WO2016000177A1 - 物理上行控制信道资源的分配方法和装置 - Google Patents

物理上行控制信道资源的分配方法和装置 Download PDF

Info

Publication number
WO2016000177A1
WO2016000177A1 PCT/CN2014/081280 CN2014081280W WO2016000177A1 WO 2016000177 A1 WO2016000177 A1 WO 2016000177A1 CN 2014081280 W CN2014081280 W CN 2014081280W WO 2016000177 A1 WO2016000177 A1 WO 2016000177A1
Authority
WO
WIPO (PCT)
Prior art keywords
code channel
scc
allocated
channel group
sccs
Prior art date
Application number
PCT/CN2014/081280
Other languages
English (en)
French (fr)
Inventor
储循循
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14896405.9A priority Critical patent/EP3148273B1/en
Priority to PCT/CN2014/081280 priority patent/WO2016000177A1/zh
Priority to JP2017519746A priority patent/JP6337387B2/ja
Priority to KR1020177001140A priority patent/KR101962775B1/ko
Priority to CN201480002164.6A priority patent/CN104604177B/zh
Publication of WO2016000177A1 publication Critical patent/WO2016000177A1/zh
Priority to US15/392,468 priority patent/US10111214B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for allocating physical uplink control channel resources.
  • C A English: Carrier Aggregation; Chinese: Carrier Aggregation
  • LTE Long Term Evolution
  • CA technology is a technology that acquires more bandwidth by aggregating multiple consecutive or non-contiguous CCs (English: Component Carrier; Chinese: Component Carrier). Among the multiple CCs aggregated, one PCC (English: Primary Component Carrier; Chinese: primary component carrier) and at least one SCC (English: Secondary Component Carrier; Chinese: secondary component carrier) are included.
  • the carrier initially accessed by the UE is a PCC, and the remaining carriers are SCCs.
  • the feedback information of the downlink transport block of the SCC for example, ACK or NACK (English: Acknowledgement/Not- acknowledgement; Chinese: positive acknowledgment or negative acknowledgment) can only pass the PUCCH of the PCC (English: Physical Uplink Control Channel; Chinese: Physical Uplink Control) Channel) for feedback.
  • ACK or NACK English: Acknowledgement/Not- acknowledgement; Chinese: positive acknowledgment or negative acknowledgment
  • PCC Physical Uplink Control Channel
  • PCC Physical Uplink Control Channel
  • the resource demand for PUCCH will increase greatly.
  • the embodiments of the present invention provide a PUCCH resource allocation method and apparatus to reduce PUCCH resource consumption.
  • a first aspect of the present invention provides a resource allocation method, which is used for resource allocation of a physical uplink control channel PUCCH in a component carrier aggregation scenario, where the component carrier includes a primary component carrier PCC and a secondary component carrier SCC, and the method includes :
  • the PUCCH resource includes at least two PUCCH code groups, and each PUCCH code group includes at least two PUCCH code channel pairs;
  • determining a code channel pair used by an SCC to which the same code channel group in the PUCCH resource is allocated, so that the PUCCH is allocated The code channel pairs used by any two SCCs in the SCC of the same code channel group in the resource do not overlap, including:
  • Detecting a load of an SCC to which the same code channel group in the PUCCH resource is allocated determining, according to a load of an SCC to which the same code channel group in the PUCCH resource is allocated, being allocated in the PUCCH resource. The ratio or number of code channel pairs used by the SCC of the same code channel group, wherein the higher the load of the SCC, the higher the proportion or the number of code channel pairs used;
  • the detecting, by the SCC, the load of the SCC of the same code channel group in the PUCCH resource is included, including :
  • the period detection is assigned a load of the SCC of the same code channel group in the PUCCH resource.
  • the period is one or more transmission time intervals TTI.
  • the code channel pair used by the SCC to which the same code channel group in the PUCCH resource is allocated is determined, so that the PUCCH resource is allocated
  • the code channel pairs used by any two SCCs in the SCC of the same code channel group do not overlap, including:
  • the same code channel group When the code channel pair in the same code channel group cannot be equally divided according to the number of SCCs to which the same code channel group in the PUCCH resource is allocated, the same code channel group The code channel pair is assigned to each see so that the number of code channel pairs assigned to each SCC does not exceed one.
  • the code channel pair used by the SCC to which the same code channel group in the PUCCH resource is allocated is determined, so that the PUCCH resource is allocated
  • the code channel pairs used by any two SCCs in the SCC of the same code channel group do not overlap, including:
  • each sub-period determines, according to a ratio in the proportional set, that the SCCs that are assigned the same code channel group in the PUCCH resource use different code channel pairs in the same code channel group, where The proportion used in each sub-period is different, and the number of sub-periods in one cycle is equal to the number of proportions in the proportional set.
  • the sub-period is one or more TTIs.
  • a second aspect of the present invention provides a resource allocation method, which is used for resource allocation of a physical uplink control channel PUCCH in a component carrier aggregation scenario, where the component carrier includes a primary component carrier PCC and a secondary component carrier SCC, where the method includes :
  • the entity controlling the SCC receives resource information sent by an entity controlling the PCC, where the resource information is used to indicate a code channel group allocated to the SCC and a code channel pair used by the SCC in the code channel group, where The sec and the other one or more sees multiplex the code channel group assigned to the SCC, and the code channel pair used does not overlap with the code channel pair used by the other one or more secs;
  • the entity controlling the SCC determines, according to the received resource information, a code channel pair that can be used by the SCC to be allocated to the code channel group of the SCC;
  • the determined code channel pair is configured to the user equipment under the SCC.
  • a third aspect of the present invention provides a resource allocation apparatus, which is used for resource allocation of a physical uplink control channel PUCCH in a component carrier aggregation scenario, where the component carrier includes a primary component carrier PCC and a secondary component carrier SCC, and the apparatus includes :
  • a configuration unit configured to configure, for the PCC, a PUCCH resource, where the PUCCH resource includes at least two PUCCH code channel groups, each PUCCH code channel group includes at least two PUCCH code channel pairs, and a first determining unit, configured to determine to allocate a PUCCH resource of the SCC, where at least two SCCs are allocated the same code channel group in the PUCCH resource;
  • a second determining unit configured to determine a code channel pair used by an SCC to which the same code channel group in the PUCCH resource is allocated, so that the SCC in the same code channel group in the PUCCH resource is allocated
  • the code channel pairs used by any two SCCs do not overlap.
  • the device further includes:
  • a detecting unit configured to detect a load of an SCC to which the same code channel group in the PUCCH resource is allocated
  • the second determining unit is specifically configured to: determine, according to a load of an SCC to which the same code channel group in the PUCCH resource is allocated, an SCC used code channel that is allocated with the same code channel group in the PUCCH resource.
  • the ratio or number of pairs wherein the higher the load of the SCC, the higher the proportion or the number of pairs of code channels used; the determined use of the SCCs assigned to the same code channel group in the PUCCH resources according to the determined ratio or number
  • the code channel pair is such that the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated do not overlap.
  • the detecting unit is specifically configured to periodically detect that the PUCCH resource is allocated The load of the SCC of a code channel group.
  • the period is one or more transmission time intervals TTI.
  • the second determining unit is specifically configured to:
  • the same code channel group When the code channel pair in the same code channel group cannot be equally divided according to the number of SCCs to which the same code channel group in the PUCCH resource is allocated, the same code channel group The code channel pair is assigned to each SCC such that the number of code channel pairs assigned to each SCC does not exceed one.
  • the second determining unit is specifically configured to:
  • each sub-period determines, according to a ratio in the proportional set, that the SCCs to which the same code channel group in the PUCCH resource is allocated use different code channel pairs in the same code channel group, where each The sub-periods use different proportions, and the number of sub-cycles in one cycle is equal to the number of proportions in the proportional set.
  • the sub-period is one or more TTIs.
  • a fourth aspect of the present invention provides a resource allocation apparatus, which is used for resource allocation of a physical uplink control channel PUCCH in a component carrier aggregation scenario, where the component carrier includes a primary component carrier PCC and a secondary component carrier SCC, where the device is located
  • the entity that controls the SCC and includes:
  • An interface unit configured to receive resource information sent by an entity that controls the PCC, where the resource information is used to indicate a code channel group allocated to the SCC, and a code channel pair used by the SCC in the code channel group, where the SCC and the SCC are The other one or more SCCs multiplex the code channel groups assigned to the SCC, and the code channel pairs used do not overlap with the code channel pairs used by the other one or more secs;
  • a determining unit configured to determine, according to the received resource information, a code channel pair in the code channel group that can be used by the SCC to be allocated to the SCC;
  • a configuration unit configured to configure the determined code channel pair to the user equipment under the SCC.
  • a fifth aspect of the present invention provides a resource allocation apparatus, which is used for resource allocation of a physical uplink control channel PUCCH in a component carrier aggregation scenario, where the component carrier includes a primary component carrier PCC and a secondary component carrier SCC, where the apparatus includes :
  • a memory for storing application code
  • a processor configured to execute the application code stored in the memory, specifically: configuring, for the PCC, a PUCCH resource, where the PUCCH resource includes at least two PUCCH code channel groups, and each PUCCH code channel group includes at least two PUCCHs Code pair
  • An interface configured to transfer information between the memory and the processor.
  • the processor is configured to perform:
  • the SCC of the same code channel group uses the proportion or number of code channel pairs, wherein the higher the load of the SCC, the higher the proportion or the number of code channel pairs used; according to the determined ratio or quantity, it is determined that the PUCCH resource is allocated.
  • the code channel pairs used by the SCCs of the same code channel group are such that the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated do not overlap.
  • the processor is specifically configured to: periodically detect that the same one of the PUCCH resources is allocated The load of the SCC of the code channel group.
  • the period is one or more transmission time intervals TTI.
  • the processor is specifically configured to perform:
  • the same code channel group When the code channel pair in the same code channel group cannot be equally divided according to the number of SCCs to which the same code channel group in the PUCCH resource is allocated, the same code channel group The code channel pair is assigned to each see so that the number of code channel pairs assigned to each SCC does not exceed one.
  • the processor is specifically configured to perform:
  • each sub-period determines, according to a ratio in the proportional set, that the SCCs to which the same code channel group in the PUCCH resource is allocated use different code channel pairs in the same code channel group, where each The sub-periods use different proportions, and the number of sub-cycles in one cycle is equal to the number of proportions in the proportional set.
  • the sub-period is one or more TTIs.
  • a sixth aspect of the present invention provides a resource allocation apparatus, which is used for resource allocation of a physical uplink control channel PUCCH in a component carrier aggregation scenario, where the component carrier includes a primary component carrier PCC and a secondary component carrier SCC, where the device is located
  • the entity that controls the SCC and includes:
  • An interface configured to receive resource information sent by an entity that controls the PCC, where the resource information is used to indicate a code channel group allocated to the SCC and a code channel pair used by the SCC in the code channel group, where the SCC and other One or more SCCs multiplex the code channel groups assigned to the SCC, and the code channel pairs used do not overlap with the code channel pairs used by the other one or more SCCs;
  • a memory for storing application code
  • a processor configured to execute the application code stored in the memory, to perform: determining, according to the received resource information, a code channel pair in the code channel group that can be used by the SCC to be allocated to the SCC; The determined code channel pair is configured to the user equipment under the SCC.
  • the embodiment of the present invention configures a PUCCH resource for the PCC, where the PUCCH resource includes at least two PUCCH code channel groups, each PUCCH code channel group includes at least two PUCCH code channel pairs, and determines a PUCCH allocated to the SCC.
  • a resource where at least two SCCs are allocated the same code channel group in the PUCCH resource, and a code channel pair used by an SCC to which the same code channel group in the PUCCH resource is allocated is determined, so as to be allocated
  • the code channel pairs used by any two SCCs in the SCC of the same code channel group in the PUCCH resource do not overlap, such that the PUCCH resources allocated to the PCC are allocated to the SCC in the manner of PUCCH code group, and at least The two SCCs are allocated the same code channel group in the PUCCH resource, and the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated do not overlap, and multiple SCCs are implemented.
  • Reusing the same PUCCH resource saves PUCCH resources when multiple CCs perform CA, which reduces the consumption of PUCCH resources, which not only improves the utilization of PUCCH resources, but also improves the system. Throughput.
  • FIG. 1 is a schematic flowchart of a resource allocation method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a PUCCH resource allocation method according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a code channel pair allocation manner according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of resource multiplexing between SCCs according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for allocating PUCCH resources according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a PUCCH resource allocation apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of another PUCCH resource allocation apparatus according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention. detailed description
  • each SCC is allocated an independent PUCCH resource in the prior art. This causes the PCC's PUCCH resource consumption to increase linearly as the number of SCCs increases.
  • a strategy for multiplexing the same PUCCH resources by the SCC is proposed to save the consumption of PUCCH resources and improve the uplink throughput rate.
  • the PUCCH resource configured for the PCC may be divided into multiple PUCCH code channel groups (hereinafter referred to as code channel groups), and each code channel group includes multiple PUCCH code channel pairs (hereinafter referred to as code channel pairs).
  • code channel groups PUCCH code channel groups
  • code channel pairs PUCCH code channel pairs
  • the same code channel group is allocated to at least two SCCs, and the resources of the SCCs allocated to the same code channel group in the code channel group are not conflicted, and the same one can be allocated by control.
  • the SCC of the code channel group is implemented using different code channel pairs in the same code channel group.
  • the above-mentioned SCC allocation code channel group can be implemented in layer 3 (L3), for example, in the RRC (English: Radio Resource Control; Chinese: Radio Resource Control) layer; the SCC that controls the same code channel group is used to use the same code.
  • Different code channel pairs in the channel group can be implemented in layer 2 (L2), for example It is implemented in the RLC (English: Radio Link Control; Chinese: Radio Link Control) layer or MAC (English: Media Access Control; Chinese: Media Access Control) layer.
  • RLC Radio Link Control
  • MAC Media Access Control
  • the present invention is not limited thereto, and those skilled in the art can adjust the positions realized by the respective steps as needed.
  • FIG. 1 is a schematic flowchart diagram of a resource allocation method according to an embodiment of the present invention. The method can be as follows.
  • the resource allocation method provided by the embodiment of the present invention may be applied to resource allocation of a PUCCH in a component carrier aggregation scenario, where the component carrier includes a PCC and an SCC.
  • the PCC is a carrier initially accessed by the UE.
  • the PUCCH resource includes at least two PUCCH code channel groups (hereinafter, the PUCCH code channel group is abbreviated as a code channel group), and each PUCCH code channel group includes at least two PUCCH code channel pairs (the following PUCCH code channel pair is called a code) Right).
  • the PUCCH code channel group is abbreviated as a code channel group
  • each PUCCH code channel group includes at least two PUCCH code channel pairs (the following PUCCH code channel pair is called a code) Right).
  • S102 Determine a PUCCH resource allocated to the SCC.
  • At least two SCCs are allocated the same code channel group in the PUCCH resource.
  • S103 Determine a code channel pair used by an SCC to which the same code channel group in the PUCCH resource is allocated, so that any two SCCs in an SCC to which the same code channel group in the PUCCH resource is allocated are used.
  • the code channel pairs do not overlap.
  • step S103 a code channel pair used by an SCC to which the same code channel group in the PUCCH resource is allocated is determined, so that any two of the SCCs of the same code channel group in the PUCCH resource are allocated.
  • the ways in which the code channels used by the SCC do not overlap include but are not limited to the following:
  • the first way For the same code channel group, the code channel pairs that can be used are allocated according to the load status of the SCC.
  • the period detection is allocated with the load of the SCC of the same code channel group in the PUCCH resource.
  • the period is one or more TTIs (English: Transmission Time Interval; Chinese: transmission time interval).
  • the proportion or the number of SCCs using the code channel pair of the same code channel group in the PUCCH resource is determined according to the load of the SCC to which the same code channel group in the PUCCH resource is allocated.
  • a third step determining, according to the determined ratio or quantity, a code channel pair used by an SCC to which the same code channel group in the PUCCH resource is allocated, so that the same code channel group in the PUCCH resource is allocated.
  • the code channel pairs used by any two SCCs in the SCC do not overlap.
  • the SCC can be assigned a code channel pair according to the principle of division.
  • the code channel pairs in the same code channel group are equally divided into SCCs that are assigned the same code channel group in the PUCCH resource; or
  • the same code channel group When the code channel pair in the same code channel group cannot be equally divided according to the number of SCCs to which the same code channel group in the PUCCH resource is allocated, the same code channel group The code channel pair is assigned to each see so that the number of code channel pairs assigned to each SCC does not exceed one.
  • each sub-cycle allocates a code channel pair that can be used for the SCC according to the set ratio.
  • each sub-period determines, according to a ratio in the proportional set, that the SCCs that are assigned the same code channel group in the PUCCH resource use different code channel pairs in the same code channel group. .
  • the proportion used in each sub-period is different, and the number of sub-cycles in one cycle is equal to the number of proportions in the proportional set.
  • the sub-period is one or more TTIs.
  • the PUCCH resource is configured for the PCC, where the PUCCH resource includes at least two PUCCH code channel groups, and each PUCCH code channel group includes at least two PUCCH code channel pairs, and is determined to be allocated to the a PUCCH resource of the SCC, where at least two SCCs are allocated the same code channel group in the PUCCH resource, and the code channel pair used by the SCC to which the same code channel group in the PUCCH resource is allocated is determined.
  • the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated are not overlapped, so that the PUCCH resources allocated to the PCC are allocated in the PUCCH code group group manner.
  • SCC, and at least two SCCs are allocated the same code channel group in the PUCCH resource, and the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated do not overlap.
  • Multiple PUCCH resources are multiplexed by multiple SCCs, which saves PUCCH resources when multiple CCs perform CA. This reduces the consumption of PUCCH resources, improves the utilization of PUCCH resources, and improves the throughput of the system.
  • FIG. 2 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • the resource allocation apparatus provided by the embodiment of the present invention may be applied to resource allocation of a PUCCH in a component carrier aggregation scenario, where the component carrier includes a PCC and an SCC.
  • the apparatus 200 includes: a configuration unit 210, a first determining unit 220, and a second determining unit 230, where:
  • the configuration unit 210 is configured to configure, for the PCC, a PUCCH resource, where the PUCCH resource includes at least two PUCCH code channel groups, each PUCCH code channel group includes at least two PUCCH code channel pairs, and a first determining unit 220 is configured to determine a PUCCH resource configured by the configuration unit 210 of the SCC, where at least two SCCs are allocated the same code channel group in the PUCCH resource;
  • a second determining unit 230 configured to determine, by the first determining unit 220, a code channel pair used by an SCC that is allocated with the same code channel group in the PUCCH resource, so that the PUCCH resource is allocated
  • the code channel pairs used by any two SCCs in the SCC of the same code channel group do not overlap.
  • the apparatus further includes: a detecting unit 240, wherein: The detecting unit 240 is configured to detect a load of the SCC to which the same code channel group in the PUCCH resource is allocated;
