WO2016000101A1 - 基站驻波检测方法和基站 - Google Patents

基站驻波检测方法和基站 Download PDF

Info

Publication number
WO2016000101A1
WO2016000101A1 PCT/CN2014/079726 CN2014079726W WO2016000101A1 WO 2016000101 A1 WO2016000101 A1 WO 2016000101A1 CN 2014079726 W CN2014079726 W CN 2014079726W WO 2016000101 A1 WO2016000101 A1 WO 2016000101A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
base station
standing wave
wave detection
signal
Prior art date
Application number
PCT/CN2014/079726
Other languages
English (en)
French (fr)
Inventor
程立杰
蒋磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480032891.7A priority Critical patent/CN105453634A/zh
Priority to PCT/CN2014/079726 priority patent/WO2016000101A1/zh
Publication of WO2016000101A1 publication Critical patent/WO2016000101A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to communications technologies, and in particular, to a base station standing wave detecting method and a base station. Background technique
  • the deployment and erection of the base station is generally implemented by manual, but the manual erection is easy to bring improper operation, so that the device on the base station is damaged. Therefore, the standing wave detection is generally required after the base station is set up, and the standing wave detection result obtained is obtained. It is judged whether the performance of the base station caused by improper operation is damaged during the erection of the base station, and the aging phenomenon of the device on the base station can be judged by the standing wave detection result, that is, the standing wave detection can test whether the base station is abnormal.
  • the existing standing wave detection system is detected when multiple antennas on the base station simultaneously transmit signals, that is, when the base station performs standing wave detection on one channel, by detecting the power of the forward signal transmitted by the antenna on the channel. And the power of the backward signal received by the antenna obtains the standing wave detection result.
  • the signal power between the channels will interfere with each other, affecting the standing wave detection result, and the detection result is not accurate enough.
  • Embodiments of the present invention provide a base station standing wave detecting method and a base station, which can avoid signal power interference between channels and improve the accuracy of standing wave detection results.
  • an embodiment of the present invention provides a base station, where the base station includes a first channel and a second channel, where the first channel is any to-be-detected channel determined by the base station, and the second channel is the a channel other than the first channel in the base station; the base station includes:
  • a processor configured to perform standing wave detection on the first channel; wherein, when performing standing wave detection on the first channel, the second channel is in a closed state.
  • the processor is further configured to determine, according to the baseband signal of the first channel, the first a time zone; wherein, in the first time domain, the baseband signal of the base station does not carry data information; and acquiring a first signal, and collecting, according to the first signal, the first time zone
  • the forward signal and the backward signal on one channel carry the power of the data information, and perform standing wave detection on the first channel.
  • the processor is specifically configured to perform a standing wave detection on the first channel or in a pair When the first channel performs standing wave detection, the second channel is closed.
  • the second channel is closed in the first time zone and before standing wave detection is performed on the first channel or when standing wave detection is performed on the first channel.
  • the processor is specifically configured to perform standing wave detection on the first channel on any GP in the at least one GP according to the first signal.
  • the first time region The idle time slot of the radio frame or the preset standing wave test time slot, where the processor is specifically configured to: according to the first signal, in the idle time slot or the preset standing wave test time slot Performing standing wave detection on the first channel.
  • the embodiment of the present invention provides a base station, where the base station includes a first channel and a second channel, where the first channel is any to-be-detected channel determined by the base station, and the second channel is the a channel other than the first channel in the base station; the base station includes:
  • a detecting module configured to perform standing wave detection on the first channel; wherein, when performing standing wave detection on the first channel, the second channel is in a closed state.
  • the base station further includes:
  • a determining module configured to determine, according to a baseband signal of the first channel, a first time region before the detecting module performs standing wave detection on the first channel; wherein, in the first time domain, the baseband signal of the base station is not Carrying data information;
  • An obtaining module configured to acquire a first signal;
  • the detecting module is configured to collect, according to the first signal, a power when the forward signal and the backward signal on the first channel carry data information in the first time region, One channel performs standing wave detection.
  • the base station further includes:
  • a closing module configured to close the second channel before the detecting module performs standing wave detection on the first channel or when performing standing wave detection on the first channel.
  • the base station further includes:
  • the closing module is configured to be in the first time zone, and the detecting module turns off the first stage before performing standing wave detection on the first channel or when performing standing wave detection on the first channel Two channels.
  • the first time region The detecting module is configured to perform standing wave detection on the first channel on any GP in the at least one GP according to the first signal.
  • the first time region The detecting module is configured to: in the idle time slot or the preset standing wave test time slot, according to the first signal, the idle time slot of the radio frame or the preset standing wave test time slot.
  • the first channel performs standing wave detection.
  • the embodiment of the present invention provides a method for detecting a standing wave of a base station, where the base station includes a first channel and a second channel, where the first channel is any to-be-detected channel determined by the base station, and the second The channel is a channel other than the first channel in the base station; the method includes: the base station performing standing wave detection on the first channel; wherein, performing standing wave detection on the first channel The second channel is in a closed state.
  • the method before the base station performs the standing wave detection on the first channel, the method further includes:
  • the base station acquires a first signal
  • Performing standing wave detection on the first channel includes:
  • the base station collects, according to the first signal, the power when the forward signal and the backward signal on the first channel carry data information in the first time region, and performs the station bonding on the first channel.
  • the second channel is in a closed state when performing the standing wave detection on the first channel, Includes:
  • the base station turns off the second channel before performing standing wave detection on the first channel or when performing standing wave detection on the first channel.
  • the second channel is in a closed state, and includes:
  • the base station turns off the second channel in the first time zone and before performing standing wave detection on the first channel or performing standing wave detection on the first channel.
  • the first time region And performing, by the base station, the standing wave detection on the first channel in the first time zone according to the first signal, where the base station includes:
  • the base station performs standing wave detection on the first channel on any GP in the at least one GP according to the first signal.
  • the base station performs standing wave detection on the first channel in the first time zone according to the first signal, which specifically includes:
  • the base station performs standing wave detection on the first channel in the idle time slot or the preset standing wave test time slot according to the first signal.
  • the base station standing wave detecting method and the base station provided by the embodiment of the present invention when the processor performs standing wave detection on the currently selected first channel, ensures that the second channel is in a closed state, and each of the base stations In the case where the antenna isolation is low, the power on the second channel cannot be coupled to the first channel, and the technical solution provided by the embodiment of the present invention avoids interference between the channels when the base station performs standing wave detection, and improves the station.
  • the accuracy of the wave detection results is applicable to various types of base stations.
  • FIG. 1 is a block diagram of a standing wave detection system of a base station according to an embodiment of the present invention
  • Embodiment 3 of a base station according to the present invention is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • Embodiment 4 of a base station according to the present invention is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 2 of a method for detecting a standing wave of a base station according to the present invention. detailed description
  • the base station involved in the present application may be a small base station, and may also be other general-purpose base stations. For example, it may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station according to the embodiment of the present invention may be a Time Division Duplexing (TDD) base station, or may be a base station of any standard.
  • the base station may be a GSM system or a CDMA base station (BTS, Base Transceiver Station).
  • the base station may include a base station of the TDD-LTE and FDD-LTE standards, which is not limited in this application.
  • the base station according to the embodiment of the present invention may be a miniaturized base station of the above various standards.
  • the miniaturized base station can be flexibly deployed in hotspots, blind spots, cell edges, and even indoor areas due to its small size, providing deep coverage and capacity expansion of the network. In order to ensure a small size, the isolation of each antenna channel in the miniaturized base station is lower than that of the ordinary base station.
  • the standing wave detection system includes a plurality of antennas, that is, corresponding to a plurality of channels. Therefore, when multiple antennas receive their own forward and backward signals respectively, the two signals are acquired by two couplers between the power amplifier and the multiplexer switch, wherein one coupler collects the forward signal The other coupler collects the reverse signal; after that, the multi-way selection switch selects a channel under the control of the field programmable logic gate array, and all signals in the channel are converted into a DC signal by the frequency converter through the frequency converter.
  • the two signals are extracted by the field programmable logic gate array and sent to the central processing unit to obtain the standing wave detection result, and the station performance of the base station is determined according to the standing wave detection result. Or abnormal conditions such as aging of the device.
  • the specific implementation of the standing wave detection result obtained by the present application is as follows:
  • the first embodiment of the present invention provides a base station, where the base station includes a first channel and a second channel, where the first channel is any to-be-detected channel determined by the base station, and the second channel is Other channels than the first channel.
  • the base station includes: a processor, configured to perform standing wave detection on the first channel; wherein, when performing standing wave detection on the first channel, the second channel is in a closed state.
  • the processor needs to determine the first channel before performing the standing wave detection on the first channel.
  • the processor may determine, according to a selection mechanism of the base station, which one of the at least two channels is the first channel, gp.
  • the processor may sequentially determine the first according to the sequence of the antennas set by the base station itself.
  • Channel for example: Assume that the base station has three antennas No. 1, No. 2, and No. 3, corresponding to three channels, then the processor first determines the channel corresponding to antenna No. 1 as the first channel, and the antennas corresponding to antennas 2 and 3. The channel is determined as the second channel; after the channel standing wave detection corresponding to the antenna No. 1 is completed, the channel corresponding to the antenna No. 2 is determined as the first channel, and so on.
  • the processor may also randomly determine the first channel, as long as it is ensured that all channels included in the base station are subjected to standing wave detection.
  • the processor determines the first channel, when the first channel is powered (ie, when the signal is transmitted), the state of the second channel is ensured to be off, that is, when the first channel performs standing wave detection, the second channel is not Work hard. In this way, the transmit power on the second channel is not coupled to the first channel, so that the processor can accurately know the forward signal power and the backward signal power of the first channel.
  • the processor can perform standing wave detection on the first channel at any time.
  • the processor may continue to select one channel as the first channel from the remaining second channels, and complete the channel provided by the embodiment of the present invention in all channels according to the process of the foregoing embodiment.
  • the processor performs standing wave detection on the currently selected first channel, ensure that the second channel is in a closed state, so that the power on the second channel is coupled to the first channel when the isolation of each antenna of the base station is low. on.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the embodiment relates to the processor determining the first time zone according to the baseband signal, and performing the standing wave in the first time zone.
  • the specific process of detection is further configured to: determine, according to a baseband signal of the first channel, a first time region before performing the standing wave detection on the first channel; wherein, in the first time domain, a baseband signal of the base station And not acquiring the data information; and acquiring the first signal, according to the first signal, collecting the power when the forward signal and the backward signal on the first channel carry the data information in the first time region, The first channel performs the standing wave detection.
  • the processor can determine, according to whether the baseband signal carries the data information, during which time period the baseband signal does not carry the data information. These time periods can all be regarded as the first time zone. Since the baseband signal is transmitted from the first channel after being processed by the radio frequency, the forward signal and the backward signal acquired by the processor on the first channel are actually related to the baseband signal, that is, in the first time region, the first The forward and backward signals on the channel also do not carry data traffic, ie the level values of the two signals in the first time zone are also zero. That is to say, in the first time zone, the level values of the uplink and downlink signals of the base station are all 0, that is, there is no communication service.
