆样速率 的分辨率为 fp。观察式(7 )和式(9)可知, Λ和 _ 的设定决定了 L, L为 z( 、 中, 针对某一特定的 x(t)eM , 可能包含能量的频率片段的数量。
混频函数的作用隐含在式(8 ) 中, 通过系数 体现。 每个 A(t)提供矩 阵 A的一行。 大致来说, 在周期 中, A(t)应该具有许多时间段, 使得傅里 叶展开式(3 ) 包含大于 L个主项。 在这种情况下, 通道输出 ^]是 )中 所有 (不全为 0)频谱片段的混合。 函数 A(t)彼此之间应该不同, 以保证矩 阵 A的行线性无关。接下来讨论 A(t)的一种具体选择, 即符号波形的具体选 择。
考虑如图 2所示的变符函数 A(t), 系数 如下所示:
Figure imgf000012_0001
其中, Θ二 e-]2"M , 因此:
-l
ca =dl∑ xlk0lk ( 14 ) 设 F为 Mx M的离散傅里叶变换矩阵, 其第 i列为:
( 15 ) 其中, Q≤i≤M—
Figure imgf000012_0002
为 重排后的列子集。 需要注意的是, 对于 M=L, F为单位矩阵。 接着, 式 (8)可重写成:
Figure imgf000013_0001
其中, S是 mxM的符号矩阵, 并且 =¾, D = diag dL。,...,d—L ^L x L 的对角矩阵, 4由式(13)定义。 如式(11)所示, 逆序取决于式(10) 中 对 Ζι (/)的枚举。符号样式 {¾}的关联关系进一步展开成图 5所示的数学关系。
上文对现有的压缩釆样系统(即上述 MWC系统)中的重要参数等效信 道矩阵 A,矩阵 Z (即上述 ) )、 混频函数 A(t) (实际是周期性伪随机序列 ) 的周期和具体形式等重要参数进行了详细描述。 为了便于理解, 接下来以举 例的方式描述现有的压缩釆样系统存在的问题。
图 6是待发射的窄带信号的示例图。 假设待发射的信号为 x(t), 包含如 图 6所示的 2个窄带信号: 窄带信号 1和窄带信号 2 (窄带信号 Γ和窄带信 号 2'分别为对应于窄带信号 1和窄带信号 2的负频率窄带信号)。 H没各个 窄带信号的带宽 B=50MHz,且各个窄带信号的中心频率在 [O+B/2, 5GHZ-B/2] 范围内变化, 同时假定 Nyquist釆样频率 fNYQ=l 0GHz。
在发射端发射上述 x(t)后, 经过信道传输被压缩釆样接收机接收。 压缩 釆样接收机设置有 m个釆样通道, 对接收信号进行 m路并行处理, 压缩釆 样接收机的具体形式可参见图 1, 上文已经详细描述, 此处不再赘述。
以第 i个釆样通道为例进行举例说明, 周期性伪随机序列 Α(0周期变化 的频率可设置为 fp=51.3MHz, 略大于窄带信号带宽 B, Α(0的具体形式参见 上文中的式(3) -式(4), 此处不再详述。 相应地, 低速 ADC釆样频率可 设置为 fs=fp, 低通滤波器 h(t)带宽可设置为 [-fs/2, fs/2]。 压缩釆样接收机接 收到的信号 x(0通过第 i通道时, 先用周期性伪随机序列 A(t)进行混频处理, 即, 将 Α(0与接收到的信号C(t)相乘得到 ), 即: (t)=x(t) A(t); 然后依次 通过低通滤波器 h(t)和低速 ADC (在图 1中通过 t = «;表示), 得到釆样序列 yt{n) , 其中, n= 1, 2...Num— sample, Num— sample为釆样个数。 然后, 在各路 釆样通道得到的釆样序列的基础上通过数字信号处理 (Digital Signal Processing, DSP) 的方式重构原始信号 x(t)。
在接收端, 如上文所述, 周期性伪随机序列 Α(Ο与 x(t)相乘, 具有频谱 搬移的作用, 图 7示出了图 6中的窄带信号经过频语搬移之后的结果, 图 8 给出了接收端釆用图 7所示的频语搬移方式,接收信号在频域上的数学模型, 该数学模型的建立参见上文中与式(8)相关的描述。 图 8中的 Α为等效信 道矩阵, 具体地, A=SFD , 其中, S的第 i行是 A(t)—个周期的值; F是离 散傅里叶变换(Discrete Fourier Transform , DFT )矩阵; D是对角矩阵, 各 项的值可以看做常数, 矩阵 S、 F、 D 的含义和形式参见上文, 尤其上文式 ( 11 )和式( 16 )相关的描述。 (/)是第 i路釆样序列 .(《)变换到频域的 结果。 图 8中的矩阵 Z的具体形式与周期性伪随机序列的周期有关, 参见式 ( 10 )相关的推到过程。
从图 8可以看出, 除了 4个窄带(包括 2个负频窄带)夕卜, 其余的窄带 均没有信号, 用一条横线表示, 也就是说, 矩阵 Z中与该横线对应的行为零 项。 将图 8中的矩阵 Y进行变形, 通过保留矩阵 A中与矩阵 Z的非零项具 有相同编号的列,得到矩阵 As ,可以将图 8中的等式转化为图 9。举例说明, 殳设矩阵 Z中的第 1、 3、 6、 8行中包括非零元素, 那么可以保留矩阵 A中 的第 1、 3、 6、 8列以形成矩阵 As
从图 9可以看出, 从接收端的角度, 经过接收端的压缩釆样处理, 4个 窄带信号的频语被搬移至基带附近的相同的频段内, 即图 7中的 [-fp/2, fp/2] , 也就是说, 4个窄带信号 (包括 2个负频率的窄带信号) 的频语被混叠起来 了, 混叠后的窄带信号相互干扰, 接收信号的 SINR低。
下面结合附图详细描述本发明实施例的信号处理方法。
为了便于理解, 在图 9的基础上, 首先, 以举例的方式, 简单描述本发 明实施例的整体设计构思。
H没将窄带信号 1和窄带信号 2分别记为 c和 d, 当各个窄带信号都釆 用正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )调制 时, c和 d各包含 101个子载波, 在实现中可以均去掉(± 50 ω , ± 49 ω )这 4 个高频子载波, 即不在这 4个高频子载波上传输信息符号后, 众所周知, 代 表上述 4个窄带信号的矩阵 Ζ,可以通过其釆样值表示为:
8 " " · ^-48
* * * * *
• * 48
( 17 )
48 · co • * ^48
^-48 · ' ■· d_x do dx - " 8
相应地, 图 9的表达式可以表示为: * * * * *
y2 H(f)
Y =4 (18) ym HU)_ — ·· d ·· d4
d 具体地, 现有技术中, 发射端会直接发射 其中, OFDM符号 ck
Figure imgf000015_0001