  • the second determining unit 230 is specifically configured to: determine, according to the load of the SCC that is detected by the detecting unit 240 that is allocated to the same code channel group in the PUCCH resource, that the PUCCH resource is allocated.
  • the SCC of the same code channel group uses the proportion or the number of code channel pairs, wherein the higher the load of the SCC, the higher the proportion or the number of code channel pairs used; according to the determined proportion or quantity, it is determined that the PUCCH resource is allocated.
  • the pair of code channels used by the SCCs of the same code channel group in such that the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated do not overlap.
  • the detecting unit 240 is specifically configured to periodically detect a load of an SCC to which the same code channel group in the PUCCH resource is allocated.
  • the period is one or more transmission time intervals TTI.
  • the second determining unit 230 is specifically configured to: equate the code channels in the same code channel group into the same code channel that is allocated in the PUCCH resource. Group of SCC; or,
  • the same code channel group When the code channel pair in the same code channel group cannot be equally divided according to the number of SCCs to which the same code channel group in the PUCCH resource is allocated, the same code channel group The code channel pair is assigned to each SCC such that the number of code channel pairs assigned to each SCC does not exceed one.
  • the second determining unit 230 is specifically configured to: determine, within a cyclic period, each sub-period, according to a ratio in the proportional set, that the same code in the PUCCH resource is allocated
  • the SCC of the track group uses different code channel pairs in the same code channel group, wherein each sub-cycle uses a different ratio, and the number of sub-cycles in one cycle is equal to the number of proportions in the proportional set.
  • the sub-period is 1 or more TTIs.
  • the resource allocation apparatus in the embodiment of the present invention may be located in a base station where the PCC is located, and may be a baseband board that controls the PCC in the base station, and allocates the PUCCH resource configured to the PCC to the SCC in a PUCCH code group group. And at least two SCCs are allocated PUCCH resources The same code channel group in the same group, and the code channel pairs used by any two SCCs in the SCC to which the same code channel group in the PUCCH resource is allocated do not overlap, and multiple SCCs are used to multiplex the same PUCCH resource.
  • the PUCCH resource is saved when multiple CCs perform CA, which reduces the consumption of PUCCH resources, which not only improves the utilization of PUCCH resources, but also improves the throughput of the system uplink.
  • FIG. 3 is a schematic flowchart diagram of a method for allocating PUCCH resources according to an embodiment of the present invention.
  • the method is used for PUCCH resource allocation in a CA scenario.
  • the CA scenario one PCC is aggregated with at least two SCCs, and the feedback information of the downlink transport block sent by each SCC is fed back through the PUCCH of the PCC. Therefore, the PUCCH resource allocated to the PCC needs to be allocated to the SCC for aggregation with the PCC.
  • the method provided in this embodiment is used to solve the problem of how to effectively use the PUCCH resource in the resource allocation.
  • the method for allocating PUCCH resources provided by this embodiment may include the following steps:
  • S301 Configure a PUCCH resource for the PCC, where the PUCCH resource includes multiple code channel groups, and each code channel group includes multiple code channel pairs.
  • S302 Allocate the same code channel group in the above PUCCH resources for two or more SCCs.
  • S303 Allocating code channel pairs in the same code channel group to the two or more SCCs, where code channel pairs allocated to the two or more SCCs do not overlap.
  • S304 Notifying the two or more SCCs of the allocated resources, including notifying each SCC of the code channel group and the code channel pair assigned thereto.
  • the resource allocation granularity of the above step S302 is a code channel group, and the same code channel group is allocated to two or more SCCs, so that the two or more SCCs are multiplexed into the same code channel group, thereby saving PCC and The consumption of PUCCH resources during aggregation of multiple SCCs improves the uplink throughput rate. And because there is a multiplexed code channel group, in step S303, the code channel is further allocated a granularity for the resources, so that the SCCs multiplexing the same code channel group use different code channel pairs, thereby avoiding resource conflicts.
  • the above method may be performed by an entity that controls the PCC.
  • the entity may be a base station where the PCC is located, and more specifically may be a baseband board that controls the PCC in the base station; further refined may also be a processor on the baseband board, where The processor can be a processor or a collective term for multiple processing elements.
  • configuring the PUCCH resource for the PCC may be implemented in layer 3.
  • the RB (Resource Block) allocated to the PUCCH is limited.
  • the time-frequency resource is extended in the coding dimension, so that the PUCCH resource passes the carrier (frequency dimension), the time slot ( Time dimension), coding (coding dimension) for identification.
  • the unit of the PUCCH resource can be regarded as one PUCCH code channel. Since each subframe includes two time slots, in actual use, the PUCCH resource can be divided into resources in units of code channel pairs, so that the above PUCCH resources include multiple codes.
  • the above step S302 can be performed.
  • the PUCCH resource can be allocated to the SCC aggregated with the PCC with as few SCC multiplexed code groups as possible.
  • the number of SCCs aggregated with the PCC is smaller than the number of code channel groups in the PUCCH resource, one code channel group may be allocated for each SCC aggregated with the PCC, and there is no multiplexing of the code channel groups at this time.
  • the above step S302 is performed.
  • the same code channel group may be allocated to the two or more SCCs at the same time, or the same code channel group may be allocated to the two or more SCCs.
  • the PUCCH resources allocated to the PCC are divided into four code channel groups, which are code channel groups 1 to 4, respectively.
  • each SCC may be assigned a code channel group, and the code channel group multiplexing may not be performed first. Then, when the number of SCCs to be aggregated exceeds the number of code channel groups, the already assigned code channel groups can be reassigned to the newly added SCC.
  • you can also start the aggregation policy let two or more SCCs multiplex one code channel group; then add the SCC that needs to be aggregated, then use the unallocated code channel group, if there is no unassigned code.
  • the channel group can continue to be reused. For example, when the accessed UE needs to be aggregated by more than four SCCs and the PCC, for convenience of description, five are taken as SCC0 to SCC4 respectively. In this case, the same code channel group can be allocated to both SCC0 and SCC4. For example, code channel group 1.
  • code channel group 1 it is also possible to assign code channel groups 1 to 4 to SCC0 and SCC3 in turn, and then assign code channel group 1 to SCC4.
  • the embodiment of the present invention does not impose any limitation.
  • code channel pairs in the above code channel groups may be the same or different, and is not limited herein.
  • the allocation granularity of the resources needs to be further refined to the code channel pair to avoid resource conflicts.
  • the allocation of code channel pairs can be implemented by, but not limited to, the following methods:
  • the first way on-demand allocation.
  • the code channel pairs in the code channel group are assigned to the SCCs according to the load of the SCCs that multiplex the same code channel group.
  • the greater the load the more code channel pairs are used by the SCC.
  • the relationship between the load and the code channel pair may not be a simple linear relationship.
  • the load range may be determined according to the load value of the daily use load and the required code channel pair.
  • the relationship of the required code channel pairs For example, the load can be divided into several intervals, and the code channel pairs required for each interval are different. When the load reaches this interval, the SCC is assigned a corresponding number of code channel pairs.
  • each threshold interval corresponds to a code channel pair distribution ratio, when the load difference between the two SCCs falls.
  • a code channel pair is assigned to each SCC according to the corresponding allocation ratio.
  • the method includes: mode 1: assigning 3 code channel pairs to one SCC, and assigning 1 code channel pair to another SCC; mode 2: assigning 2 code channel pairs for each SCC; mode 3: 4 codes
  • the channel pair is assigned to one SCC, and the other SCC reserves the right to use the code channel group, but it is not used for the time being.
  • Mode 1 is applicable to the case where two SCC loads differ by a certain value or in two different load intervals; mode 2 applies to two SCC loads that are the same or have little difference (for example, below a certain threshold) or in the same load interval. Situation; Equation 3 applies to situations where one SCC load is zero or negligible relative to another SCC load.
  • one of the simplest implementation methods is that when two SCC loads are the same or the difference is less than a preset value, Mode 2, assigning 2 code channel pairs to each SCC; when the two SCC loads are different or the difference is greater than a preset value, the mode 1 is used, and 3 code channel pairs are allocated for the SCC with large load, which is small load
  • the SCC allocates 1 code channel pair.
  • mode 3 is used to allocate 4 code channel pairs to the loaded SCC.
  • Examples of other implementations may include: SCC0 and SCC4 multiplex one code channel group, and there are 4 code channel pairs in the code channel group. Since the load of SCC0 falls within the load interval of three code channel pairs, and the load of SCC4 falls into the load interval of one code channel pair, mode 1 is adopted, three code channel pairs are allocated for SCC0, and one code channel is allocated for SCC4. Correct. For example, since the difference between the load of SCC0 and SCC falls within a certain threshold interval, and the allocation ratio corresponding to the threshold interval is 3: 1, the mode 1 is used, 3 code channel pairs are allocated for SCC0, and 1 channel is allocated for SCC4. Code pair.
  • the above method considers the resource requirements of the SCCs that multiplex the same code channel group, and allocates the code channel pairs according to the requirements, further improves the utilization rate of the PUCCH resources, and further improves the uplink throughput rate.
  • the manner of assigning the code channel pairs given above is for example only, and is not intended to limit the present invention. Those skilled in the art may, according to the suggestion, use other loads according to the load to multiplex the same code channel group.
  • the SCC allocates code channel pairs, or controls allocation of code channel pairs for multiplexing SCCs of the same code channel group according to parameters other than the load that reflect the resource requirements of the SCC.
  • the embodiment of the present invention does not impose any limitation.
  • the second way the average distribution method.
  • the resource requirements of the SCCs that multiplex the same code channel group are not considered, and the code channel pairs in the code channel group are equally allocated to each scc according to the number of SCCs that multiplex the same code channel group. .
  • the number of code channel pairs used by each sec can be made no more than one.
  • the number of SCCs multiplexed by one code channel group in the above example is three, two SCCs use one code channel pair, and the other one SCC uses two code channel pairs.
  • the third method of distribution the cyclic allocation method.
  • SCCs may have different resource requirements, but in the allocation, the SCC does not allocate code pairs according to the requirements of the SCCs that multiplex the same code channel group, but sequentially adopts several allocation methods to Achieve the effect of the average allocation of resources in a cycle.
  • the SCC0 and SCC4 multiplexed code channel groups 1 are supported, and there are 4 code channel pairs in the code channel group 1, then at the initial allocation, 3 code channel pairs are allocated for SCC0, and 1 SCC4 is allocated. After a period of time, two code channel pairs are allocated for SCC0, and two code channel pairs are allocated for SCC4; after the same period of time, one code channel pair is allocated for SCC0, and three code channel pairs are allocated for SCC4. In this cycle, the resources allocated by SCC0 and SCC1 in each cycle are equivalent.
  • the time here can be in units of TTI (Transmission Time Interval), such as 1 or more TTIs. Of course, other time units can also be set.
  • step S303 may include:
  • S3031 detecting a load of the two or more SCCs
  • S3032 determining, according to the load of the two or more SCCs, the ratio or the number of code channel pairs used by the two or more SCCs;
  • S3033 The two or more SCCs are allocated non-overlapping code channel pairs in the same code channel group according to the determined ratio or quantity.
  • the foregoing step S303 may include: halving the code channel pairs in the same code channel group to the two or more SCCs; or, when in the same code channel group When the code channel pair cannot be equally divided according to the number of the two or more SCCs, the remaining number of code channel pairs are removed, and the other code channels are equally divided into the two or more SCCs, and the remaining number is The code channel pairs are respectively assigned to the remaining number of SCCs such that the number of code channel pairs assigned to each SCC does not exceed one.
  • the above step S303 may include: one cycle period, each a sub-period, assigning different code channel pairs in the same code channel group to the two or more SCCs according to a ratio in the proportional set, wherein each sub-period uses a different ratio, and a sub-period of one cycle period
  • the quantity is equal to the number of proportions in the scale set.
  • the set of scales may be set according to the number of pairs of code channels in the code channel group. For example, all possible ratios may be exhausted, and all or part of the scale may be selected as the set.
  • each code channel group includes 4 code channel pairs, and the set may include a ratio of 1:3, 1 :1, and 3:1.
  • This third allocation method is an implementation of periodically adjusting the allocation of code channel pairs.
  • the load of these SCCs may be detected in each cycle. If the load changes, it may be considered whether to adjust to The number of code channel pairs assigned by each SCC.
  • FIG. 5 is a schematic flowchart of another method for allocating PUCCH resources according to an embodiment of the present invention.
  • the embodiment may periodically determine whether to re-allocate the code channel pair for each SCC.
  • the method also includes:
  • S308 Notify the code channel pair that the two or more SCCs are reassigned.
  • the code channel group includes 4 code channel pairs
  • SCC0 and SCC4 to multiplex one code channel group as an example
  • the load of SCC0 is greater than SCC4 or SCC0 and The load difference of SCC4 is greater than the preset value
  • 3 code channel pairs are allocated for SCC0
  • 1 code channel pair is allocated for SCC4
  • the load of SCC4 is greater than SCC0
  • the load difference between SCC4 and SCC0 is greater than a preset value.
  • one code channel pair is newly allocated for SCC0, and three code channel pairs are allocated for SCC4.
  • the load interval of SCC4 does not change, and two code channel pairs of SCC0 can be allocated.
  • the remaining code channel pairs If the number is insufficient to assign 3 code channel pairs to SCC4, then only 2 code channel pairs can be assigned to it. That is to say, the code channel pair allocation here only needs to be satisfied as much as possible.
  • the distribution ratio of the code channel pairs between them is 3:1.
  • the difference between the load of SCC0 and SCC4 is in the second threshold interval, so that the allocation ratio of the code channel pairs between them is 1:1, and then the same number of code channel pairs are newly allocated for SCC0 and SCC4.
  • the period in the above step S305 is in units of TTI and may be one or more TTIs.
  • the above method can adjust the resource allocation according to the load change on the SCC in time, so that the utilization rate of the PUCCH resource is further improved, and the uplink throughput rate is further improved.
  • FIG. 6 is a schematic diagram of resource multiplexing between SCCs according to an embodiment of the present invention.
  • the meaning of ⁇ ( ⁇ ) in the figure is: ⁇ represents the group number of the code channel group allocated for the SCC, ⁇ represents the number of code channel pairs allocated for the SCC; that is, ⁇ represents the group number of the code channel group used by the SCC, ⁇ represents the number of code channel pairs used by SCC.
  • the figure is exemplified by the fact that the PCC can be multiplexed with the eight SCCs, and the eight SCCs are respectively SCC0 to SCC7; and the PUCCH resources allocated to the PCC are divided into four code channel groups, respectively, code channel groups 0 to 3; Each code channel group includes 4 code channel pairs.
  • Two SCCs are multiplexed into one code channel group, including: SCC0 and SCC4 multiplexed code channel group 0, SCC1 and SCC5 multiplex code channel group 1, SCC2 and SCC6 multiplexed code channel group 2, SCC3 and SCC7 multiplexed code channels Group 3. Multiple SCCs that multiplex the same code channel group are in the same The code channel pairs used in the period do not overlap.
  • SCC0 uses 3 code channel pairs in period X
  • SCC4 uses the remaining 1 code channel pair in period X
  • SCC1 uses 2 code channel pairs in period X
  • SCC5 uses the remaining 2 code channel pairs in period X
  • SCC2 uses 4 code channel pairs in period X
  • SCC6 reserves the right to use code channel group 6 in period X, but does not use any code channel pairs
  • SCC3 is in cycle One code channel pair is used in X
  • SCC7 uses the remaining three code channel pairs in period X.
  • the ratio of the two SCCs using the code channel pair of the same code channel group can be adjusted, and only SCC0 and SCC4 are taken as an example. Others are not described again.
  • SCC0 uses three code channel pairs. SCC4 uses the remaining 1 code channel pair; in cycle Y, SCC0 uses 2 code channel pairs, SCC4 uses the remaining 2 code channel pairs; in cycle Z, SCC0 uses 1 code channel pair, SCC4 uses the remaining 3 channel pairs, and SCC4 uses the remaining 3 channel pairs.
  • the code is right. The adjustment here can be performed according to the load of SCC0 and SCC4, and the specific process is the same as the description of the corresponding part above, and details are not described herein again.
  • the above steps S302 and S303 can be performed.
  • each SCC may determine the PUCCH resources that it can use according to the notification of the PCC, and then allocate the resources to the UEs under it, so that the UE transmits the downlink transport block sent by the SCC by using the allocated PUCCH resources. Feedback.
  • FIG. 7 is a schematic flowchart of a PUCCH resource allocation method according to an embodiment of the present invention.
  • the method is used for PUCCH resource allocation in a CA scenario.
  • the CA scenario one PCC is aggregated with at least two SCCs, and the feedback information of the downlink transport block sent by each SCC is fed back through the PUCCH of the PCC.
  • the PUCCH resource configured for the PCC needs to be allocated to the SCC for aggregation with the PCC.
  • the PUCCH resource configured for the PCC includes multiple code channel groups, and each code channel group includes multiple code channel pairs.
  • the method for allocating PUCCH resources provided by this embodiment may include the following steps:
  • the entity controlling the SCC receives the resource information sent by the entity that controls the PCC, where the resource configuration information is used to indicate the code channel group allocated to the SCC and the code used by the SCC in the code channel group. a pair of channels, wherein the SCC multiplexes with one or more other SCCs a code channel group assigned to the SCC, and the code channel pair used does not overlap with the code channel pair used by the other one or more SCCs;
  • the entity that controls the SCC determines, according to the received resource information, a code channel pair that is allocated by the SCC to the code channel group of the SCC.
  • S703 Configure the determined code channel pair to the UE under the SCC.
  • the entity controlling the SCC may be a base station where the SCC is located, and more specifically may be a baseband board that controls the SCC in the base station; further refined may be a processor on the baseband board, where the processor may be a processor. It can also be a general term for multiple processing elements.
  • the resource configuration information may be transmitted through an interface between the base stations, for example, an X2 interface; if the PCC and the SCC are deployed on different baseband boards or processors of the same base station
  • the resource allocation information can be transmitted through the wiring connection between the baseband board or the processor.
  • the form of the resource information is not limited in any embodiment of the present invention, and may be carried by using an existing message, or a new message may be newly set for transmitting resource information.
  • the content there is no limitation here, as long as the information that the PCC allocates to the code channel group and the code channel pair used by each SCC can be notified to the SCC, for example, the code channel group and the code channel pair can be identified by the serial number. The sequence number of the corresponding code channel group and code channel pair can be transmitted in the resource information.
  • the entity controlling the SCC can learn which resources are available to the SCC according to the resource information, and configure the resources to the UE under the SCC.
  • the process of configuring the resources to the UE by the SCC is not related to the essence of the present invention, and may be implemented by using an existing configuration method, and details are not described herein again.
  • the SCC aggregated with the PCC can be changed. For example, at a certain moment, all UEs accessing the PCC have aggregation requirements for SCC0 to SCC3. At this time, the PCC needs to be aggregated with SCC0 to SCC3. Then, due to the change of the access UE, the SCC needs to be aggregated, for example, PCC. It is required to be aggregated with SCC0 to SCC7; or SCC changes requiring polymerization, for example, PCC needs to be aggregated with SCC4 to SCC7; or SCC requiring polymerization is changed and the number is increased, for example, PCC needs to be aggregated with SCC8 to SCC14.
  • the same code channel group may be allocated to different SCCs to perform multiplexing of PUCCH resources.
  • the embodiments of the present invention are not limited.
  • FIG. 8 is a schematic structural diagram of a PUCCH resource allocation apparatus according to an embodiment of the present invention.