  • standing wave detection of the first channel in a specific first time zone does not affect communication between the base station and the user equipment. Since the forward signal and the backward signal on the first channel detected by the processor do not carry the data service in the first time zone, that is, the power of the forward signal and the backward signal detected by the processor at this time are both 0, but this is not the actual power of the forward and backward signals required by the processor for standing wave detection on the first channel, because the actual power of the forward and backward signals carries the data information respectively. Time power. Therefore, in order for the processor to collect the power when the forward signal and the backward signal carry the data information in the first time region, the first signal may be obtained from the radio frequency portion of the base station, where the first signal is sent by the radio frequency portion of the base station.
  • the tone signal is used to trigger the processor to detect the actual power of the forward signal and the backward signal, that is, the tone signal can enable the base station to collect the forward signal and the backward signal to carry the data information in the first time region.
  • the power is such that the standing wave detection result is obtained based on the power when the forward signal and the backward signal carry the data information. Since the other channels of the base station are turned off at this time, that is, the power on the other channels is not coupled to the first channel, the processor can accurately obtain the power of the forward signal and the backward signal on the first channel.
  • the processor can continue to select one channel from the remaining channels as the first channel, and the standing wave detection of all channels is completed according to the procedure of the above embodiment.
  • the base station provided by the embodiment of the present invention ensures that the second channel is in a closed state when the processor performs standing wave detection on the selected first channel in the first time zone, so that the processor is in the preset first time zone.
  • the standing wave detection may be performed on the first channel according to the acquired first signal to obtain an accurate standing wave detection result.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the base station since the base station performs standing wave detection in the first time zone in which the baseband signal does not carry the data information, it also ensures that the communication between the base station and the user equipment is not affected.
  • the processor may be configured to close the second channel before performing standing wave detection on the first channel or performing standing wave detection on the first channel. It should be noted that the time at which the processor turns off the second channel may be located in the first time zone or outside the first time zone, as long as the processor ensures that the first channel performs standing wave detection, the second channel. The status is closed.
  • the processor is specifically configured to be in the first time zone, and in the The second channel is closed before the first channel performs standing wave detection or when standing wave detection is performed on the first channel. It should be noted that the time at which the processor turns off the second channel needs to be located in the first time zone.
  • the embodiment relates to a guard interval of a radio frame in a radio frame when the base station is a TDD base station.
  • the specific process of performing standing wave detection on the first channel is referred to as GP).
  • the processor is specifically configured to perform standing wave detection on the first channel on any GP in the at least one GP according to the first signal.
  • the foregoing radio frame may be a radio frame or a cyclic radio frame.
  • a radio frame may include one special TDD subframe, and a special subframe may include up to two GPs, each GP may include at least two symbols, and a symbol has a duration of 76 us.
  • At least one standing wave detection of the first channel can be performed for a length of time of a symbol. That is, the processor can perform standing wave detection on the selected first channel on any of the GPs of at least one GP.
  • standing wave detection of a plurality of channels can be performed time-divisionally on any of the above GPs.
  • the time length of a symbol in a GP is divided into a first time period and a second time period, and the processor controls the first channel determined by the processor to work in the first time period, and the other second
  • the channel is in a closed state, and the processor can perform standing wave detection of the first channel during the first time period; afterwards, the processor controls the other first determined by the processor during the second time period of the symbol
  • the channel generates power in the second time period, and the other second channel is in the off state, and the processor performs standing wave detection of the other first channel in the second time period, thereby implementing time-sharing standing wave detection.
  • the base station provided by the embodiment of the present invention ensures that the second channel is in the off state when the standing wave detection is performed on the selected first channel by using the processor on any GP of the at least one GP of the radio frame, so that the processor is in the wireless state. Any one of the GPs of the at least one GP of the frame may perform standing wave detection on the first channel according to the acquired first signal to obtain an accurate standing wave detection result.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the embodiment relates to that when the base station is a base station of any standard, the processor is in a free time slot of the radio frame or a preset station.
  • the specific process of standing wave detection for the first channel in the wave test time slot is configured to perform standing wave detection on the first channel in the idle time slot or the preset standing wave test time slot according to the first signal.
  • the processor allows multiple channels to work in different time periods, that is, when the first channel sends power, ensuring that the other second channel is in the off state.
  • the standing wave detection of the first channel is performed, and in this way, all the channels of the base station are detected in turn.
  • the preset standing wave test time slot may be a time slot selected by the base station for the standing wave detection specifically in the radio frame.
  • the base station provided by the embodiment of the present invention ensures that the second channel is turned off when the standing wave detection is performed on the selected first channel in the idle time slot of the radio frame or the preset standing wave test time slot by the processor.
  • the processor can perform standing wave detection on the first channel according to the acquired first signal in an idle time slot of the radio frame or a preset standing wave test time slot, to obtain an accurate standing wave detection result.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the base station since the base station performs standing wave detection in the first time zone in which the baseband signal does not carry data information, it also ensures that communication between the base station and the user equipment is not affected.
  • the second embodiment of the present invention provides a base station, where the base station includes a first channel and a second channel, where the first channel is any to-be-detected channel determined by the base station, and the second channel is a Other channels than the first channel.
  • the base station includes: a detecting module 10, configured to perform standing wave detection on the first channel; wherein, when performing standing wave detection on the first channel, the second channel is in a closed state.
  • the base station needs to determine the first channel.
  • the base station may determine, according to its own selection mechanism, which one of the at least two channels is the first channel, gp.
  • the base station may sequentially determine the first channel according to the sequence of the antennas set up by the base station. For example: Suppose the base station has 3 antennas of No. 1, No. 2 and No. 3, Corresponding to three channels respectively, the base station first determines the channel corresponding to antenna 1 as the first channel, and the channel corresponding to antennas 2 and 3 is determined as the second channel; after the channel standing wave detection corresponding to antenna 1 is completed, Then, the channel corresponding to antenna No. 2 is determined as the first channel, and so on.
  • the base station may also randomly determine the first channel, as long as it is ensured that all channels included in the base station are subjected to standing wave detection.
  • the detection module 10 ensures that the state of the second channel is off when the first channel is powered (ie, when the signal is transmitted), that is, when the first channel performs standing wave detection, the second channel is ensured. No work. In this way, the transmit power on the second channel is not coupled to the first channel, so that the detection module 10 can accurately know the forward signal power and the backward signal power of the first channel.
  • the detecting module 10 can perform standing wave detection on the first channel at any time.
  • the detecting module 10 can continue to select one channel from the remaining second channels as the first channel, and the standing wave detection of all the channels is completed according to the procedure of the above embodiment.
  • the base station provided by the embodiment of the present invention ensures that the second channel is in a closed state when the detection module performs the standing wave detection on the first channel selected by the base station, so as to avoid the second channel when the isolation of each antenna of the base station is low.
  • the power on is coupled to the first channel.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • FIG. 2 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the foregoing base station may further include: a determining module 11 configured to determine, according to a baseband signal of the base station, before the detecting module 10 performs standing wave detection on the first channel a time zone; wherein, in the first time domain, the baseband signal of the base station does not carry data information; the acquiring module 12 is configured to acquire the first signal; The signal, in the first time region, collects power when the forward signal and the backward signal on the first channel carry data information, and performs standing wave detection on the first channel.
  • the determining module 11 can determine, according to whether the baseband signal carries data information, during which time period the baseband signal does not carry data information, and these time periods can be regarded as The first time zone.
  • Baseband signal After being processed by the radio frequency and transmitted from the first channel, the forward signal and the backward signal obtained by the base station on the first channel are actually related to the baseband signal, that is, in the first time region, before the first channel
  • the direction signal and the backward signal also do not carry data traffic, i.e., the level values of the two signals in the first time zone are also zero.
  • the detecting module 10 performs standing wave detection on the first channel without affecting communication between the base station and the user equipment.
  • the detecting module 10 may obtain the first signal from the radio frequency portion of the base station by using the acquiring module 11, where the first signal is a base station.
  • the tone signal sent by the radio frequency portion is used by the trigger detection module 10 to detect the actual power of the forward signal and the backward signal, that is, the tone signal can cause the detection module 10 to collect the forward signal in the first time region. And the power when the backward signal carries the data information, thereby obtaining the standing wave detection result according to the power when the forward signal and the backward signal carry the data information. Since the other channels of the base station are turned off at this time, that is, the power on the other channels is not coupled to the first channel, the detecting module 10 can accurately obtain the power of the forward signal and the backward signal on the first channel.
  • the base station can continue to select one channel from the remaining channels as the first channel, and the detecting module 10 continues to perform standing wave detection of all channels according to the process of the above embodiment.
  • the base station provided by the embodiment of the present invention when the detecting module performs the standing wave detection on the first channel selected by the base station in the first time zone determined by the determining module, ensures that the second channel is in the closed state, so that the detecting module is in the first
  • the standing wave detection of the first channel may be performed according to the first signal acquired by the acquisition module in the time domain to obtain an accurate standing wave detection result.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the standing wave detection in the first time zone with the data information also ensures that the communication between the base station and the user equipment is not affected.
  • FIG. 3 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • the foregoing base station may further include: a closing module 13 configured to perform the standing wave detection on the first channel or in the first channel before the detecting module 10 performs the standing wave detection on the first channel When the standing wave is detected, the second channel is closed.
  • the time when the closing module 13 closes the second channel may be located in the first time zone or outside the first time zone, as long as the detection module 10 is configured to perform standing wave detection on the first channel. The state of the two channels is closed.
  • the closing module 13 is specifically configured to be in the first time zone, and the detecting module performs standing wave detection on the first channel before performing standing wave detection on the first channel When the second channel is closed. It should be noted that the moment when the module 13 is closed to close the second channel needs to be located in the first time zone.
  • the base station provided by the embodiment of the present invention closes the second channel by using the shutdown module before the detection module performs standing wave detection on the first channel or when performing standing wave detection on the first channel; or in the first time region determined by the determining module If the detection module performs the standing wave detection on the first channel or performs the standing wave detection on the first channel, the second channel is closed, so that the detection module can obtain the first according to the acquisition module in the first time region.
  • the signal performs standing wave detection on the first channel to obtain an accurate standing wave detection result.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the base station since the base station performs standing wave detection in the first time zone in which the baseband signal does not carry the data information, it also ensures that the communication between the base station and the user equipment is not affected.
  • the embodiment relates to that when the base station is a TDD base station, the detecting module 10 pairs the first channel on the GP of the radio frame.
  • the specific process of standing wave detection Specifically, the detecting module 10 is specifically configured to perform standing wave detection on the first channel on any GP in the at least one GP according to the first signal.
  • the foregoing radio frame may be a radio frame or a cyclic radio frame.
  • One The radio frames may include one special TDD subframe, and the special subframe may include up to two GPs, each GP may include at least two symbols, and the duration of one symbol is 76 us.
  • At least one standing wave detection of the first channel can be performed for a period of time of a symbol. That is, the detection module 10 can perform standing wave detection on the selected first channel on any GP of at least one GP. In fact, standing wave detection of a plurality of channels can be performed time-divisionally on any of the above GPs.
  • the time length of a symbol in a GP is divided into a first time period and a second time period, and the base station controls the first channel determined by the base station to work in the first time period, and the other second channel