和 c_k分别位于窄带信号 1的第 k个子载波和第 -k个子载波上; OFDM符号 4和 d_k分别位于窄带信号 2的第 k个子载波和第 -k个子载波上。 上述 4个 子载波上的信息符号发射到接收端并经过压缩釆样接收机 m路并行处理后, 得到的
Figure imgf000015_0002
需要说明的是, 在接收端, ί ^和 被取了共轭(*为共轭运算符), 这 是此压缩釆样接收机的一个特性。从式( 19 )不难看出,如何能避免 dk、 c_k、 和 之间的干扰是本发明实施例首要解决的问题。 首先, 对 进行奇异 值分解可得:
A., = SVD' (20)
然后, 通过对发射端发射的信息符号进行预编码处理, 使其改传
由于接收端的取共轭特性, 在接收端会接收
+w (21)
^口果满 万 与5相互抵消, 则式(21)可改写成:
Figure imgf000015_0003
冬 (22)
Figure imgf000016_0001
然后, 接收端在得到 ^后, 左乘 与 S相互抵消, 得到下式: c
(23) c. 从式(23)可以看出, 由于奇异值分解中的 Ϋ矩阵为对角矩阵, 因此, c_k. 和 之间保持正交, 从而能够避免其相互干扰。
d ,
c
那么, 现在的问题就是如何设计 -k 使其满足:
Figure imgf000016_0002
(24)
Figure imgf000016_0005
原理如下:
首先, 将待发射的 4个子载波中的 OFDM符号 中的 ii 和 取共
Figure imgf000016_0003
c -k c
然后, 将 - 与预编码矩阵 δ相乘:
Figure imgf000016_0004
d
c
得到 4个中间变量 结合式(24 )可得:
Figure imgf000017_0001
总结起来, 要想在接收端达到 的效果, 可以将 δ选取为
Figure imgf000017_0003
预编码矩阵, 并进行上述两次共轭操作。 或者, 还可以通过选取合适的预编 d ,
c
码矩阵, 使其与 相乘后, 直接达到上述两次共轭操作的效果, 本发明
Figure imgf000017_0002
实施例对此不作具体限定。
需要说明的是, 以上描述仅仅是为了便于理解, 以 OFDM 系统为例并 结合 2个窄带信号进行的举例说明, 但本发明实施例并不限于 OFDM系统, 还可以是其他任何频分系统。 下面结合图 10详细描述本发明实施例的处理 信号的方法。
图 10是本发明一个实施例的处理信号的方法的示意性流程图。 图 10的 方法可以由发射端执行, 例如, 可以是 UE, 也可以是基站。 图 10的方法可 包括:
1010、 获取压缩釆样接收机混频时使用的周期性伪随机序列。
需要说明的是,压缩釆样接收机使用的周期性伪随机序列的数目与该压 缩釆样接收机的釆用通道数相等, 也就是说, 每个釆样通道使用一个周期性 伪随机序列, 不同釆样通道的周期性伪随机序列不同。
步骤 1010可包括: 接收所述压缩釆样接收机发送的信令, 所述信令用 令,从预先存储的周期性伪随机序列集合中获取与所述序号对应的周期性伪 随机序列。 当然, 也可以不预先存储上述周期性伪随机序列集合, 接收端直 接向发送端发送压缩釆样接收机使用的扩频序列。
1020、 从 N个无线信号中选取 2N个信息符号, 其中, 所述 N个无线信 号分别位于 N个窄带中, 所述 2N个信息符号分别位于所述 N个窄带上的 2N个载波中,且所述 2N个载波中的信息符号的频谱经过所述混频后将被搬 移至相同频段内。
应理解, N个窄带中, 哪 2N个载波上的信息符号在接收端会被搬移至 相同频段是可以预先获知的。 换句话说, N个无线信号中, 哪 2N个载波上 信息符号在接收端会相互干扰是可以预先获知的。
可选地, 步骤 1020可包括: 根据所述周期性伪随机序列的频率 fp, 从 所述 N个窄带中选取 2N个载波, 所述 2N个载波满足: 经过所述混频, 所 述 2N个载波上的频谱将被搬移至混频区间 [-fp/2, +fp/2]内的相同频段; 将所 述 2N个载波上的信息符号选取为所述 2N个信息符号。
具体地, 由式(10 )可知, 压缩釆样接收端对频谱的搬移方式与周期性 伪随机序列的频率 fp (周期 Tp的倒数)相关, 有了该 fp就可以知道接收端 是以 fp为单位将包含 N个窄带的整个频语搬移至频段 [-fp/2, +fp/2]中,由于发 射端知道待发射的 N个无线信号所在的频段,那么就可以确定经过该频谱搬 移方式, 哪些频段将被搬移至频段 [-fp/2, +fp/2]内, 以及在该频段 哪些载
波中的信息符号会相互干扰。参见式( 19 ),在接收端接收到 y A
Figure imgf000018_0001
也就是说, 窄带信号 1的第 k个载波和第 -k个载波, 以及窄带信号 2的第 k 个载波和第 -k个载波中的信息符号在接收端会被搬移至相同频段内,产生相 互干扰; 那么就从 2个窄带信号中选取该 4个载波中的信息符号 t、 c—k、 ck 和 。
应理解, 在不同的通信系统或通信模式下, 上述信息符号的具体类型可 以不同, 本发明实施例对此不作具体限定。 具体地, 上述信息符号可以是经 过正交振幅调制 ( Quadrature Amplitude Modulation, QAM )处理之后的信息 符号, 例如, 可以是 OFDM符号。
上述无线信号可以是占用预先设定且连续的频段的信号。 例如, 在 OFDM系统中, 可以是 OFDM信号, 或者窄带信号。
上述窄带可以是预先划分的一段频率范围, 在 OFDM 系统中, 该窄带 可以是子带。
1030、 才艮据所述周期性伪随机序列, 确定预编码矩阵万, 其中, 所述矩 阵万的共轭转置矩阵万^满足奇异值分解式: 二^^万 矩阵 As是由等效信 道矩阵 A中的, 与所述 N个窄带对应的列组成的矩阵, 所述矩阵 A是基于 所述周期性伪随机序列生成的。
具体地, A=SFD, 其中, S的第 i行是 A(t)—个周期的值; F是 DFT矩 阵; D是对角矩阵, 各项的值可以看做常数。 具体生成方式可参照上文中的 式( 11 )至式( 16 ) 的描述, 此处不再赘述。
上述 N个窄带对应的列可以为: 所述矩阵 A中, 与矩阵 Z的非零行具 有相同编号的列, 所述矩阵 Z满足: Y=AZ, 其中, 矩阵 Y为所述 N个无线 信号对应的接收信号矩阵。
具体地, 由式(10 )可知, 根据周期性伪随机序列的频率 fp, 是以 fp为 单位将包含 N个窄带的整个频语搬移至频段 [-fp/2, +fp/2]中; 发射端知道 N 个窄带各自所在的频段以及上述频语搬移方式后,就可以确定矩阵 Z中哪些 行为零行, 哪些行不为零(即包含信号的频谱信息)。 需要说明的是, 这里 并不需要求出矩阵 Z, 只需要确定矩阵 Z的零行或非零行即可。