  • the device is used for PUCCH resource allocation in a CA scenario.
  • a PCC is aggregated with at least two SCCs, and feedback information of the downlink transport block sent by each SCC is fed back through the PUCCH of the PCC. Therefore, the PUCCH resource allocated to the PCC needs to be allocated to the SCC for use in the PCC aggregation.
  • the apparatus provided in this embodiment is used to solve the problem of how to effectively utilize the PUCCH resource in the resource allocation.
  • the apparatus 800 includes a configuration unit 810, a first allocation unit 820, a second allocation unit 830, and a notification unit 840, where the configuration unit 810 is configured to configure a PUCCH resource for the PCC, where the PUCCH resource includes multiple code channels.
  • the configuration unit 810 is configured to configure a PUCCH resource for the PCC, where the PUCCH resource includes multiple code channels.
  • a first allocation unit 820 is configured to allocate two or more SCCs to the same code channel group of the above PUCCH resources;
  • the second allocation unit 830 is configured to Two or more SCCs allocate code channel pairs in the same code channel group, wherein code channel pairs allocated to the two or more SCCs do not overlap.
  • the notification unit 840 is used to notify the two or more SCCs of the code channel groups and code channel pairs assigned thereto.
  • the above device may be located at the base station where the PCC is located, and more specifically may be a baseband board that controls the PCC in the base station; further refined may also be a processor on the baseband board, where the processor may It is a processor or a general term for multiple processing elements.
  • configuration unit 810 configures the resource and the notification mode of the notification unit 840 are the same as the above method embodiments, and details are not described herein again.
  • the first allocation unit 820 can be utilized to allocate the resources to the SCCs that are aggregated with the PCC. That is to say, the first allocating unit 820 can not only allocate code channel groups for the two or more SCCs, but also assign code channel groups to other SCCs that are aggregated with the PCC.
  • the PUCCH resource can be allocated to the SCC aggregated with the PCC with as few SCC multiplexed code channel groups as possible.
  • the first allocating unit 820 may allocate the same code channel group in the above PUCCH resources for two or more SCCs when the number of SCCs that are aggregated with the PCC is greater than the number of code channel groups in the PUCCH resources. Further, the first allocating unit 820 may allocate the foregoing PUCCH resources to the two SCCs when the number of SCCs aggregated with the PCC is greater than the number of code channel groups in the PUCCH resources and less than twice the number of code channel groups in the PUCCH resources. The same code group in the middle. For details, refer to the foregoing method embodiments, and details are not described herein again.
  • the granularity of its resource allocation needs to be further refined to the code channel pair to avoid resource conflicts.
  • This can be achieved by the second allocation unit 830.
  • the second allocating unit 830 can use the on-demand allocation mode, the average distribution mode or the cyclic allocation mode.
  • FIG. 9 is a schematic structural diagram of another PUCCH resource allocation apparatus according to an embodiment of the present invention.
  • the apparatus may further include a detecting unit 850 for detecting loads of the two or more SCCs.
  • the second allocating unit 830 is specifically configured to: determine, according to the load of the two or more SCCs, a ratio or a quantity of the pair of code channels used by the two or more SCCs; according to the determined ratio or quantity, The two or more SCCs allocate code channel pairs that do not overlap in the same code channel group.
  • the second allocation unit 830 is specifically configured to: equate the code channels in the same code channel group into the two or more SCCs; or, when the same code channel When the code channel pairs in the group cannot be equally divided according to the number of the two or more SCCs, the remaining number of code channel pairs are removed, and the other code channels are equally divided into the two or more SCCs, and then Remainder The code channel pairs are respectively assigned to the remaining number of SCCs such that the number of code channel pairs assigned to each SCC does not exceed one.
  • the second allocating unit 830 is specifically configured to: allocate, in a cycle period, each sub-period, the two or more SCCs in the same code channel group according to a ratio in the proportional set Different code channel pairs, in which each sub-period uses a different ratio, and the number of sub-cycles in one cycle is equal to the number of proportions in the proportional set.
  • the set of scales can be set according to the number of code channel pairs in the code group.
  • the sub-period is in units of TTI and can be one or more TTIs.
  • the cyclic allocation method is an implementation method of periodically adjusting the allocation of code channel pairs.
  • the load of these SCCs is detected every cycle. If the load changes, it can be considered whether to adjust to each The number of code channel pairs assigned by the SCC.
  • FIG. 10 is a schematic structural diagram of another PUCCH resource allocation apparatus according to an embodiment of the present invention. As shown in FIG.
  • the apparatus further includes a period triggering unit 860 for periodically triggering the detecting unit 850 to detect the load of the two or more SCCs; and when the load of the two or more SCCs changes
  • the triggering second allocating unit 830 determines, according to the changed load, a ratio or a quantity of the pair of code channels used by the two or more SCCs, and when the determined ratio or quantity changes, according to the changed ratio or quantity,
  • the two or more SCCs allocate code channel pairs that do not overlap in the same code channel group. After that, it is also necessary to notify the two or more SCCs to re-allocate the code channel pairs by the notification unit 840. At this time, it is not necessary to notify the code channel group.
  • the trigger period of the above period trigger unit is in units of , and can be one or more ⁇ .
  • the foregoing configuration unit 810 may be a separately set processor, or may be integrated in one processor of the base station, or may be stored in a memory of the base station in the form of program code, by a certain base station.
  • a processor invokes and performs the functions of the configuration unit 810.
  • the implementation of the first allocation unit 820 and the second allocation unit 830 is the same as the configuration unit 810, and may be integrated with the configuration unit 810, or may be implemented independently.
  • the notification unit 840 can be an interface, such as when the PCC and the SCC are located at different base stations, the notification unit 840 may be an interface circuit between the base stations, such as an X2 interface circuit or an S1 interface circuit, or even an air interface.
  • the notification unit 840 may be a connection interface of the wiring.
  • the detecting unit 850 may be a separately set detecting circuit, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called and executed by a certain processor of the base station.
  • the period triggering unit 860 may be a separately set timer, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called by a certain processor of the base station.
  • the function of the configuration unit 860 is performed.
  • the base station here refers to the base station where the PCC is located, and the processor may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or configured to implement the implementation of the present invention. An example of one or more integrated circuits.
  • FIG. 11 is a schematic structural diagram of another PUCCH resource allocation apparatus according to an embodiment of the present invention.
  • the device is used for PUCCH resource allocation in a CA scenario.
  • the CA scenario one PCC is aggregated with at least two SCCs, and the feedback information of the downlink transport block sent by each SCC is fed back through the PUCCH of the PCC. Therefore, the PUCCH resource allocated to the PCC needs to be allocated to the SCC that is aggregated with the PCC.
  • the apparatus provided in this embodiment is used to solve the problem of how to effectively utilize the PUCCH resource in the resource allocation.
  • the apparatus includes a processor 1110 and an interface 1120.
  • the memory 1130 and the bus 1140 are also shown.
  • the processor 1110, the interface 1120, and the memory 1130 are connected by the bus 1140 and complete communication with each other.
  • the device is located at a base station where the PCC is located, and the processor 1110 is configured to perform any method for controlling an entity of the PCC in the foregoing method embodiment, for example, including: configuring a PUCCH resource for the PCC, where the PUCCH resource includes multiple codes. a channel group, each code channel group includes a plurality of code channel pairs; assigning the same code channel group of the above PUCCH resources to two or more SCCs; assigning the same code channel to the two or more SCCs a pair of code channels in a group, wherein code channel pairs assigned to the two or more SCCs do not overlap; and the code channels assigned to the two or more SCCs are notified through the interface 1120 Group and code channel pairs.
  • the processor 1110 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a Central Processing Unit (CPU), or may be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • one or more microprocessors digital singnal processors, DSP
  • DSP digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the interface 1120 can be an interface circuit between the base stations, such as an X2 interface circuit or an S1 interface circuit, or even an air interface.
  • the interface 1120 can be a connection interface of the wiring.
  • the memory 1130 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device. And the memory 1130 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • the bus 1140 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (ESA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • ESA Extended Industry Standard Architecture
  • the bus 1140 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the above processor 1110 can also perform the steps of the method in the foregoing method to re-allocate the code channel pair. For details, refer to the foregoing method embodiment, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • the device is used for PUCCH resource allocation in a CA scenario.
  • the CA scenario one PCC is aggregated with at least two SCCs, and feedback information of downlink transmission blocks sent by each SCC is fed back through the PUCCH of the PCC.
  • the apparatus 1200 includes an interface unit 1210, a determining unit 1220, and a configuration unit 1230.
  • the interface unit 1210 is configured to receive resource information sent by an entity that controls the PCC, where the resource information is used to indicate a code channel group allocated to the SCC, and the a code channel pair used by the SCC in the code channel group, wherein the SCC multiplexes the code channel group assigned to the SCC with another one or more SCCs, and uses the code channel pair with the other one or more
  • the code channel pairs used by the SCCs do not overlap;
  • the determining unit 1220 is configured to determine, according to the received resource information, a code channel pair in the code channel group that can be used by the SCC to be allocated to the SCC;
  • the configuration unit 1230 is configured to use the determined code The pair is configured for the UE under the SCC.
  • the above device may be located at the base station where the SCC is located, and more specifically may be a baseband board that controls the SCC in the base station; further refined may also be a processor on the baseband board, where the processor may be a processor, or It is a general term for multiple processing elements.
  • the interface unit 1210 may be an interface.
  • the interface unit 1210 may be an interface circuit between the base stations, such as an X2 interface circuit or an S1 interface circuit, or even an air interface.
  • the interface unit 1210 may be a connection interface of the wiring.
  • the determining unit 1220 may be a separately set processor, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called and executed by a certain processor of the base station. The function of the determining unit 1220.
  • the implementation unit 1230 is implemented as the determination unit 1220, and may be integrated with the determination unit 1220, or may be implemented independently.
  • the base station here refers to the base station where the SCC is located, and the processor may be a central processing unit (CPU), or an Application Specific Integrated Circuit (ASIC), or configured to implement the implementation of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FIG. 13 is a schematic structural diagram of another PUCCH resource allocation apparatus according to an embodiment of the present invention.
  • the device is used for PUCCH resource allocation in a CA scenario.
  • the CA scenario one PCC is aggregated with at least two SCCs, and the feedback information of the downlink transport block sent by each SCC is fed back through the PUCCH of the PCC. Therefore, the PUCCH resource allocated to the PCC needs to be allocated to the SCC that is aggregated with the PCC.
  • the apparatus provided in this embodiment is used to solve the problem of how to effectively utilize the PUCCH resource in the resource allocation.
  • the apparatus includes a processor 1310 and an interface 1320.
  • the memory 1330 and the bus 1340 are also shown.
  • the processor 1310, the interface 1320, and the memory 1330 pass through the bus 1340. Connect and complete communication with each other.
  • the device is located at a base station where the SCC is located, and the processor 1310 is configured to perform any method for controlling an entity of the SCC in the foregoing method embodiment, where the method includes: receiving, by using the interface 1320, resource information sent by an entity that controls the PCC, where The resource information is used to indicate a code channel group allocated to the SCC and a code channel pair used by the SCC in the code channel group, wherein the SCC multiplexes codes assigned to the SCC with another one or more SCCs a set of tracks, and the used code channel does not overlap with a code channel pair used by the other one or more SCCs; according to the received resource information, determining a code that can be used by the SCC to be assigned to the code channel group of the SCC Pair of channels; configure the determined code channel pair to the UE under the SCC.
  • the processor 1310 herein may be a processor or a general term of multiple processing elements.
  • the processor may be a Central Processing Unit (CPU), or may be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • one or more microprocessors digital singnal processors, DSP
  • DSP digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the interface 1320 can be an interface circuit between the base stations, such as an X2 interface circuit or an S1 interface circuit, or even an air interface.
  • the interface 1320 can be a connection interface of the wiring.
  • the memory 1330 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device. And the memory 1330 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • the bus 1340 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (ESA) bus.
  • the bus 1340 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 13, but it does not mean that there is only one bus or one type of bus.
  • Embodiment 1 A resource allocation method is used for PUCCH resource allocation in a CA scenario. In the CA scenario, a PCC is aggregated with at least two SCCs, and feedback information of a downlink transport block sent by each SCC is passed. The PUCCH of the PCC performs feedback, and the method includes:
  • Embodiment 2 The method according to the embodiment 1, the allocating the same code channel group in the PUCCH resource for the two or more SCCs, including:
  • Embodiment 3 The method according to Embodiment 2, wherein the two or more SCCs are allocated to the same code channel group in the PUCCH resource, including:
  • the same code channel group in the above PUCCH resources is allocated to the two SCCs.
  • Embodiment 4 The method according to any one of embodiments 1 to 3, wherein the two or more SCCs are assigned code channel pairs in the same code channel group, wherein the two or two are allocated The code channel pairs of the above SCCs do not overlap, including:
  • the two or more SCCs are assigned non-overlapping code channel pairs in the same code channel group according to the determined ratio or quantity.
  • Embodiment 5 The method according to any one of Embodiments 1 to 3, wherein the two or more SCCs Assigning code channel pairs in the same code channel group, where code channel pairs allocated to the two or more SCCs do not overlap, including:
  • the ratio or the number of the code channel pairs used by the two or more SCCs is determined according to the changed load
  • the two or more SCCs are re-assigned to the non-overlapping code channel pairs in the same code channel group according to the changed ratio or quantity;
  • Embodiment 7 The method of Embodiment 6, wherein the period of detecting the load of the two or more SCCs is in units of TTI.
  • Embodiment 8 The method according to any one of embodiments 1 to 3, wherein the two or more SCCs are assigned code channel pairs in the same code channel group, wherein the two or two are allocated The code channel pairs of the above SCCs do not overlap, including:
  • each sub-period assigns different code channel pairs in the same code channel group to the two or more SCCs according to a ratio in the proportional set, wherein each sub-period uses a different ratio, and
  • the number of sub-cycles in a cycle is equal to the number of scales in the set of scales.
  • Embodiment 9 The method of Embodiment 8, wherein the sub-period is in units of TTI.
  • Embodiment 10 A method for allocating resources, which is used for PUCCH resource allocation in a CA scenario.
  • one PCC is aggregated with at least two SCCs, and feedback information of downlink transport blocks sent by each SCC passes the The PUCCH of the PCC performs feedback, and the method includes:
  • the entity controlling the SCC receives resource information sent by an entity controlling the PCC, and the resource information is used by the resource information. And indicating a code channel group allocated to the SCC and a code channel pair used by the SCC in the code channel group, wherein the SCC and the other one or more SCCs multiplex the code channel group allocated to the SCC, and use The code channel pair does not overlap with the code channel pair used by the other one or more sees;
  • the entity controlling the SCC determines, according to the received resource information, a code channel pair in the code channel group that can be used by the SCC to be allocated to the SCC;
  • the entity controlling the SCC configures the determined code channel pair to the UE under the SCC.
  • Embodiment 11 A resource allocation apparatus, configured to allocate a PUCCH resource in a CA scenario, where a PCC is aggregated with at least two SCCs, and feedback information of a downlink transport block sent by each SCC passes the The PUCCH of the PCC performs feedback, and the device includes:
  • a configuration unit configured to configure a PUCCH resource for the PCC, where the PUCCH resource includes multiple code channel groups, and each code channel group includes multiple code channel pairs;
  • a first allocation unit configured to allocate, for two or more SCCs, the same code channel group in the foregoing PUCCH resources
  • a second allocation unit configured to allocate code channel pairs in the same code channel group to the two or more SCCs, where code channel pairs allocated to the two or more sees do not overlap
  • Embodiment 12 The device according to Embodiment 11, wherein the first allocation unit is configured to: when the number of SCCs aggregated with the PCC is greater than the number of code channel groups in the PUCCH resource, two or more
  • the SCC allocates the same code channel group in the above PUCCH resources.
  • Embodiment 13 The apparatus according to Embodiment 12, wherein the first allocation unit is configured to: the number of SCCs that are aggregated with the PCC is greater than the number of code channel groups in the PUCCH resource, and is smaller than the number of code channel groups in the PUCCH resource. When twice, two SCCs are allocated the same code channel group in the above PUCCH resources.
  • the two or more SCCs are assigned non-overlapping code channel pairs in the same code channel group according to the determined ratio or number.
  • Embodiment 15 The apparatus of any one of embodiments 10 to 13, wherein the second distribution unit is for:
  • Embodiment 16 The apparatus of any one of embodiments 10 to 15, further comprising:
  • a period triggering unit configured to periodically trigger the detecting unit to detect the load of the two or more SCCs; and when the load of the two or more SCCs changes, triggering the second allocating unit to determine according to the changed load
  • the ratio or number of code channel pairs used by the two or more SCCs, and when the determined ratio or quantity changes, the same code is re-allocated for the two or more SCCs according to the changed ratio or quantity. Pairs of code channels that do not overlap in the channel group;
  • the notification unit is further configured to notify the code channel pair for which the two or more SCCs are reassigned.
  • Embodiment 17 The apparatus of Embodiment 16, wherein the trigger period of the period trigger unit is in units of TTI.
  • Embodiment 18 The apparatus of any one of embodiments 11 to 13, wherein the second distribution unit is for:
  • each sub-period assigns different code channel pairs in the same code channel group to the two or more SCCs according to a ratio in the proportional set, wherein each sub-period uses a different ratio, and
  • the number of sub-cycles in a cycle is equal to the number of scales in the set of scales.
  • Embodiment 19 The apparatus of Embodiment 18, wherein the sub-period is in units of ⁇ .
  • Embodiment 20 A resource allocation apparatus, configured to allocate PUCCH resources in a CA scenario, in which a PCC is aggregated with at least two SCCs, and each SCC is sent under The feedback information of the row transport block is fed back through the PUCCH of the PCC, and the device includes: an interface unit, configured to receive resource information sent by an entity that controls the PCC, where the resource information is used to indicate a code channel group allocated to the SCC, and a pair of code channels used by the SCC in the set of code channels, wherein the SCC multiplexes with another one or more SCCs a code channel group assigned to the SCC, and uses a code channel pair with the other one or more The code channel pairs used by multiple secs do not overlap;
  • a determining unit configured to determine, according to the received resource information, a code channel pair in the code channel group that can be used by the SCC to be allocated to the SCC;
  • a configuration unit configured to configure the determined code channel pair to the UE under the SCC.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种物理上行控制信道资源的分配方法和装置,包括:为 PCC配置PUCCH资源,该PUCCH资源包括至少两个PUCCH码道组,每个 PUCCH码道组包括至少两个PUCCH码道对,确定分配给SCC的PUCCH资源,至少有两个SCC被分配所述PUCCH资源中的同一个码道组,确定被分配有所述PUCCH资源中的同一个码道组的SCC使用的码道对,以使得被分配有所述PUCCH资源中的同一个码道组的SCC中的任意两个SCC使用的码道对不重叠,实现多个SCC复用相同的PUCCH资源,减少了PUCCH资源的消耗,提升了PUCCH资源的利用率,也提升了系统上行的吞吐率。