  • the detecting module 10 can perform standing wave detection of the first channel during the first time period; then, in the second time period of the symbol, the base station controls another first channel determined by the base station.
  • the power is generated in the second time period, and the other second channel is in the off state, and the detecting module 10 performs the standing wave detection of the other first channel in the second time period, thereby realizing the time-sharing standing wave detection.
  • the base station provided by the embodiment of the present invention ensures that the state of the second channel is closed when the first channel selected by the base station is detected by the detecting module on any GP of the at least one GP of the radio frame determined by the determining module. Therefore, the detecting module can perform standing wave detection on the first channel according to the acquired first signal on any GP of at least one GP of the radio frame to obtain an accurate standing wave detection result.
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the base station since the base station performs standing wave detection in the first time zone in which the baseband signal does not carry the data information, it also ensures that the communication between the base station and the user equipment is not affected.
  • the embodiment relates to that when the base station is a base station of any standard, the detecting module 10 is in a free time slot of the radio frame or preset.
  • the specific process of standing wave detection for the first channel in the standing wave test time slot is configured to perform standing wave detection on the first channel in the idle time slot or the preset standing wave test time slot according to the first signal.
  • the detecting module 10 allows multiple channels to work in different time periods, that is, when the first channel sends power, ensure that the other second channels are in the closed state. At this time, the standing wave detection of the first channel is performed, and in this way, all the channels of the base station are detected in turn.
  • the preset standing wave test time slot may be that the base station is specifically configured for standing wave detection. A time slot selected in a radio frame.
  • the base station provided by the embodiment of the present invention ensures the second channel when the standing channel is detected by the detecting module in the idle time slot of the radio frame determined by the determining module or the preset standing wave test time slot. It is in a closed state, so that the detecting module can perform standing wave detection on the first channel according to the acquired first signal in the idle time slot of the radio frame or the preset standing wave test time slot, and obtain accurate standing wave detection result. .
  • the base station provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • Embodiment 1 of the present invention provides a method for detecting a standing wave of a base station.
  • the base station involved in the embodiments of the present invention may include at least two antennas.
  • the base station includes a first channel and a second channel, where the first channel is any to-be-detected channel determined by the base station, and the second channel is a channel other than the first channel in the base station.
  • the base station may determine, according to its own selection mechanism, which of the at least two channels is the first channel, gp.
  • the base station may sequentially determine the first channel according to the sequence of the antennas that are set up by itself, for example: Assuming that the base station has three antennas No. 1, No. 2, and No. 3, corresponding to three channels, the base station first determines the channel corresponding to the antenna No. 1 as the first channel, and the channel corresponding to the antennas of the second and third antennas is determined to be the second channel. Channel; After the channel standing wave detection corresponding to the antenna No. 1 is completed, the channel corresponding to the antenna No. 2 is determined as the first channel, and so on.
  • the base station may also randomly determine the first channel, as long as it is ensured that all channels included in the base station are subjected to standing wave detection.
  • the method includes: performing, by the base station, standing wave detection on the first channel; wherein, when performing standing wave detection on the first channel, the second channel is in a closed state.
  • the base station after the first channel is determined by the base station, when the first channel sends power (that is, when the signal is transmitted), the state of the second channel is ensured to be closed, that is, when the first channel performs standing wave detection, the second channel is not Work hard. In this way, the transmit power on the second channel is not coupled to the first channel, so that the base station can accurately know the forward signal power and the backward signal power of the first channel.
  • the base station can perform standing wave detection on the first channel at any time. After the current first channel standing wave detection is completed, the base station may continue to select one channel as the first channel from the remaining second channels, and complete the standing wave of all channels according to the process of the foregoing embodiment.
  • the wave detection method ensures that the second channel is in a closed state when the base station performs standing wave detection on the currently selected first channel, so as to avoid power coupling on the second channel when the antenna isolation of the base station is low. On the first channel.
  • the method provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which channels are to be detected.
  • the power which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 2 of a method for detecting a standing wave of a base station according to the present invention.
  • the method according to this embodiment is a specific process in which the base station determines the first time zone according to the baseband signal and performs standing wave detection in the first time zone. As shown in Figure 4, the method includes:
  • the base station determines the first time zone according to the baseband signal of the base station.
  • the baseband signal of the base station does not carry the data information in the first time domain.
  • the base station since the baseband signal of the base station is a continuous periodic signal, the base station itself can determine whether the baseband signal does not carry data information according to whether the baseband signal carries data information, and these time periods can be regarded as the first A time zone.
  • the baseband signal of the base station does not carry any data information in the first time zone, i.e., the baseband signal of the base station has a level value of 0 in the first time zone. Since the baseband signal is transmitted from the first channel after being processed by the radio frequency, the forward signal and the backward signal acquired by the base station on the first channel are actually related to the baseband signal, that is, in the first time region, the first channel The forward signal and the backward signal also do not carry data traffic, that is, the level values of the two signals in the first time zone are also zero. That is to say, in the first time zone, the level values of the uplink and downlink signals of the base station are all 0, that is, there is no communication service. Therefore, standing wave detection of the first channel in a specific first time zone does not affect communication between the base station and the user equipment.
  • the base station acquires the first signal.
  • the first signal is a tone signal sent by the radio frequency part of the base station, and is used to trigger the base station to detect the actual power of the forward signal and the backward signal.
  • the base station collects the first time in the first time zone according to the first signal.
  • the forward signal and the backward signal on the channel carry power of the data information, and perform standing wave detection on the first channel.
  • the forward signal and the backward signal on the first channel detected by the base station do not carry data services, that is, the powers of the forward signal and the backward signal detected by the base station at this time are both 0, but this is not the actual power of the forward and backward signals required by the base station for standing wave detection on the first channel, because the actual power of the forward and backward signals carries the data information respectively.
  • Time power Therefore, in order to be able to collect the power when the forward signal and the backward signal carry the data information in the first time region, the base station can obtain a tone signal from the radio frequency portion of the base station, and the tone signal can make the base station in the first time region.
  • the power when the forward signal and the backward signal carry the data information is collected, so that the standing wave detection result is obtained according to the power when the forward signal and the backward signal carry the data information. Since the other channels of the base station are turned off at this time, that is, the power on the other channels is not coupled to the first channel, the base station can accurately obtain the power of the forward signal and the backward signal on the first channel.
  • the base station can continue to select one channel from the remaining channels as the first channel, and the standing wave detection of all channels is completed according to the process of the above embodiment.
  • the base station standing wave detecting method provided by the embodiment of the present invention ensures that the state of the second channel is closed when the base station performs standing wave detection on the selected first channel in the preset first time zone, so that the base station is in advance
  • the first time zone is set to perform standing wave detection on the first channel according to the acquired first signal, and an accurate standing wave detection result is obtained.
  • the method provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which channels are to be detected.
  • the power which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the base station since the base station performs standing wave detection in the first time zone in which the baseband signal does not carry the data information, it also ensures that the communication between the base station and the user equipment is not affected.
  • the second channel when performing the standing wave detection on the first channel, the second channel is in a closed state, and the method may further include: the base station is in the first channel The second channel is closed before standing wave detection or when standing wave detection is performed on the first channel. It should be noted that, the time at which the base station turns off the second channel may be located in the first time zone or outside the first time zone, as long as the base station performs the standing wave detection on the first channel. The state of the second channel is closed.
  • the second channel when performing the standing wave detection on the first channel, the second channel is in a closed state, and the method includes: the base station is in the first time zone, and is in the first channel The second channel is closed before wave detection or when standing wave detection is performed on the first channel. It should be noted that the time at which the base station turns off the second channel is located in the first time zone.
  • this embodiment relates to a specific process of performing standing wave detection on a first channel on a GP of a radio frame when the base station is a TDD base station.
  • the first time zone determined by the base station is at least one GP of the radio frame
  • the foregoing S103 specifically includes: the base station, according to the first signal, on the GP in the at least one GP
  • the first channel performs standing wave detection.
  • the foregoing radio frame may be a radio frame or a cyclic radio frame.
  • a radio frame may include one special TDD subframe, and a special subframe may include up to two GPs, each GP may include at least two symbols, and a symbol has a duration of 76 us.
  • At least one standing wave detection of the first channel can be performed for a length of time of a symbol. That is, the base station can perform standing wave detection on the selected first channel on any of the GPs of at least one GP.
  • standing wave detection of a plurality of channels can be performed time-divisionally on any of the above GPs.
  • the time length of a symbol in a GP is divided into a first time period and a second time period, and the base station controls the first channel determined by the base station to work in the first time period, and the other second channel
  • the base station can perform standing wave detection of the first channel in the first time period; afterwards, the base station controls the other first channel determined by the base station in the second time period of the symbol in the second time period.
  • the other work is performed, and the other second channel is in the off state, and the base station performs the standing wave detection of the other first channel in the second time period, thereby realizing the time-sharing standing wave detection.
  • the base station standing wave detecting method provided by the embodiment of the present invention ensures that the state of the second channel is closed when the base station performs standing wave detection on the selected first channel on any GP of at least one GP of the radio frame, thereby
  • the base station is configured to perform standing wave detection on the first channel according to the acquired first signal on any GP of the at least one GP of the radio frame to obtain an accurate standing wave detection result.
  • the method provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which ones are to be detected.
  • the power of the channel which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the standing wave detection is performed in the first time zone in which the baseband signal does not carry the data information, and also ensures that the communication between the base station and the user equipment is not affected.
  • the embodiment relates to a free time slot of a radio frame or a preset standing wave test when the base station is a base station of an arbitrary standard.
  • the first time zone determined by the base station is an idle time slot of the radio frame or a preset standing wave test time slot, and the foregoing S103 specifically includes: the base station according to the first signal, in the idle time slot.
  • the preset standing wave test time slot performs standing wave detection on the first channel.
  • the base station allows multiple channels to work in different time periods, that is, when the first channel sends power, ensuring that the other second channel is in the off state, The standing wave detection of the first channel is performed, and all channels of the base station are detected in turn in this manner.
  • the preset standing wave test time slot may be a time slot selected by the base station for the standing wave detection specifically in the radio frame.
  • the base station standing wave detecting method provided by the embodiment of the present invention ensures that the second channel is closed when the standing wave detection is performed on the selected first channel by the base station in the idle time slot of the radio frame or the preset standing wave test time slot.
  • the method provided by the embodiment of the present invention reduces interference when the base station performs standing wave detection, and when performing standing wave detection, turns off other channels in the base station, and the base station does not need to use an expensive demodulation circuit to distinguish which channels are to be detected.
  • the power which is the power that other channels are coupled to the channel to be detected, thereby reducing the circuit cost of the base station for standing wave detection.
  • the base station since the base station performs standing wave detection in the first time zone in which the baseband signal does not carry the data information, it also ensures that the communication between the base station and the user equipment is not affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种基站驻波检测方法和基站,该基站包括第一通道及第二通道,所述第一通道为所述基站确定的任一待检测通道,所述第二通道为所述基站中除所述第一通道之外的其他通道;该方法包括:所述基站对所述第一通道进行驻波检测;其中,在对所述第一通道进行驻波检测时,所述第二通道为关闭状态。本发明实施例提供的方法,可以避免各通道间的信号功率干扰,提升驻波检测结果的准确性。