以图 7-图 9为例, 描述矩阵万的具体形式, 从图 7可以看出, 以下频段 中的信号被搬移至 [-fp/2, fp/2]中: [-9fp/2, -7fp/2] , [-5fp/2, -3fp/2] , [3fp/2,
5fp/2]和 [7fp/2, 9fp/2] , 其余频段搬移的结果均为 0。 如图 8和图 9所示, 这 样, 就可以预先获知矩阵 Z的第 1、 3、 7、 9行非零。 接着, 保留矩阵 A的 第 1、 3、 7、 9列, 得到矩阵 As; 对矩阵 进行奇异值分解 二^^万 以 确定预编码矩阵万。
1040、 釆用所述预编码矩阵对所述 2N个信息符号进行预编码处理, 得 到 2N个预编码结果。
实际中预编码处理方式可以有多种, 只要经过所述预编码处理, 使得在 所述压缩釆样接收机端, 所述 2N 个预编码结果对应的接收向量 满足: y = Αβζ的实施方式均应落入本发明实施例的保护范围, 后续会详细描述。 这里的 ζ并非 2Ν个信息符号组成的列向量, 而是将该 2Ν个信息符号 一半取共轭, 一半保持不变后组成的 2Ν维列向量, 具体参见式(18 )和式 ( 19 )的描述, 这是这类现有压缩釆样接收机的频谱搬移特性决定的, 还需 要说明的是,这里的 ζ可以是保留上述矩阵 Ζ的非零行后得到的矩阵 Ζ,中的 任一列。
1050、 通过所述 2Ν个载波分别向所述压缩釆样接收机发射所述 2Ν个 预编码结果。
由于选取的 2Ν个信息符号在压缩釆样接收端会被搬移至相同频段内, 如果直接发射该 2Ν个信息符号, 在接收端对应的接收向量 j满足 j = 4z , z 为该 2N个信息符号转化而来的列向量, 由于矩阵 4各项均为非零项, 2N个 信息符号之间必然产生干扰, 本发明实施例中, 根据接收端使用的周期性伪 随机序列生成预编码矩阵万 ,并向接收端发射经过预编码矩阵万处理后的 2N 个预编码结果, 由于接收端的接收向量 满足: y = 4 进一步展开成 y = SVz , 当压缩釆样接收机使用 ^左乘该向量 时, 得到最终的接收向量 满足: 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间 满足正交性, 从而避免了相互干扰, 提高了接收信号的 SINR。
下面详细描述预编码处理方式, 可选地, 作为一个实施例, 参见图 11 , 步骤 1040可包括:
1110、 将 2N个信息符号中的一半取共轭, 一半保持不变, 得到 2N个 待预编码项。
可选地, 作为一个实施例, 步骤 1110可包括: 从所述 2N个载波中确定 N个目标载波, 其中, 所述目标载波为: 位于其上的信息符号, 经过所述压 缩釆样接收机压缩釆样后将被取共轭的载波; 将所述 2N个信息符号中的, 位于所述 N个目标载波上的信息符号取共轭。
以上述发射端发射 +w的实施方式为例,
Figure imgf000020_0001
可以看出,窄带信号 1的第 -k个载波和窄带信号 2的第 -k个载波中的信息符 号在接收端会被取共轭, 则将这两个载波确定为目标载波。 将目标载波上的 信息符号取共轭后得到待预编码项
Figure imgf000021_0001
1120、 将预编码矩阵与 2N个待预编码项组成的列向量相乘, 得到 2N 个中间项。 c
例如, 将步骤 1110中的待预编码项 与预编码矩阵万相乘, 如公式
Figure imgf000021_0002
d
c
( 25 )所示, 得到中间项
Figure imgf000021_0003
1130、 将 2N个中间项中的一半取共轭, 一半保持不变, 得到 2N个预 编码结果。
可选地, 作为一个实施例, 步骤 1130可包括: 将 2N个中间项中的, 由 N个目标载波上的信息符号转化而来的中间项取共轭。
d ,
c
例如, 将步骤 1120得到的中间项 中, 窄带信号 1的第 -k个载波和
Figure imgf000021_0004
窄带信号 2的第 -k个载波对应的中间项取共轭,参见公式(27 ),得到
Figure imgf000021_0005
接下来, 在窄带信号 1的第 -k个载波和第 k个载波分别改传 和 ; 在窄 带信号 2的第 -k个载波和第 k个载波分别改传^^和 ^。
需要说明的是, 图 11仅仅是预编码处理方式的一个示例, 实际中, 还 可以对预编码矩阵进行变形, 使得变形后的预编码矩阵直接与 2N个信息符 号组成的列向量相乘后直接得到上述 2N个预编码结果, 换句话说, 通过改 变预编码矩阵的具体形式, 使得该预编码矩阵还具有上述两次取共轭的作 用。
上文中结合图 1至图 11 ,从发送端的角度详细描述了根据本发明实施例 的处理信号的方法, 下面将结合图 12,从接收端的角度描述根据本发明实施 例的处理信号的方法。应理解,接收端侧描述的收发两端的交互及相关特性、 功能等与发送端侧的描述相应, 为了简洁, 适当省略重复的描述。
图 12是本发明一个实施例的处理信号的方法的示意性流程图。 图 12的 方法由压缩釆样接收机执行, 例如, 可以是 UE, 也可以是基站。 图 12的方 法包括:
1210、 用压缩釆样接收机获取接收信号矩阵丫。
1220、 根据所述压缩釆用接收机使用的周期性伪随机序列, 确定接收矩 阵 其中, ^的共轭转置矩阵 满足奇异值分解式: As H 矩阵 As 由等效信道矩阵 A中, 与矩阵 Z的非零行具有相同编号的列组成, 所述矩 阵 Z满足: Y=AZ, 所述矩阵 A是基于所述周期性伪随机序列生成的。
该矩阵 Z的非零行可以通过: 先计算 Y=AZ, 得到矩阵 Z, 然后从矩阵 Z中找出非零行的编号。 或者, 发射端可以将该编号信息通过信令发送至接 收端 (发射端确定矩阵 Z的非零行的方式参见图 10的描述)。
1230、 将所述矩阵 与所述矩阵 Y相乘, 以便基于相乘的结果恢复信 号。
当发射端均按照图 10描述的方式发送预编码结果, 接收端对接收矩阵 左乘 ^,相乘的结果能够保证接收矩阵 Y中的每个接收向量;/均满足 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间满足正交性, 从而避免了相互干扰, 提高了接收信号的 SINR。
可选地, 作为一个实施例, 在所述用压缩釆样接收机获取接收信号矩阵 Y之前, 所述图 12的方法可还包括: 向发射机发送信令, 所述信令用于指 示所述周期性伪随机序列的序号, 其中, 所述序号预先设定, 且所述序号用 述各周期性伪随机序列。
上文中结合图 1至图 12,详细描述了根据本发明实施例的处理信号的方 法, 下面将结合图 13至图 16, 详细描述根据本发明实施例的发射机和压缩 釆样接收机。