Description

物理上行控制信道资源的分配方法和装置 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种物理上行控制信道资源的 分配方法和装置。
背景技术
在通信技术的发展过程中, 为了提高频讲资源的利用率, 在 LTE (英文: Long Term Evolution; 中文: 长期演进)通信系统中引入了 C A (英文: Carrier Aggregation; 中文: 载波聚合)技术。
CA技术是一种通过对多个连续或者非连续的 CC (英文: Component Carrier; 中文: 分量载波) 的聚合来获取更大带宽的技术。 在聚合的多个 CC 中, 包括一个 PCC (英文: Primary Component Carrier; 中文: 主分量载波) 和至少一个 SCC (英文: Secondary Component Carrier; 中文: 辅分量载波)。 其中, UE初始接入的载波为 PCC, 其余的载波为 SCC。
SCC的下行传输块的反馈信息, 例如, ACK或 NACK (英文: Acknowledgement/Not- acknowledgement; 中文: 肯定确认或否定确认)仅能 通过 PCC的 PUCCH (英文: Physical Uplink Control Channel; 中文: 物理上行 控制信道) 进行反馈。 然而, 随着微基站的广泛部署, 基站密度增大, 一个 CC同时作为 8个 CC甚至更多 CC的 PCC将拥有广泛的应用场景。 此时, 对 PUCCH的资源需求将极大的增加。
例如, 目前, 为了保证 SCC调度时不同 SCC下用户设备使用的 PUCCH资 源互不冲突, 需要为每个 sec分配独立的 puccH资源。 因此, 随着 scent 的增加, PCC的 PUCCH资源消耗呈现线性增长, 再加上 PUCCH资源本身不被 用于数据传输, 这样, 随着 PUCCH资源消耗的线性增长, 将导致 PCC支持的 上行吞吐率急剧降低, 使得系统性能下降。 发明内容
有鉴于此, 本发明实施例提供了一种 PUCCH资源的分配方法和装置, 以 减少 PUCCH资源的消耗。
本发明的第一方面, 提供了一种资源分配方法, 用于分量载波聚合场景 下物理上行控制信道 PUCCH的资源分配,所述分量载波包括主分量载波 PCC 和辅分量载波 SCC, 所述方法包括:
为所述 PCC配置 PUCCH资源,该 PUCCH资源包括至少两个 PUCCH码 道组, 每个 PUCCH码道组包括至少两个 PUCCH码道对;
确定分配给所述 SCC的 PUCCH资源, 其中, 至少有两个 SCC被分配所 述 PUCCH资源中的同一个码道组;
确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠。
结合第一方面, 在第一方面的第一种可能的实施方式中, 确定被分配有 所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有 所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对 不重叠, 包括:
检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载; 根据被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载, 确定 被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数 量, 其中 SCC的负载越高, 使用码道对的比例或数量越高;
根据确定的比例或数量,确定被分配有所述 PUCCH资源中的同一个码道 组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道 组的 SCC中的任意两个 SCC使用的码道对不重叠。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的实 施方式中, 所述检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的 负载, 包括: 周期检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载。 结合第一方面的第二种可能的实施方式, 在第一方面的第三种可能的实 施方式中, 所述周期为 1个或更多个传输时间间隔 TTI。
结合第一方面, 在第一方面的第四种可能的实施方式, 确定被分配有所 述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所 述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不 重叠, 包括:
将所述同一个码道组中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 SCC; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道組的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 see, 使得分配给各 SCC的码道对的数量差值不超过一个。
结合第一方面, 在第一方面的第五种可能的实施方式, 确定被分配有所 述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所 述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不 重叠, 包括:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中, 每个子周期使用的比例不同, 且一个循环周期内子周期的 数量等于比例集合中比例的数量。
结合第一方面的第五种可能的实施方式, 在第一方面的第六种可能的实 施方式中, 所述子周期为 1个或更多个 TTI。
本发明的第二方面, 提供了一种资源分配方法, 用于分量载波聚合场景 下物理上行控制信道 PUCCH的资源分配,所述分量载波包括主分量载波 PCC 和辅分量载波 SCC, 所述方法包括:
控制 SCC的实体接收控制 PCC的实体发送的资源信息,所述资源信息用 于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中 所述 sec与其它一个或更多个 see复用分配给该 SCC的码道组, 且使用的 码道对与所述其它一个或更多个 sec使用的码道对不重叠;
所述控制 SCC的实体根据接收的资源信息,确定该 SCC可以使用的分配 给该 SCC的码道组中的码道对;
将确定的码道对配置给该 SCC下的用户设备。
本发明的第三方面, 提供了一种资源分配装置, 用于分量载波聚合场景 下物理上行控制信道 PUCCH的资源分配,所述分量载波包括主分量载波 PCC 和辅分量载波 SCC, 所述装置包括:
配置单元, 用于为所述 PCC配置 PUCCH资源, 该 PUCCH资源包括至 少两个 PUCCH码道组, 每个 PUCCH码道组包括至少两个 PUCCH码道对; 第一确定单元, 用于确定分配给所述 SCC的 PUCCH资源, 其中, 至少 有两个 SCC被分配所述 PUCCH资源中的同一个码道组;
第二确定单元,用于确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重叠。
结合本发明第三方面, 在第三方面的第一种可能的实施方式中, 所述装 置还包括:
检测单元,用于检测被分配有所述 PUCCH资源中的同一个码道组的 SCC 的负载; 且
所述第二确定单元具体用于:根据被分配有所述 PUCCH资源中的同一个 码道组的 SCC的负载, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数量, 其中 SCC的负载越高, 使用码道对的比例或 数量越高; 根据确定的比例或数量, 确定被分配有所述 PUCCH资源中的同一 个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一 个码道组的 SCC中的任意两个 SCC使用的码道对不重叠。
结合第三方面的第一种可能的实施方式, 在第三方面的第二种可能的实 施方式中,所述检测单元具体用于周期检测被分配有所述 PUCCH资源中的同 一个码道组的 SCC的负载。
结合第三方面的第二种可能的实施方式, 在第三方面的第三种可能的实 施方式中, 所述周期为 1个或更多个传输时间间隔 TTI。
结合第三方面, 在第三方面的第四种可能的实施方式中, 所述第二确定 单元具体用于:
将所述同一个码道组中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 see; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 SCC, 使得分配给各 SCC的码道对的数量差值不超过一个。
结合第三方面, 在第三方面的第五种可能的实施方式中, 所述第二确定 单元具体用于:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中每个子周期使用的比例不同, 且一个循环周期内子周期的数 量等于比例集合中比例的数量。
结合第三方面的第五种可能的实施方式, 在第三方面的第六种可能的实 施方式中, 所述子周期为 1个或更多个 TTI。
本发明的第四方面, 提供了一种资源分配装置, 用于分量载波聚合场景 下物理上行控制信道 PUCCH的资源分配,所述分量载波包括主分量载波 PCC 和辅分量载波 SCC, 所述装置位于控制 SCC的实体, 且包括:
接口单元, 用于接收控制 PCC的实体发送的资源信息, 所述资源信息用 于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中 所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的 码道对与所述其它一个或更多个 sec使用的码道对不重叠;
确定单元, 用于根据接收的资源信息, 确定该 SCC可以使用的分配给该 SCC的码道组中的码道对; 配置单元, 用于将确定的码道对配置给该 SCC下的用户设备。
本发明的第五方面, 提供了一种资源分配装置, 用于分量载波聚合场景 下物理上行控制信道 PUCCH的资源分配,所述分量载波包括主分量载波 PCC 和辅分量载波 SCC, 所述装置包括:
存储器, 用于存储应用程序代码;
处理器, 用于执行所述存储器中存储的应用程序代码, 具体执行: 为所述 PCC配置 PUCCH资源,该 PUCCH资源包括至少两个 PUCCH码 道组, 每个 PUCCH码道组包括至少两个 PUCCH码道对;
确定分配给所述 SCC的 PUCCH资源, 其中, 至少有两个 SCC被分配所 述 PUCCH资源中的同一个码道组;
确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠;
接口, 用于所述存储器与所述处理器之间传递信息。
结合第五方面, 在第五方面的第一种可能的实施方式中, 所述处理器具 体用于执行:
检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载; 根据被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载, 确定 被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数 量, 其中 SCC的负载越高, 使用码道对的比例或数量越高; 根据确定的比例 或数量, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码 道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意 两个 SCC使用的码道对不重叠。
结合第五方面的第一种可能的实施方式, 在第五方面的第二种可能的实 施方式中, 所述处理器, 具体用于执行: 周期检测被分配有所述 PUCCH资源 中的同一个码道组的 SCC的负载。
结合第五方面的第二种可能的实施方式, 在第五方面的第三种可能的实 施方式中, 所述周期为 1个或更多个传输时间间隔 TTI。
结合第五方面, 在第五方面的第四种可能的实施方式中, 所述处理器, 具体用于执行:
将所述同一个码道组中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 SCC; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 see, 使得分配给各 SCC的码道对的数量差值不超过一个。
结合第五方面, 在第五方面的第五种可能的实施方式中, 所述处理器, 具体用于执行:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中每个子周期使用的比例不同, 且一个循环周期内子周期的数 量等于比例集合中比例的数量。
结合第五方面的第五种可能的实施方式, 在第五方面的第六种可能的实 施方式中, 所述子周期为 1个或更多个 TTI。
本发明的第六方面, 提供了一种资源分配装置, 用于分量载波聚合场景 下物理上行控制信道 PUCCH的资源分配,所述分量载波包括主分量载波 PCC 和辅分量载波 SCC, 所述装置位于控制 SCC的实体, 且包括:
接口, 用于接收控制 PCC的实体发送的资源信息, 所述资源信息用于指 示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的码道 对与所述其它一个或更多个 SCC使用的码道对不重叠;
存储器, 用于存储应用程序代码;
处理器, 用于执行所述存储器中存储的应用程序代码, 具体执行: 根据接收的资源信息,确定该 SCC可以使用的分配给该 SCC的码道组中 的码道对; 将确定的码道对配置给该 SCC下的用户设备。
本发明实施例通过为所述 PCC配置 PUCCH资源, 其中, 该 PUCCH资 源包括至少两个 PUCCH码道组, 每个 PUCCH码道组包括至少两个 PUCCH 码道对, 确定分配给所述 SCC的 PUCCH资源, 其中, 至少有两个 SCC被分 配所述 PUCCH资源中的同一个码道组,确定被分配有所述 PUCCH资源中的 同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的 同一个码道组的 SCC中的任意两个 SCC使用的码道对不重叠, 这样, 将配置 给 PCC的 PUCCH资源以 PUCCH码道组的方式分配给 SCC, 并且至少两个 SCC被分配 PUCCH资源中的同一个码道组,且被分配有所述 PUCCH资源中 的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠, 实现多个 SCC复用相同的 PUCCH资源,节省了多个 CC互相进行 CA时 PUCCH资源, 减少了 PUCCH资源的消耗, 不仅提升了 PUCCH资源的利用率, 而且还提升 了系统上行的吞吐率。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简要介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种资源分配方法的流程示意图;
图 2为本发明实施例提供的一种资源分配装置的结构示意图;
图 3为本发明实施例提供的一种 PUCCH资源的分配方法的流程示意图; 图 4为本发明实施例提供的一种码道对分配方式的流程示意图; 图 5为本发明实施例提供的另一种 PUCCH资源的分配方法的流程示意 图;
图 6为本发明实施例提供的一种各 SCC之间资源复用的示意图; 图 Ί为本发明实施例提供的一种 PUCCH资源的分配方法的流程示意图; 图 8为本发明实施例提供的一种 PUCCH资源分配装置的结构示意图; 图 9为本发明实施例提供的另一种 PUCCH资源分配装置的结构示意图; 图 10为本发明实施例提供的又一种资源分配装置的结构示意图; 图 11为本发明实施例提供的一种资源分配装置的结构示意图;
图 12为本发明实施例提供的一种资源分配装置的结构示意图
图 13为本发明实施例提供的一种资源分配装置的结构示意图。 具体实施方式
目前, 通信系统普遍采用分布式部署来部署各个 CC的调度器, 例如, 各 个 CC 的调度器位于不同的基站或同一基站的不同基带板上。 如此, 各 CC 的调度器在调度过程中很难对资源进行实时的协调,因此,为了避免不同 SCC 下用户设备使用的 PUCCH 资源冲突, 现有技术中为每个 SCC 分配独立的 PUCCH资源。 这样导致 PCC的 PUCCH资源消耗随着 SCC数量的增加而线 性增长。 本申请实施例考虑到以上问题, 提出一种 SCC复用相同 PUCCH资 源的策略, 以节省 PUCCH资源的消耗, 提升上行吞吐率。
例如, 可以将配置给 PCC的 PUCCH资源分为多个 PUCCH码道组 (以 下简称码道组), 每个码道组包括多个 PUCCH码道对(以下简称码道对)。 当 PCC与多个 SCC聚合时, 为至少两个 SCC分配相同的码道组, 并控制被分 配同一个码道组的 SCC在该码道组内的资源不冲突, 可以通过控制被分配同 一个码道组的 SCC使用该同一个码道组中的不同码道对来实现。 被分配同一 个码道组的 SCC使用不同的码道对是指任何一个码道对都不同, 也就是说, 这些 SCC 使用的码道对不重叠。 如此, 便可以实现不同 SCC 复用相同的 PUCCH码道组资源 , 节省多个 CC互相进行 CA时 PUCCH资源的消耗, 提 升上行吞吐率。
以上为 SCC分配码道组可以在层 3 ( L3 ) 实现, 例如在 RRC (英文: Radio Resource Control; 中文: 无线资源控制)层实现; 控制被分配同一个码 道组的 SCC使用该同一个码道组中的不同码道对可以在层 2 ( L2 ) 实现, 例 如在 RLC (英文: Radio Link Control; 中文: 无线链路控制)层或 MAC (英 文: Media Access Control; 中文: 媒体访问控制)层实现。 当然, 本发明不以 此为限, 本领域技术人员可以根据需要调整各个步骤实现的位置。
下面结合说明书附图对本发明各个实施例进行详细描述。 显然, 所描述 的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中 的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其它实施例, 都属于本发明保护的范围。
图 1 为本发明实施例提供的一种资源分配方法的流程示意图。 所述方法 可以如下所述。
本发明实施例提供的资源分配方法可以应用在分量载波聚合场景下 PUCCH的资源分配, 其中, 所述分量载波包括 PCC和 SCC。
通常, PCC为 UE初始接入的载波。
S 101: 为所述 PCC配置 PUCCH资源。
其中, 该 PUCCH资源包括至少两个 PUCCH码道组(以下 PUCCH码道 组简称为码道组), 每个 PUCCH码道组包括至少两个 PUCCH码道对 (以下 PUCCH码道对筒称为码道对)。
S102: 确定分配给所述 SCC的 PUCCH资源。
其中, 至少有两个 SCC被分配所述 PUCCH资源中的同一个码道组。
S103: 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的 码道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任 意两个 SCC使用的码道对不重叠。
在步骤 S103中,确定被分配有所述 PUCCH资源中的同一个码道组的 SCC 使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠的方式包括但不限于以下几种:
第一种方式: 针对同一个码道组, 按照 SCC的负载状态分配能够使用的 码道对。
第一步, 检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负 载。
具体地, 周期检测被分配有所述 PUCCH资源中的同一个码道组的 SCC 的负载。
其中, 所述周期为 1个或更多个 TTI (英文: Transmission Time Interval; 中文: 传输时间间隔)。
第二步, 根据被分配有所述 PUCCH资源中的同一个码道组的 SCC的负 载, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的 比例或数量。
其中, SCC的负载越高, 使用码道对的比例或数量越高。
第三步,根据确定的比例或数量,确定被分配有所述 PUCCH资源中的同 一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同 一个码道组的 SCC中的任意两个 SCC使用的码道对不重叠。
第二种方式: 针对同一个码道组, 按照等分原则为 SCC分配能够使用的 码道对。
具体地,将所述同一个码道组中的码道对等分给被分配有所述 PUCCH资 源中的同一个码道组的 SCC; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 see, 使得分配给各 SCC的码道对的数量差值不超过一个。