Description

基站驻波检测方法和基站
技术领域
本发明涉及通信技术, 尤其涉及一种基站驻波检测方法和基站。 背景技术
基站的部署和架设一般是通过人工来实现的, 但是人工架设容易带来 操作不当, 使得基站上的器件受损, 因此一般在基站架设好之后需要进行 驻波检测, 通过获得的驻波检测结果判断基站架设过程中是否出现因操作 不当引发的基站性能受损的问题, 并且还可以通过驻波检测检测结果判断 基站上的器件是否存在老化现象, 即驻波检测可以测试基站是否出现异常 情况。
现有的驻波检测系统都是在基站上的多个天线同时发射信号时进行 的检测, 即基站在对一个通道进行驻波检测时, 通过检测该通道上的天线 发射的前向信号的功率和天线接收的后向信号的功率, 获得驻波检测结 果。 但是, 如果基站内各个天线之间没有达到一定的隔离度, 当多个天线同 时发射信号时, 各个通道间的信号功率会互相干扰, 影响驻波检测结果, 造 成检测结果不够准确。 发明内容
本发明实施例提供一种基站驻波检测方法和基站, 可以避免各通道间的 信号功率干扰, 提升驻波检测结果的准确性。
第一方面, 本发明实施例提供一种基站, 所述基站包括第一通道及第二 通道, 所述第一通道为所述基站确定的任一待检测通道, 所述第二通道为所 述基站中除所述第一通道之外的其他通道; 所述基站包括:
处理器, 用于对所述第一通道进行驻波检测; 其中, 在对所述第一通道 进行驻波检测时, 所述第二通道为关闭状态。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述处理器, 还用于在对所述第一通道进行驻波检测之前, 根据自身的基带信号确定第一 时间区域; 其中, 在所述第一时间域内, 所述基站的基带信号不承载数据信 息; 并获取第一信号, 根据所述第一信号, 在所述第一时间区域内采集到所 述第一通道上的前向信号和后向信号携带数据信息时的功率, 对所述第一通 道进行驻波检测。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的实 施方式中, 所述处理器, 具体用于在对所述第一通道进行驻波检测之前或者 在对所述第一通道进行驻波检测时, 关闭所述第二通道。
结合第一方面的第一种可能的实施方式或第一方面的第二种可能的实施 方式, 在第一方面的第三种可能的实施方式中, 所述处理器, 具体用于在所 述第一时间区域内, 且在对所述第一通道进行驻波检测之前或在对所述第一 通道进行驻波检测时, 关闭所述第二通道。
结合第一方面的第一种可能的实施方式至第一方面的第三种可能的实施 方式中的任一项, 在第一方面的第四种可能的实施方式中, 所述第一时间区 域为无线帧中的至少一个保护间隔 GP, 则所述处理器, 具体用于根据所述第 一信号, 在所述至少一个 GP内的任一 GP上对所述第一通道进行驻波检测。
结合第一方面的第一种可能的实施方式至第一方面的第三种可能的实施 方式中的任一项, 在第一方面的第五种可能的实施方式中, 所述第一时间区 域为无线帧的空闲时隙或预设的驻波测试时隙, 则所述处理器, 具体用于根 据所述第一信号, 在所述空闲时隙或所述预设的驻波测试时隙对所述第一通 道进行驻波检测。
第二方面, 本发明实施例提供一种基站, 所述基站包括第一通道及第二 通道, 所述第一通道为所述基站确定的任一待检测通道, 所述第二通道为所 述基站中除所述第一通道之外的其他通道; 所述基站包括:
检测模块, 用于对所述第一通道进行驻波检测; 其中, 在对所述第一通 道进行驻波检测时, 所述第二通道为关闭状态。
结合第二方面, 在第二方面的第一种可能的实施方式中, 所述基站还包 括:
确定模块, 用于在所述检测模块对所述第一通道进行驻波检测之前, 根 据自身的基带信号确定第一时间区域; 其中, 在所述第一时间域内, 所述基 站的基带信号不承载数据信息; 获取模块, 用于获取第一信号;
所述检测模块, 具体用于根据所述第一信号, 在所述第一时间区域内采 集到所述第一通道上的前向信号和后向信号携带数据信息时的功率, 对所述 第一通道进行驻波检测。
结合第二方面的第一种可能的实施方式, 在第二方面的第二种可能的实 施方式中, 所述基站, 还包括:
关闭模块, 用于在所述检测模块对所述第一通道进行驻波检测之前或者 在对所述第一通道进行驻波检测时, 关闭所述第二通道。
结合第二方面的第一种可能的实施方式或第二方面的第二种可能的实施 方式, 在第二方面的第三种可能的实施方式中, 所述基站, 还包括:
关闭模块, 具体用于在所述第一时间区域内, 且所述检测模块在对所述 第一通道进行驻波检测之前或在对所述第一通道进行驻波检测时, 关闭所述 第二通道。
结合第二方面的第一种可能的实施方式至第二方面的第三种可能的实施 方式中的任一项, 在第二方面的第四种可能的实施方式中, 所述第一时间区 域为无线帧中的至少一个保护间隔 GP, 所述检测模块, 具体用于根据所述第 一信号, 在所述至少一个 GP内的任一 GP上对所述第一通道进行驻波检测。
结合第二方面的第一种可能的实施方式至第二方面的第三种可能的实施 方式中的任一项, 在第二方面的第五种可能的实施方式中, 所述第一时间区 域为无线帧的空闲时隙或预设的驻波测试时隙, 所述检测模块, 具体用于根 据所述第一信号, 在所述空闲时隙或所述预设的驻波测试时隙对所述第一通 道进行驻波检测。
第三方面, 本发明实施例提供一种基站驻波检测方法, 所述基站包括第 一通道及第二通道, 所述第一通道为所述基站确定的任一待检测通道, 所述 第二通道为所述基站中除所述第一通道之外的其他通道; 所述方法包括: 所述基站对所述第一通道进行驻波检测; 其中, 在对所述第一通道进行 驻波检测时, 所述第二通道为关闭状态。
结合第三方面, 在第三方面的第一种可能的实施方式中, 所述基站对所 述第一通道进行驻波检测之前, 还包括:
所述基站根据自身的基带信号确定第一时间区域; 其中, 在所述第一时 间域内, 所述基站的基带信号不承载数据信息;
所述基站获取第一信号;
所述对所述第一通道进行驻波检测, 包括:
所述基站根据所述第一信号, 在所述第一时间区域内采集到所述第一通 道上的前向信号和后向信号携带数据信息时的功率, 对所述第一通道进行驻 结合第三方面的第一种可能的实施方式, 在第三方面的第二种可能的实 施方式中, 所述在对所述第一通道进行驻波检测时, 所述第二通道为关闭状 态, 包括:
所述基站在对所述第一通道进行驻波检测之前或者在对所述第一通道进 行驻波检测时, 关闭所述第二通道。
结合第三方面的第一种可能的实施方式或第三方面的第二种可能的实施 方式, 在第三方面的第三种可能的实施方式中, 所述在对所述第一通道进行 驻波检测时, 所述第二通道为关闭状态, 包括:
所述基站在所述第一时间区域内, 且在对所述第一通道进行驻波检测之 前或在对所述第一通道进行驻波检测时, 关闭所述第二通道。
结合第三方面的第一种可能的实施方式至第三方面的第三种可能的实施 方式中的任一项, 在第三方面的第四种可能的实施方式中, 所述第一时间区 域为无线帧中的至少一个保护间隔 GP, 则所述基站根据所述第一信号, 在所 述第一时间区域内对所述第一通道进行驻波检测, 具体包括:
所述基站根据所述第一信号, 在所述至少一个 GP内的任一 GP上对所述 第一通道进行驻波检测。
结合第三方面的第一种可能的实施方式至第三方面的第三种可能的实施 方式中的任一项, 在第三方面的第五种可能的实施方式中, 所述第一时间区 域为无线帧的空闲时隙或预设的驻波测试时隙, 则所述基站根据所述第一信 号, 在所述第一时间区域内对所述第一通道进行驻波检测, 具体包括:
所述基站根据所述第一信号, 在所述空闲时隙或所述预设的驻波测试时 隙对所述第一通道进行驻波检测。
本发明实施例提供的基站驻波检测方法和基站, 通过处理器在对当前 选择的第一通道进行驻波检测时, 确保第二通道为关闭状态, 在基站的各 个天线隔离度较低的情况下, 第二通道上的功率无法耦合到第一通道上, 采用本发明实施例提供的技术方案, 避免了基站进行驻波检测时各通道间 的干扰, 提升驻波检测结果的准确性, 适用于各种类型的基站。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明实施例提供的基站的驻波检测系统框图;
图 2为本发明提供的基站实施例三的结构示意图;
图 3为本发明提供的基站实施例四的结构示意图;
图 4为本发明提供的基站驻波检测方法实施例二的流程示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
本申请中涉及的基站可以是小基站, 还可以其他通用的基站, 例如: 可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的 设备。本发明实施例涉及的基站可以是时分双工( Time Division Duplexing, 以下简称 TDD) 基站, 还可以是任意制式的基站, 例如, 基站可以是 GSM 制式或 CDMA制式的基站 (BTS, Base Transceiver Station) , 也可以是 WCDMA制式的基站 (NodeB) , 还可以是 TD-SCDMA制式的基站, 还可以是 LTE中的演进型基站 (NodeB或 eNB或 e-NodeB, evolut ional Node B ) , 该 LTE演进型基站可以包括 TDD-LTE和 FDD-LTE制式的基站, 本申请并不 限定。 本发明实施例涉及的基站可以是小型化的上述各种制式的基站, 小型 化基站由于体积小, 因此可以灵活部署于热点、 盲点、 小区边缘甚至室内 区域, 提供网络的深度覆盖和容量扩充。 为了保证体积小, 小型化基站内 各天线通道的隔离度相对普通基站更低。
本申请适用于图 1所示的基站的驻波检测系统。 该驻波检测系统包括 多个天线, 即对应多个通道。 因此, 当多个天线分别接收到自己的前向信 号和后向信号时, 通过功放和多路选择开关之间的两个耦合器来采集这两 个信号, 其中, 一个耦合器采集前向信号, 另一个耦合器采集反向信号; 之后, 多路选择开关在现场可编程逻辑门阵列的控制下选择接入一个通 道, 这个通道内的所有信号经过频率变换器将高频信号转换为直流信号, 并经过模数转换后, 利用现场可编程逻辑门阵列将这两个信号提取出来, 送给中央处理器, 以获取驻波检测结果, 并根据驻波检测结果来确定基站 的器件性能是否稳定或器件是否老化等异常情况。 具体的, 本申请获取驻波 检测结果的具体实施例如下述所示:
本发明实施例一提供了一种基站, 该基站包括第一通道及第二通道, 所述第一通道为所述基站确定的任一待检测通道, 所述第二通道为所述基站 中除所述第一通道之外的其他通道。 具体的, 该基站包括: 处理器, 用于对 所述第一通道进行驻波检测; 其中, 在对所述第一通道进行驻波检测时, 所 述第二通道为关闭状态。
具体的, 处理器在对第一通道进行驻波检测之前, 需要确定第一通道。 可选的, 处理器可以根据基站的选择机制确定将上述至少两个通道中的哪一 个通道作为第一通道, gp, 可选的, 处理器可以根据基站自身架设的天线的 顺序依次确定第一通道, 例如: 假设基站有 1号、 2号、 3号 3个天线, 分别 对应 3个通道, 那么处理器首先将 1 号天线对应的通道确定为第一通道, 2 号和 3号天线对应的通道确定为第二通道; 待 1号天线对应的通道驻波检测 完成之后, 再将 2号天线对应的通道确定为第一通道, 以此类推。 可选的, 处理器也可以随机确定第一通道, 只要确保将基站所包括的所有通道都进行 驻波检测即可。
处理器确定第一通道之后, 在第一通道发功时 (即发射信号时) , 确保 第二通道的状态是关闭的, 即保证在第一通道进行驻波检测时, 第二通道不 发功。 这样使得第二通道上发射功率不会耦合到第一通道上, 从而使得处理 器可以准确的获知第一通道的前向信号功率和后向信号功率。 可选的, 处理 器可以在任意时刻对第一通道进行驻波检测。