图 13是本发明一个实施例的发射机的示意性框图。 应理解, 图 13的发 射机 1300能够实现上文中由发射端执行的各个步骤, 为避免重复, 此处不 再详述。 发射机 1300包括:
获取单元 1310,用于获取压缩釆样接收机混频时使用的周期性伪随机序 歹 |J ;
选取单元 1320, 用于从 N个无线信号中选取 2N个信息符号, 其中, 所 述 N个无线信号分别位于 N个窄带中,所述 2N个信息符号分别位于所述 N 个窄带上的 2N个载波中, 且所述 2N个载波中的信息符号的频谱经过所述 混频后将被搬移至相同频段内;
确定单元 1330, 用于才艮据所述周期性伪随机序列, 确定预编码矩阵万, 其中, 所述矩阵万的共轭转置矩阵万^满足奇异值分解式: AS H 矩阵 As是由等效信道矩阵 A中的, 与所述 N个窄带对应的列组成的矩阵, 所述 矩阵 A是基于所述周期性伪随机序列生成的;
预编码单元 1340, 用于釆用所述确定单元 1330确定的所述预编码矩阵 对所述选取单元 1320选取的所述 2N个信息符号进行预编码处理, 得到 2N 个预编码结果;
发射单元 1350, 用于通过所述 2N个载波分别向所述压缩釆样接收机发 射所述预编码单元 1340得到的所述 2N个预编码结果。
由于选取的 2N个信息符号在压缩釆样接收端会被搬移至相同频段内, 如果直接发射该 2N个信息符号, 在接收端对应的接收向量 j满足 j = 4z , z 为该 2N个信息符号转化而来的列向量(这里的 z并非 2N个信息符号组成的 列向量, 而是一半取共轭, 一半保持不变, 具体参见式(18 )和式(19 ) 的 描述,这是这类现有压缩釆样接收机的频语搬移特性决定的 ),由于矩阵 4各 项均为非零项, 2N个信息符号之间必然产生干扰, 本发明实施例中, 根据 接收端使用的周期性伪随机序列生成预编码矩阵万, 并向接收端发射经过预 编码矩阵万处理后的 2N 个预编码结果, 由于接收端的接收向量 满足: y = AsDz , 进一步展开成 _y = , 当压缩釆样接收机使用^ "左乘该向量 时, 得到最终的接收向量 _y满足: _y = , 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间满足正交性, 从而避免了相互干扰, 提高了接收信 号的 SINR。
可选地, 作为一个实施例, 所述预编码单元 1340可具体用于将所述 2N 个信息符号中的一半取共轭, 一半保持不变, 得到 2N个待预编码项; 将所 述预编码矩阵与所述 2N个待预编码项组成的列向量相乘, 得到 2N个中间 项; 将所述 2N个中间项中的一半取共轭, 一半保持不变, 得到所述 2N个 预编码结果。
可选地, 作为一个实施例, 所述预编码单元 1340可具体用于从所述 2N 个载波中确定 N个目标载波,其中,所述目标载波为:位于其上的信息符号, 经过所述压缩釆样接收机压缩釆样后将被取共轭的载波; 将所述 2N个信息 符号中的, 位于所述 N个目标载波上的信息符号取共轭。
可选地, 作为一个实施例, 所述预编码单元 1340可具体用于将所述 2N 个中间项中的, 由所述 N个目标载波上的信息符号转化而来的中间项取共 轭。
可选地, 作为一个实施例, 所述发射单元 1350可具体用于分别通过所 述 2N个载波向所述接收端发射所述 2N个预编码结果, 其中, 各个载波发 射的预编码结果由位于该载波上的信息符号转化而来。
可选地, 作为一个实施例, 所述获取单元 1310可具体用于接收所述压 缩釆样接收机发送的信令, 所述信令用于指示所述周期性伪随机序列的序 号; 根据所述信令, 从预先存储的周期性伪随机序列集合中获取与所述序号 对应的周期性伪随机序列。
可选地, 作为一个实施例, 所述选取单元 1320可具体用于根据所述周 期性伪随机序列频率 fp, 从所述 N个窄带中选取 2N个载波, 所述 2N个载 波满足: 经过所述混频, 所述 2N个载波上的频谱将被搬移至混频区间 [-fp/2, +fp/2]内的相同频段; 将所述 2N个载波上的信息符号选取为所述 2N个信息 符号。
可选地, 作为一个实施例, 所述 N个窄带对应的列为: 所述矩阵 A中, 与矩阵 Z的非零行具有相同编号的列, 所述矩阵 Z满足: Y=AZ, 其中, 矩 阵 Y为所述 N个无线信号对应的接收信号矩阵。
可选地,作为一个实施例, 所述 N个无线信号中的各无线信号为占用预 先设定且连续的频段的信号。
可选地, 作为一个实施例, 所述无线信号为 OFDM信号, 所述窄带为 子带, 所述信息符号为 OFDM符号, 所述载波为子载波。
图 14是本发明一个实施例的压缩釆样接收机的示意性框图。 应理解, 图 14的压缩釆样接收机 1400能够实现上文中由接收端执行的各个步骤, 为 避免重复, 此处不再详述。 接收机 1400可包括:
获取单元 1410, 用于获取接收信号矩阵 Y;
确定单元 1420, 用于根据所述压缩釆用接收机使用的周期性伪随机序 歹 |J , 确定接收矩阵 其中, ^的共轭转置矩阵 满足奇异值分解式: As = SVDH , 矩阵 由等效信道矩阵 A中, 与矩阵 Z的非零行具有相同编号 的列组成, 所述矩阵 Z满足: Y=AZ, 所述矩阵 A是基于所述周期性伪随机 序列生成的;
运算单元 1430,用于将所述确定单元 1420确定的所述矩阵 与所述获 取单元 1410获取的所述矩阵 Y相乘, 以便基于相乘的结果恢复信号。
当发射机均按照图 13描述的方式发送预编码结果, 接收端对接收矩阵 左乘 ,相乘的结果能够保证接收矩阵 Y中的每个接收向量;/均满足 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间满足正交性, 从而避免了相互干扰, 提高了接收信号的 SINR。
可选地, 作为一个实施例, 压缩釆样接收机 1400还可包括: 发送单元, 用于向发射机发送信令, 所述信令用于指示所述周期性伪随机序列的序号, 其中, 所述序号预先设定, 且所述序号用于所述发射机根据所述序号从预先 存储的周期性伪随机序列集合中获取所述周期性伪随机序列。
图 15是本发明一个实施例的发射机的示意性框图。 应理解, 图 15的发 射机 1500能够实现上文中由发射端执行的各个步骤, 为避免重复, 此处不 再详述。 发射机 1500包括:
处理器 1510, 用于获取压缩釆样接收机混频时使用的周期性伪随机序 歹 |J ; 从 N个无线信号中选取 2N个信息符号, 其中, 所述 N个无线信号分别 位于 N个窄带中, 所述 2N个信息符号分别位于所述 N个窄带上的 2N个载 波中, 且所述 2N个载波中的信息符号的频谱经过所述混频后将被搬移至相 同频段内; 根据所述周期性伪随机序列, 确定预编码矩阵万, 其中, 所述矩 阵万的共轭转置矩阵 ff满足奇异值分解式: 二^^万 矩阵 As是由等效信 道矩阵 A中的, 与所述 N个窄带对应的列组成的矩阵, 所述矩阵 A是基于 所述周期性伪随机序列生成的; 釆用所述预编码矩阵对所述 2N个信息符号 进行预编码处理, 得到 2N个预编码结果;