第二种方式: 针对同一个码道组, 在一个循环周期内, 每一个子周期按 照设定比例为 SCC分配能够使用的码道对。
具体地, 一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确 定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组 中的不同的码道对。
其中, 每个子周期使用的比例不同, 且一个循环周期内子周期的数量等 于比例集合中比例的数量。
其中, 所述子周期为 1个或更多个 TTI。 通过本发明实施例的方案, 通过为所述 PCC配置 PUCCH资源, 其中, 该 PUCCH资源包括至少两个 PUCCH码道组, 每个 PUCCH码道组包括至少 两个 PUCCH码道对, 确定分配给所述 SCC的 PUCCH资源, 其中, 至少有 两个 SCC 被分配所述 PUCCH 资源中的同一个码道组, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重 叠,这样,将配置给 PCC的 PUCCH资源以 PUCCH码道组的方式分配给 SCC, 并且至少两个 SCC被分配 PUCCH资源中的同一个码道组, 且被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重 叠, 实现多个 SCC复用相同的 PUCCH资源 , 节省了多个 CC互相进行 CA 时 PUCCH资源, 减少了 PUCCH资源的消耗, 不仅提升了 PUCCH资源的利 用率, 而且还提升了系统上行的吞吐率。
图 2所示, 为本发明实施例提供的一种资源分配装置的结构示意图。 本发明实施例提供的资源分配装置可以应用在分量载波聚合场景下 PUCCH的资源分配, 其中, 所述分量载波包括 PCC和 SCC。
所述装置 200 包括: 配置单元 210、 第一确定单元 220和第二确定单元 230, 其中:
配置单元 210 , 用于为所述 PCC配置 PUCCH资源, 该 PUCCH资源包括 至少两个 PUCCH码道组,每个 PUCCH码道组包括至少两个 PUCCH码道对; 第一确定单元 220, 用于确定分配给所述 SCC的所述配置单元 210配置 的 PUCCH资源, 其中, 至少有两个 SCC被分配所述 PUCCH资源中的同一 个码道组;
第二确定单元 230,用于确定所述第一确定单元 220确定的被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重 叠。
在本发明的另一个实施例中, 所述装置还包括: 检测单元 240, 其中: 检测单元 240, 用于检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载;
所述第二确定单元 230, 具体用于: 根据所述检测单元 240检测到的被分 配有所述 PUCCH资源中的同一个码道组的 SCC的负载, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数量, 其中, SCC 的负载越高, 使用码道对的比例或数量越高; 根据确定的比例或数量, 确定 被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得 被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用 的码道对不重叠。
可选地, 所述检测单元 240, 具体用于周期检测被分配有所述 PUCCH资 源中的同一个码道組的 SCC的负载。
可选地, 所述周期为 1个或更多个传输时间间隔 TTI。
在本发明的另一个实施中, 所述第二确定单元 230, 具体用于: 将所述同一个码道组中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 SCC; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 SCC, 使得分配给各 SCC的码道对的数量差值不超过一个。
在本发明的另一个实施中, 所述第二确定单元 230, 具体用于: 一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中每个子周期使用的比例不同, 且一个循环周期内子周期的数 量等于比例集合中比例的数量。
可选地, 所述子周期为 1个或更多个 TTI。
本发明实施例所述的资源分配装置可以位于 PCC所在的基站, 更细节的 可以为基站中控制该 PCC的基带板, 通过将配置给 PCC的 PUCCH资源以 PUCCH码道组的方式分配给 SCC, 并且至少两个 SCC被分配 PUCCH资源 中的同一个码道组, 且被分配有所述 PUCCH资源中的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠, 实现多个 SCC复用相同的 PUCCH 资源, 节省了多个 CC互相进行 CA时 PUCCH资源, 减少了 PUCCH资源的 消耗, 不仅提升了 PUCCH资源的利用率, 而且还提升了系统上行的吞吐率。
图 3为本发明实施例提供的一种 PUCCH资源的分配方法的流程示意图。 该方法用于一种 CA场景下的 PUCCH资源分配, 该 CA场景下, 一个 PCC 与至少两个 SCC聚合,且每个 SCC发送的下行传输块的反馈信息通过该 PCC 的 PUCCH进行反馈。因此,需要将配置给 PCC的 PUCCH资源分配给与 PCC 聚合的 SCC使用, 本实施例提供的方法就是用于解决该资源分配中如何有效 利用 PUCCH资源的问题。 如图 3所示, 本实施例提供的 PUCCH资源分配的 方法可以包括如下步骤:
S301 : 为 PCC配置 PUCCH资源, 该 PUCCH资源包括多个码道组, 每 个码道组包括多个码道对。
S302:为两个或两个以上 SCC分配以上 PUCCH资源中的同一个码道组。
S303 : 为这两个或两个以上 SCC分配该同一个码道组中的码道对,其中, 分配给这两个或两个以上 SCC的码道对不重叠。
S304: 通知这两个或两个以上 SCC为其分配的资源, 包括通知每个 SCC 为其分配的码道组及码道对。
以上步骤 S302的资源分配粒度是码道组, 且将同一个码道组分配给两个 或两个以上 SCC,使得这两个或两个以上 SCC复用同一个码道组,节省了 PCC 与多个 SCC聚合时 PUCCH资源的消耗, 提升上行吞吐率。 且由于存在被复 用的码道组, 在步骤 S303中进一步以码道对为资源分配粒度, 使得复用同一 个码道组的 SCC使用不同的码道对, 避免了资源冲突。
以上方法可以由控制 PCC的实体执行, 该实体可以为 PCC所在的基站, 更细节的可以为基站中控制该 PCC的基带板; 进一步细化的还可以是该基带 板上的处理器, 这里的处理器可以是一个处理器, 也可以是多个处理元件的 统称。 在以上步驟 S301中, 为 PCC配置 PUCCH资源可以在层 3实现。 配置给 PUCCH的 RB (Resource Block, 资源块)是有限的, 为了提高 PUCCH时频资 源的利用率,对时频资源在编码维度上进行扩展,使得 PUCCH资源通过载波 (频率维), 时隙 (时间维), 编码(编码维)进行标识。 PUCCH资源的单位 可以看作是一个 PUCCH码道, 由于每个子帧包括两个时隙, 因此, 实际使用 中可以将 PUCCH资源以码道对为单位进行资源划分,使得以上 PUCCH资源 包括多个码道组, 每个码道组包括多个码道对。 这里的多个是指两个或两个 以上。 由于每个码道组有多个码道对, 这样当多个 SCC复用一个码道组时, 可以使得这些 SCC使用不同码道对。
在为 PCC配置好 PUCCH资源之后, 将这些资源分配给与 PCC聚合的 SCC的过程中, 可以执行以上步骤 S302。 例如, 可以以尽量少的 SCC复用码 道组为目标将 PUCCH资源分配给与 PCC聚合的 SCC。当与 PCC聚合的 SCC 的数量小于 PUCCH资源中码道组的数量时, 可以为每个与 PCC聚合的 SCC 分配一个码道组, 此时不存在码道组的复用。 当与 PCC聚合的 SCC的数量 大于 PUCCH资源中码道组的数量时, 执行以上步骤 S302。 进一步的, 还可 以在与 PCC聚合的 SCC的数量大于 PUCCH资源中码道组的数量, 且小于 PUCCH资源中码道组的数量的两倍时,执行以上步骤 S302中的仅为两个 SCC 分配 PUCCH资源中的同一个码道组。
此外, 可以同时为这两个或两个以上 SCC分配相同的码道组, 也可以先 后为这两个或两个以上 SCC分配相同的码道组。
假设配置给 PCC的 PUCCH资源被划分为 4个码道组, 分别为码道组 1 至 4。 例如, 当接入的 UE ( user equipment, 用户设备)需要 4个或 4个以下 的 SCC与 PCC聚合时, 可以为每个 SCC分配一个码道组, 可以先不进行码 道组复用。 而后, 当需要聚合的 SCC数量超过码道组的数量时, 可以将已经 分配过的码道组再分配给新增的 SCC。 当然, 也可以开始就采用聚合的策略, 让两个或两个以上 SCC复用一个码道组; 而后新增需要聚合的 SCC时, 再使 用未分配的码道组, 如果没有未分配的码道组, 可以继续复用。 再如, 当接入的 UE需要超过 4个 SCC与 PCC聚合时, 这里为了方便说 明, 以 5个为例, 分别为 SCC0至 SCC4 , 此时, 可以同时为 SCC0和 SCC4 分配同一个码道组, 例如码道组 1。 当然, 也可以依次为 SCC0和 SCC3分配 码道组 1至 4 , 然后再为 SCC4分配码道组 1。 对此, 本发明实施例不做任何 限制。
需要说明的是, 以上各码道组中码道对的数量可以相同, 也可以不相同, 这里不做限定。
在以上步驟 S303中, 对于复用同一个码道组的 SCC, 对其资源的分配粒 度需要进一步细化到码道对, 以避免资源冲突。 具体可以通过但不限于以下 任一种方式实现码道对的分配:
第一种方式: 按需分配方式。
根据复用同一个码道组的 SCC的负载, 将该码道组中的码道对分配给这 些 SCC。 其中, 负载越大的 SCC使用的码道对越多, 这里的负载与码道对的 关系可以不是简单的线性关系, 可以根据日常使用中负载与需要码道对的经 验值, 确定负载范围与所需码道对的关系。 例如, 可以将负载分成几个区间, 每个区间需要的码道对不同, 当负载达到这个区间时, 就为该 SCC分配对应 数量的码道对。 再如, 还可以根据日常使用中负载与需要码道对的经验值, 设定几个阈值区间, 每个阈值区间对应一种码道对分配比例, 当两个 SCC之 间的负载之差落入某个阈值区间时, 则根据相应的分配比例为每个 SCC分配 码道对。
举例而言, 假设两个 SCC复用一个码道组, 且码道组中有 4个码道对; 则需要将码道组中的码道对分给两个 scc, 且所有可能的分配方式包括: 方 式 1 : 将 3个码道对分配给一个 SCC, 将 1个码道对分配给另一个 SCC; 方 式 2:为每个 SCC均分配 2个码道对;方式 3 :将 4个码道对分配给一个 SCC, 另一个 SCC保留使用该码道组的权利, 但暂时先不使用。 方式 1适用于两个 SCC负载相差一定值或在两个不同的负载区间的情况;方式 2适用于两个 SCC 负载相同或相差不大 (例如低于某个阈值) 或在相同的负载区间的情况; 方 式 3适用于其中一个 SCC负载为 0或相对于另一个 SCC负载可以忽略的情况。 当两个 SCC复用一个码道组, 且码道组包括 4个码道对的时候, 一种最 为简单的实现方式, 即当两个 SCC负载相同或之差小于一个预设值时, 采用 方式 2, 为每个 SCC分配 2个码道对; 当两个 SCC负载不同或之差大于一个 预设值时, 釆用方式 1, 为负载大的 SCC分配 3个码道对, 为负载小的 SCC 分配 1个码道对。 当出现某个 SCC的负载为 0 (包括相对于另一个 SCC负载 可以忽略的情况) 时, 采用方式 3 , 将 4个码道对均分配给有负载的 SCC。
其它实现方式的举例可以包括: SCC0和 SCC4复用一个码道组, 且码道 组中有 4个码道对。 由于 SCC0的负载落入 3个码道对的负载区间, SCC4的 负载落入 1个码道对的负载区间, 则采用方式 1 , 为 SCC0分配 3个码道对, 为 SCC4分配 1个码道对。 再如, 由于 SCC0和 SCC的负载之差落入某个阈 值区间, 该阈值区间对应的分配比例为 3: 1, 则釆用方式 1, 为 SCC0分配 3 个码道对, 为 SCC4分配 1个码道对。
以上方法考虑了复用同一个码道组的 SCC对资源的需求, 并才艮据需求来 分配码道对, 进一步提高了 PUCCH资源的利用率, 并进一步提升了上行吞吐 率。
需要说明的是, 以上给出的码道对的分配方式仅仅用于举例, 并非用以 限制本发明, 本领域技术人员可以据此提示, 采用其它根据负载来为复用同 一个码道组的 SCC分配码道对的方式,或根据负载以外其它反应 SCC对资源 需求的参数来控制复用同一个码道组的 SCC的码道对的分配。 本发明实施例 不做任何限制。
第二种方式: 平均分配方式。
在本方式中, 不考虑复用同一个码道组的 SCC对资源的需求, 仅依据复 用同一个码道组的 SCC的数量, 将该码道组中的码道对平均分配给各 scc。
举例而言, 假设两个 SCC复用一个码道组 , 且码道组中有 4个码道对; 则将码道组中的码道对平均分给两个 scc, 即每个 SCC使用两个码道对。
当码道组中的码道对无法按照复用同一个码道组的 SCC的数量进行等分 时, 可以使各 sec使用的码道对的数量差值不超过一个。 例如, 以上示例中 的复用一个码道组的 SCC的数量为 3个时,其中两个 SCC均使用 1个码道对, 另外的一个 SCC使用 2个码道对。
第三种分配方式: 循环分配方式。
这种方式考虑到不同 SCC对资源的需求可能不同, 但是在分配时并不根 据复用同一个码道组的 SCC对资源的需求分配码道对, 而是依次循环采用几 种分配方式, 以达到在一个循环周期内资源平均分配的效果。
举例而言, 支设 SCC0和 SCC4复用码道组 1 , 且码道组 1中有 4个码道 对, 则在初始分配的时候, 为 SCC0分配 3个码道对, 为 SCC4分配 1个码道 对; 一段时间之后, 为 SCC0分配 2个码道对, 为 SCC4分配 2个码道对; 相 同一段时间之后, 为 SCC0分配 1个码道对, 为 SCC4分配 3个码道对。 如此 循环, SCC0和 SCC1在每个循环周期内分配到的资源是相当的。 这里的一段 时间可以以 TTI ( Transmission Time Interval, 传输时间间隔) 为单位, 例如 1 或更多个 TTI。 当然, 也可以设定其它时间单元。
请参考图 4 , 其为本发明实施例提供的一种码道对分配方式的流程示意 图。 对于第一种分配方式, 以上步骤 S303可以包括:
S3031 : 检测这两个或两个以上 SCC的负载;
S3032:才艮据这两个或两个以上 SCC的负载,确定这两个或两个以上 SCC 使用码道对的比例或数量;
S3033: 根据确定的比例或数量, 为这两个或两个以上 SCC 分配该同一 个码道组中的不重叠的码道对。
对于第二种分配方式, 以上步骤 S303可以包括: 将所述同一个码道组中 的码道对等分给这两个或两个以上 SCC; 或者, 当所述同一个码道组中的码 道对无法按照这两个或两个以上 SCC的数量进行等分时, 去除余数数量的码 道对, 将其它码道对等分给这两个或两个以上 SCC, 再将余数数量的码道对 分别分给余数数量的 SCC,使得分给各 SCC的码道对的数量差值不超过一个。
对于第三种分配方式, 以上步骤 S303可以包括: 一个循环周期内, 每个 子周期, 根据比例集合中一个比例, 为这两个或两个以上 SCC分配该同一个 码道组中的不同的码道对, 其中每个子周期使用的比例不同, 且一个循环周 期内子周期的数量等于比例集合中比例的数量。 该比例集合可以根据码道组 中码道对的数量进行设置, 例如, 可以穷举出所有可能的比例, 选择全部或 部分比例作为该集合。 以每个码道组包括 4 个码道对为例, 该集合包括的比 例可以为 1 :3 , 1 :1, 以及 3 :1。
这第三种分配方式, 是一种周期性调整码道对的分配的实现方式。 对于 第一种和第二种分配方式, 也可以在采用第一种和第二种分配方式进行初始 分配之后, 每个周期检测一下这些 SCC的负载, 如果负载发生了变化, 可以 考虑是否调整为每个 SCC分配的码道对的数量。
具体请参考图 5 , 其本发明实施例提供的另一种 PUCCH资源的分配方法 的流程示意图。 相对于以上实施例, 本实施例可以为这两个或两个以上 SCC 分配码道对之后, 周期性确定是否重新为每个 SCC分配码道对。 此时, 该方 法还包括:
S305: 周期性检测所述两个或两个以上 SCC的负载;
S306: 当这两个或两个以上 SCC的负载变化时, 根据变化后的负载确定 这两个或两个以上 SCC使用码道对的比例或数量;
S307 : 当确定的比例或数量变化时, 根据变化后的比例或数量, 重新为 这两个或两个以上 SCC分配该同一个码道组中的不重叠的码道对;
S308: 通知这两个或两个以上 SCC为其重新分配的码道对。
例如, 当两个 SCC复用一个码道组, 且码道组包括 4个码道对的时候, 以 SCC0和 SCC4复用一个码道组为例, 且初始时 SCC0的负载大于 SCC4或 者 SCC0和 SCC4的负载差值大于预设值,为 SCC0分配 3个码道对,为 SCC4 分配 1个码道对; 检测后, SCC4的负载大于 SCC0, 或者 SCC4与 SCC0的 负载差值大于预设值, 则重新为 SCC0分配 1个码道对, 为 SCC4分配 3个码 道对。 关于初始时的分配同以上对步骤 S303的按需分配方式中的描述, 且检 测后的分配方式同初始分配方式, 在此不再描述所有的可能方式。 再如, 当根据负载区间确定码道对的数量时, 假设 SCC0和 SCC4复用一 个码道组, 且码道组中有 4个码道对。 初始时, 由于 SCC0的负载落入 3个码 道对的负载区间, SCC4的负载落入 1 个码道对的负载区间; 检测后, SCC0 和 SCC4的负载均落入 2个码道对的负载区间。则重新为 SCC0分配 2个码道 对, 为 SCC4分配另外 2个码道对。 或者检测后, 即使只有 SCC0的负载落入 2个码道对的负载区间, SCC4的负载区间并未改变, 也可以为 SCC0分配其 中的 2个码道对,此时,剩余的码道对的数量不足以给 SCC4分配 3个码道对, 则可以只为其分配 2个码道对。 也就是说, 这里的码道对分配只需要尽量满 足即可。
再如, 当根据阈值区间与分配比例的对应关系确定码道对的数量时, 假 设初始时, 由于 SCC0与 SCC4的负载之差在第一阈值区间, 使得它们之间码 道对的分配比例为 3:1。 检测后, SCC0与 SCC4的负载之差在第二阈值区间, 使得它们之间码道对的分配比例为 1 :1 , 则重新为 SCC0和 SCC4分配相同数 量的码道对。
以上步骤 S305中的周期以 TTI为单位, 可以为 1个或更多个 TTI。
以上方法可以及时根据 SCC 上负载的变化, 调整资源的分配, 使得 PUCCH资源的利用率得到进一步的提高, 且进一步提升了上行吞吐率。
为了以上各个方法更加形象化,以下结合图 6描述一种 PUCCH资源分配 的情况。 图 6为本发明实施例提供的一种各 SCC之间资源复用的示意图。 图 中 Μ ( Ν )的含义是: Μ代表为 SCC分配的码道组的组号, Ν代表为 SCC分 配的码道对的数量; 即, Μ代表为 SCC使用的码道组的组号, Ν代表 SCC 使用的码道对的数量。
该图以 PCC可以与 8个 SCC复用为例,该 8个 SCC分别为 SCC0至 SCC7; 且配置给 PCC的 PUCCH资源被划分为 4个码道组, 分别为码道组 0至 3; 每个码道组包括 4个码道对。 其中两个 SCC复用一个码道组, 包括: SCC0 和 SCC4复用码道组 0, SCC1和 SCC5复用码道组 1, SCC2和 SCC6复用码 道组 2, SCC3和 SCC7复用码道组 3。 复用同一个码道组的两个 SCC在同一 个周期使用的码道对不重叠,例如, SCC0在周期 X内使用 3个码道对, SCC4 在周期 X内使用剩余的 1个码道对; SCC1在周期 X内使用 2个码道对, SCC5 在周期 X内使用剩余的 2个码道对; SCC2在周期 X内使用 4个码道对, SCC6 在周期 X保留使用码道组 6的权利, 但未使用任何码道对; SCC3在周期 X 内使用 1个码道对, SCC7在周期 X内使用剩余的 3个码道对。 此外, 每个周 期, 可以调整复用同一个码道组的两个 SCC使用码道对的比例, 仅以 SCC0 和 SCC4为例, 其它不再赘述, 在周期 X, SCC0使用 3个码道对, SCC4使 用剩余的 1个码道对; 在周期 Y, SCC0使用 2个码道对, SCC4使用剩余的 2个码道对;在周期 Z, SCC0使用 1个码道对, SCC4使用剩余的 3个码道对。 这里的调整, 可以根据 SCC0和 SCC4的负载进行, 其具体过程同以上相应部 分的描述, 在此不再赘述。
在前面已经提及, 在为 PCC配置好 PUCCH资源之后, 将这些资源分配 给与 PCC聚合的 SCC的过程中, 可以执行以上步骤 S302和 S303。 对于没有 复用码道组的 SCC, 只需要将码道组的信息通知给该 SCC即可; 对于复用码 道组的 SCC, 需要将码道组和码道对的信息通知给这些 SCC。