当当前的第一通道驻波检测完成之后, 处理器可以从剩余的第二通道中 继续选择一个通道作为第一通道, 按照上述实施例的过程完成所有通道的驻 本发明实施例提供的基站, 通过处理器在对当前选择的第一通道进行 驻波检测时, 确保第二通道为关闭状态, 避免在基站的各个天线隔离度较 低的情况下, 第二通道上的功率耦合到第一通道上。 采用本发明实施例提 供的基站, 降低了基站进行驻波检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的其他通道,基站无需通过昂贵的解调电路来区分哪些是待检 测通道的功率, 哪些是其他通道耦合到待检测通道上的功率, 从而降低了基 站进行驻波检测的电路成本。
在上述实施例一的基础上, 作为本发明实施例的一种可能的实施方 式, 本实施例涉及的是处理器根据基带信号确定第一时间区域, 并在该第一 时间区域内进行驻波检测的具体过程。 具体的, 上述处理器, 还用于在对所 述第一通道进行驻波检测之前, 根据自身的基带信号确定第一时间区域; 其 中, 在所述第一时间域内, 所述基站的基带信号不承载数据信息; 并获取第 一信号, 根据所述第一信号, 在所述第一时间区域内采集到所述第一通道上 的前向信号和后向信号携带数据信息时的功率, 对所述第一通道进行驻波检 具体的, 由于基站的基带信号是连续的周期性信号, 因此处理器可以 根据基带信号上是否携带数据信息来确定基带信号在哪些时间段上不携 带数据信息, 这些时间段都可以看作是第一时间区域。 由于基带信号经过 射频处理后从第一通道发射出去, 那么处理器在第一通道上获取的前向信号 和后向信号实际上与基带信号是相关的, 即在第一时间区域内, 第一通道上 的前向信号和后向信号也没有承载数据业务, 即这两个信号在第一时间区域 内的电平值也为 0。 也就是说, 在该第一时间区域内, 基站的上下行信号的 电平值均为 0, 即没有通信业务。 因此, 在特定的第一时间区域内, 对第一 通道进行驻波检测, 不会影响基站与用户设备之间的通信。 由于在第一时间区域内, 处理器检测到的第一通道上的前向信号和后向 信号均没有承载数据业务, 即此时处理器检测到的前向信号和后向信号的功 率均为 0, 但这并不是处理器对第一通道进行驻波检测时所需要的前向信号 和后向信号的实际功率, 因为前向信号和后向信号的实际的功率为二者分别 携带数据信息时的功率。 因此, 处理器为了能够在第一时间区域内采集到前 向信号和后向信号携带数据信息时的功率, 可以从基站的射频部分获得第一 信号, 该第一信号为基站的射频部分发送的单音信号, 用于触发处理器能够 检测到前向信号和后向信号的实际功率, 即该单音信号可以使得基站在第一 时间区域内采集到前向信号和后向信号携带数据信息时的功率, 从而根据前 向信号和后向信号携带数据信息时的功率获得驻波检测结果。 由于此时基站 的其他通道是关闭的, 即其他通道上的功率不会耦合到第一通道上, 处理器 可以准确的得到第一通道上的前向信号和后向信号的功率。
当当前的第一通道驻波检测完成之后, 处理器可以从剩余的通道中继续 选择一个通道作为第一通道, 按照上述实施例的过程完成所有通道的驻波检 测。
本发明实施例提供的基站, 通过处理器在第一时间区域内对选择的第 一通道进行驻波检测时, 确保第二通道为关闭状态, 从而使得处理器在预 设的第一时间区域内可以根据所获取的第一信号对第一通道进行驻波检 测, 获得准确的驻波检测结果。 采用本发明实施例提供的基站, 降低了基 站进行驻波检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的其他 通道, 基站无需通过昂贵的解调电路来区分哪些是待检测通道的功率, 哪些 是其他通道耦合到待检测通道上的功率,从而降低了基站进行驻波检测的电 路成本。 另外, 由于基站是在基带信号不携带数据信息的第一时间区域内 进行驻波检测, 也确保了基站与用户设备之间的通信不受影响。
可选的, 上述处理器, 可以用于在对所述第一通道进行驻波检测之前或 者在对所述第一通道进行驻波检测时, 关闭所述第二通道。 需要说明的是, 这里处理器关闭第二通道的时刻可以位于第一时间区域内, 也可以位于第一 时间区域之外, 只要确保处理器在对第一通道进行驻波检测时, 第二通道的 状态是关闭的即可。
进一歩地, 上述处理器, 具体用于在所述第一时间区域内, 且在对所述 第一通道进行驻波检测之前或在对所述第一通道进行驻波检测时, 关闭所述 第二通道。 需要说明的是, 这里处理器关闭第二通道的时刻需要位于第一时 间区域内。
进一歩地, 在上述实施例的基础上, 作为本发明实施例的另一种可能 的实施方式, 本实施例涉及的是基站为 TDD基站时, 处理器在无线帧的保 护间隔 (Guard Period, 以下简称 GP) 上对第一通道进行驻波检测的具体 过程。 具体的, 上述处理器, 具体用于根据所述第一信号, 在所述至少一 个 GP内的任一 GP上对所述第一通道进行驻波检测。
具体的, 上述的无线帧可以是一个无线帧, 也可以是循环的无线帧。 一 个无线帧可以包括 1个特殊的 TDD子帧, 特殊子帧上最多可以包括两个 GP, 每个 GP可以包括至少两个符号(symbol ), 一个 symbol的时间长度为 76us。 在一个 symbol的时间长度内至少可以进行一个第一通道的驻波检测。也就是 说, 上述处理器可以在至少一个 GP的任一 GP上对选定的第一通道进行驻波 检测。实际上在上述任一个 GP上可以分时进行多个通道的驻波检测。具体地, 假设将一个 GP内的某一个 symbol的时间长度分为第一时间段和第二时间段, 处理器控制其所确定的第一通道在第一时间段内发功, 且其他第二通道为关 闭状态, 处理器在该第一时间段内可以进行该第一通道的驻波检测; 之后, 处理器在该 symbol 的第二时间段内, 处理器控制其所确定的另一个第一通 道在第二时间段内发功, 且其他第二通道为关闭状态, 处理器在该第二时间 段内进行该另一个第一通道的驻波检测, 从而实现分时驻波检测。
本发明实施例提供的基站, 通过处理器在无线帧的至少一个 GP 的任 一 GP上, 对选择的第一通道进行驻波检测时, 确保第二通道为关闭状态, 从而使得处理器在无线帧的至少一个 GP的任一 GP上可以根据所获取的第 一信号对第一通道进行驻波检测, 获得准确的驻波检测结果。 采用本发明 实施例提供的基站, 降低了基站进行驻波检测时的干扰, 并且在进行驻波 检测时, 关闭了基站内的其他通道, 基站无需通过昂贵的解调电路来区分 哪些是待检测通道的功率, 哪些是其他通道耦合到待检测通道上的功率, 从 而降低了基站进行驻波检测的电路成本。 另外, 由于基站是在基带信号不 携带数据信息的第一时间区域内进行驻波检测, 也确保了基站与用户设备 之间的通信不受影响。 在上述实施例的基础上, 作为本发明实施例的第三种可能的实施方 式, 本实施例涉及的是基站为任意制式的基站时, 处理器在无线帧的空闲 时隙或预设的驻波测试时隙内对第一通道进行驻波检测的具体过程。 具体 的, 上述处理器, 具体用于根据所述第一信号, 在所述空闲时隙或所述预设 的驻波测试时隙对所述第一通道进行驻波检测。
具体的, 在无线帧的空闲时隙或预设的驻波测试时隙内, 处理器允许多 个通道在不同时间段发功, 即第一通道发功时, 确保其他第二通道是关闭 的状态, 此时进行第一通道的驻波检测, 并以此方式轮流检测基站所有的 通道。 可选的, 预设的驻波测试时隙可以是基站为驻波检测专门在无线帧 中选择的一段时隙。
本发明实施例提供的基站, 通过处理器在无线帧的空闲时隙或预设的 驻波测试时隙内, 对选择的第一通道进行驻波检测时, 确保第二通道为关 闭状态, 从而使得处理器在无线帧的空闲时隙或预设的驻波测试时隙内可 以根据所获取的第一信号对第一通道进行驻波检测, 获得准确的驻波检测 结果。采用本发明实施例提供的基站,降低了基站进行驻波检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的其他通道, 基站无需通过昂贵的 解调电路来区分哪些是待检测通道的功率, 哪些是其他通道耦合到待检测通 道上的功率, 从而降低了基站进行驻波检测的电路成本。 另外, 由于基站 是在基带信号不携带数据信息的第一时间区域内进行驻波检测, 也确保了 基站与用户设备之间的通信不受影响。 本发明实施例二提供一种基站, 该基站包括第一通道及第二通道, 所 述第一通道为所述基站确定的任一待检测通道, 所述第二通道为所述基站中 除所述第一通道之外的其他通道。 具体的, 该基站包括: 检测模块 10, 用于 对所述第一通道进行驻波检测; 其中, 在对所述第一通道进行驻波检测时, 所述第二通道为关闭状态。
具体的, 检测模块 10在对第一通道进行驻波检测之前, 基站需要确定第 一通道。 可选的, 基站可以根据自身的选择机制确定将上述至少两个通道中 的哪一个通道作为第一通道, gp, 可选的, 基站可以根据基站自身架设的天 线的顺序依次确定第一通道, 例如: 假设基站有 1号、 2号、 3号 3个天线, 分别对应 3个通道, 那么基站首先将 1号天线对应的通道确定为第一通道, 2 号和 3号天线对应的通道确定为第二通道; 待 1号天线对应的通道驻波检测 完成之后, 再将 2号天线对应的通道确定为第一通道, 以此类推。 可选的, 基站也可以随机确定第一通道, 只要确保将基站所包括的所有通道都进行驻 波检测即可。
检测模块 10在基站确定第一通道之后, 在第一通道发功时(即发射信号 时) , 确保第二通道的状态是关闭的, 即保证在第一通道进行驻波检测时, 第二通道不发功。 这样使得第二通道上发射功率不会耦合到第一通道上, 从 而使得检测模块 10 可以准确的获知第一通道的前向信号功率和后向信号功 率。 可选的, 检测模块 10可以在任意时刻对第一通道进行驻波检测。
当当前的第一通道驻波检测完成之后,检测模块 10可以从剩余的第二通 道中继续选择一个通道作为第一通道, 按照上述实施例的过程完成所有通道 的驻波检测。
本发明实施例提供的基站, 通过检测模块在对基站选择的第一通道进 行驻波检测时, 确保第二通道为关闭状态, 避免在基站的各个天线隔离度 较低的情况下, 第二通道上的功率耦合到第一通道上。 采用本发明实施例 提供的基站,降低了基站进行驻波检测时的干扰,并且在进行驻波检测时, 关闭了基站内的其他通道,基站无需通过昂贵的解调电路来区分哪些是待检 测通道的功率, 哪些是其他通道耦合到待检测通道上的功率, 从而降低了基 站进行驻波检测的电路成本。
图 2为本发明提供的基站实施例三的结构示意图。在上述实施例二的 基础上, 进一歩地, 上述基站还可以包括: 确定模块 11, 用于在所述检测 模块 10对所述第一通道进行驻波检测之前,根据基站的基带信号确定第一时 间区域; 其中, 在所述第一时间域内, 所述基站的基带信号不承载数据信息; 获取模块 12, 用于获取第一信号; 则上述检测模块 10, 具体用于根据所述第 一信号, 在所述第一时间区域内采集到所述第一通道上的前向信号和后向信 号携带数据信息时的功率, 对所述第一通道进行驻波检测。
具体的, 由于基站的基带信号是连续的周期性信号, 因此确定模块 11 可以根据基带信号上是否携带数据信息来确定基带信号在哪些时间段上 不携带数据信息, 这些时间段都可以看作是第一时间区域。 由于基带信号 经过射频处理后从第一通道发射出去, 那么基站在第一通道上获取的前向信 号和后向信号实际上与基带信号是相关的, 即在第一时间区域内, 第一通道 上的前向信号和后向信号也没有承载数据业务, 即这两个信号在第一时间区 域内的电平值也为 0。 也就是说, 在该第一时间区域内, 基站的上下行信号 的电平值均为 0, 即没有通信业务。 因此, 在特定的第一时间区域内, 检测 模块 10对第一通道进行驻波检测, 不会影响基站与用户设备之间的通信。