发射器 1520, 用于通过所述 2N个载波分别向所述压缩釆样接收机发射 所述处理器 1510得到的所述 2N个预编码结果,使得在所述压缩釆样接收机 端, 所述 2N个预编码结果对应的接收向量 满足: y = As5z。
由于选取的 2N个信息符号在压缩釆样接收端会被搬移至相同频段内, 如果直接发射该 2N个信息符号, 在接收端对应的接收向量 满足 = 4χ , 为该 2N个信息符号转化而来的列向量, 由于矩阵 4各项均为非零项, 2N个 信息符号之间必然产生干扰, 本发明实施例中, 根据接收端使用的周期性伪 随机序列生成预编码矩阵万 ,并向接收端发射经过预编码矩阵万处理后的 2N 个预编码结果, 由于接收端的接收向量 满足: γ = Αβζ , 进一步展开成 y = SVz , 当压缩釆样接收机使用 左乘该向量 时, 得到最终的接收向量 满足: 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间 满足正交性, 从而避免了相互干扰, 提高了接收信号的 SINR。
可选地,作为一个实施例,处理器 1510可具体用于将所述 2N个信息符 号中的一半取共轭, 一半保持不变, 得到 2N个待预编码项; 将所述预编码 矩阵与所述 2N个待预编码项组成的列向量相乘, 得到 2N个中间项; 将所 述 2N个中间项中的一半取共轭, 一半保持不变, 得到所述 2N个预编码结 果。
可选地,作为一个实施例, 所述处理器 1510可具体用于从所述 2N个载 波中确定 N个目标载波, 其中, 所述目标载波满足: 位于其上的信息符号, 经过所述压缩釆样接收机压缩釆样后将被取共轭; 将所述 2N个信息符号中 的, 位于所述 N个目标载波上的信息符号取共轭。
可选地,作为一个实施例, 所述处理器 1510可具体用于将所述 2N个中 间项中的, 由所述 N个目标载波上的信息符号转化而来的中间项取共轭。
可选地, 作为一个实施例, 所述发射器 1520可具体用于分别通过所述
2N个载波向所述接收端发射所述 2N个预编码结果, 其中,各个载波发射的 预编码结果由位于该载波上的信息符号转化而来。
可选地, 作为一个实施例, 所述处理器 1510可具体用于接收所述压缩 釆样接收机发送的信令, 所述信令用于指示所述周期性伪随机序列的序号; 根据所述信令,从预先存储的周期性伪随机序列集合中获取与所述序号对应 的周期性伪随机序列。
可选地, 作为一个实施例, 所述处理器 1510可具体用于根据所述周期 性伪随机序列的频率 fp, 从所述 N个窄带中选取 2N个载波, 所述 2N个载 波满足: 经过所述混频, 所述 2N个载波上的频谱将被搬移至混频区间 [-fp/2, +fp/2]内的相同频段; 将所述 2N个载波上的信息符号选取为所述 2N个信息 符号。
可选地, 作为一个实施例, 所述 N个窄带对应的列为: 所述矩阵 A中, 与矩阵 Z的非零行具有相同编号的列, 所述矩阵 Z满足: Y=AZ, 其中, 矩 阵 Y为所述 N个无线信号对应的接收信号矩阵。
可选地,作为一个实施例, 所述 N个无线信号中的各无线信号为占用预 先设定且连续的频段的信号。
可选地, 作为一个实施例, 所述无线信号为 OFDM信号, 所述窄带为 子带, 所述信息符号为 OFDM符号, 所述载波为子载波。
图 16是本发明一个实施例的压缩釆样接收机的示意性框图。 应理解, 图 16的压缩釆样接收机 1600能够实现上文中由接收端执行的各个步骤, 为 避免重复, 此处不再详述。 接收机 1600可包括:
接收器 1610, 用于获取接收信号;
处理器 1620, 用于根据所述压缩釆用接收机使用的周期性伪随机序列, 确定接收矩阵 ,其中, 的共轭转置矩阵 满足奇异值分解式: As = SVDH, 矩阵 由等效信道矩阵 A中, 与矩阵 Z的非零行具有相同编号的列组成, 将所述矩阵 ^与所述矩阵 Y相乘, 以便基于相乘的结果恢复信号。
当发射机均按照图 15描述的方式发送预编码结果, 接收端对接收矩阵 左乘 ^,相乘的结果能够保证接收矩阵 Y中的每个接收向量;/均满足 由于奇异值分解中, 为对角矩阵, 则该 2N个信息符号之间满足正交性, 从而避免了相互干扰, 提高了接收信号的 SINR。
可选地, 作为一个实施例, 压缩釆样接收机 1600还可包括: 发送器, 用于向发射机发送信令, 所述信令用于指示所述周期性伪随机序列的序号, 其中, 所述序号预先设定, 且所述序号用于所述发射机根据所述序号从预先 存储的周期性伪随机序列集合中获取所述周期性伪随机序列。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种处理信号的方法, 其特征在于, 包括:
获取压缩釆样接收机混频时使用的周期性伪随机序列;
从 N个无线信号中选取 2N个信息符号, 其中, 所述 N个无线信号分别 位于 N个窄带中, 所述 2N个信息符号分别位于所述 N个窄带上的 2N个载 波中, 且所述 2N个载波中的信息符号的频谱经过所述混频后将被搬移至相 同频段内;
才艮据所述周期性伪随机序列, 确定预编码矩阵万, 其中, 所述矩阵万的 共轭转置矩阵 ff满足奇异值分解式: As H 矩阵 As是由等效信道矩阵 A中的, 与所述 N个窄带对应的列组成的矩阵, 所述矩阵 A是基于所述周 期性伪随机序列生成的;
釆用所述预编码矩阵对所述 2N个信息符号进行预编码处理, 得到 2N 个预编码结果, 并通过所述 2N个载波分别向所述压缩釆样接收机发射所述 2N个预编码结果。
2、 如权利要求 1所述的方法, 其特征在于,
所述釆用所述预编码矩阵对所述 2N个信息符号进行预编码处理, 得到 2N个预编码结果, 包括:
将所述 2N个信息符号中的一半取共轭, 一半保持不变, 得到 2N个待 预编码项; 个中间项;
将所述 2N个中间项中的一半取共轭, 一半保持不变, 得到所述 2N个 预编码结果。
3、 如权利要求 2所述的方法, 其特征在于,
所述将所述 2N个信息符号中的一半取共轭, 包括:
从所述 2N个载波中确定 N个目标载波, 其中, 所述目标载波满足: 位 于其上的信息符号, 经过所述压缩釆样接收机压缩釆样后将被取共轭; 将所述 2N个信息符号中的, 位于所述 N个目标载波上的信息符号取共 轭。
4、 如权利要求 3所述的方法, 其特征在于,
所述将所述 2N个中间项中的一半取共轭, 包括: 将所述 2N个中间项中的, 由所述 N个目标载波上的信息符号转化而来 的中间项取共辄。