每个 SCC在接收到 PCC的通知之后, 可以根据 PCC的通知确定其可以 使用的 PUCCH资源, 而后将这些资源分配给其下的 UE, 以便 UE利用分配 的 PUCCH资源发送 SCC发送的下行传输块的反馈信息。
具体, 请参考图 7, 其为本发明实施例提供的一种 PUCCH资源的分配方 法的流程示意图。 该方法用于一种 CA场景下的 PUCCH资源分配, 该 CA场 景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下行传输块的反 馈信息通过该 PCC的 PUCCH进行反馈,因此,需要将配置给 PCC的 PUCCH 资源分配给与 PCC聚合的 SCC使用, 配置给 PCC的 PUCCH资源包括多个 码道组, 每个码道组包括多个码道对。 如图 7所示, 本实施例提供的 PUCCH 资源分配的方法可以包括如下步骤:
S701 : 控制 SCC的实体接收控制 PCC的实体发送的资源信息, 所述资源 配置信息用于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码 道对,其中所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的码道对与所述其它一个或更多个 SCC使用的码道对不重叠;
S702: 控制 SCC的实体根据接收的资源信息,确定该 SCC可以使用的分 配给该 SCC的码道组中的码道对;
S703: 将确定的码道对配置给该 SCC下的 UE。
控制 SCC的实体可以是 SCC所在的基站,更细节的可以为基站中控制该 SCC 的基带板; 进一步细化的还可以是该基带板上的处理器, 这里的处理器 可以是一个处理器, 也可以是多个处理元件的统称。
在以上步骤 S701中, 如果 PCC与 SCC部署在不同的基站上, 则可以通 过基站之间的接口 , 例如 X2接口, 传递资源配置信息; 如果 PCC与 SCC部 署在相同基站的不同基带板或处理器上, 则可以通过基带板或处理器之间的 布线连接, 实现资源配置信息的传递。
另外, 对于资源信息的形式本发明实施例不做任何限制, 可以利用现有 的消息携带, 也可以新设置一个消息用于传递资源信息。 至于内容, 在此也 不做限制,只要可以将 PCC分配给各 SCC使用的码道组和码道对的信息通知 给 SCC即可, 例如可以将码道组和码道对以序号标识, 在资源信息中传递相 应的码道组和码道对的序号即可。
如此, 在以上步骤 S702中, 控制 SCC的实体便可以根据资源信息得知 自身可以使用的资源有哪些, 从而将这些资源配置给该 SCC下的 UE。 关于 SCC将资源配置给 UE的过程与本发明的实质无关, 可以采用现有的配置方 法来实现, 在此不再赘述。
需要说明的是, 与 PCC聚合的 SCC是可以变化的。 例如, 某个时刻, 所 有接入 PCC的 UE对 SCC0至 SCC3有聚合需求, 则此时, PCC需要与 SCC0 至 SCC3聚合; 而后, 由于接入 UE的变化, 需要聚合的 SCC增加, 例如, PCC需要与 SCC0至 SCC7聚合; 或者需要聚合的 SCC改变, 例如 PCC需要 与 SCC4至 SCC7聚合; 或者需要聚合的 SCC改变且数量增加, 例如 PCC需 要与 SCC8至 SCC14聚合。 对于 CA而言, 通常设定 PCC最多可以与多少个 SCC聚合, 但实际使用中不同时刻, 聚合的 SCC可以改变, 且其数量也可以 改变。 当聚合的 SCC的数量不多于配置给 PCC的资源中码道组的数量时, 可 以给每个 see分配独立的码道组, 此时资源的分配粒度到码道组即可; 当聚 合的 SCC的数量超过配置给 PCC的资源中码道组的数量时,可以将同一个码 道组分配给不同的 SCC, 实现 PUCCH资源的复用, 此时资源的分配粒度需 要进一步细化到码道组中的码道对, 以避免资源冲突。 当然, 在聚合的 SCC 的数量未超过配置给 PCC的资源中码道组的数量时, 也可以将同一个码道组 分配给不同的 SCC, 进行 PUCCH资源的复用。 对此, 本发明实施例不做限 制。
可见, 与 PCC聚合的 SCC中 , 并不是所有 SCC都会与其它 SCC复用码 道组, 以上实施例描述了复用码道组的 SCC的资源分配的情况, 对于未复用 码道组的 scc, 可以独立使用一个码道组, 在此不再赘述。
请参考图 8, 其为本发明实施例提供的一种 PUCCH资源分配装置的结构 示意图。 该装置用于一种 CA场景下的 PUCCH资源分配, 该 CA场景下, 一 个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下行传输块的反馈信息通 过该 PCC的 PUCCH进行反馈。 因此, 需要将配置给 PCC的 PUCCH资源分 配给与 PCC聚合的 SCC使用,本实施例提供的装置就是用于解决该资源分配 中如何有效利用 PUCCH资源的问题。
如图 8所示, 该装置 800包括配置单元 810, 第一分配单元 820, 第二分 配单元 830以及通知单元 840 , 其中配置单元 810用于为 PCC配置 PUCCH 资源, 该 PUCCH资源包括多个码道组, 每个码道组包括多个码道对; 第一分 配单元 820用于为两个或两个以上 SCC分配以上 PUCCH资源中的同一个码 道组; 第二分配单元 830用于为这两个或两个以上 SCC分配该同一个码道组 中的码道对, 其中, 分配给这两个或两个以上 SCC的码道对不重叠。 通知单 元 840用于通知这两个或两个以上 SCC为其分配的码道组及码道对。
以上装置可以位于 PCC所在的基站, 更细节的可以为基站中控制该 PCC 的基带板; 进一步细化的还可以是该基带板上的处理器, 这里的处理器可以 是一个处理器, 也可以是多个处理元件的统称。
配置单元 810配置资源的方式和通知单元 840的通知方式, 同以上方法 实施例, 在此不再赘述。
在配置单元 810为 PCC配置好 PUCCH资源之后, 可以利用第一分配单 元 820将这些资源分配给与 PCC聚合的 SCC。 也就是说, 第一分配单元 820 不仅可以为这两个或两个以上 SCC分配码道组,还可以为其它与 PCC聚合的 SCC分配码道组。较佳的,可以以尽量少的 SCC复用码道组为目标将 PUCCH 资源分配给与 PCC聚合的 SCC。 此时, 第一分配单元 820可以在与 PCC聚 合的 SCC的数量大于 PUCCH资源中码道组的数量时,为两个或两个以上 SCC 分配以上 PUCCH资源中的同一个码道组。进一步的, 第一分配单元 820可以 在与 PCC 聚合的 SCC 的数量大于 PUCCH 资源中码道组的数量, 且小于 PUCCH资源中码道组的数量的两倍时,为两个 SCC分配以上 PUCCH资源中 的同一个码道组。 具体可以参照以上方法实施例, 在此不再赘述。
对于复用同一个码道组的 SCC, 对其资源的分配粒度需要进一步细化到 码道对, 以避免资源冲突。 具体可以通过第二分配单元 830 来实现。 且第二 分配单元 830可以釆用按需分配方式, 平均分配方式或循环分配方式。 具体, 请参考以上方法实施例, 在此不再赘述。
请继续参考图 9, 其为本发明实施例提供的另一种 PUCCH资源分配装置 的结构示意图。 如图 9 所示, 在釆用按需分配方式时, 该装置还可以包括检 测单元 850, 用于检测这两个或两个以上 SCC的负载。 此时, 第二分配单元 830具体用于: 根据这两个或两个以上 SCC的负载, 确定这两个或两个以上 SCC 使用码道对的比例或数量; 根据确定的比例或数量, 为这两个或两个以 上 SCC分配该同一个码道组中不重叠的码道对。
在采用平均分配方式时, 第二分配单元 830具体用于: 将所述同一个码 道组中的码道对等分给这两个或两个以上 SCC; 或者, 当所述同一个码道组 中的码道对无法按照这两个或两个以上 SCC的数量进行等分时, 去除余数数 量的码道对, 将其它码道对等分给这两个或两个以上 SCC, 再将余数数量的 码道对分别分给余数数量的 SCC, 使得分给各 SCC的码道对的数量差值不超 过一个。
当采用循环分配方式时, 第二分配单元 830具体用于: 一个循环周期内, 每个子周期, 根据比例集合中一个比例, 为这两个或两个以上 SCC分配该同 一个码道组中的不同的码道对, 其中每个子周期使用的比例不同, 且一个循 环周期内子周期的数量等于比例集合中比例的数量。 该比例集合可以根据码 道组中码道对的数量进行设置。 其中, 子周期以 TTI为单位, 可以为 1个或 更多个 TTI。
以上每种方式可以参见以上方法实施例的描述, 在此不再赘述。
循环分配方式是一种周期性调整码道对的分配的实现方式。 对于按需分 配方式和平均分配方式, 也可以在采用这两种中任一种分配方式进行初始分 配之后, 每个周期检测一下这些 SCC的负载, 如果负载发生了变化, 可以考 虑是否调整为每个 SCC分配的码道对的数量。 具体, 请参考图 10, 其为本发 明实施例提供的又一种 PUCCH资源分配装置的结构示意图。 如图 10所示, 该装置还包括周期触发单元 860,用于周期性触发检测单元 850检测所述两个 或两个以上 SCC的负载; 且当这两个或两个以上 SCC的负载变化时, 触发第 二分配单元 830根据变化后的负载确定这两个或两个以上 SCC使用码道对的 比例或数量, 并在确定的比例或数量变化时, 根据变化后的比例或数量, 重 新为这两个或两个以上 SCC分配该同一个码道组中不重叠的码道对。 之后, 还需要通过通知单元 840通知给这两个或两个以上 SCC为其重新分配的码道 对, 此时, 可以不需要通知码道组。 以上周期触发单元的触发周期以 ΤΤΙ为 单位, 可以为 1个或更多个 ΤΤΙ。
需要说明的是, 以上配置单元 810 可以为单独设立的处理器, 也可以集 成在基站的某一个处理器中实现, 此外, 也可以以程序代码的形式存储于基 站的存储器中, 由基站的某一个处理器调用并执行该配置单元 810 的功能。 第一分配单元 820和第二分配单元 830的实现同配置单元 810,且可以与配置 单元 810集成在一起, 也可以独立实现。 通知单元 840可以为接口, 例如当 PCC与 SCC位于不同的基站时,该通知单元 840可以为基站之间的接口电路, 例如 X2接口电路或 S1接口电路, 甚至是空口。 当 PCC与 SCC位于相同的 基站时, 该通知单元 840可以为布线的连接接口。 检测单元 850可以为单独 设立的检测电路, 也可以集成在基站的某一个处理器中实现, 此外, 也可以 以程序代码的形式存储于基站的存储器中, 由基站的某一个处理器调用并执 行该配置单元 850的功能。 周期触发单元 860可以为单独设立的定时器, 也 可以集成在基站的某一个处理器中实现, 此外, 也可以以程序代码的形式存 储于基站的存储器中, 由基站的某一个处理器调用并执行该配置单元 860 的 功能。 这里的基站是指 PCC 所在的基站, 且处理器可以是一个中央处理器 ( Central Processing Unit, CPU ), 或者是特定集成电路( Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施本发明实施例的一个或多个集 成电路。
请参考图 11 , 其为本发明实施例提供的又一种 PUCCH资源分配装置的 结构示意图。该装置用于一种 CA场景下的 PUCCH资源分配,该 CA场景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下行传输块的反馈信息 通过该 PCC的 PUCCH进行反馈。 因此, 需要将配置给 PCC的 PUCCH资源 分配给与 PCC聚合的 SCC使用,本实施例提供的装置就是用于解决该资源分 配中如何有效利用 PUCCH资源的问题。
如图 11所示, 该装置包括处理器 1110和接口 1120, 图中还示出了存储 器 1130和总线 1140,该处理器 1110、接口 1120和存储器 1130通过总线 1140 连接并完成相互间的通信。
该装置位于 PCC所在的基站,且处理器 1110用于执行以上方法实施例中 以控制 PCC的实体为执行主体的任一种方法,例如包括:为 PCC配置 PUCCH 资源, 该 PUCCH资源包括多个码道组, 每个码道组包括多个码道对; 为两个 或两个以上 SCC分配以上 PUCCH资源中的同一个码道组;为这两个或两个以 上 SCC分配该同一个码道组中的码道对,其中,分配给这两个或两个以上 SCC 的码道对不重叠;通过接口 1120通知这两个或两个以上 SCC为其分配的码道 组及码道对。
需要说明的是, 这里的处理器 1110可以是一个处理器, 也可以是多个处 理元件的统称。 例如, 该处理器可以是中央处理器 (Central Processing Unit, CPU ),也可以是特定集成电路( Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施本发明实施例的一个或多个集成电路, 例如: 一个或多 个微处理器 (digital singnal processor, DSP ), 或, 一个或者多个现场可编程 门阵列 (Field Programmable Gate Array, FPGA )。
当 PCC与 SCC位于不同的基站时, 该接口 1120可以为基站之间的接口 电路, 例如 X2接口电路或 S1接口电路, 甚至是空口。 当 PCC与 SCC位于 相同的基站时, 该接口 1120可以为布线的连接接口。
存储器 1130可以是一个存储装置, 也可以是多个存储元件的统称, 且用 于存储可执行程序代码或接入网管理设备运行所需要参数、 数据等。 且存储 器 1130可以包括随机存储器( RAM ),也可以包括非易失性存储器( non-volatile memory ), 例如磁盘存储器, 闪存(Flash ) 等。
总线 1140可以是工业标准体系结构( Industry Standard Architecture , ISA ) 总线、 外部设备互连 ( Peripheral Component, PCI )总线或扩展工业标准体系 结构 (Extended Industry Standard Architecture, EISA ) 总线等。 该总线 1140 可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 11中仅用一条 线表示, 但并不表示仅有一根总线或一种类型的总线。
以上处理器 1110还可以执行以上方法实施例中的检测步骤, 重新分配码 道对的步骤, 具体参见以上方法实施例, 在此不再赘述。
请参考图 12,其为本发明实施例提供的一种资源分配装置的结构示意图。 该装置用于一种 CA场景下的 PUCCH资源分配, 该 CA场景下, 一个 PCC 与至少两个 SCC聚合,且每个 SCC发送的下行传输块的反馈信息通过该 PCC 的 PUCCH进行反馈。 如图 12所示, 该装置 1200包括接口单元 1210, 确定 单元 1220以及配置单元 1230。 其中, 接口单元 1210用于接收控制 PCC的实 体发送的资源信息, 所述资源信息用于指示分配给该 SCC 的码道组以及该 SCC在该码道组中使用的码道对, 其中所述 SCC与其它一个或更多个 SCC 复用分配给该 SCC的码道组, 且使用的码道对与所述其它一个或更多个 SCC 使用的码道对不重叠; 确定单元 1220用于根据接收的资源信息, 确定该 SCC 可以使用的分配给该 SCC的码道组中的码道对;配置单元 1230用于将确定的 码道对配置给该 SCC下的 UE。
以上装置可以位于 SCC所在的基站, 更细节的可以为基站中控制该 SCC 的基带板; 进一步细化的还可以是该基带板上的处理器, 这里的处理器可以 是一个处理器, 也可以是多个处理元件的统称。
需要说明的是, 以上接口单元 1210可以为接口, 例如当 SCC与 PCC位 于不同的基站时, 该接口单元 1210可以为基站之间的接口电路, 例如 X2接 口电路或 S1接口电路, 甚至是空口。 当 SCC与 PCC位于相同的基站时, 该 接口单元 1210可以为布线的连接接口。 确定单元 1220可以为单独设立的处 理器, 也可以集成在基站的某一个处理器中实现, 此外, 也可以以程序代码 的形式存储于基站的存储器中, 由基站的某一个处理器调用并执行该确定单 元 1220的功能。 配置单元 1230的实现同确定单元 1220, 且可以与确定单元 1220集成在一起, 也可以独立实现。 这里的基站是指 SCC所在的基站, 且处 理器可以是一个中央处理器 (Central Processing Unit, CPU ), 或者是特定集 成电路(Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施 本发明实施例的一个或多个集成电路。
请参考图 13, 其为本发明实施例提供的又一种 PUCCH资源分配装置的 结构示意图。该装置用于一种 CA场景下的 PUCCH资源分配,该 CA场景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下行传输块的反馈信息 通过该 PCC的 PUCCH进行反馈。 因此, 需要将配置给 PCC的 PUCCH资源 分配给与 PCC聚合的 SCC使用,本实施例提供的装置就是用于解决该资源分 配中如何有效利用 PUCCH资源的问题。
如图 13所示, 该装置包括处理器 1310和接口 1320, 图中还示出了存储 器 1330和总线 1340,该处理器 1310、接口 1320和存储器 1330通过总线 1340 连接并完成相互间的通信。
该装置位于 SCC所在的基站,且处理器 1310用于执行以上方法实施例中 以控制 SCC的实体为执行主体的任一种方法,例如包括: 通过接口 1320接收 控制 PCC的实体发送的资源信息,所述资源信息用于指示分配给该 SCC的码 道组以及该 SCC在该码道组中使用的码道对,其中所述 SCC与其它一个或更 多个 SCC复用分配给该 SCC的码道组,且使用的码道对与所述其它一个或更 多个 SCC使用的码道对不重叠; 根据接收的资源信息, 确定该 SCC可以使用 的分配给该 SCC的码道组中的码道对; 将确定的码道对配置给该 SCC下的 UE。
需要说明的是, 这里的处理器 1310可以是一个处理器, 也可以是多个处 理元件的统称。 例如, 该处理器可以是中央处理器 (Central Processing Unit, CPU ),也可以是特定集成电路( Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施本发明实施例的一个或多个集成电路, 例如: 一个或多 个微处理器 (digital singnal processor, DSP ), 或, 一个或者多个现场可编程 门阵列 (Field Programmable Gate Array, FPGA )。
当 SCC与 PCC位于不同的基站时, 该接口 1320可以为基站之间的接口 电路, 例如 X2接口电路或 S1接口电路, 甚至是空口。 当 SCC与 PCC位于 相同的基站时, 该接口 1320可以为布线的连接接口。
存储器 1330可以是一个存储装置, 也可以是多个存储元件的统称, 且用 于存储可执行程序代码或接入网管理设备运行所需要参数、 数据等。 且存储 器 1330可以包括随机存储器( RAM ),也可以包括非易失性存储器( non-volatile memory ), 例如磁盘存储器, 闪存(Flash ) 等。
总线 1340可以是工业标准体系结构 ( Industry Standard Architecture , ISA ) 总线、 外部设备互连 ( Peripheral Component, PCI )总线或扩展工业标准体系 结构 (Extended Industry Standard Architecture, EISA ) 总线等。 该总线 1340 可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 13中仅用一条 线表示, 但并不表示仅有一根总线或一种类型的总线。 实施例 1 :一种资源分配方法,用于一种 CA场景下的 PUCCH资源分配, 该 CA场景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下行传 输块的反馈信息通过该 PCC的 PUCCH进行反馈 , 所述方法包括:
为 PCC配置 PUCCH资源, 该 PUCCH资源包括多个码道组, 每个码道 组包括多个码道对;
为两个或两个以上 SCC分配以上 PUCCH资源中的同一个码道组; 为这两个或两个以上 SCC分配该同一个码道组中的码道对, 其中, 分配 给这两个或两个以上 SCC的码道对不重叠;
通知这两个或两个以上 SCC为其分配的码道組及码道对。
实施例 2: 如实施例 1所述的方法, 所述为两个或两个以上 SCC分配以 上 PUCCH资源中的同一个码道組, 包括:
当与 PCC聚合的 SCC的数量大于 PUCCH资源中码道组的数量时, 为两 个或两个以上 SCC分配以上 PUCCH资源中的同一个码道组。
实施例 3: 如实施例 2所述的方法, 所述为两个或两个以上 SCC分配以 上 PUCCH资源中的同一个码道组, 包括:
当与 PCC聚合的 SCC的数量大于 PUCCH资源中码道组的数量,且小于 PUCCH资源中码道组的数量的两倍时,为两个 SCC分配以上 PUCCH资源中 的同一个码道组。
实施例 4: 如实施例 1至 3任一项所述的方法, 为这两个或两个以上 SCC 分配该同一个码道组中的码道对, 其中, 分配给这两个或两个以上 SCC的码 道对不重叠, 包括:
检测这两个或两个以上 SCC的负载;
根据这两个或两个以上 SCC的负载,确定这两个或两个以上 SCC使用码 道对的比例或数量;