由于在第一时间区域内,检测模块 10检测到的第一通道上的前向信号和 后向信号均没有承载数据业务,即此时检测模块 10检测到的前向信号和后向 信号的功率均为 0, 但这并不是检测模块 10对第一通道进行驻波检测时所需 要的前向信号和后向信号的实际功率, 因为前向信号和后向信号的实际的功 率为二者分别携带数据信息时的功率。 因此, 检测模块 10为了能够在第一时 间区域内采集到前向信号和后向信号携带数据信息时的功率, 可以通过获取 模块 11从基站的射频部分获得第一信号,该第一信号为基站的射频部分发送 的单音信号,用于触发检测模块 10能够检测到前向信号和后向信号的实际功 率,即该单音信号可以使得检测模块 10在第一时间区域内采集到前向信号和 后向信号携带数据信息时的功率, 从而根据前向信号和后向信号携带数据信 息时的功率获得驻波检测结果。 由于此时基站的其他通道是关闭的, 即其他 通道上的功率不会耦合到第一通道上,检测模块 10可以准确的得到第一通道 上的前向信号和后向信号的功率。
当当前的第一通道驻波检测完成之后, 基站可以从剩余的通道中继续选 择一个通道作为第一通道,检测模块 10继续按照上述实施例的过程完成所有 通道的驻波检测。
本发明实施例提供的基站, 通过检测模块在确定模块确定的第一时间 区域内, 对基站选择的第一通道进行驻波检测时, 确保第二通道为关闭状 态, 从而使得检测模块在第一时间区域内可以根据获取模块所获取的第一 信号对第一通道进行驻波检测, 获得准确的驻波检测结果。 采用本发明实 施例提供的基站, 降低了基站进行驻波检测时的干扰, 并且在进行驻波检 测时, 关闭了基站内的其他通道, 基站无需通过昂贵的解调电路来区分哪 些是待检测通道的功率, 哪些是其他通道耦合到待检测通道上的功率, 从而 降低了基站进行驻波检测的电路成本。 另外, 由于基站是在基带信号不携 带数据信息的第一时间区域内进行驻波检测, 也确保了基站与用户设备之 间的通信不受影响。
图 3为本发明提供的基站实施例四的结构示意图。在上述图 2所示实 施例的基础上, 上述基站还可以包括: 关闭模块 13, 用于在所述检测模块 10 对所述第一通道进行驻波检测之前或者在对所述第一通道进行驻波检测 时, 关闭所述第二通道。
需要说明的是,上述关闭模块 13关闭第二通道的时刻可以位于第一时间 区域内, 也可以位于第一时间区域之外, 只要确保检测模块 10 在对第一通 道进行驻波检测时, 第二通道的状态是关闭的即可。
进一歩地, 上述关闭模块 13, 具体用于在所述第一时间区域内, 且所述 检测模块在对所述第一通道进行驻波检测之前或在对所述第一通道进行驻波 检测时, 关闭所述第二通道。 需要说明的是, 这里关闭模块 13 关闭第二通 道的时刻需要位于第一时间区域内。
本发明实施例提供的基站, 通过关闭模块在检测模块对第一通道进行 驻波检测之前或者在对第一通道进行驻波检测时, 关闭第二通道; 或者在确 定模块确定的第一时间区域内,且检测模块在对第一通道进行驻波检测之前 或在对第一通道进行驻波检测时, 关闭第二通道, 使得检测模块在第一时间 区域内, 可以根据获取模块获取的第一信号对第一通道进行驻波检测, 获 得准确的驻波检测结果。 采用本发明实施例提供的基站, 降低了基站进行 驻波检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的其他通道, 基站无需通过昂贵的解调电路来区分哪些是待检测通道的功率, 哪些是其他 通道耦合到待检测通道上的功率, 从而降低了基站进行驻波检测的电路成 本。 另外, 由于基站是在基带信号不携带数据信息的第一时间区域内进行 驻波检测, 也确保了基站与用户设备之间的通信不受影响。
进一歩地, 在上述实施例的基础上, 作为本发明实施例的一种可能的 实施方式, 本实施例涉及的是基站为 TDD基站时, 检测模块 10在无线帧 的 GP上对第一通道进行驻波检测的具体过程。具体的, 上述检测模块 10, 具体用于根据所述第一信号, 在所述至少一个 GP内的任一 GP上对所述第一 通道进行驻波检测。
具体的, 上述的无线帧可以是一个无线帧, 也可以是循环的无线帧。 一 个无线帧可以包括 1个特殊的 TDD子帧, 特殊子帧上最多可以包括两个 GP, 每个 GP可以包括至少两个符号(symbol ), 一个 symbol的时间长度为 76us。 在一个 symbol的时间长度内至少可以进行一个第一通道的驻波检测。也就是 说, 上述检测模块 10可以在至少一个 GP的任一 GP上对选定的第一通道进 行驻波检测。 实际上在上述任一个 GP上可以分时进行多个通道的驻波检测。 具体地, 假设将一个 GP内的某一个 symbol的时间长度分为第一时间段和第 二时间段, 基站控制其所确定的第一通道在第一时间段内发功, 且其他第二 通道为关闭状态, 检测模块 10 在该第一时间段内可以进行该第一通道的驻 波检测; 之后, 在该 symbol的第二时间段内, 基站控制其所确定的另一个第 一通道在第二时间段内发功, 且其他第二通道为关闭状态, 检测模块 10 在 该第二时间段内进行该另一个第一通道的驻波检测,从而实现分时驻波检测。
本发明实施例提供的基站, 通过检测模块在确定模块确定的无线帧的 至少一个 GP的任一 GP上, 对基站选择的第一通道进行驻波检测时, 确保 第二通道的状态是关闭的, 从而使得检测模块在无线帧的至少一个 GP 的 任一 GP上可以根据所获取的第一信号对第一通道进行驻波检测, 获得准 确的驻波检测结果。 采用本发明实施例提供的基站, 降低了基站进行驻波 检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的其他通道, 基站 无需通过昂贵的解调电路来区分哪些是待检测通道的功率, 哪些是其他通道 耦合到待检测通道上的功率, 从而降低了基站进行驻波检测的电路成本。 另外, 由于基站是在基带信号不携带数据信息的第一时间区域内进行驻波 检测, 也确保了基站与用户设备之间的通信不受影响。
在上述实施例的基础上, 作为本发明实施例的另一种可能的实施方 式, 本实施例涉及的是基站为任意制式的基站时, 检测模块 10在无线帧 的空闲时隙或预设的驻波测试时隙内对第一通道进行驻波检测的具体过 程。 具体的, 上述检测模块 10, 具体用于根据所述第一信号, 在所述空闲 时隙或所述预设的驻波测试时隙对所述第一通道进行驻波检测。
具体的, 在无线帧的空闲时隙或预设的驻波测试时隙内, 检测模块 10 允许多个通道在不同时间段发功, 即第一通道发功时, 确保其他第二通道 是关闭的状态, 此时进行第一通道的驻波检测, 并以此方式轮流检测基站 所有的通道。 可选的, 预设的驻波测试时隙可以是基站为驻波检测专门在 无线帧中选择的一段时隙。
本发明实施例提供的基站, 通过检测模块在确定模块确定的无线帧的 空闲时隙或预设的驻波测试时隙内, 对基站选择的第一通道进行驻波检测 时, 确保第二通道是关闭的状态, 从而使得检测模块在无线帧的空闲时隙 或预设的驻波测试时隙内可以根据所获取的第一信号对第一通道进行驻 波检测, 获得准确的驻波检测结果。 采用本发明实施例提供的基站, 降低 了基站进行驻波检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的 其他通道, 基站无需通过昂贵的解调电路来区分哪些是待检测通道的功率, 哪些是其他通道耦合到待检测通道上的功率,从而降低了基站进行驻波检测 的电路成本。 另外, 由于基站是在基带信号不携带数据信息的第一时间区 域内进行驻波检测, 也确保了基站与用户设备之间的通信不受影响。 本发明实施例一提供了一种基站驻波检测方法。 本发明实施例所涉及 的基站可以包括至少两个天线。 该基站包括第一通道和第二通道, 第一通道 为所述基站确定的任一待检测通道, 所述第二通道为基站中除所述第一通道 之外的其他通道。 可选的, 基站可以自身的选择机制确定将上述至少两个通 道中的哪一个通道作为第一通道, gp, 可选的, 基站可以根据自身架设的天 线的顺序依次确定第一通道, 例如: 假设基站有 1号、 2号、 3号 3个天线, 分别对应 3个通道, 那么基站首先将 1号天线对应的通道确定为第一通道, 2 号和 3号天线对应的通道确定为第二通道; 待 1号天线对应的通道驻波检测 完成之后, 再将 2号天线对应的通道确定为第一通道, 以此类推。 可选的, 基站也可以随机确定第一通道, 只要确保将基站所包括的所有通道都进行驻 波检测即可。
该方法包括: 基站对所述第一通道进行驻波检测; 其中, 在对所述第一 通道进行驻波检测时, 所述第二通道为关闭状态。
具体的, 基站确定第一通道之后, 在第一通道发功时(即发射信号时) , 确保第二通道的状态是关闭的, 即保证在第一通道进行驻波检测时, 第二通 道不发功。 这样使得第二通道上发射功率不会耦合到第一通道上, 从而使得 基站可以准确的获知第一通道的前向信号功率和后向信号功率。 可选的, 基 站可以在任意时刻对第一通道进行驻波检测。 当当前的第一通道驻波检测完成之后, 基站可以从剩余的第二通道中继 续选择一个通道作为第一通道, 按照上述实施例的过程完成所有通道的驻波 本发明实施例提供的基站驻波检测方法, 通过基站在对当前选择的第 —通道进行驻波检测时, 确保第二通道为关闭状态, 避免在基站的各个天 线隔离度较低的情况下, 第二通道上的功率耦合到第一通道上。 本发明实 施例提供的方法, 降低了基站进行驻波检测时的干扰, 并且在进行驻波检 测时, 关闭了基站内的其他通道, 基站无需通过昂贵的解调电路来区分哪 些是待检测通道的功率, 哪些是其他通道耦合到待检测通道上的功率, 从而 降低了基站进行驻波检测的电路成本。
图 4为本发明提供的基站驻波检测方法实施例二的流程示意图。 本实施 例涉及的方法是基站根据基带信号确定第一时间区域, 并在该第一时间区域 内进行驻波检测的具体过程。 如图 4所示, 该方法包括:
S101 : 基站根据自身的基带信号确定第一时间区域; 其中, 在所述第一 时间域内, 所述基站的基带信号不承载数据信息。
具体的, 由于基站的基带信号是连续的周期性信号, 因此基站本身可 以根据基带信号上是否携带数据信息来确定基带信号在哪些时间段上不 携带数据信息, 这些时间段都可以看作是第一时间区域。
基站的基带信号在第一时间区域内不承载任何数据信息, 即基站的基带 信号在第一时间区域内的电平值为 0。 由于基带信号经过射频处理后从第一 通道发射出去, 那么基站在第一通道上获取的前向信号和后向信号实际上与 基带信号是相关的, 即在第一时间区域内, 第一通道上的前向信号和后向信 号也没有承载数据业务, 即这两个信号在第一时间区域内的电平值也为 0。 也就是说, 在该第一时间区域内, 基站的上下行信号的电平值均为 0, 即没 有通信业务。 因此, 在特定的第一时间区域内, 对第一通道进行驻波检测, 不会影响基站与用户设备之间的通信。
S102 : 基站获取第一信号。
具体的, 该第一信号为基站的射频部分发送的单音信号, 用于触发基站 能够检测到前向信号和后向信号的实际功率。
S103 : 基站根据所述第一信号, 在所述第一时间区域内采集到所述第一 通道上的前向信号和后向信号携带数据信息时的功率, 对所述第一通道进行 驻波检测。
具体的, 由于在第一时间区域内, 基站检测到的第一通道上的前向信号 和后向信号均没有承载数据业务, 即此时基站检测到的前向信号和后向信号 的功率均为 0, 但这并不是基站对第一通道进行驻波检测时所需要的前向信 号和后向信号的实际功率, 因为前向信号和后向信号的实际的功率为二者分 别携带数据信息时的功率。 因此, 基站为了能够在第一时间区域内采集到前 向信号和后向信号携带数据信息时的功率, 可以从基站的射频部分获得单音 信号, 该单音信号可以使得基站在第一时间区域内采集到前向信号和后向信 号携带数据信息时的功率, 从而根据前向信号和后向信号携带数据信息时的 功率获得驻波检测结果。 由于此时基站的其他通道是关闭的, 即其他通道上 的功率不会耦合到第一通道上, 基站可以准确的得到第一通道上的前向信号 和后向信号的功率。
当当前的第一通道驻波检测完成之后, 基站可以从剩余的通道中继续选 择一个通道作为第一通道,按照上述实施例的过程完成所有通道的驻波检测。