5、 如权利要求 4所述的方法, 其特征在于,
所述通过所述 2N个载波分别向所述压缩釆样接收机发射所述 2N个预 编码结果, 包括:
分别通过所述 2N个载波向所述接收端发射所述 2N个预编码结果, 其 中, 各个载波发射的预编码结果由位于该载波上的信息符号转化而来。
6、 如权利要求 1-5中任一项所述的方法, 其特征在于,
所述获取压缩釆样接收机混频时使用的周期性伪随机序列, 包括: 接收所述压缩釆样接收机发送的信令, 所述信令用于指示所述周期性伪 随机序列的序号;
根据所述信令,从预先存储的周期性伪随机序列集合中获取与所述序号 对应的周期性伪随机序列。
7、 如权利要求 1-6中任一项所述的方法, 其特征在于, 所述从 N个无 线信号中选取 2N个信息符号, 包括:
根据所述周期性伪随机序列的频率 fp , 从所述 N个窄带中选取 2N个载 波, 所述 2N个载波满足: 经过所述混频, 所述 2N个载波上的频谱将被搬 移至混频区间 [-fp/2, +fp/2]内的相同频段;
将所述 2N个载波上的信息符号选取为所述 2N个信息符号。
8、 如权利要求 1-7中任一项所述的方法, 其特征在于, 所述 N个窄带 对应的列为: 所述矩阵 A中, 与矩阵 Z的非零行具有相同编号的列, 所述 矩阵 Z满足: Y=AZ, 其中, 矩阵 Y为所述 N个无线信号对应的接收信号矩 阵。
9、 如权利要求 1-8中任一项所述的方法, 其特征在于, 所述 N个无线 信号中的各无线信号为占用预先设定且连续频段的信号。
10、 如权利要求 1-9中任一项所述的方法, 其特征在于, 所述无线信号 为正交频分复用 OFDM信号, 所述窄带为子带, 所述信息符号为 OFDM符 号, 所述载波为子载波。
11、 一种处理信号的方法, 其特征在于, 包括:
用压缩釆样接收机获取接收信号矩阵 Y;
根据所述压缩釆用接收机使用的周期性伪随机序列, 确定接收矩阵 ^ , 其中, 的共轭转置矩阵 满足奇异值分解式: 二^^万 矩阵 As由等效 信道矩阵 A中, 与矩阵 Z的非零行具有相同编号的列组成, 所述矩阵 Z满 足: Y=AZ, 所述矩阵 A是基于所述周期性伪随机序列生成的;
将所述矩阵 ^与所述矩阵 Y相乘, 以便基于相乘的结果恢复信号。
12、 如权利要求 11 所述的方法, 其特征在于, 在所述用压缩釆样接收 机获取接收信号矩阵 Y之前, 所述方法还包括:
向发射机发送信令, 所述信令用于指示所述周期性伪随机序列的序号, 其中, 所述序号预先设定, 且所述序号用于所述发射机根据所述序号从预先 存储的周期性伪随机序列集合中获取所述周期性伪随机序列。
13、 一种发射机, 其特征在于, 包括:
获取单元, 用于获取压缩釆样接收机混频时使用的周期性伪随机序列; 选取单元, 用于从 N个无线信号中选取 2N个信息符号, 其中, 所述 N 个无线信号分别位于 N个窄带中,所述 2N个信息符号分别位于所述 N个窄 带上的 2N个载波中, 且所述 2N个载波中的信息符号的频谱经过所述混频 后将被搬移至相同频段内;
确定单元,用于才艮据所述周期性伪随机序列,确定预编码矩阵万,其中, 所述矩阵万的共轭转置矩阵 ff满足奇异值分解式: 二^^万 矩阵 As是由 等效信道矩阵 A中的, 与所述 N个窄带对应的列组成的矩阵, 所述矩阵 A 是基于所述周期性伪随机序列生成的; 个信息符号进行预编码处理, 得到 2N个预编码结果;
发射单元, 用于通过所述 2N个载波分别向所述压缩釆样接收机发射所 述预编码单元得到的所述 2N个预编码结果。
14、 如权利要求 13所述的发射机, 其特征在于, 所述预编码单元具体 用于将所述 2N个信息符号中的一半取共轭, 一半保持不变, 得到 2N个待 得到 2N个中间项; 将所述 2N个中间项中的一半取共轭, 一半保持不变, 得到所述 2N个预编码结果。
15、 如权利要求 14所述的发射机, 其特征在于, 所述预编码单元具体 用于从所述 2N个载波中确定 N个目标载波, 其中, 所述目标载波满足: 位 于其上的信息符号, 经过所述压缩釆样接收机压缩釆样后将被取共轭; 将所 述 2N个信息符号中的, 位于所述 N个目标载波上的信息符号取共轭。
16、 如权利要求 15所述的发射机, 其特征在于, 所述预编码单元具体 用于将所述 2N个中间项中的, 由所述 N个目标载波上的信息符号转化而来 的中间项取共辄。
17、 如权利要求 16所述的发射机, 其特征在于, 所述发射单元具体用 于分别通过所述 2N个载波向所述接收端发射所述 2N个预编码结果, 其中 , 各个载波发射的预编码结果由位于该载波上的信息符号转化而来。
18、 如权利要求 13-17中任一项所述的发射机, 其特征在于, 所述获取 单元具体用于接收所述压缩釆样接收机发送的信令, 所述信令用于指示所述 周期性伪随机序列的序号; 根据所述信令, 从预先存储的周期性伪随机序列 集合中获取与所述序号对应的周期性伪随机序列。
19、 如权利要求 13-18中任一项所述的发射机, 其特征在于, 所述选取 单元具体用于根据所述周期性伪随机序列的频率 fp ,从所述 N个窄带中选取 2N个载波, 所述 2N个载波满足: 经过所述混频, 所述 2N个载波上的频谱 将被搬移至混频区间 [-fp/2, +fp/2]内的相同频段; 将所述 2N个载波上的信息 符号选取为所述 2N个信息符号。
20、 如权利要求 13-19中任一项所述的发射机, 其特征在于, 所述 N个 窄带对应的列为: 所述矩阵 A中, 与矩阵 Z的非零行具有相同编号的列, 所述矩阵 Z满足: Y=AZ, 其中, 矩阵 Y为所述 N个无线信号对应的接收信 号矩阵。
21、 如权利要求 13-20中任一项所述的发射机, 其特征在于, 所述 N个 无线信号中的各无线信号为占用预先设定且连续的频段的信号。
22、 如权利要求 13-21中任一项所述的发射机, 其特征在于, 所述无线 信号为正交频分复用 OFDM信号,所述窄带为子带,所述信息符号为 OFDM 符号, 所述载波为子载波。
23、 一种压缩釆样接收机, 其特征在于, 包括:
获取单元, 用于获取接收信号矩阵 Y;
确定单元, 根据所述压缩釆用接收机使用的周期性伪随机序列, 确定接 收矩阵 ^, 其中, 的共轭转置矩阵 满足奇异值分解式: As H 矩 阵 由等效信道矩阵 A中, 与矩阵 Z的非零行具有相同编号的列组成, 所 述矩阵 Z满足: Y=AZ, 所述矩阵 A是基于所述周期性伪随机序列生成的; 运算单元,用于将所述确定单元确定的所述矩阵 与所述获取单元获取 的所述矩阵 Y相乘, 以便基于相乘的结果恢复信号。