根据确定的比例或数量, 为这两个或两个以上 SCC分配该同一个码道组 中不重叠的码道对。
实施例 5: 如实施例 1至 3任一项所述的方法, 为这两个或两个以上 SCC 分配该同一个码道组中的码道对, 其中, 分配给这两个或两个以上 SCC的码 道对不重叠, 包括:
将所述同一个码道组中的码道对等分给这两个或两个以上 SCC; 或者, 当所述同一个码道组中的码道对无法按照这两个或两个以上 SCC的数量 进行等分时, 去除余数数量的码道对, 将其它码道对等分给这两个或两个以 上 SCC, 再将余数数量的码道对分别分给余数数量的 SCC, 使得分给各 SCC 的码道对的数量差值不超过一个。
实施例 6: 如实施例 1至 5任一项所述的方法, 还包括:
周期性检测这两个或两个以上 SCC的负载;
当这两个或两个以上 SCC的负载变化时, 根据变化后的负载确定这两个 或两个以上 SCC使用码道对的比例或数量;
当确定的比例或数量变化时, 根据变化后的比例或数量, 重新为这两个 或两个以上 SCC分配该同一个码道组中不重叠的码道对;
通知这两个或两个以上 SCC为其重新分配的码道对。
实施例 7: 如实施例 6所述的方法, 检测这两个或两个以上 SCC的负载 的周期以 TTI为单位。
实施例 8: 如实施例 1至 3任一项所述的方法, 为这两个或两个以上 SCC 分配该同一个码道组中的码道对, 其中, 分配给这两个或两个以上 SCC的码 道对不重叠, 包括:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 为这两个或 两个以上 SCC分配该同一个码道组中的不同的码道对, 其中每个子周期使用 的比例不同, 且一个循环周期内子周期的数量等于比例集合中比例的数量。
实施例 9: 如实施例 8所述的方法, 所述子周期以 TTI为单位。
实施例 10: —种资源分配方法, 用于一种 CA场景下的 PUCCH资源分 配, 该 CA场景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下 行传输块的反馈信息通过该 PCC的 PUCCH进行反馈, 所述方法包括:
控制 SCC的实体接收控制 PCC的实体发送的资源信息,所述资源信息用 于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中 所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的 码道对与所述其它一个或更多个 see使用的码道对不重叠;
控制 SCC的实体根据接收的资源信息,确定该 SCC可以使用的分配给该 SCC的码道组中的码道对;
控制 SCC的实体将确定的码道对配置给该 SCC下的 UE。
实施例 11 : 一种资源分配装置, 用于一种 CA场景下的 PUCCH资源分 配, 该 CA场景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下 行传输块的反馈信息通过该 PCC的 PUCCH进行反馈, 所述装置包括:
配置单元, 用于为 PCC配置 PUCCH资源, 该 PUCCH资源包括多个码 道组, 每个码道组包括多个码道对;
第一分配单元, 用于为两个或两个以上 SCC分配以上 PUCCH资源中的 同一个码道组;
第二分配单元, 用于为这两个或两个以上 SCC分配该同一个码道组中的 码道对, 其中, 分配给这两个或两个以上 see的码道对不重叠;
通知单元,用于通知这两个或两个以上 SCC为其分配的码道組及码道对。 实施例 12: 如实施例 11 所述的装置, 所述第一分配单元用于在与 PCC 聚合的 SCC的数量大于 PUCCH资源中码道组的数量时, 为两个或两个以上
SCC分配以上 PUCCH资源中的同一个码道组。
实施例 13 : 如实施例 12所述的装置, 所述第一分配单元用于在与 PCC 聚合的 SCC的数量大于 PUCCH资源中码道组的数量, 且小于 PUCCH资源 中码道组的数量的两倍时, 为两个 SCC分配以上 PUCCH资源中的同一个码 道组。
实施例 14: 如实施例 11至 13任一项所述的装置, 还包括: 检测单元, 用于检测这两个或两个以上 SCC的负载; 且所述第二分配单元用于:
根据这两个或两个以上 SCC的负载,确定这两个或两个以上 SCC使用码 道对的比例或数量; 根据确定的比例或数量, 为这两个或两个以上 SCC分配该同一个码道组 中不重叠的码道对。
实施例 15: 如实施例 10至 13任一项所述的装置, 所述第二分配单元用 于:
将所述同一个码道组中的码道对等分给这两个或两个以上 SCC; 或者, 当所述同一个码道组中的码道对无法按照这两个或两个以上 SCC的数量 进行等分时, 去除余数数量的码道对, 将其它码道对等分给这两个或两个以 上 SCC, 再将余数数量的码道对分别分给余数数量的 SCC, 使得分给各 SCC 的码道对的数量差值不超过一个。
实施例 16: 如实施例 10至 15任一项所述的装置, 还包括:
周期触发单元, 用于周期性触发检测单元检测所述两个或两个以上 SCC 的负载; 且当这两个或两个以上 SCC的负载变化时, 触发第二分配单元根据 变化后的负载确定这两个或两个以上 SCC使用码道对的比例或数量, 并在确 定的比例或数量变化时, 根据变化后的比例或数量, 重新为这两个或两个以 上 SCC分配该同一个码道组中不重叠的码道对; 且
所述通知单元还用于通知这两个或两个以上 SCC 为其重新分配的码道 对。
实施例 17: 如实施例 16 所述的装置, 周期触发单元的触发周期以 TTI 为单位。
实施例 18: 如实施例 11至 13任一项所述的装置, 所述第二分配单元用 于:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 为这两个或 两个以上 SCC分配该同一个码道组中的不同的码道对, 其中每个子周期使用 的比例不同, 且一个循环周期内子周期的数量等于比例集合中比例的数量。
实施例 19: 如实施例 18所述的装置, 所述子周期以 ΤΉ为单位。
实施例 20: —种资源分配装置, 用于一种 CA场景下的 PUCCH资源分 配, 该 CA场景下, 一个 PCC与至少两个 SCC聚合, 且每个 SCC发送的下 行传输块的反馈信息通过该 PCC的 PUCCH进行反馈, 所述装置包括: 接口单元, 用于接收控制 PCC的实体发送的资源信息, 所述资源信息用 于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中 所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的 码道对与所述其它一个或更多个 sec使用的码道对不重叠;
确定单元, 用于根据接收的资源信息, 确定该 SCC可以使用的分配给该 SCC的码道组中的码道对;
配置单元, 用于将确定的码道对配置给该 SCC下的 UE。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、 或计算机程序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等) 上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 装置 (设备) 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 / 或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框 的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处 理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种资源分配方法, 其特征在于, 用于分量载波聚合场景下物理上行 控制信道 PUCCH的资源分配, 所述分量载波包括主分量载波 PCC和辅分量 载波 scc, 所述方法包括:
为所述 PCC配置 PUCCH资源,该 PUCCH资源包括至少两个 PUCCH码 道组, 每个 PUCCH码道组包括至少两个 PUCCH码道对;
确定分配给所述 SCC的 PUCCH资源, 其中, 至少有两个 SCC被分配所 述 PUCCH资源中的同一个码道组;
确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠。
2、 如权利要求 1所述的方法, 其特征在于, 确定被分配有所述 PUCCH 资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道組的 SCC中的任意两个 SCC使用的码道对不重叠,包括: 检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载; 根据被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载, 确定 被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数 量, 其中 SCC的负载越高, 使用码道对的比例或数量越高;
根据确定的比例或数量 ,确定被分配有所述 PUCCH资源中的同一个码道 组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道 组的 SCC中的任意两个 SCC使用的码道对不重叠。
3、如权利要求 2所述的方法,其特征在于,所述检测被分配有所述 PUCCH 资源中的同一个码道组的 SCC的负载, 包括:
周期检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载。
4、 如权利要求 3所述的方法, 其特征在于, 所述周期为 1个或更多个传 输时间间隔 TTI。
5、 如权利要求 1所述的方法, 其特征在于, 确定被分配有所述 PUCCH 资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重叠,包括: 将所述同一个码道组中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 SCC; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 see, 使得分配给各 SCC的码道对的数量差值不超过一个。
6、 如权利要求 1所述的方法, 其特征在于, 确定被分配有所述 PUCCH 资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重叠,包括: 一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中, 每个子周期使用的比例不同, 且一个循环周期内子周期的 数量等于比例集合中比例的数量。
7、 如权利要求 6所述的方法, 其特征在于, 所述子周期为 1个或更多个
TTI。
8、 一种资源分配方法, 其特征在于, 用于分量载波聚合场景下物理上行 控制信道 PUCCH的资源分配, 所述分量载波包括主分量载波 PCC和辅分量 载波 SCC, 所述方法包括:
控制 SCC的实体接收控制 PCC的实体发送的资源信息,所述资源信息用 于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中 所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的 码道对与所述其它一个或更多个 see使用的码道对不重叠;
所述控制 SCC的实体根据接收的资源信息,确定该 SCC可以使用的分配 给该 SCC的码道组中的码道对;
将确定的码道对配置给该 SCC下的用户设备。
9、 一种资源分配装置, 其特征在于, 用于分量载波聚合场景下物理上行 控制信道 PUCCH的资源分配, 所述分量载波包括主分量载波 PCC和辅分量 载波 SCC, 所述装置包括:
配置单元, 用于为所述 PCC配置 PUCCH资源, 该 PUCCH资源包括至 少两个 PUCCH码道组, 每个 PUCCH码道组包括至少两个 PUCCH码道对; 第一确定单元, 用于确定分配给所述 SCC的 PUCCH资源, 其中, 至少 有两个 SCC被分配所述 PUCCH资源中的同一个码道组;
第二确定单元,用于确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意两个 SCC使用的码道对不重叠。
10、 如权利要求 9所述的装置, 其特征在于, 还包括:
检测单元,用于检测被分配有所述 PUCCH资源中的同一个码道组的 SCC 的负载; 且
所述第二确定单元具体用于:根据被分配有所述 PUCCH资源中的同一个 码道组的 SCC的负载, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数量, 其中 SCC的负载越高, 使用码道对的比例或 数量越高; 根据确定的比例或数量, 确定被分配有所述 PUCCH资源中的同一 个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH资源中的同一 个码道组的 SCC中的任意两个 SCC使用的码道对不重叠。
11、 如权利要求 10所述的装置, 其特征在于, 所述检测单元具体用于周 期检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载。
12、 如权利要求 11所述的装置, 其特征在于, 所述周期为 1个或更多个 传输时间间隔 TTI。
13、 如权利要求 9 所述的装置, 其特征在于, 所述第二确定单元具体用 于:
将所述同一个码道組中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 SCC; 或, 当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 SCC, 使得分配给各 SCC的码道对的数量差值不超过一个。
14、 如权利要求 9 所述的装置, 其特征在于, 所述第二确定单元具体用 于:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中每个子周期使用的比例不同, 且一个循环周期内子周期的数 量等于比例集合中比例的数量。
15、 如权利要求 14所述的装置, 其特征在于, 所述子周期为 1个或更多 个 TTI。
16、 一种资源分配装置, 其特征在于, 用于分量载波聚合场景下物理上 行控制信道 PUCCH的资源分配, 所述分量载波包括主分量载波 PCC和辅分 量载波 SCC, 所述装置位于控制 SCC的实体, 且包括:
接口单元, 用于接收控制 PCC的实体发送的资源信息, 所述资源信息用 于指示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中 所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的 码道对与所述其它一个或更多个 sec使用的码道对不重叠;
确定单元, 用于根据接收的资源信息, 确定该 SCC可以使用的分配给该 SCC的码道组中的码道对;
配置单元, 用于将确定的码道对配置给该 SCC下的用户设备。
17、 一种资源分配装置, 其特征在于, 用于分量载波聚合场景下物理上 行控制信道 PUCCH的资源分配, 所述分量载波包括主分量载波 PCC和辅分 量载波 SCC, 所述装置包括:
存储器, 用于存储应用程序代码;
处理器, 用于执行所述存储器中存储的应用程序代码, 具体执行: 为所述 PCC配置 PUCCH资源,该 PUCCH资源包括至少两个 PUCCH码 道组, 每个 PUCCH码道组包括至少两个 PUCCH码道对;
确定分配给所述 SCC的 PUCCH资源, 其中, 至少有两个 SCC被分配所 述 PUCCH资源中的同一个码道组;
确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码道对, 以使得被分配有所述 PUCCH 资源中的同一个码道组的 SCC 中的任意两个 SCC使用的码道对不重叠;
接口, 用于所述存储器与所述处理器之间传递信息。
18、 如权利要求 17所述的装置, 其特征在于, 所述处理器, 具体用于执 行:
检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载; 根据被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载, 确定 被分配有所述 PUCCH资源中的同一个码道组的 SCC使用码道对的比例或数 量, 其中 SCC的负载越高, 使用码道对的比例或数量越高; 根据确定的比例 或数量, 确定被分配有所述 PUCCH资源中的同一个码道组的 SCC使用的码 道对, 以使得被分配有所述 PUCCH资源中的同一个码道组的 SCC中的任意 两个 SCC使用的码道对不重叠。
19、 如权利要求 18所述的装置, 其特征在于, 所述处理器, 具体用于执 行: 周期检测被分配有所述 PUCCH资源中的同一个码道组的 SCC的负载。
20、 如权利要求 19所述的装置, 其特征在于, 所述周期为 1个或更多个 传输时间间隔 ττι。
21、 如权利要求 17所述的装置, 其特征在于, 所述处理器, 具体用于执 行:
将所述同一个码道组中的码道对等分给被分配有所述 PUCCH 资源中的 同一个码道组的 SCC; 或,
当所述同一个码道组中的码道对无法按照所述被分配有所述 PUCCH 资 源中的同一个码道组的 SCC的数量进行等分时, 将所述同一个码道组中的码 道对分配给各 SCC, 使得分配给各 SCC的码道对的数量差值不超过一个。
22、 如权利要求 17所述的装置, 其特征在于, 所述处理器, 具体用于执 行:
一个循环周期内, 每个子周期, 根据比例集合中一个比例, 确定被分配 有所述 PUCCH资源中的同一个码道组的 SCC使用该同一个码道组中的不同 的码道对, 其中每个子周期使用的比例不同, 且一个循环周期内子周期的数 量等于比例集合中比例的数量。
23、 如权利要求 22所述的装置, 其特征在于, 所述子周期为 1个或更多 个 TTI。
24、 一种资源分配装置, 其特征在于, 用于分量载波聚合场景下物理上 行控制信道 PUCCH的资源分配, 所述分量载波包括主分量载波 PCC和辅分 量载波 SCC, 所述装置位于控制 SCC的实体, 且包括:
接口, 用于接收控制 PCC的实体发送的资源信息, 所述资源信息用于指 示分配给该 SCC的码道组以及该 SCC在该码道组中使用的码道对,其中所述 SCC与其它一个或更多个 SCC复用分配给该 SCC的码道组, 且使用的码道 对与所述其它一个或更多个 SCC使用的码道对不重叠;
存储器, 用于存储应用程序代码;
处理器, 用于执行所述存储器中存储的应用程序代码, 具体执行: 根据接收的资源信息,确定该 SCC可以使用的分配给该 SCC的码道组中 的码道对;
将确定的码道对配置给该 SCC下的用户设备。
PCT/CN2014/081280 2014-06-30 2014-06-30 物理上行控制信道资源的分配方法和装置 WO2016000177A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14896405.9A EP3148273B1 (en) 2014-06-30 2014-06-30 Physical uplink control channel resource allocation method and device
PCT/CN2014/081280 WO2016000177A1 (zh) 2014-06-30 2014-06-30 物理上行控制信道资源的分配方法和装置
JP2017519746A JP6337387B2 (ja) 2014-06-30 2014-06-30 物理アップリンク制御チャネルリソースの割り当て方法および装置
KR1020177001140A KR101962775B1 (ko) 2014-06-30 2014-06-30 물리 업링크 제어 채널 리소스 할당 방법 및 장치
CN201480002164.6A CN104604177B (zh) 2014-06-30 2014-06-30 物理上行控制信道资源的分配方法和装置
US15/392,468 US10111214B2 (en) 2014-06-30 2016-12-28 Physical uplink control channel resource allocation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081280 WO2016000177A1 (zh) 2014-06-30 2014-06-30 物理上行控制信道资源的分配方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/392,468 Continuation US10111214B2 (en) 2014-06-30 2016-12-28 Physical uplink control channel resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2016000177A1 true WO2016000177A1 (zh) 2016-01-07