本发明实施例提供的基站驻波检测方法, 通过基站在预设的第一时间 区域内对选择的第一通道进行驻波检测时, 确保第二通道的状态是关闭 的, 从而使得基站在预设的第一时间区域内可以根据所获取的第一信号对 第一通道进行驻波检测, 获得准确的驻波检测结果。 本发明实施例提供的 方法, 降低了基站进行驻波检测时的干扰, 并且在进行驻波检测时, 关闭 了基站内的其他通道,基站无需通过昂贵的解调电路来区分哪些是待检测通 道的功率, 哪些是其他通道耦合到待检测通道上的功率, 从而降低了基站进 行驻波检测的电路成本。 另外, 由于基站是在基带信号不携带数据信息的 第一时间区域内进行驻波检测, 也确保了基站与用户设备之间的通信不受 影响。
可选的, 在图 4所示实施例的基础上, 上述在对所述第一通道进行驻 波检测时, 所述第二通道为关闭状态, 还可以包括: 基站在对所述第一通道 进行驻波检测之前或者在对所述第一通道进行驻波检测时, 关闭所述第二通 道。需要说明的是, 这里基站关闭第二通道的时刻可以位于第一时间区域内, 也可以位于第一时间区域之外,只要确保基站在对第一通道进行驻波检测时, 第二通道的状态是关闭的即可。
进一歩地, 上述在对所述第一通道进行驻波检测时, 所述第二通道为关 闭状态, 具体包括: 基站在所述第一时间区域内, 且在对所述第一通道进行 驻波检测之前或在对所述第一通道进行驻波检测时, 关闭所述第二通道。 需 要说明的是, 这里基站关闭第二通道的时刻位于第一时间区域内。
在上述实施例的基础上, 作为本发明实施例的一种可能的实施方式, 本实施例涉及的是基站为 TDD基站时, 在无线帧的 GP上对第一通道进行 驻波检测的具体过程。 进一歩地, 基站所确定的第一时间区域为无线帧的 至少一个 GP, 则上述 S 103具体包括: 基站根据所述第一信号, 在所述至少 一个 GP内的任一 GP上对所述第一通道进行驻波检测。
具体的, 上述的无线帧可以是一个无线帧, 也可以是循环的无线帧。 一 个无线帧可以包括 1个特殊的 TDD子帧, 特殊子帧上最多可以包括两个 GP, 每个 GP可以包括至少两个符号(symbol ), 一个 symbol的时间长度为 76us。 在一个 symbol的时间长度内至少可以进行一个第一通道的驻波检测。也就是 说, 上述基站可以在至少一个 GP的任一 GP上对选定的第一通道进行驻波检 测。 实际上在上述任一个 GP上可以分时进行多个通道的驻波检测。 具体地, 假设将一个 GP内的某一个 symbol的时间长度分为第一时间段和第二时间段, 基站控制其所确定的第一通道在第一时间段内发功, 且其他第二通道为关闭 状态, 基站在该第一时间段内可以进行该第一通道的驻波检测; 之后, 基站 在该 symbol的第二时间段内,基站控制其所确定的另一个第一通道在第二时 间段内发功, 且其他第二通道为关闭状态, 基站在该第二时间段内进行该另 一个第一通道的驻波检测, 从而实现分时驻波检测。
本发明实施例提供的基站驻波检测方法, 通过基站在无线帧的至少一 个 GP的任一 GP上, 对选择的第一通道进行驻波检测时, 确保第二通道的 状态是关闭的, 从而使得基站在无线帧的至少一个 GP的任一 GP上可以根 据所获取的第一信号对第一通道进行驻波检测, 获得准确的驻波检测结 果。 采用本发明实施例提供的方法, 降低了基站进行驻波检测时的干扰, 并且在进行驻波检测时, 关闭了基站内的其他通道, 基站无需通过昂贵的 解调电路来区分哪些是待检测通道的功率, 哪些是其他通道耦合到待检测通 道上的功率, 从而降低了基站进行驻波检测的电路成本。 另外, 由于基站 是在基带信号不携带数据信息的第一时间区域内进行驻波检测, 也确保了 基站与用户设备之间的通信不受影响。
在上述实施例的基础上, 作为本发明实施例的另一种可能的实施方 式, 本实施例涉及的是基站为任意制式的基站时, 在无线帧的空闲时隙或 预设的驻波测试时隙内对第一通道进行驻波检测的具体过程。 进一歩地, 基站所确定的第一时间区域为无线帧的空闲时隙或预设的驻波测试时隙,则 上述 S 103 具体包括: 基站根据所述第一信号, 在所述空闲时隙或所述预设 的驻波测试时隙对所述第一通道进行驻波检测。
具体的, 在无线帧的空闲时隙或预设的驻波测试时隙内, 基站允许多个 通道在不同时间段发功, 即第一通道发功时, 确保其他第二通道是关闭的 状态, 此时进行第一通道的驻波检测, 并以此方式轮流检测基站所有的通 道。 可选的, 预设的驻波测试时隙可以是基站为驻波检测专门在无线帧中 选择的一段时隙。
本发明实施例提供的基站驻波检测方法, 通过基站在无线帧的空闲时 隙或预设的驻波测试时隙内, 对选择的第一通道进行驻波检测时, 确保第 二通道是关闭的状态, 从而使得基站在无线帧的空闲时隙或预设的驻波测 试时隙内可以根据所获取的第一信号对第一通道进行驻波检测, 获得准确 的驻波检测结果。 本发明实施例提供的方法, 降低了基站进行驻波检测时 的干扰, 并且在进行驻波检测时, 关闭了基站内的其他通道, 基站无需通 过昂贵的解调电路来区分哪些是待检测通道的功率, 哪些是其他通道耦合到 待检测通道上的功率, 从而降低了基站进行驻波检测的电路成本。 另外, 由于基站是在基带信号不携带数据信息的第一时间区域内进行驻波检测, 也确保了基站与用户设备之间的通信不受影响。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种基站, 其特征在于, 所述基站包括第一通道及第二通道, 所述第 一通道为所述基站确定的任一待检测通道, 所述第二通道为所述基站中除所 述第一通道之外的其他通道; 所述基站包括:
处理器, 用于对所述第一通道进行驻波检测; 其中, 在对所述第一通道 进行驻波检测时, 所述第二通道为关闭状态。
2、 根据权利要求 1所述的基站, 其特征在于, 所述处理器, 还用于在对 所述第一通道进行驻波检测之前, 根据自身的基带信号确定第一时间区域; 其中, 在所述第一时间域内, 所述基站的基带信号不承载数据信息; 并获取 第一信号, 根据所述第一信号, 在所述第一时间区域内采集到所述第一通道 上的前向信号和后向信号携带数据信息时的功率, 对所述第一通道进行驻波
3、 根据权利要求 2所述的基站, 其特征在于, 所述处理器, 具体用于在 对所述第一通道进行驻波检测之前或者在对所述第一通道进行驻波检测时, 关闭所述第二通道。
4、 根据权利要求 2或 3所述的基站, 其特征在于, 所述处理器, 具体用 于在所述第一时间区域内, 且在对所述第一通道进行驻波检测之前或在对所 述第一通道进行驻波检测时, 关闭所述第二通道。
5、 根据权利要求 2-4任一项所述的基站, 其特征在于, 所述第一时间区 域为无线帧中的至少一个保护间隔 GP, 则所述处理器, 具体用于根据所述第 一信号, 在所述至少一个 GP内的任一 GP上对所述第一通道进行驻波检测。
6、 根据权利要求 2-4任一项所述的基站, 其特征在于, 所述第一时间区 域为无线帧的空闲时隙或预设的驻波测试时隙, 则所述处理器, 具体用于根 据所述第一信号, 在所述空闲时隙或所述预设的驻波测试时隙对所述第一通 道进行驻波检测。
7、 一种基站, 其特征在于, 所述基站包括第一通道及第二通道, 所述第 一通道为所述基站确定的任一待检测通道, 所述第二通道为所述基站中除所 述第一通道之外的其他通道; 所述基站包括:
检测模块, 用于对所述第一通道进行驻波检测; 其中, 在对所述第一通 道进行驻波检测时, 所述第二通道为关闭状态。
8、 根据权利要求 7所述的基站, 其特征在于, 所述基站还包括: 确定模块, 用于在所述检测模块对所述第一通道进行驻波检测之前, 根 据自身的基带信号确定第一时间区域; 其中, 在所述第一时间域内, 所述基 站的基带信号不承载数据信息;
获取模块, 用于获取第一信号;
所述检测模块, 具体用于根据所述第一信号, 在所述第一时间区域内采 集到所述第一通道上的前向信号和后向信号携带数据信息时的功率, 对所述 第一通道进行驻波检测。
9、 根据权利要求 8所述的基站, 其特征在于, 所述基站, 还包括: 关闭模块, 用于在所述检测模块对所述第一通道进行驻波检测之前或者 在对所述第一通道进行驻波检测时, 关闭所述第二通道。
10、 根据权利要求 8或 9所述的基站, 其特征在于, 所述基站, 还包括: 关闭模块, 具体用于在所述第一时间区域内, 且所述检测模块在对所述 第一通道进行驻波检测之前或在对所述第一通道进行驻波检测时, 关闭所述 第二通道。
11、 根据权利要求 8-10任一项所述的基站, 其特征在于, 所述第一时间 区域为无线帧中的至少一个保护间隔 GP, 所述检测模块, 具体用于根据所述 第一信号,在所述至少一个 GP内的任一 GP上对所述第一通道进行驻波检测。
12、 根据权利要求 8-10任一项所述的基站, 其特征在于, 所述第一时间 区域为无线帧的空闲时隙或预设的驻波测试时隙, 所述检测模块, 具体用于 根据所述第一信号, 在所述空闲时隙或所述预设的驻波测试时隙对所述第一 通道进行驻波检测。
13、 一种基站驻波检测方法, 其特征在于, 所述基站包括第一通道及第 二通道, 所述第一通道为所述基站确定的任一待检测通道, 所述第二通道为 所述基站中除所述第一通道之外的其他通道; 所述方法包括:
所述基站对所述第一通道进行驻波检测; 其中, 在对所述第一通道进行 驻波检测时, 所述第二通道为关闭状态。
14、 根据权利要求 13所述的方法, 其特征在于, 所述基站对所述第一通 道进行驻波检测之前, 还包括:
所述基站根据自身的基带信号确定第一时间区域; 其中, 在所述第一时 间域内, 所述基站的基带信号不承载数据信息;
所述基站获取第一信号;
所述对所述第一通道进行驻波检测, 包括:
所述基站根据所述第一信号, 在所述第一时间区域内采集到所述第一通 道上的前向信号和后向信号携带数据信息时的功率, 对所述第一通道进行驻
15、 根据权利要求 14所述的方法, 其特征在于, 所述在对所述第一通道 进行驻波检测时, 所述第二通道为关闭状态, 包括:
所述基站在对所述第一通道进行驻波检测之前或者在对所述第一通道进 行驻波检测时, 关闭所述第二通道。
16、 根据权利要求 14或 15所述的方法, 其特征在于, 所述在对所述第 一通道进行驻波检测时, 所述第二通道为关闭状态, 包括:
所述基站在所述第一时间区域内, 且在对所述第一通道进行驻波检测之 前或在对所述第一通道进行驻波检测时, 关闭所述第二通道。
17、 根据权利要求 14-16任一项所述的方法, 其特征在于, 所述第一时 间区域为无线帧中的至少一个保护间隔 GP, 则所述基站根据所述第一信号, 在所述第一时间区域内对所述第一通道进行驻波检测, 具体包括:
所述基站根据所述第一信号, 在所述至少一个 GP内的任一 GP上对所述 第一通道进行驻波检测。
18、 根据权利要求 14-16任一项所述的方法, 其特征在于, 所述第一时 间区域为无线帧的空闲时隙或预设的驻波测试时隙, 则所述基站根据所述第 一信号, 在所述第一时间区域内对所述第一通道进行驻波检测, 具体包括: 所述基站根据所述第一信号, 在所述空闲时隙或所述预设的驻波测试时 隙对所述第一通道进行驻波检测。
PCT/CN2014/079726 2014-06-12 2014-06-12 基站驻波检测方法和基站 WO2016000101A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480032891.7A CN105453634A (zh) 2014-06-12 2014-06-12 基站驻波检测方法和基站
PCT/CN2014/079726 WO2016000101A1 (zh) 2014-06-12 2014-06-12 基站驻波检测方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079726 WO2016000101A1 (zh) 2014-06-12 2014-06-12 基站驻波检测方法和基站