24、 如权利要求 23所述的压缩釆样接收机, 其特征在于, 还包括: 发送单元, 用于向发射机发送信令, 所述信令用于指示所述周期性伪随 机序列的序号, 其中, 所述序号预先设定, 且所述序号用于所述发射机根据 所述序号从预先存储的周期性伪随机序列集合中获取所述周期性伪随机序 列。
PCT/CN2014/081507 2014-07-02 2014-07-02 处理信号的方法、发射机和压缩采样接收机 WO2016000226A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14896645.0A EP3151436B1 (en) 2014-07-02 2014-07-02 Signal processing method, transmitter and compressive sampling receiver
CN201480080198.7A CN106464273B (zh) 2014-07-02 2014-07-02 处理信号的方法、发射机和压缩采样接收机
PCT/CN2014/081507 WO2016000226A1 (zh) 2014-07-02 2014-07-02 处理信号的方法、发射机和压缩采样接收机
US15/394,354 US10044401B2 (en) 2014-07-02 2016-12-29 Signal processing method, transmitter, and compressive sampling receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081507 WO2016000226A1 (zh) 2014-07-02 2014-07-02 处理信号的方法、发射机和压缩采样接收机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/394,354 Continuation US10044401B2 (en) 2014-07-02 2016-12-29 Signal processing method, transmitter, and compressive sampling receiving device

Publications (1)

Publication Number Publication Date
WO2016000226A1 true WO2016000226A1 (zh) 2016-01-07

Family

ID=55018305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081507 WO2016000226A1 (zh) 2014-07-02 2014-07-02 处理信号的方法、发射机和压缩采样接收机

Country Status (4)

Country Link
US (1) US10044401B2 (zh)
EP (1) EP3151436B1 (zh)
CN (1) CN106464273B (zh)
WO (1) WO2016000226A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10057048B2 (en) * 2016-07-19 2018-08-21 Analog Devices, Inc. Data handoff between randomized clock domain to fixed clock domain
US10567048B2 (en) * 2016-09-23 2020-02-18 Qualcomm Incorporated Techniques for determining uplink precoding matrix for a user equipment
CN107426737B (zh) * 2017-09-22 2020-10-02 哈尔滨工业大学 基于单通道结构调制宽带转换器的宽带频谱感知方法
CN108509506B (zh) * 2018-03-06 2021-07-13 西安大衡天成信息科技有限公司 一种频谱监测数据结构化表示方法
CN111565087B (zh) * 2020-04-09 2023-05-02 哈尔滨工程大学 一种侦察干扰一体化系统
CN115632668A (zh) * 2022-09-08 2023-01-20 鹏城实验室 数字接收机基带信号降采样方法、装置、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291152A (zh) * 2011-04-07 2011-12-21 湖南大学 基于奇异值分解的压缩感知含噪信号重构系统
US8379745B1 (en) * 2007-07-06 2013-02-19 Marvell International Ltd. Forward channel variation detection in a wireless communication system
CN103873075A (zh) * 2012-12-17 2014-06-18 华为技术有限公司 窄带信号发送方法、信号发射装置及采样系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185258B1 (en) 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
US20070154624A1 (en) 2005-12-30 2007-07-05 Lucent Technologies Inc. Synthesis of acenes and hydroxy-acenes
US8538329B2 (en) * 2011-12-08 2013-09-17 Harris Corporation System with sub-nyquist signal acquisition and transmission and associated methods
US8516340B2 (en) * 2011-12-08 2013-08-20 Harris Corporation Data system for interfacing with a remote data storage facility using compressive sensing and associated methods