Family

ID=53127905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081280 WO2016000177A1 (zh) 2014-06-30 2014-06-30 物理上行控制信道资源的分配方法和装置

Country Status (6)

Country Link
US (1) US10111214B2 (zh)
EP (1) EP3148273B1 (zh)
JP (1) JP6337387B2 (zh)
KR (1) KR101962775B1 (zh)
CN (1) CN104604177B (zh)
WO (1) WO2016000177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396072A (zh) * 2021-05-25 2022-11-25 大唐移动通信设备有限公司 物理上行控制信道pucch资源的分配方法、装置及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239937A3 (en) 2015-07-01 2023-09-27 LG Electronics Inc. Method and device for receiving signal in wireless communication system
CN106686730B (zh) * 2015-11-06 2020-01-07 中国移动通信集团公司 Pucch资源配置、指示方法、pucch反馈信息、基站及终端
EP3429154B1 (en) 2016-04-06 2023-03-01 Huawei Technologies Co., Ltd. Information processing method and device
US11863315B2 (en) 2017-12-04 2024-01-02 Qualcomm Incorporated Techniques and apparatuses for avoiding collisions on an uplink data channel and a cell-specific or UE-specific uplink control channel
CN110034878B (zh) * 2018-01-12 2022-05-03 大唐移动通信设备有限公司 一种资源指示方法、资源确定方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932005A (zh) * 2009-06-26 2010-12-29 中兴通讯股份有限公司 动态物理上行控制信道资源预留与索引映射的方法及装置
CN102355733A (zh) * 2011-09-30 2012-02-15 中兴通讯股份有限公司 一种物理上行控制信道的发送方法和用户设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407598C (zh) * 2004-07-13 2008-07-30 中兴通讯股份有限公司 一种基于多载波的公共物理信道分配方法
KR101959362B1 (ko) * 2010-07-26 2019-03-19 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 신호 전송 방법 및 장치
WO2012030104A2 (ko) * 2010-09-01 2012-03-08 엘지전자 주식회사 무선통신 시스템에서 제어정보의 전송 방법 및 장치
WO2012115465A2 (ko) 2011-02-23 2012-08-30 엘지전자 주식회사 무선접속시스렘에서 상향링크제어정보 코딩방법 및 전송방법
JP5979968B2 (ja) 2012-05-11 2016-08-31 株式会社Nttドコモ ユーザ端末、無線通信方法及び無線通信システム
CN103733709B (zh) * 2012-05-11 2018-08-07 太阳专利信托公司 终端装置和发送方法
CN103826229B (zh) 2012-11-19 2018-08-14 中兴通讯股份有限公司 基于多个Smallcell基站进行小区合并的方法、SN、基站及系统
US10306605B2 (en) * 2013-02-15 2019-05-28 Telefonaktiebolaget L M Ericsson (Publ) Allocation of uplink control channel resources from mapped resource region
US10687316B2 (en) * 2014-07-17 2020-06-16 Qualcomm Incorporated Techniques for enabling component carriers for multi-carrier wireless communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932005A (zh) * 2009-06-26 2010-12-29 中兴通讯股份有限公司 动态物理上行控制信道资源预留与索引映射的方法及装置
CN102355733A (zh) * 2011-09-30 2012-02-15 中兴通讯股份有限公司 一种物理上行控制信道的发送方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148273A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396072A (zh) * 2021-05-25 2022-11-25 大唐移动通信设备有限公司 物理上行控制信道pucch资源的分配方法、装置及存储介质
CN115396072B (zh) * 2021-05-25 2024-05-07 大唐移动通信设备有限公司 物理上行控制信道pucch资源的分配方法、装置及存储介质

Also Published As

Publication number Publication date
EP3148273A1 (en) 2017-03-29
KR101962775B1 (ko) 2019-03-27
JP2017525312A (ja) 2017-08-31
EP3148273A4 (en) 2017-06-21
US10111214B2 (en) 2018-10-23
US20170111901A1 (en) 2017-04-20
CN104604177B (zh) 2017-06-27
JP6337387B2 (ja) 2018-06-06
CN104604177A (zh) 2015-05-06
KR20170018054A (ko) 2017-02-15
EP3148273B1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6987858B2 (ja) データ伝送方法、基地局、ユーザ機器およびシステム
CN104185281B (zh) 一种d2d通信中的资源配置及资源使用方法和装置
WO2016000177A1 (zh) 物理上行控制信道资源的分配方法和装置
KR101928835B1 (ko) 리소스 할당 방법 및 장치
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
CN105991224B (zh) 一种上行数据的传输控制方法和装置
TW201717687A (zh) 用於對一無線通訊資源進行排程之方法及裝置
JP7191202B2 (ja) スケジューリング要求リソースを決定および構成するための方法、デバイスおよび記憶媒体
CN107113821B (zh) 上行数据传输的方法和装置
JP2019512914A (ja) 無線通信方法、基地局、及び端末
WO2017113115A1 (zh) 一种传输方法、传输装置、网络设备及用户设备
KR101698953B1 (ko) 스케줄링 방법 및 기지국
CN114009122A (zh) 用于多个配置授权的方法、通信装置和基础设施设备
CN102595612A (zh) 一种资源分配方法及装置
CN108029117B (zh) 用于资源分配的方法和设备
KR20160145128A (ko) 자원 할당 방법, 자원 경쟁 방법, 및 관련 장치
JP6590287B2 (ja) データ送信方法およびデータ送信装置
KR20190099290A (ko) Urllc 지원을 위한 pucch 리소스 할당
JP2020136822A5 (zh)
WO2018202113A1 (zh) 无线资源配置方法、装置及存储介质
CN105991273B (zh) 一种待调度数据的分配方法和装置
WO2017205999A1 (zh) 一种数据传输的方法、设备和系统
CN107567104B (zh) 一种半静态调度方法及基站
CN112702150B (zh) 空分多址接入方法及装置、电子设备、计算机可读介质
CN104104470B (zh) 一种上行传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896405

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014896405

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017519746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177001140

Country of ref document: KR

Kind code of ref document: A