Publications (1)

Publication Number Publication Date
WO2016000101A1 true WO2016000101A1 (zh) 2016-01-07

Family

ID=55018203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079726 WO2016000101A1 (zh) 2014-06-12 2014-06-12 基站驻波检测方法和基站

Country Status (2)

Country Link
CN (1) CN105453634A (zh)
WO (1) WO2016000101A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1963545A (zh) * 2005-11-08 2007-05-16 中兴通讯股份有限公司 一种多天线射频信号驻波检测的装置及方法
CN102215496A (zh) * 2011-06-13 2011-10-12 中兴通讯股份有限公司 一种微微基站内外天线自动切换方法、装置及系统
CN102215074A (zh) * 2011-06-03 2011-10-12 京信通信系统(中国)有限公司 一种功率和驻波比检测的装置及方法
CN103427915A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 一种射频设备驻波比检测中的去干扰方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1963545A (zh) * 2005-11-08 2007-05-16 中兴通讯股份有限公司 一种多天线射频信号驻波检测的装置及方法
CN102215074A (zh) * 2011-06-03 2011-10-12 京信通信系统(中国)有限公司 一种功率和驻波比检测的装置及方法
CN102215496A (zh) * 2011-06-13 2011-10-12 中兴通讯股份有限公司 一种微微基站内外天线自动切换方法、装置及系统
CN103427915A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 一种射频设备驻波比检测中的去干扰方法和装置

Also Published As

Publication number Publication date
CN105453634A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
RU2670604C1 (ru) Способ и аппарат для мониторинга качества линии радиосвязи
JP6977151B2 (ja) 低減帯域幅上でリファレンス信号が送信される際の帯域スキャニングのための方法
WO2018202157A1 (zh) 测量方法、终端设备和接入网设备
EP2673978B1 (en) Priority measurement rules for channel measurement occasions
JP2019208255A (ja) ミリ波通信システムの方法および装置
CN111406421A (zh) 切换执行中的多波束随机接入过程
JP6679719B2 (ja) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
JP7117370B2 (ja) ユーザ装置
JP2015500602A5 (zh)
WO2019192476A1 (zh) 用户设备以及波束故障恢复方法
CN106797610B (zh) 调整具有接通/关断小区的网络中要测量的小区的数量
KR20130036510A (ko) 무선 통신 시스템에서 무선 링크 모니터링 장치 및 방법
JP6150790B2 (ja) 異なる無線アクセス技術ネットワーク間での高速再選択
JP2014525697A (ja) セルラ無線通信におけるモビリティ情報の交換
US8359034B2 (en) Mobile communication system, base station apparatus, user equipment and method
CN114514771B (zh) 用于早期测量报告的增强过程
JP2022544586A (ja) Ccaの存在下におけるue動作のためのシステムおよび方法
US11304222B2 (en) Method and apparatus for uplink scheduling
WO2015016183A1 (ja) 無線基地局装置、及び送信電力決定方法
WO2021142641A1 (zh) 测量放松的方法及装置
WO2015089193A1 (en) Multi-user congestion detection and mitigation mechanism
US20170006532A1 (en) Small Cell Discovery Method and System, Base Station, and User Equipment, and Communication Apparatus
WO2014012385A1 (zh) 移动性管理的方法和设备
WO2015180640A1 (zh) 用于时分双工无线通信小区间同步检测的电子设备和方法
CN106130619B (zh) 用于在无线终端中搜索小区的设备和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032891.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896596

Country of ref document: EP

Kind code of ref document: A1