US20140181166A1 (en) * 2012-12-26 2014-06-26 Industrial Technology Research Institute Apparatus for low complexity sub-nyquist sampling of sparse wideband signals
US9436974B2 (en) * 2014-02-24 2016-09-06 Vencore Labs, Inc. Method and apparatus to recover scene data using re-sampling compressive sensing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379745B1 (en) * 2007-07-06 2013-02-19 Marvell International Ltd. Forward channel variation detection in a wireless communication system
CN102291152A (zh) * 2011-04-07 2011-12-21 湖南大学 基于奇异值分解的压缩感知含噪信号重构系统
CN103873075A (zh) * 2012-12-17 2014-06-18 华为技术有限公司 窄带信号发送方法、信号发射装置及采样系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151436A4 *

Also Published As

Publication number Publication date
US20170111082A1 (en) 2017-04-20
EP3151436A4 (en) 2017-09-27
EP3151436B1 (en) 2019-06-19
EP3151436A1 (en) 2017-04-05
US10044401B2 (en) 2018-08-07
CN106464273A (zh) 2017-02-22
CN106464273B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
US10938613B2 (en) Orthogonal time frequency space communication system compatible with OFDM
KR102543924B1 (ko) 직교 시간 주파수 공간 변조 시스템
CN108141294B (zh) 与ofdm兼容的正交时间频率空间通信系统
WO2016000226A1 (zh) 处理信号的方法、发射机和压缩采样接收机
US10411843B2 (en) Orthogonal time frequency space communication system compatible with OFDM
US9967758B2 (en) Multiple access in an orthogonal time frequency space communication system
CN108283025B (zh) 正交时频空间通信系统中的多址访问
Zhang et al. A compressed sensing based ultra-wideband communication system
US20170149594A1 (en) Symplectic orthogonal time frequency space modulation system
Hoyos et al. Ultra-wideband analog-to-digital conversion via signal expansion
CN108028823A (zh) 辛正交时频空间调制系统
US9054905B2 (en) Method and apparatus for timing synchronization at sub-sampled rate for sub-sampled wideband systems
US11063724B1 (en) Reduced channel-sounding in MU-MIMO WLANS
Thaj et al. OTFS modem SDR implementation and experimental study of receiver impairment effects
CN103701730A (zh) 信道时域相关性低复杂度压缩感知的信道估计方法及装置
KR102112291B1 (ko) 단일 캐리어 블록 전송에서의 톤-별 확산을 이용한 채널 완화를 위한 방법 및 시스템
Cohen et al. Channel estimation in UWB channels using compressed sensing
Tonello et al. Cyclic block filtered multitone modulation
RU2341030C2 (ru) Многомасштабная беспроводная связь
JP3783702B2 (ja) 受信装置及び受信方法
Elmaroud et al. PAPR reduction of FBMC signals by combining exponential companding and Hadamard transforms
Suma et al. Orthogonal frequency division multiplexing peak‐to‐average power ratio reduction by best tree selection using coded discrete cosine harmonic wavelet packet transform
CN114788236A (zh) 接入节点、用户设备、以及对应设备、方法和计算机程序
KR102060358B1 (ko) 서브 샘플된 광대역 시스템을 위하여 서브 샘플된 레이트로 타이밍을 동기화하는 방법 및 시스템
CN102065051B (zh) Tds-ofdm系统中检测前信号的捕获方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896645

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014896645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896645

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE